
Under review as a conference paper at ICLR 2024

REFLECTIVE POLICY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

On-policy reinforcement learning methods, such as Trust Region Policy Optimiza-
tion (TRPO) and Proximal Policy Optimization (PPO), often require significant
data to be collected at each update, giving rise to issues of sample inefficiency.
This paper introduces a novel extension to on-policy methods called Reflective
Policy Optimization (RPO). RPO’s fundamental objective is amalgamating prior
and subsequent state and action information from trajectory data to optimize the
current policy. This approach empowers the agent to engage in introspection and
introduce modifications to its actions within the current state to a certain degree.
Furthermore, theoretical analyses substantiate that our proposed method not only
upholds the crucial property of monotonically improving policy performance but
also adeptly contracts the solution space of the optimized policy, consequently
expediting the training procedure. We empirically demonstrate the feasibility and
efficacy of our approach in reinforcement learning benchmarks, culminating in
superior performance in terms of sample efficiency.

1 INTRODUCTION

On-policy reinforcement learning (RL) aims to learn an optimal mapping from states to actions
based on performance criteria through the trajectory gained by interacting with the underlying en-
vironment in terms of performance criteria. Proximal Policy Optimization (PPO) (Schulman et al.,
2017) is one of the most typical of these algorithms due to its simplicity and effectiveness and has
been successfully applied in many domains, such as Atari games (Mnih et al., 2015), continuous
control tasks (Dhariwal et al., 2017), and robot control (Lillicrap et al., 2016). However, existing
algorithms optimize the policy by a state-action pair and don’t directly consider the impact of this
trajectory’s subsequent states and actions, which may be a reason for sample inefficiency.

In previous studies (Mnih et al., 2015; van Hasselt et al., 2016; Schulman et al., 2015; 2017; Haarnoja
et al., 2018; Silver et al., 2014; Fujimoto et al., 2018), basically the current policy is optimized using
the value function of the current state. An open question: the value function potentially contains
information about the subsequent data, is it the best way to optimize a policy using only value
functions? The answer is definitely not. Let’s start with an example. Considering an environment
with a “cliff”, what would an agent do if it performed an action under a state and fell into a “cliff”?
This action is dangerous, so the agent will avoid performing it. Meanwhile, this state might also be
hazardous because in the next time the agent reaches this state again, and it is likely to perform the
same action. Hence, the agent must also avoid returning to this state and keeping out of this state as
much as possible. The previous action when reaching this state also needs to directly avoid being
performed, duo to the fact that it is possible to fall into that state again. The same result is found for
the “treasure” environment. Subsequent data can convey positive and negative information to the
previous states and actions. Hence, it is necessary to optimize the previous action directly with the
subsequent state-action pairs information, not only through the value function. Intuitively, the direct
use of the subsequent data may speed up the convergence of the algorithm and improve sample
efficiency. For all we know, most existing algorithms lack this power, which directly exploits the
relationship between the pair of trajectory data to optimize the policy. We illustrate that our proposed
method has this ability by a toy example in the experimental section.

In this paper, we propose a simple on-policy algorithm that directly optimizes the policy by combin-
ing the relationship between the trajectories’ previous and next state-action pairs. In other words,
the proposed method considers the current state-action pair and the effect of the subsequent pair of
trajectories. In this way, the optimized policy can be reflective. The proposed algorithm is called a

1

Under review as a conference paper at ICLR 2024

reflective policy optimization algorithm (RPO). The method proposed in this paper is fundamentally
different from multi-step reinforcement learning methods (De Asis et al., 2018; Duan & Wainwright,
2023; Hernandez-Garcia & Sutton, 2019). Multi-step algorithms such as TD(λ) (Sutton & Barto,
1998) work on the value function evaluation and are not directly involved in policy optimization.
Although better results are produced in this way (Hessel et al., 2018), their theory is insufficient,
limiting their application. The proposed method in this paper directly employs the previous and next
information of trajectories on policy optimization, and we give a nice theory. We present a novel
policy improvement lower bound. We show that in addition to satisfying the desirable property of
the monotonic improvement of policy performance, our proposed method can effectively reduce the
solution space of the optimized policy, speeding up the algorithm’s training procedure. Our proposed
method is combined with the PPO computational framework (Schulman et al., 2017) to present a
practical version. Finally, we verify the feasibility and effectiveness of the proposed method by a
toy example and achieve better performance on RL benchmarks (Brockman et al., 2016).

