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Abstract

The recent progress in developing pre-trained models,
trained on large-scale datasets, has highlighted the need
for robust protocols to effectively adapt them to domain-
specific data, especially when there is a limited amount of
available data. Data augmentations can play a critical role
in enabling data-efficient fine-tuning of pre-trained object
detection models. Choosing the right augmentation policy
for a given dataset is challenging and relies on knowledge
about task-relevant invariances. In this work, we focus on
an understudied aspect of this problem – can bounding box
annotations be used to design more effective augmentation
policies?. Through InterAug, we make a critical finding
that, we can leverage the annotations to infer the effective
context for each object in a scene, as opposed to manipulat-
ing the entire scene or only within the pre-specified bound-
ing boxes. Using a rigorous empirical study with multi-
ple benchmarks and architectures, we demonstrate the effi-
cacy of InterAug in improving robustness, handling data
scarcity and being resilient to high background context di-
versity. Finally, InterAug can be used with any off-the-
shelf policy, does not require any modification to the model
architecture, and significantly outperforms existing proto-
cols.

1. Introduction

Augmentation design has emerged as a crucial approach
to enable robust and data-efficient training of deep models
in a variety of computer vision tasks. While a large class
of image manipulation strategies can be utilized for syn-
thesizing augmentations [19], e.g., horizontal/vertical flips,
changes in brightness or mixup [25], the key focus has been
on designing effective augmentation policies. Examples
policies include Cutmix [20] that adds a randomly cropped
portion of one image onto another, Augmix [11] that utilizes
a composition of multiple pre-specified augmentations and
more recently, TrivialAug [17] that randomly selects both

the type and severity from pre-specified sets of augmenta-
tions and severity levels. Despite their widespread adoption,
AutoAugment [26, 5] techniques that automatically learn
dataset-specific augmentation policies are known to pro-
duce superior performance. However, their computational
complexity, reliance on large datasets and lack of transfer-
ability (from one dataset to another) make them a less pre-
ferred choice in practical, data-constrained applications.

In this paper, we explore the problem of designing
dataset-agnostic augmentation policies for data-efficient
training of object detectors. A common aspect in all ex-
isting off-the-shelf policies is that they do not exploit the
bounding box (bbox) annotations typically available in ob-
ject detection datasets. In general, bbox annotations are dif-
ferent from pixel-level labels used in classical instance seg-
mentation tasks, in that they do not accurately represent the
object boundaries and often contain some amount of back-
ground pixels. Consequently, by enabling invariance to the
local context captured by bbox annotations, one must be
able to enrich the object detectors and even potentially im-
prove their robustness under real-world distribution shifts.
A straightforward approach towards that is to naı̈vely ex-
tend any augmentation policy (e.g., TrivialAug) by manip-
ulating the regions only within the bounding boxes. How-
ever, we find that this approach leads to consistently poorer
performance when compared to a standard implementation
of that policy. This observation can be (at least partly) at-
tributed to the inconsistent nature of bbox labels, i.e., the
amount of context captured for each bbox can vary based
on factors such as the proximity between objects, the num-
ber of objects present, and most importantly the annota-
tor’s judgement. As a result, restricting augmentations only
within the bounding boxes can lead to inconsistent decision
rules even for the same object.

In order to circumvent this, we present InterAug, a
simple modification applicable to any pre-existing augmen-
tation policy. This involves expanding the bounding box
of each object to determine its ”effective context” (EC),
and subsequently applying the chosen image manipulation
within the estimated context. Subsequently,t. Through the
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Figure 1: Proposed Work. Naı̈vely extending existing augmentation policies (e.g., TrivialAug) to incorporate bounding
box information leads to poorer detection performance (results showed for Pascal VOC, when only 10% data is used for
training). Hence, we introduce InterAug , which infers the effective context to expand the given bbox annotation and
restricts image manipulation only within this context. InterAug is applicable to any architecture, augmentation policy and
leads to improved and more robust object detectors.

consistent use of expanded local context and the system-
atic elimination of undesirable leakage from other objects,
this simple approach enables targeted image manipulation
while being cognizant of other co-occurring objects within
the scene.

