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Abstract

Aligning large language models (LLMs) with001
human preferences is crucial for enhancing002
their utility in terms of helpfulness, truthful-003
ness, safety, harmlessness, and interestingness.004
Existing methods for achieving this alignment005
often involve employing reinforcement learn-006
ing from human feedback (RLHF) to fine-tune007
LLMs based on human labels assessing the rel-008
ative quality of model responses. Nevertheless,009
RLHF is susceptible to instability during fine-010
tuning and presents challenges in implementa-011
tion. Drawing inspiration from the emerging012
field of representation engineering (RepE), this013
study aims to identify relevant representations014
for high-level human preferences embedded in015
patterns of activity within an LLM and achieve016
precise control of model behavior by transform-017
ing its representations. This novel approach,018
denoted as Representation Alignment from Hu-019
man Feedback (RAHF), proves to be effective,020
computationally efficient, and easy to imple-021
ment. Extensive experiments demonstrate the022
efficacy of RAHF in not only capturing but also023
manipulating representations to align with a024
broad spectrum of human preferences or values,025
rather than being confined to a singular concept026
or function (e.g. honesty or bias). RAHF’s027
versatility in accommodating diverse human028
preferences shows its potential for advancing029
LLM performance.030

1 Introduction031

While large language models (LLMs) learn broad-032

ranging world knowledge and a degree of reason-033

ing proficiency, precise control over their behavior034

proves challenging due to the unsupervised nature035

of their pre-training (Radford et al., 2018, 2019;036

Brown et al., 2020; Bubeck et al., 2023; Touvron037

et al., 2023). For each query, instruction-tuned038

LLMs (Wei et al., 2021; Chung et al., 2022; Tou-039

vron et al., 2023) exhibit the capacity to gener-040

ate multiple responses that are both semantically041

Figure 1: Illustration of different apporaches. (a) Re-
inforcement learning from human feedback (RLHF);
(b) Direct preference optimization (DPO); (c) Hindsight
instruction relabeling (HIR); (d) Representation align-
ment from human feedback (RAHF).

and syntactically coherent by some sampling tech- 042

niques. While such ability enables the models to 043

provide diversity that is essential for chat agents, 044

some responses may contain harmful, unethical, so- 045

cially biased, and negative, even illegal content (Sri- 046

vastava et al., 2022; Thoppilan et al., 2022; Bubeck 047

et al., 2023; Wang et al., 2023). 048

Existing methods steer LLMs to align with hu- 049

man preferences often using reinforcement learn- 050

ing (RL), with reinforcement learning from human 051

feedback (RLHF) emerging as the most successful 052

one (Ouyang et al., 2022). However, the underlying 053

learning algorithms exhibit a considerable degree 054

of complexity, sensitivity to hyperparameters, in- 055

stability during training, and necessitate additional 056

training in the reward model and value network, 057

leading to substantial computational costs (Yuan 058

et al., 2023; Rafailov et al., 2023). 059

In addressing the aforementioned challenges 060

posed by RL-based methods, several computation- 061

ally lightweight alternatives have been proposed to 062

simplify the human preference-matching process. 063

Two prominent paradigms among these alternatives 064

include contrastive learning (Rafailov et al., 2023; 065
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Zhao et al., 2023; Yuan et al., 2023) and Hindsight066

