
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFERENTIALLY PRIVATE OPTIMIZATION FOR NON-
DECOMPOSABLE OBJECTIVE FUNCTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Unsupervised pre-training is a common step in developing computer vision mod-
els and large language models. In this setting, the absence of labels requires the
use of similarity-based loss functions, such as contrastive loss, that favor mini-
mizing the distance between similar inputs and maximizing the distance between
distinct inputs. As privacy concerns mount, training these models using differen-
tial privacy has become more important. However, due to how inputs are gener-
ated for these losses, one of their undesirable properties is that their L2 sensitivity
grows with the batch size. This property is particularly disadvantageous for dif-
ferentially private training methods, such as DP-SGD. To overcome this issue, we
develop a new DP-SGD variant for similarity based loss functions — in particular,
the commonly-used contrastive loss — that manipulates gradients of the objective
function in a novel way to obtain a sensitivity of the summed gradient that isO(1)
for batch size n. We test our DP-SGD variant on some CIFAR-10 pre-training
and CIFAR-100 finetuning tasks and show that, in both tasks, our method’s per-
formance comes close to that of a non-private model and generally outperforms
DP-SGD applied directly to the contrastive loss.

1 INTRODUCTION

Foundation models — large models trained in an unsupervised manner to be fine-tuned on specific
tasks — have become one of the cornerstones of modern machine learning. These models generally
outperform other approaches in multiple tasks, ranging from language generation, to image classi-
fication and speech recognition. In fact, models such as LaMDA (Thoppilan et al., 2022), BERT
(Devlin et al., 2019), GPT (Radford et al., 2018) and diffusion models (Saharia et al., 2022; mid-
journey) interact with millions of users per day. Due to the complexity of these models, there are
multiple concerns in the privacy community that these models may memorize some of the training
data. For models trained on user-generated content, this may result in a catastrophic privacy breach,
where the model may unintentionally reveal private information about a user. Recent work from
Shokri et al. (2017) and Balle et al. (2022) showed that these risks are not just a theoretical concern
and that it is possible to (i) know whether a particular example was in a dataset for training the model
and (ii) reconstruct training data using only black-box access to the model.

Differential privacy provides an information-theoretic guarantee that the model does not depend
drastically on any example (Dwork et al., 2006) and the aforementioned work also showed that
these attacks become significantly harder when models are trained using differential privacy.

Consequently, private training methods have received considerable attention from the privacy com-
munity in the past decade. Some of the foundational work on this area was established by Chaudhuri
et al. (2011) which provided algorithms for private learning with convex loss functions and Abadi
et al. (2016) which proposed the differentially private stochastic gradient descent (DP-SGD) algo-
rithm for privately training neural networks. Multiple lines of work have stemmed from this research
area, ranging from tighter privacy analysis (Ghazi et al., 2022) to more efficient implementations of
DP-SGD (Li et al., 2021). However, most of the literature on private machine learning makes one
crucial assumption about the objective function they are trying to minimize: the objective decom-
poses as a sum (or average) of example level losses. This assumption drastically simplifies the
sensitivity analysis (how the objective changes as one changes one point in the dataset) of DP-SGD
algorithm.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this work, we focus on models that are trained using non-decomposable objective functions. That
is, a function that cannot be described as a sum (or average) of individual losses. Our study is
motivated by the use of contrastive losses (Oord et al., 2018; Chen et al., 2020a;b) for pre-training
foundation models. Contrastive losses generally compare each example against all other examples
in the batch and adding or removing an example to a batch of examples can affect the objective
function in unpredictable ways. This type of behavior generally makes it hard, if not impossible,
to train models privately. In this work, we show that common non-decomposable losses have a
crucial property that makes them amenable to private training. Our contributions are summarized as
follows:

• We provide a general framework for measuring the sensitivity of DP-SGD for certain non-
decomposable losses.

• We show how to apply this framework to two common non-decomposable losses: con-
trastive loss and spreadout (regularization) loss (Zhang et al., 2017).

• We conduct experiments on privately pre-training large image classification models (a
generic embedding model and Resnet18) and show that we can achieve performance com-
parable to non-private pre-training. Our experiments analyze the performance of simple
pre-training as well as fine tuning on a downstream task.

2 PRELIMINARIES

Notation. Denote [n] := {1, . . . , n}, R to be the set of real numbers, and Rd = R× · · · × R where
the Cartesian product is taken d times.

Given a feature space X , such as a space of images or sentences, we focus on unsupervised learning
of embedding models Φw : X → Rd parametrized by w ∈ W where W is a parameter space
W ⊂ Rp.

Let X = {(xi, x′i)}ni=1 ⊆ X ×X be a batch with n records, such that xi and x′i are similar (positive
pairs) in the feature space. These positive pairs can correspond, for instance, to two version of the
same image, a sentence and its translation on a different language or an image and its caption. Let
S : Rd × Rd → R be a function measuring similarity of two points in Rd. A common objective is
to find a parameter w ∈ W that preserves the similarities defined by pairs in X .

Given vectors x1, . . . , xn ∈ Rd, define x = (x1, . . . , xn), and denote their embeddings as Φw(x) =
(Φw(x1), . . . ,Φw(xn)).

Given embeddings u, v1, v2, . . . , vn ∈ Rd, define the similarity profile of u respect to v1, . . . , vm
for m ≤ n as the vector Sm(u,v) of similarities between u and the first m vectors in v. Formally,
Sm(u,v) ∈ Rm where entry j ∈ [m] is defined as [Sm(u,v)]j = S(u, vj). A common similarity
function is the cosine similarity given by

[Smcos (u, v)]j =

〈
u

‖u‖
,
vj
‖vj‖

〉
∀j ∈ [n].

Given a dataset X = {(xi, x′i)}ni=1 and a family of loss functions `(i,n) : Rn → R that calculate the
loss on the similarity profile of point xi based on the n points on batch X , define

Z
(i,n)
X (w) := Sn(Φw(xi),Φw(x′1), . . . ,Φw(x′n)),

L
(i,n)
X (w) := `(i,n) ◦ Z(i,n)

X (w),

LX(w) :=

n∑
i=1

L
(i,n)
X (w),

(1)

for i ∈ [n]. The similarity terms Z(1,n)
X (w), . . . , Z

(n,n)
X (w) ∈ Rn are commonly referred to as con-

trastive logits. Given η > 0, contrastive loss models, which aim to minimize LX(w), are typically
trained iteratively using stochastic gradient descent (SGD) as follows:

w+ = w − η∇LX(w).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Organization. The rest of this section reviews some key concepts used to develop our proposed
scheme. Section 3 reviews related works. Section 4 gives the main technical results and the proposed
scheme that implements DP-SGD for general contrastive losses. For brevity, we leave the proof of
these results for the Appendix at the end of this paper. Section 5 presents numerical experiments on
CIFAR10 and CIFAR100, as well as a brief discussion on numerical bottlenecks. Finally, Section 6
gives a few concluding remarks.

