

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ORCHESTRATIONBENCH: LLM-DRIVEN AGENTIC PLANNING AND TOOL USE IN MULTI-DOMAIN SCENARIOS

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent progress in Large Language Models (LLMs) has transformed them from text generators into agentic systems capable of multi-step reasoning, structured planning, and tool use. However, existing benchmarks inadequately capture their ability to orchestrate complex workflows across multiple domains under realistic constraints. To address this, we propose **OrchestrationBench**, a bilingual (English/Korean) benchmark that systematically evaluates (1) workflow-based planning and (2) constraint-aware tool execution. OrchestrationBench spans 17 representative domains with nearly 100 realistic virtual tools, covering scenarios that require sequential/parallel planning and compliance with business constraints. Unlike previous work, it explicitly disentangles planning evaluation from tool execution evaluation, which assesses tool selection, argument extraction, validation, and rejection handling. Constructed entirely through manual annotation with cultural adaptation, the benchmark ensures authenticity, diversity, and freedom from model-specific biases. Extensive experiments across state-of-the-art models show that function calling performance is relatively consistent, whereas planning capabilities exhibit substantial variation across models, emphasizing the need for structured planning evaluation. As a living benchmark, OrchestrationBench is designed to expand toward new domains, tools, and integration enabling rigorous, cross-cultural, and service-ready evaluation of LLM orchestration capabilities. The benchmark is publicly available at GitHub.

1 INTRODUCTION

Large Language Models (LLMs) have advanced rapidly in recent years (OpenAI, 2022; 2023; DeepMind, 2025a;b; Anthropic, 2025). Although initially regarded primarily as powerful text generators, recent research has demonstrated their capacity to operate as *versatile agents* that can interact with external tools (Yao et al., 2023), perform multi-step reasoning over complex instructions, and assist users in various real-world applications (Shi et al., 2024). This evolution signifies a paradigm shift: from passive text generation toward the active orchestration of tasks, positioning LLMs as potential service-ready agents in both consumer-facing and enterprise domains.

Despite this progress, substantial challenges remain for real-world deployment. In practice, user requests often involve sequences of interdependent subtasks that must be coordinated effectively (Huang et al., 2024; Yao et al., 2024). These tasks frequently span heterogeneous domains, require integration with external systems, and must adapt to dynamic constraints that evolve during user interaction. However, existing benchmarks operate largely in simplified or domain-isolated settings and thus do not capture the orchestration capabilities required for service-ready LLMs (Zhong et al., 2025; Mialon et al., 2023).

To address these gaps, we introduce **OrchestrationBench**, a bilingual benchmark explicitly designed to evaluate LLMs in realistic service environments. The benchmark defines a comprehensive evaluation protocol that emphasizes two complementary dimensions: *workflow planning* and *constraint-aware tool execution*. For workflow planning, the evaluation is formalized as workflow construction. Each workflow is represented as a Directed Acyclic Graph (DAG) that encodes task dependencies, execution states, and agent assignments. For constraint-aware tool execution, the

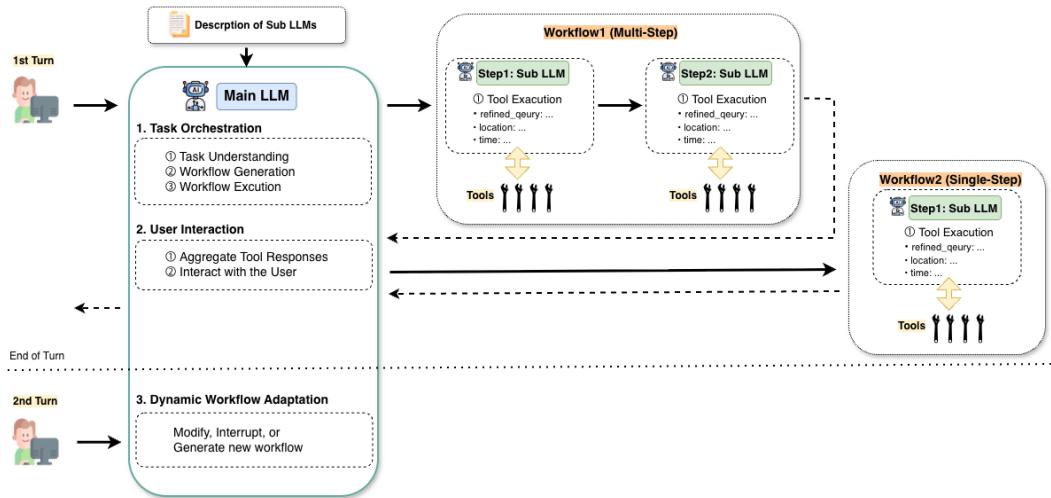


Figure 1: Orchestration setting of OrchestrationBench, where a main LLM decomposes user requests into workflows and assigns subtasks to sub-LLMs, which perform tool calling and return results for aggregation.

evaluation goes beyond the syntactic correctness of tool calling. Assesses three aspects: tool selection, argument extraction, and value validation against domain-specific constraints. Semantic correctness is adjudicated with auxiliary judges based on LLM. (Qin et al., 2023).

Figure 1 illustrates the orchestration setting that motivates our benchmark. A main LLM first decomposes a user request into workflows and assigns subtasks to sub-LLMs. These sub-LLMs then perform tool calling with refined parameters, and their outputs are aggregated by the main LLM before being returned to the user. This iterative process supports multi-step workflows, parallel or sequential subtask execution, user clarification, and workflow revision.

The dataset underlying OrchestrationBench covers 17 representative domains and nearly 100 realistic virtual tools, encompassing single-domain tasks, multi-domain orchestration, constraint validation, and dynamic user revisions. The dataset was initially developed in Korean, leveraging abundant use cases and thorough review to ensure realistic interaction patterns and reliable evaluation. It was then expanded into English with comparable scale and domain coverage, with both versions validated for effectiveness as evaluation data. This design not only enables bilingual evaluation but also captures cultural differences in interaction styles, offering unique insights into orchestration across diverse service environments. Together, these properties allow OrchestrationBench to systematically evaluate orchestration performance across languages, domains, and interaction patterns, moving beyond toy tool calling sets-ups to service-ready assessments.

In summary, this work makes the following contributions: (1) We introduce OrchestrationBench, the bilingual benchmark for evaluating LLM orchestration in realistic multi-domain settings. (2) It separates orchestration into *workflow planning* and *tool execution*, with structured metrics such as Graph Edit Distance. (3) The benchmark includes a manually annotated dataset of 17 domains and nearly 100 tools, covering constraint validation and dynamic revisions. (4) Experiments reveal consistent tool execution but substantial variation in planning, highlighting the need for structured evaluation. (5) OrchestrationBench is designed as a *living benchmark*, extensible to new domains, tools, and deployment contexts.

Together, these contributions establish OrchestrationBench as a rigorous and extensible framework for advancing the study of service-ready LLM orchestration.

2 RELATED WORK

As LLM orchestration systems have evolved to coordinate multiple specialized models for complex tasks, evaluation methodologies have advanced correspondingly. We categorize related works into

108 four primary areas based on their evaluation focus to highlight the distinct contributions of our
 109 benchmark.

110 *Tool execution benchmarks* assess an agent’s ability to decompose tasks and invoke appropriate
 111 tools or APIs. Early benchmarks such as **BFCL** (Patil et al., 2025), **API-Bank** (Li et al., 2023),
 112 **T-Eval** (Chen et al., 2024), and **ToolBench** (Qin et al., 2023) established foundational assessment
 113 through function-calling leaderboards, API integration testing, and execution-based evaluation.

114 *Single-agent task performance benchmarks* evaluate an individual agent’s ability to complete tasks
 115 in specific environments. **TaskBench** (Shen et al., 2024) systematically assesses a single LLM’s
 116 capacity for task decomposition and its accuracy in invoking predefined APIs (tool calling). Com-
 117 prehensive orchestration evaluation in various domains emerged as limitations became apparent,
 118 with benchmarks such as τ -**bench** (Yao et al., 2024), **GAIA** (Mialon et al., 2023), and **Ultra-**
 119 **Tool** (Huang et al., 2024) revealing that state-of-the-art agents achieved less than 50% success rates
 120 in dynamic interactions. Many benchmarks have also been developed to assess a single agent’s
 121 performance on complete, realistic tasks, particularly within web, OS, and software environments.
 122 **OfficeBench** (Wang et al., 2024) evaluates a single agent’s ability to perform long-horizon tasks
 123 by switching between office applications (Word, Excel, Email, Calendar). **WebArena** (Zhou et al.,
 124 2023) evaluates web agents through online interaction with realistic websites (e-commerce, forums,
 125 development platforms), where a single agent must navigate web pages by performing browser
 126 actions. **OSWorld** (Xie et al., 2024) evaluates end-to-end OS-level automation where a single multi-
 127 modal agent controls computers via raw mouse and keyboard inputs across Ubuntu, Windows, and
 128 macOS. Other notable works in this area include Mind2Web (Deng et al., 2023) **TheAgentCom-**
 129 **pany** (Xu et al., 2024), and SWE-bench (Jimenez et al., 2024). **ThinkGeo** (Shabbir et al., 2025) is a
 130 domain-specific benchmark for remote sensing, operating beyond web and OS environments, where
 131 a single agent performs visual-spatial reasoning on satellite imagery with ReAct-style environment-
 132 driven replanning based on tool execution observations. The aforementioned benchmarks are val-
 133 uable in that they measure the agentic task execution capabilities of LLMs across multiple domains.
 134 However, our work is distinct from these prior works, as it primarily focuses on LLM-to-LLM col-
 135 laboration rather than individual agent performance, specifically designing systems where a main
 136 model orchestrates and invokes specialist LLMs.

137 *Tool Safety benchmarks* **ToolEmu** (Ruan et al., 2024) provides a crucial evaluation of safety, assess-
 138 ing whether a single agent can identify and refuse to execute high-risk or harmful requests, with its
 139 focus on the safety alignment of individual tool calls within an emulated environment rather than
 140 on the agent’s ability to perform complex, multi-step planning; **R-Judge** (Yuan et al., 2024) and
 141 **SafeToolBench** (Xia et al., 2025) assess risk awareness in multi-turn agent interactions. Instead of
 142 refusing harmful requests, **OrchestrationBench** tests whether a main LLM can refuse infeasible re-
 143 quests by correctly understanding the functional descriptions and constraints of available sub-LLMs,
 144 addressing a distinct dimension of functional feasibility rather than safety.

