
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WHEN AND HOW ARE MODULAR NETWORKS BETTER?

Anonymous authors
Paper under double-blind review

ABSTRACT

Many real-world learning tasks have an underlying hierarchical modular structure,
composed of smaller sub-functions. Traditional neural networks (NNs), however,
often ignore this structure, leading to inefficiencies in learning and generalization.
Leveraging known structural information can enhance performance by aligning
the network architecture with the task’s inherent modularity. In this work, we
investigate how modular NNs can outperform traditional dense networks by sys-
tematically varying the degree of structural knowledge incorporated. We com-
pare architectures ranging from monolithic dense NNs, which assume no prior
knowledge, to hierarchically modular NNs with shared modules, which leverage
sparsity, modularity, and module reusability. Our experiments demonstrate that
incorporating structural knowledge, particularly through module reuse and fixed
connectivity, significantly improves learning efficiency and generalization. Hier-
archically modular NNs excel in data-scarce scenarios by promoting functional
specialization within the modules and reducing redundancy. These findings sug-
gest that task-specific architectural biases can lead to more efficient, interpretable,
and effective learning systems.

1 INTRODUCTION

Real-world learning tasks often exhibit an inherent hierarchical and modular structure, where a com-
plex target function can be decomposed into smaller sub-functions arranged hierarchically Simon
(1991). Exploiting this structure—either explicitly known or inferred during training—can signifi-
cantly improve the efficiency and generalization of neural networks (NNs).

Traditional NNs typically treat target functions as undifferentiated input-output mappings, ignor-
ing any underlying modular structure. This results in higher training costs and the need for larger
datasets. Recent advances in NN architectures, particularly sparse and hierarchically modular NNs,
have demonstrated the potential to overcome these challenges (Fernando et al., 2017; Rosenbaum
et al., 2017; Shazeer et al., 2017; Kirsch et al., 2018; Goyal et al., 2021; Ponti et al., 2022). These ar-
chitectures break the NN into sparsely connected sub-networks or modules, each learning a distinct
sub-function, and arrange them hierarchically to mirror the structure of the task.

The key advantage of hierarchically modular NNs is their alignment with the natural task structure,
allowing for more efficient learning. However, the challenge remains when the task structure is not
explicitly known. In this study, we explore how different degrees of structural knowledge can be
leveraged to enhance NN performance.

We begin by considering dense NNs with no structural assumptions, followed by random sparse NNs
that assume sparsity but not its specific pattern. These fall under the category of monolithic NNs.
We then examine hierarchically modular NNs, where modules are explicitly defined and organized
hierarchically (Fernando et al., 2017; Ostapenko et al., 2021). In these networks, both module
weights and inter-module connections are learned without assuming any prior knowledge about the
specific connectivity. We further extend this exploration to modular NNs with fixed inter-module
connectivity, representing cases where the exact sub-function connectivity is known.

Finally, we introduce module reusability, where the same module can be used in multiple locations
within the hierarchy, reflecting the idea that sub-functions may recur throughout the task (Goyal
et al., 2021; Ostapenko et al., 2022). In these cases, the NN must learn both connectivity and
module selection dynamically from a shared pool of modules. We also consider a variant with fixed
connectivity and module selection, representing complete structural knowledge.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Overview of the models, highlighting varying levels of structural knowledge assumed at
initialization. The associated task for these architectures is depicted in Figure 2 (depth 2). From
top left to bottom right: Monolithic dense NN: Unknown task structure. Monolithic random sparse
NN: Sparsity in task structure. Hierarchically modular NN: Modular sparsity pattern. Hierarchically
modular NN (fixed inter-module connectivity): Modular sparsity with known sub-function connec-
tivity. Hierarchically modular NN with shared modules: Modular sparsity and module reusability.
Hierarchically modular NN with shared modules (fixed inter-module connectivity and module se-
lection): Modular sparsity, module reusability, known sub-function connectivity and reuse.

All architectures studied involve learning functional components, regardless of the degree of struc-
tural knowledge incorporated. Our empirical evaluation focuses on tasks derived from Boolean
functions with clear hierarchical and modular structures, allowing us to systematically analyze the
effects of sparsity, modularity, and module reusability on generalization and training efficiency. Our
findings demonstrate that hierarchically modular NNs with shared modules consistently outperform
dense NNs, particularly in data-scarce scenarios. Further, accurately learning the inter-module con-
nectivity and promoting functional specialization within the modules enhances their generalization
performance. We also validate these findings on a visual recognition task using the MNIST dataset,
showing the broader applicability of modular design principles in neural network architecture.

2 PRELIMINARIES

2.1 HIERARCHICALLY MODULAR BOOLEAN FUNCTIONS

In this work, we construct hierarchical and modular tasks using Boolean functions. A Boolean
function f : {0, 1}n → {0, 1}m maps n input bits to m output bits. The set of gates G includes
{∧,∨,⊕} (AND, OR, XOR), with edges representing direct connections.

A function graph for a Boolean function is represented as a directed acyclic graph (DAG) consisting
of n input nodes with zero in-degree, k gate nodes with non-zero in-degree (associated with gates
from G), and m output nodes with zero out-degree.

A sub-function or sub-task corresponds to a gate node within the function graph that applies an
operation on its specific inputs. Sub-functions are organized hierarchically, with outputs from certain
sub-functions serving as inputs for others. These sub-functions have three fundamental properties:

1. Input Connectivity and Separability: Sub-functions operate on outputs from previous sub-
functions or input nodes. This connectivity is sparse—each sub-function relies on a subset of preced-
ing outputs. In our experiments, each sub-function takes exactly two inputs to maintain uniformity
across graphs.

2. Output Connectivity and Reusability: Outputs produced by a sub-function can be reused by
multiple sub-functions at higher hierarchical levels, similar to feature reuse in neural networks.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: Function graphs with varying complexity used to generate the truth tables.

3. Sub-Function Reusability: The functional operation of a sub-function can be reused at multiple
locations in the function graph. For instance, an XOR gate might be reused in various parts of the
graph.

A task’s hierarchical structure or sub-function organization is defined by the relationships among
these underlying sub-functions.

2.2 NEURAL NETWORK ARCHITECTURES

In this section we describe various NN architectures used in our experiments.

Monolithic NNs: We consider dense multi-layer perceptrons (MLPs) and sparse MLPs. Sparse
MLPs are created by random pruning to introduce sparsity, leveraging a notion of sparsity in the
function graph but without its specific pattern.

Hierarchically Modular NNs (modular): The modular architecture is arranged in L hierarchical
layers, each containing Ml modules, denoted as mi

l , where i represents the module’s position within
layer l. Each module includes a small MLP and an input selection vector sil ∈ RMl−1 . The MLP
learns the functional component, while the input selection vector governs inter-module connectivity
by selecting inputs from the outputs of modules in the previous layer. The final outputs of the NN
are selected from the set of all modules in the last layer using an output selection vector.

