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Abstract

Though achieving impressive results on many001
NLP tasks, the BERT-like masked language002
models (MLM) encounter the discrepancy be-003
tween pre-training and inference. In light of004
this gap, we investigate the contextual repre-005
sentation of pre-training and inference from006
the perspective of word probability distribution.007
We discover that BERT risks neglecting the008
contextual word similarity in pre-training. To009
tackle this issue, we propose an auxiliary gloss010
regularizer module to BERT pre-training (GR-011
BERT), to enhance word semantic similarity.012
By predicting masked words and aligning con-013
textual embeddings to corresponding glosses014
simultaneously, the word similarity can be ex-015
plicitly modeled. We design two architectures016
for GR-BERT and evaluate our model in down-017
stream tasks. Experimental results show that018
the gloss regularizer benefits BERT in word-019
level and sentence-level semantic representa-020
tion. The GR-BERT achieves new state-of-the-021
art in lexical substitution task and greatly pro-022
motes BERT sentence representation in both023
unsupervised and supervised STS tasks.024

1 Introduction025

Pre-trained language models like BERT (Devlin026

et al., 2019) and its variants (Liu et al., 2019b; Lan027

et al., 2019; Zhang et al., 2019; Joshi et al., 2020)028

have achieved remarkable success in a wide range029

of natural language processing (NLP) benchmarks.030

By pre-training on large scale unlabeled corpora,031

BERT-like models learn contextual representations032

with both syntactic and semantic properties. Re-033

searches show the contextual representations gener-034

ated by BERT capture various linguistic knowledge,035

including part-of-speech, named entities, seman-036

tic roles (Tenney et al., 2019; Liu et al., 2019a;037

Ettinger, 2020), word senses (Wiedemann et al.,038

2019), etc. Furthermore, with the fine-tuning pro-039

cedure, the contextual representations show excel-040

lent transferability in downstream language under-041
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Figure 1: Conditional token probability distribution of
tokens given masked context (a) and full context (b) and
(c). The ideal token distribution given full context is
illustrated in (b), while (c) shows the full contextual
token distribution generated by actual BERT.

standing tasks, and lead to state-of-the-art (SOTA) 042

performance. 043

The masked language model (MLM) plays a 044

significant role in the pre-training stage of many 045

BERT-like models (Liu et al., 2019b). In an MLM, 046

a token w is sampled from a text sequence s, and 047

replaced with a [MASK] token. Let c be the rest 048

of tokens in s except for w. We name c as the 049

masked context or surrounding context, and s as the 050

full context. During pre-training, BERT encodes 051

the masked context c into a contextual embedding 052

vector hc, and use it to generate a contextual to- 053

ken probability distribution p(x|c), where x ∈ V 054

and V denotes the token vocabulary. The train- 055

ing objective is to predict the masked token w by 056

maximizing likelihood function log p(w|c). In the 057

fine-tuning or inference stage, BERT takes the full 058

context s without masks as input, and encodes ev- 059

ery token into its contextual representationå for 060

downstream tasks. We denote the contextual repre- 061

sentation corresponds to token w as hs. 062

We analyze the corresponding contextual token 063

probability distribution p(x|c) and p(x|s) gener- 064

ated from hc and hs, as a proxy to study the rep- 065

resentations (Li et al., 2020). Figure 1(a) shows 066

an example when masked context c =“Tom is a 067

[MASK] guy”, the predicted tokens with high prob- 068

abilities p(x|c) includes good, nice, great, tough, 069
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which are all reasonable answers to the Cloze task.070

