
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ORCHESTRATIONBENCH:
LLM-DRIVEN AGENTIC PLANNING AND TOOL USE
IN MULTI-DOMAIN SCENARIOS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent progress in Large Language Models (LLMs) has transformed them from
text generators into agentic systems capable of multi-step reasoning, structured
planning, and tool use. However, existing benchmarks inadequately capture their
ability to orchestrate complex workflows across multiple domains under realistic
constraints. To address this, we propose OrchestrationBench, a bilingual (En-
glish/Korean) benchmark that systematically evaluates (1) workflow-based plan-
ning and (2) constraint-aware tool execution. OrchestrationBench spans 17 rep-
resentative domains with nearly 100 realistic virtual tools, covering scenarios
that require sequential/parallel planning and compliance with business constraints.
Unlike previous work, it explicitly disentangles planning evaluation from tool ex-
ecution evaluation, which assesses tool selection, argument extraction, validation,
and rejection handling. Constructed entirely through manual annotation with cul-
tural adaptation, the benchmark ensures authenticity, diversity, and freedom from
model-specific biases. Extensive experiments across state-of-the-art models show
that function calling performance is relatively consistent, whereas planning ca-
pabilities exhibit substantial variation across models, emphasizing the need for
structured planning evaluation. As a living benchmark, OrchestrationBench is
designed to expand toward new domains, tools, and integration enabling rigor-
ous, cross-cultural, and service-ready evaluation of LLM orchestration capabili-
ties. The benchmark is publicly available at GitHub.

1 INTRODUCTION

Large Language Models (LLMs) have advanced rapidly in recent years (OpenAI, 2022; 2023; Deep-
Mind, 2025a;b; Anthropic, 2025). Although initially regarded primarily as powerful text generators,
recent research has demonstrated their capacity to operate as versatile agents that can interact with
external tools (Yao et al., 2023), perform multi-step reasoning over complex instructions, and assist
users in various real-world applications (Shi et al., 2024). This evolution signifies a paradigm shift:
from passive text generation toward the active orchestration of tasks, positioning LLMs as potential
service-ready agents in both consumer-facing and enterprise domains.

Despite this progress, substantial challenges remain for real-world deployment. In practice, user
requests often involve sequences of interdependent subtasks that must be coordinated effectively
(Huang et al., 2024; Yao et al., 2024). These tasks frequently span heterogeneous domains, require
integration with external systems, and must adapt to dynamic constraints that evolve during user
interaction. However, existing benchmarks operate largely in simplified or domain-isolated settings
and thus do not capture the orchestration capabilities required for service-ready LLMs (Zhong et al.,
2025; Mialon et al., 2023).

To address these gaps, we introduce OrchestrationBench, a bilingual benchmark explicitly de-
signed to evaluate LLMs in realistic service environments. The benchmark defines a comprehen-
sive evaluation protocol that emphasizes two complementary dimensions: workflow planning and
constraint-aware tool execution. For workflow planning, the evaluation is formalized as workflow
construction. Each workflow is represented as a Directed Acyclic Graph (DAG) that encodes task
dependencies, execution states, and agent assignments. For constraint-aware tool execution, the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Orchestration setting of OrchestrationBench, where a main LLM decomposes user re-
quests into workflows and assigns subtasks to sub-LLMs, which perform tool calling and return
results for aggregation.

evaluation goes beyond the syntactic correctness of tool calling. Assesses three aspects: tool se-
lection, argument extraction, and value validation against domain-specific constraints. Semantic
correctness is adjudicated with auxiliary judges based on LLM. (Qin et al., 2023).

Figure 1 illustrates the orchestration setting that motivates our benchmark. A main LLM first de-
composes a user request into workflows and assigns subtasks to sub-LLMs. These sub-LLMs then
perform tool calling with refined parameters, and their outputs are aggregated by the main LLM
before being returned to the user. This iterative process supports multi-step workflows, parallel or
sequential subtask execution, user clarification, and workflow revision.

The dataset underlying OrchestrationBench covers 17 representative domains and nearly 100 realis-
tic virtual tools, encompassing single-domain tasks, multi-domain orchestration, constraint valida-
tion, and dynamic user revisions. The dataset was initially developed in Korean, leveraging abundant
use cases and thorough review to ensure realistic interaction patterns and reliable evaluation. It was
then expanded into English with comparable scale and domain coverage, with both versions val-
idated for effectiveness as evaluation data. This design not only enables biligual evaluation but
also captures cultural differences in interaction styles, offering unique insights into orchestration
across diverse service environments. Together, these properties allow OrchestrationBench to sys-
tematically evaluate orchestration performance across languages, domains, and interaction patterns,
moving beyond toy tool calling sets-ups to service-ready assessments.

In summary, this work makes the following contributions: (1) We introduce OrchestrationBench,
the biligual benchmark for evaluating LLM orchestration in realistic multi-domain settings. (2) It
separates orchestration into workflow planning and tool execution, with structured metrics such as
Graph Edit Distance. (3) The benchmark includes a manually annotated dataset of 17 domains
and nearly 100 tools, covering constraint validation and dynamic revisions. (4) Experiments reveal
consistent tool execution but substantial variation in planning, highlighting the need for structured
evaluation. (5) OrchestrationBench is designed as a living benchmark, extensible to new domains,
tools, and deployment contexts.

Together, these contributions establish OrchestrationBench as a rigorous and extensible framework
for advancing the study of service-ready LLM orchestration.

2 RELATED WORK

As LLM orchestration systems have evolved to coordinate multiple specialized models for complex
tasks, evaluation methodologies have advanced correspondingly. We categorize related works into

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

four primary areas based on their evaluation focus to highlight the distinct contributions of our
benchmark.

Tool execution benchmarks assess an agent’s ability to decompose tasks and invoke appropriate
tools or APIs. Early benchmarks such as BFCL (Patil et al., 2025), API-Bank (Li et al., 2023),
T-Eval (Chen et al., 2024), and ToolBench (Qin et al., 2023) established foundational assessment
through function-calling leaderboards, API integration testing, and execution-based evaluation.

Single-agent task performance benchmarks evaluate an individual agent’s ability to complete tasks
in specific environments. TaskBench (Shen et al., 2024) systematically assesses a single LLM’s
capacity for task decomposition and its accuracy in invoking predefined APIs (tool calling). Com-
prehensive orchestration evaluation in various domains emerged as limitations became apparent,
with benchmarks such as τ -bench (Yao et al., 2024), GAIA (Mialon et al., 2023), and Ultra-
Tool (Huang et al., 2024) revealing that state-of-the-art agents achieved less than 50% success rates
in dynamic interactions. Many benchmarks have also been developed to assess a single agent’s
performance on complete, realistic tasks, particularly within web, OS, and software environments.
OfficeBench (Wang et al., 2024) evaluates a single agent’s ability to perform long-horizon tasks
by switching between office applications (Word, Excel, Email, Calendar). WebArena (Zhou et al.,
2023) evaluates web agents through online interaction with realistic websites (e-commerce, forums,
development platforms), where a single agent must navigate web pages by performing browser
actions. OSWorld (Xie et al., 2024) evaluates end-to-end OS-level automation where a single mul-
timodal agent controls computers via raw mouse and keyboard inputs across Ubuntu, Windows, and
macOS. Other notable works in this area include Mind2Web (Deng et al., 2023) TheAgentCom-
pany (Xu et al., 2024), and SWE-bench (Jimenez et al., 2024). ThinkGeo (Shabbir et al., 2025) is a
domain-specific benchmark for remote sensing, operating beyond web and OS environments, where
a single agent performs visual-spatial reasoning on satellite imagery with ReAct-style environment-
driven replanning based on tool execution observations. The aforementioned benchmarks are valu-
able in that they measure the agentic task execution capabilities of LLMs across multiple domains.
However, our work is distinct from these prior works, as it primarily focuses on LLM-to-LLM col-
laboration rather than individual agent performance, specifically designing systems where a main
model orchestrates and invokes specialist LLMs.

Tool Safety benchmarks ToolEmu (Ruan et al., 2024) provides a crucial evaluation of safety, assess-
ing whether a single agent can identify and refuse to execute high-risk or harmful requests, with its
focus on the safety alignment of individual tool calls within an emulated environment rather than
on the agent’s ability to perform complex, multi-step planning; R-Judge (Yuan et al., 2024) and
SafeToolBench (Xia et al., 2025) assess risk awareness in multi-turn agent interactions. Instead of
refusing harmful requests, OrchestrationBench tests whether a main LLM can refuse infeasible re-
quests by correctly understanding the functional descriptions and constraints of available sub-LLMs,
addressing a distinct dimension of functional feasibility rather than safety.