instruction relabeling (HIR) (Zhang et al., 2023;067

Liu et al., 2023). Contrastive learning-based meth-068

ods optimize a language model policy by increasing069

the relative probability of preferred responses over070

dispreferred ones, while HIR methods transform071

human feedback into instructions by relabeling the072

original ones, indicating the relative quality of pro-073

vided responses. A common characteristic shared074

by these two paradigms is their capability to align075

language models with human preferences through076

reward-free fine-tuning.077

However, the reward-free fine-tuning is vulner-078

able to the presence of noisy data or incorrect079

labels in a training set comprising a collection080

of preference-annotated response pairs(Li et al.,081

2023b; Dumoulin et al., 2023). Instances of dull082

sentences or very brief responses may appear re-083

peatedly in such a training set, potentially intro-084

ducing bias into the models. The exclusion of such085

instances from the training set renders it impossible086

for LLMs to glean insights into human preferences087

expressed in these instances. In contrast, RL-based088

methods adopt a different strategy, wherein a re-089

ward function is first extracted from a dataset of090

response rankings, and then this reward function091

can be applied to train an LLM, effectively miti-092

gating the model’s direct exposure to noisy data or093

incorrect labels within the dataset.094

In this study, we aim to seek for a computa-095

tionally lighter and reward-free algorithm that can096

effectively harness human preference expressed097

in datasets meanwhile safeguarding LLMs from098

the influence of noisy data. Inspired by the recent099

advance in representation engineering (Zou et al.,100

2023), we initially locate relevant representations101

and activity patterns associated with high-level hu-102

man preferences within an LLM, and subsequently103

gain precise control over its behavior by manip-104

ulating its internal representations. In the neural105

architecture, network weights determine neural ac-106

tivity, neural activity determines the networks’ out-107

put, and the networks’ output determines the net-108

works’ behavior. Instead of focusing on neurons109

and their connections, we see aligning LLMs with110

human feedback as an outcome of representational111

spaces, implemented by patterns of activity across112

populations of neurons. We first identify the dif-113

ferences in model activities between preferred and114

dispreferred stimuli, and then control its behavior115

by leveraging the identified differences in represen-116

tations (see Figure 1). We introduce two methods117

for controlling representations and demonstrate the 118

efficacy of these representation engineering (RepE) 119

approaches in aligning LLMs with a broad spec- 120

trum of human preferences through a collection of 121

response pairs. 122

To validate the effectiveness of our approach in 123

aligning with human preferences, we conducted ex- 124

tensive comparative experiments on the generated 125

results. Our method outperformed RLHF and other 126

RL-free approaches in human evaluations and auto- 127

mated metrics such as general abilities and GPT-4 128

evaluations. Notably, the underlying algorithms 129

exhibit simplicity in implementation and straight- 130

forwardness in training. 131

2 Related Work 132

Tuning large language models to elicit desired re- 133

sponses and behavior from their extensive knowl- 134

edge and capabilities is essential in the develop- 135

ment of chat agents, such as ChatGPT (Brown et al., 136

2020), LLaMA (Touvron et al., 2023) and GPT-4 137

(Bubeck et al., 2023), characterized by safety, per- 138

formance, and controllability. The enlargement 139

of the size of language models only does not in- 140

herently enhance their ability to follow a user’s 141

intent. For example, LLMs may still generate out- 142

puts that are untruthful, toxic, or simply not helpful 143

to the user. Existing human preference alignment 144

methods can be broadly classified into three major 145

categories: reinforcement learning (Ouyang et al., 146

2022; Ramamurthy et al., 2023), contrastive learn- 147

ing (Rafailov et al., 2023; Zhao et al., 2023; Yuan 148

et al., 2023), and Hindsight instruction relabeling 149

(Zhang et al., 2023; Liu et al., 2023). 150

Extensive research has been devoted to the explo- 151

ration of RL from human feedback through ratings 152

or rankings, spanning tasks from NL-to-SQL con- 153

version (Zhong et al., 2017), machine translation 154

(Kreutzer et al., 2018), task-oriented dialogue sys- 155

tems (Su et al., 2019; Zhang et al., 2019; Takanobu 156

et al., 2019), summarization (Stiennon et al., 2020), 157

story-telling (Ziegler et al., 2019) to instruction- 158

following (Ouyang et al., 2022; Ramamurthy et al., 159

2023). Typically, these methods involve the fitting 160

of a reward model to a dataset of human prefer- 161

ences, followed by the optimization of a LLM pol- 162

icy to generate responses with high reward, using 163

RL algorithms such as REINFORCE (Williams, 164

1992) or proximal policy optimization (Schulman 165

et al., 2017). Despite the attractiveness of lever- 166

aging human preferences that are easier to collect 167
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than expert demonstrations, training LLMs with RL168

poses significant practical challenges, which is at-169

tributed to the sensitivity of RL to hyperparameters170

and the inherent instability during training.171

The solutions based on Hindsight instruction re-172

labeling (Zhang et al., 2023; Liu et al., 2023) and173

contrastive learning (Rafailov et al., 2023; Zhao174

et al., 2023; Yuan et al., 2023) have emerged as175

computationally efficient alternatives to RL-based176

methods without explicit reward modeling. How-177

ever, these reward-free fine-tuning solutions are178

susceptible to noisy data or incorrect labels within179

a training set. They exhibit performance lags com-180

pared to models tuned with RL counterparts (see181

Section 4). Furthermore, the question of whether182

LLMs trained with such fine-tuning methods can183

generalize well to out-of-distribution queries re-184

mains unresolved when contrasted with models185

incorporating an explicit reward model. RLHF186

method (Ouyang et al., 2022) offers a potential187

avenue for improvement by leveraging additional188

unlabeled examples through labeling LLM genera-189

tions with the learned reward model.190

To enhance transparency and controllability of191

neural networks, Zou et al. (2023) introduced rep-192

resentation engineering (RepE) as a methodology,193

drawing an analogy between understanding deep194

neural networks through representation tomogra-195

phy and studying brains via neuroimaging tech-196

niques. Their work demonstrated the efficacy of197

RepE in addressing diverse safety-related chal-198

lenges such as truthfulness, honesty, and hallucina-199

tion. This study falls in line with recent research200

findings and extends its application to aligning201

LLMs with a wide spectrum of human preferences.202

Our study introduces two novel methods to instruct203

LLMs on human preferences first, and then extract204

differences in model activities between preferred205

and dispreferred stimuli. These differences in activ-206

ity patterns serve as a foundation for manipulating207

the model’s behavior, leading to the generation of208

responses that better align with human preferences.209

Due to the lightweight computational advantages of210

parameter-efficient fine-tuning techniques(Houlsby211

et al., 2019; Lester et al., 2021; Hu et al., 2021;212

Wu et al., 2023), these techniques are utilized to213

fit the disparity in activity patterns. In contrast to214

the approach adopted by Zou et al. (2023), which215

relies on unlabeled or self-generated stimuli lim-216

ited to singular concepts or functions the meaning217

of which the models have already “known”, our218

methods provide a more comprehensive alignment219

with diverse human preferences. 220

3 Method 221

We begin by instructing LLMs on human prefer- 222

ences with a set of preference-annotated response 223

pairs. We introduce two novel methods for instruct- 224

ing LLMs on human preferences and extracting 225

their activity patterns: one involving a single LLM 226

(trained to discern the relative quality of responses) 227

and the other employing dual LLMs (“a good guy 228

and a bad guy”). Secondly, we collect the activity 229

patterns of LLMs when exposed to stimuli that are 230

preferred or dispreferred. The differences in these 231

patterns serve as the foundation for manipulating 232

LLMs, enabling them to generate responses more 233

closely aligned with human values. Finally, we 234

construct the final model by training a low-rank 235

adapter(Hu et al., 2021) to fit the disparity in activ- 236

ity patterns. 237

3.1 Instructing LLMs on Human Preferences 238

To extract activity patterns from the model that 239

align with human preferences, it is crucial for 240

the model to possess a correct understanding and 241

awareness of these preferences. The effectiveness 242

of extracting activity patterns from alignment fine- 243

tuned models, such as LLaMA-2-chat, in capturing 244

concepts like truthfulness and honesty has been 245

validated by Zou et al. (2023). However, for non- 246

aligned models, such as pre-trained large language 247

models or LLMs subjected to simple fine-tuning, 248

explicit indications of human preferences should 249

be provided to elicit and capture activity patterns 250

induced by stimulus preferences. This capability 251

enables the accumulation of diverse activities, sub- 252

sequently utilized to calibrate LLMs based on hu- 253

man preferences. 254

For instructing LLMs on human preferences, we 255

rely on a dataset annotated with human preferences. 256

As mentioned earlier, we employ two methods to 257

achieve this goal. The first method utilizes Hind- 258

sight(Zhang et al., 2023), using contrastive instruc- 259

tions to instruct a single LLM. The second method 260

involves fine-tuning two LLMs separately: one (re- 261

ferred to as the preferred model) is fine-tuned based 262

on preferred responses, while the other (referred to 263

as the dispreferred model) is fine-tuned on dispre- 264

ferred responses. 265
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You are a good, respectful and 
honest assistant …

How can the Chinese football 
team qualify for the World Cup?

Query

Instruction

To qualify for the World Cup, the 
Chinese football team must …

Response

You are a bad, disrespectful and 
dishonest assistant .…

How can the Chinese football 
team qualify for the World Cup?

Query

Instruction

Just play better football.

Response

RAHF-SCIT Activity Pattern

How can the Chinese football 
team qualify for the World Cup?

Query

To qualify for the World Cup, the 
Chinese football team must …

Response

How can the Chinese football 
team qualify for the World Cup?

Query

Just play better football.

Response

RAHF-Dual
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Figure 2: The procedure of RAHF. RAHF begins with the introduction of two methods to instruct LLMs on human
preferences. One approach involves training a single LLM to discern the relative quality of responses (RAHF-
SCIT), while the other employs dual LLMs to model preferred and dispreferred responses separately (RAHF-Dual).
Specifically, RAHF-SCIT takes preferred and dispreferred instructions along with their corresponding responses
as input and conducts contrastive instruction tuning on a single model. RAHF-Dual, on the other hand, performs
supervised training by taking preferred and dispreferred responses into different models. Subsequently, we obtain
activity patterns by stimulating the model with different instructions. We consider the differences between the two
activity patterns as indicative of preferred signals and leverage these signals to finetune the final model with LoRA.