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESS

Commonly, the reinforcement learning problem can be modeled as a Markov Decision Process
(MDP), which is described by the tuple ⟨S,A, P,R, γ⟩ (Sutton & Barto, 1998). S andA are the state
space and action space respectively. The function P (s′|s, a) : S ×A×S 7−→ [0, 1] is the transition
probability function from state s to state s′ under action a. The function R(s, a) : S × A 7−→ R
is the reward function. And γ ∈ [0, 1) is the discount factor for long-horizon returns. In a state
s, the agent performs an action a according to a stochastic policy π : S × A 7−→ [0, 1] (satisfies∑

a π(a|s) = 1). The environment returns a reward R(s, a) and a new state s′ according to the
transition function P (s′|s, a). The agent interacts with the MDP to give a trajectory τ of states
, actions, and rewards: s0, a0, R(s0, a0), · · · , st, at, R(st, at), · · · over S × A × R (Silver et al.,
2014). Under a given policy π, the state-action value function and state-value function are defined
as

Qπ(st, at) = Eτ∼π[Gt|st, at],
V π(st) = Eτ∼π[Gt|st],

where Gt =
∑∞

i=0 γ
iRt+i is the discount return, and Rt = R(st, at).

It is clear that V π(st) = Eat
Qπ(st, at). Correspondingly, advantage function can be represented

Aπ(s, a) = Qπ(s, a)− V π(s). We know that
∑

a π(a|s)Aπ(s, a) = 0.

Let ρπ be a normalized discount state visitation distribution, defined

ρπ(s) = (1− γ)

∞∑
t=0

γtP(st = s|ρ0, π),

where ρ0 is the initial state distribution (Kakade & Langford, 2002). Similarly, ρπ(·|s, a) can be
defined and denotes the conditional visitation distribution under state s and action a. And the nor-
malized discount state-action visitation distribution can be represented ρπ(s, a) = ρπ(s)π(a|s). We
make it clear from the context whether ρπ refers to the state or state-action distribution.

The goal is to learn a policy that maximizes the expected total discounted reward η(π), defined

η(π) = Eτ∼π

[∞∑
i=0

γiR(st+i, at+i)

]
.

The following identity indicates that the distance between the policy performance of π and π̂ is
related to the advantage over π (Kakade & Langford, 2002):

η(π) = η(π̂) +
1

1− γ
Es,a∼ρπ

[
Aπ̂(s, a)

]
. (1)

2

Under review as a conference paper at ICLR 2024

3 THE GENERALIZED SURROGATE FUNCTION

Some admirable algorithms obtain good properties by modifying the right-hand side of Eqn. (1), for
example, Trust Region Policy Optimization (TRPO) algorithm (Schulman et al., 2015) optimizes
the lower bound of policy improvement by replacing ρπ with ρπ̂ under state s, and offers better
theoretical properties, i.e. monotonic improvement of policy improvement. Below, we give an
equational relation between before and after replacements.
Lemma 3.1. Consider a current policy π̂, and any policies π, we have

Es,a∼ρπAπ̂(s, a)− Es∼ρπ̂,a∼πA
π̂(s, a) =

γ

1− γ
Es,a∼ρπ̂ [

π(a|s)
π̂(a|s)

− 1]Es′,a′∼ρπ(·|s,a)A
π̂(s′, a′)

The proof of the lemma is given in Appendix.

