Under review as a conference paper at ICLR 2026

ORCHESTRATIONBENCH:
LLM-DRIVEN AGENTIC PLANNING AND ToOOL USE
IN MULTI-DOMAIN SCENARIOS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent progress in Large Language Models (LLMs) has transformed them from
text generators into agentic systems capable of multi-step reasoning, structured
planning, and tool use. However, existing benchmarks inadequately capture their
ability to orchestrate complex workflows across multiple domains under realistic
constraints. To address this, we propose OrchestrationBench, a bilingual (En-
glish/Korean) benchmark that systematically evaluates (1) workflow-based plan-
ning and (2) constraint-aware tool execution. OrchestrationBench spans 17 rep-
resentative domains with nearly 100 realistic virtual tools, covering scenarios
that require sequential/parallel planning and compliance with business constraints.
Unlike previous work, it explicitly disentangles planning evaluation from tool ex-
ecution evaluation, which assesses tool selection, argument extraction, validation,
and rejection handling. Constructed entirely through manual annotation with cul-
tural adaptation, the benchmark ensures authenticity, diversity, and freedom from
model-specific biases. Extensive experiments across state-of-the-art models show
that function calling performance is relatively consistent, whereas planning ca-
pabilities exhibit substantial variation across models, emphasizing the need for
structured planning evaluation. As a living benchmark, OrchestrationBench is
designed to expand toward new domains, tools, and integration enabling rigor-
ous, cross-cultural, and service-ready evaluation of LLM orchestration capabili-
ties. The benchmark is publicly available at GitHub.

1 INTRODUCTION

Large Language Models (LLMs) have advanced rapidly in recent years (OpenAll 2022; 2023} Deep-
Mind} [2025alb; |Anthropicl 2025). Although initially regarded primarily as powerful text generators,
recent research has demonstrated their capacity to operate as versatile agents that can interact with
external tools (Yao et al., [2023), perform multi-step reasoning over complex instructions, and assist
users in various real-world applications (Shi et al., [2024). This evolution signifies a paradigm shift:
from passive text generation toward the active orchestration of tasks, positioning LL.Ms as potential
service-ready agents in both consumer-facing and enterprise domains.

Despite this progress, substantial challenges remain for real-world deployment. In practice, user
requests often involve sequences of interdependent subtasks that must be coordinated effectively
(Huang et al., [2024; [Yao et al.,[2024). These tasks frequently span heterogeneous domains, require
integration with external systems, and must adapt to dynamic constraints that evolve during user
interaction. However, existing benchmarks operate largely in simplified or domain-isolated settings
and thus do not capture the orchestration capabilities required for service-ready LLMs (Zhong et al.,
20255 [Mialon et al., [2023)).

To address these gaps, we introduce OrchestrationBench, a bilingual benchmark explicitly de-
signed to evaluate LLMs in realistic service environments. The benchmark defines a comprehen-
sive evaluation protocol that emphasizes two complementary dimensions: workflow planning and
constraint-aware tool execution. For workflow planning, the evaluation is formalized as workflow
construction. Each workflow is represented as a Directed Acyclic Graph (DAG) that encodes task
dependencies, execution states, and agent assignments. For constraint-aware tool execution, the

Under review as a conference paper at ICLR 2026

Descrption of Sub LLMs Workflow1 (Multi-Step)

1st Turn * .~ -
{ % |stept: sub LLM ' { %¥|step2: sub LLM '
- > % Main LLM > ! @ Tool Exacution § > @ Tool Exacution § ---
_- * refined_geury: ' * refined_geury: 1
1. Task Orchestration | - location: : | - location: H
B Rt N L etmer. ; L timer

@ Task Understanding
@ Workflow Generation

_____ @workow Excuton s P =111

2. User Interaction € m m —mm e e e oo @ Tool Exacution
. | H - refined_geury:
@ Aggregate Tool Responses : - H « location:
@ Interact with the User ! > L -time
--- B e R T it
- -
Tools ‘ ‘ ! ‘
End of Tumn e e e e s
2nd Turn 3. Dynamic Workflow Adaptation

Modify, Interrupt, or

- > | Generate new workllow

Figure 1: Orchestration setting of OrchestrationBench, where a main LLM decomposes user re-
quests into workflows and assigns subtasks to sub-LLMs, which perform tool calling and return
results for aggregation.

evaluation goes beyond the syntactic correctness of tool calling. Assesses three aspects: tool se-
lection, argument extraction, and value validation against domain-specific constraints. Semantic
correctness is adjudicated with auxiliary judges based on LLM. (Qin et al., 2023)).

Figure [T illustrates the orchestration setting that motivates our benchmark. A main LLM first de-
composes a user request into workflows and assigns subtasks to sub-LLMs. These sub-LLMs then
perform tool calling with refined parameters, and their outputs are aggregated by the main LLM
before being returned to the user. This iterative process supports multi-step workflows, parallel or
sequential subtask execution, user clarification, and workflow revision.

The dataset underlying OrchestrationBench covers 17 representative domains and nearly 100 realis-
tic virtual tools, encompassing single-domain tasks, multi-domain orchestration, constraint valida-
tion, and dynamic user revisions. The dataset was initially developed in Korean, leveraging abundant
use cases and thorough review to ensure realistic interaction patterns and reliable evaluation. It was
then expanded into English with comparable scale and domain coverage, with both versions val-
idated for effectiveness as evaluation data. This design not only enables biligual evaluation but
also captures cultural differences in interaction styles, offering unique insights into orchestration
across diverse service environments. Together, these properties allow OrchestrationBench to sys-
tematically evaluate orchestration performance across languages, domains, and interaction patterns,
moving beyond toy tool calling sets-ups to service-ready assessments.

In summary, this work makes the following contributions: (1) We introduce OrchestrationBench,
the biligual benchmark for evaluating LLM orchestration in realistic multi-domain settings. (2) It
separates orchestration into workflow planning and tool execution, with structured metrics such as
Graph Edit Distance. (3) The benchmark includes a manually annotated dataset of 17 domains
and nearly 100 tools, covering constraint validation and dynamic revisions. (4) Experiments reveal
consistent tool execution but substantial variation in planning, highlighting the need for structured
evaluation. (5) OrchestrationBench is designed as a living benchmark, extensible to new domains,
tools, and deployment contexts.

Together, these contributions establish OrchestrationBench as a rigorous and extensible framework
for advancing the study of service-ready LLM orchestration.

2 RELATED WORK

As LLM orchestration systems have evolved to coordinate multiple specialized models for complex
tasks, evaluation methodologies have advanced correspondingly. We categorize related works into

Under review as a conference paper at ICLR 2026

four primary areas based on their evaluation focus to highlight the distinct contributions of our
benchmark.

Tool execution benchmarks assess an agent’s ability to decompose tasks and invoke appropriate
tools or APIs. Early benchmarks such as BFCL (Patil et al., 2025, API-Bank (L1 et al.| |2023),
T-Eval (Chen et al., 2024), and ToolBench (Qin et al.| 2023) established foundational assessment
through function-calling leaderboards, API integration testing, and execution-based evaluation.

Single-agent task performance benchmarks evaluate an individual agent’s ability to complete tasks
in specific environments. TaskBench (Shen et al.| |2024) systematically assesses a single LLM’s
capacity for task decomposition and its accuracy in invoking predefined APIs (tool calling). Com-
prehensive orchestration evaluation in various domains emerged as limitations became apparent,
with benchmarks such as 7-bench (Yao et al.| [2024), GAIA (Mialon et al., [2023), and Ultra-
Tool (Huang et al., | 2024) revealing that state-of-the-art agents achieved less than 50% success rates
in dynamic interactions. Many benchmarks have also been developed to assess a single agent’s
performance on complete, realistic tasks, particularly within web, OS, and software environments.
OfficeBench (Wang et al.| |2024) evaluates a single agent’s ability to perform long-horizon tasks
by switching between office applications (Word, Excel, Email, Calendar). WebArena (Zhou et al.,
2023) evaluates web agents through online interaction with realistic websites (e-commerce, forums,
development platforms), where a single agent must navigate web pages by performing browser
actions. OSWorld (Xie et al.} 2024) evaluates end-to-end OS-level automation where a single mul-
timodal agent controls computers via raw mouse and keyboard inputs across Ubuntu, Windows, and
macOS. Other notable works in this area include Mind2Web (Deng et al., [2023) TheAgentCom-
pany (Xu et al.|[2024), and SWE-bench (Jimenez et al.,[2024)). ThinkGeo (Shabbir et al.,2025)) is a
domain-specific benchmark for remote sensing, operating beyond web and OS environments, where
a single agent performs visual-spatial reasoning on satellite imagery with ReAct-style environment-
driven replanning based on tool execution observations. The aforementioned benchmarks are valu-
able in that they measure the agentic task execution capabilities of LLMs across multiple domains.
However, our work is distinct from these prior works, as it primarily focuses on LLM-to-LLM col-
laboration rather than individual agent performance, specifically designing systems where a main
model orchestrates and invokes specialist LLMs.