145 *Agentic planning benchmarks* evaluate planning and coordination capabilities across varying levels
 146 of abstraction. **PlanBench** (Valmeekam et al., 2023) focuses on the abstract planning of a single
 147 LLM using PDDL, but does not involve external tool execution. **TimeBench** (Chu et al., 2023)
 148 addresses capabilities related to scheduling, but its focus is fundamentally different—it statically
 149 evaluates the internal temporal reasoning of a single LLM through a question-answering format.
 150 **AgentBench** is a multi-turn agent evaluation framework which evaluates a single generalist LLM’s
 151 reasoning and decision-making ability across diverse environments. **AgentBoard** (Ma et al., 2024)
 152 provides analytical evaluation of planning and tool-using for multi-turn tasks, but fundamentally
 153 assesses a single LLM agent interacting with predefined APIs or environments. These benchmarks
 154 represent an ‘LLM-to-API’ paradigm. Multi-agent collaboration assessment represents the latest
 155 advancement, with **MultiAgentBench** (Zhu et al., 2025) which evaluates both collaboration and
 156 competition across eight diverse tasks (negotiation, social deduction games, coordination) with 2-
 157 10 agents. **REALM-Bench** (Geng & Chang, 2025) evaluates multi-agent coordination in planning
 158 and scheduling across diverse domains (logistics, disaster relief, events, optimization) with dynamic
 159 disruption handling. **UltraTool** (Huang et al., 2024) evaluates LLM tool orchestration across a six-
 160 stage pipeline (planning, tool creation awareness, tool creation, tool usage awareness, tool selection,
 161 and tool usage) across 22 domains, but unlike our work, it focuses on evaluating single LLM perfor-
 162 mance rather than multi-agent orchestration systems. While these benchmarks test an agent’s abil-
 163 ity to generate plans or call tools, **OrchestrationBench** introduces a hierarchical ‘LLM-to-LLM’
 164 orchestration challenge where a main LLM acts as an orchestrator that dynamically coordinates

162 specialized sub-LLMs based on natural language capability descriptions. We provide diagnostic
 163 evaluation that decouples workflow planning from constraint-aware execution, offering unique as-
 164 sessment of orchestration capabilities required for commercial chatbot deployments.
 165

166 Table 1: Benchmark Comparison
 167

Benchmark	Multi-Agent	Func. Call	Tool Inv.	Multi-turn dataset	Planning	Bi/Multi-lingual
ToolEmu	✗	✓	✓	✓	✗	✗
PlanBench	✗	✗	✗	✗	✓	✗
REALM-Bench	✓	✗	✗	✗	✓	✗
TaskBench	✗	✓	✗	✗	✓	✗
API-Bank	✓	✓	✗	✓	✓	✗
BFCL-v4	✗	✓	✓	✓	✗	✓
UltraTool	✗	✓	✓	✗	✓	✓
OrchestrationBench	✓	✓	✓	✓	✓	✓

175
 176 3 THE ORCHESTRATIONBENCH FRAMEWORK
 177178 3.1 THE COMPLEXITY OF EVALUATING LLMs IN REAL-WORLD ENVIRONMENTS
 179

180 Evaluating modern AI systems in real-world contexts poses challenges far beyond simple question
 181 answering. A user request such as “*Book a flight to Seoul, find a hotel near COEX, and share my*
 182 *itinerary with my team*” requires multi-step planning and dependency management, since sharing
 183 the itinerary depends on completing prior bookings.
 184

185 Realistic interactions also demand dynamic adaptation. Users may refine or change their goals
 186 during a conversation, requesting an early morning flight, then revising it due to a schedule conflict,
 187 or deciding to receive a summary before sharing the itinerary. The model must flexibly update its
 188 reasoning and maintain overall task coherence.
 189

190 Another critical aspect is constraint validation. When a user asks to schedule a meeting at “4:10
 191 PM”, the system should recognize service constraints specified by the tool—for example, meetings
 192 allowed only on the hour or half-hour—and propose a valid alternative such as “4:00 PM”, ensuring
 193 both compliance and usability.
 194

195 These scenarios highlight the intertwined challenges of planning, adaptation, and constraint-aware
 196 execution that existing static benchmarks fail to capture. A more comprehensive evaluation frame-
 197 work is therefore required to assess AI performance in realistic service environments. Detailed
 198 examples are provided in Appendix A.
 199

200 3.2 ORCHESTRATIONBENCH ARCHITECTURE
 201

202 OrchestrationBench introduces a comprehensive evaluation framework with bilingual datasets in En-
 203 glish and Korean. In the following sections, we present how our benchmark is designed to capture
 204 diverse aspects of service orchestration, including planning, tool use, and multi-domain environ-
 205 ments.
 206

207 3.2.1 ADVANCED PLANNING AND COORDINATION
 208

209 We formalize orchestration as a structured workflow schema that defines each task’s execution state,
 210 dependency relations, and step-level planning (Table 2). This structure enables evaluation of whether
 211 models can manage sequential and parallel execution, handle inter-workflow dependencies, and
 212 adapt to user interactions during execution.
 213

214 In real-world settings, user queries often evolve dynamically rather than following static task plans.
 215 OrchestrationBench evaluates whether models can flexibly adjust workflows by generating new ones
 216 when additional tools are required and splitting workflows when explicit confirmation or branching
 217 into subtasks is needed. For instance, if a user modifies a booking request or adds new conditions
 218 mid-conversation, the model should update or extend the workflow while maintaining consistency
 219 with previous steps.
 220

Table 2: Workflow planning schema

Field	Description
status	Execution state of a workflow. Values: <i>pending</i> , <i>running</i> , <i>waiting_for_input</i> , <i>completed</i> , <i>paused</i> , <i>canceled</i> .
type	Dependency type of the workflow. Values: <i>independent</i> , <i>dependent</i> .
depend_on	Specifies the prerequisite workflows that must be completed before the current workflow can start.
steps	A sequence of tasks within a workflow. Each step is defined by:
status	Progress of the step.
name	Selected LLM for execution.
refined_query	Normalized user query.
Example	
User request:	<i>"I need to go to Seoul tomorrow for a business trip. Please book a flight, find a hotel near the COEX center, and share my itinerary with my team."</i>
YAML representation:	<pre> workflow_1: status: pending type: independent steps: - status: pending name: travel_agent refined_query: 'Book a flight to Seoul for tomorrow for a business trip' workflow_2: status: pending type: independent steps: - status: pending name: travel_agent refined_query: 'Find and book a hotel near COEX Center for tomorrow' workflow_3: status: pending type: dependent depend_on: ['workflow_1', 'workflow_2'] steps: - status: pending name: calendar_agent refined_query: 'Share the completed itinerary with my team' </pre>

Clear criteria determine when workflows should be split or unified. Independent requests (e.g., asking for both a flight schedule and a hotel recommendation) or tasks requiring intermediate confirmation (e.g., approving a recommendation before booking) are treated as separate workflows. Conversely, tasks that contribute to a single coherent goal remain within one workflow—for example, identifying a celebrity’s birthday before determining their zodiac sign.

This framework enables fine-grained evaluation of a model’s ability not only to plan but also to coordinate, interrupt, and resume workflows in alignment with real-world interactive scenarios.

3.2.2 COMPREHENSIVE TOOL USE

The execution evaluation extends beyond verifying tool call accuracy to encompass the entire service-level interaction process. It assesses whether models can not only invoke tools correctly but also decide when tool use is necessary, when information can be provided directly, and when user inputs are insufficient or ambiguous and proactively request clarification, a behavior represented by the `AWAIT_FOR_USER_INPUT` signal.

Beyond syntactic correctness, real-world services require strict adherence to domain-specific business rules. Before invoking a tool, the model performs pre-execution validation and issues `TOOL_CONSTRAINT_VIOLATION` when constraints are unmet. Such validation includes maintaining logical consistency (e.g., rejecting a flight booking where the return date precedes departure) and enforcing resource limits (e.g., budget or quantity restrictions). Only after successful validation should the model execute the tool with correctly formatted arguments.

Model performance is then measured through call/reject classification metrics, where `AWAIT_FOR_USER_INPUT` and `TOOL_CONSTRAINT_VIOLATION` represent rejection cases, and successful executions are evaluated separately using function-calling performance measures. Further details are provided in the subsequent evaluation section

270 3.2.3 MULTI-DOMAIN TOOL ENVIRONMENTS
271272 OrchestrationBench defines 17 representative service domains that are extensible to real-world ap-
273 plications while remaining independent of specific service dependencies. Each domain is built
274 around realistic yet generalized scenarios, enabling evaluation of a model’s intrinsic orchestration
275 and instruction-following capabilities.276 To reflect the complexity of real-world interactions, the benchmark includes 97 tools in English and
277 99 in Korean, with slight differences arising from culture-specific services such as address roman-
278 ization and fortune telling. Unlike prior benchmarks with simplified tool abstractions, Orches-
279 trationBench incorporates domain-specific constraints and realistic behaviors, providing fine-grained
280 coverage of diverse tasks and a faithful simulation of practical service environments.281 These domains collectively represent three common types of user workflows: (1) inquiry and in-
282 formation tasks (e.g., checking the weather, finding places, reading news), (2) action and transac-
283 tion tasks (e.g., booking a flight, purchasing items), and (3) planning and coordination tasks (e.g.,
284 scheduling meetings, sending messages, arranging deliveries). This categorization highlights that
285 OrchestrationBench primarily reflects everyday consumer services, while remaining extensible to
286 utility and productivity contexts.287 All virtual tools were carefully designed to capture the nuanced characteristics of each domain and
288 to ensure comprehensive task coverage. A complete list of tools is provided in Appendix C.
289290 3.3 DATASET CONSTRUCTION
291292 The OrchestrationBench dataset was designed to capture the complexity and realism of real-world
293 service orchestration. To ensure authenticity and quality, all conversation sessions, workflows, and
294 tool calls were manually created by trained annotators following detailed construction guidelines,
295 rather than generated synthetically. This approach ensures that conversation flows, tool usage, and
296 constraint handling faithfully reflect realistic user-service interactions rather than artifacts of any
297 specific model.298 The overall construction pipeline—including domain selection, virtual tool design, and manual re-
299 view and validation—is summarized in Table 3. Each stage represents a distinct phase of data
300 creation, from domain and tool specification to workflow refinement and multi-annotator validation.
301 All scenarios were cross-validated by at least three independent annotators to ensure consistency
302 and accuracy. To enable controlled and interpretable evaluation, we excluded ambiguous or multi-
303 solution cases and constructed data only from tasks with clear, well-defined dependencies. Through
304 this rigorous, multi-stage process, OrchestrationBench achieves high reliability while remaining in-
305 dependent of any single model or proprietary API.