Findings. In our study, we rigorously evaluated the per-
formance of InterAug using a suite of commonly adopted
benchmarks and model architectures (F-RCNN, RetinaNet,
DETR). Motivated by its simplicity and efficacy, we used
TrivialAug, a state-of-the-art tuning-free augmentation pol-
icy, to implement all our variants (image-level, bbox-level,
and InterAug). We make the following findings:

• Robustness under real-world shifts (Section 4.1).
Following the recent DetectBench [22], we consid-
ered three sets of splits from the Berkeley Deep Drive
dataset, namely weather, scene and time, in order to
evaluate the impact of augmentation policies on detec-
tor robustness. Across all architectures, we observe
consistent gains (≈ 7.8% average in mAP@0.5) over
the bbox-level policy as well as the de facto standard of
image-level augmentations (≈ 3.9% average). Further,
studying metrics from the recent TIDE framework [2],
a toolbox for fine-grained error analysis reveals the im-
portance of considering the effective semantic context;

• Performance in data-constrained settings (Sec-
tion 4.2). Our experiments with the standard Pas-
cal VOC benchmark reveal that, at low training sizes
(10% − 20%), there is no apparent performance gap
between bbox- and image-level augmentation poli-

cies. Interestingly, via selective context manipu-
lation, InterAug provides particularly impressive
gains (2.6% in F-RCNN and 3.1% in RetinaNet) in
such data-constrained settings;

• Impact of high context diversity (Section 4.3). Since
InterAug relies on exploiting the local context, we
evaluated its behavior on the synthetic fruits bench-
mark, which synthetically places common fruits in un-
related scenes. Surprisingly, even in this challeng-
ing case, InterAug outperforms the naı̈ve bbox-level
policy by large margins (3.5%− 4%).

Overall, InterAug provides an efficient augmentation
policy for object detector training, that is effective with any
dataset, model architecture or training sample size.

2. Proposed Approach
In conventional object recognition models, only object

labels are available and hence image-level manipulations
are appropriate for implementing augmentation policies.
However, when detecting multiple objects in a scene, the
augmentations must be designed to promote invariance to
changes in the local context, and bounding box annotations
can be useful. To test this hypothesis, we first naı̈vely ex-
tend TrivialAug [17] by restricting the (randomly) chosen
image manipulation only within the bounding boxes. We re-
fer to this as bbox-level augmentation policy, as opposed to
the conventional image-level policy. We find that, in practi-
cal data-constrained settings, a bbox-level policy underper-
forms (measured using mAP@0.5 and False Positives (%)
in Figure 1) in comparison to the image-level policy. This
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Algorithm 1: InterAug with TrivialAug

Input: Image I, bounding boxes {B1,B2, · · · ,Bn},
List of augmentations A and strengths M

Output: Augmented Image
1. For any object Oi with bounding box annotation
Bi, randomly select another bounding box
annotation Bj

2. Construct effective context S(i,j) as described in
Section 2.1

3. Sample aug ∈ A and strength m ∈ M

4. Perform augmentation aug

(
S(i,j),m

)

somewhat surprising result motivated us to take a deeper
look into the design of an effective augmentation policy
with bbox annotations.

We begin by hypothesizing that the inconsistent nature
of bounding box labels can be one of the reasons for this
behavior. Unlike pixel-level object labels, the context cap-
tured in bbox annotations can vary due to factors like object
proximity, the number of objects present, and, most impor-
tantly, the annotator’s judgment. Consequently, by confin-
ing augmentations solely within the bounding boxes, incon-
sistent decision rules may arise even for the same object in
different scenes. To address this challenge, we introduce a
simple protocol InterAug that can be implemented us-
ing any off-the-shelf augmentation policy. As illustrated
in Figure 1, with no additional modification to the train-
ing pipeline, InterAug leads to significantly improved
detectors (> 3% gain in mAP@0.5). We next describe
InterAug and its implementation details.
Setup. We denote a scene as I ∈ RH×W×C , where
H,W,C represent the height, width and number of chan-
nels of the image. Without loss of generality, we assume
that the image contains n objects {O1,O2, · · · ,On} with
corresponding bounding boxes {B1,B2, · · · ,Bn}. Each Bj

is expressed using the top-left and bottom-right spatial co-
ordinates Bj =

{
(x1j , y

1
j ), (x

2
j , y

2
j )
}

. Finally, we denote the
object detector as PΘ parameterized by Θ.