Ideally, we want the context encoder to behave the071

same way when full context s is given, as in Figure072

1(b), the model should only propose contextual syn-073

onyms of bad such as dangerous, nasty and mean074

with p(x|s). However, the actual BERT generates075

p̂(x|s) as shown in Figure 1(c), which contains in-076

appropriate token proposals such as good, rough077

and big.078

The discrepancy between Figure 1(b) and 1(c) is079

because only the masked token distribution p(x|c)080

is explicitly modeled in BERT with the MLM,081

while the full contextual token distribution p(x|s)082

works in an agnostic way through model gener-083

alization. This leads to a gap between p(x|c) in084

pre-training and p(x|s) in fine-tuning and infer-085

ence. It is shown in unsupervised scenarios, BERT086

generates contextual embeddings that even under-087

performs static embeddings for sentence represen-088

tation (Reimers and Gurevych, 2019). Although089

in BERT pre-training, random token replacement090

strategy is used to mitigate the mismatch that091

[MASK] token is never seen during fine-tuning, to092

the best of the authors’ knowledge, there is no anal-093

ysis on the gap of representation between masked094

context hc and full context hs in different phases095

when using BERT.096

To address this issue, we perform an investi-097

gation on the inner structure of p(x|s). Through098

theoretical derivation, we discover p(x|s) can be099

decomposed into the combination of masked con-100

textual token distribution p(x|c) and a point-wise101

mutual information (PMI) term that describes con-102

textual token similarity. Further analysis shows103

both the MLM and token replacement in BERT104

pre-training have potential shortcomings in model-105

ing the contextual token similarity. Inspired by the106

decomposition of p(x|s), we propose to add an aux-107

iliary gloss regularizer (GR) module to the MLM108

task, where mask prediction and gloss matching are109

trained simultaneously in the BERT pre-training.110

We also design two model architectures to integrate111

the gloss regularizer into the original MLM task.112

We examine our proposed model in downstream113

tasks including unsupervised lexical substitution114

(LS) (McCarthy and Navigli, 2007; Kremer et al.,115

2014), semantic textual similarity (STS) and su-116

pervised STS Benchmark (Cer et al., 2017). By117

invoking gloss regularized pre-training, our model118

improves lexical substitution task from 14.5 to 15.2119

points in the LS14 dataset, leading to new SOTA120

performance. In unsupervised STS tasks, gloss 121

regularizer improves the performance from 56.57 122

to 67.47 in terms of average Spearman correlation 123

by a large margin. Such performance gain is also 124

observed in supervised STS task. Empirical experi- 125

ments prove our model effectively generates better 126

contextual token distribution and representations, 127

which contributes to word-level and sentence-level 128

language understanding tasks. 129

2 Related Works 130

Masked Language Models. Liu et al. (2019b) 131

extend BERT into RoBERTa achieving substan- 132

tial improvements. They claim the MLM task as 133

the key contributor to contextual representation 134

modeling, compared with next sentence prediction 135

task. Many BERT variants focus on better masking 136

strategies (Cui et al., 2019; Zhang et al., 2019; Joshi 137

et al., 2020) to enhance the robustness and transfer- 138

ability of contextual representative learning. How- 139

ever, MLM suffers from the discrepancy between 140

pre-training and fine-tuning since the [MASK] to- 141

kens are only introduced during pre-training. To 142

tackle this issue, permutation language model from 143

XLNet (Yang et al., 2019) and token replacement 144

detection from ELECTRA (Clark et al., 2020) are 145

proposed as alternative approaches to the MLM. In- 146

stead of avoiding MLM, we analyze how the mask 147

modeling affects the full contextual representation 148

in a probability perspective, and introduce gloss 149

regularizer to mitigate the gap brought by MLM. 150

Contextual Representation Analysis. One way 151

to analyze the contextual representation learned by 152

pre-trained language model is through the probing 153

tasks (Liu et al., 2019a; Miaschi and Dell’Orletta, 154

2020; Vulić et al., 2020), which are regarded as an 155

empirical proofs that pre-trained MLMs like BERT 156

succeed in capturing linguistic knowledge. Many 157

other researches focus on studying the geometry 158

of contextual representations. Ethayarajh (2019) 159

discovers anisotropy among the contextual embed- 160

ddings of words when studying contextuality of 161

BERT. Li et al. (2020) propose a method using nor- 162

malizing flow to transform the contextual embed- 163

ding distribution of BERT into an isotropic distri- 164

bution, and achieve performance gains in sentence- 165

level tasks. 166

Utilizing Word Senses. Because the BERT con- 167

veys contextualized semantic knowledge of polyse- 168

mous, many researches use BERT as a backbone 169
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to build word sense disambiguation (WSD) models170

