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Abstract

Though achieving impressive results on many
NLP tasks, the BERT-like masked language
models (MLM) encounter the discrepancy be-
tween pre-training and inference. In light of
this gap, we investigate the contextual repre-
sentation of pre-training and inference from
the perspective of word probability distribution.
We discover that BERT risks neglecting the
contextual word similarity in pre-training. To
tackle this issue, we propose an auxiliary gloss
regularizer module to BERT pre-training (GR-
BERT), to enhance word semantic similarity.
By predicting masked words and aligning con-
textual embeddings to corresponding glosses
simultaneously, the word similarity can be ex-
plicitly modeled. We design two architectures
for GR-BERT and evaluate our model in down-
stream tasks. Experimental results show that
the gloss regularizer benefits BERT in word-
level and sentence-level semantic representa-
tion. The GR-BERT achieves new state-of-the-
art in lexical substitution task and greatly pro-
motes BERT sentence representation in both
unsupervised and supervised STS tasks.

1 Introduction

Pre-trained language models like BERT (Devlin
et al., 2019) and its variants (Liu et al., 2019b; Lan
et al., 2019; Zhang et al., 2019; Joshi et al., 2020)
have achieved remarkable success in a wide range
of natural language processing (NLP) benchmarks.
By pre-training on large scale unlabeled corpora,
BERT-like models learn contextual representations
with both syntactic and semantic properties. Re-
searches show the contextual representations gener-
ated by BERT capture various linguistic knowledge,
including part-of-speech, named entities, seman-
tic roles (Tenney et al., 2019; Liu et al., 2019a;
Ettinger, 2020), word senses (Wiedemann et al.,
2019), etc. Furthermore, with the fine-tuning pro-
cedure, the contextual representations show excel-
lent transferability in downstream language under-
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Figure 1: Conditional token probability distribution of
tokens given masked context (a) and full context (b) and
(c). The ideal token distribution given full context is
illustrated in (b), while (c) shows the full contextual
token distribution generated by actual BERT.

standing tasks, and lead to state-of-the-art (SOTA)
performance.

The masked language model (MLM) plays a
significant role in the pre-training stage of many
BERT-like models (Liu et al., 2019b). In an MLM,
a token w is sampled from a text sequence s, and
replaced with a [MASK] token. Let ¢ be the rest
of tokens in s except for w. We name ¢ as the
masked context or surrounding context, and s as the
full context. During pre-training, BERT encodes
the masked context ¢ into a contextual embedding
vector h., and use it to generate a contextual to-
ken probability distribution p(z|c), where z € V
and V' denotes the token vocabulary. The train-
ing objective is to predict the masked token w by
maximizing likelihood function log p(w|c). In the
fine-tuning or inference stage, BERT takes the full
context s without masks as input, and encodes ev-
ery token into its contextual representationa for
downstream tasks. We denote the contextual repre-
sentation corresponds to token w as h.

We analyze the corresponding contextual token
probability distribution p(x|c) and p(z|s) gener-
ated from h. and hg, as a proxy to study the rep-
resentations (Li et al., 2020). Figure 1(a) shows
an example when masked context ¢ =“Tom is a

[MASK] guy”, the predicted tokens with high prob-
abilities p(z|c) includes good, nice, great, tough,



which are all reasonable answers to the Cloze task.
Ideally, we want the context encoder to behave the
same way when full context s is given, as in Figure
1(b), the model should only propose contextual syn-
onyms of bad such as dangerous, nasty and mean
with p(z|s). However, the actual BERT generates
p(x|s) as shown in Figure 1(c), which contains in-
appropriate token proposals such as good, rough
and big.

The discrepancy between Figure 1(b) and 1(c) is
because only the masked token distribution p(x|c)
is explicitly modeled in BERT with the MLM,
while the full contextual token distribution p(z|s)
works in an agnostic way through model gener-
alization. This leads to a gap between p(z|c) in
pre-training and p(zs) in fine-tuning and infer-
ence. It is shown in unsupervised scenarios, BERT
generates contextual embeddings that even under-
performs static embeddings for sentence represen-
tation (Reimers and Gurevych, 2019). Although
in BERT pre-training, random token replacement
strategy is used to mitigate the mismatch that
[MASK] token is never seen during fine-tuning, to
the best of the authors’ knowledge, there is no anal-
ysis on the gap of representation between masked
context h. and full context hg in different phases
when using BERT.

To address this issue, we perform an investi-
gation on the inner structure of p(z|s). Through
theoretical derivation, we discover p(z|s) can be
decomposed into the combination of masked con-
textual token distribution p(z|c) and a point-wise
mutual information (PMI) term that describes con-
textual token similarity. Further analysis shows
both the MLM and token replacement in BERT
pre-training have potential shortcomings in model-
ing the contextual token similarity. Inspired by the
decomposition of p(x|s), we propose to add an aux-
iliary gloss regularizer (GR) module to the MLM
task, where mask prediction and gloss matching are
trained simultaneously in the BERT pre-training.
We also design two model architectures to integrate
the gloss regularizer into the original MLM task.