Note from this lemma that the difference between the original formula and the replaced one is rel-
evant to the normalized discount subsequent state-action visitation distribution ρπ(·|s, a). By con-
straining the right-hand side of the equation, it is easy to obtain Theorem 1 of the paper (Schulman
et al., 2015) and Theorem 1 of the paper (Achiam et al., 2017). From this lemma, we constructed a
relationship between the current visitation distributions (s, a) ∼ ρπ(·) and the next (s′, a′) ∼ ρπ(·).
Theorem 3.1. Consider a current policy π̂, and any policies π, we have

η(π) = η(π̂) +

k−1∑
i=0

αiLi(π, π̂) + βkGk(π, π̂) (2)

where

Li(π, π̂) = E
s0,a0∼ρπ̂(·)

···
si−1,ai−1∼ρπ̂(·|si−2,ai−2)

i−1∏
t=0

(It − 1)Esi∼ρπ̂(·|si−1,ai−1),ai∼π(·|si)A
π̂(si, ai),

Gk(π, π̂) = E
s0,a0∼ρπ̂(·)

···
sk−1,ak−1∼ρπ̂(·|sk−2,ak−2)

k−1∏
t=0

(It − 1)Esk,ak∼ρπ(·|sk−1,ak−1)A
π̂(sk, ak),

and

It =
π(at|st)
π̂(at|st)

, αi =
γi−1

(1− γ)i
, βk =

γk

(1− γ)k+1
.

The proof of the theorem is given in Appendix.

This theorem gives a general form for the difference between the policy performance of π and π̂ by
finite sums. With this equation, we accurately represent the general gap between the performance
of π and π̂ from a trajectory-based. This portrays that subsequent state-action pairs can also impact
optimizing the current policy. We refer to

∑k
i=0 αiLi(π, π̂) as the generalized surrogate objective

function. Consider L1(π, π̂) in Eqn. (2) as an example. We consider this function without focusing
on the specific form of the parameters. When the environment is unknown, it can only be optimized
by sampling. Considering the extreme case, the function L1(π, π̂) is optimized by using a sample
(s0, a0, s1, a1), i.e., L1(π, π̂) ≈ (I0 − 1)I1A

π̂(s1, a1). If Aπ̂(s1, a1) < 0 and I0 − 1 < 0, we
know that (I0 − 1)I1A

π̂(s1, a1) = [(I0 − 1)Aπ̂(s1, a1)]I1 > 0. The probability of a1 is increased.
However, when Aπ̂(s1, a1) < 0, we should decrease the probability of a1. It’s a contradiction. Thus,
this term ”1” of I0 − 1 may adversely affect policy optimization, though the theory is sound. This
situation exists when the environment is unknown. Next, we measure the gap between the policy
performance η(π) and

∑k
i=0 αiLi(π, π̂).

Corollary 3.1. According to the definition of Gk, we have

|βkGk(π, π̂)| ≤
γk

(1− γ)k+2
ϵk+1Rmax

where ϵ ≜ ∥π − π̂∥1 = maxs
∑

a |π(a|s)− π̂(a|s)| and Rmax ≜ maxs,a |R(s, a)|.

3

Under review as a conference paper at ICLR 2024

The proof of the theorem is given in the Appendix.

Note that from Theorem 3.1 and Corollary 3.1, the policy performance of π has a general lower
bound. Compared with Theorem 2 of the paper (Tang et al., 2020), we give a tighter monotonic
improvement lower bound (see Appendix). This makes good theoretical sense, which helps the
researchers understand the generalized surrogate function. For k = 1, the l1 norm constraints are
replaced by KL constraints. Further, this result is consistent with the lower bound of TRPO.

