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Abstract

Inverse Reinforcement Learning (IRL) and Re-
inforcement Learning from Human Feedback
(RLHF) are pivotal methodologies in reward
learning, which involve inferring and shaping
the underlying reward function of sequential
decision-making problems based on observed hu-
man demonstrations and feedback. Most prior
work in reward learning has relied on prior knowl-
edge or assumptions about decision or preference
models, potentially leading to robustness issues.
In response, this paper introduces a novel linear
programming (LP) framework tailored for offline
reward learning. Utilizing pre-collected trajecto-
ries without online exploration, this framework
estimates a feasible reward set from the primal-
dual optimality conditions of a suitably designed
LP, and offers an optimality guarantee with prov-
able sample efficiency. Our LP framework also
enables aligning the reward functions with human
feedback, such as pairwise trajectory comparison
data, while maintaining computational tractabil-
ity and sample efficiency. We demonstrate that
our framework potentially achieves better perfor-
mance compared to the conventional maximum
likelihood estimation (MLE) approach through
analytical examples and numerical experiments.

1. Introduction
Reward learning involves inferring and shaping the underly-
ing reward function from observed human demonstrations
and feedback. Inverse reinforcement learning (IRL) and
reinforcement learning from human feedback (RLHF, also
known as preference-based reinforcement learning) are key
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methodologies in reward learning, applied in various se-
quential decision-making tasks such as games (MacGlashan
et al., 2017; Christiano et al., 2017; Ibarz et al., 2018),
robotics (Finn et al., 2016; Brown et al., 2019; Shin et al.,
2023), and language models (Ziegler et al., 2019; Stiennon
et al., 2020; Wu et al., 2021; Ouyang et al., 2022; Liu et al.,
2023).s Particularly in the recent drastic development of
large language models (LLMs), RLHF has played a cru-
cial role in fine-tuning models to better align with human
preferences (Ouyang et al., 2022). However, despite the
notable empirical success of these algorithms, a significant
gap remains in the theoretical analysis of IRL and RLHF,
limiting us to guarantee their reliability. This work aims to
bridge this gap by proposing a novel theoretical framework
for offline IRL and RLHF.

IRL aims to infer a reward function that aligns with an ex-
pert behavior from demonstrations (Ng & Russell, 2000;
Abbeel & Ng, 2004). Typical IRL algorithms employ a
bi-level optimization framework within the context of maxi-
mum likelihood estimation (MLE). In this framework, the
inner optimization evaluates the policy based on the current
reward parameters, while the outer optimization updates
these parameters to better match observed expert behavior.
These algorithms have been extensively explored in the lit-
erature (Ziebart et al., 2008; Wulfmeier et al., 2015; Zhou
et al., 2017; Zeng et al., 2022; 2023), and their convergence
is studied in both online settings (Zeng et al., 2022) and
offline settings (Zeng et al., 2023).

Building upon IRL, RLHF recovers a reward function from
human feedback data, which is commonly given by pair-
wise or K-wise trajectory comparisons. Despite growing
interest in RLHF, only a few algorithms provide optimality
guarantees with sample complexity bound. Most existing
approaches adopt an MLE framework, assuming that human
evaluators follow a presupposed preference model, such
as the Bradley-Terry-Luce (BTL) model. The reward pa-
rameters are then fine-tuned to maximize the log-likelihood
of the collected offline preference data (Christiano et al.,
2017). Recently, (Zhu et al., 2023; Zhan et al., 2023; Li
et al., 2023) have proposed offline RLHF algorithms with
optimality guarantees by adopting a pessimistic mechanism
from offline reinforcement learning (RL) theory. (Park et al.,
2024) further suggested a personalized setting that learns
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multiple reward models for heterogeneous preferences.

While the MLE-based approach offers a solid theoretical
framework for both IRL and RLHF, it comes with unavoid-
able limitations. Particularly in IRL, bi-level optimization al-
gorithms face computational challenges due to their nested-
loop structures. In addition, MLE-based algorithms rely on
a specific decision-making or preference model they employ.
For example, the IRL algorithm proposed by (Zeng et al.,
2022) learns the reward function that aligns with an expert
policy, which is assumed to be an optimal softmax policy.
Furthermore, RLHF algorithms (e.g. (Zhu et al., 2023; Zhan
et al., 2023)) assume a preference model for human evalua-
tor, which might not fully capture the complex and diverse
nature of real-world human preferences. Consequently, their
optimality guarantees might be compromised if there ex-
ists a mismatch between actual human preferences and the
model in use.

In response to these challenges inherent in MLE frame-
works, recent research has shifted focus from estimating
a single reward function (under a presupposed model) to
recovering a feasible reward set, a set of rewards where the
expert policy is (near) optimal. Notably, (Metelli et al., 2021;
2023) estimated the feasible reward set from finite-horizon
Bellman equations and provided sample complexity bounds
associated with estimation errors. However, their algorithm
requires a generative model of state transition probabilities.
(Lindner et al., 2022) mitigated this requirement by adopt-
ing an efficient exploration policy for sampling trajectories,
though it remains in an online setting. More recently, and
concurrent with our work, (Zhao et al., 2023) introduced
the first offline algorithm with a theoretical guarantee. They
introduce a pessimistic mechanism to address the issue of
non-uniform data coverage, penalizing state-action pairs
with low visitation frequency. Nevertheless, these penalty
functions are nonlinear and non-convex, resulting in a non-
convex reward set. This could limit flexibility for applica-
tions, especially when selecting a specific reward function
within the set.

In line with this evolving perspective, we aim to obtain a
convex estimate of a feasible reward set in an offline setting.
To achieve this, we leverage recent advancements in the
Linear Programming (LP) framework within the domain of
offline RL. A fundamental challenge in offline RL is the
non-uniform coverage of offline data (Fujimoto et al., 2019;
Kumar et al., 2020). To address this issue, recent algorithms
have employed a pessimistic mechanism that conservatively
selects the value function or model within an uncertainty
set (Liu et al., 2020; Jin et al., 2021; Rashidinejad et al.,
2021; Xie et al., 2021; Uehara & Sun, 2021; Chen & Jiang,
2022). However, these pessimistic approaches often in-
troduce non-convex optimization problems, which can be
intractable. In the latest research, a series of works (Zhan

et al., 2022; Rashidinejad et al., 2022; Ozdaglar et al., 2023)
have introduced LP-based methods that relax data coverage
assumptions and provide tractable algorithms suitable for
function approximation by introducing convex formulations.

Given the success of LP-based approaches in offline RL,
investigating how it could address non-convexity and non-
uniform data coverage issues in offline IRL presents a
promising research direction. One notable advantage of LP
is its flexibility in addressing intrinsic challenges in reward
learning, such as avoiding undesirable degenerate solutions
like r = 0. We demonstrate that a polyhedral estimate of the
feasible reward set, provided by LP, offers efficient ways to
identify a non-degenerate reward function. For example, it
allows to select a reward function that maximizes the reward
gap between the expert policy and suboptimal policies (e.g.,
uniform policy) over the solution set. We also highlight
LP’s suitability for function approximation, primarily due
to its linear structure, which can further reduce the solution
set and computational complexity. Furthermore, the LP
framework enables the integration of extra information. As
a notable example, we show that RLHF data can be incor-
porated by simply adding linear constraints, maintaining
computational tractability and sample efficiency.

Our main contributions can be summarized as follows:

• We present an LP formulation for offline IRL that di-
rectly estimates the feasible reward set by the primal-
dual optimality conditions in an empirical LP formula-
tion of Markov decision process (MDP) (Section 3.1).

• In Theorem 3.3, the optimality of the estimated reward
set is provided such that any reward function within
this set ensures the expert policy is Õ(

√
|S||A|/N)-

suboptimal, under appropriate data coverage assump-
tion.

• In offline RLHF, we align reward functions with pair-
wise trajectory comparison data using linear constraints
(Section 4.1). In Theorem 4.1, we provide the general-
ization guarantee of the estimated reward function for
unseen trajectory pairs.

• We address the potential degeneracy issue in reward
learning (Section 3.3) and propose a unified framework
that effectively combine IRL and RLHF to mitigate the
degeneracy (Section 4.3).

• The proposed LP algorithm and the MLE algorithms
in the literature are compared through numerical ex-
periments (Section 5). We also provide an analytical
example in offline RLHF, where MLE algorithm fails,
while our LP approach succeeds to identify the optimal
policy (Appendix F)

Additional related literature is discussed in Appendix A.
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2. Preliminaries
2.1. Markov Decision Process (MDP)

We first revisit the standard notations for a tabular infinite-
horizon discounted Markov decision process (MDP). An
MDP M is represented as a tuple M = (S,A, P, γ, µ0, r),
where S and A represent finite state and action spaces, P :
(S,A) 7→ ∆(S) denotes the transition probability function,
γ ∈ (0, 1) represents the discount factor, and µ0 ∈ ∆(S) is
the initial state distribution. The reward function r(s, a) :
S × A 7→ [−1, 1] indicates the reward received for taking
the action a in state s.