We examine our proposed model in downstream
tasks including unsupervised lexical substitution
(LS) (McCarthy and Navigli, 2007; Kremer et al.,
2014), semantic textual similarity (STS) and su-
pervised STS Benchmark (Cer et al., 2017). By
invoking gloss regularized pre-training, our model
improves lexical substitution task from 14.5 to 15.2
points in the LS14 dataset, leading to new SOTA

performance. In unsupervised STS tasks, gloss
regularizer improves the performance from 56.57
to 67.47 in terms of average Spearman correlation
by a large margin. Such performance gain is also
observed in supervised STS task. Empirical experi-
ments prove our model effectively generates better
contextual token distribution and representations,
which contributes to word-level and sentence-level
language understanding tasks.

2 Related Works

Masked Language Models. Liu et al. (2019b)
extend BERT into RoBERTa achieving substan-
tial improvements. They claim the MLM task as
the key contributor to contextual representation
modeling, compared with next sentence prediction
task. Many BERT variants focus on better masking
strategies (Cui et al., 2019; Zhang et al., 2019; Joshi
et al., 2020) to enhance the robustness and transfer-
ability of contextual representative learning. How-
ever, MLM suffers from the discrepancy between
pre-training and fine-tuning since the [MASK] to-
kens are only introduced during pre-training. To
tackle this issue, permutation language model from
XLNet (Yang et al., 2019) and token replacement
detection from ELECTRA (Clark et al., 2020) are
proposed as alternative approaches to the MLM. In-
stead of avoiding MLM, we analyze how the mask
modeling affects the full contextual representation
in a probability perspective, and introduce gloss
regularizer to mitigate the gap brought by MLM.

Contextual Representation Analysis. One way
to analyze the contextual representation learned by
pre-trained language model is through the probing
tasks (Liu et al., 2019a; Miaschi and Dell’ Orletta,
2020; Vuli¢ et al., 2020), which are regarded as an
empirical proofs that pre-trained MLMs like BERT
succeed in capturing linguistic knowledge. Many
other researches focus on studying the geometry
of contextual representations. Ethayarajh (2019)
discovers anisotropy among the contextual embed-
ddings of words when studying contextuality of
BERT. Li et al. (2020) propose a method using nor-
malizing flow to transform the contextual embed-
ding distribution of BERT into an isotropic distri-
bution, and achieve performance gains in sentence-
level tasks.

Utilizing Word Senses. Because the BERT con-
veys contextualized semantic knowledge of polyse-
mous, many researches use BERT as a backbone



to build word sense disambiguation (WSD) models
(Huang et al., 2019; Blevins and Zettlemoyer, 2020;
Bevilacqua and Navigli, 2020). In these models,
BERT is used as word senses and contexts encoders
to perform the downstream matching task. One
work that directly incorporates word sense knowl-
edge into pre-training is SenseBERT (Levine et al.,
2020) that introduces a weakly-supervised super-
sense prediction task, which leads to improvement
on performance of WSD and word-in-context task.
In SenseBERT, word prediction is enhanced with
supersense category labels that act like an external
knowledge source. However, the gloss regularizer
in our model provides fine-grained semantic infor-
mation, which aimed to align word representation
space with the semantic space, and leads to better
contextual representations.

3 Contextual Token Probability

3.1 Masked Language Model

Without loss of generality, the token probability
distribution given full context p(z|s) can be decom-
posed into two parts,

log p(z[s) = log p(z|c) + PMI(z; wle), (1)

where PMI(z; w|e) is the pointwise mutual infor-
mation between x and w given ¢. PMI describes
how frequently two tokens co-occur than their in-
dependent occurrences, which is used as a mea-
surement of the semantic similarity between tokens
(Ethayarajh, 2019; Li et al., 2020). In Eqn. (1),
log p(x|c) only depends on masked context, which
directly corresponds to the MLM training objective.
However, the PMI term is not explicitly modeled.
In BERT, p(z|c) is generated from the encoded
mask context h. with a softmax operation as

p(z|e) = softmax(h, v,), )

where v, stands for the embedding vector of token
x in vocabulary V. During fine-tuning or inference
stage, full context s without masks is encoded into
h as the contextual representation of token w. We
can use the hg to estimate p(z|s) in the same way
as Eqn. (2), denoted by p(z|s),

p(z|s) = p(z|e, w) = softmax(h, v,).  (3)
Under such approximation setup, PMI(z; w|c)
can be transformed into
p(z|w, c)
p(zle)
= (he = he) 'va + p(w,0), (@)

PMI(z; w|c) =~ log

where ¢(w, ¢) is constant w.r.t x. In a deep neural
network parameterized model like BERT, h is
encoded in an agnostic way. Thus, it’s difficulty to
further derive the PMI in Eqn. (4).

