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ABSTRACT

Batch Normalization (BN) is a widely used technique in modern deep neural net-
works that has been proven to be effective in tasks such as Unsupervised Domain
Adaptation (UDA) in cross-domain scenarios. However, existing BN variants tend
to aggregate source and target domain knowledge in the same channel, which can
lead to suboptimal transferability due to unaligned features between domains. To
address this issue, we propose a new normalization method called Refined Batch
Normalization (RBN), which leverages estimated shift to quantify the difference
between estimated population statistics and expected statistics. Our key finding
is that the estimated shift can accumulate due to BN stacking in the network,
which can adversely affect target domain performance. We further demonstrate
that RBN can prevent the accumulation of estimated shift and improve overall
performance. To implement this technique, we introduce the RBNBlock, which
replaces a BN with RBN in the bottleneck block of a residual network. Our com-
prehensive experiments on cross-domain benchmarks confirm the effectiveness of
RBN in improving transferability across domains.

1 INTRODUCTION

The primary objective of Unsupervised Domain Adaptation (UDA)Singh (2021); Mahapatra et al.
(2022); Murez et al. (2018) is the transference of knowledge derived from a labeled source domain to
an unlabeled target domain. UDA has found extensive application in diverse domains such as clas-
sification, detectionXu et al. (2020), and segmentation Zhou et al. (2020). In pursuit of enhancing
feature transferability and acquiring domain-specific insights, scholars have predominantly concen-
trated their efforts on augmenting the feature normalization module within deep neural networks
(DNNs), in conjunction with conventional strategies for feature alignment and pixel-level image
translation.

Batch Normalization (BN)Ioffe & Szegedy (2015b) has proven to be a potent remedy for addressing
the issue of internal covariate shift in deep neural networks. Nevertheless, recent investigations have
illuminated its potential shortcomings in UDA scenarios, chiefly attributed to the shared mean and
variance parameters between domains, which is deemed unsuitable. In response to this challenge,
several methodologies have been introduced with the aim of preserving domain-specific information.
For instance, AdaBNLi et al. (2016c) advocates for the use of distinct domain-specific statistics, al-
beit a reliance solely on target statistics during inference can result in the forfeiture of source domain
insights. AutoDIAL Maria Carlucci et al. (2017b), conversely, mitigates this concern by amalgamat-
ing domain statistics on a channel-wise basis through the utilization of shared weight parameters for
each channel. On a contrasting note, InterBN Wang et al. (2021) leverages scaling factors originat-
ing from individual channels within the BN framework, orchestrating a self-regulating process to
determine channel importance, thereby safeguarding domain-specific information.

The previously mentioned approaches have indeed made strides in enhancing Unsupervised Domain
Adaptation (UDA) by harnessing domain-specific insights from pertinent channels within the Batch
Normalization (BN) framework. However, they still grapple with challenges when confronted with
intricate scenarios. A well-documented limitation of BN pertains to its sensitivity to batch size varia-
tions, wherein the error rate of BN experiences a rapid escalation as the batch size diminishes Huang
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Figure 1: The figure illustrates the main observations, with the orange rectangle and green circle
representing linear and non-linear transformations, respectively. By inputting both the source and
target domains into the network, it can be observed that as the number of network layers increases,
the differences between the two domains become more pronounced.

et al. (2022). Surprisingly, this issue has remained largely unaddressed within the domain adaptation
literature.

In this investigation, we draw inspiration from the work of BFN Huang et al. (2022) and introduce an
innovative concept: the expected population statistics of BN tailored for UDA. This novel approach
takes into consideration the precarious nature of activation population statistics, characterized by a
fluctuating distribution during training. When the estimated population statistics of BN deviate from
their expected values, we identify this discrepancy as an ”estimation shift” of BN.

Our primary discovery underscores that this estimation shift of BN has the potential to accumu-
late within a neural network, as visually depicted in Figure I. This revelation sheds light on why a
network employing BN encounters substantial performance degradation under traditional batch nor-
malization. Moreover, it elucidates the imperative need for adapting the population statistics of BN
in response to distribution shifts in the input data during testing. Further investigations reveal that
the utilization of BFN Huang et al. (2022), which entails normalizing each sample independently
without factoring in the batch dimension, can effectively thwart the accumulation of estimation shift
in the context of UDA. Consequently, this mitigates the performance deterioration observed in net-
works when distribution shifts transpire.