Agentic planning benchmarks evaluate planning and coordination capabilities across varying levels
of abstraction. PlanBench (Valmeekam et al., 2023) focuses on the abstract planning of a single
LLM using PDDL, but does not involve external tool execution. TimeBench (Chu et al., 2023)
addresses capabilities related to scheduling, but its focus is fundamentally different—it statically
evaluates the internal temporal reasoning of a single LLM through a question-answering format.
AgentBench is a multi-turn agent evaluation framework which evaluates a single generalist LLM’s
reasoning and decision-making ability across diverse environments. AgentBoard (Ma et al., 2024)
provides analytical evaluation of planning and tool-using for multi-turn tasks, but fundamentally
assesses a single LLM agent interacting with predefined APIs or environments. These benchmarks
represent an ’LLM-to-API’ paradigm. Multi-agent collaboration assessment represents the latest
advancement, with MultiAgentBench (Zhu et al., 2025) which evaluates both collaboration and
competition across eight diverse tasks (negotiation, social deduction games, coordination) with 2-
10 agents. REALM-Bench (Geng & Chang, 2025) evaluates multi-agent coordination in planning
and scheduling across diverse domains (logistics, disaster relief, events, optimization) with dynamic
disruption handling. UltraTool (Huang et al., 2024) evaluates LLM tool orchestration across a six-
stage pipeline (planning, tool creation awareness, tool creation, tool usage awareness, tool selection,
and tool usage) across 22 domains, but unlike our work, it focuses on evaluating single LLM perfor-
mance rather than multi-agent orchestration systems. While these benchmarks test an agent’s abil-
ity to generate plans or call tools, OrchestrationBench introduces a hierarchical ’LLM-to-LLM’
orchestration challenge where a main LLM acts as an orchestrator that dynamically coordinates

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

specialized sub-LLMs based on natural language capability descriptions. We provide diagnostic
evaluation that decouples workflow planning from constraint-aware execution, offering unique as-
sessment of orchestration capabilities required for commercial chatbot deployments.

Table 1: Benchmark Comparison
Benchmark Multi-Agent Func. Call Tool Inv. Multi-turn dataset Planning Bi/Multi-lingual

ToolEmu ✗ ✓ ✓ ✓ ✗ ✗
PlanBench ✗ ✗ ✗ ✗ ✓ ✗
REALM-Bench ✓ ✗ ✗ ✗ ✓ ✗
TaskBench ✗ ✓ ✗ ✗ ✓ ✗
API-Bank ✓ ✓ ✗ ✓ ✓ ✗
BFCL-v4 ✗ ✓ ✓ ✓ ✗ ✓
UltraTool ✗ ✓ ✓ ✗ ✓ ✓
OrchestrationBench ✓ ✓ ✓ ✓ ✓ ✓

3 THE ORCHESTRATIONBENCH FRAMEWORK

3.1 THE COMPLEXITY OF EVALUATING LLMS IN REAL-WORLD ENVIRONMENTS

Evaluating modern AI systems in real-world contexts poses challenges far beyond simple question
answering. A user request such as “Book a flight to Seoul, find a hotel near COEX, and share my
itinerary with my team” requires multi-step planning and dependency management, since sharing
the itinerary depends on completing prior bookings.

Realistic interactions also demand dynamic adaptation. Users may refine or change their goals
during a conversation, requesting an early morning flight, then revising it due to a schedule conflict,
or deciding to receive a summary before sharing the itinerary. The model must flexibly update its
reasoning and maintain overall task coherence.

Another critical aspect is constraint validation. When a user asks to schedule a meeting at “4:10
PM”, the system should recognize service constraints specified by the tool—for example, meetings
allowed only on the hour or half-hour—and propose a valid alternative such as “4:00 PM”, ensuring
both compliance and usability.

These scenarios highlight the intertwined challenges of planning, adaptation, and constraint-aware
execution that existing static benchmarks fail to capture. A more comprehensive evaluation frame-
work is therefore required to assess AI performance in realistic service environments. Detailed
examples are provided in Appendix A.

3.2 ORCHESTRATIONBENCH ARCHITECTURE

OrchestrationBench introduces a comprehensive evaluation framework with bilingual datasets in En-
glish and Korean. In the following sections, we present how our benchmark is designed to capture
diverse aspects of service orchestration, including planning, tool use, and multi-domain environ-
ments.

3.2.1 ADVANCED PLANNING AND COORDINATION

We formalize orchestration as a structured workflow schema that defines each task’s execution state,
dependency relations, and step-level planning (Table 2). This structure enables evaluation of whether
models can manage sequential and parallel execution, handle inter-workflow dependencies, and
adapt to user interactions during execution.

In real-world settings, user queries often evolve dynamically rather than following static task plans.
OrchestrationBench evaluates whether models can flexibly adjust workflows by generating new ones
when additional tools are required and splitting workflows when explicit confirmation or branching
into subtasks is needed. For instance, if a user modifies a booking request or adds new conditions
mid-conversation, the model should update or extend the workflow while maintaining consistency
with previous steps.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 2: Workflow planning schema
Field Description

status Execution state of a workflow. Values: pending, running, waiting for input, completed, paused, canceled.
type Dependency type of the workflow. Values: independent, dependent.
depend on Specifies the prerequisite workflows that must be completed before the current workflow can start.
steps A sequence of tasks within a workflow. Each step is defined by:

status Progress of the step.
name Selected LLM for execution.
refined query Normalized user query.

Example

User request: “I need to go to Seoul tomorrow for a business trip. Please book a flight, find a hotel near the COEX center,
and share my itinerary with my team.”

YAML representation:
workflow_1:

status: pending
type: independent
steps:
- status: pending

name: travel_agent
refined_query: ‘‘Book a flight to Seoul for tomorrow for a

business trip’’
workflow_2:

status: pending
type: independent
steps:
- status: pending

name: travel_agent
refined_query: ‘‘Find and book a hotel near COEX Center for

tomorrow’’
workflow_3:

status: pending
type: dependent
depend_on: [‘‘workflow_1’’, ‘‘workflow_2’’]
steps:
- status: pending

name: calendar_agent
refined_query: ‘‘Share the completed itinerary with my team’’

Clear criteria determine when workflows should be split or unified. Independent requests (e.g.,
asking for both a flight schedule and a hotel recommendation) or tasks requiring intermediate con-
firmation (e.g., approving a recommendation before booking) are treated as separate workflows.
Conversely, tasks that contribute to a single coherent goal remain within one workflow—for exam-
ple, identifying a celebrity’s birthday before determining their zodiac sign.

This framework enables fine-grained evaluation of a model’s ability not only to plan but also to
coordinate, interrupt, and resume workflows in alignment with real-world interactive scenarios.

3.2.2 COMPREHENSIVE TOOL USE

The execution evaluation extends beyond verifying tool call accuracy to encompass the entire
service-level interaction process. It assesses whether models can not only invoke tools correctly
but also decide when tool use is necessary, when information can be provided directly, and when
user inputs are insufficient or ambiguous and proactively request clarification, a behavior represented
by the AWAIT FOR USER INPUT signal.

Beyond syntactic correctness, real-world services require strict adherence to domain-specific busi-
ness rules. Before invoking a tool, the model performs pre-execution validation and issues
TOOL CONSTRAINT VIOLATION when constraints are unmet. Such validation includes main-
taining logical consistency (e.g., rejecting a flight booking where the return date precedes departure)
and enforcing resource limits (e.g., budget or quantity restrictions). Only after successful validation
should the model execute the tool with correctly formatted arguments.

Model performance is then measured through call/reject classification metrics, where
AWAIT FOR USER INPUT and TOOL CONSTRAINT VIOLATION represent rejection cases, and
successful executions are evaluated separately using function-calling performance measures. Fur-
ther details are provided in the subsequent evaluation section

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2.3 MULTI-DOMAIN TOOL ENVIRONMENTS

OrchestrationBench defines 17 representative service domains that are extensible to real-world ap-
plications while remaining independent of specific service dependencies. Each domain is built
around realistic yet generalized scenarios, enabling evaluation of a model’s intrinsic orchestration
and instruction-following capabilities.