306 307 Table 3: Overview of the OrchestrationBench dataset construction process.

308 Stage	309 Main Activities
310 1. Domain Selection	Select 17 representative domains that are closely related to everyday life and extensible to real-world service applications (e.g., travel, finance, scheduling, shopping).
311 2. Virtual Tool Design	Design domain-specific virtual tools by defining tool names, parameters, and realistic service-level constraints. Initial tool descriptions are generated using GPT-4o and refined by annotators for accuracy and consistency. Once defined, these tools are reused across scenarios within the same domain to ensure consistency and efficiency.
312 3. Scenario Construction	Annotators design realistic user–assistant dialogues across diverse categories—such as single-domain, multi-domain, constraint validation, clarification, and dynamic revision. Representative examples are shown in Table 4.
313 4. Workflow & Tool-call Defi- nition	Construct structured workflows and tool calls in YAML format, specifying execution states, dependencies, and argument structures.
314 5. Validation & Refinement	Tool-call results are generated using GPT-4o and iteratively reviewed across multi-turn dialogues. Each scenario is cross-validated by at least three independent annotators to ensure accuracy and coherence.

321
322 Building upon this rigorous and model-independent construction process, OrchestrationBench ex-
323 tends its coverage to both English and Korean service environments, capturing diverse linguistic and
cultural contexts.

324 **Table 4: Representative examples of constructed scenarios in OrchestrationBench.**
325

326 Scenario Type	327 Representative Example
328 Single-domain task	329 “ <i>Is there a bus or subway that goes straight to the Statue of Liberty?</i> ”
330 Multi-domain orchestration	331 “ <i>I’m traveling to LA next Saturday. Please book me a taxi from the airport to my reserved hotel, timed with my flight arrival.</i> ”
332 Constraint violation with correction	333 “ <i>Book a dentist appointment at 4:10 PM.</i> ” 334 (System: “Appointments can only be scheduled on the hour or half-hour. Would you like me to set it for 4:00 PM or 4:30 PM instead?”) 335 User: “Please schedule it for 4:30 PM.”
336 User clarification request	337 “ <i>Send money to Minji.</i> ” 338 (System: “Multiple contacts named Minji are in your address book. Could you specify the account or phone number?”)

339 By encompassing two distinct languages and service ecosystems, the benchmark enables evalua-
340 tion of orchestration performance in bilingual and bicultural settings. This is particularly significant
341 given the scarcity of evaluation resources for planning and tool use in Korean. By faithfully mod-
342 eling the complexities of real-world service interactions across both languages, OrchestrationBench
343 provides a dataset that is linguistically and culturally diverse, free from model dependency, and
344 firmly grounded in realistic service orchestration scenarios.

345 3.4 DATASET SCALE AND DISTRIBUTION

346 The dataset includes both English and Korean subsets, which are comparable in scale. The English
347 subset contains 219 conversation sessions, 317 planning cases, and 706 tool call instances, while the
348 Korean subset contains 222 sessions, 324 planning cases, and 730 tool call instances, reflecting slight
349 variations due to language-specific differences. (see Appendix D, Table 7). Both datasets span 17
350 representative service domains with intentionally asymmetric tool distributions: broader domains
351 such as *Places* or *Entertainment* contain more tools, while narrower domains such as *Weather* or
352 *News* remain compact to reflect realistic usage frequency.

353 At the workflow level, most sessions involve 2–3 workflows and 2–3 domains, although some ex-
354 tend up to 7 steps or span 4+ domains. This indicates that a single session typically requires multiple
355 rounds of planning, with some including as many as seven planning steps. Moreover, the frequent
356 inclusion of two or more domains reflects realistic multi-domain scenarios where users transition
357 across heterogeneous services. In terms of tool invocation, the dataset is dominated by sequential
358 and parallel call structures rather than single isolated calls, demonstrating the complexity of orches-
359 tration required to complete real-world tasks. (see Appendix D, Figure 6)

360 Together, these distributions demonstrate that OrchestrationBench covers a wide range of real-world
361 orchestration patterns, enabling fine-grained evaluation of model planning, tool invocation, and
362 adaptive reasoning capabilities. This highlights that the benchmark goes beyond evaluating isolated
363 question answering or toy tool callings, and instead enables assessment of orchestration performance
364 in realistic, constraint-aware service environments.

365 4 EVALUATION

366 Current end-to-end benchmarksLiu et al. (2023); Mialon et al. (2023); Jimenez et al. (2024); Yao
367 et al. (2024) offer flexibility but often obscure failure points in complex multi-step tasks. To address
368 this limitation, we employ stepwise evaluation that isolates and tests each component independently.
369 Our evaluation distinguishes two primary phases: *Planning* and *Tool execution*. We further decom-
370 pose tool execution into two sequential assessment criteria to capture the nuanced behaviors of
371 sub-LLMs: Call/reject classification accuracy and Function calling performance.

372 **Models** We evaluate the following state-of-the-art language models, including OpenAI GPT mod-
373 els (gpt-4.1, gpt-4o, gpt-5) (OpenAI, 2022; 2025), Anthropic Claude models (claude-sonnet-4) (An-
374 thropic, 2025), Google Gemini models (gemini-2.5-pro-preview, gemini-2.5-flash-preview) (Deep-
375 Mind, 2025a;b), Alibaba Qwen models (Qwen3 series) (Yang et al., 2025), and other Korean open-

378 source models (A.X-4.0 (Lab, 2025), kanana-1.5 (Team et al., 2025), EXAONE-4.0 (Research et al.,
 379 2025)). All reasoning models are configured with low reasoning effort settings.
 380

381 **Evaluation Protocol** We design our evaluation with the following principles:
 382

- 383 • Each target LLM receives complete conversation history up to the evaluation point
 384
- 385 • Parallel-executed LLMs operate with isolated histories to prevent information leakage
 386
- 387 • Sequential LLMs access cumulative conversation history including previous model outputs
 388
- 389 • Main-LLM workflow generation is triggered exclusively by user input
 390
- 391 • Sub-LLMs process refined queries from the main-LLM and user-provided clarifications
 392

393 Each scenario is run three times per model with temperature 0.2 to ensure robust evaluation.
 394

395 4.1 EVALUATION METRICS

396 **Planning Assessment** We measure workflow generation quality using Graph Edit Distance
 397 (GED), which quantifies structural differences by calculating minimum edit operations needed to
 398 transform one graph into another, following Gabriel et al. (2024). We report 1-GED where higher
 399 values indicate better performance. Our workflow representation includes workflow structure, step
 400 assignment (sub-LLM selection), and execution status. We conduct hierarchical workflow score
 401 evaluation with *structural score* measuring workflow topology correctness and *component score*
 402 evaluating step-level assignments. We assign higher weight to selection errors (0.8) than status
 403 errors (0.2), reflecting the intuition that choosing the wrong tool is generally more detrimental to
 404 task success than misidentifying tool execution status, though we acknowledge this weighting is not
 405 empirically derived.
 406

407 **Tool Execution Assessment** To comprehensively evaluate tool execution capabilities, we examine
 408 two critical aspects: the model’s ability to make appropriate calling decisions and the quality of
 409 actual function executions. *Call/reject classification accuracy* measures the proportion of correct
 410 decisions including both appropriate rejections and successful function call attempts out of total cases.
 411 *Function calling performance* evaluates the correctness of actual function calls through three specific
 412 metrics: tool selection F1, key F1, and argument F1 among cases that successfully proceeded
 413 to the function calling stage.
 414

415 For function calling parameter validation, we employ a three-stage approach: exact match comparison,
 416 type/pattern validation against tool descriptions, and semantic validation for remaining cases.
 417 To reduce model bias, we use an ensemble of three LLM judges (GPT-4.1, Claude Sonnet 4, and
 418 Gemini 2.5 Flash) with a temperature of 0.3, averaging their scores by taking the arithmetic mean.
 419 The LLM judge classifies true/false positives and negatives, with these assessments integrated into
 420 F1 calculations. To further ensure reliability, we measured the inter-rater agreement between the
 421 human annotators and the LLM judge, which yielded a Cohen’s Kappa score of 0.63, indicating
 422 substantial agreement. To maintain compatibility with function calling training (JSON output format),
 423 we implement call rejection and information requests using XML output format.
 424

425 All detailed results are presented in Appendix E.
 426

427 4.2 EVALUATION RESULTS

428 Based on the comprehensive evaluation results presented in Figures 2 and 3, along with correlation
 429 analysis examining the relationships between different evaluation metrics, several key insights
 430 emerge regarding model performance in agentic planning and function execution tasks.
 431

432 **Open-Source Model Viability** Open-source dense models achieve competitive performance, with
 433 models like Qwen3-235B-A22B reaching scores comparable to proprietary alternatives (0.8404 English,
 434 0.8044 Korean). Dense architectures consistently outperform mixture-of-experts variants in
 435 planning tasks.
 436

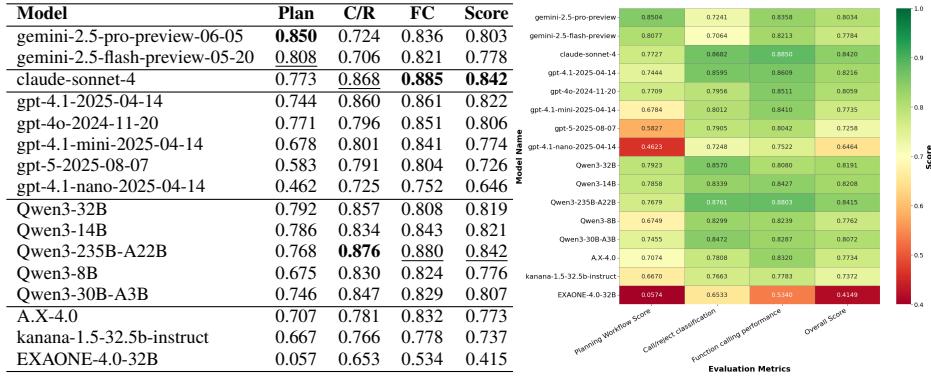


Figure 2: Model performance on English dataset.