Building upon these insights, we introduce the RBNBlock, a novel architectural component that
replaces one instance of BN with Randomized Batch Normalization (RBN) in the bottleneck region
of the network. Our contributions in this endeavor can be succinctly summarized as follows:

• Our investigation introduces a novel approach known as Refined Batch Normalization
(RBN) tailored specifically for Unsupervised Domain Adaptation (UDA). RBN offers the
distinct advantage of augmenting performance without necessitating explicit architectural
alterations. An eminent merit of RBN lies in its innate simplicity, as it obviates the require-
ment for supplementary network modules beyond the core backbone network, rendering its
implementation straightforward and computationally efficient.

• RBN stands out as a highly adaptable and efficient technique, seamlessly integrable into
a diverse array of UDA methodologies. Its incorporation into these frameworks yields
tangible enhancements in their overall performance.

• Rigorous evaluation conducted across multiple cross-domain benchmark datasets, encom-
passing Office-31, ImageCLED-DA, Office-Home, and VisDA-2017, has consistently un-
derscored the efficacy of RBN. It emerges as a dependable enhancer, consistently delivering
notable improvements in performance across these varied evaluation scenarios.

2 RELATED WORK

2.1 UNSUPERVISED DOMAIN ADAPTATION (UDA)

From a technical standpoint, the formulation of the loss function in the context of Unsupervised
Domain Adaptation (UDA) typically involves two predominant approaches.
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The first approach revolves around the minimization of cross-domain distribution discrepancies
by aligning all statistical aspects between the two domains. Exemplifying this approach, meth-
ods such as Deep Domain Confusion (DDC) Tzeng et al. (2014) and Domain Adaptation Network
(DAN) Long et al. (2015a) employ the Maximum Mean Discrepancy (MMD) Gretton et al. (2006)
as a metric to quantify and mitigate the disjunction between the source and target domains. Concur-
rently, Joint Maximum Mean Discrepancy (JAN) Long et al. (2017a) innovatively combines adver-
sarial learning principles with MMD. Additionally, methodologies like Sliced Wasserstein Distance
(SWD) Lee et al. (2019) and Contrastive Domain Discrepancy (CAN) Kang et al. (2019) intro-
duce Sliced Wasserstein Distance and Contrastive Domain Discrepancy, respectively, as alternative
metrics for effectively gauging domain discrepancies.

The second approach entails the incorporation of domain discriminators and harnesses adver-
sarial learning to incentivize domain confusion. Notably, Domain-Adversarial Neural Network
(DANN) Ganin & Lempitsky (2015) introduces a domain adversarial loss function to facilitate
the acquisition of domain-invariant representations. Adversarial Discriminative Domain Adapta-
tion (ADDA) Tzeng et al. (2017a) further integrates adversarial learning with discriminative feature
learning by employing asymmetric feature extractors tailored to each domain. Conditional Domain
Adversarial Network (CDAN) Long et al. (2018a) adopts a conditional domain-adversarial paradigm
in the training of adversarial adaptation models.

Notwithstanding the breadth of existing methodologies, a common limitation pervades them all: the
oversight of misalignment issues among corresponding channels across domains. This misalignment
concern frequently gives rise to suboptimal outcomes in domain adaptation performance.

2.2 NORMALIZATION TECHNIQUES

Normalization techniques serve as integral components within Convolutional Neural Networks
(CNNs), playing a pivotal role in augmenting their learning efficiency, stability, and generaliza-
tion capabilities Tseng et al. (2020); Wang et al. (2019a); Du et al. (2020). Among the array of
widely adopted methods, one finds Batch Normalization (BN) Ioffe & Szegedy (2015a), Layer
Normalization (LN) Ba et al. (2016a), Adaptive Batch Normalization (AdaBN) Li et al. (2016a),
Group Normalization (GN) Wu & He (2018), Switchable Normalization (SN) Luo et al. (2018),
TaskNorm Bronskill et al. (2020), EvoNorm Liu et al. (2020), Meta-Norm Du et al. (2020), and
Representation Normalization Gao et al. (2021).