2.1 DIFFERENTIAL PRIVACY

LetZ denote an arbitrary space and letD = {z1, . . . , zn} ⊂ Z denote a dataset. We say that datasets
D and D′ are neighbors if D′ = D ∪ {zn+1} for some zn+1 ∈ Z . A mechanism M : Z∗ → O is
a randomized function mapping a dataset to some arbitrary output space O. Let ε, δ > 0. We say
that mechanism M is (ε, δ)-differentially private (Dwork et al., 2006) if for all neighboring datasets
D,D′ and all S ⊂ O the following inequality holds:

P (M(D) ∈ S) ≤ eεP (M(D′) ∈ S) + δ.

A simple way of ensuring that a mechanism is differentially private is by using the following process.
Definition 2.1 (Gaussian Mechanism). Let ε, δ > 0 and f : Z∗ → Rd, and denote ∆2(f) :=
‖f(D) − f(D′)‖2 to be the L2-sensitivity of the function f . For ξ ∼ N (0, σ), the mechanism
defined by

M(D) = f(D) + ∆2(f)ξ,

is (ε, δ)-differentially private for an appropriate1 choice of σ.

Our primary goal in this paper is to implement a Gaussian mechanism for the function
X 7→ ∇LX(w), where LX(w) is as in (1).

2.2 LOSS FUNCTIONS

Definition 2.2 (Canonical contrastive loss). The (canonical) contrastive loss function is given by
LX(w) in (1) with `(i,n)(Z) = − log(eZi/

∑n
j=1 e

Zj).

The above loss essentially treats the unsupervised learning problem as a classification problem with
n classes, where the pair (xi, x

′
i) has a positive label and (xi, x

′
j) has a negative label for all j 6= i.

Contrastive loss is widely used by the vision community (Oord et al., 2018; Chen et al., 2020a;b;
Radford et al., 2021) and has been shown to be extremely successful at obtaining pre-trained models
for image classification.
Definition 2.3 (Spreadout regularizer loss). The spreadout regularizer loss is given by LX(w) in (1)
with `(i,n)(Z) =

∑
j 6=i Z

2
j /(n− 1).

The spreadout regularizer is commonly used when training embedding models for computer vision
(Zhang et al., 2017; Yu et al., 2020), used as a method to promote orthogonality in the embedding
space among dissimilar objects in the whole feature space.
Definition 2.4 (Summed loss from per-example loss). LetZ = {(x1, y1), . . . , (xn, yn)} be a dataset
of features and label pairs. Given a set of per-example loss functions {f iZ}ni=1 corresponding to the
examples in Z, the summed loss function is KZ(w) =

∑n
i=1 f

i
Z(w).

2.3 NAIVE CLIPPING SCHEMES

Before presenting our scheme, we discuss some naive approaches for bounding the sensitivity of
contrastive loss gradients during DP-SGD training.

We first review how DP-SGD is typically applied for the summed loss ∇KZ(w) in (2.4). It can
be shown that the precise L2-sensitivity of ∇KZ(w) in DP-SGD is generally hard to estimate in
deep learning settings (Latorre et al., 2020; Shi et al., 2022). As a consequence, for given a L2-
sensitivity bound B on ∇KZ(w), practitioners usually clip the per-example gradients ∇f iZ(w) by

1See, for example, Balle & Wang (2018).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the bound B and apply the Gaussian mechanism on the sum of the clipped gradients to obtain the
differentially private (DP) gradient that is passed to DP-SGD. This is motivated by the fact that
adding or removing an example from the dataset Z will not change the norm of the DP gradient
(and, hence, its sensitivity) by more than B. Also, notice that the standard deviation of the Gaussian
mechanism’s noise is Bσ which is independent of the sample size n.

Let us now compare the above results with the L2-sensitivity of a similar scheme for contrastive loss
functions LX(w) as in (1). For neighboring datasets X = {(xi, x′i)}ni=1 and X◦ = {(xi, x′i)}

n−1
i=1 ,

the sensitivity of LX(w) is given by

‖∇LX(w)−∇LX◦(w)‖ =

∥∥∥∥∥∇L(n,n)
X (w) +

n∑
i=1

[
∇L(i,n)

X (w)−∇L(i,n−1)
X◦ (w)

]∥∥∥∥∥ , (2)

where L(i,n)
X (w) is as in (1). Similar to the per-example loss, for a given L2-sensitivity bound B, we

could consider clipping the “per-example” gradient terms {∇L(i,n)
X (w)}ni=1 (for DP-SGD on dataset

X) and {∇L(i,n−1)
X◦ (w)}n−1i=1 (for DP-SGD on dataset X◦) by B and applying the appropriate Gaus-

sian mechanism. However, applying the triangle inequality to the bound in (2), the L2-sensitivity of
the resulting scheme is O(nB). As a consequence, the standard deviation of the Gaussian mecha-
nism’s noise is O(nBσ) which is O(n) worse than for per-example losses.

As another alternative (Huai et al., 2020; Kang et al., 2021), one could directly clip ∇LX(w) or
∇LX◦(w) by B and apply the Gaussian mechanism to these clipped gradients with a standard
deviation of O(Bσ) (see (2)). However, we show in our experiments section that this approach,
nicknamed Naive-DP, does not materially reduce the value of LX(w), even when varying the batch
size or the clip norm value.

Our proposed scheme aims to provide the first DP-SGD scheme which materially
reduces the loss value LX(w) without requiring a dependence on the batch size n
in the underlying Gaussian mechanism’s noise.

3 RELATED WORK

Contrastive learning has had large impact on unsupervised pretraining of computer vision models
(Chen et al., 2020a;b) and representation learning for language models (Logeswaran & Lee, 2018;
Chidambaram et al., 2018), or both (Radford et al., 2021). Fang et al. (2020); Giorgi et al. (2020);
Wu et al. (2020) use a contrastive loss function for pre-training and fine-tuning BERT with data
augmentation. More recently it has been used for reinforcement learning with BERT-type models
(Banino et al., 2021).