4 REFLECTIVE POLICY OPTIMIZATION

Theoretically, the previous section gave a tighter lower bound for the policy performance of π.
Although the generalized surrogate function includes the current and subsequent state-action pairs
of the trajectory, it is unclear how the subsequent pairs affect the behavior of the policy at the
current state, which may have positive or adverse effects. We have slightly modified the generalized
surrogate function Li(π, π̂) of Eqn. (2), and will get the following theorem.
Theorem 4.1. Consider a current policy π̂, and any policies π, we have

η(π)− η(π̂) ≥
k−1∑
i=0

αiL̂i(π, π̂)− Ĉk(π, π̂) (3)

where

L̂i(π, π̂) = E
s0,a0∼ρπ̂(·)

···
si−1,ai−1∼ρπ̂(·|si−2,ai−2)

si,ai∼ρπ̂(·|si−1,ai−1)

i∏
t=0

ItA
π̂(si, ai),

Ĉk(π, π̂) =
γRmaxIk≥2

(1− γ)2(1− 2γ)

(
1− γk

(1− γ)k

)
∥π − π̂∥1 +

γkRmax

(1− γ)k+2
∥π − π̂∥21,

and Ik≥2 is the indicator function w.r.t. k ∈ N , αi =
γi

(1−γ)i+1 .

The proof of the theorem is given in Appendix.

From the theorem 4.1, the first term of the generalized lower bound is called the new generalized
surrogate function and the second term is called the penalty term. We know that TRPO (Schulman
et al., 2015) is a special case of the generalized lower bound for k = 1. Note that improving the
surrogate objective can guarantee the improvement of the expected total discounted reward η. In
other words, by optimizing the generalized lower bound, we can get a monotonically improving
sequence of policies {πi}∞i=0, satisfy η(π0) ≤ η(π1) ≤ · · · . Next, we intuitively analyze the new
generalized surrogate function. The difference between the function Li(π, π̂) and L̂i(π, π̂) is very
small, that is, removing the number 1 from the ratios’ product. However, the meanings that are
intended to be conveyed in them are quite different. We see that if the environment is unknown,
the function Li(π, π̂) may incorrectly optimize the probability of actions (discussed in the previous
section). But the function L̂i(π, π̂) can directly utilize the information between the current and
subsequent state-action pairs of the trajectories to optimize the current policy.

With k = 2, we will explain in detail. The function L̂1(π, π̂) contain the ratio of the pair (s, a)
and (s′, a′). If Aπ̂(s′, a′) > 0, one can see that the action a′ is fine, then the probability of it will
be increased by optimizing the algorithm. At the same time, the state s′ is probably fine, too. In
order to get into this state again, we should increase the probability of the action a under state s.
In contrast, if Aπ̂(s′, a′) < 0, the action a′ is bad, then the probability of it will be decreased by
optimizing the algorithm. Meanwhile, the state s′ is probably bad, too. In order to avoid falling
back into this state, we should decrease the probability of the action a under state s, that is, the agent
are able to reflect on current behavior based on subsequent information. For L̂0(π, π̂), the action’s
a probability can be optimizing using the advantage function Aπ̂(s, a). Therefore, optimizing the
current action a will be influenced by the current and subsequent advantage functions Aπ̂ and take
them into account. In this way, the optimized policy is likely to have the ability to be reflective
for the agent and we can see that optimizing the generalized surrogate function will not have this

4

Under review as a conference paper at ICLR 2024

ability. Using the same trajectory, more information is learned by the agent. Hence, we explain the
whole optimization procedure intuitively. We verify this intuition experimentally. From Figure 2,
we conduct the experiment with the CliffWalking environment. Figure 2 shows that optimizing the
new surrogate function reduces the number of falling off the Cliff and also faster after reaching the
goal G. In the experimental section, we explain this phenomenon in detail. The following theorem
shows that the modified generalized surrogate function has another nice property except for the
monotonicity.

The theorem 4.1 shows that the generalized lower bound is optimized for any k. As k increases,
the generalized lower bound is optimized using subsequent samples to be able to learn implicit
relationships of the current and subsequent states and actions data. But is it suitable when k takes
a large value? The answer is no. Let’s look at the L̂k(π, π̂) function individually. This objective
function is composed of the product of the k ratios and an advantage function. If the ratio is too
much, it faces the problem of high variance (Munos et al., 2016), which in turn affects the stability
of the algorithm. In view of this weakness, a very large value of k cannot be taken in practice. In
the experimental section, we discuss the values of k and find that as long as the agent makes use
of the relationship between before and after state-action pairs, it will enable the agent to fall into
the Cliff less often and to reach the goal G faster. The experimental results are similar using either
k = 2 or k = 3. Therefore, the main part of the following is discussed in terms of k = 2 , we have
L̂0(µ, π̂) = Es0,a0∼ρπ̂(·)I0A

π̂(s0, a0) and L̂1(µ, π̂) = Es0,a0∼ρπ̂(·),s1,a1∼ρπ̂(·|s0,a0)I0I1A
π̂(s1, a1).