For a simpler case, if we consider a one-layer
continuous bag-of-words (CBOW) model (Mikolov
etal., 2013) ', we have hy — h, = h,,, where h,,
is a context vector only related to the center token
w. Now PMI is formulated as

PMIcgow (z; w|e) = log p(z|w) + ¥ (w,c),

where 1 (w, ¢) is another constant w.r.t z. In this
case, the PMI only contains similarity information
between x and w, while the context information is
completely ignored.

Although hy; — h, = h,, is not satisfied in a
deep model like BERT, the input sequences for h
and h. share the most identical tokens ¢, and their
only difference is whether to mask w. Therefore,
there is a potential risk that PMI(z; w|e) in MLM
loses information related to the condition ¢, and de-
grades to the marginal PMI(x; w), especially when
the MLM lacks modeling p(x|s) in its training ob-
jective.

3.2 Replaced Language Model

In the BERT training process, a portion of tokens
are replaced with random real tokens other than
[MASK], and the model is trained to predict the
original tokens. We name this task as the replaced
language model (RLM). Different from MLM, an
RLM takes full context without masked tokens
as input, and directly generates token distribution
p(z|s), which seems to be a better way for full
contextual representation modeling.

We take a closer look at the RLM training pro-
cess. Let p(z|s) = p(x|w,c) be the probability
that token w is replaced with token z in context c.
According to the Bayes’ theorem, we have

p(z|e)p(w|z, ¢)
wev P|e)p(w]a’, ¢)’

p(l”’LU,C) = Z (5)

In a well-trained model, p(w|x, ¢) should be the
replacing probability during training. Since the
process of replacing words by random noise is ir-
relevant to the context, p(w|x, ¢) = p(w|z). Let «
be the probability when a token remains unchanged,

'"The CBOW model can be considered as a kind of masked
language model.



and 1 — « be the replacing probability. Therefore,

(1 — a)p(z[c)
alVip(wle) + (1 = a) >y, p(a'|e)’
(6)

p(zls) =

where |V| denotes the vocabulary size.

Eqn. (6) shows in RLM p(z|s) is proportional to
p(z|e) and PMI(x; w|c) is constant when = # w,
which means the distribution of z (z # w) only
relies on surrounding context ¢, but pays no atten-
tion to the center token w. This infers the RLM
actually models the token distribution conditioning
on almost only the surrounding context, even if it
takes full context as input. Since the PMI term is
completely ignored, RLM performs even worse the
MLM in full contextual representation.

4 Gloss Regularizer

4.1 Invoking Gloss Matching

As shown in Eqn. (1), p(z|s) consists of p(z|c)
and PMI(z; w|c). Both MLM and RLM succeed in
modeling p(z|c). However, the analysis in Section
3 shows RLM completely ignores PMI(z; w|c),
and MLM may suffer from potential risks that the
contextual information in PMI(z; w|c) would be
lost, in either way the model generates poor estima-
tion of p(x|s).

PMI(z; w|e) describes co-occurrence probabil-
ity of z and w normalized by their marginal prob-
abilities under context ¢ as condition. Ideally, it
should be learned by training with labeled dataset
{(s1,82)}, where s; = {z1,c} and so = {z2,¢}
are semantically similar text samples with shared
context ¢ and exchangeable token pair (x1,x2).
However, such labeled data is expansive to build
and not suitable for large-scale pre-training setup.

Intuitively, PMI(z; w|c) can be regarded as se-
mantic similarity between tokens under context.
Although the contexts of similar tokens are hard
to obtain, we can use the glosses of tokens as an
alternative. Since the semantic of a word can be
defined by its gloss, contextual token similarity
can be determined by detecting whether tokens are
matching to similar glosses under context. There-
fore, in order to better model the contextual token
similarity defined by PMI(x; w|c), we introduce
gloss matching an auxiliary task named the gloss
regularizer. Two architectures to integrate gloss reg-
ularizer into MLM are detailed in Section 4.2 and
4.3.

4.2 Multi Task Model

A straight-forward method is to perform mask pre-
diction and gloss matching as joint multitasks (de-
noted as MT). In this architecture, the masked con-
text ¢ and the full context s are encoded by a context
encoder into the contextual vector h. and h,. The
loss function of the MLM task is

Lyim = —h/ vy, + log Z exp(h) vy). (7)
w'eVvV

For the gloss matching task, as illustrated in Fig-
ure 2(a), let g, be the gloss text of token w under
context ¢. Another gloss encoder is used to encode
g, into a gloss vector e;. Gloss matching is per-
formed by calculating the similarity between the
contextual token representation h, and the gloss
vector e;. The gloss regularizing loss is

Lor = —sim(hg, e;) + log Z expsim(hg, ey ),

teT
(®)
where sim(-) is a similarity measurement function,
and T is a set of negative glosses. The final loss
function is the combination of the two losses,

Lyt = Lvim + ALR, 9)

where A denotes the regularizing weight.