The primary objective in MDP is to identify a stochastic
policy π : S 7→ ∆(A) that maximizes the expected cu-
mulative reward: Eπ[

∑∞
h=0 γ

hr(sh, ah)|s0 ∼ µ0]. We
define vπ(s) as the expected total discounted reward re-
ceived when initiating from state s and following π, such
that vπ(s) := Eπ

[∑∞
h=0 γ

hr(sh, ah) | s0 = s
]
. Then, the

optimal policy π∗ maximizing the expected reward and its
corresponding value function v∗ := vπ

∗
are related by the

Bellman equation

v∗(s) = max
a∈A

{
r(s, a) + γ

∑
s′∈S

P (s′|s, a)v∗(s′)

}
, (1)

which holds for any s ∈ S. It is well-established that v∗ can
be determined by solving the following linear programming
(LP) as outlined in (Puterman, 2014):

min
v∈R|S|

(1− γ)µ⊤
0 v s.t. M⊤v − r ≥ 0. (2)

The matrix M ∈ R|S|2|A| is defined as M(s′, (s, a)) :=
1{s′=s} − γP (s′|s, a), where 1{s′=s} denotes the indicator
function for the case {s′ = s}. Throughout the paper, we
treat the above LP as the primal LP, and v as the primal
optimization variable. Then, the dual LP is expressed as

max
d∈R|S||A|

r⊤d s.t. Md = (1− γ)µ0, d ≥ 0. (3)

The dual variable d, often interpreted as an occupancy mea-
sure or a discounted state-action visitation frequency in RL
literature, is related to a policy π by

dπ(s, a) = (1− γ)

∞∑
h=0

γhPπ
µ0
(sh = s, ah = a). (4)

Here, Pπ
µ0
(sh = s, ah = a) represents the probability of

(sh, ah) = (s, a), given s0 ∼ µ0 and ah′ ∼ π(sh′) for all
h′ ≥ 0. The dependence on γ and µ0 is omitted in the
notation dπ for simplicity. A more detailed relationship
between π and dπ can be found in (Puterman, 2014).

2.2. Offline IRL: Learning from Expert Trajectories

While RL learns a policy to maximize rewards in a given en-
vironment, IRL aims to infer the underlying reward function

that drives observed behavior. In the standard IRL setting, a
single expert agent collects trajectory (roll-out) samples, and
the reward function is recovered from these samples. We
denote the true expert policy and corresponding occupancy
measure as πe and de, respectively, where de is defined as
de := dπe . Our objective is to learn a reward function r such
that the occupancy measure de is (near) optimal, utilizing
the offline dataset gathered from the expert policy πe.

In offline setting, the true values of the expert policy πe and
the transition probability P are unknown. Instead, we have
access to a static, pre-collected dataset DIRL composed of
N independent and identically distributed (i.i.d.) trajectory
samples:

DIRL = {τn = (sn0 , a
n
0 , s

n
1 , . . . , s

n
H−1, a

n
H−1, s

n
H)}Nn=1.

(5)
Note that the sampling distribution is fully determined by µ0,
P , and πe. Let Nh(s, a) and Nh(s, a, s

′) be the counts of n
satisfying (snh, a

n
h) = (s, a) and (snh, a

n
h, s

n
h+1) = (s, a, s′)

in the dataset, respectively. Using these counts, we estimate
the occupancy measure de as follows:

d̂e(s, a) = (1− γ)
1

N

H−1∑
h=0

γhNh(s, a) ∀(s, a) ∈ S ×A.

(6)
Using this empirical estimate d̂e, we aim to develop an LP
formulation that identifies a reward function which ensures
the optimality of de with an acceptable level of error.

2.3. Offline RLHF: Learning from Pairwise Trajectory
Comparisons

We extend our LP framework to address the offline RLHF
problem. Our primary objective is to derive a reward
function that is aligned with pairwise trajectory compar-
ison data, provided by human evaluators. We denote each
comparison query as qn, with the index n ranging from
1 to Nq. Each query comprises a pair of trajectories,
such that τn,1 = (sn,10 , an,10 , . . . , sn,1H−1, a

n,1
H−1, s

n,1
H ) and

τn,2 = (sn,20 , an,20 , . . . , sn,2H−1, a
n,2
H−1, s

n,2
H ). We assume

τn,1 and τn,2 are sampled i.i.d. according to the sampling
distribution µHF. In each query, a human evaluator is pre-
sented with both trajectories and asked to select the one
they prefer. We denote the event where trajectory τn,1

is preferred over τn,2 by the variable yn = 1, and con-
versely, yn = 2 indicates the event where τn,2 is favored
over τn,1. The human feedback dataset is then represented
by DHF = {(τn,1, τn,2, yn)}Nq

n=1.

Given the dataset DHF, we design an LP formulation to iden-
tify a reward function r that aligns well with DHF. Notably,
this LP approach is purely data-driven, relying solely on
the observed comparisons without assuming any specific
preference model associated with human evaluators. This
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aspect distinguishes it from previous MLE algorithms for
offline RLHF. The detailed comparison will be elaborated
in a later section of the paper.

3. Offline Inverse Reinforcement Learning
3.1. LP Formulation of Offline IRL

Recall the dual LP formulation of MDP presented in the
previous section:

max
d∈R|S||A|

r⊤d s.t. Md = (1− γ)µ0, d ≥ 0. (7)

IRL aims to find a feasible reward function r such that the
expert occupancy measure de is an optimal solution to the
above dual LP. As the feasible reward function is not unique,
we define the feasible reward set as follows:

R = {r ∈ [−1, 1]|S||A| | de is optimal to (7)} (8)

In the offline setting, recovering the ground-truth R is chal-
lenging since we only have access to the empirical estimate
of de and the transition matrix P . Consequently, our goal
is to recover an estimate of R in which de is a near-optimal
solution to (7) for any r in this estimated set.

Marginal importance sampling. The primary challenge
in offline RL and IRL is the non-uniform coverage of
the offline dataset. To address this issue, we adopt the
marginal importance sampling (MIS) framework in the liter-
ature (Nachum et al., 2019; Lee et al., 2021), which consid-
ers the scaled version of LP. First, we define the optimization
variable wd ∈ R|S||A| as

wd(s, a) :=

{
d(s,a)
de(s,a)

if de(s, a) > 0,

0 if de(s, a) = 0.
(9)

wd is a scaled dual variable, which represents the ratio
between the target d and the expert de. The expert opti-
mization variable is denoted by we := wde

, which satisfies
we(s, a) = 1{de(s,a)>0} for all (s, a) ∈ S × A by the
definition of wd. Note that our algorithm will not require
information about which state-action pairs have zero visi-
tation frequency under πe (i.e., de(s, a) = 0), since it will
automatically set the reward to zero, i.e. r(s, a) = 0, if
d̂e(s, a) = 0.

Next, we define u ∈ R|S||A| and K ∈ R|S|2|A| as

u(s, a) := r(s, a)de(s, a),

K(s′, (s, a)) := de(s, a)1{s=s′} − γd′e(s, a, s
′),

(10)

where d′e(s, a, s
′) := de(s, a)P (s

′|s, a) for any (s, a, s′).
In this MIS framework, u and K correspond to r and P ,
respectively. The following lemma shows this relationship
clearly (see Lemma 1 in (Ozdaglar et al., 2023) for the
proof).

Lemma 3.1. r⊤d = u⊤wd and Md = Kwd hold for any
d ∈ R|S||A|.

Empirical LP formulation. By Lemma 3.1, the dual LP
can be written with u, w, and K as follows:

max
w∈R|S||A|

u⊤w s.t. Kw = (1− γ)µ0, w ≥ 0. (11)

We omit the subscript d in wd for ease of notation. In the
above LP formulation, our objective is to identify the set of
u for which we is optimal. However, in the offline setting,
the true values of K and de remain unknown. Therefore,
our goal shifts towards constructing an empirical version
of this LP. We first define the empirical estimate of u as
uD(s, a) := r(s, a)d̂e(s, a) for all (s, a) ∈ S × A, and
replace the objective function u⊤w with u⊤Dw. Next, we in-
troduceKD ∈ R|S|2|A|, an empirical estimate ofK, defined
as:

KD(s
′, (s, a)) := d̂e(s, a)1{s=s′} − γd̂′e(s, a, s

′), (12)

where for any (s, a, s′) ∈ S ×A× S,

d̂′e(s, a, s
′) := (1− γ)

1

N

H−1∑
h=0

γhNh(s, a, s
′). (13)

However, directly substituting the empirical estimate KD
for K in the equality constraint Kw = (1 − γ)µ0 can be
problematic, as it may cause the target variable we being
infeasible. Therefore, we opt to relax the equality constraint
to an inequality constraint.