Theorem 4.2. For k = 2, defined two sets

Ψ1 =
{
µ | α0L̂0(µ, π̂)− Ĉ1(µ, π̂) > 0

}
,

Ψ2 =
{
µ | α0L̂0(µ, π̂) + α1L̂1(µ, π̂)− Ĉ2(µ, π̂) > 0

}
,

then we have

Ψ2 ⊆ Ψ1.

The proof of the theorem is given in Appendix.

Ψ1

Ψ2

π∗

Figure 1: The Solution Space

Note that when k = 1, the set Ψ1 is a solution space of TRPO. And
when k > 1, the set Ψk is a solution space of the k-th generalized
lower bound. The theorem 4.2 shows that the solution space is con-
tracting when k = 2. It is also important to note that π⋆ is in both
sets. As shown in Figure 1, reducing the solution space is possibly
more efficient in finding a good policy and therefore it is intuitive
that the convergence procedure of the algorithm can be accelerated.
Similarly, we can define the solution space of k = 3, 4, · · · and we
can use the same way to get Ψ1 ⊇ Ψ2 ⊇ Ψ3 ⊇ Ψ4 ⊇ · · · . Note
that π⋆ is in those sets. This reveals the benefits of using current
and subsequent states and actions of trajectory data to optimize the
policy. This provide a promising theoretical basis for our algorithm.

4.1 THE CLIPPED GENERALIZED SURROGATE OBJECTION

In the previous subsection discussion, the generalized lower bound function contained the general-
ized surrogate function and a penalty term. This lower bound will be optimized in the same way
as TRPO, using a linear approximation of the surrogate objective and a quadratic approximation of
the penalty term. However it needs to compute the inverse matrix of a quadratic approximation of
the penalty term. In particular, the generalized lower bound function also includes the relationship
between before and after state-action pairs. It is therefore impractical to solve this. Inspired by PPO
(Schulman et al., 2017), a practical variant of TRPO, we propose a new clipped surrogate objection
according to Eqn. (3).

When k = 1, for L̂0(π, π̂), we use the PPO’s objective function:

L̂clip
0 (π, π̂) =E(s,a) min

(
I(a|s)Aπ̂(s, a) , clip (I(a|s), 1− ϵ, 1 + ϵ)Aπ̂(s, a)

)
, (4)

where I(a|s) = π(a|s)
π̂(a|s) , ϵ is the hyperparameter and we ignore the distribution of (s, a).

5

Under review as a conference paper at ICLR 2024

Algorithm 1 Reflective Policy Optimization (RPO)
Environment E, discount factor γ, batch size n, clipping parameter ϵ and ϵ1, learning rate α.
Initialize policy network parameter θ.
for t = 0, 1, 2, . . . do

Collect data:
Collect n samples with πt on environment E.
Estimate policy objective:
Samples a policy data πt, estimate on-policy advantage Aπt using GAE method, approximately
estimate maximize the empirical objective L̂clip

0 (π, πt) and L̂clip
1 (π, πt) according to Eqn.(4)

and Eqn.(5).
The full objective: L̂(πθ)← L̂clip

0 (πθ, πt) + βL̂clip
1 (πθ, πt).