We explore two scenarios: 1. Modular: Both inter-module connectivity and module MLP weights
are learned. 2. Modular-FC: Inter-module connectivity is fixed, inferred from the function graph,
while module MLP weights are learned.

Learning Inter-Module Connectivity: Given outputs from layer l − 1, xl−1 ∈ RMl−1 , the Sigmoid
function is applied to sil to produce a score for each potential input, selecting the top-k inputs.
We use the straight-through estimator (Bengio et al., 2013) to propagate gradients through non-
differentiable selections, facilitating effective learning of inter-module connectivity. We fix k = 2
to maintain structural consistency, which also prevents module collapse and optimizes module uti-
lization (Goyal et al., 2021; Ostapenko et al., 2022). See Appendix A for additional implementation
details and Appendix C.1 for experiments related to learning inter-module connectivity.

Hierarchically Modular NNs with Shared Modules (modular-shared): The modular-shared ar-
chitecture extends the modular architecture, treating module positions as slots filled by modules
from a shared pool of M modules. Each slot has an input selection vector sil ∈ RMl−1 and a module
selection vector vi

l ∈ RM , which determines the module used in that slot. The final outputs are
selected from the set of slots in the last layer using an output selection vector.

We explore two scenarios: 1. Modular-shared: The network learns both inter-module connectivity
and module selection dynamically, alongside module weights. 2. Modular-shared-FCMS: Connec-
tivity and module selection are fixed, with only the module weights being learned.

Learning Inter-Module Connectivity and Module Selection: Outputs from slots at layer l−1, xl−1 ∈
RMl−1 , are selected as inputs similarly to the previous architecture. The chosen inputs are passed
to a module determined by the selection vector vi

l ∈ RM , which is first transformed via a Softmax
function to assign probabilities to each module in the shared pool. The module with the highest
probability is selected (top-1). The straight-through estimator is used to compute gradients for both
sil and vi

l (see Appendix A).

Hereafter, ”hierarchically modular NNs” refers to both modular and modular-shared unless other-
wise specified.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 3: Test and train accuracy of different NNs relative to training size. For each datapoint, we
report the mean and combined standard error (shaded region).

3 LEARNING MODULAR TASKS BASED ON BOOLEAN FUNCTIONS

We evaluate the performance of different NN architectures by learning Boolean functions repre-
sented as function graphs. The truth table derived from these graphs serves as the dataset. Our
evaluation focuses on the models’ generalization and learning efficiency when only a fraction of the
truth table is available for training.

Experiment Details: We use three function graphs, each with 6 input nodes and 2 output nodes,
as depicted in Figure 2. The complexity is controlled by the number of hierarchical levels—greater
depth implies increased dependence on intermediate sub-functions, making the task more intricate.

The NN architectures are trained on different portions of the truth table, with training sizes ranging
from 0.1 to 0.7 of the total rows. The remaining rows are split evenly between validation and
test sets. For each training size, we create three random partitions of the truth table, and each
partition is trained with three additional random seeds, resulting in a total of nine training runs per
architecture per training size. We report the mean and combined standard error, calculated from the
three separate means corresponding to the three dataset partitions. To enhance robustness, random
noise from N (0, 0.1) is added to the inputs during training for data augmentation. All models are
trained using the Adam optimizer for 1000 epochs.

To ensure consistency, modular and modular-FC architectures use the same number of modules as
there are gate nodes at each level of the function graph (Mittal et al., 2022). Similarly, modular-
shared and modular-shared-FCMS architectures align the number of slots with the number of gate
nodes, and the count of shared modules matches the number of distinct gates in the graphs. Appendix
E demonstrates that varying the number of modules or slots has minimal impact on performance.
All module MLPs have a uniform structure, with 2 input units, a hidden layer of 12 units, and 1
output unit. Monolithic NNs are configured with 1, 3, or 5 hidden layers to match the depth of the
modular NNs, with each hidden layer containing 36 units. Further architectural and training details
can be found in Appendix A.

3.1 GENERALIZATION PERFORMANCE

Comparing Architectures: Figure 3 shows the generalization performance of different NN archi-
tectures relative to the training size.

1. Monolithic Dense vs. Monolithic Sparse: The performance of monolithic NNs is heavily influ-
enced by parameter count. As sparsity increases, test accuracy declines significantly.

2. Modular vs. Monolithic: Modular NNs possess only 30%, 7.1%, and 5.9% of the weights com-
pared to monolithic dense NNs for functions with depth 1, 2, and 3, respectively. They outperform
monolithic sparse NNs with similar parameter counts (see Appendix Table 1 for details). As the

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 4: FLOPs required to train various NNs as compared to the ratio of truth table available.

parameter count of monolithic NNs increases, their test accuracy converges with that of modular
NNs, indicating that prior knowledge of modular sparsity is most beneficial when parameter counts
are similar.

3. Modular-Shared vs. Monolithic and Modular: Modular-shared NNs consistently outperform
both monolithic and modular NNs, benefiting from module reuse that artificially increases the num-
ber of samples per module and leads to efficient learning of sub-functions. For depth-1 and depth-2
functions, modular-shared NNs significantly outperform the others. However, for depth-3 functions,
the performance gap narrows, suggesting that for highly complex tasks, the benefits of modularity
and reuse diminish, especially with limited training data.

4. Fixed Connectivity and Module Selection: Modular-FC and modular-shared-FCMS NNs demon-
strate superior performance compared to all other NNs. Modular-shared-FCMS NNs are particularly
effective with minimal training data, highlighting the value of reusability and fixed structure, which
reduces the complexity associated with learning both the sub-functions and their organization.

Train Accuracy vs. Test Accuracy: Modular and modular-shared NNs tend to have closely aligned
train and test accuracy, while monolithic NNs often exhibit overfitting, particularly with limited
training data. This suggests that the inherent inductive bias of hierarchically modular NNs effec-
tively prevents overfitting by aligning learned representations with the true task structure.

Generalization Relative to Function Complexity: As function complexity increases, all NNs re-
quire larger training sizes for effective generalization. A minimum threshold of training data exists
for each architecture, determined by its level of prior knowledge, to generalize to unseen samples.
This threshold increases with complexity but decreases with greater structural knowledge, such as
module reuse and fixed connectivity.

3.2 TRAINING EFFICIENCY

We next evaluate training efficiency based on the number of floating-point operations (FLOPs) re-
quired for training. FLOPs are calculated considering the number of training iterations to reach peak
validation accuracy, training size, and the number of weights used in forward and backward passes,
as well as in optimization updates. We compare architectures in two groups, including only those
that generalize effectively (see Appendix B for further details).

Comparing Architectures: Figure 4 presents the FLOPs required for training different NNs.

1. Monolithic Dense vs. Monolithic Sparse: Monolithic sparse NNs achieve better training effi-
ciency due to reduced parameter counts. There exists a range of densities for which sparse NNs
match the generalization of dense NNs while reducing training costs.