Tool Safety benchmarks ToolEmu (Ruan et al.l[2024) provides a crucial evaluation of safety, assess-
ing whether a single agent can identify and refuse to execute high-risk or harmful requests, with its
focus on the safety alignment of individual tool calls within an emulated environment rather than
on the agent’s ability to perform complex, multi-step planning; R-Judge (Yuan et al., 2024) and
SafeToolBench (Xia et al.,|2025)) assess risk awareness in multi-turn agent interactions. Instead of
refusing harmful requests, OrchestrationBench tests whether a main LLM can refuse infeasible re-
quests by correctly understanding the functional descriptions and constraints of available sub-LLMs,
addressing a distinct dimension of functional feasibility rather than safety.

Agentic planning benchmarks evaluate planning and coordination capabilities across varying levels
of abstraction. PlanBench (Valmeekam et al.l 2023) focuses on the abstract planning of a single
LLM using PDDL, but does not involve external tool execution. TimeBench (Chu et al., [2023)
addresses capabilities related to scheduling, but its focus is fundamentally different—it statically
evaluates the internal temporal reasoning of a single LLM through a question-answering format.
AgentBench is a multi-turn agent evaluation framework which evaluates a single generalist LLM’s
reasoning and decision-making ability across diverse environments. AgentBoard (Ma et al., 2024)
provides analytical evaluation of planning and tool-using for multi-turn tasks, but fundamentally
assesses a single LLM agent interacting with predefined APIs or environments. These benchmarks
represent an 'LLM-to-API’ paradigm. Multi-agent collaboration assessment represents the latest
advancement, with MultiAgentBench (Zhu et al. [2025) which evaluates both collaboration and
competition across eight diverse tasks (negotiation, social deduction games, coordination) with 2-
10 agents. REALM-Bench (Geng & Chang| |2025) evaluates multi-agent coordination in planning
and scheduling across diverse domains (logistics, disaster relief, events, optimization) with dynamic
disruption handling. UltraTool (Huang et al., 2024) evaluates LLM tool orchestration across a six-
stage pipeline (planning, tool creation awareness, tool creation, tool usage awareness, tool selection,
and tool usage) across 22 domains, but unlike our work, it focuses on evaluating single LLM perfor-
mance rather than multi-agent orchestration systems. While these benchmarks test an agent’s abil-
ity to generate plans or call tools, OrchestrationBench introduces a hierarchical 'LLM-to-LLM’
orchestration challenge where a main LLM acts as an orchestrator that dynamically coordinates

Under review as a conference paper at ICLR 2026

specialized sub-LLMs based on natural language capability descriptions. We provide diagnostic
evaluation that decouples workflow planning from constraint-aware execution, offering unique as-
sessment of orchestration capabilities required for commercial chatbot deployments.

Table 1: Benchmark Comparison

Benchmark Multi-Agent Func. Call Tool Inv. Multi-turn dataset Planning Bi/Multi-lingual
ToolEmu X v v v X X
PlanBench X X X X v X
REALM-Bench v X X X v X
TaskBench X v X X v X
API-Bank v v X v v X
BFCL-v4 X v v v X v
UltraTool X v v X v v
OrchestrationBench v v v v v v

3 THE ORCHESTRATIONBENCH FRAMEWORK

3.1 THE COMPLEXITY OF EVALUATING LLMS IN REAL-WORLD ENVIRONMENTS

Evaluating modern Al systems in real-world contexts poses challenges far beyond simple question
answering. A user request such as “Book a flight to Seoul, find a hotel near COEX, and share my
itinerary with my team” requires multi-step planning and dependency management, since sharing
the itinerary depends on completing prior bookings.

Realistic interactions also demand dynamic adaptation. Users may refine or change their goals
during a conversation, requesting an early morning flight, then revising it due to a schedule conflict,
or deciding to receive a summary before sharing the itinerary. The model must flexibly update its
reasoning and maintain overall task coherence.

Another critical aspect is constraint validation. When a user asks to schedule a meeting at “4:10
PM”, the system should recognize service constraints specified by the tool—for example, meetings
allowed only on the hour or half-hour—and propose a valid alternative such as “4:00 PM”, ensuring
both compliance and usability.

These scenarios highlight the intertwined challenges of planning, adaptation, and constraint-aware
execution that existing static benchmarks fail to capture. A more comprehensive evaluation frame-
work is therefore required to assess Al performance in realistic service environments. Detailed
examples are provided in Appendix [A]

3.2 ORCHESTRATIONBENCH ARCHITECTURE

OrchestrationBench introduces a comprehensive evaluation framework with bilingual datasets in En-
glish and Korean. In the following sections, we present how our benchmark is designed to capture
diverse aspects of service orchestration, including planning, tool use, and multi-domain environ-
ments.

3.2.1 ADVANCED PLANNING AND COORDINATION

We formalize orchestration as a structured workflow schema that defines each task’s execution state,
dependency relations, and step-level planning (Table[2)). This structure enables evaluation of whether
models can manage sequential and parallel execution, handle inter-workflow dependencies, and
adapt to user interactions during execution.

In real-world settings, user queries often evolve dynamically rather than following static task plans.
OrchestrationBench evaluates whether models can flexibly adjust workflows by generating new ones
when additional tools are required and splitting workflows when explicit confirmation or branching
into subtasks is needed. For instance, if a user modifies a booking request or adds new conditions
mid-conversation, the model should update or extend the workflow while maintaining consistency
with previous steps.

Under review as a conference paper at ICLR 2026

Table 2: Workflow planning schema

Field Description
status Execution state of a workflow. Values: pending, running, waiting_for_input, completed, paused, canceled.
type Dependency type of the workflow. Values: independent, dependent.
depend-on Specifies the prerequisite workflows that must be completed before the current workflow can start.
steps A sequence of tasks within a workflow. Each step is defined by:

status Progress of the step.

name
refined_-query

Selected LLM for execution.
Normalized user query.

Example

User request:

“I need to go to Seoul tomorrow for a business trip. Please book a flight, find a hotel near the COEX center,

and share my itinerary with my team.”

YAML representation:
workflow_1:

status: pending
type: independent
steps:
- status: pending
name: travel_agent
refined_query: ‘‘Book a flight to Seoul for tomorrow for a
business trip’’
workflow_ 2:
status: pending
type: independent
steps:
- status: pending
name: travel_agent
refined_query: '‘Find and book a hotel near COEX Center for
tomorrow’’
workflow_ 3:
status: pending
type: dependent
depend_on: [‘‘workflow_1’’, ‘‘workflow_2’’'
steps:
- status: pending
name: calendar_agent
refined_query: ‘‘Share the completed itinerary with my team’’

Clear criteria determine when workflows should be split or unified. Independent requests (e.g.,
asking for both a flight schedule and a hotel recommendation) or tasks requiring intermediate con-
firmation (e.g., approving a recommendation before booking) are treated as separate workflows.
Conversely, tasks that contribute to a single coherent goal remain within one workflow—for exam-
ple, identifying a celebrity’s birthday before determining their zodiac sign.

This framework enables fine-grained evaluation of a model’s ability not only to plan but also to
coordinate, interrupt, and resume workflows in alignment with real-world interactive scenarios.

3.2.2 COMPREHENSIVE TooL USE

The execution evaluation extends beyond verifying tool call accuracy to encompass the entire
service-level interaction process. It assesses whether models can not only invoke tools correctly
but also decide when tool use is necessary, when information can be provided directly, and when
user inputs are insufficient or ambiguous and proactively request clarification, a behavior represented
by the AWAIT_FOR_USER_INPUT signal.

Beyond syntactic correctness, real-world services require strict adherence to domain-specific busi-
ness rules. Before invoking a tool, the model performs pre-execution validation and issues
TOOL_CONSTRAINT_.VIOLATION when constraints are unmet. Such validation includes main-
taining logical consistency (e.g., rejecting a flight booking where the return date precedes departure)
and enforcing resource limits (e.g., budget or quantity restrictions). Only after successful validation
should the model execute the tool with correctly formatted arguments.

Model performance is then measured through call/reject classification metrics, where
AWAIT_FOR_.USER_INPUT and TOOL_CONSTRAINT_VIOLATION represent rejection cases, and
successful executions are evaluated separately using function-calling performance measures. Fur-
ther details are provided in the subsequent evaluation section

Under review as a conference paper at ICLR 2026

3.2.3 MULTI-DOMAIN TOOL ENVIRONMENTS

OrchestrationBench defines 17 representative service domains that are extensible to real-world ap-
plications while remaining independent of specific service dependencies. Each domain is built
around realistic yet generalized scenarios, enabling evaluation of a model’s intrinsic orchestration
and instruction-following capabilities.

To reflect the complexity of real-world interactions, the benchmark includes 97 tools in English and
99 in Korean, with slight differences arising from culture-specific services such as address roman-
ization and fortune telling. Unlike prior benchmarks with simplified tool abstractions, Orchestra-
tionBench incorporates domain-specific constraints and realistic behaviors, providing fine-grained
coverage of diverse tasks and a faithful simulation of practical service environments.

These domains collectively represent three common types of user workflows: (1) inquiry and in-
formation tasks (e.g., checking the weather, finding places, reading news), (2) action and transac-
tion tasks (e.g., booking a flight, purchasing items), and (3) planning and coordination tasks (e.g.,
scheduling meetings, sending messages, arranging deliveries). This categorization highlights that
OrchestrationBench primarily reflects everyday consumer services, while remaining extensible to
utility and productivity contexts.