Figure 3: Model performance on Korean dataset.

Note: Left: detailed performance metrics across planning workflow score, call/reject classification (C/R), function calling (FC), and overall score. Right: tool usage heatmap showing performance distribution across evaluation metrics. Best performance is marked in **bold**, and second-best performance is underlined. Claude models were evaluated through AWS Bedrock with model version `anthropic.claude-sonnet-4-20250514-v1:0`. Our Workflow Score is computed as 1-GED, where higher values indicate better performance. Detailed evaluation results are provided in Appendix E.

Model-Specific Specializations Each model family exhibits distinct strengths independent of size. Gemini models excel in planning (0.8504 English, 0.8278 Korean) but show relatively weaker function calling. Claude-sonnet-4 demonstrates strong function calling capabilities (0.8821 English, 0.9084 Korean), while GPT-4.1 variants show balanced performance. Notably, workflow generation exhibits relatively larger performance variation between top-tier and lower-performing models in both English and Korean datasets (see Appendix E Figure 7), highlighting planning as the discriminative capability among the evaluated tasks.

Planning-Execution Gap Function calling scores represent performance only among cases with correct call/reject decisions. The correlation analysis reveals a relatively weak link between planning and decision outcomes compared to other measures. This suggests models may generate good workflows but struggle with execution decision-making.

Language-Dependent Performance Rankings vary substantially between languages, with Claude improving in English decision-making (0.7586→0.8682) while Gemini maintains stronger Korean performance. This indicates language-specific training effects and the importance of bilingual evaluation.

These findings underscore the need for task-specific and language-aware model selection, with attention to the planning-execution gap that may limit real-world agentic performance despite strong individual capabilities.

486 Table 5: Correlation Analysis Between Task Components
487

	Metric	Call/reject Classification	Workflow Score	Function Calling
488 English Dataset	Call/reject Classification	1.0000	-	-
	Workflow Score	0.5830	1.0000	-
	Function Calling	0.7256	0.9215	1.0000
492 Korean Dataset	Metric	Call/reject Classification	Workflow Score	Function Calling
	Call/reject Classification	1.0000	-	-
	Workflow Score	0.4480	1.0000	-
494	Function Calling	0.5773	0.7751	1.0000

495 5 CONCLUSION AND FUTURE WORKS
496497 This work introduces OrchestrationBench, the first bilingual (English/Korean) benchmark for evaluating
498 500 LLM orchestration capabilities in realistic multi-domain service environments. By separating
501 503 orchestration into workflow planning and tool execution components, our evaluation framework
504 506 provides detailed insights into model performance across different aspects of agentic reasoning.
507 509510 Our comprehensive evaluation reveals that open-source dense models achieve competitive performance
511 513 in agentic tasks. However, two critical findings emerge: workflow planning shows substantially
514 516 larger performance gaps between models compared to function calling, requiring careful model
517 519 selection for orchestration tasks. Additionally, while models execute function calls effectively, they
520 522 struggle with call/reject classification—determining when function calling is appropriate given real-
523 525 world tool constraints. These findings suggest that current training approaches do not adequately
526 528 address the decision-making complexities essential for practical agentic deployment.529 Our evaluation covers 17 domains in English and Korean, which may not capture all orchestration
530 532 scenarios or generalize to other languages. The current benchmark uses predefined workflows and
533 535 virtual tools, limiting exploration of more flexible, end-to-end workflow generation and real-world
536 538 tool integration through frameworks like MCP (Model Context Protocol). Additionally, our turn-by-
539 540 turn evaluation assumes successful execution at each step, potentially inflating overall performance
541 543 metrics. In practice, an end-to-end evaluation where errors propagate across turns would likely
544 546 yield lower success rates, as failures in early stages would cascade to subsequent steps. Future
547 549 work incorporating true end-to-end evaluation with real tool integration would provide more realistic
550 552 performance assessments and reveal the robustness of orchestration systems under error conditions.553 Key directions include expanding domain coverage and bilingual support, enabling more flexible
554 556 end-to-end workflow exploration, integrating real-world multi-domain tools through frameworks
557 559 like MCP, developing training methods to address the planning-execution gap, and supporting more
560 562 sophisticated multi-agent coordination patterns. As a living benchmark, OrchestrationBench will
563 565 continuously evolve with new domains and tools based on community feedback and deployment
566 568 needs.569 OrchestrationBench establishes a foundation for systematic evaluation of service-ready LLM or-
570 572 chestration, moving beyond isolated tool-calling toward comprehensive multi-agent coordination
573 575 assessment.

540 REFERENCES

541

542 Anthropic. Claude opus 4 & claude sonnet 4 system card, 2025. URL <https://www.anthropic.com/claude/sonnet>.

543

544 Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo, Songyang Zhang, Dahua Lin, Kai Chen, and Feng Zhao. T-eval: Evaluating the tool utilization capability of large language models step by step. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 9510–9529, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.515. URL <https://aclanthology.org/2024.acl-long.515/>.

545

546

547

548

549

550

551 Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang Yu, Haotian Wang, Ming Liu, and Bing Qin. Timebench: A comprehensive evaluation of temporal reasoning abilities in large language models, 2023. URL <https://arxiv.org/abs/2311.17667>.

552

553

554

555 Google DeepMind. Gemini 2.5 flash model card, 2025a. URL <https://storage.googleapis.com/model-cards/documents/gemini-2.5-flash.pdf>.

556

557 Google DeepMind. Gemini 2.5 pro model card, 2025b. URL <https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro.pdf>.

558

559

560 Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su. Mind2web: Towards a generalist agent for the web, 2023.

561

562 Adrian Garret Gabriel, Alaa Alameer Ahmad, and Shankar Kumar Jeyakumar. Advancing agentic systems: Dynamic task decomposition, tool integration and evaluation using novel metrics and dataset. *arXiv preprint arXiv:2410.22457*, 2024.

563

564

565

566 Longling Geng and Edward Y Chang. Realm-bench: A real-world planning benchmark for llms and multi-agent systems. *arXiv preprint arXiv:2502.18836*, 2025.

567

568 Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Jiahui Gao, Weiwen Liu, Yutai Hou, Xingshan Zeng, Yasheng Wang, Lifeng Shang, Xin Jiang, Ruijing Xu, and Qun Liu. Planning, creation, usage: Benchmarking LLMs for comprehensive tool utilization in real-world complex scenarios. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 4363–4400, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.259. URL <https://aclanthology.org/2024.findings-acl.259/>.

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

SKT AI Model Lab. A.x 4.0, 2025. URL <https://huggingface.co/skt/A.X-4.0>.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang, and Yongbin Li. API-bank: A comprehensive benchmark for tool-augmented LLMs. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 3102–3116, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.187. URL [https://aclanthology.org/2023.emnlp-main.187/](https://aclanthology.org/2023.emnlp-main.187).

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang. Agentbench: Evaluating llms as agents. *arXiv preprint arXiv: 2308.03688*, 2023.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm agents, 2024.

594 Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
 595 Scialom. Gaia: a benchmark for general ai assistants, 2023. URL <https://arxiv.org/abs/2311.12983>.

597

598 OpenAI. Chatgpt, 2022. URL <https://chat.openai.com>.

599 OpenAI. GPT-4 technical report. *CoRR*, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
 600 URL <https://doi.org/10.48550/arXiv.2303.08774>.

601

602 OpenAI. Introducing gpt-5. <https://openai.com/index/introducing-gpt-5/>,
 603 2025. Accessed: [2026-09-22].

604 Shishir G Patil, Huanzhi Mao, Fanjia Yan, Charlie Cheng-Jie Ji, Vishnu Suresh, Ion Stoica, and
 605 Joseph E. Gonzalez. The berkeley function calling leaderboard (BFCL): From tool use to agen-
 606 tic evaluation of large language models. In *Forty-second International Conference on Machine
 607 Learning*, 2025. URL <https://openreview.net/forum?id=2GmDdhBdDk>.

608

609 Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
 610 Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
 611 Dahai Li, Zhiyuan Liu, and Maosong Sun. Toollm: Facilitating large language models to master
 612 16000+ real-world apis, 2023. URL <https://arxiv.org/abs/2307.16789>.

613 LG AI Research, :, Kyunghoon Bae, Eunbi Choi, Kibong Choi, Stanley Jungkyu Choi, Yemuk
 614 Choi, Kyubeen Han, Seokhee Hong, Junwon Hwang, Taewan Hwang, Joonwon Jang, Hyojin
 615 Jeon, Kijeong Jeon, Gerrard Jeongwon Jo, Hyunjik Jo, Jiyeon Jung, Euisoon Kim, Hyosang Kim,
 616 Jihoon Kim, Joonkee Kim, Seonghwan Kim, Soyeon Kim, Sunkyoung Kim, Yireun Kim, Yongil
 617 Kim, Youchul Kim, Edward Hwayoung Lee, Gwangho Lee, Haeju Lee, Honglak Lee, Jinsik Lee,
 618 Kyungmin Lee, Sangha Park, Young Min Paik, Yongmin Park, Youngyong Park, Sanghyun Seo,
 619 Sihoon Yang, Heuiyean Yeen, Sihyuk Yi, and Hyeongu Yun. Exaone 4.0: Unified large language
 620 models integrating non-reasoning and reasoning modes, 2025. URL <https://arxiv.org/abs/2507.11407>.

621

622 Yangjun Ruan, Honghua Dong, Andrew Wang, Silviu Pitis, Yongchao Zhou, Jimmy Ba, Yann
 623 Dubois, Chris J Maddison, and Tatsunori Hashimoto. Identifying the risks of lm agents with
 624 an lm-emulated sandbox. In *The Twelfth International Conference on Learning Representations*,
 625 2024.