Within the domain adaptation paradigm, researchers have devised novel normalization strategies to
improve adaptation performance. These innovations encompass the likes of AdaBN Li et al. (2016a),
which leverages source and target domain statistics separately, AutoDIAL Maria Carlucci et al.
(2017a), facilitating statistics integration on a channel-by-channel basis, DSBN Chang et al. (2019),
which normalizes source and target representations individually, TN Wang et al. (2019a), employing
channel attention mechanisms to align source and target statistics, ConvNorm Li & Vasconcelos
(2019), conducting domain adaptation via a specialized adaptation layer, and DWT Roy et al. (2019),
which employs dual co-variance matrices to whiten feature maps from both domains individually.

However, it is important to note that these prevailing methodologies exhibit a common limitation -
they disregard the issue of misalignment among non-corresponding channels across domains. In this
study, we present an innovative feature normalization method that confronts this misalignment con-
cern through the enactment of cross-domain reciprocity. Diverging from conventional normalization
techniques, which either segregate feature maps or solely account for corresponding cross-domain
channels, our approach delves into modeling the non-corresponding channels as a key facet of do-
main adaptation.

3 METHOD

In the context of Unsupervised Domain Adaptation (UDA), the formal representation of the source
and target domains is established as follows: We denote the source domain as S = {(xsk, ysk)}ms

k=1,
which comprises a collection of ms labeled samples, where the labels ysk ∈ {1, 2, . . . , N} corre-
spond to the source domain data instances xsk. Simultaneously, the target domain is denoted as
T = {xti}mt

i=1, encompassing mt unlabeled samples. It is imperative to underscore that the labels
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(a) Original bottleneck (b) RBNBlock

Figure 2: We present the key findings through a visual representation. A linear and non-linear
transformation are depicted by an orange rectangle and green round, respectively. We demonstrate
the distribution of normalized output at each BN layer for both the source and target data with
distribution shift, and measure the degree of difference between the estimated population statistics
and the expected values.

assigned to the source domain samples are defined over the set {1, 2, . . . , N}, and it is essential to
acknowledge that the source and target data are sampled from distinct probability distributions.

3.1 BATCH NORMALIZATION

Within the framework of a multi-layer perceptron (MLP), we denote the p-dimensional input to a
specific layer as x ∈ Rp. During the training phase, the utilization of batch normalization [6] entails
the normalization of each neuron or channel by considering a mini-batch of size n, and this process
is outlined as follows:

x̂i = BN (xi) =
xi − νi√
τ2i + ϵ

, i = 1, 2, . . . , p (1)

Batch normalization involves the computation of mini-batch statistics, namely the mini-batch mean
denoted as νi and the variance represented as τ2i , for each neuron. Specifically, νi corresponds to the
average value of n samples of xi, while τ2i is the variance of n samples of (xi − νi)

2. To circumvent
potential issues of numerical instability, a small constant ϵ is added to both the mean and variance
calculations.

However, during the inference or testing phase, there arises a need to ascertain the population statis-
tics, namely the population mean denoted as ν̃ and the population variance represented as τ̃2, of the
layer input. This determination of population statistics is essential for batch normalization to make
deterministic predictions.
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x̂i = BNinf (xi) =
xi − ν̄i√

τ2i
, i = 1, 2, . . . , p (2)

While the direct computation of population statistics
{
ν̃, τ̃2

}
for the layer input is not feasible, we

can approximate these statistics using
{
ν̂, τ̂2

}
, which represent the running averages of mini-batch

statistics accumulated over various training iterations denoted by s. To update and maintain these
estimates, we employ an update factor denoted as α, and the calculation proceeds as follows:

{
ν̂s = (1− α)µ̂s−1 + ανs−1

(τ̂s)
2
= (1− α)

(
τ̂s−1

)2
+ α

(
τs−1

)2
.