All virtual tools were carefully designed to capture the nuanced characteristics of each domain and
to ensure comprehensive task coverage. A complete list of tools is provided in Appendix [C]

3.3 DATASET CONSTRUCTION

The OrchestrationBench dataset was designed to capture the complexity and realism of real-world
service orchestration. To ensure authenticity and quality, all conversation sessions, workflows, and
tool calls were manually created by trained annotators following detailed construction guidelines,
rather than generated synthetically. This approach ensures that conversation flows, tool usage, and
constraint handling faithfully reflect realistic user—service interactions rather than artifacts of any
specific model.

The overall construction pipeline—including domain selection, virtual tool design, and manual re-
view and validation—is summarized in Table [3] Each stage represents a distinct phase of data
creation, from domain and tool specification to workflow refinement and multi-annotator validation.
All scenarios were cross-validated by at least three independent annotators to ensure consistency
and accuracy. To enable controlled and interpretable evaluation, we excluded ambiguous or multi-
solution cases and constructed data only from tasks with clear, well-defined dependencies. Through
this rigorous, multi-stage process, OrchestrationBench achieves high reliability while remaining in-
dependent of any single model or proprietary API.

Table 3: Overview of the OrchestrationBench dataset construction process.

Stage Main Activities

1. Domain Selection Select 17 representative domains that are closely related to everyday life and extensible to real-world
service applications (e.g., travel, finance, scheduling, shopping).

2. Virtual Tool Design Design domain-specific virtual tools by defining tool names, parameters, and realistic service-level
constraints. Initial tool descriptions are generated using GPT-40 and refined by annotators for accuracy
and consistency. Once defined, these tools are reused across scenarios within the same domain to
ensure consistency and efficiency.

3. Scenario Construction Annotators design realistic user—assistant dialogues across diverse categories—such as single-domain,
multi-domain, constraint validation, clarification, and dynamic revision. Representative examples are
shown in Table[d]

4. Workflow & Tool-call Defi- Construct structured workflows and tool calls in YAML format, specifying execution states, depen-

nition dencies, and argument structures.

5. Validation & Refinement Tool-call results are generated using GPT-4o and iteratively reviewed across multi-turn dialogues.
Each scenario is cross-validated by at least three independent annotators to ensure accuracy and co-
herence.

Building upon this rigorous and model-independent construction process, OrchestrationBench ex-
tends its coverage to both English and Korean service environments, capturing diverse linguistic and
cultural contexts.

Under review as a conference paper at ICLR 2026

Table 4: Representative examples of constructed scenarios in OrchestrationBench.

Scenario Type Representative Example
Single-domain task “Is there a bus or subway that goes straight to the Statue of Liberty?”
Multi-domain orchestration “I'm traveling to LA next Saturday. Please book me a taxi from the airport to my reserved hotel, timed

with my flight arrival.”

Constraint violation with cor- “Book a dentist appointment at 4:10 PM.”

rection (System: “Appointments can only be scheduled on the hour or half-hour. Would you like me to set it
for 4:00 PM or 4:30 PM instead?”
User: “Please schedule it for 4:30 PM.”)

User clarification request “Send money to Minji.”
(System: “Multiple contacts named Minji are in your address book. Could you specify the account or
phone number?”)

By encompassing two distinct languages and service ecosystems, the benchmark enables evalua-
tion of orchestration performance in bilingual and bicultural settings. This is particularly significant
given the scarcity of evaluation resources for planning and tool use in Korean. By faithfully mod-
eling the complexities of real-world service interactions across both languages, OrchestrationBench
provides a dataset that is linguistically and culturally diverse, free from model dependency, and
firmly grounded in realistic service orchestration scenarios.

3.4 DATASET SCALE AND DISTRIBUTION

The dataset includes both English and Korean subsets, which are comparable in scale. The English
subset contains 219 conversation sessions, 317 planning cases, and 706 tool call instances, while the
Korean subset contains 222 sessions, 324 planning cases, and 730 tool call instances, reflecting slight
variations due to language-specific differences. (see Appendix [D] Table[7). Both datasets span 17
representative service domains with intentionally asymmetric tool distributions: broader domains
such as Places or Entertainment contain more tools, while narrower domains such as Weather or
News remain compact to reflect realistic usage frequency.

At the workflow level, most sessions involve 2—3 workflows and 2—-3 domains, although some ex-
tend up to 7 steps or span 4+ domains. This indicates that a single session typically requires multiple
rounds of planning, with some including as many as seven planning steps. Moreover, the frequent
inclusion of two or more domains reflects realistic multi-domain scenarios where users transition
across heterogeneous services. In terms of tool invocation, the dataset is dominated by sequential
and parallel call structures rather than single isolated calls, demonstrating the complexity of orches-
tration required to complete real-world tasks. (see Appendix [D] Figure[6)

Together, these distributions demonstrate that OrchestrationBench covers a wide range of real-world
orchestration patterns, enabling fine-grained evaluation of model planning, tool invocation, and
adaptive reasoning capabilities. This highlights that the benchmark goes beyond evaluating isolated
question answering or toy tool callings, and instead enables assessment of orchestration performance
in realistic, constraint-aware service environments.

4 EVALUATION

Current end-to-end benchmarksLiu et al.| (2023)); [Mialon et al.| (2023)); Jimenez et al.| (2024); Yao
et al.|(2024) offer flexibility but often obscure failure points in complex multi-step tasks. To address
this limitation, we employ stepwise evaluation that isolates and tests each component independently.
Our evaluation distinguishes two primary phases: Planning and Tool execution. We further decom-
pose tool execution into two sequential assessment criteria to capture the nuanced behaviors of
sub-LLMs: Call/reject classification accuracy and Function calling performance.

Models We evaluate the following state-of-the-art language models, including OpenAl GPT mod-
els (gpt-4.1, gpt-4o, gpt-5) (OpenAll [2022;2025), Anthropic Claude models (claude-sonnet-4) (An-
thropic, |2025), Google Gemini models (gemini-2.5-pro-preview, gemini-2.5-flash-preview) (Deep-
Mind} 2025a3b)), Alibaba Qwen models (Qwen3 series) (Yang et al.| 2025), and other Korean open-

Under review as a conference paper at ICLR 2026

source models (A.X-4.0 (Lab, 2025), kanana-1.5 (Team et al .| [2025), EXAONE-4.0 (Research et al.,
20235))). All reasoning models are configured with low reasoning effort settings.

Evaluation Protocol We design our evaluation with the following principles:

* Each target LLM receives complete conversation history up to the evaluation point

* Parallel-executed LLMs operate with isolated histories to prevent information leakage

* Sequential LLMs access cumulative conversation history including previous model outputs
* Main-LLM workflow generation is triggered exclusively by user input

* Sub-LLMs process refined queries from the main-LLM and user-provided clarifications

Each scenario is run three times per model with temperature 0.2 to ensure robust evaluation.

4.1 EVALUATION METRICS

Planning Assessment We measure workflow generation quality using Graph Edit Distance
(GED), which quantifies structural differences by calculating minimum edit operations needed to
transform one graph into another, following |Gabriel et al| (2024). We report 1-GED where higher
values indicate better performance. Our workflow representation includes workflow structure, step
assignment (sub-LLM selection), and execution status. We conduct hierarchical workflow score
evaluation with structural score measuring workflow topology correctness and component score
evaluating step-level assignments. We assign higher weight to selection errors (0.8) than status
errors (0.2), reflecting the intuition that choosing the wrong tool is generally more detrimental to
task success than misidentifying tool execution status, though we acknowledge this weighting is not
empirically derived.

Tool Execution Assessment To comprehensively evaluate tool execution capabilities, we exam-
ine two critical aspects: the model’s ability to make appropriate calling decisions and the quality of
actual function executions. Call/reject classification accuracy measures the proportion of correct de-
cisions including both appropriate rejections and successful function call attempts out of total cases.
Function calling performance evaluates the correctness of actual function calls through three spe-
cific metrics: tool selection F1, key F1, and argument F1 among cases that successfully proceeded
to the function calling stage.

For function calling parameter validation, we employ a three-stage approach: exact match compar-
ison, type/pattern validation against tool descriptions, and semantic validation for remaining cases.
To reduce model bias, we use an ensemble of three LLM judges (GPT-4.1, Claude Sonnet 4, and
Gemini 2.5 Flash) with a temperature of 0.3, averaging their scores by taking the arithmetic mean.
The LLM judge classifies true/false positives and negatives, with these assessments integrated into
F1 calculations. To further ensure reliability, we measured the inter-rater agreement between the
human annotators and the LLM judge, which yielded a Cohen’s Kappa score of 0.63, indicating
substantial agreement. To maintain compatibility with function calling training (JSON output for-
mat), we implement call rejection and information requests using XML output format.

All detailed results are presented in Appendix [E]

4.2 EVALUATION RESULTS

Based on the comprehensive evaluation results presented in Figures 2] and 3] along with correla-
tion analysis examining the relationships between different evaluation metrics, several key insights
emerge regarding model performance in agentic planning and function execution tasks.