2.1. InterAug: Augmentation Policy Design

Our approach’s fundamental idea revolves around
achieving invariance to variations in an object’s local con-
text and addressing the inconsistency in bbox labels. To ac-
complish this, we emphasize the significance of considering
the semantic context (background) while ensuring that in-
formation from co-occurring objects in a scene does not in-
fluence the process, thereby avoiding any unintended leak-
age. For a given object Oi with bounding box Bi, we first
select another object Oj (with Bj) to infer the effective con-
text (EC). Note that, the choice of Oj is random in every it-

Iteration Iteration

Figure 2: Convergence. An illustration of the training
convergence observed with naı̈ve bbox-level policy and
InterAug. Here, we consider two different training set-
tings for Pascal VOC, wherein the training size was fixed
at 10% and 20% of the full train data. Interestingly,
InterAug demonstrates improved convergence character-
istics. As we will show in the results, this also reflects in the
superior generalization and robustness performance.

eration and hence the inferred EC for an object Oi can vary
between iterations.

More specifically, we first construct the union box Bu
(i,j)

as follows:

Bu
(i,j) =

{(
min(x1i , x

1
j ),min(y1i , y

1
j )
)
,(

max(x2i , x
2
j ),max(y2i , y

2
j )
)}

Now, to identify the effective context for Oi, we compute
residual between the union box and the bounding box Bj

i.e., S(i,j) = Bu
(i,j)−Bj . Since the EC’s for the same object

can focus on different aspects of the background in a scene,
we encourage the detectors to avoid shortcut decision rules.
Implementation. Algorithm 1 summarizes the proposed
augmentation policy. We begin by noting that, image-level
and bounding box-level (or shortly bbox-level) policies are
special cases of our approach, wherein the former consid-
ers the entire image to be the effective context and the lat-
ter uses only the bounding-box annotations. The effective
context S(i,j) identified by InterAug will be piece-wise
rectangular and hence we first split it into its constituent
rectangular regions and then apply the pre-specified aug-
mentation within each of those regions. Please refer to
Figure 1 for an illustration. While InterAug can be im-
plemented with any off-the-shelf policy, we opt for Triv-
ialAug [17], a tuning-free augmentation policy, that in-
volves randomly selecting from a pre-specified set of im-
age transformations A and list of augmentation strengths
M. In all our experiments, we fixed A ={vertical/ horizon-
tal flips, crop, solarize, emboss, enhance color, sharpness,
contrast, posterize, blur, add noise, add clouds}, and we
randomly pick the corresponding intensity ranges specified
in M ={[0.5,1.0],[1.0,1.5], [0.2,1.0], [0.5,2.0], [0.5,3.0],
[0.5, 2.0], [0.5,1.5],[1,4],[0,15],[1,2], [0.5,1]}. To improve

3
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Evaluation Models Datasets Section

Robustness under real-world shifts Faster-RCNN, RetinaNet,DETR BDD-Weather, BDD-Scene, BDD-Time sec 4.1

Performance of InterAug in data-constrained settings Faster-RCNN, RetinaNet Pascal VOC sec 4.2

Impact of high context diversity Ftster-RCNN, RetinaNet Synthetic Fruits sec 4.3

Table 1: List of experiments considered in our empirical study.

the training process, InterAug also considers the EC
to be the entire union region Bu

(i,j) or the residual region
Bu

(i,j) −Bi −Bj where both bounding boxes are subtracted
from the union. More specifically, our implementation uses
all the three ways of modeling the effective context (one of
them randomly chosen in every minibatch during training)
and perform synthetic augmentations within this context.
Convergence Analysis. In Figure 2, we present an illus-
tration of the training convergence observed using the naı̈ve
bbox-level policy and our proposed method. For this re-
sult, we conducted experiments with two distinct training
settings on the Pascal VOC benchmark, where the training
size was set to 10% and 20% of the full train data. Inter-
estingly, InterAug exhibits a consistently better conver-
gence compared to the naı̈ve augmentation policy. As we
will demonstrate in the results (Section 3), this improve-
ment translates into superior generalization and robustness
performance.