(3)

The discordance in Batch Normalization (BN) behavior between training and inference poses a
challenge, particularly in recurrent neural networks, and it detrimentally affects performance when
dealing with small batch sizes, mainly due to the potential inaccuracies in population statistics esti-
mation, as highlighted in prior work Huang et al. (2022).

To circumvent the necessity of estimating population statistics, a novel method known as Batch-Free
Normalization (BFN) Huang et al. (2022) has been devised. BFN operates by refraining from nor-
malization along the batch dimension, thereby ensuring consistent operations during both training
and inference phases. An illustrative example of such an approach is Layer Normalization (LN) Ba
et al. (2016b), which standardizes the layer input within the neurons for each training sample by:

x̂i = LN (xi) =
xi − ν√
τ2 + ϵ

, i = 1, 2, . . . , p (4)

In this context, the symbol ν = 1
p

∑p
i=1 xi represents the mean, and τ2 = 1

p

∑p
i=1 (xi − ν)

2 denotes
the variance of each sample. Layer Normalization (LN) [35] extends this concept by standardizing
the layer input across neurons while independently normalizing neurons within designated groups.
In contrast, Group Normalization (GN) offers greater flexibility than LN by permitting the adjust-
ment of the number of groups. GN has proven effective, particularly in visual tasks with small batch
training.

Recent research by Huang et al. Huang et al. (2022) has introduced Batch-Free Normalization
(BFN), a method that prevents the accumulation of estimation drift. BFN independently normalizes
each sample instead of performing normalization across the batch dimension, thereby mitigating the
deterioration of network performance in the presence of distributional drift.

Inspired by the principles underlying BFN, we approach the Unsupervised Domain Adaptation
(UDA) problem from the perspective of refining batch normalization techniques.

3.2 REFINE BATCH NORMALIZATION (RBN)

In recent years, several methods have been proposed to address the limitations of BN, including
AdaBN Li et al. (2016a), AutoDIAL Maria Carlucci et al. (2017a), DWT Roy et al. (2019), DSBN
Chang et al. (2019), and TN Wang et al. (2019a). Figure \illustrates the main differences between
these typical UDA normalization techniques and our RBN. Generally, separate normalization is
adopted by these methods to avoid sharing the exact same mean and variance. However, this mech-
anism suffers from estimation bias, where the estimated population statistics of BN do not match
the expected statistics. Investigating the impact of estimation bias on the performance of batch nor-
malization networks is of significant importance. Therefore, this paper attempts to quantitatively
measure the degree of difference between the estimated and expected population statistics in UDA.

We define ν̃
(
τ̃2
)

as the expected population mean (variance) of BN and ν̂
(
τ̂2
)

as the estimated
value. The magnitude of estimation shift is quantified by the L2-norm of their difference, ESMν =

∥ν̂ − ν̃∥2 and ESMτ =
∥∥∥√τ̂2 −

√
τ̃2
∥∥∥
2
.

This paper also features an experiment that aims to examine how batch normalization estimation
bias affects UDA networks’ performance, and presents potential corrective measures.

5



Under review as a conference paper at ICLR 2024

Figure 3: The proposed UDA method employs a framework in which both the source and tar-
get domains are inputted into the network. A substitution of the BN layer with the RBN layer
is made. ResNet-50 serves as the primary feature representation network, except for VisDA-2017
where ResNet-101 is utilized.

(a) (b)

Figure 4: (a) demonstrates that the larger the batch size, the better the performance of the network.
(b) shows that the ESM gradually increases as the number of layers increases.

3.3 EVALUATION ON VISUAL RECOGNITION TASKS

In this section, we focus on conducting experiments to investigate how the estimation shift of BN
impacts the performance of batch normalization networks, and explore potential solutions. BFN
findings suggest that the primary reason for the discrepancy in error between training and testing is

the inaccurate estimation of BN’s overall statistical data. This estimation bias can accumulate and
worsen as the number of BN layers increases. Additionally, BFN indicates that the distribution shift
of inputs between the training and testing sets can also result in estimation bias, further negatively
impacting testing performance. Finally, we have observed a potential increase in the value of ESMτ

in deeper BN layers at the end of training.