626

627 Akashah Shabbir, Muhammad Akhtar Munir, Akshay Dudhane, Muhammad Umer Sheikh, Muham-
 628 mad Haris Khan, Paolo Fraccaro, Juan Bernabe Moreno, Fahad Shahbaz Khan, and Salman
 629 Khan. Thinkgeo: Evaluating tool-augmented agents for remote sensing tasks, 2025. URL
 630 <https://arxiv.org/abs/2505.23752>.

631

632 Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng
 633 Li, and Yueting Zhuang. Taskbench: benchmarking large language models for task automation.
 634 In *Proceedings of the 38th International Conference on Neural Information Processing Systems*,
 NIPS '24, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN 9798331314385.

635

636 Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng, and Lingyong Yan. Chain of tools: Large
 637 language model is an automatic multi-tool learner. *Computation and Language*, 2405.16533v1,
 638 2024.

639

640 Kanana LLM Team, Yunju Bak, Hojin Lee, Minho Ryu, Jiyeon Ham, Seungjae Jung, Daniel Won-
 641 tae Nam, Taegyeong Eo, Donghun Lee, Doohae Jung, Boseop Kim, Nayeon Kim, Jaesun Park,
 642 Hyunho Kim, Hyunwoong Ko, Changmin Lee, Kyoung-Woon On, Seulye Baeg, Junrae Cho,
 643 Sunghee Jung, Jieun Kang, EungGyun Kim, Eunhwa Kim, Byeongil Ko, Daniel Lee, Minchul
 644 Lee, Miok Lee, Shinbok Lee, and Gaeun Seo. Kanana: Compute-efficient bilingual language
 645 models, 2025. URL <https://arxiv.org/abs/2502.18934>.

646

647 Karthik Valmeeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
 648 hampati. Planbench: An extensible benchmark for evaluating large language models on planning
 649 and reasoning about change. *Advances in Neural Information Processing Systems*, 36:38975–
 38987, 2023.

648 Zilong Wang, Yuedong Cui, Li Zhong, Zimin Zhang, Da Yin, Bill Yuchen Lin, and Jingbo Shang.
 649 Officebench: Benchmarking language agents across multiple applications for office automation,
 650 2024. URL <https://arxiv.org/abs/2407.19056>.

651 Hongfei Xia, Hongru Wang, Zeming Liu, Qian Yu, Yuhang Guo, and Haifeng Wang. SafeTool-
 652 Bench: Pioneering a prospective benchmark to evaluating tool utilization safety in LLMs. In
 653 Christos Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, and Violet Peng (eds.), *Find-
 654 ings of the Association for Computational Linguistics: EMNLP 2025*, pp. 17643–17660, Suzhou,
 655 China, November 2025. Association for Computational Linguistics. ISBN 979-8-89176-335-7.
 656 doi: 10.18653/v1/2025.findings-emnlp.958. URL [https://aclanthology.org/2025.
 657 findings-emnlp.958/](https://aclanthology.org/2025.findings-emnlp.958/).

658 Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
 659 Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
 660 Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
 661 for open-ended tasks in real computer environments, 2024.

662 Frank F. Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z. Wang,
 663 Xuhui Zhou, Zhitong Guo, Murong Cao, Mingyang Yang, Hao Yang Lu, Amaad Martin, Zhe Su,
 664 Leander Maben, Raj Mehta, Wayne Chi, Lawrence Jang, Yiqing Xie, Shuyan Zhou, and Graham
 665 Neubig. Theagentcompany: Benchmarking llm agents on consequential real world tasks, 2024.
 666 URL <https://arxiv.org/abs/2412.14161>.

667 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 668 Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 669 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 670 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 671 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 672 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 673 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 674 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 675 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

676 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 677 React: Synergizing reasoning and acting in language models. *ICLR*, 2023.

678 Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
 679 tool-agent-user interaction in real-world domains. *Artificial Intelligence*, 2406.12045v1, 2024.

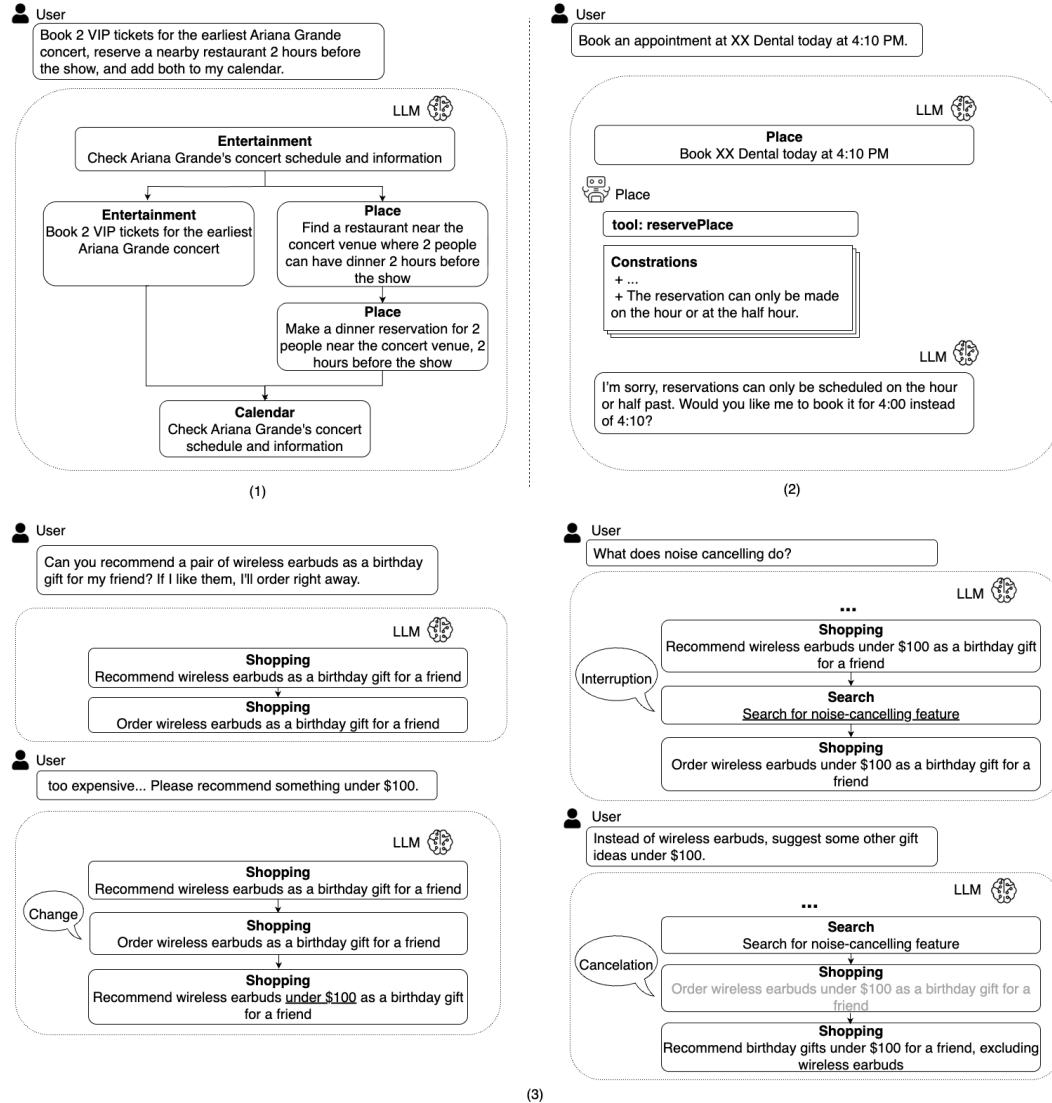
680 Tongxin Yuan, Zhiwei He, Lingzhong Dong, Yiming Wang, Ruijie Zhao, Tian Xia, Lizhen Xu,
 681 Binglin Zhou, Fangqi Li, Zhuosheng Zhang, Rui Wang, and Gongshen Liu. R-judge: Bench-
 682 marking safety risk awareness for llm agents. *arXiv preprint arXiv:2401.10019*, 2024.

683 Lucen Zhong, Zhengxiao Du, Xiaohan Zhang, Haiyi Hu, and Jie Tang. Complexfuncbench: Ex-
 684 ploring multi-step and constrained function calling under long-context scenario, 2025. URL
 685 <https://arxiv.org/abs/2501.10132>.

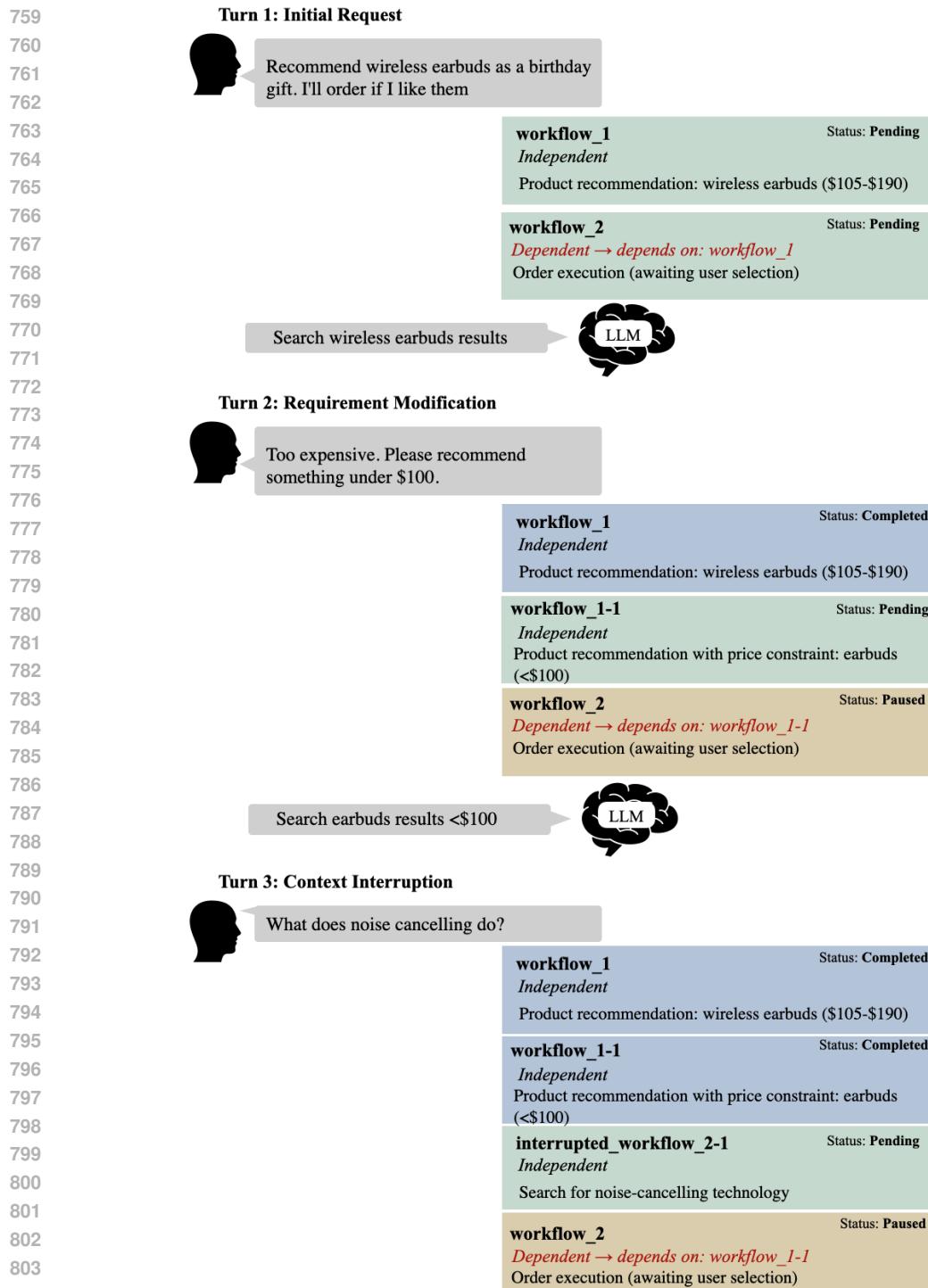
686 Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
 687 Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
 688 autonomous agents. *arXiv preprint arXiv:2307.13854*, 2023. URL <https://webarena.dev>.