3. Experiments
Setup. We conduct a number of experiments to assess the
performance of InterAug in different scenarios, includ-
ing real-world distribution shifts, data-constrained settings,
and its behavior on scenes that exhibit large context diversi-
ties. These evaluations are carried out using widely recog-
nized object detection benchmarks, namely Berkeley Deep
Drive (BDD), Pascal VOC, and the challenging synthetic
fruits datasets. The details of these experiments, including
the model architectures employed and the datasets utilized,
can be found in Table1. We will now provide a description
of the dataset setup for each of these experiments.

(i) To evaluate the robustness of InterAug against real-
world distribution shifts, we utilize DetectBench [22], a re-
cently introduced benchmark specifically designed to as-
sess the out-of-distribution (OOD) robustness of object
detectors. DetectBench constructs three distinct BDD-
OOD benchmarks: BDD-Weather, BDD-Scene, and BDD-
Time, by leveraging the attribute annotations available in
the large-scale autonomous driving dataset, Berkeley Deep
Drive (BDD). For instance, the BDD-Weather benchmark
aims to assess the OOD performance of object detection
models under varying weather conditions. The training
set consists of 52, 699 images labeled with weather at-
tributes corresponding to “clear” and “overcast”, while the

model evaluation is performed on a more challenging set of
17, 888 images containing novel weather attributes “foggy”,
“cloudy”, “rainy” and “snowy”. Similarly, the BDD-
Scene and BDD-Time benchmarks have non-overlapping
attributes related to “scene” and “time of day” respectively,
with training and test sizes of 69, 506 and 9, 943 for BDD-
Scene, and 47, 791 and 31, 900 for BDD-Time. All three
benchmarks are comprised of 10 object categories.
(ii) To evaluate the performance of InterAug under lim-
ited training sample size settings, we utilized the standard
Pascal VOC object detection benchmark of scenes compris-
ing different combinations of 20 distinct objects. Following
standard practice, we first combined Pascal VOC 2007 and
Pascal VOC 2012 train-validation sets resulting in a training
dataset of 16, 550 images. From this combined dataset, we
randomly sub-selected 10% and 20% of data for training
the detectors. Training object detectors with such limited
data is known to be challenging and data augmentations are
expected to help. In each case, we report the performance
on the same held-out, full Pascal 2007 test set consisting of
4952 samples.
(iii) Finally, we utilized the synthetic fruits dataset 1, which
contains images with fruits artificially inserted into natu-
ral scenes. Through this dataset, we investigate the impact
of InterAug under scenarios characterized by high con-
text diversity. Intuitively, due to the synthetic placement
of fruits in unrealistic settings, the background context does
not provide any useful signals for improving detection. As a
result, this provides an assessment of how InterAug han-
dles such high diversity in local context, given that its effec-
tive context generation invariably includes background pix-
els. This benchmark contains 65 different object categories,
and to emulate data-scarcity settings, we use only a subset
of 1000 images for training and report the performance on
the held-out validation set.
Model Architecture. To systematically benchmark the im-
pact of different augmentation strategies on fine-tuning ob-
ject detectors with extremely limited data, we performed
experiments with three popular object detection architec-
tures: (i) Faster-RCNN [18], a two-stage detector based
on Resnet-50 along with an FPN [13] backbone; (ii) Reti-
naNet [14], a single-stage detector based on Resnet50 and
FPN; and (iii) DETR [3] a transformer-based object detec-

1https://public.roboflow.com/object-detection/
synthetic-fruit
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tor based on Resnet50 backbone. All there architectures
were pre-trained on the MS-COCO [15] benchmark.

Experimental Implementation. We implemented
InterAug using the imgaug library [12] 2 and incor-
porated it into the popular Detectron2 object detection
framework [23] for Faster-RCNN and RetinaNet, and
into HuggingFace [21] library for DETR. Although
we present results using all three architectures for the
BDD-OOD benchmarks, we report performance only for
the Faster-RCNN and RetinaNet architectures due to the
limited training sizes in the data-efficiency and high context
diversity experiments. In all our experiments, we initialized
the networks with weights from a model pre-trained on
the COCO benchmark, and performed fine-tuning for 10K
iterations with batch size 8 (2 NVIDIA TESLA V100
GPUs).