(Huang et al., 2019; Blevins and Zettlemoyer, 2020;171

Bevilacqua and Navigli, 2020). In these models,172

BERT is used as word senses and contexts encoders173

to perform the downstream matching task. One174

work that directly incorporates word sense knowl-175

edge into pre-training is SenseBERT (Levine et al.,176

2020) that introduces a weakly-supervised super-177

sense prediction task, which leads to improvement178

on performance of WSD and word-in-context task.179

In SenseBERT, word prediction is enhanced with180

supersense category labels that act like an external181

knowledge source. However, the gloss regularizer182

in our model provides fine-grained semantic infor-183

mation, which aimed to align word representation184

space with the semantic space, and leads to better185

contextual representations.186

3 Contextual Token Probability187

3.1 Masked Language Model188

Without loss of generality, the token probability189

distribution given full context p(x|s) can be decom-190

posed into two parts,191

log p(x|s) = log p(x|c) + PMI(x;w|c), (1)192

where PMI(x;w|c) is the pointwise mutual infor-193

mation between x and w given c. PMI describes194

how frequently two tokens co-occur than their in-195

dependent occurrences, which is used as a mea-196

surement of the semantic similarity between tokens197

(Ethayarajh, 2019; Li et al., 2020). In Eqn. (1),198

log p(x|c) only depends on masked context, which199

directly corresponds to the MLM training objective.200

However, the PMI term is not explicitly modeled.201

In BERT, p(x|c) is generated from the encoded202

mask context hc with a softmax operation as203

p(x|c) = softmax(h>c vx), (2)204

where vx stands for the embedding vector of token205

x in vocabulary V . During fine-tuning or inference206

stage, full context s without masks is encoded into207

hs as the contextual representation of token w. We208

can use the hs to estimate p(x|s) in the same way209

as Eqn. (2), denoted by p̂(x|s),210

p̂(x|s) = p̂(x|c, w) = softmax(h>s vx). (3)211

Under such approximation setup, PMI(x;w|c)212

can be transformed into213

PMI(x;w|c) ≈ log
p̂(x|w, c)
p(x|c)214

= (hs − hc)
>vx + ϕ(w, c), (4)215

where ϕ(w, c) is constant w.r.t x. In a deep neural 216

network parameterized model like BERT, hs is 217

encoded in an agnostic way. Thus, it’s difficulty to 218

further derive the PMI in Eqn. (4). 219

For a simpler case, if we consider a one-layer 220

continuous bag-of-words (CBOW) model (Mikolov 221

et al., 2013) 1, we have hs − hc = hw, where hw 222

is a context vector only related to the center token 223

w. Now PMI is formulated as 224

PMICBOW(x;w|c) = log p(x|w) + ψ(w, c), 225

where ψ(w, c) is another constant w.r.t x. In this 226

case, the PMI only contains similarity information 227

between x and w, while the context information is 228

completely ignored. 229

Although hs − hc = hw is not satisfied in a 230

deep model like BERT, the input sequences for hs 231

and hc share the most identical tokens c, and their 232

only difference is whether to mask w. Therefore, 233

there is a potential risk that PMI(x;w|c) in MLM 234

loses information related to the condition c, and de- 235

grades to the marginal PMI(x;w), especially when 236

the MLM lacks modeling p(x|s) in its training ob- 237

jective. 238

3.2 Replaced Language Model 239

In the BERT training process, a portion of tokens 240

are replaced with random real tokens other than 241

[MASK], and the model is trained to predict the 242

original tokens. We name this task as the replaced 243

language model (RLM). Different from MLM, an 244

RLM takes full context without masked tokens 245

as input, and directly generates token distribution 246

p(x|s), which seems to be a better way for full 247

contextual representation modeling. 248

We take a closer look at the RLM training pro- 249

cess. Let p(x|s) = p(x|w, c) be the probability 250

that token w is replaced with token x in context c. 251

According to the Bayes’ theorem, we have 252

p(x|w, c) = p(x|c)p(w|x, c)∑
x′∈V p(x

′|c)p(w|x′, c) . (5) 253

In a well-trained model, p(w|x, c) should be the 254

replacing probability during training. Since the 255

process of replacing words by random noise is ir- 256

relevant to the context, p(w|x, c) = p(w|x). Let α 257

be the probability when a token remains unchanged, 258

1The CBOW model can be considered as a kind of masked
language model.
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and 1− α be the replacing probability. Therefore,259