In the private setting, the majority of the work has been focused on improving the original implemen-
tation of DP-SGD (Abadi et al., 2016) for decomposable losses. Research has particularly focused
on tighter privacy guarantees on DP-SGD via advanced privacy accounting methods (Mironov, 2017;
Ghazi et al., 2022) or solving computational issues, for example associated with gradient clipping
(Goodfellow, 2015), or improving a specific models efficiency and scalability such as privately pre-
training T5 (Ponomareva et al., 2022). For non-decomposable losses, some researchers have studied
private learning from pairwise losses in the convex and strongly convex case (Huai et al., 2020; Xue
et al., 2021) and test only in a diabetes dataset. Later works (Yang et al., 2021; Kang et al., 2021)
obtain similar results for the non-convex case; these approaches circumvent clipping by assuming
access to the Lipschitz constant of the loss function, which depends on the encoder function (typ-
ically a deep neural network). However, this Lipschitz constant is generally not easy to estimate
(Latorre et al., 2020; Shi et al., 2022).

Xu et al. (2022) learn private image embeddings with user-level differential privacy, but avoid un-
supervised training and, consequently, avoid non-decomposable loss functions such as contrastive
and triplet loss. Instead, this work relays a supervised multi-class classification problem, and avoids
dependencies among different records, at the cost of labeling the data. Similarly, Yu et al. (2023)
train ViP, a foundation model for computer vision but replace the contrastive (non-decomposable)
loss with an instance-separable loss. Li et al. (2022) propose noising the similarity matrix between
pairs of inputs and compute a noisy loss function. They combine this with a noisy gradient but
assume a per-gradient bounded sensitivity.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Orthogonal works study attacks to embedding models. For instance Song & Raghunathan (2020)
showed that when trained without differential privacy, embedding models can be inverted. More
specifically, model attacks are able to recover members from the training set when the attack are
designed to recover information from embeddings trained with a contrastive loss (Liu et al., 2021).
To prevent specific attacks Rezaeifar et al. (2022) developed an architecture that learns an obfuscator
that prevents reconstruction or attribute inference attacks. He & Zhang (2021) quantifies the expo-
sure risk under contrastive learning losses and develops an adversarial training procedure to mitigate
the risk. However, none of these approaches provide differential privacy guarantees. Finally, Wu
et al. (2022) explores contrastive learning in federated settings, where users feed a user-embedding;
the negative samples are created at the server with the differentially private embeddings sent by the
users.

4 BOUNDING PAIRWISE-CONTRIBUTIONS

This section first introduces a condition on the family of loss functions {`(i,n)} that, when combined
with a clipping operation on the gradient of the similarity between each pair of records, permits the
derivation of a DP-SGD variant that benefits from increasing the batch size when using similarity
based loss functions.

We start by deriving an expression for the gradient ofL in Lemma 4.1 that highlights the dependence
on the gradient of pairwise similarity values S(Φw(xi),Φw(x′j)). By leveraging this decomposition,
we find a bound on the overall loss L gradient’s sensitivity in Theorem 4.2. Finally, we combine
these two facts to produce a differentially private optimization algorithm for similarity based loss
functions. We defer proofs to the supplementary material.

4.1 COMPUTING GRADIENT SENSITIVITY

Lemma 4.1 below shows that the gradient of a similarity based loss function can by expressed in
terms of the pairwise similarity gradients∇wS(Φw(xi),Φw(x′j)).

Lemma 4.1. Let LX(w) and Z(i,n)
X (w) be as in (1), and denote

ZiX(w) := Z
(i,n)
X (w),

ZijX (w) := [Z
(i,n)
X (w)]j = S(Φw(xi),Φw(x′j)).

Then,

∇wLX(w) =

n∑
i=1

n∑
j=1

∂`(i,n)(Zi(w))

∂ZijX
∇ZijX (w). (3)

We now describe conditions on the family {`(i,n)} function that allow us to derive a bound on the
L2-sensitivity of∇LX(w).

Theorem 4.2. Let LX(w) and ZijX be as in Lemma 4.1, let C ⊆ R be a compact set, and let
z′ ∈ Cn−1, zn ∈ C, and z = (z′, zn) ∈ Cn. Assume that for all i ∈ [n] the family of functions
{`(i,n)}(i,n)∈N×N satisfies

n−1∑
j=1

∣∣∣∣∂`(i,n)(z)

∂zj
− ∂`(i,n−1)(z′)

∂zj

∣∣∣∣ ≤ L, n∑
j=1

∣∣∣∣∂`(i,n)(z)

∂zj

∣∣∣∣ ≤ G1,

n∑
i=1

∣∣∣∣∂`(i,n)(z)

∂zn

∣∣∣∣ ≤ G2, (4)

where L,G1, and G2 can depend on n. If ‖ZijX‖2 ≤ B for every i and j, then the L2-sensitivity of
∇LX(w) can be bounded as

∆2(∇LX) ≤ (G1 +G2 + (n− 1)L)B.

We are now ready to present our main algorithm. Before proceeding, the following two corollaries
show that one can obtain a private estimate of the gradient of the training loss by clipping the
pairwise similarity gradients and applying a Gaussian mechanism.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Corollary 4.3. Let B > 0, z ∈ Rd, LX(w) and ZijX be as in Lemma 4.1, and let ClipB(x) :=
min {B/‖x‖, 1}x denote the vector x clipped to have norm at most B. If the family of functions
{`(i,n)}ni=1 satisfy the conditions of Theorem 4.2. Then, the function

X 7→
n∑
i=1

n∑
j=1

∂`(i,n)(Zi(w))

∂ZijX
ClipB(∇ZijX (w)) (5)

has L2 sensitivity bounded by (G1 +G2 + (n− 1)L)B.
Corollary 4.4. If the family of loss functions `(i,n) satisfies the conditions of Theorem 4.2, then each
iteration of Algorithm 1 satisfies (ε, δ)-differential privacy2 for ε =

√
log(1.25/δ)/σ.

Proof. The proof is immediate since each step of the algorithm corresponds to the Gaussian mech-
anism with noise calibrated to the sensitivity of the mechanism.