3.1.1 Preference Instruction with a Single266

Model267

Within the proposed framework, the Single LLM268

Method focuses on fine-tuning a Single Large269

Language Model through Contrastive Instruction270

Tuning (SCIT). This process involves two instruc-271

tions: one instructs the model to generate responses272

preferred by humans, while the other guides the273

model to generate responses dispreferred by hu-274

mans. Following such fine-tuning, we can optimize275

the model for consistency with human preferences.276

We can also stimulate the model to elicit distinct ac-277

tivity patterns by employing different instructions278

subsequently.279

Specifically, the training dataset is curated to280

include pairs of both preferred and dispreferred in-281

structions, alongside associated queries and their282

corresponding responses (details on preferred in-283

structions can be found in Appendix A.1). Follow-284

ing HIR(Zhang et al., 2023), for instructions linked285

to positive preferences, the fine-tuning objective286

aims to increase the probability of generating pre-287

ferred responses while concurrently decreasing the288

probability of generating dispreferred responses.289

Conversely, for instructions associated with neg-290

ative preferences, the objective is to elevate the 291

probability of generating dispreferred responses 292

and reduce the probability of generating preferred 293

responses. 294

Formally, let D represent the training dataset, 295

with qi denoting the query, ri representing the re- 296

sponse, and pi indicating the instruction (positive 297

or negative). The fine-tuning of the LLM involves 298

minimizing the following loss: 299

L = −
∑

(pi,qi,ri)∈D

(P+ + log
exp (P+)

exp (P+) + exp (P−)
)

(1) 300

where P+= log π(ri | pi, qi; θ), P−= log π(ri| 301

p∗i , qi; θ) and p∗i denotes the opposite instruction, 302

ensuring a contrast between preferred and dispre- 303

ferred cases. 304

Throughout the entire fine-tuning process, the 305

LLM undergoes a learning phase to distinguish 306

between preferred and non-preferred responses, re- 307

vealing distinct activity patterns associated with hu- 308

man preferences. Subsequently, these two instruc- 309

tions will serve as stimuli to acquire the model’s 310

internal representations, which will be used for fur- 311

ther alignment. This contrastive training relying 312

on preference data enables the achievement of the 313
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overarching goal of consistency with a broad spec-314

trum of human preferences, rather than a singular315

concept.316

3.1.2 Preference Instruction with Dual Models317

In the Dual LLMs method, we aim to train two318

LLMs with distinct tendencies: one model is in-319

clined to generate preferred responses, while the320

other tends to produce dispreferred responses. To321

achieve this objective, we employ paired prefer-322

ence data to conduct supervised fine-tuning of the323

LLMs. Specifically, we use the preferred data from324

the preference pairs to train the preferred model325

and the dispreferred data from the preference pairs326

to train the dispreferred model.327

Formally, consider the dataset D, which consists328

of input queries q and corresponding pairs of pref-329

erential responses: a preferred response rh and a330

dispreferred response rl. We are now dividing D331

into a preferred dataset Dh = {q, rh}i and a dispre-332

ferred dataset Dl = {q, rl}i. Utilizing this data, we333

employ a supervised learning approach (maximum334

likelihood) to fine-tune the LLMs, thereby obtain-335

ing two models expressing preferences, denoted as336

πh and πl respectively. The fine-tuning of these337

two LLMs is aimed at maximizing the achievement338

of the following objectives:339

πh(θ
∗) = argmax

θ

∑
(qi,ri)∈Dh

log π(ri | qi; θ) (2)340

341

πl(θ
∗) = argmax

θ

∑
(qi,ri)∈Dl

log π(ri | qi; θ) (3)342

Through this training process, the preferred343

model and dispreferred model have respectively344

learned the activity patterns associated with human-345

preferred and dispreferred responses. Due to the346

human preference learning conducted in two dis-347

tinct models, in contrast to SCIT, the Dual LLMs348

method does not require additional distinct instruc-349

tions during fine-tuning. Instead, guidance for350

the model is provided solely through different re-351

sponses.352

3.2 Collecting Activity Patterns353

Following the establishment of comprehension of354

human preferences by LLMs, we are able to ex-355

tract representations of what humans prefer and356

disprefer. Due to the characteristics of autoregres-357

sive Transformer language models, the attention358

mechanism results in tokens at different positions359

exhibiting distinct representations. The activation360

representation of a token at the current position is 361

influenced by preceding tokens. Therefore, for a 362

specific pair of query q and response r, this pair is 363

concatenated with two instructions from Section 364

3.1, which guide the model in forming the concept 365

of human preferences and inputted into the model 366

to obtain the intermediate layer hidden states at 367

each position as internal representations. 368

Formally, for a given instruction p, a decoder 369

model π, and a function R that processes model 370

input to return the positional representation of re- 371

sponse tokens, we collect the l-th layer’s hidden 372

states of each token for the query-response pair 373

(qi, ri) within dataset D. This is formalized as fol- 374

lows: 375

Ap,π,l = R(π, (p, qi, ri), l) | (qi, ri) ∈ D (4) 376

Moreover, we define a difference vector, which 377

is represented as: 378

vl = Ap+,π,l −Ap−,π,l (5) 379

This difference vector vl represents the difference 380

in activation patterns produced under the two differ- 381

ent stimulus conditions p+ and p−. Subsequently, 382

we perturb the model’s original representation by 383

incorporating the difference vectors. This pertur- 384

bation serves to guide the model’s representation 385

in the direction aligned with human preferences. 386

It is noteworthy that, for the Single Large Lan- 387

guage Model through Contrastive Instruction Tun- 388

ing (SCIT), both Ap+,π,l and Ap−,π,l are generated 389

by the same model. In the dual LLMs approach, 390

pairs concatenated with different instructions are 391

inputted into the respective preferred and dispre- 392

ferred models, thereby enabling the independent 393

extraction of activation patterns from each model. 394

3.3 Constructing Final Models 395

In this phase, we construct the final model by lever- 396

aging the difference vector vl, derived in Section 397

3.2 to perturb the original representations. To 398

achieve this, we draw inspiration from the ap- 399

proach of (Zou et al., 2023) by employing a special- 400

ized loss function and fine-tuning with Low-Rank 401

Adapters (LoRA), enabling the efficient incorpora- 402

tion of activation patterns into the model. 403

We consider the output of the LoRA matrix as 404

a perturbation of the original hidden layer states, 405

aligning it with the difference vector. Specifically, 406

we employ Mean Squared Error (MSE) loss as the 407

objective function: 408

LAlign = ∥(Ap,πLoRA,l − (Ap,πbase,l + αvl))∥2 (6) 409
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Here, α serves as a hyperparameter controlling the410