Let X = [x1, · · · , xNX
] ∈ R|S|×Nx be a coefficient ma-

trix for the relaxation, where ∥xi∥∞ ≤ 1 for all i ∈
{1, . . . , Nx}. Let ϵx ∈ RNx be a parameter that controls the
level of relaxation. Then, we replace the equality constraint
Kw = (1 − γ)µ0 with the relaxed inequality constraint
X⊤(KDw − (1 − γ)µ0) ≤ ϵx. One applicable choice of
the coefficient matrix X would be a matrix that contains all
2|S| binary (sign) vectors [±1,±1, . . . ,±1] in its columns.
Then, the inequality constraint is equivalent to the L1 norm
constraint, i.e. ∥KDw − (1− γ)µ0∥1 ≤ ϵx.

With this relaxation, the empirical version of the dual LP
can be expressed as

max
w∈R|S||A|

u⊤Dw

s.t. X⊤(KDw − (1− γ)µ0) ≤ ϵx, w ≥ 0.

(14)

Additionally, the dual of (14) can be expressed as

min
v∈RNx

(1− γ)µ⊤
0 Xv + ϵ⊤x v

s.t. K⊤
DXv ≥ uD, v ≥ 0,

(15)

where v is an optimization variable.

4



A Unified LP Framework for Offline Reward Learning

Feasible reward set estimation. Under the empirical LP
formulations, our goal is to estimate the set of u such that
we is (near) optimal to (14). Consider the primal-dual opti-
mality conditions of (v, w) under a reward function u:

(Primal feasibility) : K⊤
DXv ≥ u, v ≥ 0,

(Dual feasibility) : X⊤(KDw − (1− γ)µ0) ≤ ϵx, w ≥ 0,

(Zero duality gap) : (1− γ)µ⊤
0 Xv + ϵ⊤x v = u⊤w.

(16)

w is dual-optimal under u if and only if the above optimality
conditions hold with some v.

Consequently, the feasible reward set can be estimated by
identifying (u, v) pairs for which (u, v, we) satisfies (16).
Here, we further relax the zero duality gap condition with
the slack parameter ϵg ≥ 0 for two reasons. First, the
true reward might not satisfy this equality constraint due
to errors in empirical estimation of de and K. Second,
we are also interested in the reward such that πe is near-
optimal. Therefore, we consider the following polyhedron
as an estimate of the feasible reward set:

R̂IRL(ϵg) := {(u, v) | (1− γ)µ⊤
0 Xv + ϵ⊤x v − u⊤1 ≤ ϵg︸ ︷︷ ︸

(i)

,

K⊤
DXv ≥ u, v ≥ 0︸ ︷︷ ︸

(ii)

, −d̂e ≤ u ≤ d̂e︸ ︷︷ ︸
(iii)

}.

(17)

The constraint (i) denotes the upper bound on the duality
gap, where ϵg is used as the parameter. (ii) represents pri-
mal feasibility condition and (iii) bounds the reward r to
the range [−1, 1]. The vector 1 (vector of all ones) is used
instead of we in (i), since u⊤1 = u⊤we holds by the defi-
nition of u and we. Note that the dual feasibility condition
is not required in R̂IRL(ϵg) because it is a condition for the
constant value we.

3.2. Optimality Guarantee for Offline IRL

In this section, we analyze the statistical error involved in
the estimate R̂IRL of the feasible reward set R. Before
presenting the main results, we address the data coverage
issue in our setting. In offline RL, distribution mismatch
between the target policy and the behavior policy causes
the inaccurate policy evaluation, and the concentrability-
type assumption is required for an optimality guarantee. In
offline IRL, since the behavior policy is identical to the
expert policy, the reward estimation can be inaccurate for
state-actions pairs where the occupancy measure de(s, a) is
small. We address this issue by defining the confident set of
occupancy measures.

Confidence set. The confidence set if defined as the in-
tersection of a set of valid occupancy measure (under MDP

M) and an L∞ norm ball with radius B:

DB :=
{
d ∈ R|S||A|

+ |Md = (1− γ)µ0, ∥wd∥∞ ≤ B
}
.

(18)
The radius B ≥ 1 is a parameter that controls the conserva-
tiveness of the algorithm.

The set DB includes all possible occupancy measures d if
B ≥ d−1

min, where

dmin := min
(s,a)∈S×A: de(s,a) ̸=0

de(s, a), (19)

since wd(s, a) ≤ d−1
min for any d ∈ ∆(S × A) and (s, a) ∈

S × A by the definition of wd (9). In this case, optimality
over the set DB implies global optimality.

It is worth highlighting that setting B = d−1
min yields results

comparable to those in recent works (Metelli et al., 2023;
Zhao et al., 2023). The error bounds in these works depend
on the constant π−1

min, defined as

πmin := min
(s,a)∈S×A: πe(a|s)̸=0

πe(a|s). (20)

Under a fixed µ0, the value of B = d−1
min is upper bounded

by (constant)× π−1
min, by the following inequality:

dmin = de(s
′, a′) = πe(a

′|s′)
∑
a∈A

de(s
′, a)

≥ (1− γ)µ0(s
′)πmin,

(21)

where (s′, a′) ∈ S×A is a state-action pair that achieves the
minimum in dmin. Thus, setting B = d−1

min can provide error
bounds comparable to those in other works while ensuring
global optimality.

Our goal is to establish the optimality of de within the con-
fidence set DB . The proof comprises two distinct steps.
Firstly, we establish that wd̃ is feasible to the dual empirical
LP (14) with high probability for any d̃ ∈ DB , under ap-
propriate level of relaxation ϵx. Next, we show that we has
a (nearly) higher objective than wd̃ with high probability
since we has a small duality gap. In the following lemma,
we prove that for any d̃ ∈ DB , corresponding wd̃ is a feasi-
ble solution to the empirical LP with high probability under
appropriate relaxation level ϵx in the constraint.

Lemma 3.2. In dual empirical LP (14), let

ϵx =

(
B(1 + γ)γH +B(1 + γ)(1− γH)

×
√

2|S||A|
N

log
2Nx

δ

)
1,

(22)

where δ > 0. Then, for any d̃ ∈ DB , wd̃ is feasible to (14)
with probability at least 1− δ

2|S||A| .
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Proof. See Appendix B.

From the above Lemma, we establish the optimality guaran-
tee in the following theorem. Specifically, in words, under
the reward function r recovered from the set (17), we show
that de is an Õ(

√
|S||A|/N)-suboptimal solution over the

confidence set DB with high probability.

Theorem 3.3. Suppose (uD, vD) ∈ R̂IRL(ϵg), with the re-
laxation level ϵx specified in Lemma 3.2. Let r satisfy

r(s, a) =
uD(s, a)

d̂e(s, a)
(23)

for all (s, a) ∈ S × A, following the convention 0/0 = 0.
Then, we have

P(r⊤de ≥ r⊤d̃− ϵ, ∀d̃ ∈ DB) ≥ 1− 3δ, (24)

where

ϵ = ϵg + (1 +B)γH + (1− γH)

√
2

N
log

1

δ

+B(1− γH)

√
2|S||A|
N

log
2

δ
.

(25)

Proof. See Appendix C.

Sample complexity analysis. The proposed solution set
achieves the Õ(B(1−γH)

√
|S||A|/N) sample complexity

bound with additional error terms ϵg and (1 +B)γH . Note
that the parameter ϵg can be set to ϵg = Õ(1/

√
N) to match

the sample complexity. The term (1 + B)γH diminishes
exponentially with the horizon of the collected trajectory
data, which underscores the requirement for long-horizon
data to ensure accurate estimation. To the best of our knowl-
edge, besides our work, (Zeng et al., 2023) is the only other
study that offers an optimality guarantee for the offline IRL
problem under a discounted MDP, with a sample complex-
ity of Õ(1/

√
N). However, as their algorithm is based on

a bi-level optimization approach and their error bound is
given for the log-likelihood function, a direct comparison
of their result with ours is not feasible. The concurrent
work by (Zhao et al., 2023) presents a comparable sample
complexity for an episodic MDP. We provide a detailed
comparison in Appendix D.