Moreover, in the following lemmas, we present how condition (4) holds with L = O(1/n) for the
contrastive and spreadout regularizer losses under a cosine similarity. Consequently, this ensures
that the L2-sensitivity given by (2) is independent of n.
Lemma 4.5. (Contrastive loss) Let `(i,n) be as in Definition 2.2 with Sn = Sncos. Then `(i,n)

satisfies the conditions of Theorem 4.2 with

G1 +G2 + (n− 1)L ≤ 2

(
1 +

(n− 2)e2

e2 + (n− 1)

)
. (6)

Lemma 4.6. (Spreadout loss) Let `(i,n) be as in Definition 2.3 with Sn = Sncos. Then `(i,n) satisfies
the conditions of Theorem 4.2 with G1 +G2 + (n− 1)L ≤ 6.

4.2 MAIN ALGORITHM

We present Logit-DP, our proposed DP-SGD scheme in Algorithm 1. The algorithm specifically
receives a batch size n, learning rate (or schedule) η, a number of iterations T , constantsG1,G2, and
L defined in Theorem 4.2, and the similarity gradient clip norm B. It then computes the sensitivity
of the overall gradient C (line 2).

The algorithm proceeds to the training loop where, at each iteration t, it samples a batch of size n.
Then, instead of per-example gradients, it computes similarity gradients gij (line 6), clips all gij
vectors to obtain a bounded gradients ḡij , and computes an approximate gradient for L using (5)
(line 9). Finally, it applies noise (line 9) and updates the model (line 10).

While algorithm 1 uses SGD as the gradient step, the model update in line 10 can be passed to
other gradient based optimizers such as Adagrad (McMahan & Streeter, 2010; Duchi et al., 2011)
or Adam (Kingma, 2014). Remark that all previous work on privacy accounting for DP-SGD also
applies to our algorithm as each iteration simply generates a private version of the gradient of the
batch loss.

5 NUMERICAL EXPERIMENTS

This section presents numerical experiments that compare the practical viability of our proposed
DP-SGD variant (Logit-DP), the implementation of DP-SGD (Naive-DP) which clips the aggre-
gated gradient at the batch level, and non-private SGD (Non-Private). Specifically, we examine
several training and testing metrics on pre-training and fine-tuning tasks applied to the CIFAR10
and CIFAR100 datasets using a generic embedding net model and a ResNet18 model without batch
normalization layers, as their standard implementation isn’t privacy-preserving. All DP methods
chose a noise multiplier so that ε-DP is achieved for ε = 5.0. The details of the embedding mod-
els, the hyperparameters of the each variants, and the training setups for each task are given in the
supplementary material.

The last subsection describes strategies to manage memory requirements encountered as training
scales to larger models and datasets.

2A slightly tighter relation between σ and ε can be given using the results on the analytic Gaussian mecha-
nism of Balle & Wang (2018).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1: Logit-DP
Input: Sensitivity bound B > 0, sensitivity constants G1, G2, L > 0, dataset

D = {(xi, x′i)}Ni=1, batch size n, iteration limit T ≥ 1, stepsize η > 0, noise multiplier
σ > 0, model Φ

Output: Embedding model ΦwT

1 Initialize weights w0 in Φ;
2 Compute gradient sensitivity C = (G1 +G2 + nL)B;
3 for t = 1, 2, ..., T − 1 do
4 Sample batch X = {(x1, x′1), ..., (xn, x

′
n)};

5 for i, j = 1, ..., n do
6 Compute similarity gradients∇ZijX (wt) = ∇wt

S(Φwt
(xi),Φwt

(x′j));

7 Clip gradients to obtain ClipB(∇ZijX (wt)) = min
{

B

‖∇Zij
X (wt)‖

, 1
}
∇ZijX (wt);

8 end
9 Compute ḡ using (5) Compute noisy gradient g̃ = ḡ + Y with Y ∼ N (0, σCIp);

10 Update the model wt+1 = wt − ηg̃;
11 end

5.1 PRE-TRAINING ON CIFAR10

In these experiments, all DP-SGD and SGD variants were given model Φ, which was either a generic
embedding model or a ResNet18 model without batch normalization layers. Each variant was tasked
with minimizing the contrastive loss described in Example 2.2 for the examples in the CIFAR10
dataset. For testing/evaluation metrics, we examined the quality of the embedding model under a
k-nearest neighbors (k-NN) classifier for k = 3.

Figure 1 presents the observed (relative) training loss values over the number of examples seen
so far for ten different training runs using the generic embedding model and the effect of batch
size on Naive-DP. In particular, the plot in Figure 1 demonstrates that Naive-DP’s loss value is
mostly unchanged for large batch sizes and noisy for small batch sizes. Table 1 presents the relative
averaged test metrics at the last evaluation point.

Similar trends to Figure 1 were observed for the ResNet18 model.

Figure 1: (Left) Relative CIFAR10 training loss over ten runs. Relative loss is defined as the observed training
loss divided by the minimum loss observed across all runs and all variants. Shaded regions bound the observed
loss values over the runs, while the the dark lines represent the average relative loss observed so far. (Right)
Single runs of Naive-DP with the same settings as in the left graph but with different batch sizes n. The
n = 1000 and n = 10000 form mostly overalapping lines.

For additional reference, we have the following figures and tables in the supplementary material.
Each variant’s confusion matrices at the last evaluation point are in Figures 3–4. The (absolute)
means and standard deviations of the test metrics at the last evaluation point are in Table 3. Finally,
the relative training loss over runtime and the training speed over number of examples seen is given
in Figure 5.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Relative aggregate CIFAR10 test metrics generated by the confusion matrix C at the last test point
over ten runs. Each aggregate metric is divided by the corresponding one for Non-Private. Aggregate accuracy
is defined as

∑
i Cii/

∑
i,j Cij averaged over all runs. The recall, precision, and Fβ scores are the average of

the best observed metric over all ten CIFAR10 classes.

Embedding Net Metrics ResNet18 Metrics
Accuracy Recall Precision Fβ Score Accuracy Recall Precision Fβ Score

Logit-DP 0.819 0.855 0.812 0.831 0.730 0.871 0.695 0.768
Naive-DP 0.827 0.827 0.812 0.820 0.599 0.672 0.699 0.685

Non-private 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5.2 FINE-TUNING ON CIFAR100

Pre-trained foundational models are often non-privately fine-tuned on classification tasks for local
use and, consequently, are not required to be privately optimized. In these experiments, we test the
ability of the privately pre-trained embedding model to adapt to new tasks. All variants were given
the generic embedding model Φ from Subsection 5.1 and a multilayer fully-connected model Ψ.
They were then tasked with non-privately minimizing the cross-entropy loss generated by the com-
bined model Φ ◦Ψ on the CIFAR100 dataset to predict the coarse label of the input (20 categories),
under the condition that the weights in Φ were frozen, i.e., could not be updated.