This setting resembles the bi-encoders model
(BEM) for WSD proposed by (Blevins and Zettle-
moyer, 2020). However, in our model, the context
encoder is trained on mask prediction task simul-
taneously with the gloss matching task, while the
BEM takes gloss matching as a fine-tuning task.
We train the two tasks together for better contex-
tual and semantic representation modeling. As a
result, the model learns token distribution not only
conditioning on the masked context, but also in-
fluenced by semantic similarity with center token,
which gives a better estimation of p(z|s).

4.3 Separate Context Encoder Model

Another method is directly inspired by the decom-
position from Eqn. (1). Different from the multi-
task model, we use two context encoders instead
of one (denoted as SC). The first context encoder,
denoted by ency, encodes the masked context as

gl) = encj(c), and learns purely from MLM

task with loss £§,RM derived similar as Eqn. (7).
The full context s is encoded into hg) =

ency(s) by the second encoder. Eqn. (4) shows
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(the loss L](\,%zMof SC is not shown).

PMI(z; wle) is entailed in the linear difference be-
tween the encoding of full and masked context.

Therefore, we use (hg) - hg)) for gloss matching,
where the loss function is formulated as

Lg = —sim|ey, h(? — hgl)}

+ log Z expsim[ey, R — hV].
ter

(10)

In order to make the gloss matching learned by
ency aligned with the word embedding space, an-
other MLLM task is added to the training of encao,
with loss L',I(V?LM. Thus, the complete loss function
of the SC model is

1D

Although one gloss encoder and two contextual
encoders are involved during training, only ency
is used at the inference stage. The contextual token
distribution is given by p(z|s) = softmax (v, hgz)).
By using two separate contextual encoders, the
MLM task and gloss matching tasks can be trained
individually, which leads to better performance for
each task. Besides, the combination of the two
tasks corresponds to the theoretical derivation of
p(x|s), and integrates the gloss regularizer in a
more natural and explainable way.

Lsc = LG+ L3+ M.

4.4 Gloss Regularized Pre-training

Since we trained the contextual encoder and gloss
encoder simultaneously, when evaluating the gloss

matching loss, it is infeasible to encode the whole
gloss set to calculate the full softmax. We thus use
the in-batch negative sampling strategy from (Chen
et al., 2017). Besides, we also use the other glosses
of the target word as hard negatives for effective
training.

We employ the gloss dataset from the online
Oxford dictionary released by Chang et al. (2018);
Chang and Chen (2019), formated in triplets of
word, sentence and defination. The data consists of
677,191 pieces in total, including 31,889 words and
78,105 glosses. We utilize the BERT and RoBERTa
model to initialize the context encoder and gloss
encoder in our model. The pre-training settings and
hyper-parameters are detailed in Appendix A.

5 Experiments

5.1 Downstream Tasks

In this section, we evaluate our model on three lan-
guage understanding tasks. First, we choose the
lexical substitution task to observe the word-level
semantic performance. Then we conduct exper-
iments on two sentence representation tasks: the
STS task in unsupervised setting and the supervised
STS benchmark (STS-B) task.

5.2 Lexical Substitution

Task and Dataset. Lexical substitution aims to
replace the target word in a given context sentence



method backbone post process SemEval 2007 (LS07) CoInCo (LS14)
best/best-m | oot/oot-m | P@1/P@3 | best/best-m | oot/oot-m | P@1/P@3
Roller and Erk (2016) | SGNS emb - - - 19.714.8 | - - 18.2/13.8
Zhou et al. (2019) BERT}arge - 12.1/20.2 40.8/56.9 | 13.1/- 9.1/19.7 33.5/56.9 | 14.3/-
+valid 20.3/34.2 55.4/68.4 | 51.1/- 14.5/33.9 45.9/69.9 | 56.3/-
Arefyev et al. (2020) | RoBERTajage - - - 32.0243 | - - 34.8/27.2
+emb - - 44.1/31.7 | - - 46.5/36.3
XLNetyarge +emb - - 49.5/349 | - - 51.4/39.1
baselines BERThyse - 13.2/22.3 40.8/57.1 | 33.1/23.7 | 10.1/21.9 33.0/56.5 | 38.4/28.7
RoBERTap, - 16.7/27.8 45.2/62.9 | 40.8/28.5 | 11.0/23.6 34.9/59.3 | 42.2/31.4
our work MT GR-BERT}6¢ - 17.7/30.8 49.8/67.8 | 42.5/31.1 12.2/26.5 39.2/64.5 | 46.4/35.3
SC GR-BERT}s¢ - 18.2/31.2 49.9/67.6 | 44.1/31.2 | 12.4/27.1 39.8/65.5 | 46.6/35.8
MT GR-RoBERTap, | - 19.7/32.9 53.0/72.8 | 47.9/34.2 | 12.9/28.3 40.6/66.4 | 48.6/37.2
SC GR-RoBERTay,e | - 19.4/33.2 52.8/71.5 | 47.4/33.4 | 13.1/28.8 40.9/66.6 | 48.8/37.8
+emb 22.4/38.2 56.4/76.0 | 53.7/37.8 | 14.5/32.8 43.8/69.9 | 53.5/41.4
+valid 22.6/38.4 56.0/73.9 | 54.8/39.0 | 15.1/33.7 44.1/69.6 | 56.0/42.7
+both 23.1/39.7 57.6/76.3 | 55.0/40.3 | 15.2/34.4 45.3/71.3 | 55.9/43.5