To reflect the complexity of real-world interactions, the benchmark includes 97 tools in English and
99 in Korean, with slight differences arising from culture-specific services such as address roman-
ization and fortune telling. Unlike prior benchmarks with simplified tool abstractions, Orchestra-
tionBench incorporates domain-specific constraints and realistic behaviors, providing fine-grained
coverage of diverse tasks and a faithful simulation of practical service environments.

These domains collectively represent three common types of user workflows: (1) inquiry and in-
formation tasks (e.g., checking the weather, finding places, reading news), (2) action and transac-
tion tasks (e.g., booking a flight, purchasing items), and (3) planning and coordination tasks (e.g.,
scheduling meetings, sending messages, arranging deliveries). This categorization highlights that
OrchestrationBench primarily reflects everyday consumer services, while remaining extensible to
utility and productivity contexts.

All virtual tools were carefully designed to capture the nuanced characteristics of each domain and
to ensure comprehensive task coverage. A complete list of tools is provided in Appendix C.

3.3 DATASET CONSTRUCTION

The OrchestrationBench dataset was designed to capture the complexity and realism of real-world
service orchestration. To ensure authenticity and quality, all conversation sessions, workflows, and
tool calls were manually created by trained annotators following detailed construction guidelines,
rather than generated synthetically. This approach ensures that conversation flows, tool usage, and
constraint handling faithfully reflect realistic user–service interactions rather than artifacts of any
specific model.

The overall construction pipeline—including domain selection, virtual tool design, and manual re-
view and validation—is summarized in Table 3. Each stage represents a distinct phase of data
creation, from domain and tool specification to workflow refinement and multi-annotator validation.
All scenarios were cross-validated by at least three independent annotators to ensure consistency
and accuracy. To enable controlled and interpretable evaluation, we excluded ambiguous or multi-
solution cases and constructed data only from tasks with clear, well-defined dependencies. Through
this rigorous, multi-stage process, OrchestrationBench achieves high reliability while remaining in-
dependent of any single model or proprietary API.

Table 3: Overview of the OrchestrationBench dataset construction process.
Stage Main Activities

1. Domain Selection Select 17 representative domains that are closely related to everyday life and extensible to real-world
service applications (e.g., travel, finance, scheduling, shopping).

2. Virtual Tool Design Design domain-specific virtual tools by defining tool names, parameters, and realistic service-level
constraints. Initial tool descriptions are generated using GPT-4o and refined by annotators for accuracy
and consistency. Once defined, these tools are reused across scenarios within the same domain to
ensure consistency and efficiency.

3. Scenario Construction Annotators design realistic user–assistant dialogues across diverse categories—such as single-domain,
multi-domain, constraint validation, clarification, and dynamic revision. Representative examples are
shown in Table 4.

4. Workflow & Tool-call Defi-
nition

Construct structured workflows and tool calls in YAML format, specifying execution states, depen-
dencies, and argument structures.

5. Validation & Refinement Tool-call results are generated using GPT-4o and iteratively reviewed across multi-turn dialogues.
Each scenario is cross-validated by at least three independent annotators to ensure accuracy and co-
herence.

Building upon this rigorous and model-independent construction process, OrchestrationBench ex-
tends its coverage to both English and Korean service environments, capturing diverse linguistic and
cultural contexts.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 4: Representative examples of constructed scenarios in OrchestrationBench.
Scenario Type Representative Example

Single-domain task “Is there a bus or subway that goes straight to the Statue of Liberty?”

Multi-domain orchestration “I’m traveling to LA next Saturday. Please book me a taxi from the airport to my reserved hotel, timed
with my flight arrival.”

Constraint violation with cor-
rection

“Book a dentist appointment at 4:10 PM.”
(System: “Appointments can only be scheduled on the hour or half-hour. Would you like me to set it
for 4:00 PM or 4:30 PM instead?”
User: “Please schedule it for 4:30 PM.”)

User clarification request “Send money to Minji.”
(System: “Multiple contacts named Minji are in your address book. Could you specify the account or
phone number?”)

By encompassing two distinct languages and service ecosystems, the benchmark enables evalua-
tion of orchestration performance in bilingual and bicultural settings. This is particularly significant
given the scarcity of evaluation resources for planning and tool use in Korean. By faithfully mod-
eling the complexities of real-world service interactions across both languages, OrchestrationBench
provides a dataset that is linguistically and culturally diverse, free from model dependency, and
firmly grounded in realistic service orchestration scenarios.

3.4 DATASET SCALE AND DISTRIBUTION

The dataset includes both English and Korean subsets, which are comparable in scale. The English
subset contains 219 conversation sessions, 317 planning cases, and 706 tool call instances, while the
Korean subset contains 222 sessions, 324 planning cases, and 730 tool call instances, reflecting slight
variations due to language-specific differences. (see Appendix D, Table 7). Both datasets span 17
representative service domains with intentionally asymmetric tool distributions: broader domains
such as Places or Entertainment contain more tools, while narrower domains such as Weather or
News remain compact to reflect realistic usage frequency.

At the workflow level, most sessions involve 2–3 workflows and 2–3 domains, although some ex-
tend up to 7 steps or span 4+ domains. This indicates that a single session typically requires multiple
rounds of planning, with some including as many as seven planning steps. Moreover, the frequent
inclusion of two or more domains reflects realistic multi-domain scenarios where users transition
across heterogeneous services. In terms of tool invocation, the dataset is dominated by sequential
and parallel call structures rather than single isolated calls, demonstrating the complexity of orches-
tration required to complete real-world tasks. (see Appendix D, Figure 6)

Together, these distributions demonstrate that OrchestrationBench covers a wide range of real-world
orchestration patterns, enabling fine-grained evaluation of model planning, tool invocation, and
adaptive reasoning capabilities. This highlights that the benchmark goes beyond evaluating isolated
question answering or toy tool callings, and instead enables assessment of orchestration performance
in realistic, constraint-aware service environments.

4 EVALUATION

Current end-to-end benchmarksLiu et al. (2023); Mialon et al. (2023); Jimenez et al. (2024); Yao
et al. (2024) offer flexibility but often obscure failure points in complex multi-step tasks. To address
this limitation, we employ stepwise evaluation that isolates and tests each component independently.
Our evaluation distinguishes two primary phases: Planning and Tool execution. We further decom-
pose tool execution into two sequential assessment criteria to capture the nuanced behaviors of
sub-LLMs: Call/reject classification accuracy and Function calling performance.

Models We evaluate the following state-of-the-art language models, including OpenAI GPT mod-
els (gpt-4.1, gpt-4o, gpt-5) (OpenAI, 2022; 2025), Anthropic Claude models (claude-sonnet-4) (An-
thropic, 2025), Google Gemini models (gemini-2.5-pro-preview, gemini-2.5-flash-preview) (Deep-
Mind, 2025a;b), Alibaba Qwen models (Qwen3 series) (Yang et al., 2025), and other Korean open-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

source models (A.X-4.0 (Lab, 2025), kanana-1.5 (Team et al., 2025), EXAONE-4.0 (Research et al.,
2025)). All reasoning models are configured with low reasoning effort settings.

Evaluation Protocol We design our evaluation with the following principles:

• Each target LLM receives complete conversation history up to the evaluation point

• Parallel-executed LLMs operate with isolated histories to prevent information leakage

• Sequential LLMs access cumulative conversation history including previous model outputs

• Main-LLM workflow generation is triggered exclusively by user input

• Sub-LLMs process refined queries from the main-LLM and user-provided clarifications

Each scenario is run three times per model with temperature 0.2 to ensure robust evaluation.

4.1 EVALUATION METRICS

Planning Assessment We measure workflow generation quality using Graph Edit Distance
(GED), which quantifies structural differences by calculating minimum edit operations needed to
transform one graph into another, following Gabriel et al. (2024). We report 1-GED where higher
values indicate better performance. Our workflow representation includes workflow structure, step
assignment (sub-LLM selection), and execution status. We conduct hierarchical workflow score
evaluation with structural score measuring workflow topology correctness and component score
evaluating step-level assignments. We assign higher weight to selection errors (0.8) than status
errors (0.2), reflecting the intuition that choosing the wrong tool is generally more detrimental to
task success than misidentifying tool execution status, though we acknowledge this weighting is not
empirically derived.