Figure 2: Relative CIFAR100 training loss for a single run. Relative loss is defined as the observed training loss
divided by the minimum loss observed across all variants. Lightly colored lines are the true loss values, while
the dark lines are smoothed loss values generated by a third-order Savitzky-Golay filter with a sliding window
of 100 observations.

Table 2: Relative CIFAR100 test metrics generated by the confusion matrixC at the last test point over one run.
Each metric is divided by the corresponding one for non-private SGD. Accuracy is defined as

∑
i Cii/

∑
i,j Cij

while top recall, precision, and Fβ scores are the best observed metric over all CIFAR100 classes.

Embedding Net Metrics
Accuracy Recall Precision Fβ Score

Logit-DP 1.013 0.969 0.954 0.981
Naive-DP 0.946 1.296 0.665 0.911

Non-private 1.000 1.000 1.000 1.000

For reference, we present each variant’s (absolute) test metrics — at the last evaluation point — in
Table 4 of the supplementary material.

5.3 A MEMORY BOTTLENECK AND A POTENTIAL FIX

In our implementation of Logit-DP (Algorithm 1), a computational bottleneck was the materializa-
tion of the n2 logit gradients (gij in Algorithm 1) for a batch n examples, which were needed to
compute the final aggregated gradient (ḡ in Algorithm 1). A potential solution is to compute gra-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

dients gij sequentially. While addressing the memory bottleneck, this solution is computationally
inefficient in terms of runtime.

Below, we describe an alternative approach for computing ḡ and argue that it is more efficient for
certain choices Φw. Consider the function

FX(w) :=

n∑
i=1

n∑
j=1

λijSn(Φw(xi),Φw(x′j))

where λij are fixed, real-valued weights given by

τij :=
∂`(i,n)

∂Zij
(Sn(Φw(xi),Φw(x′j))), λij := τij min

{
B

‖gij‖
, 1

}
∀i, j,

and note that ḡ = ∇FX(w) (cf. (5)). In view of the previous identity, an alternative approach to
computing ḡ is to first compute each λij and then compute ∇FX(w).

This new approach has the following advantages: (i) given λij , the memory and runtime cost of
computing the gradient of FX(w) is on the same order of magnitude as computing the gradient of
L(w,X) =

∑n
i=1 `

(i,n)(Sn(Φw(xi),Φw(x′))) when both methods employ backpropagation, (ii)
the memory cost of storing the weights λij is only Θ(n2), and (iii) the costs of computing the
weights λij requires only computing the n2 scalar pairs (τij , ‖gij‖) rather than computing the n2
gradients gij of size |w| as in Algorithm 1.

The last advantage is of particular interest, as there are well-known methods Goodfellow (2015);
Lee & Kifer (2020); Rochette et al. (2019) in the literature to efficiently computing the norms ‖gij‖
without materializing each gij . For example, some of these methods decompose gij into a low-rank
representation gij = UijV

ᵀ
ij for low-rank matrices Uij and Vij , and then exploit the identity

‖gij‖2 = ‖UijV ᵀ
ij‖

2 = 〈Uᵀ
ijUij , V

ᵀ
ijVij〉.

When Uij and Vij are column vectors, the last expression above reduces to ‖Uij‖2‖Vij‖2, which
can be substantially more efficient than first materializing gij = UijV

ᵀ
ij and then computing ‖gij‖.

A correct implementation of this technique is far from trivial, and we leave this as future research.

6 CONCLUDING REMARKS

As observed in Section 3, naive implementations of DP-SGD for similarity-based losses are in-
effective because the standard deviation of the noise in the Gaussian mechanism grows with n.
Experiments in the previous section show that even with careful hyperparameter tuning, the loss
remains nearly constant during pre-training. These results are even more pronounced for Resnet18,
when the number of model parameters is large. Fine-tuned models using Naive-DP also perform
less effectively compared to both the non-private baseline and the Logit-DP algorithm.

Careful analysis of these losses and their decomposition shows that by clipping logit gradients,
Logit-DP obtains a sensitivity that is constant on the batch size, considerably reducing the magnitude
of the noise added to privatize the gradient. These insights expand the suite of tasks that can be
trained in a privacy preserving way with only marginal drops in accuracy. Work on more efficient
implementations of these algorithms is an interesting avenue of future work and we introduced
several concrete ideas at the end of the previous section.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Conference on Computer and Communica-
tions Security (SIGSAC), 2016.

Borja Balle and Yu-Xiang Wang. Improving the Gaussian mechanism for differential privacy: An-
alytical calibration and optimal denoising. In International Conference on Machine Learning
(ICML), 2018.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Borja Balle, Giovanni Cherubin, and Jamie Hayes. Reconstructing training data with informed
adversaries. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022.

Andrea Banino, Adrià Puidomenech Badia, Jacob Walker, Tim Scholtes, Jovana Mitrovic, and
Charles Blundell. Coberl: Contrastive bert for reinforcement learning. arXiv preprint
arXiv:2107.05431, 2021.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private empirical
risk minimization. Journal of Machine Learning Research, 2011.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International Conference on Machine Learning
(ICML), 2020a.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton. Big
self-supervised models are strong semi-supervised learners. Advances in neural information pro-
cessing systems, 33, 2020b.

Muthuraman Chidambaram, Yinfei Yang, Daniel Cer, Steve Yuan, Yun-Hsuan Sung, Brian Strope,
and Ray Kurzweil. Learning cross-lingual sentence representations via a multi-task dual-encoder
model. arXiv preprint arXiv:1810.12836, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of cryptography conference, 2006.

Hongchao Fang, Sicheng Wang, Meng Zhou, Jiayuan Ding, and Pengtao Xie. Cert: Contrastive
self-supervised learning for language understanding. arXiv preprint arXiv:2005.12766, 2020.