Trade-off between optimality and feasibility. In our for-
mulation, there exists a trade-off between the optimality of
the policy and the feasibility of the reward function, which
is modulated by the parameter ϵg. The duality gap bound,
denoted as ϵg, adjusts the size of the solution set R̂IRL(ϵg);
this set expands with an increase in ϵg . ϵg can be reduced to
0 without causing infeasibility, as the set R̂IRL(ϵg) is always
non-empty due to the trivial solution (u, v) = (0, 0). A

smaller value of ϵg enhances the optimality of the expert
policy πe, as stated in Theorem 3.3. However, excessively
reducing ϵg can lead to overly greedy choices, resulting in
trivial or degenerate solutions. The impact of varying ϵg is
demonstrated through numerical experiments in Section 5.

Function approximation. The proposed LP formulation
is well-suited for function approximation (parameterization),
which allows us to reduce both the computational cost and
the size (dimension) of the solution set. Consider the pa-
rameterization of the variable (u, v) as (uθ, vθ), where θ
represents a parameter within the parameter space Θ ⊂ Rk,
which we aim to explore. If there exists a θ ∈ Θ such that
(uθ, vθ) ∈ R̂IRL(ϵg), then the optimality guarantee provided
in Theorem 3.3 is preserved for the reward function recov-
ered from uθ, while the computational complexity of the LP
can be reduced to a polynomial in k, down from |S||A|. It
is important to note that this formulation remains a linear
(or convex) program under linear (or convex) parameteri-
zation. If non-convex function approximation is employed
for high-dimensional or continuous state-action spaces, an
efficient algorithm for solving the proposed optimization
may be required; however, such an extension is beyond the
scope of this work, and we defer this to future research.

3.3. Degeneracy Issue in Reward Learning

In the practical applications of reward learning, estimating
the feasible reward set is not enough; we need to select a
single reward function within the estimated feasible reward
set to use. This is not a trivial problem due to existence
of degenerate reward functions in the feasible reward set.
Degenerate reward functions (e.g. r = 0), though theo-
retically feasible, are practically undesirable as they fail to
separate the expert policy πe from others. In our solution
set R̂IRL(ϵg) (17), degeneracy in the feasibility constraint
K⊤

DXv ≥ u is critical. If equality holds for some state-
action pairs such that (K⊤

DXv − u)(s, a) = 0, then the
complementary slackness condition will not be violated by
changing the value of we(s, a), meaning that we may not be
uniquely optimal. We suggest a simple and tractable method
to obtain a non-degenerate reward function in R̂IRL(ϵg).

Utilizing suboptimal trajectory samples. A straightfor-
ward approach to obtain a non-degenerate solution is uti-
lizing a suboptimal policy πsub. To be specific, we directly
maximize the expected reward gap between the expert pol-
icy πe and the suboptimal πsub. A viable example of πsub
is a uniformly random policy such as πsub(a|s) = 1

|A|
∀(s, a) ∈ S × A, because this policy is unlikely to be
optimal unless the expected rewards are uniform over all
actions. To maximize the reward gap, we sample suboptimal
trajectories with πsub and estimate the occupancy measure
of πsub as d̂sub, using the sampling and estimation methods
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discussed previously. Then, we maximize the empirical
mean of the reward gap as per the following LP:

max
r,u,v

r⊤(d̂e − d̂sub)

s.t. (u, v) ∈ R̂IRL(ϵg), u = d̂e ◦ r.
(26)

Here, ◦ denotes the element-wise (Hadamard) product. The
numerical experiments in Section 5 demonstrate that the
above formulation efficiently recovers a non-degenerate re-
ward function with only a small number of suboptimal tra-
jectory samples.

4. Offline Reinforcement Learning from
Human Feedback

4.1. LP Formulation of Offline RLHF

In this section, we extend our LP framework to address
offline RLHF problem. As discussed in Section 2.3, our
focus is on minimizing the error associated with the re-
ward r and the human feedback data DHF. We begin by
representing the cumulative reward of each trajectory τn,i

(i = 1, 2) in the dataset DHF as a linear function of the
reward r. Specifically, the cumulative reward from the tra-
jectory τn,i can be expressed as r(τn,i) = r⊤ψn,i, where
each vector ψn,i ∈ R|S||A| can be mapped from the trajec-
tory τn,i by

ψn,i(s, a) :=

H−1∑
h=0

γh1{sn,i
h =s,an,i

h =a}, (27)

for any (s, a) ∈ S ×A. Following this, we define the error
in the single data point (τn,1, τn,2, yn) associated with the
reward function r as

L(τn,1, τn,2, yn; r) := r⊤(ψn,2 − ψn,1)1{yn=1}

+r⊤(ψn,1 − ψn,2)1{yn=2}.
(28)

Note that naively minimizing the average or maximum error
over queries might often lead to degenerate reward functions.
This is because human evaluators sometimes provide con-
flicting feedback, such as yn = 1 when r⊤ψn,2 > r⊤ψn,1,
due to their stochasticity. Under conflicting comparison
data, minimizing L may result in degenerate solutions such
as r = 0. To address this issue, we allows for a slack in
the error L by introducing a parameter ϵr ∈ R, which con-
trols the size of the solution set. Specifically, we define the
solution set R̂HF as follows:

R̂HF(ϵr) := {r |L(τn,1, τn,2, yn; r) ≤ ϵr

∀n = 1, 2, . . . , Nq, r ∈ [−1, 1]|S||A|}.
(29)

Under this adjustable solution set, if we have additional in-
formation, we could also apply the strategy discussed in the

previous section for identifying non-degenerate solutions:
maximizing the reward gap between the expert trajectories
and the suboptimal trajectories.

One advantage of the proposed LP method is its robustness
to different human evaluator preference models, in contrast
to MLE-based algorithms. When the human evaluator devi-
ates from the preference model assumed in MLE, the true
reward parameter may diverge from the parameter space.
However, the LP approach is not subject to this limitation.
We illustrate this point with a bandit example in Appendix F,
where our LP algorithm successfully finds an optimal policy,
whereas the recent pessimistic MLE algorithm fail to do so.

4.2. Generalization Guarantee for Offline RLHF

Recent works in offline RLHF, such as (Zhu et al., 2023;
Zhan et al., 2023), have proposed a pessimistic MLE algo-
rithm and provided an error bound between the estimated
and the true reward function of the supposed preference
model. Our LP method does not offer an optimality guar-
antee in the same way as these works, as it obtains a set
of reward functions without assuming a specific prefer-
ence model. Instead, we analyze the generalization prop-
erty of the obtained reward functions by examining how
r ∈ R̂HF(ϵr) aligns with unseen trajectory pairs sampled
from µHF.

We first introduce the probabilistic preference model for
a human evaluator generating feedback data. We empha-
size that our proposed method is not dependent on this
model; we introduce it to analyze a generalization property.
Suppose that y ∈ {1, 2} is sampled from a Bernoulli dis-
tribution with the probabilistic model P(y = 1 | τ1, τ2) =
Φ(r⊤true(ψ

1−ψ2)), where Φ : R 7→ [0, 1] is a monotonically
non-decreasing function satisfying Φ(x) + Φ(−x) = 1 for
all x ∈ R. Φ represents the preference model of the evalu-
ator, based on their personal reward function rtrue. For ex-
ample, if Φ is a sigmoid function, i.e. Φ(x) = 1/(1 + e−x),
then the above probabilistic model is reduced to the Bradley-
Terry-Luce (BTL) model (Christiano et al., 2017). In the
following theorem, we provide a generalization guarantee of
any reward functions r contained in the estimated solution
set R̂HF(ϵr). Specifically, for a random (unseen) trajectory
pair (τ1, τ2) sampled from the sampling distribution µHF
and the human feedback y sampled from the preference
model Φ, we prove that the error L(τ1, τ2, y; r) is bounded
by ϵr with high probability.
Theorem 4.1. Suppose r ∈ R̂HF(ϵr) and the human feed-
back data (τ1, τ2, y) is sampled i.i.d. from the joint distri-
bution (µHF,Φ). Then, for any δ ∈ (0, 1),

P
(
L(τ1, τ2, y; r) ≥ ϵr

)
≤

√
1

2Nq
log

1

δ
(30)

holds with probability at least 1− δ.
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Figure 1. L1 error in the optimal occupancy measure under an estimated reward function. Left: Offline IRL algorithms; Right: Offline
RLHF algorithms.

Proof. See Appendix E.

Note that a trade-off between optimality and feasibility ex-
ists in R̂HF(ϵr) with respect to the parameter ϵr, similar to
R̂IRL(ϵg) in offline IRL. Specifically, while it is preferable
to set the parameter ϵr as small as possible to avoid overly
relaxing the RLHF constraint, excessively reducing ϵr can
lead to feasibility issues. In practice, if any prior knowledge
about the preference model Φ is available, this information
can guide the selection of ϵr. If no such information is avail-
able, ϵr can be determined experimentally by starting with
a large value and gradually reducing it until the reward set
becomes trivial or infeasible.