p(x|s) = (1− α)p(x|c)
α|V |p(w|c) + (1− α)∑x′ 6=w p(x

′|c) ,
(6)260

where |V | denotes the vocabulary size.261

Eqn. (6) shows in RLM p(x|s) is proportional to262

p(x|c) and PMI(x;w|c) is constant when x 6= w,263

which means the distribution of x (x 6= w) only264

relies on surrounding context c, but pays no atten-265

tion to the center token w. This infers the RLM266

actually models the token distribution conditioning267

on almost only the surrounding context, even if it268

takes full context as input. Since the PMI term is269

completely ignored, RLM performs even worse the270

MLM in full contextual representation.271

4 Gloss Regularizer272

4.1 Invoking Gloss Matching273

As shown in Eqn. (1), p(x|s) consists of p(x|c)274

and PMI(x;w|c). Both MLM and RLM succeed in275

modeling p(x|c). However, the analysis in Section276

3 shows RLM completely ignores PMI(x;w|c),277

and MLM may suffer from potential risks that the278

contextual information in PMI(x;w|c) would be279

lost, in either way the model generates poor estima-280

tion of p(x|s).281

PMI(x;w|c) describes co-occurrence probabil-282

ity of x and w normalized by their marginal prob-283

abilities under context c as condition. Ideally, it284

should be learned by training with labeled dataset285

{(s1, s2)}, where s1 = {x1, c} and s2 = {x2, c}286

are semantically similar text samples with shared287

context c and exchangeable token pair (x1, x2).288

However, such labeled data is expansive to build289

and not suitable for large-scale pre-training setup.290

Intuitively, PMI(x;w|c) can be regarded as se-291

mantic similarity between tokens under context.292

Although the contexts of similar tokens are hard293

to obtain, we can use the glosses of tokens as an294

alternative. Since the semantic of a word can be295

defined by its gloss, contextual token similarity296

can be determined by detecting whether tokens are297

matching to similar glosses under context. There-298

fore, in order to better model the contextual token299

similarity defined by PMI(x;w|c), we introduce300

gloss matching an auxiliary task named the gloss301

regularizer.Two architectures to integrate gloss reg-302

ularizer into MLM are detailed in Section 4.2 and303

4.3.304

4.2 Multi Task Model 305

A straight-forward method is to perform mask pre- 306

diction and gloss matching as joint multitasks (de- 307

noted as MT). In this architecture, the masked con- 308

text c and the full context s are encoded by a context 309

encoder into the contextual vector hc and hs. The 310

loss function of the MLM task is 311

LMLM = −h>c vw + log
∑
w′∈V

exp(h>c vw′). (7) 312

For the gloss matching task, as illustrated in Fig- 313

ure 2(a), let gt be the gloss text of token w under 314

context c. Another gloss encoder is used to encode 315

gt into a gloss vector et. Gloss matching is per- 316

formed by calculating the similarity between the 317

contextual token representation hs and the gloss 318

vector et. The gloss regularizing loss is 319

LGR = −sim(hs, et) + log
∑
t′∈T

exp sim(hs, et′),

(8) 320

where sim(·) is a similarity measurement function, 321

and T is a set of negative glosses. The final loss 322

function is the combination of the two losses, 323

LMT = LMLM + λLGR, (9) 324

where λ denotes the regularizing weight. 325

This setting resembles the bi-encoders model 326

(BEM) for WSD proposed by (Blevins and Zettle- 327

moyer, 2020). However, in our model, the context 328

encoder is trained on mask prediction task simul- 329

taneously with the gloss matching task, while the 330

BEM takes gloss matching as a fine-tuning task. 331

We train the two tasks together for better contex- 332

tual and semantic representation modeling. As a 333

result, the model learns token distribution not only 334

conditioning on the masked context, but also in- 335

fluenced by semantic similarity with center token, 336

which gives a better estimation of p(x|s). 337

4.3 Separate Context Encoder Model 338

Another method is directly inspired by the decom- 339

position from Eqn. (1). Different from the multi- 340

task model, we use two context encoders instead 341

of one (denoted as SC). The first context encoder, 342

denoted by enc1, encodes the masked context as 343

h
(1)
c = enc1(c), and learns purely from MLM 344

task with loss L(1)MLM derived similar as Eqn. (7). 345

The full context s is encoded into h
(2)
s = 346

enc2(s) by the second encoder. Eqn. (4) shows 347
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PMI(x;w|c) is entailed in the linear difference be-348

tween the encoding of full and masked context.349

Therefore, we use (h(2)
s −h

(1)
c ) for gloss matching,350

where the loss function is formulated as351
352

Ls
GR = −sim

[
et,h

(2)
s − h(1)

c

]
353

+ log
∑
t′∈T

exp sim
[
et′ ,h

(2)
s − h(1)

c

]
. (10)354

In order to make the gloss matching learned by355

enc2 aligned with the word embedding space, an-356

other MLM task is added to the training of enc2,357

with loss L(2)MLM. Thus, the complete loss function358

of the SC model is359

LSC = L(1)MLM + L(2)MLM + λLs
GR. (11)360

Although one gloss encoder and two contextual361

encoders are involved during training, only enc2362

is used at the inference stage. The contextual token363

distribution is given by p(x|s) = softmax(v>wh
(2)
s ).364

By using two separate contextual encoders, the365

MLM task and gloss matching tasks can be trained366

individually, which leads to better performance for367

each task. Besides, the combination of the two368

tasks corresponds to the theoretical derivation of369

p(x|s), and integrates the gloss regularizer in a370

more natural and explainable way.371

4.4 Gloss Regularized Pre-training372

Since we trained the contextual encoder and gloss373

encoder simultaneously, when evaluating the gloss374

matching loss, it is infeasible to encode the whole 375

gloss set to calculate the full softmax. We thus use 376

the in-batch negative sampling strategy from (Chen 377

et al., 2017). Besides, we also use the other glosses 378

of the target word as hard negatives for effective 379

training. 380

We employ the gloss dataset from the online 381

Oxford dictionary released by Chang et al. (2018); 382

Chang and Chen (2019), formated in triplets of 383

word, sentence and defination. The data consists of 384

677,191 pieces in total, including 31,889 words and 385

78,105 glosses. We utilize the BERT and RoBERTa 386

model to initialize the context encoder and gloss 387

encoder in our model. The pre-training settings and 388

hyper-parameters are detailed in Appendix A. 389

5 Experiments 390

5.1 Downstream Tasks 391

In this section, we evaluate our model on three lan- 392

guage understanding tasks. First, we choose the 393

lexical substitution task to observe the word-level 394

semantic performance. Then we conduct exper- 395

iments on two sentence representation tasks: the 396

STS task in unsupervised setting and the supervised 397

STS benchmark (STS-B) task. 398

5.2 Lexical Substitution 399

Task and Dataset. Lexical substitution aims to 400

replace the target word in a given context sentence 401
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method backbone post process
SemEval 2007 (LS07) CoInCo (LS14)

best/best-m oot/oot-m P@1/P@3 best/best-m oot/oot-m P@1/P@3
Roller and Erk (2016) SGNS emb - - - 19.7/14.8 - - 18.2/13.8
Zhou et al. (2019) BERTlarge - 12.1/20.2 40.8/56.9 13.1/- 9.1/19.7 33.5/56.9 14.3/-

+valid 20.3/34.2 55.4/68.4 51.1/- 14.5/33.9 45.9/69.9 56.3/-
Arefyev et al. (2020) RoBERTalarge - - - 32.0/24.3 - - 34.8/27.2

+emb - - 44.1/31.7 - - 46.5/36.3
XLNetlarge +emb - - 49.5/34.9 - - 51.4/39.1

baselines BERTbase - 13.2/22.3 40.8/57.1 33.1/23.7 10.1/21.9 33.0/56.5 38.4/28.7
RoBERTabase - 16.7/27.8 45.2/62.9 40.8/28.5 11.0/23.6 34.9/59.3 42.2/31.4

our work MT GR-BERTbase - 17.7/30.8 49.8/67.8 42.5/31.1 12.2/ 26.5 39.2/64.5 46.4/35.3
SC GR-BERTbase - 18.2/31.2 49.9/67.6 44.1/31.2 12.4/ 27.1 39.8/65.5 46.6/35.8
MT GR-RoBERTabase - 19.7/32.9 53.0/72.8 47.9/34.2 12.9/28.3 40.6/66.4 48.6/37.2
SC GR-RoBERTabase - 19.4/33.2 52.8/71.5 47.4/33.4 13.1/28.8 40.9/66.6 48.8/37.8