Table 1: Comparison with previous SOTA on lexical substitution task. Results of the first three works are from the
mentioned papers and the results in the baseline are from our experiments with the same word process.

by a substitute word that not only is semantically
consistent with the original word but also preserves
the sentence’s meaning. There are two benchmark
datasets for this task: the SemEval 2007 dataset
(LS07) (McCarthy and Navigli, 2007) with 201
target words, and the CoInCo dataset (LS14) (Kre-
mer et al., 2014) with 4,255 target words, both of
which are unsupervised. The task LSO7 releases
the official evaluation metrics best/best-mode and
oot/oot-mode?*, which evaluate the quality of the
best prediction and the best 10 predictions, sep-
arately. We also report the metrics precision@ 1
(P@1) and P@3. Because the metric best consid-
ers the word frequencies in annotated labels, we
take it as the main metric in this task.

Candidate Generation. We use the context en-
coder pre-trained with GR to generate lexical sub-
stitutions. Given a target word w and its context
s, we directly employ the full contextual token dis-
tribution p(z|s) to perform the word prediction,
then sort the candidates by their probabilities. We
then lemmatize the word candidates as detailed in
Appendix B.

Post-Process. Previous works proposed several
effective approaches to improve LS performance.
Arefyev et al. (2020) used the input word embed-
ding to inject more target word information (noted
+emb). Zhou et al. (2019) utilized a pre-trained
model to re-score candidates (noted +valid). We
denote these approaches as post-process and adopt
them in our experiments. As Arefyev et al. (2020)
reported, the result in (Zhou et al., 2019) is hardly

http://www.dianamccarthy.co.uk/
tasklOindex.html

reproduced and their code is not available, we then
implement the validation process by ourselves.

Result and Analysis. Table 1 shows the com-
parison of our models with the previous SOTAs
in LSO7 and LS14 benchmarks. We first compare
the model outputs without post-process. Our GR
models surpass their MLM baselines by large mar-
gins in all metrics: the best value increases more
than 3 points, the oot increases about 8 points in
LS07. In separate context encoder structure, the
best value of BERT increases from 10.1 to 12.4 in
LS14, and the metric increases from 11.0 to 13.1
for RoOBERTa. Comparing the P@1 with (Arefyev
et al., 2020), the SC GR-RoBERTa base model
48.8 even exceeds the large ROBERTa model with
emb 46.5.

Results indicate that GR model generates more
semantically similar words and preserve the sen-
tence original meaning even though no LS-like
training data is used. This is because the gloss regu-
larization plays the key role in modeling contextual
token distribution p(z|s) by taking both contex-
tual and semantic information into consideration.
Given a sentence context, if two words are seman-
tically replaceable, their gloss text descriptions are
naturally similar. As the word contextual embed-
ding is aligned with its gloss, the words in semanti-
cally similar contexts are gathered closer indirectly,
which benefits the LS task.

We further apply post-process on the SC GR-
RoBERTa model. Consistent with previous works
(Arefyev et al., 2020; Zhou et al., 2019), both pro-
cesses improve the performance in testset LS14:
+emb increases the best value from 13.1 to 14.5,
and it is to 15.1 using +wvalid. By applying
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Model STS12 STS13 STS14 STS15 STS16 STS-B  SICK-R  Avg.

GloVe embs 55.14 70.66 59.73 6825 63.66 58.02 53.76 61.32
BERT-flow 5840 67.10 60.85 75.16 7122 68.66 64.47 66.55
BERT-whitening(NLI) 57.83 6690 6090 75.08 7131 68.24 63.73 66.28
SimCSE-BERT 68.40 8241 7438 8091 7856 76.85 72.23 76.25
SimCSE-RoBERTa 70.16 81.77 7324 8136 80.65 80.22 68.56 76.57
BERT (first-last avg) 39.70 5938 49.67 66.03 66.19 53.87 62.06 56.70
MT GR-BERT (first-last avg.) 5320 69.68 58.81 7325 7216 66.65 66.47 65.75
SC GR-BERT (first-last avg.) 53.69 68.66 5883 7190 71.64 66.18 66.46 65.34
RoBERTa(first-last avg.) 40.88 5874 49.07 65.63 6148 5855 61.63 56.57
MT GR-RoBERTa(first-last avg.) 53.73 72,57 61.04 7523 7286 69.44 67.39 67.47
SC GR-RoBERTa(first-last avg.)  53.69  70.00 59.24 7238 7247 7012 67.02 66.42

Table 2: Sentence embedding performance on unsupervised STS tasks. Results in the first row are from Gao et al.
2021. Notation (first-last avg) means take the average of word embs from the input and output layer.

both post-processes, our SC GR-RoBERTa model
achieves the new SOTA 15.2 in best. We also
achieve SOTA in the metrics best-m/oot-m and
P@3 in LS14 and all metrics in LSO7. Appendix B
demonstrates random selected examples of the LS
task and the model outputs.