4.3. Integration of IRL and RLHF

Finally, our LP framework facilitates the integration of two
types of expert data: IRL (trajectories collected from the
expert policy) and RLHF (pairwise trajectory comparisons).
This is a unique feature of our LP framework, one that
remains unexplored in the MLE framework. We propose to
recover the reward function r from the intersection of two
sets R̂IRL(ϵg) and R̂HF(ϵr) such that

R̂IRL-HF(ϵg, ϵr) =

{(r, u, v) | (u, v) ∈ R̂IRL(ϵg), r ∈ R̂HF(ϵr), u = d̂e ◦ r}.
(31)

In this combined formulation, the IRL constraint (u, v) ∈
R̂IRL(ϵg) provides the optimality guarantee of the expert
policy, while the RLHF constraint r ∈ R̂HF(ϵr) reduces
the solution set and mitigates degeneracy by imposing addi-
tional constraints.

Strict trajectory comparison. If we can impose a strict
reward gap between two trajectories, then the RLHF con-
straint can mitigate degeneracy more effectively. For in-
stance, the constraint r(τ1) ≥ r(τ2) + δ eliminates degen-
erate solutions that satisfy r(τ1) = r(τ2) from the solution

set, if we can set a strict reward gap δ > 0 based on human
feedback data. To formalize this, we extend our approach to
include the continuous feedback case, wherein the feedback
is given as a continuous variable, y ∈ [−1, 1], instead of the
discrete variable used in previous sections. In Appendix G,
we specify this continuous feedback setting, and suggest
how we can extend the definition of the solution set R̂HF(ϵr)
as well as the generalization guarantee provided in Theo-
rem 4.1. Additionally, in the next section, we compare the
effects of discrete and continuous human feedback through
numerical experiments.

5. Numerical Experiments
In this section, we demonstrate the performance of our LP
algorithms through numerical experiments, comparing them
to MLE algorithms in the literature. We consider an MDP
with |S| = 10, |A| = 2, and γ = 0.95. In each exper-
imental run, P and µ0 are randomly selected. To intro-
duce additional complexity to the problem, we have set the
true rewards to have similar values: rtrue(s, a1) = 1.0 and
rtrue(s, a2) = 0.9 for all states s ∈ S. The performance of
each algorithm is assessed by measuring the proximity of
an optimal occupancy measure under the true reward rtrue
and the estimated reward function r̂. Specifically, we report
∥d∗(rtrue)−d∗(r̂)∥1, which represents the L1 error between
the optimal occupancy measures under rtrue and r̂. In each
experiment, we sample N trajectories with a horizon of
H = 20 according to πe in IRL, and µHF in RLHF. For
each sample size N , we conducted 200 experiments and
reported the mean and standard deviation of the error. See
Appendix H for detailed parameters and algorithms used in
the experiments.

Offline IRL. The left side of Figure 1 compares the errors
associated with each IRL algorithm. The results indicate
that our LP-based algorithms generally outperform the bi-
level optimization-based MLE algorithm (Zeng et al., 2023),
demonstrating that LP is more sample-efficient in address-
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ing ambiguity in the dynamics and the expert policy. The
solution set with a smaller relaxation level ϵg = 0.001/

√
N

(LP-IRL-2) exhibits better performance than that with a
greater relaxation level ϵg = 0.01/

√
N (LP-IRL-1). This is

consistent with the optimality-feasibility trade-off discussed
in Section 3.2. Additionally, the integration of IRL and
RLHF data leads to improved performance, as predicted.
The use of continuous feedback (LP-IRL-C) is even more
effective than discrete feedback (LP-IRL-D) by facilitating
stricter constraints.

Offline RLHF. In numerical experiments for offline
RLHF, the human feedback data is generated following
the greedy model. The right side of Figure 1 compares the
reward function obtained from LP (29) and the pessimistic
MLE algorithm proposed by (Zhu et al., 2023) under the
BTL model. In the LP algorithm, the error decreases rapidly
as the number of samples increases, whereas the error in
the MLE algorithm decreases more slowly. This result is
consistent with the discussion in Appendix F, suggesting
that the MLE algorithm might be inefficient or even fail
if the human evaluator deviates from the assumed model,
whereas LP does not.

6. Conclusion
In this paper, we have introduced a novel LP framework de-
signed for offline reward learning. Our framework possesses
several salient features, including (i) tractability and sample
efficiency with an optimality guarantee, (ii) flexibility for
extension due to its convex solution set, and (iii) robustness
against diverse decision models. We believe our study opens
a new avenue of research in the theories of offline reward
learning. In the future, we aim to extend our framework to
broader datasets, including those involving arbitrary sam-
pling policies in IRL and K-wise comparisons in RLHF.
Additionally, we plan to investigate the transferability of the
estimated reward functions to similar environments.
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A. Related Work

LP and Duality Approach in IRL. One of the foundational works in IRL (Ng & Russell, 2000) introduced the concept
of characterizing a set of reward functions for which a given policy is optimal using an LP formulation. This idea has
been further developed in subsequent literature (Metelli et al., 2021; Lindner et al., 2022; Metelli et al., 2023; Zhao et al.,
2023), as outlined in the introduction. Recently proposed practical offline imitation learning (IL) algorithms, including
ValueDICE (Kostrikov et al., 2019), IQ-Learn (Garg et al., 2021), OPIRL (Hoshino et al., 2022), and ReCOIL (Sikchi
et al., 2023b), address an occupancy matching problem that minimizes the statistical divergence between the learner and the
expert distribution. These algorithms exploit the duality of the LP formulation to obtain tractable algorithms, as extensively
discussed in (Sikchi et al., 2023b). Despite the practical success of these algorithms, the resulting reward function and policy
depend on the model in use, and they lack theoretical performance guarantees, such as provable sample efficiency.

RLHF without Preference Model Assumption. In offline RLHF, we impose a margin-based constraint on the solution
set, which allows for the alignment of reward functions with preference data without assuming any preference models
of human evaluators. The concept of employing a margin constraint originated in the early imitation learning literature.
Specifically, maximum margin planning (MMP) (Ratliff et al., 2006; 2009) estimates the reward function such that the expert
policy achieves a higher expected reward than all other policies by imposing a margin constraint in the reward optimization
problem. Recently, (Sikchi et al., 2023a) introduced Rank-Game, a two-player game formulation between a policy agent,
which optimizes the policy given a reward function, and a reward agent, which aligns the reward function with offline
pairwise preference data. Their algorithm is model-free, as the reward agent minimizes ranking loss without relying on a
specific preference model. A unification of demonstration and preference data is also proposed in their work, similar to our
approach in the LP framework.

B. Proof of Lemma 3.2
For ease of notation, let δ′ = δ

2|S||A| . To show

P(X⊤(KDwd̃ − (1− γ)µ0) ≤ ϵx) ≥ 1− δ′, (32)

we divide our proof into two parts. First, for any column xi of X , we show that

x⊤i (KH −K)wd̃ ≤ (1 + γ)γHB (33)

holds for the matrix KH , which will be defined later. Next, we will prove that

x⊤i (KD −KH)wd̃ ≥ ϵxi − (1 + γ)γHB (34)

holds with probability less than δ′/Nx. Then, combining both inequalities yields x⊤i (KD −K)wd̃ = x⊤i (KDwd̃ − (1−
γ)µ0) ≥ ϵxi holds with probability less than δ′/Nx, since Kwd̃ = Md̃ = (1− γ)µ0 holds by d̃ ∈ DB . Applying union
bound to all columns xi of X will lead to the conclusion.

To prove the first part, we first introduce the vector dHe ∈ R|S||A|, representing a finite-horizon truncation of de up to the
horizon H − 1:

dHe (s, a) := (1− γ)

H−1∑
h=0

γhPπe
µ0

(sh = s, ah = a) ∀(s, a) ∈ S ×A. (35)

We also define the vector dP,H
e ∈ R|S|×|A|×|S| as the truncation of d′e as follows:

dP,H
e (s, a, s′) := (1− γ)

H−1∑
h=0

γhPπe
µ0

(sh = s, ah = a, sh+1 = s′) ∀(s, a, s′) ∈ S ×A× S. (36)

Then, we define the matrix KH ∈ R|S|2|A| using dHe and dP,H
e as follows:

KH(s′, (s, a)) := dHe (s, a)1{s=s′} − γdP,H
e (s, a, s′) ∀(s, a, s′) ∈ S ×A× S. (37)

12
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Since KH can be considered as a finite-horizon truncation of K by its definition, only the terms from h = H to ∞ remain
in the matrix K −KH . Consequently, we get the following inequalities that prove the first part:

|x⊤i (K −KH)wd̃| ≤
∑
s′∈S

|xi(s′)|
∞∑

h=H

(1− γ)γh
∑
a∈A

Pπe
µ0
(sh = s′, ah = a)wd̃(s

′, a)

+
∑
s′∈S

|xi(s′)|
∞∑

h=H

(1− γ)γh+1
∑

(s,a)∈S×A

Pπe
µ0
(sh = s, ah = a, sh+1 = s′)wd̃(s, a)

≤
∑
s′∈S

∞∑
h=H

(1− γ)γhPπe
µ0
(sh = s′)B +

∑
s′∈S

∞∑
h=H

(1− γ)γh+1Pπe
µ0
(sh+1 = s′)B

= γHB + γH+1B = (1 + γ)γHB.