+emb 22.4/38.2 56.4/76.0 53.7/37.8 14.5/32.8 43.8/69.9 53.5/ 41.4
+valid 22.6/38.4 56.0/73.9 54.8/39.0 15.1/33.7 44.1/69.6 56.0/42.7
+both 23.1/39.7 57.6/76.3 55.0/40.3 15.2/34.4 45.3/71.3 55.9/43.5

Table 1: Comparison with previous SOTA on lexical substitution task. Results of the first three works are from the
mentioned papers and the results in the baseline are from our experiments with the same word process.

by a substitute word that not only is semantically402

consistent with the original word but also preserves403

the sentence’s meaning. There are two benchmark404

datasets for this task: the SemEval 2007 dataset405

(LS07) (McCarthy and Navigli, 2007) with 201406

target words, and the CoInCo dataset (LS14) (Kre-407

mer et al., 2014) with 4,255 target words, both of408

which are unsupervised. The task LS07 releases409

the official evaluation metrics best/best-mode and410

oot/oot-mode2, which evaluate the quality of the411

best prediction and the best 10 predictions, sep-412

arately. We also report the metrics precision@1413

(P@1) and P@3. Because the metric best consid-414

ers the word frequencies in annotated labels, we415

take it as the main metric in this task.416

Candidate Generation. We use the context en-417

coder pre-trained with GR to generate lexical sub-418

stitutions. Given a target word w and its context419

s, we directly employ the full contextual token dis-420

tribution p(x|s) to perform the word prediction,421

then sort the candidates by their probabilities. We422

then lemmatize the word candidates as detailed in423

Appendix B.424

Post-Process. Previous works proposed several425

effective approaches to improve LS performance.426

Arefyev et al. (2020) used the input word embed-427

ding to inject more target word information (noted428

+emb). Zhou et al. (2019) utilized a pre-trained429

model to re-score candidates (noted +valid). We430

denote these approaches as post-process and adopt431

them in our experiments. As Arefyev et al. (2020)432

reported, the result in (Zhou et al., 2019) is hardly433

2http://www.dianamccarthy.co.uk/
task10index.html

reproduced and their code is not available, we then 434

implement the validation process by ourselves. 435

Result and Analysis. Table 1 shows the com- 436

parison of our models with the previous SOTAs 437

in LS07 and LS14 benchmarks. We first compare 438

the model outputs without post-process. Our GR 439

models surpass their MLM baselines by large mar- 440

gins in all metrics: the best value increases more 441

than 3 points, the oot increases about 8 points in 442

LS07. In separate context encoder structure, the 443

best value of BERT increases from 10.1 to 12.4 in 444

LS14, and the metric increases from 11.0 to 13.1 445

for RoBERTa. Comparing the P@1 with (Arefyev 446

et al., 2020), the SC GR-RoBERTa base model 447

48.8 even exceeds the large RoBERTa model with 448

emb 46.5. 449

Results indicate that GR model generates more 450

semantically similar words and preserve the sen- 451

tence original meaning even though no LS-like 452

training data is used. This is because the gloss regu- 453

larization plays the key role in modeling contextual 454

token distribution p(x|s) by taking both contex- 455

tual and semantic information into consideration. 456

Given a sentence context, if two words are seman- 457

tically replaceable, their gloss text descriptions are 458

naturally similar. As the word contextual embed- 459

ding is aligned with its gloss, the words in semanti- 460

cally similar contexts are gathered closer indirectly, 461

which benefits the LS task. 462

We further apply post-process on the SC GR- 463

RoBERTa model. Consistent with previous works 464

(Arefyev et al., 2020; Zhou et al., 2019), both pro- 465

cesses improve the performance in testset LS14: 466

+emb increases the best value from 13.1 to 14.5, 467

and it is to 15.1 using +valid. By applying 468
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
GloVe embs 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERT-flow 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERT-whitening(NLI) 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
SimCSE-BERT 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
SimCSE-RoBERTa 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
BERT(first-last avg) 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
MT GR-BERT(first-last avg.) 53.20 69.68 58.81 73.25 72.16 66.65 66.47 65.75
SC GR-BERT(first-last avg.) 53.69 68.66 58.83 71.90 71.64 66.18 66.46 65.34
RoBERTa(first-last avg.) 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
MT GR-RoBERTa(first-last avg.) 53.73 72.57 61.04 75.23 72.86 69.44 67.39 67.47
SC GR-RoBERTa(first-last avg.) 53.69 70.00 59.24 72.38 72.47 70.12 67.02 66.42

Table 2: Sentence embedding performance on unsupervised STS tasks. Results in the first row are from Gao et al.
2021. Notation (first-last avg) means take the average of word embs from the input and output layer.