5.3 Unsupervised Sentence Representation
Task

STS Task and Dataset. STS tasks deal with de-
termining how similar two sentences are. We eval-
uate our model on 7 STS tasks: STS tasks 2012-
2016 (Agirre et al., 2012, 2013, 2014, 2015, 2016),
STS Benchmark (STS-B) (Cer et al., 2017) and
SICK-Relatedness (SICK-R) (Marelli et al., 2014).
Following the work of Gao et al. (2021) and their
setting in STS tasks®, we use Spearman’s correla-
tion with “all” aggregation as the evaluation met-
ric, and use no additional regressor in experiments.

Baselines. Since our experiments are totally un-
supervised: neither STS data nor NLI dataset* are
used for training, we only perform comparison with
previous works in unsupervised setting. SOTA
works for these tasks are either trained by care-
fully designed sentence-level loss [e.g. SImCSE
(Gao et al., 2021), BERT-flow (Li and Roth, 2002)]
or tuned on sentence dataset NLI [e.g. BERT-
whitening (Su et al., 2021)]. Therefore, these mod-
els are able to generate effective sentence represen-
tation. In contrast, our model is not trained with
any sentence tasks, and we simply use the average
of contextual word embeddings to represent sen-

*https://github.com/princeton-nlp/
SimCSE

4NLI dataset consists of SNLI and MNLI, both of which
are proved to be effective domain data for STS tasks (Gao
et al., 2021; Reimers and Gurevych, 2019).

tence. Thus, it is not very fair to directly compare
with the mentioned sentence encoders. We then
focus more on the comparison with the original
MLM.

Result and Analysis. Table 2 shows the results
on STS tasks. With gloss regularization in pre-
training, the average Spearman’s correlation in-
creases from 56.70 to 65.75 in BERT model and
from 56.57 to 67.47 for RoBERTa. Though still far
below the SimCSE SOTA performance, our model
approaches the BERT-whitening and BERT-flow
without any deliberately designed sentence-level
tasks or transforming word distribution on domain
data. Reimers and Gurevych (2019) report the un-
supervised BERT embedding is infeasible for STS
and performs even worse than GloVe embedding.
Li et al. (2020) blame it on the anisotropic distribu-
tion of BERT word embeddings. Our experiments
show great gains of GR-BERT in sentence embed-
ding, proving the advantage of gloss regularized
contextual representation is also valid for sentences.
A brief analysis on sentence representation with
gloss regularizer is provided in Appendix C.

5.4 Supervised STS

STS-B Task and Dataset. We validate our model
in supervised STS Benchmark (STS-B) (Cer et al.,
2017). The data consists of 8,628 sentence pairs
and is divided into trainset (5,749), devset (1,500)
and testset (1,379).

Since supervised STS performance are largely
influenced by the training data, we only use the
STS trainset in all experiments. Besides, we ran-
domly reduce the data size to simulate the limit
data scenarios and compare our model with MLM
baselines. Following the sentence-BERT (Reimers


https://github.com/princeton-nlp/SimCSE
https://github.com/princeton-nlp/SimCSE

Dataratio Models Spearman
100% BERT 83.98 £0.16
MT GR-BERT 85.13 £0.06
SC GR-BERT 85.00 £0.16
100% RoBERTa 85.90 £ 0.57
MT GR-RoBERTa 86.87 &+ 0.21
SC GR-RoBERTa  86.25 £ 0.30
50% BERT 81.60 £ 0.28
MT GR-BERT 8347 £0.15
SC GR-BERT 83.06 £0.19
20% BERT 76.43 £0.37
MT GR-BERT 79.87 £ 0.41
SC GR-BERT 79.18 +£0.21

Table 3: Evaluation on STS-B test set. All experiments
are fine-tune for 4 epochs with batch size 16. Results
are the average of 4 random seeds.

model LS14 STS Avg STS-B
BERT 10.1 56.70 83.98
+MLM 10.9 62.22 84.62
MT GR-BERT 12.2 65.75 85.13
SC GR-BERT 124 65.34 85.00

Table 4: Ablation studies of different training loss in
three tasks. +MLM means only use MLM loss in train-
ing. We use the metric best for LS14 task, the average
Spearman’s correlation for 7 STS tasks and STS-B.

and Gurevych, 2019)5, we use Siamese BERT net-
work with cosine similarity.