2. Modular vs. Monolithic: Modular NNs use only 30%, 7.1%, and 5.9% of the weights of mono-
lithic dense NNs for depths 1, 2, and 3, respectively, leading to improved training efficiency. How-
ever, with sufficient training data, monolithic dense NNs can converge more quickly for simpler
tasks, ultimately showing better efficiency, as seen for the depth-1 and depth-2 functions at high

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 5: Minimum graph edit distance between the learned connectivity in modular and modular-
shared NNs and the ground truth function graphs.

training sizes. Monolithic sparse NNs (25% density) can also match the generalization performance
of modular NNs with similar training efficiency but lack the convergence speed-up seen in dense
NNs, likely due to reduced parameterization. See Appendix B for NN convergence performance.

3. Modular-Shared vs. Monolithic and Modular: Modular-shared NNs consistently demonstrate
superior training efficiency compared to monolithic dense NNs, although dense NNs eventually
catch up with increasing training size for simpler tasks. Modular-shared NNs require similar FLOPs
to monolithic sparse and modular NNs but outperform them in generalization.

Also, hierarchically modular NNs do not achieve faster convergence with larger training size –
possibly because they need to explore and determine the inter-module connectivity.

4. Fixed Connectivity and Module Selection: Modular-FC and modular-shared-FCMS NNs achieve
the highest training efficiency. Modular-shared-FCMS NNs perform particularly well, underscoring
the computational advantage of focusing on learning only the sub-functions as compared to learn-
ing the sub-functions along with exploring and determining their organization. Further analysis in
Appendix D shows that structural parameters require higher learning rates than module MLPs.

Efficiency Relative to Function Complexity: As function complexity increases, training all archi-
tectures requires more operations. For low-complexity functions, monolithic dense NNs are more
efficient compared to others. However, as complexity grows, NNs with prior structural knowledge
(e.g., sparsity, modularity, and reuse) achieve better efficiency. This improvement is directly tied
to their ability to generalize effectively as compared to dense NNs with increasing task complexity.
Modular-FC and modular-shared-FCMS NNs particularly benefit from prior knowledge of connec-
tivity and module selection, significantly enhancing training efficiency.

3.3 FACTORS INFLUENCING GENERALIZATION IN MODULAR NETWORKS

In this section, we analyze two key factors influencing the generalization of modular and modular-
shared NNs: learning the sub-function organization through inter-module connectivity and achiev-
ing functional specialization within modules, particularly under limited data conditions.

Learning the Sub-Function Organization: Unlike monolithic dense NNs, which directly learn
input-output mappings, modular and modular-shared NNs need to identify the underlying task
structure to perform effectively. We measure how well these NNs capture the true task structure
using minimum graph edit distance (Abu-Aisheh et al., 2015), comparing the learned inter-module
connectivity to the ground truth function graph.

The learned connectivity is represented as a graph with NN input units, output units, and all modules
as nodes. The input and output nodes must match, while modules can align with any gate node at the
same hierarchical level, ensuring permutation invariance. Figure 5 shows that modular-shared NNs
consistently achieve lower graph edit distances compared to modular NNs, indicating a closer match
to the ground truth. Notably, the graph edit distance is zero when both modular and modular-shared
NNs achieve 100% train and test accuracy.

Learning the Underlying Sub-Function: The superior generalization of modular-shared NNs,
particularly with lower truth table ratios, suggests an advantage due to module reuse across multiple
locations, enabling modules to learn sub-functions more effectively with fewer samples. To quantify
functional specialization, we use a metric based on Pearson’s correlation coefficient between module
outputs and truth table outputs for a specific sub-function.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 6: Magnitude of the correlation coefficient between NN module output and the XOR truth
table output. Larger values indicate greater functional specialization.

Let X represent all truth table rows for a specific sub-function. We collect the corresponding module
outputs and calculate the correlation coefficient ρ between these outputs and the ground truth. A
higher magnitude of ρ indicates greater alignment between the module’s function and the ground
truth sub-function.

Figure 6 shows the correlation coefficients for the XOR sub-function in the first hierarchical level
of all three functions. Modules in modular-shared NNs exhibit consistently higher correlation with
the ground truth compared to modular NNs, with ρ values closely aligning with generalization
performance.

(a) MNIST task (b) Generalization performance of various NN architectures.

Figure 7: Hierarchically modular task based on MNIST and generalization performance of various
NN architectures on unseen digit combinations and seen digit combinations.

4 LEARNING VISUAL MODULAR TASKS BASED ON MNIST DIGITS

We present results for a modular task constructed using the MNIST handwritten digits dataset, as
shown in Figure 7a. In this task, two MNIST images, each selected from digits between 0 and 7,
serve as input. These images are classified into their corresponding 3-bit binary representations,
which are then concatenated and passed to a Boolean task. The NNs must first classify each image
independently before performing additional operations.

We vary the ratio of unique digit combinations used for training. For each training size, a random
subset of all possible digit combinations is chosen, with the remaining combinations evenly divided
between test and validation sets. We also present results on a test set constructed using seen digit
combinations but with unseen digit images. Each training combination contains 1000 samples,
while the test and validation sets contain 100 samples per combination. We also examine the effect
of different numbers of samples per combination for training.

We adapted the NNs for handling image inputs: in modular NNs, the first hierarchical level contains
MLP modules designed for image processing, with 784 input units, two hidden layers (128 and 64
units), and 3 output units. Each module processes one of the two images, and the outputs are con-
catenated and passed to higher levels, where modules learn Boolean functions, similar to previous
experiments. In modular-shared NNs, two sets of shared modules are employed—one set for image
processing and another for Boolean functions. The first layer contains two slots, each selecting an
image-processing module from the shared pool, with outputs concatenated and passed to higher lay-
ers that use shared Boolean modules. For monolithic NNs, the input size was increased to 784× 2,
and the architecture was adjusted to match the depth and number of hidden units in the modular
NN. All models were trained for 200 epochs using the Adam optimizer, with three dataset splits and
three different seeds for each split (see Appendix Section A for additional details).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 8: Generalization performance of different NNs trained on the hierarchically modular MNIST
task, evaluated across varying proportions of digit combinations used for training and different num-
bers of samples per combination. Plots show results for: a. modular NN, b. modular-FC NN, c.
modular-shared NN, and d. modular-shared-FCMS NN.

Generalization on Unseen Digit Combinations: Figure 7b shows the generalization performance
on both unseen and seen digit combinations. At a training size of 0.4, all NNs show random test
accuracy. As the training size increases, modular, modular-shared, modular-FC, and modular-
shared-FCMS NNs start to generalize at different rates, while monolithic NNs do not improve and
their test accuracy declines. This decrease may be due to over-fitting on seen digit combinations
given that, for larger training sizes, the test accuracy of monolithic NNs on seen digit combinations
improves.