Baselines. For comparison, we consider the two widely-
adopted augmentation policies, namely image-level and
bbox-level, evaluated under the same experiment setup. In
the former baseline, we randomly sample from the pre-
specified augmentation and strength sets, and apply it to the
whole image. In the latter approach, we only augment the
region within the bounding box of an object (provided in the
ground truth annotations). As described earlier, both these
baselines can be viewed as special cases of our method, and
the performance variation across these choices clearly ev-
idences the need to achieve invariance to the context cap-
tured by the bounding box (bbox) annotations and explor-
ing the optimal effective context (EC) for applying image
manipulations.

Metrics. In addition to the commonly employed Average
Precision score (mAP@0.5 score aggregated from 3 inde-
pendent trials.), we also consider an additional suite of met-
rics to perform fine-grained error characterization. To this
end, we follow the recent work by Bolya et al. [2] and
study the following error components 3: (i) classification
error (Cls. Error): instances where the model correctly lo-
calized an object but incorrectly classified it; (ii) localiza-
tion error (Loc. Error): instances where the model correctly
identifies the class of an object, but the predicted bound-
ing box is incorrect; (iii) CE Error: instances where the
models makes incorrect predictions for both the bounding
box and the class label; (iv) background error (Bck. Error):
instances where the model incorrectly identifies the back-
ground or an area without an object as containing an object;
(v) missed: instances where the model fails to identify an
object that is present in the scene; (vi) false positives (FP);
and (vii) false negatives (FN).

2https://github.com/aleju/imgaug
3https://github.com/dbolya/tide/

4. Results and Findings

4.1. InterAug consistently produces superior per-
formance across different distribution shifts

In Figure 3, we present detailed performance results
of the three architectures, Faster-RCNN, RetinaNet, and
DETR, across various BDD-OOD benchmarks. We make
a number of interesting observations. Firstly, we find that
that InterAug provides significant improvements over
the bbox-level baseline across all three distribution shifts,
with average boosts of 10.1%, 6.7%, and 6.9% for Faster-
RCNN, RetinaNet, and DETR, respectively. Next, across
the different architectures InterAug produces gains on
average 3.2%, 2.5%, and 6.03% compared to the image-
level augmentation policy. Furthermore, InterAug not
only produces significantly lesser false positives thus im-
proving AP, but also achieves fewer false negatives.

These improvements can be directly attributed to the ef-
ficacy of our proposed augmentation policy which enables
the detectors to leverage the effective context of the ob-
ject while avoiding shortcut decision rules. Finally, we also
include qualitative examples obtained using Faster-RCNN,
and we notice that InterAug produces a better-calibrated
model compared to the other two methods. This is demon-
strated by the reduced amount of false positives and halluci-
nations (detecting objects that are not present in the scene),
which was the case in image-level and bbox-level policies.

4.2. InterAug is effective under limited training
data sizes

In Figure 4, we present detailed results of Faster-RCNN
and RetinaNet models trained on 10% and 20% of the
Pascal VOC training data, utilizing the three augmentation
policies. As expected, we notice a monotonous increase
in performance in all cases, as the amount of training data
increases. Strikingly, InterAug provides non-trivial
performance improvements compared to the two other
baselines. For example, when trained using only 10%
of the available data, both Faster-RCNN and RetinaNet
improve upon the bbox-level baseline by 3.47% and
3.14% and produces gains of 2.6% and 3.1% over the
best-performing image-level policy respectively. From
the fine-grained analysis, we notice that the proposed
augmentation policy shows particularly strong performance
in reducing localization and background errors, the two
main contributors to the false positives. In the 20% case,
RetinaNet trained with InterAug achieves an 1.5%
improvement in localization error over Image-level and
1.2% improvement in background error over bbox-level
augmentation policy. Interestingly, the image-level policy
is reasonably effective at reducing false positives, it tends
to produce higher false negatives. In contrast, bbox-level
conservatively reduces the number of false negatives at the
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Model: F-RCNN Model: RetinaNet Model: DETR
OOD Setting Aug. Policy