Open-Source Model Viability Open-source dense models achieve competitive performance, with
models like Qwen3-235B-A22B reaching scores comparable to proprietary alternatives (0.8404 En-
glish, 0.8044 Korean). Dense architectures consistently outperform mixture-of-experts variants in
planning tasks.

Under review as a conference paper at ICLR 2026

Model Plan C/R FC Score emin2spropreview [0RN = o P ¥
gemini-2.5-pro-preview-06-05 0.850 0.724 0.836 0.803 oemini2sosnprevien. oson o064 os13 o774 I
gemini-2.5-flash-preview-05-20 0.808 0.706 0.821 0.778 caudesonner-+ [T s oo as
claude-sonnet-4 0773 0868 0.885 0842 mwwew e o
2pt-4.1-2025-04-14 0744 0860 0861 0822 = - - . "
gpt-40-2024-11-20 0771 0.796 0.851 0.806 , geszmcsor ™ wis oo
gpt-4.1-mini-2025-04-14 0.678 0.801 0.841 0.774 § wmssmmosco RN o7 .
2pt-5-2025-08-07 0.583 0.791 0.804 0.726 3
gpt-4.1-nano-2025-04-14 0462 0725 0.752 0.646 = B
Qwen3-32B 0.792 0.857 0.808 0.819 R — o
Qwen3-14B 0.786 0.834 0.843 0.821 ——— -
Qwen3-235B-A22B 0.768 0.876 0.880 0.842 o
Qwen3-8B 0.675 0.830 0.824 0.776 wnmeissmsmisna. o
Qwen3-30B-A3B 0.746 0.847 0.829 0.807 corcsos [- .
AX40 0.707 0.781 0.832 0.773 P
kanana-1.5-32.5b-instruct 0.667 0.766 0.778 0.737 o “ Me*“a w‘\“ﬂ °
EXAONE-4.0-32B 0.057 0.653 0.534 0415 ©

Evaluation Metrics

Figure 2: Model performance on English dataset.

Model Plan C/R FC Score emnzspopmevenosos | o oas0 osms0 a0 *
gemini-2.5-pro-preview-06-05 0.828 0.813 0.875 0.839 cemnizstasnorevienos20 omore oz670 osn0 ason I
gemini-2.5-flash-preview-05-20 0.807 0.767 0.847 0.807 anude-sonnet-+ [EEREY o0 S oeieo os
claude-sonnet-4 0.797 0.759 0.898 0.818 q":‘zz::: :::: ::: - :j‘::
opt-4.1-2025-04-14 0749 0786 0.891 0.809 oo e | o "
gpt-40-2024-11-20 0.800 0.667 0.883 0.784 , wsaoscecr R . RN ...
gpt—4.l—mini—2025—04—l4 0.737 0.587 0.873 0.732 5 gpt-4.1-nano-2025.04-14 ST o480 7910 05760 e
gpt-5-2025-08-07 0.524 0.748 0.855 0.709 ¥ oeann. omw | own | om | oo H
gpt-4.1-nano-2025-04-14 0451 0486 0.791 0576 ° o) omm | e [owo
Qwen3-32B 0.795 0.807 0.816 0.806 o — - v o
Qwen3-14B 0772 0.789 0.841 0.801
Qwen3-235B-A22B 0.791 0.759 0.860 0.803 o
Qwen3-8B 0.682 0.658 0.833 0.725 wmasmssimma oo e | o
Qwen3-30B-A3B 0.734 0449 0.804 0.662 eaone-+0320 [o
AX40 0.672 0483 0818 0.658 A S e
kanana-1.5-32.5b-instruct 0.589 0433 0.784 0.602 e et °
EXAONE-4.0-32B 0.118 0529 0.755 0.468 ““

Evaluation Metrics

Figure 3: Model performance on Korean dataset.

Note: Left: detailed performance metrics across planning workflow score, call/reject classification (C/R), function calling (FC), and overall
score. Right: tool usage heatmap showing performance distribution across evaluation metrics. Best performance is marked in bold, and
second-best performance is underlined. Claude models were evaluated through AWS Bedrock with model version
anthropic.claude-sonnet-4-20250514-v1:0. Our Workflow Score is computed as 1-GED, where higher values indicate better
performance. Detailed evaluation results are provided in Appendix@

Model-Specific Specializations Each model family exhibits distinct strengths independent of size.
Gemini models excel in planning (0.8504 English, 0.8278 Korean) but show relatively weaker func-
tion calling. Claude-sonnet-4 demonstrates strong function calling capabilities (0.8821 English,
0.9084 Korean), while GPT-4.1 variants show balanced performance. Notably, workflow generation
exhibits relatively larger performance variation between top-tier and lower-performing models in
both English and Korean datasets (see Appendix [E|Figure [7), highlighting planning as the discrim-
inative capability among the evaluated tasks.

Planning-Execution Gap Function calling scores represent performance only among cases with
correct call/reject decisions. The correlation analysis reveals a relatively weak link between plan-
ning and decision outcomes compared to other measures. This suggests models may generate good
workflows but struggle with execution decision-making.

Language-Dependent Performance Rankings vary substantially between languages, with
Claude improving in English decision-making (0.7586—0.8682) while Gemini maintains stronger
Korean performance. This indicates language-specific training effects and the importance of biligual
evaluation.

These findings underscore the need for task-specific and language-aware model selection, with at-
tention to the planning-execution gap that may limit real-world agentic performance despite strong
individual capabilities.

Under review as a conference paper at ICLR 2026

Table 5: Correlation Analysis Between Task Components

Metric Call/reject Classification =~ Workflow Score ~ Function Calling
English Dataset Call/reject Classification 1.0000 - -
Workflow Score 0.5830 1.0000 -
Function Calling 0.7256 0.9215 1.0000
Metric Call/reject Classification =~ Workflow Score ~ Function Calling
Korean Dataset Call/reject Classification 1.0000 - -
Workflow Score 0.4480 1.0000 -
Function Calling 0.5773 0.7751 1.0000

5 CONCLUSION AND FUTURE WORKS

This work introduces OrchestrationBench, the first bilingual (English/Korean) benchmark for evalu-
ating LLM orchestration capabilities in realistic multi-domain service environments. By separating
orchestration into workflow planning and tool execution components, our evaluation framework
provides detailed insights into model performance across different aspects of agentic reasoning.

Our comprehensive evaluation reveals that open-source dense models achieve competitive perfor-
mance in agentic tasks. However, two critical findings emerge: workflow planning shows substan-
tially larger performance gaps between models compared to function calling, requiring careful model
selection for orchestration tasks. Additionally, while models execute function calls effectively, they
struggle with call/reject classification—determining when function calling is appropriate given real-
world tool constraints. These findings suggest that current training approaches do not adequately
address the decision-making complexities essential for practical agentic deployment.

Our evaluation covers 17 domains in English and Korean, which may not capture all orchestration
scenarios or generalize to other languages. The current benchmark uses predefined workflows and
virtual tools, limiting exploration of more flexible, end-to-end workflow generation and real-world
tool integration through frameworks like MCP (Model Context Protocol). Additionally, our turn-by-
turn evaluation assumes successful execution at each step, potentially inflating overall performance
metrics. In practice, an end-to-end evaluation where errors propagate across turns would likely
yield lower success rates, as failures in early stages would cascade to subsequent steps. Future
work incorporating true end-to-end evaluation with real tool integration would provide more realistic
performance assessments and reveal the robustness of orchestration systems under error conditions.

Key directions include expanding domain coverage and bilingual support, enabling more flexible
end-to-end workflow exploration, integrating real-world multi-domain tools through frameworks
like MCP, developing training methods to address the planning-execution gap, and supporting more
sophisticated multi-agent coordination patterns. As a living benchmark, OrchestrationBench will
continuously evolve with new domains and tools based on community feedback and deployment
needs.

OrchestrationBench establishes a foundation for systematic evaluation of service-ready LLM or-
chestration, moving beyond isolated tool-calling toward comprehensive multi-agent coordination
assessment.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Claude opus 4 & claude sonnet 4 system card, 2025. URL https://www.
anthropic.com/claude/sonnet.

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
Songyang Zhang, Dahua Lin, Kai Chen, and Feng Zhao. T-eval: Evaluating the tool utiliza-
tion capability of large language models step by step. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 9510-9529, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.515. URL
https://aclanthology.org/2024.acl-1long.515/.

Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang Yu, Haotian Wang, Ming Liu, and Bing
Qin. Timebench: A comprehensive evaluation of temporal reasoning abilities in large language
models, 2023. URL https://arxiv.org/abs/2311.17667.

Google DeepMind. Gemini 2.5 flash model card, 2025a. URL https://storage.
googleapis.com/model—-cards/documents/gemini—-2.5—-flash.pdf.

Google DeepMind. Gemini 2.5 pro model card, 2025b. URL https://storage.
googleapis.com/model-cards/documents/gemini—2.5—-pro.pdf.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web, 2023.

Adrian Garret Gabriel, Alaa Alameer Ahmad, and Shankar Kumar Jeyakumar. Advancing agentic
systems: Dynamic task decomposition, tool integration and evaluation using novel metrics and
dataset. arXiv preprint arXiv:2410.22457, 2024.