both post-processes, our SC GR-RoBERTa model469

achieves the new SOTA 15.2 in best. We also470

achieve SOTA in the metrics best-m/oot-m and471

P@3 in LS14 and all metrics in LS07. Appendix B472

demonstrates random selected examples of the LS473

task and the model outputs.474

5.3 Unsupervised Sentence Representation475

Task476

STS Task and Dataset. STS tasks deal with de-477

termining how similar two sentences are. We eval-478

uate our model on 7 STS tasks: STS tasks 2012-479

2016 (Agirre et al., 2012, 2013, 2014, 2015, 2016),480

STS Benchmark (STS-B) (Cer et al., 2017) and481

SICK-Relatedness (SICK-R) (Marelli et al., 2014).482

Following the work of Gao et al. (2021) and their483

setting in STS tasks3, we use Spearman’s correla-484

tion with “all” aggregation as the evaluation met-485

ric, and use no additional regressor in experiments.486

Baselines. Since our experiments are totally un-487

supervised: neither STS data nor NLI dataset4 are488

used for training, we only perform comparison with489

previous works in unsupervised setting. SOTA490

works for these tasks are either trained by care-491

fully designed sentence-level loss [e.g. SimCSE492

(Gao et al., 2021), BERT-flow (Li and Roth, 2002)]493

or tuned on sentence dataset NLI [e.g. BERT-494

whitening (Su et al., 2021)]. Therefore, these mod-495

els are able to generate effective sentence represen-496

tation. In contrast, our model is not trained with497

any sentence tasks, and we simply use the average498

of contextual word embeddings to represent sen-499

3https://github.com/princeton-nlp/
SimCSE

4NLI dataset consists of SNLI and MNLI, both of which
are proved to be effective domain data for STS tasks (Gao
et al., 2021; Reimers and Gurevych, 2019).

tence. Thus, it is not very fair to directly compare 500

with the mentioned sentence encoders. We then 501

focus more on the comparison with the original 502

MLM. 503

Result and Analysis. Table 2 shows the results 504

on STS tasks. With gloss regularization in pre- 505

training, the average Spearman’s correlation in- 506

creases from 56.70 to 65.75 in BERT model and 507

from 56.57 to 67.47 for RoBERTa. Though still far 508

below the SimCSE SOTA performance, our model 509

approaches the BERT-whitening and BERT-flow 510

without any deliberately designed sentence-level 511

tasks or transforming word distribution on domain 512

data. Reimers and Gurevych (2019) report the un- 513

supervised BERT embedding is infeasible for STS 514

and performs even worse than GloVe embedding. 515

Li et al. (2020) blame it on the anisotropic distribu- 516

tion of BERT word embeddings. Our experiments 517

show great gains of GR-BERT in sentence embed- 518

ding, proving the advantage of gloss regularized 519

contextual representation is also valid for sentences. 520

A brief analysis on sentence representation with 521

gloss regularizer is provided in Appendix C. 522

5.4 Supervised STS 523

STS-B Task and Dataset. We validate our model 524

in supervised STS Benchmark (STS-B) (Cer et al., 525

2017). The data consists of 8,628 sentence pairs 526

and is divided into trainset (5,749), devset (1,500) 527

and testset (1,379). 528

Since supervised STS performance are largely 529

influenced by the training data, we only use the 530

STS trainset in all experiments. Besides, we ran- 531

domly reduce the data size to simulate the limit 532

data scenarios and compare our model with MLM 533

baselines. Following the sentence-BERT (Reimers 534
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Data ratio Models Spearman
100% BERT 83.98± 0.16

MT GR-BERT 85.13± 0.06
SC GR-BERT 85.00± 0.16

100% RoBERTa 85.90± 0.57
MT GR-RoBERTa 86.87± 0.21
SC GR-RoBERTa 86.25± 0.30

50% BERT 81.60± 0.28
MT GR-BERT 83.47± 0.15
SC GR-BERT 83.06± 0.19

20% BERT 76.43± 0.37
MT GR-BERT 79.87± 0.41
SC GR-BERT 79.18± 0.21

Table 3: Evaluation on STS-B test set. All experiments
are fine-tune for 4 epochs with batch size 16. Results
are the average of 4 random seeds.

model LS14 STS Avg STS-B
BERT 10.1 56.70 83.98
+MLM 10.9 62.22 84.62
MT GR-BERT 12.2 65.75 85.13
SC GR-BERT 12.4 65.34 85.00

Table 4: Ablation studies of different training loss in
three tasks. +MLM means only use MLM loss in train-
ing. We use the metric best for LS14 task, the average
Spearman’s correlation for 7 STS tasks and STS-B.