Badih Ghazi, Pasin Manurangsi, Pritish Kamath, Ravi Kumar Ravikumar, and Vadym Doroshenko.
Connect the dots: Tighter discrete approximations of privacy loss distributions. arXiv preprint
arXiv:2207.04380, 2022.

John Giorgi, Osvald Nitski, Bo Wang, and Gary Bader. Declutr: Deep contrastive learning for
unsupervised textual representations. arXiv preprint arXiv:2006.03659, 2020.

Ian Goodfellow. Efficient per-example gradient computations. arXiv preprint arXiv:1510.01799,
2015.

Xinlei He and Yang Zhang. Quantifying and mitigating privacy risks of contrastive learning. In
Conference on Computer and Communications Security (SIGSAC), 2021.

Mengdi Huai, Di Wang, Chenglin Miao, Jinhui Xu, and Aidong Zhang. Pairwise learning with
differential privacy guarantees. Conference on Artificial Intelligence (AAAI), 34, 2020.

Yilin Kang, Yong Liu, Jian Li, and Weiping Wang. Towards sharper utility bounds for differentially
private pairwise learning. arXiv preprint arXiv:2105.03033, 2021.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Fabian Latorre, Paul Rolland, and Volkan Cevher. Lipschitz constant estimation of neural networks
via sparse polynomial optimization. In International Conference on Learning Representations
(ICLR), 2020.

Jaewoo Lee and Daniel Kifer. Scaling up differentially private deep learning with fast per-example
gradient clipping. arXiv preprint arXiv:2009.03106, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Wenjun Li, Anli Yan, Di Wu, Taoyu Zhu, Teng Huang, Xuandi Luo, and Shaowei Wang. Dpcl:
Contrastive representation learning with differential privacy. International Journal of Intelligent
Systems, 2022.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. arXiv preprint arXiv:2110.05679, 2021.

Hongbin Liu, Jinyuan Jia, Wenjie Qu, and Neil Zhenqiang Gong. Encodermi: Membership in-
ference against pre-trained encoders in contrastive learning. In Conference on Computer and
Communications Security (SIGSAC), 2021.

Lajanugen Logeswaran and Honglak Lee. An efficient framework for learning sentence representa-
tions. arXiv preprint arXiv:1803.02893, 2018.

H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex opti-
mization. arXiv preprint arXiv:1002.4908, 2010.

midjourney. Midjourney. midjourney.com. Accessed: 2023-05-11.

Ilya Mironov. Rényi differential privacy. In IEEE computer security foundations symposium (CSF),
2017.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Natalia Ponomareva, Jasmijn Bastings, and Sergei Vassilvitskii. Training text-to-text transformers
with privacy guarantees. In Findings of the Association for Computational Linguistics: ACL 2022,
pp. 2182–2193, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. OpenAI, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning
(ICML), 2021.

Shideh Rezaeifar, Slava Voloshynovskiy, Meisam Asgari Jirhandeh, and Vitality Kinakh. Privacy-
preserving image template sharing using contrastive learning. Entropy, 2022.

Gaspar Rochette, Andre Manoel, and Eric W Tramel. Efficient per-example gradient computations
in convolutional neural networks. arXiv preprint arXiv:1912.06015, 2019.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in Neural Informa-
tion Processing Systems, 2022.

Zhouxing Shi, Yihan Wang, Huan Zhang, J Zico Kolter, and Cho-Jui Hsieh. Efficiently computing
local lipschitz constants of neural networks via bound propagation. Advances in Neural Informa-
tion Processing Systems, 2022.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP).
IEEE, 2017.

Congzheng Song and Ananth Raghunathan. Information leakage in embedding models. In Confer-
ence on Computer and Communications Security (SIGSAC), 2020.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. LaMDA: Language Models for Dialog
Applications. arXiv preprint arXiv:2201.08239, 2022.

Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang, and Xing Xie. Fedcl: Federated contrastive
learning for privacy-preserving recommendation. arXiv preprint arXiv:2204.09850, 2022.

11

midjourney.com

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Madian Khabsa, Fei Sun, and Hao Ma. Clear: Contrastive
learning for sentence representation. arXiv preprint arXiv:2012.15466, 2020.

Zheng Xu, Maxwell Collins, Yuxiao Wang, Liviu Panait, Sewoong Oh, Sean Augenstein, Ting Liu,
Florian Schroff, and H Brendan McMahan. Learning to generate image embeddings with user-
level differential privacy. arXiv preprint arXiv:2211.10844, 2022.

Zhiyu Xue, Shaoyang Yang, Mengdi Huai, and Di Wang 0015. Differentially private pairwise
learning revisited. In IJCAI, 2021.

Zhenhuan Yang, Yunwen Lei, Siwei Lyu, and Yiming Ying. Stability and differential privacy of
stochastic gradient descent for pairwise learning with non-smooth loss. In Conference on Artificial
Intelligence and Statistics (AISTATS), 2021.

Felix Yu, Ankit Singh Rawat, Aditya Menon, and Sanjiv Kumar. Federated learning with only
positive labels. In International Conference on Machine Learning (ICML), 2020.

Yaodong Yu, Maziar Sanjabi, Yi Ma, Kamalika Chaudhuri, and Chuan Guo. Vip: A differentially
private foundation model for computer vision. arXiv preprint arXiv:2306.08842, 2023.

Xu Zhang, Felix X Yu, Sanjiv Kumar, and Shih-Fu Chang. Learning spread-out local feature de-
scriptors. In IEEE International Conference on Computer Vision, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIAL FOR DP-SGD FOR NON-DECOMPOSABLE
OBJECTIVE FUNCTIONS

A PROOFS

Proof of Lemma 4.1. Denote

Z◦i := [Z◦i1, . . . , Z
◦
i(n−1)] := Sn−1(Φw(xi),Φw(x′)) ∈ Rn−1.

for all i. Using the chain rule, the gradient of LX(w) on batch {(xi, x′i)}ni=1 can be computed as

∇LX(w) =

n∑
i=1

∇`(i,n)(ZiX(w))>DZiX(w). (7)

The conclusion now follows by combining the above expression with the fact that DZiX(w) =
[(∇Zi1X)>; · · · ; (∇ZinX)>].