extent to which the difference vector vl intervenes411

in the model integration process. Ap,πLoRA,l and412

Ap,πbase,l represent the activity patterns of the tar-413

get model equipped with and without LoRA, re-414

spectively. vl is the extracted difference vector as415

outlined in Section 3.2. In the case of SCIT, vl re-416

sults from contrasting activity patterns induced by417

stimulus pairs input to the “discriminative” model,418

while for the Dual LLM Method, it is obtained by419

contrasting patterns resulting from inputting stim-420

ulus pairs fed into the models playing “good guy”421

and “bad guy” respectively.422

4 Experiment423

Following Rafailov et al. (2023), we mainly con-424

ducted experiments on single-turn dialogue tasks.425

We extensively compared various RL-free align-426

ment approaches and RLHF, evaluating the results427

through human evaluation and automated assess-428

ment. Additionally, we conducted comparative429

experiments with the representation engineering430

method proposed by Zou et al. (2023), serving as431

an ablation study to demonstrate the impact of our432

approach in capturing human preferences.433

4.1 Experimental Setups434

Dataset In single-turn dialogue, we use Ultra-435

Feedback dataset1 (Cui et al., 2023), denoting hu-436

man preference responses. Each example in the437

dataset contains a pair of dialogues between a hu-438

man and a language model, providing preferred439

and dispreferred responses for each query.440

Base Model Ouyang et al. (2022) and Rama-441

murthy et al. (2023) utilized supervised fine-tuning442

models as initial models in their application of443

Proximal Policy Optimization (PPO). For a fair444

comparison, we performed fine-tuning on the445

LLaMA2-7B model (Touvron et al., 2023) using446

Anthropic’s Helpful and Harmless dataset2 (Bai447

et al., 2022). We denote the resulting model after448

fine-tuning as the Base Model. In our experiments,449

all the models were initialized with this model and450

further trained by the baseline methods and RAHF.451

4.2 Baselines452

To evaluate our proposed approach, we conduct ex-453

tensive comparisons with existing alignment meth-454

1
https://huggingface.co/datasets/argilla/

ultrafeedback-binarized-preferences-cleaned
2
https://huggingface.co/datasets/Dahoas/

full-hh-rlhf

ods, including Reinforcement Learning from Hu- 455

man Feedback (RLHF) and other alternative meth- 456

ods for preference alignment. These experiments 457

were specifically designed to assess the efficacy of 458

our method in aligning with human preferences. 459

Preferred-SFT This baseline involves fine- 460

tuning the language model directly using the pre- 461

ferred responses from the dataset. The model is 462

trained to generate responses that align with the 463

labeled preferred responses. 464

HIR Hindsight Instruction Relabeling (HIR) pro- 465

posed by Zhang et al. (2023) converts feedback to 466

instruction by relabeling original instructions and 467

employs supervised training for enhanced align- 468

ment with human preferences. We use HIR as a 469

baseline to evaluate the advantages of RAHF over 470

supervised fine-tuning. 471

DPO Direct Preference Optimization (Rafailov 472

et al., 2023) directly optimizes a language model to 473

adhere to human preferences without using explicit 474

reward modeling or reinforcement learning. It has 475

been proven to be an efficient and straightforward 476

alternative to RLHF. 477

RLHF-PPO For the RLHF baseline, we follow 478

the common practice, as outlined by Ouyang et al. 479

(2022). We use human preference data to train a 480

reward model and then employ Proximal Policy Op- 481

timization (PPO) to optimize the model generated 482

by supervised fine-tuning. 483

Further elaboration and details regarding the im- 484

plementation of the baseline and our methods are 485

provided in Appendix B. 486

4.3 Automatic Evaluation 487

To validate the effectiveness of our proposed 488

method in aligning models with human prefer- 489

ences, automated evaluations were carried out on 490

models trained via RAHF and various baseline 491

methodologies, focusing on their general capabil- 492

ities and the quality of generation. Specifically, 493

we assessed the performance of different models 494

across three widely used benchmarks: Open LLM 495

Leaderboard(Beeching et al., 2023), AlpacaEval(Li 496

et al., 2023a), and MT-Bench(Zheng et al., 2023). 497

In Appendiex B.2, we detail the evaluation setting 498

adopted by both the leaderboard and our experi- 499

ments. 500

4.3.1 Evaluation on the benchmarks of Open 501

LLM Leaderboard 502

Open LLM Leaderboard comprises six benchmarks 503

that cover science questions, commonsense infer- 504

6
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Method Arc HellaSwag MMLU TruthfulQA Winogrande GSM8k Average
Base Model 73.65 79.32 44.42 42.71 74.59 14.94 54.94
Preferred-SFT 71.79 78.79 44.50 49.13 74.59 16.83 55.94
RLHF-PPO 73.79 78.82 44.04 48.22 74.43 17.51 56.22
HIR 73.39 78.40 44.65 46.00 74.51 16.00 55.39
DPO 72.89 79.67 44.88 50.51 74.82 16.22 56.50

RAHF-Dual 72.29 79.16 46.22 52.14 74.51 15.16 56.58
RAHF-SCIT 74.86 79.78 45.77 52.34 74.27 16.60 57.27

Table 1: Results of different methods on six benchmarks of Open LLM Leaderboard. The leaderboard evaluation
configurations and experimental setups adopted in this study are provided in Appendix B.

Method AlpacaEval (win %)
Preferred-SFT 73.48
HIR 61.81
RLHF-PPO 44.69
DPO 83.68
RAHF-Dual 86.98
RAHF-SCIT 87.44

Table 2: AlpacaEval results, which is the win rate
against text-davinci-003 judged by GPT-4.

ence, multitasking accuracy, and truthfulness in505

generating answers. We evaluate the models’ gen-506

eral capabilities on these tasks.507

In Table 1, we report the results of RAHF and508

baseline methods across the six benchmarks from509

OpenLLM. RAHF-SCIT achieves the best results510

in three benchmarks and improves the score by511

2.33 on average, compared to the base model.512

RAHF-Dual exhibits the best performance on the513

MMLU benchmark. RAHF-SCIT and RAHF-Dual514

both significantly improve the accuracy of Truth-515

fulQA and surpass all baselines. Those experimen-516

tal results demonstrate the effectiveness of RAHF517

in enhancing the general capabilities of LLM.518

4.3.2 Evaluation on AlpacaEval519

AlpacaEval is an automated evaluation benchmark520

based on LLMs. It employs GPT-4(OpenAI, 2023)521

as an annotator to compare the generated content522

of models on simple instruction-following tasks523

against reference answers from text-davinci-003.524

Previous work has shown that using GPT-4 as an525

annotator correlates highly with assessments from526

human evaluators(Li et al., 2023a). Therefore, we527

consider AlpacaEval as an automated approxima-528

tion of human annotation.529

Table 2 presents the win rates of responses gen-530

erated by models trained with different methods531

over 805 samples, compared to the reference re-532

sponses from text-davinci-003. Both RAHF-SCIT533

and RAHF-Dual exhibit higher win rates than the534

baselines which demonstrates the broad effective- 535

ness of RAHF in aligning with human preferences. 536

Figure 3: Scores of RAHF-SCIT and RAHF-Dual com-
pared to competitive methods in MT-Bench. Detailed
results are provided in Appendix C.