Update policy network:
Update gradient: θ ← θ + α∇θL̂(πθ).

end for

When k = 2, for L̂1(π, π̂), we simply modify the clipping mechanism:

L̂clip
1 (π, π̂) =E(s,a,s′,a′) min

(
I(a|s)I(a′|s′)Aπ̂(s′, a′) ,

clip (I(a|s), 1− ϵ, 1 + ϵ) clip (I(a′|s′), 1− ϵ1, 1 + ϵ1)A
π̂(s′, a′)

)
,

(5)

where I(a|s) = π(a|s)
π̂(a|s) , I(a′|s′) = π(a′|s′)

π̂(a′|s′) , ϵ and ϵ are the hyperparameter and we ignore the
distribution of random variables (s, a, s′, a′).

From the Eqn. (5), we are doing the clipping mechanism for each of the ratios, not all together. If
the ratio I(a|s) is large and the ratio I(a′|s′) is small, the product of I(a|s) and I(a′|s′) may be
between 1 − ϵ and 1 + ϵ. If their product is clipped, it will continue to optimize the policy and
then the result may become better or worse. We have no control over this. Therefore, the way we
use the separate clipping mechanism will take into account this unreasonable situation. Through
the clipping mechanism, this constrains the variance of the ratio and makes the training procedure
of the algorithm more stable. In practice, we find that the parameter ϵ1 cannot be too big, and it’s
better to be a little smaller than ϵ. This is because although we want to use the subsequent state-
action information to subsidiarily optimize the current policy, and equally don’t want the old and
new policy to change too quickly. This can once again make the training procedure more stable.
When k > 2, using the same clipping mechanism approach we can clip the function L̂k(π, π̂). So,
for the generalized lower bound function, we provide a more practice version of the algorithm.

Combining Eqn. (4) and Eqn. (5), we present the Reflective Policy Optimization algorithm (RPO),
a practical variant for the generalized surrogate objective function:

L̂(π, πt) = L̂clip
0 (π, πt) + βL̂clip

1 (π, πt) (6)

where L̂clip
0 (π, πt) is defined in Eqn.(4), L̂clip

1 (π, πt) is defined in Eqn.(5), and β > 0. By choosing
the parameter β, this parameter plays a role in weighting the use of subsequent state-action pair
information. Eqn. (6) is the optimization objective function for the t-th update. Algorithm 1 shows
the detailed implementation pipeline. In each iteration, the RPO algorithm is divided into three
steps: collect samples, estimate policy objectives, and update the policy network. It can be seen that
our proposed method is also an on-policy algorithm.

Discuss with multi-step RL Multi-step reinforcement learning (RL) is a set of methods that aim
to adjust the trade-off of utilization between the knowledge of the current and future return. Recent
advances in multi-step RL have achieved remarkable empirical success (Wu et al., 2023; Yunhao
et al., 2022). This approach does not directly optimize the current policy but is based on the value
function estimated in multi-steps. It is difficult to see directly what role multi-step RL plays in
the policy optimization procedure. However, the approach proposed in this paper is viewed from a
multi-step perspective: this is directly acting on policy optimization. This will have a direct effect on
the actions of the agent. From Figure 2, a clear change in the behavior of the agent can be observed
through the visualization, i.e. there is less dropping into the Cliff and reaching goal G more quickly.
Therefore, our proposed method is fundamentally different from multi-step RL.

6

Under review as a conference paper at ICLR 2024

S The Cliff G

(a) CliffWalking

0

100

200

300

400

Cl
iff

 N
um

be
r

328

257 251

PPO
RPO
RPO-3

(b) Number

0 500 1000 1500 2000
Training Episode

0

100

200

300

Ep
iso

de
 L

en
gt

h

PPO
RPO
RPO-3

(c) Length

Figure 2: (a) is a CliffWalking environment. (b) represents the total number of times the agent fell
into the Cliff during the training procedure. (c) represents the number of steps taken by the agent to
reach the goal G during the training procedure. RPO-3 means that when k = 3, the algorithm uses
three ratios.