AP50 FP FN AP50 FP FN AP50 FP FN

Image-level 36.36 3.83 54.58 45.69 20.25 22.71 22.82 10.22 57.13

Bbox-level 29.51 5.63 61.52 42.47 20.6 23.86 21.71 9.73 58.68Scene

InterAug 39.5 2.87 51.62 48.27 19.08 21.62 30.34 7.56 52.22

Image-level 37.36 3.83 52.55 44.23 18.14 24.85 27.42 9.58 53.12

Bbox-level 31.15 3.31 58.62 41.37 18.53 26.27 26.84 10.49 52.79Weather

InterAug 40.73 3.2 51.6 47.03 17.27 22.49 32.19 8.22 49.71

Image-level 29.16 5.7 52.19 38.4 23.42 21.78 24.51 14.13 51.42

Bbox-level 21.63 5.6 65.29 31.9 24.28 22.28 23.71 12.64 53.77Time

InterAug 32.16 2.83 51.9 40.56 22.85 19.2 30.32 10.92 48.88

Figure 3: Robustness. Performance obtained by training with different augmentation policies on three real-world shifts from
DetectBench [22]. We conduct experiments with three different model architectures (Faster-RCNN, RetinaNet and DETR)
and report mAP@0.5 along with false positives and false negatives. We observe that InterAug consistently produces more
robust detectors across all model architectures. Finally, we also show qualitative results obtained using Faster-RCNN.

cost of much higher false positive rates. In comparison,
InterAug is the best performing across both error types.

4.3. InterAug can handle high context diversity
scenes

Through Figure 5, we illustrate the performance on the
Synthetic fruits dataset which is a challenging benchmark
with a large number of object categories (65) and lim-
ited data (only 1000 training samples). The observations
here are similar to the Pascal VOC and BDD-OOD bench-
marks and InterAug provides non-trivial gains of 4%
over bbox-level and 2.7% over image-level policies respec-

tively for Faster-RCNN. Similar improvements can be ob-
served even with RetinaNet, thus demonstrating the benefits
of InterAug even under high background diversity.

5. Related Work

Data augmentation is routinely used when training deep
models for computer vision [19], due to its utility in improv-
ing generalization and reducing overfitting. By leveraging
synthetic data obtained via pre-defined manipulations, e.g.
geometric transformations or corruptions [10, 23], one can
build models that generalize better to unseen test data, even
under distribution shifts. State-of-the-art techniques go be-
yond conventional image manipulations, and adopt inter-
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Model Train Size Aug. Policy AP50 Cls. Error Loc. Error CE Error Bck. Error Missed FP FN

Image-level 72.62 2.34 7.13 1.27 3.84 5.11 17.12 10.87

Bbox-level 71.73 2.43 6.77 1.35 4.73 4.35 18.47 10.1710%

InterAug 75.2 2.85 6.29 0.92 2.41 7.09 12.55 13.34

Image-level 75.3 2.05 6.5 1.13 4.11 4.13 16.23 8.91

Bbox-level 74.14 2.09 6.53 1.22 4.65 3.98 17.48 8.73

F-RCNN

20%

InterAug 77.71 2.32 5.52 0.86 2.94 5.7 12.25 10.81

Image-level 75.35 3.06 4.36 0.97 4.15 1.24 21.02 4.84

Bbox-level 75.73 2.95 3.84 0.91 4.7 0.96 21.54 3.7910%

InterAug 78.49 2.49 4.0 0.87 3.63 1.01 18.83 3.69

Image-level 77.22 2.28 4.21 1.04 4.19 1.04 19.79 3.88

Bbox-level 77.01 2.09 4.34 0.99 4.5 0.81 20.8 3.02

RetinaNet

20%

InterAug 80.28 2.02 3.72 0.88 3.32 0.98 17.61 2.93

Figure 4: Data-efficient Training. We report the data-constrained dtector performance obtained using two different archi-
tectures (Faster RCNN, RetinaNet) and three different augmentation policies on the Pascal VOC benchmark. In both cases,
we report the average mAP@0.5 scores, when trained with 10% and 20% of the training data. Furthermore, we show the
fine-grained evaluation using TIDE metrics. We find that InterAug achieves significant improvements over the baselines.
Finally, we provide example detections for the RetinaNet model trained using different augmentation policies.

polation techniques such as Mixup [25] and CutMix [20],
or compositional strategies such as AugMix [11], Triv-
ialAug [17], AugMax, ALT [9] etc.