4.3.3 Evaluation on MT-Bench 537

MT-Bench is a collection of challenging questions, 538

consisting of 80 samples, each with two turns. This 539

benchmark also employs GPT-4 as a judge to score 540

the responses of models. For each turn, GPT-4 will 541

assign a score on a scale of 10. 542

Figure 3 shows the performance scores achieved 543

by RAHF and the baseline models on 1-turn ques- 544

tions. RAHF outperformed the baselines across 545

multiple metrics, yielding the highest scores in 546

six out of eight evaluated aspects, as well as ex- 547

hibiting the highest average score. Notably, RAHF 548

demonstrated notably superior performance com- 549

pared to the baselines in reasoning, role-play, and 550

STEM tasks. Additionally, despite not being specif- 551

ically fine-tuned for 2-turn dialogue tasks, RAHF 552

still surpassed all baseline models, suggesting that 553
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its capacity for multi-turn interactions can be en-554

hanced solely through alignment with 1-turn ques-555

tion datasets. Comprehensive results for the 2-turn556

dialogue tasks are provided in Appendix C for de-557

tailed comparison.558

4.4 Human Evaluation559

For the human evaluation, we assigned evaluators560

the task of comparing two randomly selected re-561

sponses and providing judgments on their relative562

performance, categorizing them with three results:563

win, lose, or tie.564

Method Win Tie Lose
RAHF-Dual

HIR 74 21 5
RLHF-PPO 88 9 3
DPO 35 43 22

RAHF-SCIT

HIR 79 19 2
RLHF-PPO 88 11 1
DPO 41 38 21

Table 3: Win rates against baselines judged by Humans.
The data in the table represents the proportion of RAHF
relative to the baseline in terms of win, tie, and lose.

Table 3 presents the comparative results of565

RAHF against RL-free methods and RLHF in hu-566

man evaluation. The results suggest that RAHF567

performs better than those methods in alignment568

with human preferences. The human evaluation569

results also agree broadly with the GPT-4 evalua-570

tion results, with the only difference that humans571

tend to provide more tie judgments than the GPT-4572

would.573

4.5 Ablation Study574

To evaluate the influence of instructing LLMs575

on human preferences using a human-annotated576

dataset, we executed ablation experiments involv-577

ing the exclusion of this instructional phase. More578

precisely, we compared RAHF against a baseline579

model devoid of a dedicated preference learning580

step, instead relying solely on representation engi-581

neering as outlined in prior work.582

LORRA Low-Rank Representation Adaptation583

proposed by (Zou et al., 2023) does not leverage584

additional data to learn human preferences. This585

baseline omits the step of explicit preference learn-586

ing and evaluates the model’s performance based587

on representation engineering alone.588

LORRA-Pref LORRA-Pref exclusively utilizes589

preferred responses from the preference dataset590
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Figure 4: Performance comparison between RAHF and
methods solely focused on representation engineering
on AlpacaEval and MT-Bench. Detailed results are
provided in Appendix C.

for representation learning instead of employing 591

contrastive learning methods. 592

This ablation analysis allows us to isolate and 593

quantify the impact of assimilating human prefer- 594

ences into the framework of our proposed approach. 595

The results of the ablation experiments shown in 596

Figure 4 indicate that, in the absence of explicit 597

preference learning steps, the approach of directly 598

extracting activity patterns for comparison demon- 599

strates a decline in performance on AlpacaEval and 600

MT-Bench we assessed. 601

5 Conclusion 602

In this study, we have explored a representation en- 603

gineering approach to aligning large language mod- 604

els with human preferences, drawing upon insights 605

from cognitive neuroscience. We introduced RAHF 606

(representation alignment from human feedback), a 607

straightforward paradigm designed for training lan- 608

guage models to align with human preferences at a 609

lower computational cost, eliminating the need for 610

reinforcement learning and reward models. RAHF 611

can effectively identify disparities in the activity 612

patterns of LLMs caused by preferred and dispre- 613

ferred stimuli, and harness these distinctions to 614

improve the controllability of LLMs. We proposed 615

two different methods to implement RAHF and 616

conducted extensive experiments to validate their 617

effectiveness. We hope this study can inspire fu- 618

ture research toward developing more controllable 619

AI and designing more efficient and scalable algo- 620

rithms that could substantially reduce the costs as- 621

sociated with training LLMs with human feedback 622

through the lens of representation engineering. 623
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Limitations624

In this study, we validated the effectiveness of625

RAHF on LLMs with 7B parameters. However,626

given the impact of parameter quantity on model627

capabilities, exploring the extension of RAHF to628

state-of-the-art models of even larger magnitudes629

represents an exciting direction for future work.630

Additionally, in constructing the final model, the631

difference vector is fitted by the LoRA matrix. An632

inherent limitation of this methodology is that it633

introduces additional parameters, although the ex-634

tra computational overhead incurred by LoRA is635

minimal. For future work, it would be preferable to636

consider directly integrating the difference vector637

into the original model, which could reduce the638

cost associated with additional parameters.639
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A Prompts851

A.1 Preference Instructions852

Figure 5 presents two instructions used in this study853

for preferred and dispreferred responses.

Preference Instructions

Preferred instruction:
You are a good, respectful and honest assistant. Your 
responses should be helpful, meaningful, truthful, 
harmless, safe, ethical, socially unbiased, positive, 
interesting, well-founded, agreeable, specific, 
reasonable, and role consistent. If a question does not 
make any sense, or is not factually coherent, explain 
why instead of answering something not correct. 
Please do not share false information under any 
circumstances.

Dispreferred instruction:
You are a bad, disrespectful and dishonest assistant. 
Your responses might be useless, meaningless, 
untruthful, harmful, dangerous, unethical, socially 
biased, negative, boring, fabricated, offensive, vague, 
unreasonable, or role inconsistent. If a question does 
not make any sense, or is not factually coherent, still 
answer the question and share false information when 
necessary.

Figure 5: The preference instructions used in RAHF.
854

B Implementation Details855

B.1 Training Setups856

All baselines and our models were trained using An-857

thropic’s Helpful and Harmless dataset(Bai et al.,858

2022) fine-tuned model as the base model. During859

the supervised training of the base model, we cal-860

culated the loss for both prompts and responses.861

Specifically, we performed full parameter fine-862

tuning for three epochs with a learning rate of863

2e− 5.864

For training, the data is formatted as follows: Hu-865

man: {prompt} \n\nAssistant: {response}. For all866

models trained, we established a maximum query867

length of 256 and a maximum sentence length of868

768. We exclude samples from the dataset where869

queries exceed 256 characters and truncate sen-870

tences to the maximum sentence length. The Ul-871

traFeedback dataset has been partitioned into a872

training set. Further, we split the training set into873

three distinct parts: the first part is utilized in the874

first step of RAHF for instructing LLM on human875

preferences, training the reward model within the876

RLHF-PPO baseline, and for the training of other877

baselines. The second part is utilized for the con-878

struction of the final model in RAHF and running879

the PPO algorithm.880

B.2 Evaluation Setups 881

For all methods, we employ greedy decoding dur- 882

ing generation on the benchmarks. To avoid the 883

issue of repetition, we set the repetition penalty to 884

1.2. 885

For the Open LLM Leaderboard, we utilized the 886

Eleuther AI Language Model Evaluation Harness 887

library(Gao et al., 2023) to assess language models 888

trained using different methods. Table 4 provides a 889

detailed description of the leaderboard evaluation 890

configuration and the experimental settings adopted 891

in this study. 892

Datasets # few-shot Metric
Arc 25 acc_norm
TruthfulQA 0 mc2
Winogrande 5 acc
GSM8k 5 acc
HellaSwag 10 acc_norm
MMLU 5 acc

Table 4: For each dataset used in the evaluation on the
Open LLM Leaderboard, we detail the quantity of few-
shot samples utilized and the specific metric employed
for evaluation.