In summary, according to the experiments above, we argue that estimation shift of BN can be po-
tentially accumulated in a network with stacked BNs, which probably has a deteriment effect on the
test performance of the network, especially with the distribution shift occurred.

We take CDAN as the baseline, set the batch size to {8, 16, 32, 64}, and set the epoch to
{10, 20, 30, 40, 50, 60}. As shown in Figure. (a), we can see that the batch size has a certain
impact on performance. At the same time, we can see from Figure. (b) that as the number of layers
increases, the model shows a stable result. These observations also indicate that the distribution shift
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(a) (b)

Figure 5: (a) also demonstrate that the larger the batch size, the better the performance of the net-
work. (b) indicates that by replacing deeper BN layers with GN, ESM can be significantly reduced.

Table 1: Classification accuracy (%) on Office-31 dataset with ResNet-50 as the backbone.

Methods A → W D → W W → D A → D D → A W → A Avg

Source Only He et al. (2016) 68.4 96.7 99.3 68.9 62.5 60.7 76.1
DDC Tzeng et al. (2014) 75.6 96.0 98.2 76.5 62.2 61.5 78.3

DAN Long et al. (2015b) 80.5 97.1 99.6 78.6 63.6 82.8 80.4
RTN Long et al. (2016) 84.5 96.8 99.4 77.5 66.2 64.8 81.6

DANN Ganin et al. (2016) 82.0 96.9 99.1 79.7 68.2 67.4 82.2
ADDA Tzeng et al. (2017b) 86.2 96.2 98.4 77.8 69.5 68.9 82.9

JAN Long et al. (2017b) 85.4 97.4 99.8 84.7 68.6 70.0 84.3
MADA Pei et al. (2018) 90.0 97.4 99.6 87.8 70.3 66.4 85.2

MCD Saito et al. (2018) 88.6 98.5 100.0 92.2 69.5 69.7 86.5
DWL Xiao & Zhang (2021) 89.2 99.2 100.0 91.2 73.1 69.8 87.1

TADA Wang et al. (2019b) 94.3 98.7 99.8 91.6 72.9 73.0 88.4
SHOT Liang et al. (2021) 90.1 98.7 99.9 93.9 75.3 75.0 88.8

SymNet Zhang et al. (2019) 95.2 98.8 100.0 93.9 74.6 72.5 88.4
SAR Wang & Zhang (2020) 95.2 98.6 100.0 91.7 74.5 73.7 89.0

CDAN Long et al. (2018b) 94.1 98.6 100.0 92.9 71.0 69.3 87.7
CDAN+RBN 95.9 99.1 100.0 95.7 76.1 74.5 90.2

of inputs between the source domain and target domain in domain adaptation can lead to estimation
bias of BN, which has a negative impact on domain adaptation performance, and the deeper BN,
ESMs have the potential for higher value at the end of training.

We replace deeper BN layers with GN layers, and name the resulting network RBN. RBN can
prevent the accumulation of estimation drift in BN in the presence of distribution shift, and mitigate
the degradation of network performance. The specific application of RBN on CDAN is shown in the
Supplementary Materials.

4 EXPERIMENTS

4.1 DATASETS

Our experiments is performed on four datasets, namely Office-31, Office-Home, ImageCLEF-DA,
and VisDA-2017. These datasets are well-known benchmarks that have been extensively used in
prior studies to assess domain adaptation algorithms.
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Table 2: Classification accuracy (%) on ImageCLEF-DA dataset with ResNet-50 as the backbone.

Methods I → P P → I I → C C → I C → P P → C Avg

Source Only He et al. (2016) 74.8 83.9 91.5 78.0 65.5 91.2 80.7
DAN Long et al. (2015b) 74.5 82.2 92.8 86.3 69.2 89.8 82.5

RTN Long et al. (2016) 75.6 86.8 95.3 86.9 72.7 92.2 84.9
DANN Ganin et al. (2016) 75.0 86.0 96.2 87.0 74.3 91.5 85.0

JAN Long et al. (2017b) 76.8 88.0 94.7 89.5 74.2 91.7 85.8
MADA Pei et al. (2018) 75.0 87.9 96.0 88.8 75.2 92.2 85.8