Tool Execution Assessment To comprehensively evaluate tool execution capabilities, we exam-
ine two critical aspects: the model’s ability to make appropriate calling decisions and the quality of
actual function executions. Call/reject classification accuracy measures the proportion of correct de-
cisions including both appropriate rejections and successful function call attempts out of total cases.
Function calling performance evaluates the correctness of actual function calls through three spe-
cific metrics: tool selection F1, key F1, and argument F1 among cases that successfully proceeded
to the function calling stage.

For function calling parameter validation, we employ a three-stage approach: exact match compar-
ison, type/pattern validation against tool descriptions, and semantic validation for remaining cases.
To reduce model bias, we use an ensemble of three LLM judges (GPT-4.1, Claude Sonnet 4, and
Gemini 2.5 Flash) with a temperature of 0.3, averaging their scores by taking the arithmetic mean.
The LLM judge classifies true/false positives and negatives, with these assessments integrated into
F1 calculations. To further ensure reliability, we measured the inter-rater agreement between the
human annotators and the LLM judge, which yielded a Cohen’s Kappa score of 0.63, indicating
substantial agreement. To maintain compatibility with function calling training (JSON output for-
mat), we implement call rejection and information requests using XML output format.

All detailed results are presented in Appendix E.

4.2 EVALUATION RESULTS

Based on the comprehensive evaluation results presented in Figures 2 and 3, along with correla-
tion analysis examining the relationships between different evaluation metrics, several key insights
emerge regarding model performance in agentic planning and function execution tasks.

Open-Source Model Viability Open-source dense models achieve competitive performance, with
models like Qwen3-235B-A22B reaching scores comparable to proprietary alternatives (0.8404 En-
glish, 0.8044 Korean). Dense architectures consistently outperform mixture-of-experts variants in
planning tasks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Model Plan C/R FC Score
gemini-2.5-pro-preview-06-05 0.850 0.724 0.836 0.803
gemini-2.5-flash-preview-05-20 0.808 0.706 0.821 0.778
claude-sonnet-4 0.773 0.868 0.885 0.842
gpt-4.1-2025-04-14 0.744 0.860 0.861 0.822
gpt-4o-2024-11-20 0.771 0.796 0.851 0.806
gpt-4.1-mini-2025-04-14 0.678 0.801 0.841 0.774
gpt-5-2025-08-07 0.583 0.791 0.804 0.726
gpt-4.1-nano-2025-04-14 0.462 0.725 0.752 0.646
Qwen3-32B 0.792 0.857 0.808 0.819
Qwen3-14B 0.786 0.834 0.843 0.821
Qwen3-235B-A22B 0.768 0.876 0.880 0.842
Qwen3-8B 0.675 0.830 0.824 0.776
Qwen3-30B-A3B 0.746 0.847 0.829 0.807
A.X-4.0 0.707 0.781 0.832 0.773
kanana-1.5-32.5b-instruct 0.667 0.766 0.778 0.737
EXAONE-4.0-32B 0.057 0.653 0.534 0.415

Figure 2: Model performance on English dataset.

Model Plan C/R FC Score
gemini-2.5-pro-preview-06-05 0.828 0.813 0.875 0.839
gemini-2.5-flash-preview-05-20 0.807 0.767 0.847 0.807
claude-sonnet-4 0.797 0.759 0.898 0.818
gpt-4.1-2025-04-14 0.749 0.786 0.891 0.809
gpt-4o-2024-11-20 0.800 0.667 0.883 0.784
gpt-4.1-mini-2025-04-14 0.737 0.587 0.873 0.732
gpt-5-2025-08-07 0.524 0.748 0.855 0.709
gpt-4.1-nano-2025-04-14 0.451 0.486 0.791 0.576
Qwen3-32B 0.795 0.807 0.816 0.806
Qwen3-14B 0.772 0.789 0.841 0.801
Qwen3-235B-A22B 0.791 0.759 0.860 0.803
Qwen3-8B 0.682 0.658 0.833 0.725
Qwen3-30B-A3B 0.734 0.449 0.804 0.662
A.X-4.0 0.672 0.483 0.818 0.658
kanana-1.5-32.5b-instruct 0.589 0.433 0.784 0.602
EXAONE-4.0-32B 0.118 0.529 0.755 0.468

Figure 3: Model performance on Korean dataset.
Note: Left: detailed performance metrics across planning workflow score, call/reject classification (C/R), function calling (FC), and overall
score. Right: tool usage heatmap showing performance distribution across evaluation metrics. Best performance is marked in bold, and
second-best performance is underlined. Claude models were evaluated through AWS Bedrock with model version
anthropic.claude-sonnet-4-20250514-v1:0. Our Workflow Score is computed as 1-GED, where higher values indicate better
performance. Detailed evaluation results are provided in Appendix E.

Model-Specific Specializations Each model family exhibits distinct strengths independent of size.
Gemini models excel in planning (0.8504 English, 0.8278 Korean) but show relatively weaker func-
tion calling. Claude-sonnet-4 demonstrates strong function calling capabilities (0.8821 English,
0.9084 Korean), while GPT-4.1 variants show balanced performance. Notably, workflow generation
exhibits relatively larger performance variation between top-tier and lower-performing models in
both English and Korean datasets (see Appendix E Figure 7), highlighting planning as the discrim-
inative capability among the evaluated tasks.

Planning-Execution Gap Function calling scores represent performance only among cases with
correct call/reject decisions. The correlation analysis reveals a relatively weak link between plan-
ning and decision outcomes compared to other measures. This suggests models may generate good
workflows but struggle with execution decision-making.

Language-Dependent Performance Rankings vary substantially between languages, with
Claude improving in English decision-making (0.7586→0.8682) while Gemini maintains stronger
Korean performance. This indicates language-specific training effects and the importance of biligual
evaluation.

These findings underscore the need for task-specific and language-aware model selection, with at-
tention to the planning-execution gap that may limit real-world agentic performance despite strong
individual capabilities.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 5: Correlation Analysis Between Task Components

English Dataset

Metric Call/reject Classification Workflow Score Function Calling
Call/reject Classification 1.0000 - -
Workflow Score 0.5830 1.0000 -
Function Calling 0.7256 0.9215 1.0000

Korean Dataset

Metric Call/reject Classification Workflow Score Function Calling
Call/reject Classification 1.0000 - -
Workflow Score 0.4480 1.0000 -
Function Calling 0.5773 0.7751 1.0000

5 CONCLUSION AND FUTURE WORKS

This work introduces OrchestrationBench, the first bilingual (English/Korean) benchmark for evalu-
ating LLM orchestration capabilities in realistic multi-domain service environments. By separating
orchestration into workflow planning and tool execution components, our evaluation framework
provides detailed insights into model performance across different aspects of agentic reasoning.

Our comprehensive evaluation reveals that open-source dense models achieve competitive perfor-
mance in agentic tasks. However, two critical findings emerge: workflow planning shows substan-
tially larger performance gaps between models compared to function calling, requiring careful model
selection for orchestration tasks. Additionally, while models execute function calls effectively, they
struggle with call/reject classification—determining when function calling is appropriate given real-
world tool constraints. These findings suggest that current training approaches do not adequately
address the decision-making complexities essential for practical agentic deployment.

Our evaluation covers 17 domains in English and Korean, which may not capture all orchestration
scenarios or generalize to other languages. The current benchmark uses predefined workflows and
virtual tools, limiting exploration of more flexible, end-to-end workflow generation and real-world
tool integration through frameworks like MCP (Model Context Protocol). Additionally, our turn-by-
turn evaluation assumes successful execution at each step, potentially inflating overall performance
metrics. In practice, an end-to-end evaluation where errors propagate across turns would likely
yield lower success rates, as failures in early stages would cascade to subsequent steps. Future
work incorporating true end-to-end evaluation with real tool integration would provide more realistic
performance assessments and reveal the robustness of orchestration systems under error conditions.

Key directions include expanding domain coverage and bilingual support, enabling more flexible
end-to-end workflow exploration, integrating real-world multi-domain tools through frameworks
like MCP, developing training methods to address the planning-execution gap, and supporting more
sophisticated multi-agent coordination patterns. As a living benchmark, OrchestrationBench will
continuously evolve with new domains and tools based on community feedback and deployment
needs.

OrchestrationBench establishes a foundation for systematic evaluation of service-ready LLM or-
chestration, moving beyond isolated tool-calling toward comprehensive multi-agent coordination
assessment.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Claude opus 4 & claude sonnet 4 system card, 2025. URL https://www.
anthropic.com/claude/sonnet.