and Gurevych, 2019)5, we use Siamese BERT net-535

work with cosine similarity.536

Result and Analysis. Tabel 3 shows the com-537

parison on STS-B. In both BERT and RoBERTa538

backbones, GR models improve the baselines by539

around 0.9 points. In low-resource scenarios, the540

advantage of GR-BERT increases. When 50% data541

is available, the gain of MT GR-BERT is increased542

to 1.87 points, and the gain is up to 3.44 points543

for 20% data. Results show that in fine-tuning pro-544

cess, the GR model still preserves its advantage545

over MLM baselines in sentence semantic repre-546

sentation, indicating the contextual representation547

pre-trained with GR is transferable in further fine-548

tuning. The GR pre-training is able to enhance549

the semantic knowledge in model, especially in the550

low-resource data scenarios, which ease the hunger551

for task training data.552

5.5 Ablation Analysis553

We now investigate the influence of gloss training554

data and the model structures. Results are shown555

in Table 4. Gururangan et al. (2020) reports the556

5https://www.sbert.net/examples/
training/sts/README.html

domain data pre-training can improve model per- 557

formance. To evaluate the influence of dictionary 558

corpus, we pre-train BERT by MLM in the same 559

dataset and find that high-quality data improves 560

all three task performances. However, GR still 561

contributes to the large part of the improvement, 562

especially in the LS task. As for the two proposed 563

structures, the SC-GR utilizes individual context 564

encoders that impose less restriction on gloss learn- 565

ing, and achieves better performance in LS word- 566

level task. On the contrary, the MT model pro- 567

vides a better sentence embedding and surpasses 568

SC structure in STS tasks. 569

6 Conclusion 570

In this work, we propose the GR-BERT, a model 571

with gloss regularization to enhance the word con- 572

textual information. We first analyze the gap be- 573

tween MLM pre-training and inference, and aim 574

to model the PMI term that characterizes the word 575

semantic similarity given context. Due to the lack 576

of data that labels the word semantic similarities 577

given contexts, we propose to indirectly learn the 578

semantic information in pre-training by aligning 579

contextual word embedding space to a human anno- 580

tated gloss space. We design two model structures 581

and validate them in three NLP semantic tasks. In 582

the lexical substitution task, we increase the SOTA 583

value from 14.5 to 15.2 in LS14 best metric and 584

many other metrics in LS07 and LS14 are also 585

improved. In the unsupervised STS task, our GR 586

model show its capacity in sentence representation 587

without any training in sentence task, and it im- 588

proves the MLM performance from 56.57 to 67.47. 589

In the supervised STS-B task, GR model exceed the 590

MLM baseline by about 0.9 points, and the gains 591

increases to 3.44 in the low resource scenarios. 592

Our work provides a new perspective to the 593

MLM pre-training, and show the effectiveness of 594

modeling word semantic similarity. However, one 595

limitation of our work is the lack of large-scale 596

word-gloss matching data. The training data in 597

our work is far less than that in BERT pre-training. 598

Our future works will focus on mining larger scale 599

word-gloss training data and also validate GR 600

model in more NLP tasks. We believe there is still a 601

big room for GR model performance improvement 602

and possible gains in more NLP tasks. 603
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Ivan Vulić, Edoardo M. Ponti, Robert Litschko, Goran838
Glavaš, and Anna Korhonen. 2020. Probing839
pretrained language models for lexical semantics.840
EMNLP 2020 - 2020 Conference on Empirical Meth-841
ods in Natural Language Processing, Proceedings of842
the Conference, pages 7222–7240.843

Gregor Wiedemann, Steffen Remus, Avi Chawla, and844
Chris Biemann. 2019. Does BERT make any845
sense? interpretable word sense disambiguation846
with contextualized embeddings. arXiv preprint847
arXiv:1909.10430.848

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-849
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.850
XLNet: Generalized autoregressive pretraining for851
language understanding. In Proceedings of the 33rd852
International Conference on Neural Information Pro-853
cessing Systems, Red Hook, NY, USA. Curran Asso-854
ciates Inc.855

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,856
Maosong Sun, and Qun Liu. 2019. ERNIE: En-857
hanced language representation with informative en-858
tities. In Proceedings of the 57th Annual Meeting of859
the Association for Computational Linguistics, pages860
1441–1451, Florence, Italy. Association for Compu-861
tational Linguistics.862

Wangchunshu Zhou, Tao Ge, Ke Xu, Furu Wei, and863
Ming Zhou. 2019. BERT-based lexical substitution.864
In Proceedings of the 57th Annual Meeting of the As-865
sociation for Computational Linguistics, pages 3368–866
3373, Florence, Italy. Association for Computational867
Linguistics.868