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

TRPO
PPO
ISPO
TayPO
GePPO
OTRPO
RPO

(a) HalfCheetah

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

0

500

1000

1500

2000

2500

3000

3500

Av
er

ag
e

Re
tu

rn

(b) Hopper

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

40

35

30

25

20

15

10

5

0

Av
er

ag
e

Re
tu

rn

(c) Reacher

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

(d) Walker2d

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

25

0

25

50

75

100

125

150

175

Av
er

ag
e

Re
tu

rn

(e) Swimmer

0 1 2 3 4 5
Timesteps (Million)

0

1000

2000

3000

4000

5000

6000
Av

er
ag

e
Re

tu
rn

(f) Humanoid

Figure 3: Learning curves on the Gym environments. Performance of RPO vs. PPO, TRPO,
OTRPO, GePPO, ISPO and TayPO.

5 EXPERIMENTS

5.1 VISUAL VALIDATION EXPERIMENT

To demonstrate the effectiveness of the ”Reflective Mechanism” of RPO, we conducted visual val-
idation experiments in the CliffWalking environment. CliffWalking is a classic setting widely used
for visualizing the performance of reinforcement learning algorithms. Figure 2 illustrates the overall
performance of RPO and its baseline algorithm in this test set, especially focusing on the frequency
of falling off the cliff and the interaction step overhead, assisting in validating the advantages of
RPO’s ”Reflective Mechanism”.

As shown in Figure 2 (b), RPO significantly reduces the frequency of falling off the cliff under equal
iteration conditions. This data attests to the significant efficiency of RPO’s ”Reflective Mechanism”.
It capitalizes on previous interaction experiences, substantially reducing the occurrence rate of poor
decisions. Figure 2 (c) reveals that as the number of interactions increases, RPO markedly cuts
down the interaction step overhead per episode, which further confirms the benefits of utilizing the
subsequent data. It can also be seen that the number of times RPO and F fall into the cliff and the
length of the trajectory are roughly the same. The successful implementation of this mechanism of
RPO is attributed to its unique approach to continuous state comprehensive analysis. It’s noteworthy
that RPO distinguishes itself from the majority of existing algorithms by integrating the strengths

7

Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

RPO 1=0.1 =0.1
RPO 1=0.2 =0.1
RPO 1=0.1 =0.3
RPO 1=0.2 =0.3

(a) HalfCheetah

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

18

16

14

12

10

8

6

4

Av
er

ag
e

Re
tu

rn

RPO 1=0.1 =0.1
RPO 1=0.2 =0.1
RPO 1=0.1 =0.3
RPO 1=0.2 =0.3

(b) Reacher

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

20

40

60

80

100

120

140

160

180

Av
er

ag
e

Re
tu

rn

RPO 1=0.1 =0.1
RPO 1=0.2 =0.1
RPO 1=0.1 =0.3
RPO 1=0.2 =0.3

(c) Swimmer

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

RPO 1=0.1 =0.1
RPO 1=0.2 =0.1
RPO 1=0.1 =0.3
RPO 1=0.2 =0.3

(d) Walker2d

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

0

500

1000

1500

2000

2500

3000

Av
er

ag
e

Re
tu

rn

RPO 1=0.1 =0.1
RPO 1=0.1 =0.5
RPO 1=0.1 =1.0
RPO 1=0.1 =2.0
RPO 1=0.1 =3.0

(e) HalfCheetah

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

18

16

14

12

10

8

6

4

Av
er

ag
e

Re
tu

rn

RPO 1=0.1 =0.1
RPO 1=0.1 =0.5
RPO 1=0.1 =1.0
RPO 1=0.1 =2.0
RPO 1=0.1 =3.0

(f) Reacher

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

50

100

150

200

250

Av
er

ag
e

Re
tu

rn

RPO 1=0.1 =0.1
RPO 1=0.1 =0.5
RPO 1=0.1 =1.0
RPO 1=0.1 =2.0
RPO 1=0.1 =3.0

(g) Swimmer

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

RPO 1=0.1 =0.1
RPO 1=0.1 =0.5
RPO 1=0.1 =1.0
RPO 1=0.1 =2.0
RPO 1=0.1 =3.0

(h) Walker2d

Figure 4: The top line represents the performance under the condition of β fixed, and the bottom
line represents the performance under the condition of ϵ1 fixed.

of both current and subsequent data. Unlike other exploitation strategies, RPO efficiently utilizes
“good” experiences, makes adjustments based on “bad” experiences, and possesses the ability to
predict dynamic changes in the environment. It can more accurately incorporate the development of
future states, which is a comprehensive feature that current peer algorithms do not have.