Longling Geng and Edward Y Chang. Realm-bench: A real-world planning benchmark for llms and
multi-agent systems. arXiv preprint arXiv:2502.18836, 2025.

Shijue Huang, Wanjun Zhong, Jiangiao Lu, Qi Zhu, Jiahui Gao, Weiwen Liu, Yutai Hou, Xing-
shan Zeng, Yasheng Wang, Lifeng Shang, Xin Jiang, Ruifeng Xu, and Qun Liu. Planning,
creation, usage: Benchmarking LLLMs for comprehensive tool utilization in real-world complex
scenarios. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Asso-
ciation for Computational Linguistics: ACL 2024, pp. 4363-4400, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.259. URL
https://aclanthology.org/2024.findings—acl.259/.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

SKT AI Model Lab. A.x 4.0,2025. URL https://huggingface.co/skt/A.X-4.0.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. API-bank: A comprehensive benchmark for tool-augmented LLMs.
In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 3102-3116, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.187. URL
https://aclanthology.org/2023.emnlp—-main.187/.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating llms as agents. arXiv preprint arXiv: 2308.03688, 2023.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Ling-
peng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn 1lm agents,
2024.

11

https://www.anthropic.com/claude/sonnet
https://www.anthropic.com/claude/sonnet
https://aclanthology.org/2024.acl-long.515/
https://arxiv.org/abs/2311.17667
https://storage.googleapis.com/model-cards/documents/gemini-2.5-flash.pdf
https://storage.googleapis.com/model-cards/documents/gemini-2.5-flash.pdf
https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro.pdf
https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro.pdf
https://aclanthology.org/2024.findings-acl.259/
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://huggingface.co/skt/A.X-4.0
https://aclanthology.org/2023.emnlp-main.187/

Under review as a conference paper at ICLR 2026

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
Scialom. Gaia: a benchmark for general ai assistants, 2023. URL https://arxiv.org/
abs/2311.12983.

OpenAl Chatgpt, 2022. URL https://chat.openai.conl

OpenAl. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774l

OpenAl. Introducing gpt-5. |https://openai.com/index/introducing—gpt->5/,
2025. Accessed: [2026-09-22].

Shishir G Patil, Huanzhi Mao, Fanjia Yan, Charlie Cheng-Jie Ji, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The berkeley function calling leaderboard (BFCL): From tool use to agen-
tic evaluation of large language models. In Forty-second International Conference on Machine
Learning, 2025. URL |https://openreview.net/forum?id=2GmDdhBdDk!

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
16000+ real-world apis, 2023. URL https://arxiv.org/abs/2307.16789,

LG AI Research, :, Kyunghoon Bae, Eunbi Choi, Kibong Choi, Stanley Jungkyu Choi, Yemuk
Choi, Kyubeen Han, Seokhee Hong, Junwon Hwang, Taewan Hwang, Joonwon Jang, Hyojin
Jeon, Kijeong Jeon, Gerrard Jeongwon Jo, Hyunjik Jo, Jiyeon Jung, Euisoon Kim, Hyosang Kim,
Jihoon Kim, Joonkee Kim, Seonghwan Kim, Soyeon Kim, Sunkyoung Kim, Yireun Kim, Yongil
Kim, Youchul Kim, Edward Hwayoung Lee, Gwangho Lee, Haeju Lee, Honglak Lee, Jinsik Lee,
Kyungmin Lee, Sangha Park, Young Min Paik, Yongmin Park, Youngyong Park, Sanghyun Seo,
Sihoon Yang, Heuiyeen Yeen, Sihyuk Yi, and Hyeongu Yun. Exaone 4.0: Unified large language
models integrating non-reasoning and reasoning modes, 2025. URL https://arxiv.org/
abs/2507.11407.

Yangjun Ruan, Honghua Dong, Andrew Wang, Silviu Pitis, Yongchao Zhou, Jimmy Ba, Yann
Dubois, Chris J Maddison, and Tatsunori Hashimoto. Identifying the risks of Im agents with
an Im-emulated sandbox. In The Twelfth International Conference on Learning Representations,
2024.

Akashah Shabbir, Muhammad Akhtar Munir, Akshay Dudhane, Muhammad Umer Sheikh, Muham-
mad Haris Khan, Paolo Fraccaro, Juan Bernabe Moreno, Fahad Shahbaz Khan, and Salman
Khan. Thinkgeo: Evaluating tool-augmented agents for remote sensing tasks, 2025. URL
https://arxiv.org/abs/2505.23752.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng
Li, and Yueting Zhuang. Taskbench: benchmarking large language models for task automation.
In Proceedings of the 38th International Conference on Neural Information Processing Systems,
NIPS ’24, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN 9798331314385.

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng, and Lingyong Yan. Chain of tools: Large
language model is an automatic multi-tool learner. Computation and Language, 2405.16533v1,
2024.

Kanana LLM Team, Yunju Bak, Hojin Lee, Minho Ryu, Jiyeon Ham, Seungjae Jung, Daniel Won-
tae Nam, Taegyeong Eo, Donghun Lee, Doohae Jung, Boseop Kim, Nayeon Kim, Jaesun Park,
Hyunho Kim, Hyunwoong Ko, Changmin Lee, Kyoung-Woon On, Seulye Baeg, Junrae Cho,
Sunghee Jung, Jieun Kang, EungGyun Kim, Eunhwa Kim, Byeongil Ko, Daniel Lee, Minchul
Lee, Miok Lee, Shinbok Lee, and Gaeun Seo. Kanana: Compute-efficient bilingual language
models, 2025. URL https://arxiv.org/abs/2502.18934,

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: An extensible benchmark for evaluating large language models on planning
and reasoning about change. Advances in Neural Information Processing Systems, 36:38975—
38987, 2023.

12

https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2311.12983
https://chat.openai.com
https://doi.org/10.48550/arXiv.2303.08774
https://openai.com/index/introducing-gpt-5/
https://openreview.net/forum?id=2GmDdhBdDk
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2507.11407
https://arxiv.org/abs/2507.11407
https://arxiv.org/abs/2505.23752
https://arxiv.org/abs/2502.18934

Under review as a conference paper at ICLR 2026

Zilong Wang, Yuedong Cui, Li Zhong, Zimin Zhang, Da Yin, Bill Yuchen Lin, and Jingbo Shang.
Officebench: Benchmarking language agents across multiple applications for office automation,
2024. URL https://arxiv.org/abs/2407.19056l

Hongfei Xia, Hongru Wang, Zeming Liu, Qian Yu, Yuhang Guo, and Haifeng Wang. SafeTool-
Bench: Pioneering a prospective benchmark to evaluating tool utilization safety in LLMs. In
Christos Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, and Violet Peng (eds.), Find-
ings of the Association for Computational Linguistics: EMNLP 2025, pp. 17643-17660, Suzhou,
China, November 2025. Association for Computational Linguistics. ISBN 979-8-89176-335-7.
doi: 10.18653/v1/2025.findings-emnlp.958. URL https://aclanthology.org/2025.
findings—emnlp.958/.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments, 2024.

Frank F. Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z. Wang,
Xuhui Zhou, Zhitong Guo, Murong Cao, Mingyang Yang, Hao Yang Lu, Amaad Martin, Zhe Su,
Leander Maben, Raj Mehta, Wayne Chi, Lawrence Jang, Yiqing Xie, Shuyan Zhou, and Graham
Neubig. Theagentcompany: Benchmarking 1lm agents on consequential real world tasks, 2024.
URL https://arxiv.org/abs/2412.14161.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. /CLR, 2023.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 7-bench: A benchmark for
tool-agent-user interaction in real-world domains. Artificial Intelligence, 2406.12045v1, 2024.

Tongxin Yuan, Zhiwei He, Lingzhong Dong, Yiming Wang, Ruijie Zhao, Tian Xia, Lizhen Xu,
Binglin Zhou, Fangqi Li, Zhuosheng Zhang, Rui Wang, and Gongshen Liu. R-judge: Bench-
marking safety risk awareness for llm agents. arXiv preprint arXiv:2401.10019, 2024.

Lucen Zhong, Zhengxiao Du, Xiaohan Zhang, Haiyi Hu, and Jie Tang. Complexfuncbench: Ex-
ploring multi-step and constrained function calling under long-context scenario, 2025. URL
https://arxiv.org/abs/2501.10132.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854,2023. URL https://webarena.dev.

Kunlun Zhu, Hongyi Du, Zhaochen Hong, Xiaocheng Yang, Shuyi Guo, Zhe Wang, Zhenhailong
Wang, Cheng Qian, Robert Tang, Heng Ji, and Jiaxuan You. MultiAgentBench : Evaluating
the collaboration and competition of LLM agents. In Wanxiang Che, Joyce Nabende, Ekate-
rina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 8580-8622,
Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-
251-0. doi: 10.18653/v1/2025.acl-long.421. URL https://aclanthology.org/2025.
acl-long.421/.