Proof of Theorem 4.2. For ease of notation, let ZiX = ZiX(w), ZijX = ZijX (w), `(i,n)X = `(i,n)(ZiX),
and

`
(i,n−1)
X = `(i,n−1)(Zi1X , . . . , Z

i(n−1)
X),

and similarly for the gradients of these functions in w. Using Lemma 4.1, the `2 sensitivity of∇LX
is

∆2(∇LX) =

∥∥∥∥∥∥
n∑
i=1

n∑
j=1

∂`
(i,n)
X

∂ZijX
∇ZijX −

n−1∑
i=1

n−1∑
j=1

∂`
(i,n−1)
X

∂Zij
∇ZijX

∥∥∥∥∥∥ .
The above expression can be broken down into the following terms:

∆2(∇LX) =

∥∥∥∥∥∥∥∥∥∥
n∑
j=1

∂`
(n,n)
X

∂ZnjX
∇ZnjX︸ ︷︷ ︸

T1

+

n−1∑
i=1

∂`
(i,n)
X

∂ZinX
∇ZinX︸ ︷︷ ︸

T2

+

n−1∑
i=1

n−1∑
j=1

(
∂`

(i,n)
X

∂ZijX
−
∂`

(i,n−1)
X

∂ZijX

)
∇ZijX︸ ︷︷ ︸

T3

∥∥∥∥∥∥∥∥∥∥
.

We now use the triangle inequality to bound each term.

‖T1‖ =

∥∥∥∥∥∥
n∑
j=1

∂`
(n,n)
X

∂ZnjX
∇ZnjX

∥∥∥∥∥∥ ≤
n∑
j=1

∣∣∣∣∣∂`(n,n)X

∂ZnjX

∣∣∣∣∣ ∥∥∥ZnjX ∥∥∥
n∑
j=1

∣∣∣∣∣∂`(n,n)X

∂ZnjX

∣∣∣∣∣B ≤ G1B

Similarly, using the same approach, we obtain ‖T2‖ ≤ G2B. Finally, using the assumption on the
partial derivatives of the family {`(i,n)}n∈N

‖T3‖ =

∥∥∥∥∥∥
n−1∑
i=1

n−1∑
j=1

(
∂`

(i,n)
X

∂ZijX
−
∂`

(i,n−1)
X

∂ZijX

)
∇ZijX

∥∥∥∥∥∥
≤
n−1∑
i=1

n−1∑
j=1

∣∣∣∣∣∂`(i,n)X

∂ZijX
−
∂`

(i,n−1)
X

∂ZijX

∣∣∣∣∣ ∥∥∥∇ZijX∥∥∥
≤
n−1∑
i=1

n−1∑
j=1

∣∣∣∣∣∂`(i,n)X

∂ZijX
−
∂`

(i,n−1)
X

∂ZijX

∣∣∣∣∣B
≤ (n− 1)BL

Combining the above bounds yields the desired bound on ∆2(∇LX).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Proof of Lemma 4.5. It is straightforward to show that

∂`(i,n)(z)

∂zj
=

{
ezi/

∑n
k=1 e

zk − 1, if j = i,

ezj/
∑n
k=1 e

zk , otherwise.

It then follows that
n∑
j=1

∣∣∣∣∂`(n,n)(z)∂zj

∣∣∣∣ =

n−1∑
j=1

ezj∑n
k=1 e

zk
+ 1− ezn∑n

k=1 e
zk

Note that
∑n−1
j=1 e

zj/
∑n
k=1 e

zk = 1 − ezn/
∑n
k=1 e

zk , since the n terms constitute a probability
distribution summing up to 1. Thus,

n∑
j=1

∣∣∣∣∂`(n,n)(z)∂zj

∣∣∣∣ = 1− ezn∑n
k=1 e

zk
+ 1− ezn∑n

k=1 e
zk

= 2

(
1− ezn∑n

k=1 e
zk

)
Denoting pn = ezn/

∑n
k=1 e

zk , we have that

G1 =

n∑
j=1

∣∣∣∣∂`(n,n)(z)∂zj

∣∣∣∣ = 2 (1− pn) . (8)

Next, we look into G2 =
∑n−1
i=1 |∂`(i,n)(z)/∂zn|. In this case,

n−1∑
i=1

∣∣∣∣∂`(i,n)(z)∂zn

∣∣∣∣ =

n−1∑
i=1

ezn∑n
k=1 e

zk
=

(n− 1)ezn∑n
k=1 e

zk

and, hence,
G2 = (n− 1)pn. (9)

Finally, for the condition on the difference we have that for all i ∈ [n],

L =

n−1∑
j=1

∣∣∣∣∂`(i,n−1)(z)∂zj
− ∂`(i,n)(z)

∂zj

∣∣∣∣
=

n−1∑
j=1

∣∣∣∣∣ ezj∑n−1
k=1 zk

− ezj∑n
k=1 zk

∣∣∣∣∣ =

n−1∑
j=1

ezj∑n−1
k=1 zk

− ezj∑n
k=1 zk

,

where we removed the absolute value on the last term since all values are positive. We observe that
the first term sums up to 1, and the last one corresponds to 1 − exn/

∑n
k=1 e

xk = 1 − pn. Hence,
the above expression is given by

L = 1−
n−1∑
j=1

ezj∑n
k=1 e

zk
= 1− (1− pn) = pn. (10)

Combining (8), (9), and (10), we have

G1 +G2 + (n− 1)L = 2(1− pn) + (n− 1)pn + (n− 1)pn = 2(1 + (n− 2)pn).

Since the contrastive loss uses the cosine similarity, we have that the inputs (z1, . . . , zn) given to
`(i,n), satisfy |zi| ≤ 1 for all i. Consequently, the last term is maximized when zn = 1 and zk = −1
for k ≤ n− 1, yielding

G1 +G2 + (n− 1)L ≤ 2

(
1 +

(n− 2)e

e+ (n− 1)e−1

)
= 2

(
1 +

(n− 2)e2

e2 + (n− 1)

)
,

where we multiplied by e the numerator and denominator on the last step. The result follows from
theorem 4.2.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof of Lemma 4.6. Let us calculate the values of L,G1, G2 that make this function satisfy the
conditions of Theorem 4.2. Let z = (z′, zn) then we have that

∂`(i,n)(z)

∂zj
− ∂`(i,n−1)(z′)

∂zj
=

2

n− 1
zj −

2

n− 2
zj = − 2

(n− 1)(n− 2)
zj ,

for j 6= i and 0 otherwise. For any C ≤ maxj=1...n zj , we then have:

n−1∑
j=1

∣∣∣∣∂`(i,n)(z)

∂zj
− ∂`(i,n−1)(z′)

∂zj

∣∣∣∣ ≤ n−1∑
j 6=i

2

(n− 1)(n− 2)
|zj | ≤

2C

n− 1
=: L

Similarly we have
n∑
j=1

∂`(n,n)(z)

∂zj
≤ 2C =: G1,

n∑
i=1

∂`(i,n)(z)

∂zj
≤ 2C =: G2

and, hence,G1+G2+(n−1)L ≤ 6C. Since the cosine similarity implies zij = S(Φ(xi),Φ(x′j)) ≤
1, it holds that C = 1 and the result follows.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B EXPERIMENT DETAILS

This appendix gives more details about the numerical experiments in Section 5. All models were
trained on a single NVidia V100 GPU using a cloud computing platform with 512 GB of RAM.