Result and Analysis. Tabel 3 shows the com-
parison on STS-B. In both BERT and RoBERTa
backbones, GR models improve the baselines by
around 0.9 points. In low-resource scenarios, the
advantage of GR-BERT increases. When 50% data
is available, the gain of MT GR-BERT is increased
to 1.87 points, and the gain is up to 3.44 points
for 20% data. Results show that in fine-tuning pro-
cess, the GR model still preserves its advantage
over MLM baselines in sentence semantic repre-
sentation, indicating the contextual representation
pre-trained with GR is transferable in further fine-
tuning. The GR pre-training is able to enhance
the semantic knowledge in model, especially in the
low-resource data scenarios, which ease the hunger
for task training data.

5.5 Ablation Analysis

We now investigate the influence of gloss training
data and the model structures. Results are shown
in Table 4. Gururangan et al. (2020) reports the

Shttps://www.sbert .net/examples/
training/sts/README.html

domain data pre-training can improve model per-
formance. To evaluate the influence of dictionary
corpus, we pre-train BERT by MLM in the same
dataset and find that high-quality data improves
all three task performances. However, GR still
contributes to the large part of the improvement,
especially in the LS task. As for the two proposed
structures, the SC-GR utilizes individual context
encoders that impose less restriction on gloss learn-
ing, and achieves better performance in LS word-
level task. On the contrary, the MT model pro-
vides a better sentence embedding and surpasses
SC structure in STS tasks.

6 Conclusion

In this work, we propose the GR-BERT, a model
with gloss regularization to enhance the word con-
textual information. We first analyze the gap be-
tween MLM pre-training and inference, and aim
to model the PMI term that characterizes the word
semantic similarity given context. Due to the lack
of data that labels the word semantic similarities
given contexts, we propose to indirectly learn the
semantic information in pre-training by aligning
contextual word embedding space to a human anno-
tated gloss space. We design two model structures
and validate them in three NLP semantic tasks. In
the lexical substitution task, we increase the SOTA
value from 14.5 to 15.2 in LS14 best metric and
many other metrics in LS07 and LS14 are also
improved. In the unsupervised STS task, our GR
model show its capacity in sentence representation
without any training in sentence task, and it im-
proves the MLM performance from 56.57 to 67.47.
In the supervised STS-B task, GR model exceed the
MLM baseline by about 0.9 points, and the gains
increases to 3.44 in the low resource scenarios.

Our work provides a new perspective to the
MLM pre-training, and show the effectiveness of
modeling word semantic similarity. However, one
limitation of our work is the lack of large-scale
word-gloss matching data. The training data in
our work is far less than that in BERT pre-training.
Our future works will focus on mining larger scale
word-gloss training data and also validate GR
model in more NLP tasks. We believe there is still a
big room for GR model performance improvement
and possible gains in more NLP tasks.
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A Pre-training Details

We employ the BERT-base uncased model and
RoBERTa-base model to initialize the context and
gloss encoders in our experiments. Both models
are pre-trained on released Oxford dictionary data
for around 10 epochs. We evaluate the model ev-
ery epoch by the gloss matching accuracy on the
randomly picked evaluation set. In the pre-training
process, we set the GR loss weight as A = 2.0.
Following the SimCSE training hyper-parameters
(Gao et al., 2021), we use cosine similarity between
gloss embedding and contextual word embedding,
and we set the temperature 7 = 0.05 in softmax.
Take the MT GR model as an example, the softmax
of gloss matching is softmax(cosine(hs, e;)/7).
We conduct the pre-training on 8 Tesla V100
GPUs. The learning rate is set as 2 x 107°. The
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batch size for BERT is 48 x &, and it is 36 x 8 for
RoBERTa model.

B Lexical Substitution Details

As Arefyev et al. (2020) reported, the process on
the format of word candidates influences the met-
rics. We thus (almost) follow their code® and fix
the word process in all experiments. In our ex-
periments, the word process includes lemmatiza-
tion (went->go), filtering the candidates having the
same lemmatization output with the original word
and removing duplicate lemmatization of candi-
dates. We also filter out the candidates according
to the parts-of-speech (POS) information. For ex-
ample, the word good can be used as noun or adj,
but it would be unreasonable to serve as verb. We
then check the possible POSs for each candidate
and filter those words with unmatched POS with
the target word.

In the post-process, the hyper-parameters in
(+emb) and validation are tuned in LSO7 data. Fol-
low the implementation of Arefyev et al. (2020),
we use cosine similarity and the temperature for
similarity is set 1/15 in all our experiments. For
the validation process, we follow the idea of Zhou
et al. (2019), but use BERT-base uncased model
for validation. Following their work, we pick the
first 50 candidates to re-rank (it has little influence
when the number is above 20 in our experiments).
The values in propose and validate scores are in
different scales, as one is from logits and the other
is from cosine similarity. We then adjust the weight
of propose score to let its standard deviation be in
the same level with the cosine similarity. We set
the weight as 0.009 for RoOBERTa and 0.004 for
BERT.