In practice, augmentation design typically requires
dataset-specific tuning and may rely on knowledge about
the task-relevant invariances. In order to simplify this pro-
cess, AutoAugment strategies [6], which pose augmentation
design for a given dataset as a search problem, and learn
an optimal policy through reinforcement learning, have also
been proposed. In practice, they can be computationally ex-
pensive and can even be impractical when the design space
becomes large. Interestingly, a recent study [17] showed
that, in object recognition models, an augmentation policy
drawn in random can achieve similar performance as that of
AutoAugment methods.

In addition to geometric or color space transformations,
mixing and copy-paste style augmentations, which copy an
object from one image and paste in another image, have
gained popularity for object detection tasks [7, 8]. More re-
cently, AutoAugment techniques specifically designed for
object detection have emerged [26, 5]. In [5], Chen et

al. proposed an auto augment approach to exploit the rel-
ative size of objects in a given frame and advocated for
bounding box-level augmentations, which many off-the-
shelf policies do not leverage. However, in our experiments,
we observed that a naı̈ve adoption of bbox-level augmenta-
tions yields consistently poor results compared to the stan-
dard image-level policy.

We hypothesize that, the inconsistent nature of bound-
ing box labels can be one of the reasons for this behavior.
Annotating a large number of examples for object detection
tasks is expensive and error-prone. While multiple anno-
tators are often required to obtain high quality annotations
in many real-world applications practitioners routinely col-
lect data from less expensive data resources, including so-
cial media/crowd-sourcing platforms, or use fewer annota-
tors to save costs. This often results in imprecise bounding
box labels. To address this challenge of noisy labels, recent
works [24, 4, 16, 1] have developed sophisticated training
methods that typically require large amounts of data, com-
putationally expensive optimization strategies and multiple
additional objectives. In contrast InterAug works out of
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Model Aug. Policy AP50 Cls. Error Loc. Error CE Error Bck. Error Missed FP FN

Image-level 38.25 13.51 4.37 1.32 2.95 12.42 21.01 24.9

Bbox-level 36.96 17.95 5.41 1.24 2.66 12.76 23.12 25.78F-RCNN

InterAug 40.92 11.42 4.6 1.14 2.95 6.62 21.5 19.54

Image-level 37.82 18.35 2.23 0.57 2.49 8.37 32.86 17.91

Bbox-level 35.65 17.31 2.81 0.74 3.31 6.05 33.68 16.36RetinaNet

InterAug 39.31 13.08 2.22 0.79 2.25 4.18 32.64 13.21

Figure 5: Handling high context diversity. We present object detection results of two architectures on a practically relevant
and challenging task that involves limited training data and scenes characterized by high diversity in background context.
We use Synthetic Fruits dataset, which contains only 1000 natural scenes with fruits from 65 categories synthetically added
to them. We find that InterAug outperforms both baselines by significant margins. Furthermore, InterAug produces
considerably fewer localization and background errors, as well as a reduced number of missed objects compared to the
baselines. Finally, we also include qualitative visual examples.

the box, without requiring any modifications to the training
loop or the model architecture, and provides significantly
robust detectors and is effective even under scarce training
data scenarios.

6. Conclusion

We introduced a new augmentation policy for train-
ing object detectors, referred to as InterAug. Impor-
tantly, InterAug is simple to implement and can be uti-
lized with any off-the-shelf augmentation policy. In our
study, we implemented InterAug with TrivialAug, orig-
inally designed for object recognition, for object detec-
tion. InterAug considers the effective context of an ob-
ject and achieves invariance to the local context. Our ex-

periments on three popular benchmarks demonstrated that
InterAug consistently produces robust object detectors,
outperforming current practices, and leading to improved
generalization in limited training data settings and scenar-
ios with high context diversity. On closer look, the models
trained with InterAug reduce the number of false posi-
tives without compromising on the false negatives. In sum-
mary, our work clearly emphasizes the benefits of utilizing
bounding box annotations in augmentation policies, for pro-
ducing reliable and data-efficient object detectors.
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