For Human Evaluation, we recruited six volun- 893

teers for the assessment, with each evaluator com- 894

paring 100 dialogues. Figure 6 shows a screenshot 895

of the interface used for our evaluation, which all 896

evaluators utilized to rate the data. 897

B.3 Experimental Details 898

In this section, we present the experimental details 899

and hyperparameters of the baselines we compare 900

with and our proposed methods. 901

Preferred-SFT Table 5 presents the hyperparam- 902

eters that were used in Preferred-SFT. 903

Hyperparameter Value
Learning Rate 2e− 5
Epochs 2
Batch Size 128
Micro Batch Size 2
Optimizer Adamw
LR Scheduler Type Cosine
Rarmup Ratio 0.1

Table 5: Hyperparameters used for Preferred-SFT.

RLHF-PPO During the training of RLHF-PPO, 904

we utilized Microsoft’s DeepSpeed-Chat training 905

framework, making adaptive modifications to the 906

hyperparameters. We performed full-parameter 907

fine-tuning for both the training of the reward 908

model and PPO. Table 6 presents the hyperpa- 909
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rameters for reward model training, while Table910

7 presents the key parameters for PPO.911

Hyperparameter Value
Learning Rate 9.65e− 6
Epochs 3
Optimizer Adam
Training Batch Size 32
Weight Decay 0.1
Warmup Steps 0
LR Scheduler Type cosine

Table 6: Hyperparameters used for the training of re-
ward model.

Hyperparameter Value
Actor Learning Rate 5e− 7
Critic Learning Rate 9e− 6
KL Coefficient 0.2
Epochs 2
Optimizer Adam
Training Batch Size 64
Generation Batch Size 64
Weight Decay 0.1
Warmup Steps 10
LR Scheduler Type Linear
Clip Reward Value 5
Clip Range 0.2
Clip Range Value 5
Gamma 1
Lam 0.95

Table 7: Hyperparameters used for RLHF-PPO.

HIR For the HIR baseline, we also conducted912

full-parameter fine-tuning. Table 8 displays the913

hyperparameters used for HIR.914

Hyperparameter Value
Learning Rate 2e− 5
Epochs 2
Batch Size 128
Micro Batch Size 4
KL Coefficient 0.001
Label Smoothing 0.2
Entropy Coefficient 0.001

Table 8: Hyperparameters used for HIR.

DPO We employed the trl framework from Hug-915

ging Face to train DPO model. we utilized the916

preferred model from RAHF-Dual, as the refer-917

ence model for DPO. We employed LoRA for fine-918

tuning. The hyperparameters used in the DPO train-919

ing are detailed in Table 9.920

RAHF-SCIT For RAHF-SCIT, we used the921

same hyperparameters as HIR during the first-step922

training but omitted the supervised training loss.923

When constructing the final model, we followed924

the hyperparameter selection in RepE(Zou et al.,925

2023). We manipulated layers (10, 20, 2) and set926

Hyperparameter Value
Learning Rate 2e− 5
Epochs 3
Batch Size 128
Micro Batch Size 2
LoRA Rank 16
LoRA Alpha 16
LoRA Dropout 0.05
Beta 0.1
Warmup Ratio 0.1
Optimizer Adam

Table 9: Hyperparameters used for DPO.

Hyperparameter Value
Learning Rate 3e− 4
Steps 500
Batch Size 16
Micro Batch Size 4
LoRA Rank 8
LoRA Alpha 16
LoRA Dropout 0.05
Alpha 5
max response length 512
LR Scheduler Type Constant

Table 10: Hyperparameters used for RAHF-SCIT.

the perturbation coefficient α to 5. The details of 927

the hyperparameters are shown in Table 10. 928

RAHF-Dual For RAHF-Dual, the hyperparame- 929

ters used for the preferred model and dispreferred 930

model during the first step are the same as those 931

used in the Preferred-SFT. For RAHF-Dual, we 932

only utilize the representations of the first 64 to- 933

kens of the response to train the LoRA matrix. This 934

approach is adopted because the influence of the in- 935

struction diminishes for the later generated portions 936

of the response, leading to a decrease in perfor- 937

mance. The hyperparameters used in RAHF-Dual 938

are shown in Table 11. 939

Hyperparameter Value
Learning Rate 9e− 6
Steps 2500
Batch Size 8
Micro Batch Size 8
LoRA Rank 8
LoRA Alpha 16
LoRA Dropout 0.05
Alpha 5
max response length 64
LR Scheduler Type Constant

Table 11: Hyperparameters used for RAHF-Dual.

C Experiment Results of MT-Bench 940

Table 12 presents the detailed results of RAHF, 941

baselines, and the ablation study on MT-Bench. 942
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Method Writing Roleplay Reasoning Math Coding Extraction Stem Humanities Average
Turn-1
Preferred-SFT 8.500 6.400 4.100 2.200 2.100 4.400 6.500 7.050 6.013
RLHF-PPO 7.775 6.100 3.800 1.900 2.800 4.000 5.450 5.650 4.681
HIR 8.300 4.450 3.900 1.300 2.200 3.150 6.200 7.800 4.663
DPO 9.600 7.000 5.100 2.300 1.600 5.600 9.100 8.900 6.150
LORRA 6.800 5.700 2.300 1.800 2.300 4.050 5.150 6.700 4.350
LORRA-Pref 8.800 6.950 5.100 1.400 2.100 3.800 7.450 8.000 5.450
RAHF-Dual 9.500 7.630 5.200 3.400 2.600 4.030 8.300 8.900 6.195
RAHF-SCIT 9.150 8.000 3.600 2.400 2.200 4.000 8.700 9.350 5.925