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
Songyang Zhang, Dahua Lin, Kai Chen, and Feng Zhao. T-eval: Evaluating the tool utiliza-
tion capability of large language models step by step. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 9510–9529, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.515. URL
https://aclanthology.org/2024.acl-long.515/.

Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang Yu, Haotian Wang, Ming Liu, and Bing
Qin. Timebench: A comprehensive evaluation of temporal reasoning abilities in large language
models, 2023. URL https://arxiv.org/abs/2311.17667.

Google DeepMind. Gemini 2.5 flash model card, 2025a. URL https://storage.
googleapis.com/model-cards/documents/gemini-2.5-flash.pdf.

Google DeepMind. Gemini 2.5 pro model card, 2025b. URL https://storage.
googleapis.com/model-cards/documents/gemini-2.5-pro.pdf.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web, 2023.

Adrian Garret Gabriel, Alaa Alameer Ahmad, and Shankar Kumar Jeyakumar. Advancing agentic
systems: Dynamic task decomposition, tool integration and evaluation using novel metrics and
dataset. arXiv preprint arXiv:2410.22457, 2024.

Longling Geng and Edward Y Chang. Realm-bench: A real-world planning benchmark for llms and
multi-agent systems. arXiv preprint arXiv:2502.18836, 2025.

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Jiahui Gao, Weiwen Liu, Yutai Hou, Xing-
shan Zeng, Yasheng Wang, Lifeng Shang, Xin Jiang, Ruifeng Xu, and Qun Liu. Planning,
creation, usage: Benchmarking LLMs for comprehensive tool utilization in real-world complex
scenarios. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Asso-
ciation for Computational Linguistics: ACL 2024, pp. 4363–4400, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.259. URL
https://aclanthology.org/2024.findings-acl.259/.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

SKT AI Model Lab. A.x 4.0, 2025. URL https://huggingface.co/skt/A.X-4.0.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. API-bank: A comprehensive benchmark for tool-augmented LLMs.
In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 3102–3116, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.187. URL
https://aclanthology.org/2023.emnlp-main.187/.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating llms as agents. arXiv preprint arXiv: 2308.03688, 2023.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Ling-
peng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm agents,
2024.

11

https://www.anthropic.com/claude/sonnet
https://www.anthropic.com/claude/sonnet
https://aclanthology.org/2024.acl-long.515/
https://arxiv.org/abs/2311.17667
https://storage.googleapis.com/model-cards/documents/gemini-2.5-flash.pdf
https://storage.googleapis.com/model-cards/documents/gemini-2.5-flash.pdf
https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro.pdf
https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro.pdf
https://aclanthology.org/2024.findings-acl.259/
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://huggingface.co/skt/A.X-4.0
https://aclanthology.org/2023.emnlp-main.187/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
Scialom. Gaia: a benchmark for general ai assistants, 2023. URL https://arxiv.org/
abs/2311.12983.

OpenAI. Chatgpt, 2022. URL https://chat.openai.com.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

OpenAI. Introducing gpt-5. https://openai.com/index/introducing-gpt-5/,
2025. Accessed: [2026-09-22].

Shishir G Patil, Huanzhi Mao, Fanjia Yan, Charlie Cheng-Jie Ji, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The berkeley function calling leaderboard (BFCL): From tool use to agen-
tic evaluation of large language models. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=2GmDdhBdDk.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
16000+ real-world apis, 2023. URL https://arxiv.org/abs/2307.16789.

LG AI Research, :, Kyunghoon Bae, Eunbi Choi, Kibong Choi, Stanley Jungkyu Choi, Yemuk
Choi, Kyubeen Han, Seokhee Hong, Junwon Hwang, Taewan Hwang, Joonwon Jang, Hyojin
Jeon, Kijeong Jeon, Gerrard Jeongwon Jo, Hyunjik Jo, Jiyeon Jung, Euisoon Kim, Hyosang Kim,
Jihoon Kim, Joonkee Kim, Seonghwan Kim, Soyeon Kim, Sunkyoung Kim, Yireun Kim, Yongil
Kim, Youchul Kim, Edward Hwayoung Lee, Gwangho Lee, Haeju Lee, Honglak Lee, Jinsik Lee,
Kyungmin Lee, Sangha Park, Young Min Paik, Yongmin Park, Youngyong Park, Sanghyun Seo,
Sihoon Yang, Heuiyeen Yeen, Sihyuk Yi, and Hyeongu Yun. Exaone 4.0: Unified large language
models integrating non-reasoning and reasoning modes, 2025. URL https://arxiv.org/
abs/2507.11407.

Yangjun Ruan, Honghua Dong, Andrew Wang, Silviu Pitis, Yongchao Zhou, Jimmy Ba, Yann
Dubois, Chris J Maddison, and Tatsunori Hashimoto. Identifying the risks of lm agents with
an lm-emulated sandbox. In The Twelfth International Conference on Learning Representations,
2024.

Akashah Shabbir, Muhammad Akhtar Munir, Akshay Dudhane, Muhammad Umer Sheikh, Muham-
mad Haris Khan, Paolo Fraccaro, Juan Bernabe Moreno, Fahad Shahbaz Khan, and Salman
Khan. Thinkgeo: Evaluating tool-augmented agents for remote sensing tasks, 2025. URL
https://arxiv.org/abs/2505.23752.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng
Li, and Yueting Zhuang. Taskbench: benchmarking large language models for task automation.
In Proceedings of the 38th International Conference on Neural Information Processing Systems,
NIPS ’24, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN 9798331314385.

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng, and Lingyong Yan. Chain of tools: Large
language model is an automatic multi-tool learner. Computation and Language, 2405.16533v1,
2024.

Kanana LLM Team, Yunju Bak, Hojin Lee, Minho Ryu, Jiyeon Ham, Seungjae Jung, Daniel Won-
tae Nam, Taegyeong Eo, Donghun Lee, Doohae Jung, Boseop Kim, Nayeon Kim, Jaesun Park,
Hyunho Kim, Hyunwoong Ko, Changmin Lee, Kyoung-Woon On, Seulye Baeg, Junrae Cho,
Sunghee Jung, Jieun Kang, EungGyun Kim, Eunhwa Kim, Byeongil Ko, Daniel Lee, Minchul
Lee, Miok Lee, Shinbok Lee, and Gaeun Seo. Kanana: Compute-efficient bilingual language
models, 2025. URL https://arxiv.org/abs/2502.18934.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: An extensible benchmark for evaluating large language models on planning
and reasoning about change. Advances in Neural Information Processing Systems, 36:38975–
38987, 2023.

12

https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2311.12983
https://chat.openai.com
https://doi.org/10.48550/arXiv.2303.08774
https://openai.com/index/introducing-gpt-5/
https://openreview.net/forum?id=2GmDdhBdDk
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2507.11407
https://arxiv.org/abs/2507.11407
https://arxiv.org/abs/2505.23752
https://arxiv.org/abs/2502.18934

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zilong Wang, Yuedong Cui, Li Zhong, Zimin Zhang, Da Yin, Bill Yuchen Lin, and Jingbo Shang.
Officebench: Benchmarking language agents across multiple applications for office automation,
2024. URL https://arxiv.org/abs/2407.19056.

Hongfei Xia, Hongru Wang, Zeming Liu, Qian Yu, Yuhang Guo, and Haifeng Wang. SafeTool-
Bench: Pioneering a prospective benchmark to evaluating tool utilization safety in LLMs. In
Christos Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, and Violet Peng (eds.), Find-
ings of the Association for Computational Linguistics: EMNLP 2025, pp. 17643–17660, Suzhou,
China, November 2025. Association for Computational Linguistics. ISBN 979-8-89176-335-7.
doi: 10.18653/v1/2025.findings-emnlp.958. URL https://aclanthology.org/2025.
findings-emnlp.958/.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments, 2024.

Frank F. Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z. Wang,
Xuhui Zhou, Zhitong Guo, Murong Cao, Mingyang Yang, Hao Yang Lu, Amaad Martin, Zhe Su,
Leander Maben, Raj Mehta, Wayne Chi, Lawrence Jang, Yiqing Xie, Shuyan Zhou, and Graham
Neubig. Theagentcompany: Benchmarking llm agents on consequential real world tasks, 2024.
URL https://arxiv.org/abs/2412.14161.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. ICLR, 2023.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains. Artificial Intelligence, 2406.12045v1, 2024.