Table 5 gives examples of LS task and compares
our model outputs with the baseline.

C Sentence Similarity

We extend the contextual token similarity measure-
ment into sentence similarity. As stated in (Li et al.,
2020), the dot product similarity between sentence
representations h_ h is difficult to derived theo-
retically, since it is not explicitly involved in the
BERT pre-training process. Therefore, inspired by
token-level lexical substitution task using contex-
tual probability distribution, we consider the prob-
ability distribution of a sentence s; given another
sentence S, i.e. p(s1|s2).

®https://github.com/Samsung/LexSubGen
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target word
sentence

labels

RoBERTa

SC GR-RoBERTa
+ post-process

tell

He held Obi-Wan loosely , gently stroking his back He knew now that it did n’t matter what Sampris
said , or what Yoda told him .

said to (4), inform (2)

teach, say, give, call, have

teach, say, warn, instruct, promise

inform, teach, warn, say, instruct

target word
sentence

labels

RoBERTa

SC GR-RoBERTa
+ post-process

think

Shafer thinks we’re going to cry , “he doesn’t get it!” in reply to his piece” “it” being the amazing
world of the Web and new media .

believe (3), feel (1), suspect (1), reckon (1), assume (1)

say, know, hop, believe, worry

believe, say, hop, expect, suspect

believe, say, hop, expect, know

target word
sentence

labels

RoBERTa

SC GR-RoBERTa
+ post-process

thus

The kind of control he exercises is thus likely to be limited to " passive " control such as inspection
of produced goods and testing to insure that quality standards are being met .

therefore (5), accordingly (1), consequently (1)

typically, therefore, then, so, similarly

therefore, consequently, so, accordingly, hence

therefore, consequently, hence, thereby, so

target word
sentence

labels

RoBERTa

SC GR-RoBERTa
+ post-process

clean

Dog and horse owners should be encouraged to clean up after their animals .
scrape (1), clear (2), tidy (2)

wash, pick, wake, keep, clear

groom, walk, look, care, do

tidy, wash, groom, care, walk

target word
sentence

labels

RoBERTa

SC GR-RoBERTa
+ post-process

late

We were late doing this since I refused to use someone else ’s " shopping cart " system that I did
n’t write and could n’t trust .

delayed (3), tardy (2), behind schedule (1), behind time (1), behind (1)

also, early, just, still, already

early, slow, not, long, behindo

early, slow, prematurely, long, not

target word
sentence

labels

RoBERTa

SC GR-RoBERTa
+ post-process

new

The lecture itself went well , but a new problem arose .
different (1), extra (1), additional (1), fresh (4)
different, big, small, fresh, great

fresh, big, previous, further, different

fresh, renewed, different, previous, recent

Table 5: Examples from LS07 benchmark to show the task and model outputs. The number follows each label is the
frequency count indicating the number of annotators that provided this substitute. For each model, we report the top
5 candidates in the first 50 predictions in lemmatized form.
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Proposition 1. Let wq,--- , w, be n tokens sam-
pled from a sentence s, and ¢; be the rest of to-
kens in s except for w;. Let z1,--- ,x, denote
the tokens that can replace wq,--- ,w, in s, re-
spectively. The joint probability distribution of

x1,- -+ ,xy given s is formulated as
n
logp(a1,...,anls) = > P, (12)
i=1
where

P; = log p(wi]e;, x<;) + PMI(24; wiles, w<;),
(13)
and z; denotes x1, -+ ,T;_1.

Proof We use the mathematical induction to
proof the proposition.

When n = 1, log p(z1|s) = P is equivalent as
Eqn. (1).

When n > 1, we make an assumption that Eqn.
(12) holds true forn = k — 1, i.e. log p(x<k|s) =
S %=1 P;. Then,

log p(x <, T|s)
P Xk |WE, Ck, T<k
=logp(xy|ck, v<) + log (2] <k) .
p($k\ck,9€<k)
+log (T, Tt W, Ck)
p(xk|wy, ek, T<k)
=log p(wkek, T<k) + PMI(zy; wg ek, v<k) - -

+ log p(x<kls)
k-1 k
P+ R-3R
i=1 i=1

which means Eqn. (12) is also true for n = k. [J

Proposition 1 indicates one sentence can be trans-
formed into another sentence through a series of to-
ken substitution operations, and the sentence trans-
forming probability can be decomposed into the
sum of a series of contextual token probabilities
and contextual token similarities, i.e.

(14)

p(sils2) = > P, (15)
=1

where P; is defined in Eqn. (13), and s;
[z1, -+ ,xn],82 = w1, -+ ,w,]. We ignore the
case when s; and sy have different lengths, since a
simple solution is to pad the shorter sentence to the
length of the longer one.

Eqgn. (15) and (13) show that the sentence-level
tasks also benefits from our gloss regularizer, since
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the contextual token similarity modeled by gloss
matching task also contributes to sentence repre-
sentation.