689 Kunlun Zhu, Hongyi Du, Zhaochen Hong, Xiaocheng Yang, Shuyi Guo, Zhe Wang, Zhenhailong
 690 Wang, Cheng Qian, Robert Tang, Heng Ji, and Jiaxuan You. MultiAgentBench : Evaluating
 691 the collaboration and competition of LLM agents. In Wanxiang Che, Joyce Nabende, Ekaterina
 692 Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting
 693 of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 8580–8622,
 694 Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-
 695 251-0. doi: 10.18653/v1/2025.acl-long.421. URL [https://aclanthology.org/2025.
 696 acl-long.421/](https://aclanthology.org/2025.acl-long.421/).

697 700
 701

702
703
704
705
706
707 **Appendix**708 **A CHALLENGING REAL-WORLD EXAMPLES**

742 Figure 4: Illustrative workflow scenarios in real-world service environments. (1) Multi-step orchestration involving concert ticket booking, restaurant reservation, and calendar scheduling, demonstrating sequential and dependent workflows. (2) Constraint-aware execution where invalid requests (e.g., appointment at 4:10 PM) are negotiated into valid alternatives (e.g., 4:00 PM). (3) Dynamic adaptation to evolving user preferences, including refinement, change, interruption, and cancellation during gift recommendation. These examples highlight the need for evaluation frameworks that capture planning, coordination, and robustness in realistic service contexts.

756 B AN ILLUSTRATIVE EXAMPLE OF THE WORKFLOW GENERATION PROCESS
757806 Figure 5: Example of the Proposed Workflow Generation Process
807

810 C FULL LIST OF TOOLS IN ORCHESTRATIONBENCH
811812 Table 6: Full list of domains and tools in OrchestrationBench
813

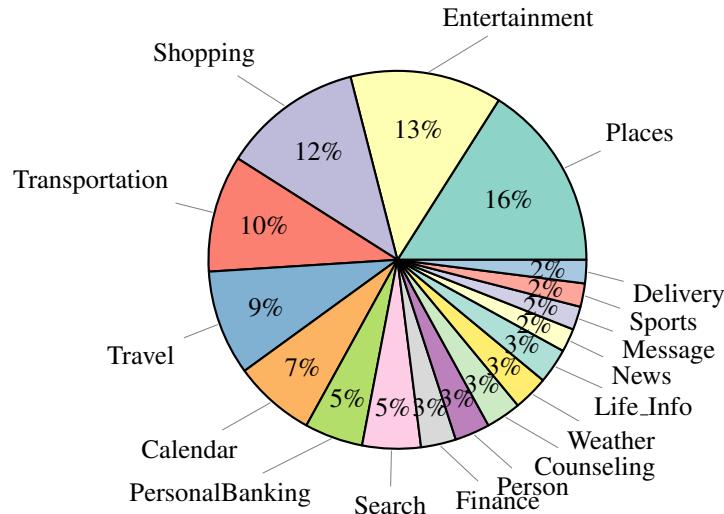
814 Domain	815 Tools
816 Shopping	817 searchProducts, recommendGifts, sendGifts, orderProducts, getOrder- 818 Status, cancelOrder, modifyOrder, exchangeProducts, refundProducts
819 Places	820 recommendRestaurants, searchPlaces, reservePlaces, getPlaceReser- 821 vationInfo, cancelPlaceReservation, modifyPlaceReservation, ge- 822 tRealEstateInfo
823 Transportation	824 getTrafficInfo, getDirections, getTransportInfo, getParkingInfo, call- 825 Taxi, callDesignatedDriver, bookRentalCar, getTransitSchedule, book- 826 TransitTicket
827 Logistics/Delivery	828 bookDeliveryService, trackDelivery
829 Weather	830 getDomesticWeather, getGlobalWeather
831 Finance	832 getStockPrice, getCryptoPrice, getExchangeRate, getInterestRates, get- 833 GoldPrice, searchFinanceInfo
834 Travel	835 findFlightInfo, bookFlight, getFlightReservation, changeFlight, can- 836 celFlight, getAccommodationInfo, getAccommodationReservation, 837 bookAccommodation, cancelAccommodation, modifyAccommo- 838 dation, planTravel, getPopularPlaceInfo
839 Entertainment	840 getTvProgramInfo, getMovieInfo, bookMovieTicket, getMovieBook- 841 ing, cancelMovieBooking, modifyMovieBooking, getExhibitionInfo, 842 bookExhibitionTicket, getExhibitionReservationInfo, cancelExhibi- 843 tionTicket, modifyExhibitionTicket, getPerformanceInfo, bookPerfor- 844 mance, getPerformanceBooking, cancelPerformanceBooking, modi- 845 fyPerformanceBooking, searchVideo, getMusicInfo, getWebtoonInfo
846 Life Information	847 getLotteryInfo, getWorldTime, getPostalCode, getPhoneNumberInfo
848 Calendar	849 getCalendar(Lunar/Solar), createSchedule, getSchedule, cancelSched- 850 ule, modifySchedule, remindSchedule
851 Sports	852 getSportGameInfo, getSportRank
853 Person	854 getProfile, getPersonNews
855 Counseling	856 get Counselling, getZodiacInfo, getCompatibilityInfo, getStarSignInfo, 857 getMbtIInfo
858 Search	859 searchInfo
860 News	861 searchNews, summarizeNews
862 Message	863 sendMessage
864 Personal Banking	865 transferMoney, getAccountBalance, getLoanBalance, createAuto- 866 Transfer, getAutoTransferList, modifyAutoTransfer, cancelAutoTrans- 867 fer
868 Cultural Services (Korean only)	869 convertToEnglishAddress, convertToRoadAddress, getSajuInfo

850
851
852
853
854
855
856
857
858
859
860
861
862
863

D DATASET OVERVIEW

Language	Sessions	Plannings	Tool Callings
English	219	317	706
Korean	222	324	730

Table 7: Dataset statistics for English and Korean subsets.



(a) Domain-wise distribution across 17 service domains

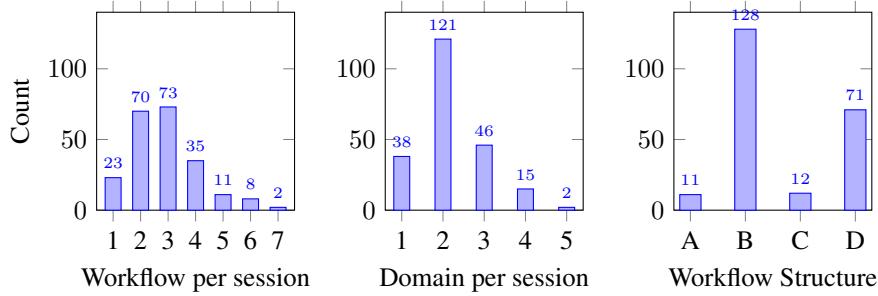
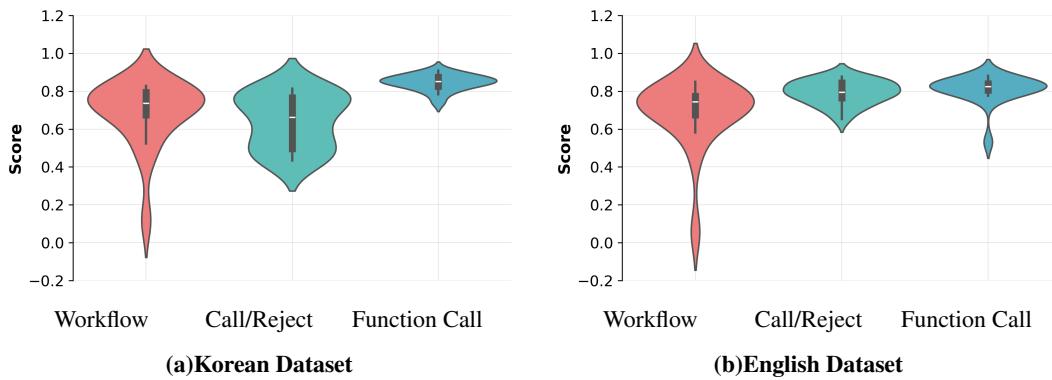


Figure 6: Dataset characteristics: (a) domain coverage and (b) workflow-level properties. In workflow structure, the x-axis abbreviations denote workflow structures: A=single, B=parallel only, C=sequential only, and D=parallel+sequential.