SAFN Xu et al. (2019) 78.0 91.7 96.2 91.1 77.0 94.7 88.1
SAR Wang & Zhang (2020) 78.3 91.3 96.7 90.5 78.1 96.2 88.5

CDAN+RN Huang et al. (2023) 78.6 92.7 97.2 92.8 79.1 94.8 89.2

CDAN Long et al. (2018b) 77.7 90.7 97.7 91.3 74.2 94.3 87.7
CDAN+RBN 81.5 93.6 98.2 94.5 81.3 96.4 90.9

Table 3: Classification accuracy (%) on Office-Home dataset with ResNet-50 as the backbone.

Methods A → C A → P A → R C → A C → P C → R P → A P → C P → R R → A R → C R → P Avg

Source Only He et al. (2016) 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN Long et al. (2015b) 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 57.7 63.1 51.5 74.3 56.3

DANN Ganin et al. (2016) 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN Long et al. (2017b) 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

TADA Wang et al. (2019b) 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
SymNet Zhang et al. (2019) 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6

ATM Li et al. (2020) 52.4 72.6 78.0 61.1 72.0 72.6 59.5 52.0 79.1 73.3 58.9 83.4 67.9

CDAN Long et al. (2018b) 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
CDAN+RBN 53.8 73.5 79.4 63.2 72.9 75.7 66.3 54.2 81.3 74.5 62.9 84.8 70.2

Office-31 Saenko et al. (2010) dataset serves as a widely used benchmark for evaluating domain
adaptation methods. It includes 4,652 images categorized into 31 classes from three distinct do-
mains: Amazon (A), Dslr (D), and Webcam (W). The images from Amazon are collected from the
internet, while those from Webcam and Dslr are manually captured in an office setting. We assess
all the compared methods across all six transfer tasks.

ImageCLEF-DA I dataset serves as a benchmark for evaluating domain adaptation methods in Im-
ageCLEF 2014. It comprises 12 common categories that are shared by three public datasets: Cal-
tech256 (C), ImageNet ILSVRC 2012 (I), and Pascal VOC 2012 (P), with each domain containing
12 categories and 600 images. We assess the methods across all six transfer tasks.

Office-Home Li et al. (2019) dataset comprises four distinct domains, namely Art(A), Clipart (C),
Product (P), and Real World (R), with each domain containing 65 different categories. The dataset
contains a total of 15,500 images, making it a large-scale benchmark for evaluating domain adapta-
tion methods. We assess the methods across all twelve transfer tasks.

VisDA-2017 Peng et al. (2017) dataset presents a difficult simulation-to-real scenario, featuring two
very distinct domains: synthetic renderings of 3D models captured from varying angles and lighting

Table 4: Classification accuracy (%) on VisDA-2017 dataset with ResNet-101 as the backbone.

Methods aero truck train skate person plant motor knife horse car bus bicycle Avg

Source Only Long et al. (2018b) 55.1 8.5 73.5 26.5 31.2 81.0 79.7 17.9 80.6 59.1 61.9 53.3 52.4
DAN Long et al. (2015b) 87.1 20.7 85.8 36.3 53.1 49.7 63.0 42.9 90.3 42.0 76.5 63.0 59.2

DANN Ganin et al. (2016) 81.9 7.8 82.8 54.6 65.1 51.9 65.1 29.5 81.2 44.3 82.8 77.7 60.4
MCD Saito et al. (2018) 87.0 25.8 83.0 40.3 76.9 88.6 84.7 79.6 88.9 64.0 83.7 60.9 72.0

BSP+DANN Chen et al. (2019) 92.2 37.1 84.5 66.9 72.4 80.6 86.8 54.0 87.0 47.5 83.8 72.5 72.1
BSP+CDAN Chen et al. (2019) 92.4 38.4 82.1 77.9 77.0 84.2 90.1 80.6 89.0 57.5 81.0 61.0 75.9

DSAN Zhu et al. (2020) 90.9 39.4 89.1 67.6 75.1 92.8 93.7 77.0 88.9 62.4 75.7 66.9 75.1
DWL Xiao & Zhang (2021) 90.1 28.7 85.6 57.1 78.0 90.6 86.8 81.5 92.4 67.6 86.1 80.2 77.1

CDAN Long et al. (2018b) 85.2 38.0 81.9 76.0 74.5 83.4 88.1 74.9 84.2 50.8 83.0 66.9 74.0
CDAN+RBN 95.9 46.7 81.3 79.8 80.1 93.7 94.8 84.2 96.7 73.8 87.7 76.3 82.6
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Table 5: Accuracy comparison on Office-31 with BN, AdaBN, AutoDIAL and CDAN+RBN.