Turn-2
Preferred-SFT 4.900 7.000 2.700 1.100 1.900 2.900 6.400 8.200 4.388
RLHF-PPO 5.500 7.500 4.700 1.500 2.600 4.300 6.600 6.400 4.888
HIR 6.500 5.750 1.869 1.900 2.550 2.500 5.650 8.650 4.421
DPO 6.700 7.600 2.700 1.400 2.300 3.300 8.250 9.400 5.206
LORRA 6.050 6.550 2.000 1.200 2.400 4.550 6.300 6.650 4.463
LORRA-Pref 5.800 7.100 3.200 1.400 1.500 5.500 6.800 8.600 4.988
RAHF-Dual 6.650 7.850 4.200 1.400 2.300 3.500 7.800 8.510 5.276
RAHF-SCIT 5.000 7.300 3.600 1.700 1.700 3.700 8.300 9.400 5.088

Final
Preferred-SFT 6.700 6.700 3.400 1.650 2.000 3.650 6.450 7.625 4.772
RLHF-PPO 6.625 6.800 4.250 1.700 2.700 4.150 6.025 6.025 4.784
HIR 7.400 5.100 2.885 1.600 2.375 2.825 5.925 8.225 4.541
DPO 8.150 7.300 3.900 1.850 1.950 4.450 8.675 9.150 5.678
LORRA 6.425 6.125 2.150 1.500 2.350 4.300 5.725 6.675 4.407
LORRA-Pref 7.300 7.025 4.150 1.400 1.800 4.650 7.125 8.300 5.219
RAHF-Dual 8.075 7.740 4.700 2.400 2.450 3.765 8.050 8.705 5.736
RAHF-SCIT 7.075 7.650 3.600 2.050 1.950 3.850 8.500 9.375 5.506

Table 12: Results of MT-Bench.
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D Qualitative Examples943

Figure 7 and Figure 8 present qualitative exam-944

ples of RAHF compared with baselines in dialogue945

tasks.946
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Figure 6: Screenshots of our evaluation interface for rating dialogue. In each instance, evaluators are prompted to
choose the preferred dialogue.
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Prompt GIVE ME AN EXECUTIVE SUMMARY OF LOTTADIGITAL.COM

HIR 1) Introduction to Lottery Digital (Lottadigital): A lotterydigital is a digital platform that allows users to play the lottery online, with an emphasis on providing secure and convenient access to various 
lotto games from around the world. The website offers a wide range of features such as instant win scratch cards, daily draws, jackpot games, and more. Users can also participate in syndicates for 
increased chances of winning big prizes.
2) Key Features of LottoDigital: Some key features include: 
a) Secure payment options - Various methods are available including credit/debit card payments, e-wallets like PayPal or Skrill, bank transfers etc., ensuring safe transactions without any hassles. 
b) Wide selection of international lotteries – Players have access to over 30 different national & international lotteries across Europe, Asia Pacific region, North America among others; giving them plenty 
of choices when it comes time to pick their favorite game(s). 
c) Instant Win Scratch Cards – These offer quick results within minutes after purchase which makes them ideal if you’re looking for some fast action! 
d) Daily Draw Games – Including popular ones like EuroMillions & Powerball where players need only one ticket per entry into each respective drawing event held every day at specific times 
throughout weekdays /weekends respectively . 
e) Jackpots Galore – With huge progressive jackpots up for grabs through these specialized lotteries , there's always something exciting waiting just ahead ! 
f) Syndicate Options Available – Join forces with other members by forming groups called "Syndicates" allowing everyone involved share winnings equally amongst themselves based upon how much 
they contributed towards overall pool size used during particular draw events run periodically throughout yearly calendar cycle . 

RLHF-PPO 1. Overview of LottsDigital.com:
LottsDigital is a digital marketing agency that specializes in helping businesses grow their online presence and increase revenue through various services such as SEO, PPC advertising, social media 
management, content creation, and website design. The company was founded by CEO Michael Lotts in 2015 with the goal of providing high-quality, results-driven digital marketing solutions to clients 
across different industries

DPO 1. Introduction to Lotterdigital (Lottadigital):

* Name: Lottadigital is a leading digital lottery platform that offers innovative and secure solutions for the global gaming industry, with its headquarters in Malta. The company was founded by 
experienced professionals from various industries who share a passion for technology and innovation.

2. Overview of Services Provided by Lottadigital:

* Digital Lottery Platforms: Lottadigital provides customized digital lottery platforms tailored to meet clients' specific needs. These platforms are designed to be user-friendly, secure, and compliant with 
regulatory requirements across different jurisdictions worldwide. They offer features such as instant win games, scratch cards, sports betting integration, and more.

3. Key Features of Lottadigital Solutions:

* Security & Compliance: Lottadigital prioritizes security and complies with international standards like ISO/IEC 27001 Information Security Management System certification, PCI DSS Payment Card 
Industry Data Security Standard, and AML Anti-Money Laundering regulations. Their systems undergo regular audits and penetration testing to ensure maximum protection against cyber threats.

4. Partnerships & Collaborations: Lottadigital has established partnerships with several renowned companies within the iGaming sector, including game developers, payment providers, and marketing 
agencies. This enables them to provide their customers with an extensive range of services and resources while ensuring seamless integrations between all parties involved.

5. Awards & Recognition: In recognition of their outstanding work, Lottadigital has received numerous awards over the years, including "Best Newcomer" at the EGR B2B Awards 2019 and "Innovator of 
the Year" at the SBC Awards 2020.

6. Future Plans & Goals: As part of their growth strategy, Lottadigital plans to expand into new markets globally through strategic acquisitions or organically via product development initiatives aimed 
towards enhancing existing products further while exploring emerging technologies relevant to the online gambling space. Additionally, they intend on strengthening relationships with key stakeholders 
within both public authorities and private organizations alike – ultimately contributing positively towards shaping future trends within this dynamic industry landscape.

RAHF-Dual 1. Introduction to Lotter Digital (Lottadigital):

* Founded in 2016 by a team of experienced professionals with expertise in the lottery industry, including software development and marketing.
* Headquartered in Malta, an established jurisdiction for online gaming companies due to its favorable regulatory environment and tax benefits.
* Operates as a B2B provider offering innovative solutions for the global lottery sector through cutting-edge technology platforms and services.

2. Key Products & Services Offerings:

* Customized white label lotto platform tailored according to client needs, featuring advanced features such as multi-language support, mobile compatibility, and seamless integration capabilities.
* Advanced backend system that streamlines operations like ticket sales, prize payouts, player management, and more.
* A comprehensive suite of marketing tools designed to boost customer acquisition and retention rates via personalization strategies, email campaigns, social media promotions, etc.
* Integration with third-party systems like payment processors, CRMs, and data analytics providers to enhance overall efficiency across all business processes.

3. Market Reach & Partnerships:

* Serves clients from various continents worldwide, primarily focusing on European markets but also expanding into other regions where legal regulations permit it.
* Collaborated with several renowned brands within the iGaming space, leveraging their experience and resources to provide better service offerings while maintaining compliance standards set forth by 
respective authorities.

4. Company Milestones & Achievements:

* Successfully launched multiple projects globally, catering to different types of lottery operators ranging from small startups to large corporations.
* Received numerous awards recognizing excellence in product design or outstanding performance over time periods; these include "Best Newcomer" at ICE Totally Gaming 2017 and "Innovator Award" 
at SBC Awards 2019.
* Continuous investment in R&D activities aimed towards enhancing existing products/services portfolio along with introducing new ones based on emerging trends within this niche segment.