(38)

The first inequality holds directly from the definitions of K and KH , and the second inequality results from the assumptions
∥xi∥∞ ≤ 1 and ∥wd̃∥∞ ≤ B. Then, we have x⊤i (KH −K)wd̃ ≤ (1 + γ)γHB.

For the second step, consider the following definition of the random variable z(τ) ∈ R, where τ represents the finite-horizon
trajectory sample:

z(τ) :=
∑
s′∈S

xi(s
′)

∑
(s,a)∈S×A

wd̃(s, a)(1− γ)×
H−1∑
h=0

[
γh1{sh=s,ah=a} − γh+11{sh=s,ah=a,sh+1=s′}

]
. (39)

Then, x⊤i KDwd̃ = 1
N

∑N
n=1 z(τ

n) holds, implying that x⊤i KDwd̃ is the empirical mean of the random variable z(τ),
derived from N trajectory samples τn. Meanwhile, x⊤i KHwd̃ represents the expected value of z(τ) over τ . Moreover, we
can show that the random variable z(τ) has a bounded range as follows:

|z(τ)| ≤ B(1− γ)
∑
s′∈S

∑
(s,a)∈S×A

H−1∑
h=0

[
γh1{sh=s,ah=a} + γh+11{sh=s,ah=a,sh+1=s′}

]
≤ B(1− γ)

(
1− γH

1− γ
+
γ − γH+1

1− γ

)
= B(1 + γ)(1− γH),

(40)

where we used the assumptions ∥xi∥∞ ≤ 1 and ∥wd̃∥∞ ≤ B in the first inequality. Therefore, we can apply Hoeffding’s
inequality as follows:

P
(
x⊤i (KD −KH)wd̃ ≥ ϵ

)
≤ exp

(
− Nϵ2

2B2(1 + γ)2(1− γH)2

)
∀ϵ ≥ 0. (41)

Let ϵ =
√

2B2(1+γ)2(1−γH)2

N log Nx

δ′ and ϵxi = ϵ+ (1 + γ)γHB. Then, the above inequality is equivalent to

P
(
x⊤i (KD −KH)wd̃ ≥ ϵxi − (1 + γ)γHB

)
≤ δ′

Nx
. (42)

Plugging the inequality x⊤i (KH −K)wd̃ ≤ (1 + γ)γHB derived in the first part, we get

P
(
x⊤i (KD −KH)wd̃ + x⊤i (KH −K)wd̃ ≥ ϵxi

)
≤ P

(
x⊤i (KD −KH)wd̃ + (1 + γ)γHB ≥ ϵxi

)
≤ δ′

Nx
. (43)

Thus, P
(
x⊤i (KD −K)wd̃ ≥ ϵxi

)
≤ δ′/Nx. Taking the union bound to all events over i = 1, 2, . . . , Nx,

P
(
X⊤(KD −K)wd̃ ≥ ϵx

)
≤ δ′. (44)

Since Kwd̃ =Md̃ = (1− γ)µ0 by d̃ ∈ DB , the above inequality is equivalent to

P
(
X⊤(KDwd̃ − (1− γ)µ0) ≥ ϵx

)
≤ δ′, (45)

which completes the proof.
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C. Proof of Theorem 3.3
The proof is comprised of three steps. In the first step, we employ a concentration bound to establish a limit on the difference
between u⊤1 and u⊤D1, ensuring that P(u⊤1− u⊤D1 ≥ −ϵu1) ≥ 1− δ for a certain ϵu1. Next, from the feasibility of wd̃

proven by Lemma 3.2 and using the optimality conditions in (17), we can show that P(u⊤D1 ≥ u⊤Dwd̃−ϵg, ∀d̃ ∈ DB) ≥ 1−δ
holds. The final step is to bound the difference between u⊤Dwd̃ and u⊤wd̃, showing that P(u⊤Dwd̃ − u⊤wd̃ ≥ −ϵu2, ∀d̃ ∈
DB) ≥ 1− δ for a specific ϵu2. Combining these three results with the union bound completes the proof.

We first prove that P(u⊤1− u⊤D1 ≥ −ϵu1) ≥ 1− δ holds if we let ϵu1 =
√

2(1−γH)2

N log 1
δ + γH . Since u⊤1− u⊤D1 =

r⊤de − r⊤d̂e = r⊤(de − dHe ) + r⊤(dHe − d̂e), we bound two terms r⊤(de − dHe ) and r⊤(dHe − d̂e) separately. First,
r⊤(de − dHe ) can be bounded as

|r⊤(de − dHe )| ≤ (1− γ)
∑

(s,a)∈S×A

|r(s, a)|
∞∑

h=H

γhPπ
µ0
(sh = s, ah = a)

≤ (1− γ)
∑

(s,a)∈S×A

∞∑
h=H

γhPπ
µ0
(sh = s, ah = a) = γH .

(46)

Next, consider the random variable z′(τ) defined as

z′(τ) := (1− γ)
∑

(s,a)∈S×A

r(s, a)

H−1∑
h=0

γh1{sh=s,ah=a}, (47)

which represents the cumulative reward of τ multiplied by the constant (1− γ). According to its definition, r⊤dHe is the
expected value of z′(τ) over τ , while r⊤d̂e is the empirical mean of z′(τ) derived from the samples (τ1, τ2, . . . , τN ).
Moreover, from its definition, we can easily show that z′(τ) lies in the interval [−(1− γH), 1− γH ]. Thus, we can apply
Hoeffding’s inequality to bound the term r⊤(dHe − d̂e) as follows:

P(r⊤(dHe − d̂e) ≤ −ϵ) ≤ exp

(
−Nϵ2

2(1− γH)2

)
∀ϵ ≥ 0. (48)

Letting ϵ = ϵu1− γH yields P(r⊤(dHe − d̂e) ≤ −ϵu1+ γH) ≤ δ. Then, adding two results completes the first steps follows:

P(u⊤1− u⊤D1 ≤ −ϵu1) = P(r⊤(dHe − d̂e) + r⊤(de − dH) ≤ −ϵu1)

≤ P(r⊤(dHe − d̂e) ≤ −ϵu1 + γH) ≤ δ.
(49)

Next, by Lemma 3.2, wd̃ is a feasible solution to (14) with probability at least 1− δ
2|S||A| . If wd̃ is a feasible solution to (14),

then the following inequalities hold:

u⊤D1
(i)

≥ (1− γ)µ⊤
0 XvD + ϵ⊤x vD − ϵg

(ii)

≥ w⊤
d̃
K⊤

DXvD − ϵg

(iii)

≥ w⊤
d̃
uD − ϵg

(50)

The inequality (i) holds by the duality gap constraint, (ii) holds because wd̃ is feasible to (14), and (iii) holds by the
feasibility constraint K⊤

DXvD ≥ uD and wd̃ ≥ 0. Therefore, we get

P(u⊤D1 ≥ u⊤Dwd̃ − ϵg) ≥ 1− δ

2|S||A| . (51)

We then take union bound over all extreme points of DB . Since DB has at most 2|S||A| extreme points, we get

P(u⊤D1 ≥ u⊤Dwd̃ − ϵg, ∀d̃ ∈ DB) ≥ 1− δ. (52)
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In addition, by similar steps to the first part of the proof, we can show that

P(u⊤Dwd̃ − u⊤wd̃ ≥ −ϵu2) ≥ 1− δ

2|S||A| , (53)

if we let ϵu2 = B
√

2(1−γH)2|S||A|
N log 2

δ +BγH . Taking union bound over all extreme points of d̃ ∈ DB yields

P(u⊤Dwd̃ − u⊤wd̃ ≥ −ϵu2, ∀d̃ ∈ DB) ≥ 1− δ, (54)

Taking union bound to the above three cases and using u⊤1 = r⊤de and u⊤wd̃ = r⊤d̃ from Lemma 3.1, the conclusion
holds as

P(r⊤de ≥ r⊤d̃− ϵ, ∀d̃ ∈ DB) = P(u⊤1 ≥ u⊤wd̃ − ϵg − ϵu1 − ϵu2, ∀d̃ ∈ DB) ≥ 1− 3δ. (55)

D. Comparison to Pessimism-based Approach
The concurrent work by (Zhao et al., 2023) proposed an offline IRL algorithm for finite-horizon MDPs with comparable
sample complexity, based on pessimistic value iteration. To be specific, they recover the mapping from the value and
advantage functions to reward functions through Bellman iterations under estimated state transition probabilities. Though a
direct comparison is limited since our work is developed for infinite-horizon discounted MDPs, there are some common
structures between their algorithm and ours. Specifically, the value and advantage functions in their work can be considered
as the primal optimization variable and the slack in the primal feasibility constraint in our formulation.