The ability to generalize to unseen combinations, known as combinatorial generalization, is a per-
sistent challenge for monolithic NNs (Keysers et al., 2019; Csordás et al., 2020). However, for
Boolean tasks, monolithic NNs demonstrated the capacity to capture the underlying function and
generalize as well as modular NNs, suggesting that simpler tasks and higher data availability can
enable generalization.

Modular-shared NNs outperform monolithic, modular, and modular-FC NNs for the MNIST-based
task. Additionally, modular and modular-shared NNs closely track their fixed-connectivity counter-
parts (modular-FC and modular-shared-FCMS, respectively), with small accuracy differences. This
may be attributed to the large sample size used in the task, which facilitates better generalization.

Figure 8 presents the generalization performance of various NNs across different sample sizes per
digit combination. We observe that modular-shared-FCMS NNs consistently outperform other ar-
chitectures when the sample size is reduced to 500 and 100, supporting our previous hypothesis. Ad-
ditionally, modular-shared NNs exhibit superior generalization compared to modular and modular-
FC NNs, emphasizing the advantage of module reusability in low-sample training scenarios.

Generalization on Seen Digit Combinations: Figure 7bb illustrates the generalization perfor-
mance on seen digit combinations. It is noteworthy that the validation set contains combinations
distinct from both the training and test sets. The overall trends observed in previous results are
consistent here. With larger training sizes, monolithic NNs demonstrate effective generalization.
Notably, the modular-FC and modular-shared-FCMS architectures outperform the modular and
modular-shared NNs at larger training sizes, emphasizing the advantage of leveraging predefined
connectivity to facilitate learning of the complete task, encompassing both seen and unseen combi-
nations.

Figure 9: FLOPs required to train vari-
ous NNs on the hierarchically modular
MNIST task.

Training Efficiency: The FLOPs required by various
NNs during training are shown in Figure 9. Monolithic
dense NNs show lower training costs at smaller training
sizes, primarily because they reach their highest validation
accuracy after just one epoch for sizes 0.4, 0.5, and 0.6,
indicating limited learning. While monolithic NNs match
the training efficiency of other NNs at larger training sizes,
they still fall short in generalization performance.

For larger training sizes, modular and modular-shared
NNs achieve training efficiencies comparable to those of
modular-FC and modular-shared-FCMS NNs. This sug-
gests that when sufficient data is available, the advantage
of knowing the underlying sub-function organization has

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

a limited impact on training efficiency. However, in data-scarce scenarios, this structural knowledge
becomes crucial for effective training.

Figure 10: Minimum graph edit dis-
tance between learned connectivity and
ground truth task connectivity.

Learning the Sub-Function Organization: Similar to
the Boolean function graphs, we compare the learned
inter-module connectivity in modular and modular-shared
NNs for the MNIST-based task by computing the mini-
mum graph edit distance between the learned connectivity
and the ground truth function graph.

The task graph includes two input nodes (one for each im-
age), each connected to three of six intermediate nodes
in the first hierarchical level, corresponding to six output
bits (three per image). These nodes are then connected
to the rest of the Boolean function graph. To construct
the learned connectivity graph, we represent each image
module as three nodes, with incoming connections from
the input nodes and outgoing connections to subsequent modules. Our results (Figure 10) indicate
that modular-shared NNs more accurately capture the underlying connectivity compared to modular
NNs.

Figure 11: Function specialization
in image modules for modular and
modular-shared NNs.

Learning the Underlying Sub-Function: Next, we eval-
uate the functional specialization of modules in both mod-
ular and modular-shared NNs, focusing on the image
classification modules. We assess specialization using the
magnitude of the Pearson correlation coefficient. Each
module produces three outputs, while the ground truth
classes are represented as 3-bit vectors.

We determine the optimal permutation of the output units
by maximizing the correlation coefficient and report the
highest value achieved. Our results, shown in Figure
11, reveal that modules in modular-shared NNs exhibit
a greater degree of functional specialization compared to
those in modular NNs, reinforcing the advantage of mod-
ule reusability.

5 DISCUSSION

Recently, sparse NNs designed at initialization have gained attention for reducing training costs.
Methods to identify these sparse NNs often involve using a portion of the training data to determine
optimal sparsity patterns (Lee et al., 2019; Wang et al., 2019) or exploiting structural properties that
enhance convergence and generalization (Tanaka et al., 2020; Patil & Dovrolis, 2021). However,
these sparse NNs generally underperform in terms of generalization compared to dense NNs, espe-
cially at lower density levels. Accurately capturing the task structure within NNs before training
remains a significant challenge.

Prior studies have examined the structure of trained dense NNs to uncover the hierarchical modu-
larity inherent in tasks (Watanabe et al., 2018; Watanabe, 2019; Filan et al., 2021; Hod et al., 2021;
Lange et al., 2022). Nonetheless, these methods do not conclusively demonstrate whether the NN’s
acquired structure aligns with the underlying task structure. Other works have proposed techniques
to derive the task structure by training NNs and conditioning them to reveal hierarchical modularity
(Malakarjun Patil et al., 2024; Liu et al., 2023).

Our work bridges these two lines of inquiry by exploring how the integration of a task’s hierarchical
and modular structure at initialization influences NN performance. We demonstrate that varying
degrees of structural knowledge can significantly enhance generalization and training efficiency.

The concept of hierarchically modular architectures has also been applied in transfer and continual
learning, where multiple tasks are learned sequentially, often assuming some level of interdepen-
dence. Previous work has utilized explicitly defined hierarchically modular NNs to address these

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

challenges (Terekhov et al., 2015; Veniat et al., 2020; Mendez & Eaton, 2020; Ostapenko et al.,
2021). Hierarchical modularity offers advantages such as freezing modules to prevent catastrophic
forgetting and reusing modules to enhance transfer performance. Similarly, multitask learning ap-
proaches have benefited from these frameworks by finding appropriate inter-module connectivity for
different tasks, reusing modules for common sub-functions, and learning distinct modules for task-
specific sub-functions (Devin et al., 2017; Rosenbaum et al., 2017; Maninis et al., 2019; Kanakis
et al., 2020; Ponti et al., 2022).

Combinatorial generalization, also known as compositional or systematic generalization, involves
the ability of NNs to generalize to unseen input combinations or tasks involving the same sub-
functions arranged differently, as in visual question answering (Bahdanau et al., 2018; Lake & Ba-
roni, 2018; Hupkes et al., 2020). Hierarchically modular NNs have demonstrated superior perfor-
mance in these scenarios by enabling module reuse and reorganization based on specific parts of the
input (Andreas et al., 2016; Hu et al., 2017; Wiedemer et al., 2024).

6 CONCLUSION

This work explored how varying degrees of structural knowledge about a task’s hierarchical modu-
larity impact NN generalization performance and training efficiency. Through experiments involv-
ing Boolean functions and a hierarchically modular MNIST task, we showed that networks with
modularity and module reusability significantly outperform monolithic and sparse networks, partic-
ularly in data-limited scenarios. The improved performance stems from the ability of these NNs to
exploit task structure effectively by learning both the specific sub-functions and their organization.
Our findings emphasize the importance of explicitly incorporating task structure and modularity into
NNs, indicating a promising direction for scalable and efficient learning systems.