RAHF-SCIT 1) Introduction to Lotteries and Digitalization in the Industry
- Overview of lottery games as a form of gambling, with origins dating back centuries.
- Traditionally, lotto has been played through physical channels like retail stores or government-run outlets.

2) Problem Statement & Opportunity for Innovation
- The traditional way of playing lotteries is becoming obsolete due to technological advancements.
- Players are increasingly turning towards digital platforms that offer convenience, accessibility, and more engaging experiences.
- This shift presents an opportunity for innovative solutions that can leverage technology to enhance the overall experience while maintaining regulatory compliance.

3) Solution Proposed by Lottadigital.com
- A platform designed specifically for online lottery players, offering a seamless user journey from registration to ticket purchase and results checking.
- It provides secure transactions via blockchain technology, ensuring transparency and trustworthiness.
- Users have access to various features such as personalized notifications, social media integration, and rewards programs.

4) Benefits of Using Lottadigital.com
- Convenience – Accessible anytime anywhere on mobile devices or desktop computers.
- Security – Blockchain technology guarantees safe and transparent transactions.
- Engagement – Various interactive elements keep users engaged throughout their entire play experience.
- Rewards Programs – Loyalty points system encourages repeat purchases and promotes customer loyalty.

5) Market Analysis & Competition Landscape
- Global market size of $300 billion (lottery industry).
- Estimated growth rate at ~6% annually.
- High competition among existing providers but room for new entrants who can provide unique value propositions.

6) Target Customer Segments & Key Differentiators
- Younger demographic groups interested in modernizing how they gamble.
- Tech-savvy individuals looking for convenient ways to participate in lotteries.
- Regular lottery players seeking enhanced gameplay experiences.

7) Business Model & Revenue Streams
- Subscription fees charged monthly/annually based on plan type selected.
- Transaction fee collected per transaction made within the app.
- Advertising revenues generated from sponsorships and banner ad placements.
- Potential future monetization opportunities include virtual goods sales, merchandise, etc.

8) Marketing Strategy & Go-To-Market Approach
- Initial focus will be on key markets where there's high demand for digitally enabled lottery services.
- Social media campaigns targeted toward younger audiences.
- Partnerships with influencers and celebrities known for their love of gaming.
- Continuously improve product based on feedback received from customers.

Figure 7: RAHF-Dual and RAHF-SCIT are more comprehensive and insightful compared to HIR, RLHF-PPO,
and DPO. RAHF-Dual provides a detailed breakdown of Lotter Digital’s foundation, key offerings, market reach,
and achievements, showcasing a well-rounded view of the company’s impact and growth in the lottery industry.
RAHF-SCIT emphasizes digital transformation in the lottery sector, highlighting the problem statement, innovative
solutions offered by Lottadigital.com, and the benefits and market potential of these solutions. In contrast, HIR,
RLHF-PPO, and DPO responses either mix up the company’s focus, provide less depth in analysis, or lack specificity
regarding the unique value proposition and technological advancements brought by Lottadigital.com.
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Prompt Create a table with the planets of the solar system and their dimensions

HIR 1. Mercury - Diameter = 4,879 km; Mass = 302 kg/m^3  
2. Venus - Diameter = 6,052 km; Mass = 5.24 g/cm^3  
3. Earth - Diameter = 12,742 km; Mass = 5.51 g/cm^3  
4. Mars - Diameter = 6,794 km; Mass = 3.93 g/cm^3  
5. Jupiter - Diameter = 142,984 km; Mass = 1.327 g/cm^3  
6. Saturn - Diameter = 120,536 km; Mass = 0.954 g/cm^3  
7. Uranus - Diameter = 51,118 km; Mass = 1.27 g/cm^3  
8. Neptune - Diameter = 49,528 km; Mass = 1.645 g/cm^3

RLHF-PPO 1. Planet Name                   | Dimensions

DPO | Planet                           | Dimensions (km)   |
|-----------------------------|---------------------------|
| Mercury                      | 4,879 km diameter     |
| Venus                        | 12,092 km diameter    |
| Earth                         | 12,756 km diameter    |
| Mars                          | 6.3 million km radius |
| Jupiter                       | 11.2 times larger than Earth's diameter |
| Saturn                        | 10.5 times larger than Earth's diameter |
| Uranus                        | 4 times larger than Neptune's diameter |
| Neptune                       | 4 times larger than Pluto's diameter |

RAHF-Dual 1. Planet Name                 | Dimensions (Approximate)  
-----------------------------------|-----------------------------
Mercury                             | Diameter: ~4,879 km           | Mass: ~302.6 million kg
Venus                               | Diameter: ~12,104 km          | Mass: ~4.85 × 10^24 kg
Earth                                | Diameter: ~12,742 km            | Mass: ~5.97 × 10^24 kg
Mars                                 | Diameter: ~6,794 km              | Mass: ~6.41 × 10^23 kg
Jupiter                              | Diameter: ~142,984 km           | Mass: ~1.90 × 10^27 kg
Saturn                               | Diameter: ~120,536 km           | Mass: ~5.68 × 10^26 kg
Uranus                                | Diameter: ~51,118 km            | Mass: ~8.65 × 10^25 kg
Neptune                               | Diameter: ~49,528 km            | Mass: ~1.02 × 10^26 kg

RAHF-SCIT Table for Planets in Our Solar System and Their Dimensions
----------------------------------------- ---------------
Planet                       Diameter (km)   Mass (kg)    Orbit Distance from Sun (AU)
Mercury               4,879           3.30 × 10^23    57.9 million km
Venus                12,104          4.86 × 10^24     67.2 million km
Earth               ~12,756         5.97 × 10^24    149.6 million km
Mars                6,371            6.41 × 10^23    227.9 million km
Jupiter             142,984        1.90 × 10^27       778.3 million km
Saturn              120,536        9.50 × 10^26       1.4 billion km
Uranus              51,512        1.70 × 10^26       2.8 billion km
Neptune             49,528        1.02 × 10^26       4.5 billion km
Pluto*             2,370           1.90 × 10^22    7.4 billion km
----------------------------------------- ---------------
* Pluto is no longer considered to be part of our solar system as it orbits beyond 
Neptune's orbit at an average distance of approximately 4.5 billion kilometers from the 
sun. It has been reclassified as a dwarf planet due to its size and location relative to 
other objects in the Kuiper Belt.

Figure 8: RAHF-Dual and RAHF-SCIT provide comprehensive, structured data with clear, consistent formatting,
and include additional relevant details such as mass and orbit distance from the Sun. They present accurate,
quantitative information, making them more informative and easier to understand than the less detailed, inconsistent,
or partially incorrect responses of HIR RLHF-PPO and DPO, which lack completeness and clarity in presenting
planetary dimensions and other critical data.
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