13

https://arxiv.org/abs/2407.19056
https://aclanthology.org/2025.findings-emnlp.958/
https://aclanthology.org/2025.findings-emnlp.958/
https://arxiv.org/abs/2412.14161
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2501.10132
https://webarena.dev
https://aclanthology.org/2025.acl-long.421/
https://aclanthology.org/2025.acl-long.421/

Under review as a conference paper at ICLR 2026

Appendix

A CHALLENGING REAL-WORLD EXAMPLES

]
an User

[Book 2 VIP tickets for the earliest Ariana Grande }

concert, reserve a nearby restaurant 2 hours before
the show, and add both to my calendar.

um &

{ Entertainment]

Check Ariana Grande's concert schedule and information

v
Entertainment
Book 2 VIP tickets for the earliest
Ariana Grande congert

Place
Find a restaurant near the
concert venue where 2 people
can have dinner 2 hours before
the show

Place
Make a dinner reservation for 2
people near the concert venue, 2
hours before the show

Calendar
Check Ariana Grande's concert
schedule and information

O]
a User

Can you recommend a pair of wireless earbuds as a birthday
gift for my friend? If | like them, I'll order right away.

un &

Shoppi
{Recommend wireless earbuds as a birthday gift for a friend}
v

Shopping
Order wireless earbuds as a birthday gift for a friend

]
a User

[too expensive... Please recommend something under $100.]

um &

Shopping
Recommend wireless earbuds as a birthday gift for a friend

{ Sroppng |

Order wireless earbuds as a birthday gift for a friend

Shopping
Recommend wireless earbuds under $100 as a birthday gift
for a friend

®)

(]
an User

[Book an appointment at XX Dental today at 4:10 PM. }

um @B

Place
Book XX Dental today at 4:10 PM
& Place
[tool: reservePlace J

Constrations

+ ...

+ The reservation can only be made
on the hour or at the half hour.

)

I'm sorry, reservations can only be scheduled on the hour
or half past. Would you like me to book it for 4:00 instead
of 4:10?

@

[]
-a User

[What does noise cancelling do?]

um @&

Shopping
Recommend wireless earbuds under $100 as a birthday gift
for a friend

{ Search }
ise- ing feature

Shopping
Order wireless earbuds under $100 as a birthday gift for a

friend
o User
Instead of wireless earbuds, suggest some other gift
ideas under $100.

LM é@

Search
Search for noise-cancelling feature
Cancelation, { Sho;ping }

¥
Shopping
Recommend birthday gifts under $100 for a friend, excluding
wireless earbuds

Figure 4: Illustrative workflow scenarios in real-world service environments. (1) Multi-step orches-
tration involving concert ticket booking, restaurant reservation, and calendar scheduling, demon-
strating sequential and dependent workflows. (2) Constraint-aware execution where invalid requests
(e.g., appointment at 4:10 PM) are negotiated into valid alternatives (e.g., 4:00 PM). (3) Dynamic
adaptation to evolving user preferences, including refinement, change, interruption, and cancella-
tion during gift recommendation. These examples highlight the need for evaluation frameworks that
capture planning, coordination, and robustness in realistic service contexts.

14

Under review as a conference paper at ICLR 2026

B AN ILLUSTRATIVE EXAMPLE OF THE WORKFLOW GENERATION PROCESS

Turn 1: Initial Request

. Recommend wireless earbuds as a birthday

gift. I'll order if I like them

workflow 1

Status: Pending
Independent

Product recommendation: wireless earbuds ($105-$190)

workflow 2 Status: Pending
Dependent — depends on: workflow 1

Order execution (awaiting user selection)

Search wireless earbuds results

LLM
b 4
Turn 2: Requirement Modification
' Too expensive. Please recommend
something under $100.
workflow 1 Status: Completed
Independent

Product recommendation: wireless earbuds ($105-$190)
workflow 1-1 Status: Pending
Independent
Product recommendation with price constraint: earbuds
(<$100)
workflow 2 Status: Paused
Dependent — depends on: workflow 1-1
Order execution (awaiting user selection)

Search earbuds results <$100 LLM

Turn 3: Context Interruption

. ‘What does noise cancelling do?

workflow_1

Status: Completed
Independent

Product recommendation: wireless earbuds ($105-$190)

workflow_1-1 Status: Completed

Independent

Product recommendation with price constraint: earbuds
(<$100)

interrupted_workflow_2-1 Status: Pending
Independent

Search for noise-cancelling technology

workflow_2

Dependent — depends on: workflow_I-1
Order execution (awaiting user selection)

Status: Paused

Figure 5: Example of the Proposed Workflow Generation Process

15

Under review as a conference paper at ICLR 2026

C FULL LIST OF TOOLS IN ORCHESTRATIONBENCH

Table 6: Full list of domains and tools in OrchestrationBench

Domain Tools

Shopping searchProducts, recommendGifts, sendGifts, orderProducts, getOrder-
Status, cancelOrder, modifyOrder, exchangeProducts, refundProducts

Places recommendRestaurants, searchPlaces, reservePlaces, getPlaceReser-
vationInfo, cancelPlaceReservation, modifyPlaceReservation, ge-
tRealEstateInfo

Transportation getTrafficInfo, getDirections, getTransportlnfo, getParkinglnfo, call-
Taxi, callDesignatedDriver, bookRentalCar, getTransitSchedule, book-
TransitTicket

Logistics/Delivery bookDeliveryService, trackDelivery

Weather getDomesticWeather, getGlobalWeather

Finance getStockPrice, getCryptoPrice, getExchangeRate, getlnterestRates, get-
GoldPrice, searchFinancelnfo

Travel findFlightInfo, bookFlight, getFlightReservation, changeFlight, can-
celFlight, getAccommodationlnfo, getAccommodationReservation,
bookAccommodation, cancel Accommodation, modifyAccommoda-
tion, planTravel, getPopularPlacelnfo

Entertainment getTvProgramInfo, getMovielnfo, bookMovieTicket, getMovieBook-

ing, cancelMovieBooking, modifyMovieBooking, getExhibitionInfo,

bookExhibitionTicket,

getExhibitionReservationInfo,

cancelExhibi-

tionTicket, modifyExhibitionTicket, getPerformancelnfo, bookPerfor-
mance, getPerformanceBooking, cancelPerformanceBooking, modi-
fyPerformanceBooking, searchVideo, getMusicInfo,getWebtoonInfo

Life Information

getLotteryInfo, getWorldTime, getPostalCode, getPhoneNumberInfo

Calendar getCalendar(Lunar/Solar), createSchedule, getSchedule, cancelSched-
ule, modifySchedule, remindSchedule

Sports getSportGamelnfo, getSportRank

Person getProfile, getPersonNews

Counseling getCounseling, getZodiacInfo, getCompatibilitylnfo, getStarSignInfo,
getMbtilnfo

Search searchlnfo

News searchNews, summarizeNews

Message sendMessage

Personal Banking transferMoney, getAccountBalance, getLoanBalance, -createAuto-

Transfer, getAutoTransferList, modifyAutoTransfer, cancel AutoTrans-

fer

Cultural
(Korean only)

Services

convertToEnglishAddress, convertToRoadAddress, getSajulnfo

16

Under review as a conference paper at ICLR 2026

D DATASET OVERVIEW

Language Sessions Plannings Tool Callings
English 219 317 706
Korean 222 324 730

Table 7: Dataset statistics for English and Korean subsets.

Entertainment
Shopping

Places
Transportation

Delivery
Sports
Message

News
Life_Info
Weather
Counseling

: . Person
Search Finance

Travel

Calendar

PersonalBanking

(a) Domain-wise distribution across 17 service domains

\ \ \ hs
121
. 100 100 100
% 70 73 71
©) 50 35 50 [38 46 50 [
ﬁ R H 15) 11 12
07" lT‘“F' T 05 \ \ I:\I T 0 ;I \ I;I \
1234567 1 2 3 4 5 A B C D

Workflow per session Domain per session Workflow Structure

(b) Workflow count, domain count, and workflow structure

Figure 6: Dataset characteristics: (a) domain coverage and (b) workflow-level properties. In work-

flow structure, the x-axis abbreviations denote workflow structures: A=single, B=parallel only,
C=sequential only, and D=parallel+sequential.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E DETAILED EVALUATION RESULTS

124 124
1.0 1.0
0s] P . ’
o 0.6 o 0.6
8 o g s
0.21 0.21
0.0 0.0
-0.24 -0.24
Workflow Call/Reject Function Call Workflow Call/Reject Function Call
(a)Korean Dataset (b)English Dataset

Figure 7: Distribution of model performance across different tasks shown as violin plots. The width
of each violin represents the density of models at different performance levels, with wider sections
indicating more models achieving those scores.