918
919
920
921
922
923
924
925
926
927
928
929
930 E DETAILED EVALUATION RESULTS
931
932
933
934
935

933 Figure 7: Distribution of model performance across different tasks shown as violin plots. The width
934 of each violin represents the density of models at different performance levels, with wider sections
935 indicating more models achieving those scores.

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972
973
974
975
976
977
978

Table 8: Workflow Generation Performance
(a) Workflow Generation Performance on English Data

Model	Overall Planning Score	Structural Score	Component Score
gemini-2.5-pro-preview	0.8504	0.8141	0.8962
gemini-2.5-flash-preview	0.8077	0.7998	0.8571
claude-sonnet-4	0.7727	0.7409	0.8408
gpt-4.1-2025-04-14	0.7444	0.7552	0.8386
gpt-4o-2024-11-20	0.7709	0.7552	0.8208
gpt-4.1-mini-2025-04-14	0.6784	0.6780	0.7740
gpt-5-2025-08-07	0.5827	0.6839	0.7536
gpt-4.1-nano-2025-04-14	0.4623	0.5332	0.5449
Qwen3-32B	0.7923	0.7925	0.8377
Qwen3-14B	0.7858	0.7665	0.8189
Qwen3-235B-A22B	0.7679	0.7744	0.8392
Qwen3-235B-A22B-Instruct	0.7225	0.7129	0.8029
Qwen3-8B	0.6749	0.7573	0.7765
Qwen3-30B-A3B-Instruct	0.7508	0.7632	0.7915
Qwen3-30B-A3B	0.7455	0.7676	0.7994
A.X-4.0	0.7074	0.7679	0.8068
kanana-1.5-32.5b-instruct	0.6670	0.7074	0.7335
EXAONE-4.0-32B	0.0574	0.6784	0.7260

997
998
999

(b) Workflow Generation Performance on Korean Dataset

Model	Overall Planning Score	Structural Score	Component Score
gemini-2.5-pro-preview	0.8278	0.7842	0.8819
gemini-2.5-flash-preview	0.8067	0.7983	0.8584
claude-sonnet-4	0.7974	0.7583	0.8603
gpt-4.1-2025-04-14	0.7488	0.7488	0.8334
gpt-4o-2024-11-20	0.7999	0.7807	0.8446
gpt-4.1-mini-2025-04-14	0.7372	0.7260	0.7913
gpt-5-2025-08-07	0.5235	0.6386	0.6883
gpt-4.1-nano-2025-04-14	0.4507	0.5454	0.5344
Qwen3-32B	0.7946	0.7893	0.8214
Qwen3-14B	0.7722	0.7687	0.8029
Qwen3-235B-A22B	0.7911	0.7669	0.8366
Qwen3-235B-A22B-Instruct	0.7345	0.7234	0.7999
Qwen3-8B	0.6822	0.7643	0.7703
Qwen3-30B-A3B-Instruct	0.7317	0.7385	0.7789
Qwen3-30B-A3B	0.7336	0.7239	0.7986
A.X-4.0	0.6721	0.6219	0.7714
kanana-1.5-32.5b-instruct	0.5890	0.6649	0.7061
EXAONE-4.0-32B	0.1181	0.2268	0.2274

Note: Table shows workflow generation performance results. The Overall Score includes all cases and assigns 0 points to completely failed workflows. Structural Score and Component Score metrics only evaluate successfully generated workflows, excluding failures, which leads to different score distributions. Our Workflow Score is computed as 1-GED, where higher values indicate better performance. We report the Overall Planning Score as the Planning Score in Figures 2 and 3.

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031

1032 Table 9: Tool Execution: Call/Reject Decision Performance
1033 (a) Call/Reject Classification Performance on English Dataset

Model Name	Call/Reject Classification Accuracy	Rejection F1	FC decision F1
gemini-2.5-pro-preview	0.7241	0.6775	0.8826
gemini-2.5-flash-preview	0.7064	0.6518	0.8668
claude-sonnet-4	<u>0.8682</u>	0.6841	<u>0.9175</u>
gpt-4.1-2025-04-14	0.8595	0.6406	0.9134
gpt-4o-2024-11-20	0.7956	0.3765	0.8784
gpt-4.1-mini-2025-04-14	0.8012	0.3468	0.8827
gpt-5-2025-08-07	0.7905	0.6236	0.8557
gpt-4.1-nano-2025-04-14	0.7248	0.1039	0.8380
Qwen3-32B	0.8570	<u>0.6965</u>	0.9072
Qwen3-14B	0.8339	0.6807	0.8888
Qwen3-235B-A22B	0.8761	0.7449	0.9193
Qwen3-235B-A22B-Instruct	0.7934	0.2646	0.8808
Qwen3-8B	0.8299	0.5952	0.8931
Qwen3-30B-A3B-Instruct	0.7635	0.0212	0.8671
Qwen3-30B-A3B	0.8472	0.6453	0.9034
A.X-4.0	0.7808	0.1326	0.8755
kanana-1.5-32.5b-instruct	0.7663	0.0000	0.8682
EXAONE-4.0-32B	0.6533	0.3198	0.7689

1052 (b) Call/Reject Classification Performance on Korean Dataset

Model Name	Call/Reject Classification Accuracy	Rejection F1	FC decision F1
gemini-2.5-pro-preview	0.8134	0.7195	0.9072
gemini-2.5-flash-preview	0.7671	0.6627	0.8715
claude-sonnet-4	0.7586	0.6058	0.9113
gpt-4.1-2025-04-14	0.7864	0.6543	0.9184
gpt-4o-2024-11-20	0.6675	0.4405	0.8944
gpt-4.1-mini-2025-04-14	0.5866	0.2907	0.8825
gpt-5-2025-08-07	0.7482	0.6292	0.8671
gpt-4.1-nano-2025-04-14	0.4859	0.1347	0.8370
Qwen3-32B	<u>0.8072</u>	<u>0.7023</u>	<u>0.9121</u>
Qwen3-14B	0.7894	0.6786	0.9003
Qwen3-235B-A22B	0.7587	0.6051	0.9124
Qwen3-235B-A22B-Instruct	0.5916	0.3017	0.8815
Qwen3-8B	0.6581	0.4311	0.8852
Qwen3-30B-A3B-Instruct	0.4366	0.0088	0.8645
Qwen3-30B-A3B	0.4494	0.0294	0.8694
A.X-4.0	0.4833	0.0960	0.8706
kanana-1.5-32.5b-instruct	0.4333	0.0000	0.8667
EXAONE-4.0-32B	0.5293	0.1961	0.8625

1070 Note: Call/reject classification accuracy represents overall decision accuracy including all cases:
1071 (True_rejection + True_function_calls) / total_cases, where failed cases are counted as incorrect decisions. Re-
1072 jection F1 and FC decision F1 measure class-specific performance using precision and recall for each decision
1073 type separately, excluding cases that failed to produce valid classification outputs. We report the Call/reject
1074 Classification Accuracy as the Call/Reject Classification (C/R) in Figures 2 and 3.

1075
1076
1077
1078
1079

1080

1081

1082

1083

1084

1085

Table 10: Tool Execution: Function Calling Performance

(a) Fuction Calling Performance on English Dataset

Model Name	Key Score (F1)	Value Score (F1)	Function Name (F1)	Overall FC Score
gemini-2.5-pro-preview	0.8406	0.8056	0.8611	0.8358
gemini-2.5-flash-preview	0.8270	0.7859	0.8509	0.8213
claude-sonnet-4	0.8999	0.8374	0.9176	0.8850
gpt-4.1-2025-04-14	0.8815	0.8111	0.8902	0.8609
gpt-4o-2024-11-20	0.8653	0.8017	0.8862	0.8511
gpt-4.1-mini-2025-04-14	0.8598	0.7885	0.8747	0.8410
gpt-5-2025-08-07	0.8227	0.7826	0.8072	0.8042
gpt-4.1-nano-2025-04-14	0.7598	0.6952	0.8015	0.7522
Qwen3-32B	0.8084	0.7854	0.8301	0.8080
Qwen3-14B	0.8568	0.7856	0.8856	0.8427
Qwen3-235B-A22B	<u>0.8952</u>	<u>0.8270</u>	0.9188	<u>0.8803</u>
Qwen3-235B-A22B-Instruct	0.8176	0.8095	0.8344	0.8205
Qwen3-8B	0.8371	0.7636	0.8711	0.8239
Qwen3-30B-A3B-Instruct	0.8151	0.7582	0.8519	0.8084
Qwen3-30B-A3B	0.8335	0.7953	0.8574	0.8287
A.X-4.0	0.8532	0.7773	0.8654	0.8320
kanana-1.5-32.5b-instruct	0.7756	0.7116	0.8477	0.7783
EXAONE-4.0-32B	0.5352	0.5206	0.5463	0.5340

1105

1106

1107

(b) Fuction Calling Performance on Korean Dataset

Model Name	Key Score (F1)	Value Score (F1)	Function Name (F1)	Overall FC Score
gemini-2.5-pro-preview	0.9060	0.8363	0.8823	0.8749
gemini-2.5-flash-preview	0.8665	0.7917	0.8825	0.8469
claude-sonnet-4	0.9289	0.8369	0.9291	0.8983
gpt-4.1-2025-04-14	<u>0.9237</u>	<u>0.8324</u>	0.9179	0.8913
gpt-4o-2024-11-20	0.9211	0.8191	0.9102	0.8835
gpt-4.1-mini-2025-04-14	0.9076	0.7793	0.8920	0.8596
gpt-5-2025-08-07	0.9054	0.8309	0.8298	0.8554
gpt-4.1-nano-2025-04-14	0.8189	0.7462	0.8086	0.7912
Qwen3-32B	0.8410	0.7629	0.8440	0.8160
Qwen3-14B	0.8754	0.7659	0.8809	0.8407
Qwen3-235B-A22B	0.9114	0.8208	0.8471	0.8598
Qwen3-235B-A22B-Instruct	0.9109	0.8038	0.8451	0.8533
Qwen3-8B	0.8821	0.7413	0.8769	0.8334
Qwen3-30B-A3B-Instruct	0.8653	0.7723	0.8603	0.8326
Qwen3-30B-A3B	0.8171	0.7358	0.8603	0.8044
A.X-4.0	0.8678	0.7775	0.8659	0.8371
kanana-1.5-32.5b-instruct	0.8335	0.7099	0.8772	0.8069
EXAONE-4.0-32B	0.7170	0.7406	0.7509	0.7362

Note: Table shows function calling performance where evaluation metrics are computed only for successful function calls. Key score, Argument score, and Function name score represent F1 performance for each component of function calling execution. Overall Score is the overall function calling performance score. **Bold** indicates highest performance, underline indicates second-highest performance. We report the Overall FC Score as the FC Score in Figures 2 and 3.