Tongxin Yuan, Zhiwei He, Lingzhong Dong, Yiming Wang, Ruijie Zhao, Tian Xia, Lizhen Xu,
Binglin Zhou, Fangqi Li, Zhuosheng Zhang, Rui Wang, and Gongshen Liu. R-judge: Bench-
marking safety risk awareness for llm agents. arXiv preprint arXiv:2401.10019, 2024.

Lucen Zhong, Zhengxiao Du, Xiaohan Zhang, Haiyi Hu, and Jie Tang. Complexfuncbench: Ex-
ploring multi-step and constrained function calling under long-context scenario, 2025. URL
https://arxiv.org/abs/2501.10132.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023. URL https://webarena.dev.

Kunlun Zhu, Hongyi Du, Zhaochen Hong, Xiaocheng Yang, Shuyi Guo, Zhe Wang, Zhenhailong
Wang, Cheng Qian, Robert Tang, Heng Ji, and Jiaxuan You. MultiAgentBench : Evaluating
the collaboration and competition of LLM agents. In Wanxiang Che, Joyce Nabende, Ekate-
rina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 8580–8622,
Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-
251-0. doi: 10.18653/v1/2025.acl-long.421. URL https://aclanthology.org/2025.
acl-long.421/.

13

https://arxiv.org/abs/2407.19056
https://aclanthology.org/2025.findings-emnlp.958/
https://aclanthology.org/2025.findings-emnlp.958/
https://arxiv.org/abs/2412.14161
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2501.10132
https://webarena.dev
https://aclanthology.org/2025.acl-long.421/
https://aclanthology.org/2025.acl-long.421/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix

A CHALLENGING REAL-WORLD EXAMPLES

Figure 4: Illustrative workflow scenarios in real-world service environments. (1) Multi-step orches-
tration involving concert ticket booking, restaurant reservation, and calendar scheduling, demon-
strating sequential and dependent workflows. (2) Constraint-aware execution where invalid requests
(e.g., appointment at 4:10 PM) are negotiated into valid alternatives (e.g., 4:00 PM). (3) Dynamic
adaptation to evolving user preferences, including refinement, change, interruption, and cancella-
tion during gift recommendation. These examples highlight the need for evaluation frameworks that
capture planning, coordination, and robustness in realistic service contexts.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B AN ILLUSTRATIVE EXAMPLE OF THE WORKFLOW GENERATION PROCESS

Figure 5: Example of the Proposed Workflow Generation Process

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C FULL LIST OF TOOLS IN ORCHESTRATIONBENCH

Table 6: Full list of domains and tools in OrchestrationBench

Domain Tools
Shopping searchProducts, recommendGifts, sendGifts, orderProducts, getOrder-

Status, cancelOrder, modifyOrder, exchangeProducts, refundProducts
Places recommendRestaurants, searchPlaces, reservePlaces, getPlaceReser-

vationInfo, cancelPlaceReservation, modifyPlaceReservation, ge-
tRealEstateInfo

Transportation getTrafficInfo, getDirections, getTransportInfo, getParkingInfo, call-
Taxi, callDesignatedDriver, bookRentalCar, getTransitSchedule, book-
TransitTicket

Logistics/Delivery bookDeliveryService, trackDelivery
Weather getDomesticWeather, getGlobalWeather
Finance getStockPrice, getCryptoPrice, getExchangeRate, getInterestRates, get-

GoldPrice, searchFinanceInfo
Travel findFlightInfo, bookFlight, getFlightReservation, changeFlight, can-

celFlight, getAccommodationInfo, getAccommodationReservation,
bookAccommodation, cancelAccommodation, modifyAccommoda-
tion, planTravel, getPopularPlaceInfo

Entertainment getTvProgramInfo, getMovieInfo, bookMovieTicket, getMovieBook-
ing, cancelMovieBooking, modifyMovieBooking, getExhibitionInfo,
bookExhibitionTicket, getExhibitionReservationInfo, cancelExhibi-
tionTicket, modifyExhibitionTicket, getPerformanceInfo, bookPerfor-
mance, getPerformanceBooking, cancelPerformanceBooking, modi-
fyPerformanceBooking, searchVideo, getMusicInfo,getWebtoonInfo

Life Information getLotteryInfo, getWorldTime, getPostalCode, getPhoneNumberInfo
Calendar getCalendar(Lunar/Solar), createSchedule, getSchedule, cancelSched-

ule, modifySchedule, remindSchedule
Sports getSportGameInfo, getSportRank
Person getProfile, getPersonNews
Counseling getCounseling, getZodiacInfo, getCompatibilityInfo, getStarSignInfo,

getMbtiInfo
Search searchInfo
News searchNews, summarizeNews
Message sendMessage
Personal Banking transferMoney, getAccountBalance, getLoanBalance, createAuto-

Transfer, getAutoTransferList, modifyAutoTransfer, cancelAutoTrans-
fer

Cultural Services
(Korean only)

convertToEnglishAddress, convertToRoadAddress, getSajuInfo

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D DATASET OVERVIEW

Language Sessions Plannings Tool Callings

English 219 317 706
Korean 222 324 730

Table 7: Dataset statistics for English and Korean subsets.

Places

16%

Entertainment

13%

Shopping

12%
Transportation

10%

Travel

9%

Calendar

7%

PersonalBanking

5%

Search

5%

Finance

3%

Person

3%

Counseling

3%

Weather

3%

Life Info

3%
News

2%
Message

2% Sports
2% Delivery
2%

(a) Domain-wise distribution across 17 service domains

1 2 3 4 5 6 7
0

50

100

23

70 73

35

11 8
2

Workflow per session

C
ou

nt

1 2 3 4 5
0

50

100

38

121

46

15
2

Domain per session
A B C D

0

50

100

11

128

12

71

Workflow Structure

(b) Workflow count, domain count, and workflow structure

Figure 6: Dataset characteristics: (a) domain coverage and (b) workflow-level properties. In work-
flow structure, the x-axis abbreviations denote workflow structures: A=single, B=parallel only,
C=sequential only, and D=parallel+sequential.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E DETAILED EVALUATION RESULTS

Workflow Call/Reject Function Call

(a)Korean Dataset

Workflow Call/Reject Function Call

(b)English Dataset

Figure 7: Distribution of model performance across different tasks shown as violin plots. The width
of each violin represents the density of models at different performance levels, with wider sections
indicating more models achieving those scores.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 8: Workflow Generation Performance
(a) Workflow Generation Performance on English Data

Model Overall Planning Score Structural Score Component Score
gemini-2.5-pro-preview 0.8504 0.8141 0.8962
gemini-2.5-flash-preview 0.8077 0.7998 0.8571
claude-sonnet-4 0.7727 0.7409 0.8408
gpt-4.1-2025-04-14 0.7444 0.7552 0.8386
gpt-4o-2024-11-20 0.7709 0.7552 0.8208
gpt-4.1-mini-2025-04-14 0.6784 0.6780 0.7740
gpt-5-2025-08-07 0.5827 0.6839 0.7536
gpt-4.1-nano-2025-04-14 0.4623 0.5332 0.5449
Qwen3-32B 0.7923 0.7925 0.8377
Qwen3-14B 0.7858 0.7665 0.8189
Qwen3-235B-A22B 0.7679 0.7744 0.8392
Qwen3-235B-A22B-Instruct 0.7225 0.7129 0.8029
Qwen3-8B 0.6749 0.7573 0.7765
Qwen3-30B-A3B-Instruct 0.7508 0.7632 0.7915
Qwen3-30B-A3B 0.7455 0.7676 0.7994
A.X-4.0 0.7074 0.7679 0.8068
kanana-1.5-32.5b-instruct 0.6670 0.7074 0.7335
EXAONE-4.0-32B 0.0574 0.6784 0.7260