B.1 PRE-TRAINING ON CIFAR10

Model Specification, Dataset Details, and Hyperparameters

For reproducibility, we now give the details of the model, the hyperparameters of the above variants,
and the training setup. The generic embedding net model consists of three 2D convolution layers
followed by one embedding layer. The convolution layers used a 3-by-3 kernel with a stride of 2, a
ReLU output activation function, a Kaiming-normal kernel initializer, and (sequentially) chose out-
put channels of 8, 16, and 32, respectively. The embedding layer generated an output of dimension
8 and used a Xavier-normal initializer.

The learning rates for Logit-DP, Naive-DP, and Non-Private were 10−2, 10−2, and 10−3, respec-
tively, for the generic embedding net experiments and 10−4, 10−3, and 10−2, respectively, for the
ResNet18 experiments. All variants used the standard Adam optimizer for training and used the
canonical 80-20 train-test split of the CIFAR10 dataset. However, Logit-DP used 25 and 100 gradi-
ent accumulation steps for the generic embedding net and ResNet18 experiments, respectively. The
batch size during training was 10, 000 and 1, 000 for the generic embedding net and ResNet18 ex-
periments, respectively, and the entire testing dataset was used for evaluating test metrics. Moreover,
each variant was run for 20 and 2 epochs over the entire training dataset for the generic embedding
net and ResNet18 experiments in Table 1, respectively.

For the DP variants, we fixed the desired `2 sensitivity to be 10−4 and 10−5 for Naive-DP and
Logit-DP, respectively, in the generic embedding net experiments and 10−3 and 10−5, respectively,
in the ResNet18 experiments. All DP methods chose a noise multiplier so that ε-DP was achieved
for ε = 5.0.

Finally, all hyperparameter tuning was done through a grid search of various learning rates (10−5,
10−4, ..., 10−2) and `2 sensitivities (10−6, 10−5, ..., 10−0).

B.2 FINE-TUNING ON CIFAR10

Model Specification, Dataset Details, and Hyperparameters

For reproducibility, we now give the details of the model, the hyperparameters of the above vari-
ants, and the training setup. Ψ is a three-layer fully-connected neural network whose layer output
dimensions are 64, 32, and 20 in sequence.

The learning rate for all variants was 10−2. All variants used the standard Adam optimizer (iteration
scheme) for training and used the canonical 80-20 train-test split of the CIFAR100 dataset. The
batch size during training was 400 and the entire testing dataset was used for evaluating test metrics.
Moreover, each variant was run for ten epochs over the entire training dataset.

For the DP variants, we fixed the desired `2 sensitivity to be 1.0 and chose a noise multiplier so
that ε-DP was acheived for ε = 5.0. All hyperparameter tuning was done through a grid search of
various learning rates (10−4, 10−3, 10−2) and `2 sensitivities (10−2, 10−1, 100).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C ADDITIONAL FIGURES AND TABLES

Figure 3: Averaged CIFAR10 confusion matrices at the last testing step for the generic embedding net experi-
ments. Values are rounded down to the nearest whole number.

Figure 4: Averaged CIFAR10 confusion matrices at the last testing step for the ResNet18 experiments. Values
are rounded down to the nearest whole number.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Embedding Net Metrics (mean / standard deviation)
Accuracy Recall Precision Fβ Score

Logit-DP 0.173 / 0.002 0.254 / 0.006 0.251 / 0.005 0.253 / 0.004
Naive-DP 0.174 / 0.002 0.242 / 0.005 0.245 / 0.006 0.243 / 0.005

Non-private 0.212 / 0.003 0.300 / 0.010 0.312 / 0.010 0.306 / 0.010
ResNet18 Metrics (mean / standard deviation)

Accuracy Recall Precision Fβ Score
Logit-DP 0.202 / 0.006 0.325 / 0.013 0.268 / 0.013 0.291 / 0.013
Naive-DP 0.169 / 0.003 0.269 / 0.006 0.284 / 0.010 0.276 / 0.008

Non-private 0.278 / 0.008 0.389 / 0.013 0.388 / 0.011 0.388 / 0.010

Table 3: Aggregate CIFAR10 test metrics generated by the confusion matrix C at the last test point over ten
runs. Accuracy is defined as

∑
i Cii/

∑
i,j Cij . The recall, precision, and Fβ scores are over the best observed

metric over all ten CIFAR10 classes.

Figure 5: Training time related plots for the small embeddding net model on CIFAR10 over ten runs. (Left)
Number of seconds per example over the number of examples seen. Shaded regions bound the observed values,
while the dark lines represent the averaged values. (Right) Average training losses over the average runtime.

Embedding Net Metrics
Accuracy Recall Precision Fβ Score

Logit-DP 0.169 0.432 0.308 0.336
Naive-DP 0.158 0.578 0.215 0.313

Non-private 0.167 0.446 0.322 0.343

Table 4: CIFAR100 test metrics generated by the confusion matrix C at the last test point over one run. Ac-
curacy is defined as

∑
i Cii/

∑
i,j Cij while top recall, precision, and Fβ scores are the best observed metric

over all CIFAR100 classes.

18

	Introduction
	Preliminaries
	Differential privacy
	Loss functions
	Naive clipping schemes

	Related work
	Bounding pairwise-contributions
	Computing gradient sensitivity
	Main algorithm

	Numerical Experiments
	Pre-training on CIFAR10
	Fine-tuning on CIFAR100
	A memory bottleneck and a potential fix

	Concluding remarks
	Proofs
	Experiment Details
	Pre-training on CIFAR10
	Fine-tuning on CIFAR10

	Additional figures and tables