Nevertheless, there are differences between the resulting reward functions from their algorithm and ours. To address the
uncertainty caused by non-uniform data coverage in the offline setting, they penalize the reward on uncertain state-action
pairs that are less visited in the dataset. Such a pessimism-based reward estimation framework provides strong theoretical
optimality guarantees, such as finite sample complexity bounds, similar to our approach. However, in contrast to our solution
set, which is a polyhedron, the use of a nonlinear and non-convex penalty function in their reward model leads to a solution
set that is also nonlinear and non-convex. This distinction makes our algorithm more flexible for any extension, such as
function approximation and the integration of additional information.

E. Proof of Theorem 4.1
We first define the random variable

g(τ1, τ2, y) := 1{L(τ1,τ2,y;r)≥ϵr}(τ
1, τ2, y), (56)

where 1{L(τ1,τ2,y;r)≥ϵr}(τ
1, τ2, y) is the indicator function for the event that an error exceeds ϵr, i.e. L(τ1, τ2, y; r) ≥ ϵr.

The expected value of g can be expressed as

ḡ = E(τ1,τ2,y)∼(µHF,Φ)[g(τ
1, τ2, y)] = P(L(τ1, τ2, y; r) ≥ ϵr). (57)

From the assumption that r ∈ R̂HF(ϵr), the empirical mean of g is given by 0:

ĝ =
1

Nq

Nq∑
n=1

g(τn,1, τn,2, yn) = 0. (58)

From Hoeffding’s inequality, we have P(ĝ − ḡ ≤ −ϵ) ≤ e−2Nqϵ
2

= δ if ϵ =
√

1
2Nq

log 1
δ . Therefore, ḡ ≤ ϵ holds with

probability at least 1− δ, which completes the proof.

F. Robustness of LP Framework
In this section, we discuss the robustness of the proposed LP framework compared to MLE framework, with respect to the
different preference models of human evaluators. We first introduce the MLE framework in offline RLHF. Consider the
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reward parameterization rθ, where θ ∈ Θ is a parameter and Θ ⊂ Rk is a parameter space we aim to search the optimal
parameter. Then, the standard MLE framework can be illustrated as maximizing the log-likelihood function as follows:

θ̂MLE ∈ argmax
θ∈Θ

Nq∑
n=1

log
(
Φ
(
−L(τn,1, τn,2, yn; rθ)

))
. (59)

Our LP framework finds the reward parameter in the solution set, such that θ̂LP ∈ {θ ∈ Θ | rθ ∈ R̂HF(ϵr)}. Under the
estimated reward parameters, we obtain the policy maximizing the reward function as follows:

π̂LP ∈ argmax
π

Es∼dπ [rθ̂LP
(s, π(s))], π̂MLE ∈ argmax

π
Es∼dπ [rθ̂MLE

(s, π(s))]. (60)

Pessimistic MLE. Recent works in offline RLHF, such as those by (Zhan et al., 2023; Zhu et al., 2023) have adapted
the concept of pessimism from offline RL theory to address the data coverage issue. Specifically, these studies define a
confidence set for the reward function and solve robust optimization problem to identify the policy that maximizes the
worst-case reward within this set. For example, (Zhu et al., 2023) uses a semi-norm ∥ · ∥Σ+λI as a metric for constructing
the confidence set, where Σ represents the covariance of the comparison data and λ > 0 is a conservativeness parameter,
such that

DPE =
{
θ ∈ Θ | ∥θ − θ̂MLE∥Σ+λI ≤ f(N, k, δ, λ)

}
. (61)

Then, the policy is optimized for the worst-case parameter in DPE, such that

π̂PE ∈ argmax
π

min
θ∈DPE

Es∼dπ [rθ(s, π(s))]. (62)

(Zhu et al., 2023) prove that the true parameter θ∗ exists in this confidence set with high probability as the number of sample
increases, which enables them to provide an optimality guarantee.

However, the MLE-based algorithms require an assumption that a human evaluator follows a specific preference model, and
the true reward parameter corresponding to the model should lie in the parameter space, such that θ∗ ∈ Θ, where Θ must be
bounded. Such realizability assumption can easily be violated in practice, when the true preference model deviates from the
model used in algorithm. For instance, if the BTL model is assumed but the human evaluator follows the greedy policy, the
true parameters diverge to +∞ or −∞, which violates the assumption that θ∗ ∈ Θ. To illustrate these points, we provide a
simple bandit problem that both MLE and pessimistic MLE fail but LP succeeds to recover the optimal policy.

Proposition F.1. For any δ > 0, there exists a linear bandit and a sampling distribution µHF such that

π̂LP = π∗, π̂MLE ̸= π∗, and π̂PE ̸= π∗

hold with probability at least 1− δ.

Proof. Consider a linear bandit with a single state s and three actions a1, a2, and a3. We consider the tabular setting such
that rθ = [θ1, θ2, θ3], where θi denotes the reward for the action ai. Suppose that human evaluators follow the deterministic
(greedy) model, and the preference order is given by a3 > a2 > a1, i.e. a3 is the most preferable and a1 is the least
preferable action.

We construct a sampling distribution such that both MLE and pessimistic MLE algorithms in (Zhu et al., 2023) returns a
wrong policy with high probability, while LP succeeds to find an optimal policy. Specifically, if the pair (a1, a2) is sampled
with a significantly higher probability compared to the pair (a2, a3) in the queries, we show that {θ̂MLE}2 > {θ̂MLE}3 holds
under the BTL model and the greedy evaluator. The MLE algorithm proposed in (Zhu et al., 2023) estimate the reward
parameter by solving

θ̂MLE ∈ argmax
θ∈Θ

N12

N
log

eθ2

eθ1 + eθ2
+
N23

N
log

eθ3

eθ2 + eθ3
+
N31

N
log

eθ3

eθ3 + eθ1
, (63)

where Nij denotes the number of queries (ai, aj), N = N12 +N23 +N31, and Θ = {θ | 1⊤θ = 0, ∥θ∥2 ≤ 1}. We first
prove the following lemma:
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Lemma F.2. Let θ∗ = [θ∗1 , θ
∗
2 , θ

∗
3 ] be an optimal solution to the following optimization problem:

max
θ∈Θ

J(θ1, θ2, θ3) = α log
eθ2

eθ1 + eθ2
+ β log

eθ3

eθ2 + eθ3
(64)

where α, β ∈ (0, 1). If α > 2e3β, then θ∗2 > θ∗3 .

Proof. Define the Lagrangian function L(θ1, θ2, θ3, λ1, λ2) = J(θ1, θ2, θ3) + λ1(1− θ21 − θ22 − θ23) + λ2(θ1 + θ2 + θ3).
From the KKT conditions, [

∂L
∂θ2

]
(θ∗,λ∗)

= α
eθ

∗
1

eθ
∗
1 + eθ

∗
2
− β

eθ
∗
2

eθ
∗
2 + eθ

∗
3
− 2λ∗1θ

∗
2 + λ∗2 = 0,[

∂L
∂θ3

]
(θ∗,λ∗)

= β
eθ

∗
2

eθ
∗
2 + eθ

∗
3
− 2λ∗1θ

∗
3 + λ∗2 = 0.