(b) Workflow Generation Performance on Korean Dataset

Model Overall Planning Score Structural Score Component Score
gemini-2.5-pro-preview 0.8278 0.7842 0.8819
gemini-2.5-flash-preview 0.8067 0.7983 0.8584
claude-sonnet-4 0.7974 0.7583 0.8603
gpt-4.1-2025-04-14 0.7488 0.7488 0.8334
gpt-4o-2024-11-20 0.7999 0.7807 0.8446
gpt-4.1-mini-2025-04-14 0.7372 0.7260 0.7913
gpt-5-2025-08-07 0.5235 0.6386 0.6883
gpt-4.1-nano-2025-04-14 0.4507 0.5454 0.5344
Qwen3-32B 0.7946 0.7893 0.8214
Qwen3-14B 0.7722 0.7687 0.8029
Qwen3-235B-A22B 0.7911 0.7669 0.8366
Qwen3-235B-A22B-Instruct 0.7345 0.7234 0.7999
Qwen3-8B 0.6822 0.7643 0.7703
Qwen3-30B-A3B-Instruct 0.7317 0.7385 0.7789
Qwen3-30B-A3B 0.7336 0.7239 0.7986
A.X-4.0 0.6721 0.6219 0.7714
kanana-1.5-32.5b-instruct 0.5890 0.6649 0.7061
EXAONE-4.0-32B 0.1181 0.2268 0.2274

Note: Table shows workflow generation performance results. The Overall Score includes all cases and assigns
0 points to completely failed workflows. Structural Score and Component Score metrics only evaluate success-
fully generated workflows, excluding failures, which leads to different score distributions. Our Workflow Score
is computed as 1-GED, where higher values indicate better performance. We report the Overall Planning Score
as the Planning Score in Figures 2 and 3.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 9: Tool Execution: Call/Reject Decision Performance
(a) Call/Reject Classification Performance on English Dataset

Model Name Call/Reject Rejection F1 FC decision F1
Classification Accuracy

gemini-2.5-pro-preview 0.7241 0.6775 0.8826
gemini-2.5-flash-preview 0.7064 0.6518 0.8668
claude-sonnet-4 0.8682 0.6841 0.9175
gpt-4.1-2025-04-14 0.8595 0.6406 0.9134
gpt-4o-2024-11-20 0.7956 0.3765 0.8784
gpt-4.1-mini-2025-04-14 0.8012 0.3468 0.8827
gpt-5-2025-08-07 0.7905 0.6236 0.8557
gpt-4.1-nano-2025-04-14 0.7248 0.1039 0.8380
Qwen3-32B 0.8570 0.6965 0.9072
Qwen3-14B 0.8339 0.6807 0.8888
Qwen3-235B-A22B 0.8761 0.7449 0.9193
Qwen3-235B-A22B-Instruct 0.7934 0.2646 0.8808
Qwen3-8B 0.8299 0.5952 0.8931
Qwen3-30B-A3B-Instruct 0.7635 0.0212 0.8671
Qwen3-30B-A3B 0.8472 0.6453 0.9034
A.X-4.0 0.7808 0.1326 0.8755
kanana-1.5-32.5b-instruct 0.7663 0.0000 0.8682
EXAONE-4.0-32B 0.6533 0.3198 0.7689

(b) Call/Reject Classification Performance on Korean Dataset

Model Name Call/Reject Rejection F1 FC decision F1
Classification Accuracy

gemini-2.5-pro-preview 0.8134 0.7195 0.9072
gemini-2.5-flash-preview 0.7671 0.6627 0.8715
claude-sonnet-4 0.7586 0.6058 0.9113
gpt-4.1-2025-04-14 0.7864 0.6543 0.9184
gpt-4o-2024-11-20 0.6675 0.4405 0.8944
gpt-4.1-mini-2025-04-14 0.5866 0.2907 0.8825
gpt-5-2025-08-07 0.7482 0.6292 0.8671
gpt-4.1-nano-2025-04-14 0.4859 0.1347 0.8370
Qwen3-32B 0.8072 0.7023 0.9121
Qwen3-14B 0.7894 0.6786 0.9003
Qwen3-235B-A22B 0.7587 0.6051 0.9124
Qwen3-235B-A22B-Instruct 0.5916 0.3017 0.8815
Qwen3-8B 0.6581 0.4311 0.8852
Qwen3-30B-A3B-Instruct 0.4366 0.0088 0.8645
Qwen3-30B-A3B 0.4494 0.0294 0.8694
A.X-4.0 0.4833 0.0960 0.8706
kanana-1.5-32.5b-instruct 0.4333 0.0000 0.8667
EXAONE-4.0-32B 0.5293 0.1961 0.8625

Note: Call/reject classification accuracy represents overall decision accuracy including all cases:
(True rejection + True function calls) / total cases, where failed cases are counted as incorrect decisions. Re-
jection F1 and FC decision F1 measure class-specific performance using precision and recall for each decision
type separately, excluding cases that failed to produce valid classification outputs. We report the Call/reject
Classification Accuracy as the Call/Reject Classification (C/R) in Figures 2 and 3.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 10: Tool Execution: Function Calling Performance
(a) Fuction Calling Performance on English Dataset

Model Name Key Score Value Score Function Name Overall
(F1) (F1) (F1) FC Score

gemini-2.5-pro-preview 0.8406 0.8056 0.8611 0.8358
gemini-2.5-flash-preview 0.8270 0.7859 0.8509 0.8213
claude-sonnet-4 0.8999 0.8374 0.9176 0.8850
gpt-4.1-2025-04-14 0.8815 0.8111 0.8902 0.8609
gpt-4o-2024-11-20 0.8653 0.8017 0.8862 0.8511
gpt-4.1-mini-2025-04-14 0.8598 0.7885 0.8747 0.8410
gpt-5-2025-08-07 0.8227 0.7826 0.8072 0.8042
gpt-4.1-nano-2025-04-14 0.7598 0.6952 0.8015 0.7522
Qwen3-32B 0.8084 0.7854 0.8301 0.8080
Qwen3-14B 0.8568 0.7856 0.8856 0.8427
Qwen3-235B-A22B 0.8952 0.8270 0.9188 0.8803
Qwen3-235B-A22B-Instruct 0.8176 0.8095 0.8344 0.8205
Qwen3-8B 0.8371 0.7636 0.8711 0.8239
Qwen3-30B-A3B-Instruct 0.8151 0.7582 0.8519 0.8084
Qwen3-30B-A3B 0.8335 0.7953 0.8574 0.8287
A.X-4.0 0.8532 0.7773 0.8654 0.8320
kanana-1.5-32.5b-instruct 0.7756 0.7116 0.8477 0.7783
EXAONE-4.0-32B 0.5352 0.5206 0.5463 0.5340

(b) Fuction Calling Performance on Korean Dataset

Model Name Key Score Value Score Function Name Overall
(F1) (F1) (F1) FC Score

gemini-2.5-pro-preview 0.9060 0.8363 0.8823 0.8749
gemini-2.5-flash-preview 0.8665 0.7917 0.8825 0.8469
claude-sonnet-4 0.9289 0.8369 0.9291 0.8983
gpt-4.1-2025-04-14 0.9237 0.8324 0.9179 0.8913
gpt-4o-2024-11-20 0.9211 0.8191 0.9102 0.8835
gpt-4.1-mini-2025-04-14 0.9076 0.7793 0.8920 0.8596
gpt-5-2025-08-07 0.9054 0.8309 0.8298 0.8554
gpt-4.1-nano-2025-04-14 0.8189 0.7462 0.8086 0.7912
Qwen3-32B 0.8410 0.7629 0.8440 0.8160
Qwen3-14B 0.8754 0.7659 0.8809 0.8407
Qwen3-235B-A22B 0.9114 0.8208 0.8471 0.8598
Qwen3-235B-A22B-Instruct 0.9109 0.8038 0.8451 0.8533
Qwen3-8B 0.8821 0.7413 0.8769 0.8334
Qwen3-30B-A3B-Instruct 0.8653 0.7723 0.8603 0.8326
Qwen3-30B-A3B 0.8171 0.7358 0.8603 0.8044
A.X-4.0 0.8678 0.7775 0.8659 0.8371
kanana-1.5-32.5b-instruct 0.8335 0.7099 0.8772 0.8069
EXAONE-4.0-32B 0.7170 0.7406 0.7509 0.7362

Note: Table shows function calling performance where evaluation metrics are computed only for successful
function calls. Key score, Argument score, and Function name score represent F1 performance for each com-
ponent of function calling execution. Overall Score is the overall function calling performance score. Bold
indicates highest performance, underline indicates second-highest performance. We report the Overall FC
Score as the FC Score in Figures 2 and 3.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

F WORKFLOW GENERATION PROMPT

AI Orchestrator Prompt - Intelligent Workflow Routing for LLM Agents

System Information
system_info:
%%system_info%%

Current Workflows
{workflows}

Input Classification Protocol
You are a highly-skilled AI Workflow Orchestrator.