A Pre-training Details869

We employ the BERT-base uncased model and870

RoBERTa-base model to initialize the context and871

gloss encoders in our experiments. Both models872

are pre-trained on released Oxford dictionary data873

for around 10 epochs. We evaluate the model ev-874

ery epoch by the gloss matching accuracy on the875

randomly picked evaluation set. In the pre-training876

process, we set the GR loss weight as λ = 2.0.877

Following the SimCSE training hyper-parameters878

(Gao et al., 2021), we use cosine similarity between879

gloss embedding and contextual word embedding,880

and we set the temperature τ = 0.05 in softmax.881

Take the MT GR model as an example, the softmax882

of gloss matching is softmax(cosine(hs, et)/τ).883

We conduct the pre-training on 8 Tesla V100884

GPUs. The learning rate is set as 2 × 10−5. The885

batch size for BERT is 48× 8, and it is 36× 8 for 886

RoBERTa model. 887

B Lexical Substitution Details 888

As Arefyev et al. (2020) reported, the process on 889

the format of word candidates influences the met- 890

rics. We thus (almost) follow their code6 and fix 891

the word process in all experiments. In our ex- 892

periments, the word process includes lemmatiza- 893

tion (went->go), filtering the candidates having the 894

same lemmatization output with the original word 895

and removing duplicate lemmatization of candi- 896

dates. We also filter out the candidates according 897

to the parts-of-speech (POS) information. For ex- 898

ample, the word good can be used as noun or adj, 899

but it would be unreasonable to serve as verb. We 900

then check the possible POSs for each candidate 901

and filter those words with unmatched POS with 902

the target word. 903

In the post-process, the hyper-parameters in 904

(+emb) and validation are tuned in LS07 data. Fol- 905

low the implementation of Arefyev et al. (2020), 906

we use cosine similarity and the temperature for 907

similarity is set 1/15 in all our experiments. For 908

the validation process, we follow the idea of Zhou 909

et al. (2019), but use BERT-base uncased model 910

for validation. Following their work, we pick the 911

first 50 candidates to re-rank (it has little influence 912

when the number is above 20 in our experiments). 913

The values in propose and validate scores are in 914

different scales, as one is from logits and the other 915

is from cosine similarity. We then adjust the weight 916

of propose score to let its standard deviation be in 917

the same level with the cosine similarity. We set 918

the weight as 0.009 for RoBERTa and 0.004 for 919

BERT. 920

Table 5 gives examples of LS task and compares 921

our model outputs with the baseline. 922

C Sentence Similarity 923

We extend the contextual token similarity measure- 924

ment into sentence similarity. As stated in (Li et al., 925

2020), the dot product similarity between sentence 926

representations h>c hc′ is difficult to derived theo- 927

retically, since it is not explicitly involved in the 928

BERT pre-training process. Therefore, inspired by 929

token-level lexical substitution task using contex- 930

tual probability distribution, we consider the prob- 931

ability distribution of a sentence s1 given another 932

sentence s2, i.e. p(s1|s2). 933

6https://github.com/Samsung/LexSubGen
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target word tell
sentence He held Obi-Wan loosely , gently stroking his back He knew now that it did n’t matter what Sampris

said , or what Yoda told him .
labels said to (4), inform (2)
RoBERTa teach, say, give, call, have
SC GR-RoBERTa teach, say, warn, instruct, promise
+ post-process inform, teach, warn, say, instruct
target word think
sentence Shafer thinks we’re going to cry , “he doesn’t get it!” in reply to his piece” “it” being the amazing

world of the Web and new media .
labels believe (3), feel (1), suspect (1), reckon (1), assume (1)
RoBERTa say, know, hop, believe, worry
SC GR-RoBERTa believe, say, hop, expect, suspect
+ post-process believe, say, hop, expect, know
target word thus
sentence The kind of control he exercises is thus likely to be limited to " passive " control such as inspection

of produced goods and testing to insure that quality standards are being met .
labels therefore (5), accordingly (1), consequently (1)
RoBERTa typically, therefore, then, so, similarly
SC GR-RoBERTa therefore, consequently, so, accordingly, hence
+ post-process therefore, consequently, hence, thereby, so
target word clean
sentence Dog and horse owners should be encouraged to clean up after their animals .
labels scrape (1), clear (2), tidy (2)
RoBERTa wash, pick, wake, keep, clear
SC GR-RoBERTa groom, walk, look, care, do
+ post-process tidy, wash, groom, care, walk
target word late
sentence We were late doing this since I refused to use someone else ’s " shopping cart " system that I did

n’t write and could n’t trust .
labels delayed (3), tardy (2), behind schedule (1), behind time (1), behind (1)
RoBERTa also, early, just, still, already
SC GR-RoBERTa early, slow, not, long, behindo
+ post-process early, slow, prematurely, long, not
target word new
sentence The lecture itself went well , but a new problem arose .
labels different (1), extra (1), additional (1), fresh (4)
RoBERTa different, big, small, fresh, great
SC GR-RoBERTa fresh, big, previous, further, different
+ post-process fresh, renewed, different, previous, recent

Table 5: Examples from LS07 benchmark to show the task and model outputs. The number follows each label is the
frequency count indicating the number of annotators that provided this substitute. For each model, we report the top
5 candidates in the first 50 predictions in lemmatized form.
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Proposition 1. Let w1, · · · , wn be n tokens sam-934

pled from a sentence s, and ci be the rest of to-935

kens in s except for wi. Let x1, · · · , xn denote936

the tokens that can replace w1, · · · , wn in s, re-937

spectively. The joint probability distribution of938

x1, · · · , xn given s is formulated as939

log p(x1, . . . , xn|s) =
n∑

i=1

Pi, (12)940

where941

Pi = log p(xi|ci, x<i) + PMI(xi;wi|ci, x<i),
(13)942

and x<i denotes x1, · · · , xi−1.943

Proof We use the mathematical induction to944

proof the proposition.945

When n = 1, log p(x1|s) = P1 is equivalent as946

Eqn. (1).947

When n > 1, we make an assumption that Eqn.948

(12) holds true for n = k − 1, i.e. log p(x<k|s) =949 ∑k−1
i=1 Pi. Then,950

log p(x<k, xk|s)951

= log p(xk|ck, x<k) + log
p(xk|wk, ck, x<k)

p(xk|ck, x<k)
· · ·952

+ log
p(xk, x<k|wk, ck)
p(xk|wk, ck, x<k)

953

= log p(xk|ck, x<k) + PMI(xk;wk|ck, x<k) · · ·954

+ log p(x<k|s)955

=Pk +
k−1∑
i=1

Pi =
k∑

i=1

Pi, (14)956

which means Eqn. (12) is also true for n = k. �957

Proposition 1 indicates one sentence can be trans-958

formed into another sentence through a series of to-959

ken substitution operations, and the sentence trans-960

forming probability can be decomposed into the961

sum of a series of contextual token probabilities962

and contextual token similarities, i.e.963

p(s1|s2) =
n∑

i=1

Pi, (15)964

where Pi is defined in Eqn. (13), and s1 =965

[x1, · · · , xn], s2 = [w1, · · · , wn]. We ignore the966

case when s1 and s2 have different lengths, since a967

simple solution is to pad the shorter sentence to the968

length of the longer one.969

Eqn. (15) and (13) show that the sentence-level970

tasks also benefits from our gloss regularizer, since971

the contextual token similarity modeled by gloss 972

matching task also contributes to sentence repre- 973

sentation. 974
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