Methods A → WD → WW → DA → DD → AW → A Avg

BN Ioffe & Szegedy (2015b) 82.0 96.9 99.1 79.7 68.2 67.4 82.2
AdaBN Li et al. (2016b) 82.4 97.7 99.8 81.0 67.2 68.2 82.7
AutoDIAL Maria Carlucci et al. (2017b) 84.8 97.7 100.0 85.7 63.9 68.7 83.5
TransNorm Wang et al. (2019b) 91.8 97.7 100.0 88.0 68.2 70.4 86.0
CDAN+RBN 95.9 99.1 100.0 95.7 76.1 74.5 90.2

conditions, and real natural images. The dataset includes 12 classes across the training, validation,
and test domains.

4.2 IMPLEMENTATION DETAILS

To assess the effectiveness of RBN, we choose CDAN Long et al. (2018b) as our baseline and
refer to our proposed model as CDAN+RBN. Our implementation utilizes Pytorch and optimizes
the model using minibatch stochastic gradient descent (SGD) with a weight decay of 5 × 10−4

and momentum of 0.9 . The learning rate is set to 10−3. We employ ResNet-50 as the backbone
for Office-31, ImageClEF-DA, and Office-Home, and pre-trained ResNet-101 for VisDA-2017 to
extract features. We replace the BN layers with GN, utilizing RBNBlocks throughout the model.
Specifically, we utilize all labeled source data and all unlabeled target data and report the average
classification accuracy across 5 random experiments for each task. All other training settings remain
the same.

4.3 RESULTS

The results of our CDAN+RBN approach are presented in Table ??, where we highlight substantial
improvements over the baseline CDAN method. Our method yields noteworthy average accuracy en-
hancements of 2.5%, 3.2%, and 4.4% for the Office-31, ImageCLEF-DA, and Office-Home datasets,
respectively. Particularly impressive improvements are observed in some of the most challenging
tasks within the Office-31 dataset, such as the transformation from category D (D) to category A
(A), where accuracy increases from 71.0% to 76.1%, and from category W (W) to category A (A),
where accuracy improves from 69.3% to 74.5%. Furthermore, our InterBN demonstrates remark-
able performance on the large-scale VisDA2017 dataset, exhibiting an 8.6% improvement over the
baseline CDAN method. Notably, our approach attains superior average classification performance
compared to all other state-of-the-art methods across all four benchmark datasets. It is important to
highlight that both our method and CDAN share the same fundamental adversarial networks, with
the primary distinction being that our approach replaces BN with RBN. Consequently, the observed
accuracy enhancements over CDAN can be attributed to the contributions of RBN.

In the context of normalization modules, RBN is engineered to function as an end-to-end trainable
layer, fostering improved generalizability. To isolate and showcase the effectiveness of RBN, we
conduct a comparative analysis with other normalization methods, including vanilla BN, AdaBN,
AutoDIAL, and TransNorm. For a fair comparison, we replace the normalization module with its
sibling counterparts while keeping all other network components unchanged.

5 CONCLUSION

This study makes a significant discovery regarding the accumulation of estimation shift within a
network when employing Batch Normalization (BN). This accumulation of estimation shift can
have a detrimental impact on a network’s performance during testing, especially when distributional
shifts occur. Our proposed method is easily integrable into various network architectures by simply
substituting the BN layer with the RBN module during the training process. Empirical investigations
underscore the substantial enhancement brought about by InterBN when incorporated into existing
domain adaptation techniques, resulting in notably improved accuracy across various benchmark
datasets.
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