A potential direction for future research is to explore the theoretical underpinnings of task learnabil-
ity, focusing on its function graph and the extent of prior knowledge encoded in the NN architec-
ture. Additionally, applying these architectures in the context of transfer learning could be valuable.
Investigating how the similarity between pre-training and target tasks impacts both transfer perfor-
mance and efficiency could provide key insights for optimizing transfer learning strategies.

REPRODUCIBILITY STATEMENT

In Appendix A, we provide comprehensive details on dataset construction, NN architectures, im-
plementation specifics, and hyper-parameter tuning, along with training procedures. Appendix B
describes the algorithm used to compute FLOPs for different NNs. Additionally, Sections 3.3 and 4
detail the algorithms for computing minimum graph edit distance and functional specialization. The
code is made available through an anonymous repository.

REFERENCES

Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, and Patrick Martineau. An exact graph edit
distance algorithm for solving pattern recognition problems. In 4th International Conference on
Pattern Recognition Applications and Methods 2015, 2015.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 39–48, 2016.

Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen, Harm de Vries, and
Aaron Courville. Systematic generalization: what is required and can it be learned? arXiv
preprint arXiv:1811.12889, 2018.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Róbert Csordás, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Are neural nets modular? inspect-
ing functional modularity through differentiable weight masks. arXiv preprint arXiv:2010.02066,
2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learning mod-
ular neural network policies for multi-task and multi-robot transfer. In 2017 IEEE international
conference on robotics and automation (ICRA), pp. 2169–2176. IEEE, 2017.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks. arXiv preprint arXiv:1701.08734, 2017.

Daniel Filan, Stephen Casper, Shlomi Hod, Cody Wild, Andrew Critch, and Stuart Russell. Cluster-
ability in neural networks. arXiv preprint arXiv:2103.03386, 2021.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

Anirudh Goyal, Aniket Rajiv Didolkar, Nan Rosemary Ke, Charles Blundell, Philippe Beaudoin,
Nicolas Heess, Michael Curtis Mozer, and Yoshua Bengio. Neural production systems. In Ad-
vances in Neural Information Processing Systems, 2021.

Shlomi Hod, Stephen Casper, Daniel Filan, Cody Wild, Andrew Critch, and Stuart Russell. Detect-
ing modularity in deep neural networks. arXiv preprint arXiv:2110.08058, 2021.

Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko. Learning to
reason: End-to-end module networks for visual question answering. In Proceedings of the IEEE
international conference on computer vision, pp. 804–813, 2017.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: how
do neural networks generalise? Journal of Artificial Intelligence Research, 67:757–795, 2020.

Menelaos Kanakis, David Bruggemann, Suman Saha, Stamatios Georgoulis, Anton Obukhov, and
Luc Van Gool. Reparameterizing convolutions for incremental multi-task learning without task
interference. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XX 16, pp. 689–707. Springer, 2020.

Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashu-
bin, Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, et al. Measur-
ing compositional generalization: A comprehensive method on realistic data. arXiv preprint
arXiv:1912.09713, 2019.

Louis Kirsch, Julius Kunze, and David Barber. Modular networks: Learning to decompose neural
computation. Advances in neural information processing systems, 31, 2018.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In International conference on machine learning,
pp. 2873–2882. PMLR, 2018.

Richard D Lange, David S Rolnick, and Konrad P Kording. Clustering units in neural networks:
upstream vs downstream information. arXiv preprint arXiv:2203.11815, 2022.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: SINGLE-SHOT NETWORK
PRUNING BASED ON CONNECTION SENSITIVITY. In International Conference on Learn-
ing Representations, 2019. URL https://openreview.net/forum?id=B1VZqjAcYX.

Ziming Liu, Eric Gan, and Max Tegmark. Seeing is believing: Brain-inspired modular training for
mechanistic interpretability. arXiv preprint arXiv:2305.08746, 2023.

Shreyas Malakarjun Patil, Loizos Michael, and Constantine Dovrolis. Neural sculpting: Uncovering
hierarchically modular task structure in neural networks through pruning and network analysis.
Advances in Neural Information Processing Systems, 36, 2024.

Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. Attentive single-tasking of multi-
ple tasks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 1851–1860, 2019.

11

https://openreview.net/forum?id=B1VZqjAcYX


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jorge A Mendez and Eric Eaton. Lifelong learning of compositional structures. arXiv preprint
arXiv:2007.07732, 2020.

Sarthak Mittal, Yoshua Bengio, and Guillaume Lajoie. Is a modular architecture enough? Advances
in Neural Information Processing Systems, 35:28747–28760, 2022.

Oleksiy Ostapenko, Pau Rodriguez, Massimo Caccia, and Laurent Charlin. Continual learning
via local module composition. Advances in Neural Information Processing Systems, 34:30298–
30312, 2021.

Oleksiy Ostapenko, Pau Rodriguez, Alexandre Lacoste, and Laurent Charlin. Attention for compo-
sitional modularity. In NeurIPS’22 Workshop on All Things Attention: Bridging Different Per-
spectives on Attention, 2022.

Shreyas Malakarjun Patil and Constantine Dovrolis. Phew: Constructing sparse networks that learn
fast and generalize well without training data. In International Conference on Machine Learning,
pp. 8432–8442. PMLR, 2021.

Edoardo M Ponti, Alessandro Sordoni, Yoshua Bengio, and Siva Reddy. Combining modular skills
in multitask learning. arXiv preprint arXiv:2202.13914, 2022.

Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing networks: Adaptive selection of
non-linear functions for multi-task learning. arXiv preprint arXiv:1711.01239, 2017.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Herbert A Simon. The architecture of complexity. In Facets of systems science, pp. 457–476.
Springer, 1991.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in Neural Information Pro-
cessing Systems, 33, 2020.

Alexander V Terekhov, Guglielmo Montone, and J Kevin O’Regan. Knowledge transfer in deep
block-modular neural networks. In Biomimetic and Biohybrid Systems: 4th International Con-
ference, Living Machines 2015, Barcelona, Spain, July 28-31, 2015, Proceedings 4, pp. 268–279.
Springer, 2015.

Tom Veniat, Ludovic Denoyer, and Marc’Aurelio Ranzato. Efficient continual learning with modular
networks and task-driven priors. arXiv preprint arXiv:2012.12631, 2020.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2019.

Chihiro Watanabe. Interpreting layered neural networks via hierarchical modular representation. In
International Conference on Neural Information Processing, pp. 376–388. Springer, 2019.

Chihiro Watanabe, Kaoru Hiramatsu, and Kunio Kashino. Modular representation of layered neural
networks. Neural Networks, 97:62–73, 2018.