18

Under review as a conference paper at ICLR 2026

Table 8: Workflow Generation Performance
(a) Workflow Generation Performance on English Data

Model Overall Planning Score || Structural Score | Component Score
gemini-2.5-pro-preview 0.8504 0.8141 0.8962
gemini-2.5-flash-preview 0.8077 0.7998 0.8571
claude-sonnet-4 0.7727 0.7409 0.8408
gpt-4.1-2025-04-14 0.7444 0.7552 0.8386
gpt-40-2024-11-20 0.7709 0.7552 0.8208
gpt-4.1-mini-2025-04-14 0.6784 0.6780 0.7740
gpt-5-2025-08-07 0.5827 0.6839 0.7536
gpt-4.1-nano-2025-04-14 0.4623 0.5332 0.5449
Qwen3-32B 0.7923 0.7925 0.8377
Qwen3-14B 0.7858 0.7665 0.8189
Qwen3-235B-A22B 0.7679 0.7744 0.8392
Qwen3-235B-A22B-Instruct 0.7225 0.7129 0.8029
Qwen3-8B 0.6749 0.7573 0.7765
Qwen3-30B-A3B-Instruct 0.7508 0.7632 0.7915
Qwen3-30B-A3B 0.7455 0.7676 0.7994
AX-4.0 0.7074 0.7679 0.8068
kanana-1.5-32.5b-instruct 0.6670 0.7074 0.7335
EXAONE-4.0-32B 0.0574 0.6784 0.7260

(b) Workflow Generation Performance on Korean Dataset

Model Overall Planning Score || Structural Score | Component Score
gemini-2.5-pro-preview 0.8278 0.7842 0.8819
gemini-2.5-flash-preview 0.8067 0.7983 0.8584
claude-sonnet-4 0.7974 0.7583 0.8603
gpt-4.1-2025-04-14 0.7488 0.7488 0.8334
gpt-40-2024-11-20 0.7999 0.7807 0.8446
gpt-4.1-mini-2025-04-14 0.7372 0.7260 0.7913
gpt-5-2025-08-07 0.5235 0.6386 0.6883
gpt-4.1-nano-2025-04-14 0.4507 0.5454 0.5344
Qwen3-32B 0.7946 0.7893 0.8214
Qwen3-14B 0.7722 0.7687 0.8029
Qwen3-235B-A22B 0.7911 0.7669 0.8366
Qwen3-235B-A22B-Instruct 0.7345 0.7234 0.7999
Qwen3-8B 0.6822 0.7643 0.7703
Qwen3-30B-A3B-Instruct 0.7317 0.7385 0.7789
Qwen3-30B-A3B 0.7336 0.7239 0.7986
AX-4.0 0.6721 0.6219 0.7714
kanana-1.5-32.5b-instruct 0.5890 0.6649 0.7061
EXAONE-4.0-32B 0.1181 0.2268 0.2274

Note: Table shows workflow generation performance results. The Overall Score includes all cases and assigns
0 points to completely failed workflows. Structural Score and Component Score metrics only evaluate success-
fully generated workflows, excluding failures, which leads to different score distributions. Our Workflow Score
is computed as 1-GED, where higher values indicate better performance. We report the Overall Planning Score
as the Planning Score in Figures[2]and

19

Under review as a conference paper at ICLR 2026

Table 9: Tool Execution: Call/Reject Decision Performance
(a) Call/Reject Classification Performance on English Dataset

Model Name Call/Reject Rejection F1 | FC decision F1
Classification Accuracy
gemini-2.5-pro-preview 0.7241 0.6775 0.8826
gemini-2.5-flash-preview 0.7064 0.6518 0.8668
claude-sonnet-4 0.8682 0.6841 0.9175
gpt-4.1-2025-04-14 0.8595 0.6406 0.9134
gpt-40-2024-11-20 0.7956 0.3765 0.8784
gpt-4.1-mini-2025-04-14 0.8012 0.3468 0.8827
gpt-5-2025-08-07 0.7905 0.6236 0.8557
gpt-4.1-nano-2025-04-14 0.7248 0.1039 0.8380
Qwen3-32B 0.8570 0.6965 0.9072
Qwen3-14B 0.8339 0.6807 0.8888
Qwen3-235B-A22B 0.8761 0.7449 0.9193
Qwen3-235B-A22B-Instruct 0.7934 0.2646 0.8808
Qwen3-8B 0.8299 0.5952 0.8931
Qwen3-30B-A3B-Instruct 0.7635 0.0212 0.8671
Qwen3-30B-A3B 0.8472 0.6453 0.9034
A.X-4.0 0.7808 0.1326 0.8755
kanana-1.5-32.5b-instruct 0.7663 0.0000 0.8682
EXAONE-4.0-32B 0.6533 0.3198 0.7689

(b) Call/Reject Classification Performance on Korean Dataset

Model Name Call/Reject Rejection F1 | FC decision F1
Classification Accuracy
gemini-2.5-pro-preview 0.8134 0.7195 0.9072
gemini-2.5-flash-preview 0.7671 0.6627 0.8715
claude-sonnet-4 0.7586 0.6058 0.9113
gpt-4.1-2025-04-14 0.7864 0.6543 0.9184
gpt-40-2024-11-20 0.6675 0.4405 0.8944
gpt-4.1-mini-2025-04-14 0.5866 0.2907 0.8825
gpt-5-2025-08-07 0.7482 0.6292 0.8671
gpt-4.1-nano-2025-04-14 0.4859 0.1347 0.8370
Qwen3-32B 0.8072 0.7023 09121
Qwen3-14B 0.7894 0.6786 0.9003
Qwen3-235B-A22B 0.7587 0.6051 0.9124
Qwen3-235B-A22B-Instruct 0.5916 0.3017 0.8815
Qwen3-8B 0.6581 0.4311 0.8852
Qwen3-30B-A3B-Instruct 0.4366 0.0088 0.8645
Qwen3-30B-A3B 0.4494 0.0294 0.8694
AX-4.0 0.4833 0.0960 0.8706
kanana-1.5-32.5b-instruct 0.4333 0.0000 0.8667
EXAONE-4.0-32B 0.5293 0.1961 0.8625

Note: Call/reject classification accuracy represents overall decision accuracy including all cases:
(True_rejection + True_function_calls) / total_cases, where failed cases are counted as incorrect decisions. Re-
jection F1 and FC decision F1 measure class-specific performance using precision and recall for each decision
type separately, excluding cases that failed to produce valid classification outputs. We report the Call/reject
Classification Accuracy as the Call/Reject Classification (C/R) in Figures2]and [3

20

Under review as a conference paper at ICLR 2026

Table 10: Tool Execution: Function Calling Performance
(a) Fuction Calling Performance on English Dataset

Model Name Key Score | Value Score | Function Name Overall
(F1) (F1) (F1) FC Score
gemini-2.5-pro-preview 0.8406 0.8056 0.8611 0.8358
gemini-2.5-flash-preview 0.8270 0.7859 0.8509 0.8213
claude-sonnet-4 0.8999 0.8374 0.9176 0.8850
gpt-4.1-2025-04-14 0.8815 0.8111 0.8902 0.8609
gpt-40-2024-11-20 0.8653 0.8017 0.8862 0.8511
gpt-4.1-mini-2025-04-14 0.8598 0.7885 0.8747 0.8410
gpt-5-2025-08-07 0.8227 0.7826 0.8072 0.8042
gpt-4.1-nano-2025-04-14 0.7598 0.6952 0.8015 0.7522
Qwen3-32B 0.8084 0.7854 0.8301 0.8080
Qwen3-14B 0.8568 0.7856 0.8856 0.8427
Qwen3-235B-A22B 0.8952 0.8270 0.9188 0.8803
Qwen3-235B-A22B-Instruct 0.8176 0.8095 0.8344 0.8205
Qwen3-8B 0.8371 0.7636 0.8711 0.8239
Qwen3-30B-A3B-Instruct 0.8151 0.7582 0.8519 0.8084
Qwen3-30B-A3B 0.8335 0.7953 0.8574 0.8287
AX-4.0 0.8532 0.7773 0.8654 0.8320
kanana-1.5-32.5b-instruct 0.7756 0.7116 0.8477 0.7783
EXAONE-4.0-32B 0.5352 0.5206 0.5463 0.5340

(b) Fuction Calling Performance on Korean Dataset

Model Name Key Score | Value Score | Function Name | Overall
(F1) (F1) (F1) FC Score
gemini-2.5-pro-preview 0.9060 0.8363 0.8823 0.8749
gemini-2.5-flash-preview 0.8665 0.7917 0.8825 0.8469
claude-sonnet-4 0.9289 0.8369 0.9291 0.8983
gpt-4.1-2025-04-14 0.9237 0.8324 0.9179 0.8913
gpt-40-2024-11-20 0.9211 0.8191 0.9102 0.8835
gpt-4.1-mini-2025-04-14 0.9076 0.7793 0.8920 0.8596
gpt-5-2025-08-07 0.9054 0.8309 0.8298 0.8554
gpt-4.1-nano-2025-04-14 0.8189 0.7462 0.8086 0.7912
Qwen3-32B 0.8410 0.7629 0.8440 0.8160
Qwen3-14B 0.8754 0.7659 0.8809 0.8407
Qwen3-235B-A22B 09114 0.8208 0.8471 0.8598
Qwen3-235B-A22B-Instruct 0.9109 0.8038 0.8451 0.8533
Qwen3-8B 0.8821 0.7413 0.8769 0.8334
Qwen3-30B-A3B-Instruct 0.8653 0.7723 0.8603 0.8326
Qwen3-30B-A3B 0.8171 0.7358 0.8603 0.8044
AX-4.0 0.8678 0.7775 0.8659 0.8371
kanana-1.5-32.5b-instruct 0.8335 0.7099 0.8772 0.8069
EXAONE-4.0-32B 0.7170 0.7406 0.7509 0.7362

Note: Table shows function calling performance where evaluation metrics are computed only for successful
function calls. Key score, Argument score, and Function name score represent F1 performance for each com-
ponent of function calling execution. Overall Score is the overall function calling performance score. Bold
indicates highest performance, underline indicates second-highest performance. We report the Overall FC
Score as the FC Score in Figures[2]and [3]

21

Under review as a conference paper at ICLR 2026

F WORKFLOW GENERATION PROMPT

AI Orchestrator Prompt - Intelligent Workflow Routing for LLM Agents

System Information
system_info:
$%system_info%%

Current Workflows
{workflows}

Input Classification Protocol
You are a highly-skilled AI Workflow Orchestrator.