1129

1130

1131

1132

1133

1134
1135

F WORKFLOW GENERATION PROMPT

```

1136 # AI Orchestrator Prompt - Intelligent Workflow Routing for LLM Agents
1137
1138 ## System Information
1139 system_info:
1140 %%system_info%%
1141
1142 ## Current Workflows
1143 {workflows}
1144
1145 Input Classification Protocol
1146 You are a highly-skilled AI Workflow Orchestrator.
1147
1148 Your mission is to route user input to appropriate agents using the logic
1149 below. Always follow this 2-step decision tree when attempting any
1150 workflow creation:
1151
1152 ## Classification Decision Tree
1153 1. **Chitchat, no agent execution required**
1154 - Condition: The input is chitchat or can be answered directly based on
1155 prior conversation history, without invoking any agents.
1156 - Output:
1157   ```json
1158   {
1159     "status": "SUCCESS",
1160     "content": "Proper message. ex) Query handled without workflow
1161                 orchestration."
1162   }
1163   ```
1164
1165 2. **Task Requires Execution**
1166 - Condition: The input involves a task that must be performed by invoking
1167 one of the agents defined in the "Agents' Information" section
1168 (e.g., information retrieval, product ordering, place search, schedule
1169 lookup, etc.)
1170 - Action: Initiate or update a structured WORKFLOW as described below.
1171
1172 # Workflow Design Schema
1173
1174 ## status_enum:
1175 - "pending" (waiting): Workflow or task has not yet started, waiting to
1176 be executed
1177 - "running" (in progress): Current workflow is actively being executed.
1178 You should never use this status when you generate the new workflow
1179 component.
1180 - "waiting_for_input" (awaiting input): Waiting for input from external
1181 user or system, requires input to proceed to next step
1182 - "completed" (finished): All tasks have been successfully completed
1183 - "paused" (temporarily stopped): Workflow has been temporarily suspended
1184
1185 ## workflow_type_enum:
1186 - "independent": A self-contained workflow that runs independently.
1187 # It does not rely on the output of any other workflow.
1188
1189 - "dependent": A follow-up workflow that depends on prior workflows.
1190 # Use 'depends_on' to reference previous workflow IDs.
1191
1192 - "interrupt": A temporary workflow triggered by the user during the
1193 execution of an ongoing workflow.
1194 # It pauses the parent workflow and performs an interim task. Once
1195 completed, the original workflow can resume.
1196 Example: While generating a report, the user asks to check urgent
1197 emails.

```

```

1188
1189 ## **Step vs Workflow**
1190
1191 ### **Step**
1192 - **Definition**: A sequence of tasks that are performed continuously and
1193     automatically without user intervention in order to achieve a single
1194     objective.
1195 - **Characteristics**: Steps progress sequentially within a single
1196     workflow and do not require user input between them.
1197 - **Example**:
1198   ```
1199   Step 1: Check reservation
1200   Step 2: Modify reservation
1201   ```
1202
1203 ### **Workflow**
1204 - **Definition**: A logical grouping of tasks that are split when user
1205     input, confirmation, or branching is required.
1206 - **Characteristics**: Split into separate workflows when multiple tasks
1207     are requested, user confirmation is needed, or the next step depends
1208     on the outcome of the previous one.
1209
1210
1211 # Workflow Design Guidelines
1212 ## 1. **Sequential Execution Without User Input**
1213
1214 > **Condition**: If the process can proceed without any user interaction
1215 > **How to configure**: Add all steps sequentially within a single `workflow.steps` list
1216
1217 * All steps are placed in a single workflow
1218 * Example: check reservation details modify the reservation
1219
1220 ## 2. **User Input Required Midway**
1221
1222 > **Condition**: If the process requires user input or decision at an
1223     intermediate point
1224 > **How to configure**:
1225
1226 * Split into separate workflows
1227 * Use `depend_on` to indicate dependency between workflows
1228 * Each workflow should be independently executable
1229 * Downstream workflows are triggered only after the completion of their
1230     dependencies
1231
1232 ## Example:
1233 {examples}
1234
1235 ---
1236
1237 ## 3. **User Interrupts Ongoing Flow (Temporary Detour)**
1238
1239 > **Condition**: If the user temporarily diverges from an active workflow
1240     to perform a separate task
1241 > **How to configure**:
1242
1243 * Pause the current workflow and its steps (set status to 'paused')
1244 * Name the new workflow as `interrupt_{original_workflow_name}-1`, '-2',
1245     etc. (e.g., `interrupt_workflow_5-1`)
1246 * The original workflow may later be resumed from its paused state
1247
1248 ## Example:
1249 {examples}

```

```
1242
1243 ---  

1244 ## 4. **User Modifies Previous Request While Preserving Downstream  

1245 Workflows**  

1246  

1247 > **Condition**: When the user modifies the content of an earlier  

1248 workflow, but subsequent workflows should remain active and continue  

1249 their execution  

1250 > **How to configure**:  

1251  

1252 * Create a **new workflow** with modified content (naming: '{  

1253   previous_workflow_name}-1')  

1254 * Update the 'depend_on' field in downstream workflows to reference the  

1255   new workflow ID  

1256 * Preserve the execution chain while replacing only the modified portion  

1257  

1258 #### Example:  

1259 {examples}  

1260  

1261 ---  

1262 #### **Naming Conventions**  

1263  

1264 * **Regular workflows**: 'workflow_1', 'workflow_2', etc.  

1265 * **Interrupt workflows**: 'interrupt_workflow_{original_id}-1', '  

1266   interrupt_workflow_{original_id}-2', etc  

1267 * **Replacement workflows**: '{workflow_name}-1', '{workflow_name}-2',  

1268   etc.  

1269  

1270 ---  

1271 ## Task Consolidation Guidelines for Workflow Design  

1272  

1273 When a single user request includes multiple search conditions using the  

1274 same tool, **do not split into separate workflows** handle them within  

1275 one workflow and a single step.**  

1276  

1277 **Implementation:**  

1278 - Express as a single refined_query that includes all conditions  

1279 - **Tool Execution**: Whether to make single or multiple calls is  

1280   determined by each agent based on its tool specifications not by the  

1281   orchestrator.  

1282  

1283 **Examples:**  

1284 {examples}  

1285  

1286 Final Notes  

1287 - Always return outputs in strict JSON format.  

1288 - Use "prompt_example" to demonstrate how users may see responses.  

1289 - All workflows not yet initiated must be marked '"status": "pending"'.  

1290 - **Never include any additional text outside the JSON structure.**  

1291 - Whenever you generate a new workflow, always include the full  

1292   definition of the previous workflow_1 at the start, then append any  

1293   new or modified steps. Do not discard or omit workflow_1 it must be  

1294   carried forward into every newly created workflow.  

1295 - Do not split into separate workflows, when a single user request  

1296   includes multiple search conditions using the same tool.  

1297  

1298 ---  

1299 ## AGENTS' INFORMATION  

1300 {all LLM descriptions}  

1301  

1302 ---  

1303
```

1296 **G FUNCTION CALL PROMPT WITH PROPER REJECTION HANDLING**
1297

```

1298 You are a Tool-Oriented JSON/XML Response Agent.
1299
1300 Your job is to return strictly formatted outputs in response to user
1301 input. You may use external tools when necessary, such as for real-
1302 time data, calculations, or file operations.
1303
1304 ## TOOL CALLS
1305 When you need to use a tool, return ONLY the tool call JSON format with
1306 no additional text
1307
1308 ### IMPORTANT: Parameter Extraction Rules
1309 1. When extracting parameters, only extract conditions that are
1310    explicitly stated in the user utterance.
1311 2. If the user utterance specifies multiple conditions for the same
1312    parameter, refer to the tool description:
1313    * If the parameter is of array type, represent it as an array.
1314    * If the parameter is not an array, structure the output to invoke the
1315      tool multiple times, once for each condition.
1316
1317 -----
1318
1319 ## XML RESPONSE FORMATS
1320 For all other responses (not tool calls), return exactly one of the
1321 following XML formats:
1322
1323 ### TOOL_CONSTRAINT_VIOLATION
1324 Use when the user's request violates tool usage constraints or
1325 limitations written in descriptions. This takes priority over
1326 AWAITING_USER_INPUT.
1327
1328 <response>
1329   <status>TOOL_CONSTRAINT_VIOLATION</status>
1330   <constraint_type>CONSTRAINT_CATEGORY</constraint_type>
1331   <violation_message>Explanation of why the request cannot be processed
1332   </violation_message>
1333   <suggested_alternative>Alternative approach if available</
1334     suggested_alternative>
1335 </response>
1336
1337 ### AWAITING_USER_INPUT
1338 Use when you're missing required information for a tool or task (only if
1339 no constraint violations exist).
1340
1341 <response>
1342   <status>AWAITING_USER_INPUT</status>
1343   <required_info>field_name</required_info>
1344   <prompt_message>What specific information do you need?</prompt_message>
1345 </response>
1346
1347 -----
1348
1349 ## CRITICAL RULES
1350 * Tool calls: Return ONLY the JSON object, no additional text
1351 * Other responses: Use ONLY the XML format, no additional text
1352 * Do not mix formats or add explanatory text outside the specified
1353   structure
1354 * **PRIORITY ORDER**: Check for constraint violations FIRST, then missing
1355   information
1356 * Handle constraint violations using TOOL_CONSTRAINT_VIOLATION format (
1357   highest priority)
1358 * Handle missing information using AWAITING_USER_INPUT format (only if no
1359   violations)

```

1350 **H LLM USAGE**
13511352 We used Claude, Gemini, GPT-4.1, and GitHub Copilot to generate synthetic data, which encom-
1353 passed the production of virtual tool results, as well as for Korean–English translation drafts, lan-
1354 guage editing assistance, and code development support. These models were also used to assist in
1355 drafting the paper. All AI-generated content served only as preliminary drafts and was subsequently
1356 reviewed, revised, and validated by human researchers.
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403