Thaddäus Wiedemer, Prasanna Mayilvahanan, Matthias Bethge, and Wieland Brendel. Composi-
tional generalization from first principles. Advances in Neural Information Processing Systems,
36, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION AND TRAINING DETAILS

The anonymous GitHub repository can be accessed here: https://anonymous.4open.
science/r/modular-NNs-08E5.

This section presents the implementation details for datasets, NN architectures, and training settings
for all architectures.

A.1 DATASET CONSTRUCTION AND HYPERPARAMETER TUNING

Boolean Functions: For Boolean functions, we generate a truth table of 64 rows (6 inputs). Rows
are split into training, validation, and test sets based on the specified training ratio and dataset seed.
Each training size has three different splits corresponding to three different dataset seeds.

MNIST Task: The MNIST task uses pairs of digits (0-7), resulting in 64 combinations. These com-
binations are divided into training, validation, and test sets, similarly to the Boolean functions. For
each combination, we randomly select image pairs in the MNIST training set based on the specified
sample size per combination. Test sets use image pairs from the MNIST test split. Dataset splitting
is performed using three different seeds. When varying the number of samples per combination, the
validation and test sets remain consistent.

Training and Hyperparameter Tuning: The NNs are trained using the Adam optimizer for 1000
epochs for Boolean functions and 200 epochs for the MNIST task. The loss function is bitwise cross-
entropy with Sigmoid activation. A grid search over learning rate, batch size, and weight decay is
used to select optimal hyperparameters based on validation accuracy. We use seeds {40, 41, 42} for
dataset splits and {0, 1, 2} for NN initialization and training. We independently tune the hyperpa-
rameters for each dataset split and training size by maximizing the validation accuracy, averaged
over the three training seeds.

A.2 MLPS AND RANDOM SPARSE MLPS

Architecture Details: We use MLPs with ReLU activations at the hidden layers, Sigmoid at the
output layers, and Xavier weight initialization (Glorot & Bengio, 2010). Sparsity in monolithic NNs
is achieved by pruning edges based on a uniform random score.

Boolean functions with depths of 1, 2, and 3 use MLPs with 1, 3, and 5 hidden layers (36 units
each). The MNIST-based task uses MLPs with 784 × 2 input units, 2 output units, and 6 hidden
layers with 256, 128, 64, 36, 36, 36 units.

Hyperparameter Sets: For Boolean functions, we use learning rates {0.1, 0.01, 0.001}, batch sizes
{4, 64}, and weight decay {0.001, 0.0001}. For MNIST, we test learning rates {0.01, 0.001}, batch
sizes {128, 256, 512}, and weight decay {0.001, 0.0001}.

A.3 HIERARCHICALLY MODULAR NNS

Overall Architecture: The architecture has L hierarchical layers, each with Ml modules. Each
module mi

l has functional parameters (MLP) and structural parameters (input selection vector sil ∈
RMl−1 ). The input selection vector, initialized with values from a standard normal distribution,
determines module input connectivity.

Module Input Selection: For a module mi
l , we apply the Sigmoid function to the input selection

vector sil to get pil , then select the top-2 values to generate one-hot encoded binary masks b1 ∈
{0, 1}Ml−1 and b2 ∈ {0, 1}Ml−1 . These masks isolate inputs from xl−1 using dot products, resulting
in inputs x1(l, i) = b1 ⊙ xl−1 and x2(l, i) = b2 ⊙ xl−1. The straight-through estimator is used to
estimate gradients.

For image modules, the Softmax function is applied to sil and one input image is selected. A binary
mask, b ∈ {0, 1}2, is generated and applied to each pixel position across the two images.

Forward Pass: Each module’s input is processed by its MLP, and outputs are concatenated before
passing to the next layer. This is repeated until the final layer, where outputs are selected from the
last set of modules using input selection vectors.

13

https://anonymous.4open.science/r/modular-NNs-08E5
https://anonymous.4open.science/r/modular-NNs-08E5


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 12: Number of weight updates (training iterations) for various NNs to reach peak validation
accuracy on different Boolean functions as compared to the ratio of truth table available.

Module MLP Architectures: For Boolean sub-functions, module MLPs have 2 input units, 1 output
unit, and a hidden layer with 12 units. For MNIST, module MLPs have 784 input units, 3 output
units, and 2 hidden layers (128 and 64 units). Xavier initialization is used for weights.

Hyperparameter Sets: Hyperparameters include learning rates {0.1, 0.01}, batch sizes {4, 64},
and weight decay {0.001, 0.0001} for Boolean functions. MNIST uses learning rates {0.01, 0.001},
batch sizes {128, 256, 512}, and weight decay {0.001, 0.0001}. Structural and functional parame-
ters use separate learning rates, and activation function temperature (τ ) for input selection vectors is
also tuned ({1.0, 2.0, 5.0}).

The learning rate values tested here for Boolean functions is a subset of the one used for monolithic
NNs while the batch size and weight decay values are the same. The learning rates and temperatures
used here are selected from a broader range of values based on results in Appendix C.1 and D.

Fixed Connectivity: In fixed inter-module connectivity, input selection vectors are fixed, and gra-
dients are not computed for them. A single learning rate is used for functional parameters, and the
hyper-parameter sets tested are consistent with the setup for monolithic NNs.

A.4 HIERARCHICALLY MODULAR NNS WITH SHARED MODULES

Overall Architecture: The architecture consists of L layers with Ml slots, filled by modules from a
shared pool of M modules. Each slot has an input selection vector (sil) and a module selection vector
(vi

l ). Both vectors are initialized randomly with samples from the standard normal distribution.

Input and Module Selection: Input selection follows the same procedure as for standard hierarchi-
cally modular NNs. For module selection, the Softmax function is applied to vi

l to select a module
from the pool and a binary mask, b ∈ {0, 1}M is constructed. The inputs to the slots are passed
through all M modules, and the slot output is computed using a dot product between the module
outputs and the binary mask. The straight-through estimator is used for gradient calculation. For
image slots, the module selection mask is applied independently at each module output position.

Forward Pass: Each slot processes inputs using a selected module, and the outputs are concatenated
and passed to subsequent layers. The module MLP architecture, training, and hyperparameters are
consistent with those used for hierarchically modular NNs.

Fixed Connectivity and Module Selection: In this variant, both input and module selection vectors
are fixed, with no gradients computed. The same hyperparameters are used as for monolithic NNs.