Your mission is to route user input to appropriate agents using the logic
below. Always follow this 2-step decision tree when attempting any

workflow creation:

Classification Decision Tree
1. **Chitchat, no agent execution required**
- Condition: The input is chitchat or can be answered directly based on

prior conversation history, without invoking any agents.
- Output:
‘‘‘json
{
"status": "SUCCESS",
"content": "Proper message. ex) Query handled without workflow

orchestration."
}
‘‘‘

2. **Task Requires Execution**
- Condition: The input involves a task that must be performed by invoking

one of the agents defined in the "Agents’ Information" section
(e.g., information retrieval, product ordering, place search, schedule

lookup, etc.)
- Action: Initiate or update a structured WORKFLOW as described below.

Workflow Design Schema

status_enum:
- "pending" (waiting): Workflow or task has not yet started, waiting to

be executed
- "running" (in progress): Current workflow is actively being executed.

You should never use this status when you generate the new workflow
component.

- "waiting_for_input" (awaiting input): Waiting for input from external
user or system, requires input to proceed to next step

- "completed" (finished): All tasks have been successfully completed
- "paused" (temporarily stopped): Workflow has been temporarily suspended

workflow_type_enum:
- "independent": A self-contained workflow that runs independently.
It does not rely on the output of any other workflow.

- "dependent": A follow-up workflow that depends on prior workflows.
Use ‘depends_on‘ to reference previous workflow IDs.

- "interrupt": A temporary workflow triggered by the user during the
execution of an ongoing workflow.

It pauses the parent workflow and performs an interim task. Once
completed, the original workflow can resume.
Example: While generating a report, the user asks to check urgent

emails.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Step vs Workflow

Step
- **Definition**: A sequence of tasks that are performed continuously and

automatically without user intervention in order to achieve a single
objective.

- **Characteristics**: Steps progress sequentially within a single
workflow and do not require user input between them.

- **Example**:
‘‘‘
Step 1: Check reservation
Step 2: Modify reservation
‘‘‘

Workflow
- **Definition**: A logical grouping of tasks that are split when user

input, confirmation, or branching is required.
- **Characteristics**: Split into separate workflows when multiple tasks

are requested, user confirmation is needed, or the next step depends
on the outcome of the previous one.

Workflow Design Guidelines
1. **Sequential Execution Without User Input**

> **Condition**: If the process can proceed without any user interaction
> **How to configure**: Add all steps sequentially within a single ‘

workflow.steps‘ list

* All steps are placed in a single workflow
* Example: check reservation details modifiy the reservation

2. **User Input Required Midway**

> **Condition**: If the process requires user input or decision at an
intermediate point

> **How to configure**:

* Split into separate workflows
* Use ‘depend_on‘ to indicate dependency between workflows
* Each workflow should be independently executable
* Downstream workflows are triggered only after the completion of their

dependencies

Example:
{examples}

3. **User Interrupts Ongoing Flow (Temporary Detour)**

> **Condition**: If the user temporarily diverges from an active workflow
to perform a separate task

> **How to configure**:

* Pause the current workflow and its steps (set status to ‘paused‘)
* Name the new workflow as ‘interrupt_{original_workflow_name}-1‘, ‘-2‘,

etc. (e.g., ‘interrupt_workflow_5-1‘)
* The original workflow may later be resumed from its paused state

Example:
{examples}

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

4. **User Modifies Previous Request While Preserving Downstream
Workflows**

> **Condition**: When the user modifies the content of an earlier
workflow, but subsequent workflows should remain active and continue
their execution

> **How to configure**:

* Create a **new workflow** with modified content (naming: ‘{
previous_workflow_name}-1‘)

* Update the ‘depend_on‘ field in downstream workflows to reference the
new workflow ID

* Preserve the execution chain while replacing only the modified portion

Example:
{examples}

Naming Conventions

* **Regular workflows**: ‘workflow_1‘, ‘workflow_2‘, etc.
* **Interrupt workflows**: ‘interrupt_workflow_{original_id}-1‘, ‘

interrupt_workflow_{original_id}-2‘, etc
* **Replacement workflows**: ‘{workflow_name}-1‘, ‘{workflow_name}-2‘,

etc.

Task Consolidation Guidelines for Workflow Design

When a single user request includes multiple search conditions using the
same tool, **do not split into separate workflows handle them within
one workflow and a single step.**

Implementation:
- Express as a single refined_query that includes all conditions
- **Tool Execution**: Whether to make single or multiple calls is

determined by each agent based on its tool specifications not by the
orchestrator.

Examples:
{examples}

Final Notes
- Always return outputs in strict JSON format.
- Use "prompt_example" to demonstrate how users may see responses.
- All workflows not yet initiated must be marked ‘"status": "pending"‘.
- **Never include any additional text outside the JSON structure.**
- Whenever you generate a new workflow, always include the full

definition of the previous workflow_1 at the start, then append any
new or modified steps. Do not discard or omit workflow_1it must be
carried forward into every newly created workflow.

- Do not split into separate workflows, when a single user request
includes multiple search conditions using the same tool.

AGENTS’ INFORMATION
{all LLM descriptions}

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G FUNCTION CALL PROMPT WITH PROPER REJECTION HANDLING

You are a Tool-Oriented JSON/XML Response Agent.

Your job is to return strictly formatted outputs in response to user
input. You may use external tools when necessary, such as for real-
time data, calculations, or file operations.

TOOL CALLS
When you need to use a tool, return ONLY the tool call JSON format with

no additional text

IMPORTANT: Parameter Extraction Rules
1. When extracting parameters, only extract conditions that are

explicitly stated in the user utterance.
2. If the user utterance specifies multiple conditions for the same

parameter, refer to the tool description:
* If the parameter is of array type, represent it as an array.
* If the parameter is not an array, structure the output to invoke the

tool multiple times, once for each condition.

XML RESPONSE FORMATS
For all other responses (not tool calls), return exactly one of the

following XML formats:

TOOL_CONSTRAINT_VIOLATION
Use when the user’s request violates tool usage constraints or

limitations written in descriptions. This takes priority over
AWAITING_USER_INPUT.

<response>
<status>TOOL_CONSTRAINT_VIOLATION</status>
<constraint_type>CONSTRAINT_CATEGORY</constraint_type>
<violation_message>Explanation of why the request cannot be processed

</violation_message>
<suggested_alternative>Alternative approach if available</

suggested_alternative>
</response>

AWAITING_USER_INPUT
Use when you’re missing required information for a tool or task (only if

no constraint violations exist).

<response>
<status>AWAITING_USER_INPUT</status>
<required_info>field_name</required_info>

<prompt_message>What specific information do you need?</prompt_message>
</response>

CRITICAL RULES
* Tool calls: Return ONLY the JSON object, no additional text
* Other responses: Use ONLY the XML format, no additional text
* Do not mix formats or add explanatory text outside the specified

structure
* **PRIORITY ORDER**: Check for constraint violations FIRST, then missing

information
* Handle constraint violations using TOOL_CONSTRAINT_VIOLATION format (

highest priority)
* Handle missing information using AWAITING_USER_INPUT format (only if no

violations)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

H LLM USAGE

We used Claude, Gemini, GPT-4.1, and GitHub Copilot to generate synthetic data, which encom-
passed the production of virtual tool results, as well as for Korean–English translation drafts, lan-
guage editing assistance, and code development support. These models were also used to assist in
drafting the paper. All AI-generated content served only as preliminary drafts and was subsequently
reviewed, revised, and validated by human researchers.

26

	Introduction
	Related Work
	The OrchestrationBench Framework
	The Complexity of Evaluating LLMs in Real-World Environments
	OrchestrationBench Architecture
	Advanced Planning and Coordination
	Comprehensive Tool Use
	Multi-Domain Tool Environments

	Dataset Construction
	Dataset Scale and Distribution

	Evaluation
	Evaluation Metrics
	Evaluation Results

	Conclusion and Future Works
	Challenging Real-World Examples
	An illustrative example of the workflow generation process
	Full List of Tools in OrchestrationBench
	Dataset Overview
	Detailed Evaluation Results
	Workflow Generation Prompt
	Function Call Prompt with Proper Rejection Handling
	LLM Usage