(65)

Subtracting both equations yields

α
eθ

∗
1

eθ
∗
1 + eθ

∗
2
− 2β

eθ
∗
2

eθ
∗
2 + eθ

∗
3
= 2λ∗1(θ

∗
2 − θ∗3). (66)

If α > 2e3β, we can show that the left hand side of the above equality must be greater than 0 as follows:

α
eθ

∗
1

eθ
∗
1 + eθ

∗
2
− 2β

eθ
∗
2

eθ
∗
2 + eθ

∗
3
> 2β

(
eθ

∗
1+3

eθ
∗
1 + eθ

∗
2
− eθ

∗
2

eθ
∗
2 + eθ

∗
3

)
= 2β

eθ
∗
1+θ∗

2+3 + eθ
∗
1+θ∗

3+3 − eθ
∗
1+θ∗

2 − e2θ
∗
2

(eθ
∗
1 + eθ

∗
2 )(eθ

∗
2 + eθ

∗
3 )

= 2β
(eθ

∗
1+θ∗

2+3 − eθ
∗
1+θ∗

2 ) + (e3−θ∗
2 − e2θ

∗
2 )

(eθ
∗
1 + eθ

∗
2 )(eθ

∗
2 + eθ

∗
3 )

> 0,

(67)

where the last inequality comes from θ∗2 ≤ 1. Then, the right hand side 2λ∗1(θ
∗
2 − θ∗3) must be greater than zero as well.

Since λ∗1 ≥ 0, we get θ∗2 > θ∗3 .

By Lemma F.2, there exist α, β ∈ (0, 1) such that if N12

N ≥ α, N23

N ≤ β, and N31 = 0, then {θ̂MLE}2 > {θ̂MLE}3. For any
δ > 0, there exists a sampling distribution µHF satisfying

P(N12 ≥ αN, 1 ≤ N23 ≤ βN, N31 = 0) ≥ 1− δ. (68)

Then, under this sampling distribution µHF, π̂MLE(s) = a2 with probability at least 1− δ, while π∗(s) = a3.

Next, we consider the pessimistic MLE under µHF. The pessimistic MLE imposes higher penalty on the reward function of
state-action pairs that have less support in the data. Therefore, intuitively, the penalty for the state a3 will be higher than a2,
and thus, π̂PE(s) = a2 will hold. We use the penalty function proposed in (Zhu et al., 2023) to confirm this. Consider the
covariance matrix

Σ =
1

N

 N12 −N12 0
−N12 N12 +N23 −N23

0 −N23 N23

 . (69)

Then, the penalty function for a2 and a3 are computed as

ϕ2 = ∥[0, 1, 0]∥2(Σ+λI)−1 =
(N12 + λ)(N23 + λ)

|Σ+ λI|
, ϕ3 = ∥[0, 0, 1]∥2(Σ+λI)−1 =

(N12 + λ)(N12 +N23 + λ)−N2
12

|Σ+ λI|
.

(70)
It is easy to show that ϕ3 ≥ ϕ2 for any λ ≥ 0. Then, the inequality

{θ̂MLE}2 − c∥ϕ2∥(Σ+λI)−1 > {θ̂MLE}3 − c∥ϕ3∥(Σ+λI)−1 (71)

holds for any constant c > 0, and thus, π̂PE chooses a2 as the best action. Therefore, π̂PE ̸= π∗. Finally, since there exists at
least one query of (a2, a3) (by N23 ≥ 1), we have {θ̂LP}2 ≤ {θ̂LP}3 + ϵr. Let ϵr ≤ 0, we have π̂LP = π∗, which completes
the proof.
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G. Extension to Continuous Feedback
Suppose that the cumulative distribution function (CDF) for y, given a query pair (τ1, τ2), can be expressed as:

P(y ≤ α | (τ1, τ2)) = Φ(α; r⊤true(ψ
1 − ψ2)) ∀α ∈ [−1, 1]. (72)

Specifically, Φ(·; r) : [−1, 1] 7→ [0, 1] is assumed to be a CDF for any r ∈ R, i.e. right-continuous, monotonically
non-decreasing, Φ(−1; r) = 0, and Φ(1; r) = 1. Furthermore, we assume that Φ(α; ·) : R 7→ [0, 1] is monotonically
non-increasing with respect to r to reflect a preference in the pairwise comparison. Then, we enforce the reward gap to be
greater than c|y| by defining an error as

L′(τn,1, τn,2, yn; r) :=
(
cyn + r⊤(ψn,2 − ψn,1)

)
1{yn≥0} +

(
−cyn + r⊤(ψn,1 − ψn,2)

)
1{yn≤0}, (73)

where c > 0 is a scaling parameter. The solution set R̂CHF(ϵr) is then defined in the same way with (29) using the error L′.

R̂CHF(ϵr) := {r | L′(τn,1, τn,2, yn; r) ≤ ϵr ∀n = 1, 2, . . . , Nq, r ∈ [−1, 1]|S||A|}. (74)

The reward function r is recovered within the intersection of two sets R̂IRL(ϵg) and R̂CHF(ϵr):

R̂IRL-CHF(ϵg, ϵr) = {(r, u, v) | (u, v) ∈ R̂IRL(ϵg), r ∈ R̂CHF(ϵr), u = d̂e ◦ r}. (75)

It is important to note that R̂IRL-CHF(ϵg, ϵr) can become infeasible if ϵg or ϵr is set too small, due to the strict reward gap.
Therefore, choosing proper values for ϵg and ϵr is crucial to ensure the feasibility of the LP. The generalization guarantee
provided in Theorem 4.1 also holds with L′, under a similar proof.

H. Detailed Experimental Setup

Table 1. Algorithm Details

Algorithms Description Parameters

MLE-IRL Bi-level optimization algorithm for offline IRL (Zeng et al., 2023) Step size = 0.01

LP-IRL-1 LP formulation of IRL (26) with a moderate ϵg ϵg = 0.01/
√
N

LP-IRL-2 LP formulation of IRL (26) with a tighter ϵg ϵg = 0.001/
√
N

LP-IRL-D Integration of IRL and RLHF with discrete feedback (31) ϵg = 0.01/
√
N , ϵr = 0.01/

√
N

LP-IRL-C Integration of IRL and RLHF with continuous feedback (75) ϵg = 0.1/
√
N , ϵr = 0.01/

√
N

MLE-HF Pessimistic MLE under the BTL model (Zhu et al., 2023) λ = 0.1, B = 1
LP-HF LP formulation of RLHF (29) ϵr = −0.01

Environment setting and dataset. We consider an MDP with |S| = 10, |A| = 2, and γ = 0.95. The initial state
distribution µ0 and state transition probabilities P are randomly selected for each experiment. Specifically, each element of
µ0 and P is generated from a uniform distribution in the range of [0, 1], and then scaled to form probability distributions. In
each experimental run, we sample N trajectories with a horizon of H = 20. πe is used for sampling trajectories in IRL, and
the uniform policy (π(a|s) = 1/|A| ∀(s, a) ∈ S ×A) is employed for sampling queries (trajectory pairs) in RLHF.

Performance criteria. To introduce additional complexity to the problem, we have set the true rewards to have similar
values: rtrue(s, a1) = 1.0 and rtrue(s, a2) = 0.9 for all states s ∈ S. The performance of each algorithm is then assessed by
measuring the proximity of an optimal occupancy measure under the true reward rtrue and the obtained reward function r̂.
Specifically, we report ∥d∗(rtrue) − d∗(r̂)∥1, the L1 error between the true optimal occupancy measure d∗(rtrue) and the
optimal occupancy measure d∗(r̂) under the estimated reward r̂. This error falls within the range of 0 to 2, with a value of 0
indicating that the estimated optimal policy is equivalent to the true optimal policy. For each sample size N , we conducted
200 experiments and reported the mean and standard deviation of the error.
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Expert setting. In offline IRL, the expert policy for sampling trajectories is set to πe = 0.52× π∗ + 0.48× πr, where πr
denotes a greedy policy that selects a suboptimal action. This setting reflects that πe can deviate from π∗, particularly when
all state-action pairs have similar rewards. In offline RLHF, we consider two different types of human feedback: discrete
feedback y ∈ {1, 2} and continuous feedback y ∈ [−1, 1]. The discrete feedback is generated according to the BTL model
under the reward rtrue. The continuous feedback is generated from the uniform distribution, in the range between 0 and
0.2× r⊤true(ψ

1 − ψ2).

Algorithm details. Table 1 provides a detailed description of the algorithms used in experiments. We employ a tabular
setting for the reward function without any function approximation. In LP-IRL-1 and LP-IRL-2, we assume that 2/3 of
trajectories are sampled from πe, and the remaining samples are obtained from the uniform policy to estimate d̂sub. In
LP-IRL-D and LP-IRL-C, we assume that 2/3 of trajectories are sampled from πe, and the the remaining trajectories are
sampled from the uniform policy to generate human feedback. In all LP-IRL algorithms, we use the L1 norm constraint for
X , and we set δ = 0.1 and B = 100. In MLE-HF and LP-HF, human feedback is given as discrete value following the
greedy model. In LP-HF, a reward function is selected from (29) by optimizing a dummy objective function. For algorithm
details of MLE-IRL and MLE-RLHF, please refer to (Zeng et al., 2023) and (Zhu et al., 2023), respectively.
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