B TRAINING EFFICIENCY DETAILS

This section describes the methodology used to calculate the number of floating-point operations
(FLOPs) required during training across various NN architectures. The three main factors determin-
ing the FLOP count are: the number of samples or training size, the number of parameters, and the

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Task Hierarchical depth 1 Hierarchical depth 2 Hierarchical depth 3 MNIST Task
Number of weights F B U F B U F B U F B U

Monolithic 288 288 288 2880 2880 2880 5472 5472 5472 442,744 442,744 442,744
Modular 100 100 86 232 232 206 358 358 323 220,840 220,840 217,682

Modular-shared 102 102 52 422 242 108 958 382 167 221,036 220,676 108,850
Modular-FC 72 72 72 180 180 180 288 288 288 217,652 217,652 217,652

Modular-shared-FCMS 72 72 36 180 180 72 288 288 108 217,652 217,652 108,808

Table 1: Number of weights involved in forward pass (F), backward pass (B) and gradient based
update (U) of various NNs for different tasks.

number of training iterations (or weight updates) needed to reach the highest validation accuracy
(i.e., early stopping). Figures 12 and 13 present the number of training iterations required by dif-
ferent NN architectures, while Table 1 summarizes the weights involved in forward, backward, and
gradient update processes for various tasks.

Figure 13: Number of weight updates
(training iterations) for various NNs to
reach peak validation accuracy on the
MNIST-based task.

In each training iteration, given a batch size b, there are
b forward passes, b backward passes, and one weight up-
date. For a dataset of size D over one epoch, this results
in D forward passes, D backward passes, and ⌊D/b⌋+ 1
weight updates. The total FLOP count is computed by
multiplying the number of epochs by the operations per-
formed during all forward passes, backward passes, and
weight updates per epoch. FLOPs related to activation
functions and biases are excluded from this calculation.

Monolithic NNs: Let W be the number of weights in a
dense, monolithic NN. The FLOP count for a single for-
ward pass through the linear layers is 2 × W . For the
backward pass, this count is 4×W . Weight updates using
the Adam optimizer require 18×W operations.

For random sparse monolithic NNs, the number of weights is scaled according to the network’s
density, and FLOP calculations follow the same approach as for dense NNs.

Hierarchically Modular NNs: In hierarchically modular NNs, the total FLOP count includes both
operations from the forward pass through each module and those from the module input selection
mechanism. For Boolean function modules, input selection involves two dot products; for image
modules, it involves 784 dot products, effectively introducing additional units (2 for Boolean mod-
ules and 784 for image modules) to process the full output of the previous layer. The parameters
for input selection vectors are also considered in weight updates, and the FLOP counts for the for-
ward and backward passes incorporate 2× or 784× the parameters for the input selection vectors
for Boolean and image processing modules, respectively. The rest of the calculations follow the
previously described procedures.

In the variant with fixed inter-module connectivity, we do not include any FLOPs related to input
selection and only consider the weights within the module MLPs for the FLOP calculations.

Hierarchically Modular NNs with Shared Modules: For hierarchically modular NNs with shared
modules, each slot processes its specific inputs through all shared modules. A dot product is per-
formed between the activated module selection vector and the outputs of all modules, increasing the
number of parameters involved in the forward pass.

Let Wm represent the number of weights in each module MLP, Ns be the number of slots, and M
the number of shared modules. The number of weights used in the forward pass is Wm ×Ns ×M .
In the backward pass, the number of active weights is reduced to Wm × Ns because the module
selection mask is binary, leading to zero gradients for unselected modules in each slot.

For accounting for FLOPs associated with input selection vectors during forward and backward pass
we utilize the same procedure as described for hierarchically modular NN. Module selection involves
a dot product between the outputs of all modules and the module selection mask, effectively adding
units (2 for Boolean modules and 3 for image modules) at the top of each slot. The forward and
backward pass incorporates 1× or 3× the parameters for the module selection vectors for Boolean
modules and image processing modules respectively.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Finally, for weight updates using the Adam optimizer, we account for the parameters in the input
selection vectors, module selection vectors, and all shared modules.

The number of weights involved in the forward pass, backward pass, and optimizer updates is scaled
according to the respective operations (refer to details for monolithic NNs). The total FLOP count
is then obtained by multiplying these operations by the number of training epochs.

For the variant with fixed inter-module connectivity and module selection, FLOPs related to input
and module selection are excluded, and only the weights in the module MLPs are considered. During
the forward and backward passes, the number of active modules equals the number of slots, while
weight updates are applied only to the shared modules.

C HYPERPARAMETER TUNING AND SELECTION

Figure 14: Function graph

In this section, we present additional results to support the archi-
tectural and training choices for modular and modular-shared NNs.
These experiments are based on the function graph shown in Fig-
ure 14, with varying proportions of the truth table used for training.
Dataset details remain consistent with those described in Section A.

We perform a grid search over learning rates for both structural
and functional parameters, as well as weight decay values. Tested
learning rates include 0.1, 0.01, 0.001, while weight decay values are
0.001, 0.0001. The batch size is set to use all available training sam-
ples in a single batch, and all networks are trained for 1000 epochs using the Adam optimizer.

C.1 CONNECTIVITY AND MODULE SELECTION

In the previous section, we described the process of learning structural parameters in modular and
modular-shared NNs. Here, we present experiments to justify the use of the top-k operation for
input connectivity and module selection in both network types.

Figure 15: Train and test accuracy of modular NNs as compared to the ratio of the truth table used
for training. The various bars indicates the addition of Gumbel noise or direct top-k for module
input selection.

C.1.1 HIERARCHICALLY MODULAR NNS

Consider the input selection vector for module mi
l , denoted as sil . The goal is to use this vector to

score and select k indices along with their corresponding input values for the specific module. First,
the Sigmoid function is applied to the vector, yielding pil = σ(sil).

Previous training methods for hierarchically modular NNs have enhanced the exploration of differ-
ent connectivity patterns by adding Gumbel-distributed noise to the input selection vector before
applying a normalization function. This process allows for the effective selection of the top-k in-
dices, promoting exploration during training.

We investigate a variant of this process where Gumbel noise is added to sil before selecting the top-
k indices from pil . A grid search over the temperature parameter (τ ) used to normalize the vector
after adding Gumbel noise was also performed to identify the best configuration. This approach
aims to balance exploration and exploitation, reducing the likelihood of premature convergence to
suboptimal input configurations while improving learning capability.

The results are shown in Figure 15. We observe that the standard top-k selection method significantly
outperforms the Gumbel noise-based variants. We also evaluate the effect of temperature on input

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 16: Train and test accuracy of modular NNs as compared to the temperature (tau) values
used for module input selection using Gumbel noise.

selection performance. As depicted in Figure 16, higher temperature values yield better results.
Increased temperature facilitates more uniform exploration of the input selection vector, contributing
to improved learning outcomes.

Figure 17: Train and test accuracy of modular-shared NNs as compared to the ratio of the truth table
used for training. The various bars indicates the addition of Gumbel noise or direct top-k for module
input selection.

C.1.2 HIERARCHICALLY MODULAR NNS WITH SHARED MODULES

We now present the results for the modular-shared architecture. Let sil and vil denote the input and
module selection vectors for a given slot, respectively. The goal is to select k inputs and one module
for each slot. The Sigmoid function is applied to sil and the Softmax function is applied to vil to
compute the selection scores.