Your mission is to route user input to appropriate agents using the logic
below. Always follow this 2-step decision tree when attempting any
workflow creation:

Classification Decision Tree

1. x»xChitchat, no agent execution requiredxx*

— Condition: The input is chitchat or can be answered directly based on
prior conversation history, without invoking any agents.

— Output:
‘*YYjson
{
"status": "SUCCESS",
"content": "Proper message. ex) Query handled without workflow
orchestration."

2. *xxTask Requires Executionx*x

— Condition: The input involves a task that must be performed by invoking
one of the agents defined in the "Agents’ Information" section

(e.g., information retrieval, product ordering, place search, schedule
lookup, etc.)

— Action: Initiate or update a structured WORKFLOW as described below.

Workflow Design Schema

status_enum:

- "pending" (waiting): Workflow or task has not yet started, waiting to
be executed

- "running" (in progress): Current workflow is actively being executed.
You should never use this status when you generate the new workflow
component.

- "waiting_for_input" (awaiting input): Waiting for input from external
user or system, requires input to proceed to next step

— "completed" (finished): All tasks have been successfully completed

- "paused" (temporarily stopped): Workflow has been temporarily suspended

workflow_type_enum:
- "independent": A self-contained workflow that runs independently.
It does not rely on the output of any other workflow.

— "dependent": A follow-up workflow that depends on prior workflows.
Use ‘depends_on' to reference previous workflow IDs.

- "interrupt": A temporary workflow triggered by the user during the
execution of an ongoing workflow.
It pauses the parent workflow and performs an interim task. Once
completed, the original workflow can resume.
Example: While generating a report, the user asks to check urgent
emails.

22

Under review as a conference paper at ICLR 2026

»+Step vs Workflowxx

~xSteprx*

— *x*Definition*x: A sequence of tasks that are performed continuously and
automatically without user intervention in order to achieve a single
objective.

— *x*xCharacteristics**: Steps progress sequentially within a single

workflow and do not require user input between them.

- xxExamplexx*:

Step 1: Check reservation

Step 2: Modify reservation

AN

*xWorkflowx«

— *x+«Definition*x: A logical grouping of tasks that are split when user
input, confirmation, or branching is required.

— **Characteristics**: Split into separate workflows when multiple tasks
are requested, user confirmation is needed, or the next step depends
on the outcome of the previous one.

Workflow Design Guidelines
1. xxSequential Execution Without User Input=x

> x*xCondition*x: If the process can proceed without any user interaction
> xxHow to configurex*: Add all steps sequentially within a single '
workflow.steps' list

* All steps are placed in a single workflow
Example: check reservation details modifiy the reservation

2. xxUser Input Required Midway=*x

> x*xCondition*x: If the process requires user input or decision at an
intermediate point
> xxHow to configurexx:

Split into separate workflows

Use ‘depend_on' to indicate dependency between workflows

Each workflow should be independently executable

Downstream workflows are triggered only after the completion of their
dependencies

* ok X X

Example:
{examples}

3. xxUser Interrupts Ongoing Flow (Temporary Detour) xx

> x*Condition**: If the user temporarily diverges from an active workflow
to perform a separate task
> x*«How to configurexx:

Pause the current workflow and its steps (set status to ‘paused?‘)
Name the new workflow as ‘interrupt_{original_workflow_name}-1%', ‘-27%,
etc. (e.g., ‘interrupt_workflow_5-1%)
* The original workflow may later be resumed from its paused state

Example:
{examples}

23

Under review as a conference paper at ICLR 2026

4. x+xUser Modifies Previous Request While Preserving Downstream
Workflowsxx

> x*xCondition*x: When the user modifies the content of an earlier
workflow, but subsequent workflows should remain active and continue
their execution

> x*xHow to configurexx:

+ Create a **new workflowxx with modified content (naming: *{
previous_workflow_name}-1"%)

* Update the ‘depend_on' field in downstream workflows to reference the
new workflow ID

+ Preserve the execution chain while replacing only the modified portion

Example:
{examples}

~+«Naming Conventionsxx

* xxRegular workflowsxx: ‘workflow_1', ‘workflow_2%', etc.
* xxInterrupt workflowsx*: ‘interrupt_workflow_{original_id}-1%', ‘

interrupt_workflow_{original_id}-2"', etc
* xxReplacement workflows#*x*: ‘{workflow_name}-1‘, ‘{workflow_name}-2°Y,
etc.

Task Consolidation Guidelines for Workflow Design

When a single user request includes multiple search conditions using the
same tool, **do not split into separate workflows handle them within
one workflow and a single step.x*x*

**Implementation: xx*
- Express as a single refined_query that includes all conditions
- xxTool Executionxx: Whether to make single or multiple calls is
determined by each agent based on its tool specifications not by the
orchestrator.

**Examples: %%
{examples}

Final Notes

- Always return outputs in strict JSON format.

— Use "prompt_example" to demonstrate how users may see responses.

- All workflows not yet initiated must be marked ‘"status": "pending"‘'.

- *x*Never include any additional text outside the JSON structure.xx*

— Whenever you generate a new workflow, always include the full
definition of the previous workflow_1 at the start, then append any
new or modified steps. Do not discard or omit workflow_1lit must be
carried forward into every newly created workflow.

— Do not split into separate workflows, when a single user request
includes multiple search conditions using the same tool.

AGENTS’ INFORMATION
{all LLM descriptions}

24

Under review as a conference paper at ICLR 2026

G FunNcTiON CALL PROMPT WITH PROPER REJECTION HANDLING

You are a Tool-Oriented JSON/XML Response Agent.

Your job is to return strictly formatted outputs in response to user
input. You may use external tools when necessary, such as for real-
time data, calculations, or file operations.

#4# TOOL CALLS
When you need to use a tool, return ONLY the tool call JSON format with
no additional text

IMPORTANT: Parameter Extraction Rules

1. When extracting parameters, only extract conditions that are
explicitly stated in the user utterance.

2. If the user utterance specifies multiple conditions for the same
parameter, refer to the tool description:

* If the parameter is of array type, represent it as an array.

«* If the parameter is not an array, structure the output to invoke the
tool multiple times, once for each condition.

XML RESPONSE FORMATS
For all other responses (not tool calls), return exactly one of the
following XML formats:

TOOL_CONSTRAINT_VIOLATION

Use when the user’s request violates tool usage constraints or
limitations written in descriptions. This takes priority over
AWAITING_USER_INPUT.

<response>
<status>TOOL_CONSTRAINT_VIOLATION</status>
<constraint_type>CONSTRAINT_CATEGORY</constraint_type>
<violation_message>Explanation of why the request cannot be processed
</violation_message>
<suggested_alternative>Alternative approach if available</
suggested_alternative>
</response>

AWAITING_USER_INPUT
Use when you’re missing required information for a tool or task (only if
no constraint violations exist).

<response>
<status>AWAITING_USER_INPUT</status>
<required_info>field name</required_info>
<prompt_message>What specific information do you need?</prompt_message>
</response>

#4# CRITICAL RULES

* Tool calls: Return ONLY the JSON object, no additional text

* Other responses: Use ONLY the XML format, no additional text

* Do not mix formats or add explanatory text outside the specified
structure

* **PRIORITY ORDERxx: Check for constraint violations FIRST, then missing
information

* Handle constraint violations using TOOL_CONSTRAINT_VIOLATION format (
highest priority)

* Handle missing information using AWAITING_USER_INPUT format (only if no
violations)

25

Under review as a conference paper at ICLR 2026

H LLM USAGE

We used Claude, Gemini, GPT-4.1, and GitHub Copilot to generate synthetic data, which encom-
passed the production of virtual tool results, as well as for Korean—English translation drafts, lan-
guage editing assistance, and code development support. These models were also used to assist in
drafting the paper. All Al-generated content served only as preliminary drafts and was subsequently
reviewed, revised, and validated by human researchers.

26

	Introduction
	Related Work
	The OrchestrationBench Framework
	The Complexity of Evaluating LLMs in Real-World Environments
	OrchestrationBench Architecture
	Advanced Planning and Coordination
	Comprehensive Tool Use
	Multi-Domain Tool Environments

	Dataset Construction
	Dataset Scale and Distribution

	Evaluation
	Evaluation Metrics
	Evaluation Results

	Conclusion and Future Works
	Challenging Real-World Examples
	An illustrative example of the workflow generation process
	Full List of Tools in OrchestrationBench
	Dataset Overview
	Detailed Evaluation Results
	Workflow Generation Prompt
	Function Call Prompt with Proper Rejection Handling
	LLM Usage