We compare direct top-k selection to a variant that uses Gumbel noise to enhance exploration. In this
variant, Gumbel noise is added to the selection vectors before applying the normalization functions,
which aims to avoid immediate convergence to a specific set of inputs or modules, promoting broader
exploration during training.

Figure 18: Train and test accuracy of modular-shared NNs as compared to the temperature (tau)
values used for module input selection using Gumbel noise.

Figure 17 demonstrates that Gumbel noise-based variants perform worse than the standard top-
k selection. Furthermore, as shown in Figure 18, higher temperature values during input selection
improve the model’s performance, consistent with the findings for hierarchically modular NNs. This
effect is due to increased exploration, preventing premature convergence and enhancing learning
outcomes.

D LEARNING RATE ANALYSIS FOR STRUCTURAL AND FUNCTIONAL
PARAMETERS

We analyze the impact of learning rates on both the structural and functional parameters in hierar-
chically modular NNs. For both the modular and modular-shared architectures, we begin by fixing

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 19: Test accuracy of modular NNs as compared to learning rates for structural and functional
parameters. The various columns show the results for different truth table ratios for training.

Figure 20: Test accuracy of modular-shared NNs as compared to learning rates for structural and
functional parameters. The various columns show the results for different truth table ratios for
training.

the learning rate combinations and then fine-tuning other hyperparameters, including weight decay
and temperature values. The batch size is kept constant so that all available samples are used in each
training iteration.

Figures 19 and 20 show the training and test accuracy for various learning rates across different
training sizes for the modular and modular-shared NNs, respectively. We consistently find that the
best-performing combination of learning rates is 0.1 for structural parameters and 0.01 for func-
tional parameters across both architectures. This suggests that learning inter-module connectivity
and module selection requires a more aggressive optimization strategy compared to learning sub-
functions within the modules. Structural parameters seem to benefit from a higher learning rate,
which may be due to the need for broader exploration during training.

Moreover, larger learning rates generally improve performance on tasks involving Boolean func-
tions. Thus, for both modular and modular-shared NNs, we focus on learning rate combinations of
{0.1, 0.01}. This approach reduces the complexity of the hyperparameter search space while still
achieving high performance across different training data sizes.

E EXPERIMENTS WITH ARBITRARY MODULAR ARCHITECTURES

In this paper, we initialize modular NNs with the number of modules matching the function graph at
each hierarchical level. For modular-shared NNs, we initialize the same number of slots per hierar-
chical level as in the function graph, while the number of shared modules corresponds to the number
of distinct gates in the function graph. However, an important question arises: how effective are

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

these modular architectures when such structural information is unknown, and an arbitrary number
of modules or slots are initialized?

In this section, we present results for scenarios where we vary the number of modules / slots at each
hierarchical level, as well as the number of shared modules for the modular-shared architecture.
These experiments provide insights into the flexibility and robustness of modular NNs under less
structured initialization conditions.

Figure 21: Train and test accuracy as compared to the number of modules defined in each layer of
the modular NN. The black lines represent the accuracy for the model with ground truth number of
modules in each layer.

E.1 HIERARCHICALLY MODULAR NNS

In the case of hierarchically modular NNs, as illustrated in the function graph in Figure 14, the
NN requires 3 modules at the first hierarchical level and 2 modules at the second. To evaluate
the flexibility of the module count, we experiment with three additional architectures, where each
hierarchical level is assigned M modules, varying M from 3 to 9.

Each architecture is trained independently using different training size ratios of the truth table, as
described previously in section A. The resulting train and test accuracy values are shown in Figure
21.

Interestingly, the performance across these architectures remains comparable to the NN that uses
the ground truth number of modules per hierarchical level. Furthermore, our analysis does not
show a clear trend where increasing or decreasing the number of modules consistently improves
performance, suggesting that the architecture is robust to variations in module count.

Figure 22: Train and test accuracy as compared to the number of slots defined in each layer and
the number of modules in the modular-shared NN. The black curve represents the accuracy for
the model with ground truth number of slots in each layer and the ground truth number of shared
modules.

E.2 HIERARCHICALLY MODULAR NNS WITH SHARED MODULES

For modular-shared NNs, we explore architectural variations along two dimensions, organized in
a grid. The first dimension is the number of slots per hierarchical level, ranging {3, 6, 9}, and the
second is the total number of shared modules, varying across {2, 4, 8}. This setup results in 9 distinct
architectures, each defined by a unique combination of slot and shared module counts.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Each architecture is trained independently using different splits of the truth table, with varying frac-
tions allocated for training. The results are presented in Figure 22, with plots segmented by the ratio
of the truth table used for training. The horizontal black line in the figure indicates the performance
of the architecture configured with the ground truth number of slots and shared modules.

As in the previous analysis, we observe that these architectures achieve similar performance to the
ground truth setup.

F ADDITIONAL RESULTS: GENERALIZATION AND TRAINING EFFICIENCY

In this section, we present additional visualizations that provide alternative perspectives on the gen-
eralization performance and training efficiency of the various architectures.

Figure 23: Generalization performance on seen combinations of different NNs trained on the hierar-
chically modular MNIST task, evaluated across varying proportions of digit combinations used for
training and different numbers of samples per combination. Plots show results for: a. modular NN,
b. modular-FC NN, c. modular-shared NN, and d. modular-shared-FCMS NN.

Figure 24: Training efficiency of different NNs trained on the hierarchically modular MNIST task,
evaluated across varying proportions of digit combinations used for training and different numbers
of samples per combination. Plots show results for: a. modular NN, b. modular-FC NN, c. modular-
shared NN, and d. modular-shared-FCMS NN.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 25: Test accuracy, train accuracy and FLOPs count of NNs as compared to the complexity or
hierarchical depth of the Boolean function graphs and the ratio of truth table used for training. First
column indicates the results for dense monolithic NNs, second column for modular NNs and third
column for modular-shared NNs. We can clearly see a trend where the top right of the heatmap
has better values indicating that larger training size and lower complexity functions are an easier
combination to learn.

21


	Introduction
	Preliminaries
	Hierarchically Modular Boolean Functions
	Neural Network Architectures

	Learning Modular Tasks Based on Boolean Functions
	Generalization Performance
	Training Efficiency
	Factors Influencing Generalization in Modular Networks

	Learning Visual Modular Tasks Based on MNIST Digits
	Discussion
	Conclusion
	Implementation and Training Details
	Dataset Construction and Hyperparameter Tuning
	MLPs and Random Sparse MLPs
	Hierarchically Modular NNs
	Hierarchically Modular NNs with Shared Modules

	Training Efficiency Details
	Hyperparameter tuning and selection
	Connectivity and Module Selection
	Hierarchically Modular NNs
	Hierarchically Modular NNs with Shared Modules


	Learning Rate Analysis for Structural and Functional Parameters
	Experiments with arbitrary modular architectures
	Hierarchically modular NNs
	Hierarchically modular NNs with shared modules

	Additional results: generalization and training efficiency