5.2 MAIN EXPERIMENT ANALYSIS

To thoroughly validate the extensive effectiveness and universal adaptability of RPO in reinforce-
ment learning scenarios, we conducted six groups of experiments in the continuous action space
environment. Since the CliffWalking environment in gym (Brockman et al., 2016) is especially con-
ducive to showcasing RPO’s “Reflective Mechanism,” we performed auxiliary experiments in this
setting.

To thoroughly evaluate the performance of the RPO algorithm, we conducted a detailed comparative
analysis with six mainstream algorithms in the field (TRPO (Schulman et al., 2015), PPO (Schulman
et al., 2017), GePPO (Queeney et al., 2021), OTRPO (Meng et al., 2022), TayPo (Tang et al., 2020)
and ISPO (Tomczak et al., 2019)) in six major experimental environments of MuJoCo (Todorov
et al., 2012). The results (as shown in Figure 3) indicate that RPO consistently outperforms in all
MuJoCo sub-environments.

In these six diverse testing environments, RPO surpasses classic on-policy reinforcement learning
algorithms PPO and TRPO not only in terms of average return but also in convergence speed. This
improvement is attributed to RPO’s incorporation of the strengths of both current and subsequent
data. When compared to the enhanced off-policy algorithms OTRPO and GePPO, RPO also exhibits
significant advantages.

The exceptional performance of RPO is rooted in its unique Reflective mechanism that facilitates
the efficient utilization of both positive and negative experiences. By employing short trajectories
composed of two consecutive states for learning and decision-making, a more profound reflection
and utilization of experience is achieved. This approach has the following benefits: it enables the
effective use of interaction experiences from adjacent states. And by adopting this pair-wise state
combination for short trajectory inputs, computational and storage overhead is minimized while
maximizing the retention of temporality, promoting a deeper utilization of experience and Reflective
mechanism.

From the analysis above, it is evident that RPO exhibits significant advantages in various aspects,
especially in convergence speed and average return, compared to other algorithms. These empirical
findings underscore the efficiency and applicability of the RPO algorithm in complex continuous
action space environments.

8

Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

PPO
RPO
RPO-3

(a) HalfCheetah

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

25

50

75

100

125

150

175

200

Av
er

ag
e

Re
tu

rn

PPO
RPO
RPO-3

(b) Swimmer

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

PPO
RPO
RPO-3

(c) Walker2d

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

0

500

1000

1500

2000

2500

3000

3500

4000

Av
er

ag
e

Re
tu

rn

PPO
RPO
RPO-clip(r1r2)

(d) HalfCheetah

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

20

40

60

80

100

120

140

160

180

Av
er

ag
e

Re
tu

rn

PPO
RPO
RPO-clip(r1r2)

(e) Swimmer

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

PPO
RPO
RPO-clip(r1r2)

(f) Walker2d

Figure 5: The top line represents the performance of RPO vs. RPO-3 (this means that when k = 3,
the algorithm uses three ratios), and the bottom line represents the performance of RPO vs. RPO-
clip(r1r2)(this means that the two ratios are clipped together.).

5.3 ABLATION EXPERIMENT ANALYSIS

Initially, we focused on the clip and weighting coefficients, applying parameter ablation in the RPO.
The objective of these two clips is to maintain the stability of the policy, addressing the risk asso-
ciated with the current methods that only clip the product, which can lead to an imbalance in the
proportion of the two factors and subsequently, an unstable policy update. As can be inferred from
Figure 4 (a-d), under a fixed weighting coefficient, the smaller the clip, the more pronounced the re-
sults. Furthermore, Figure 4 (e-h) reveals that with a certain clip, reducing the weighting coefficient
within an acceptable range positively influences the outcome. In essence, the impact varies with dif-
ferent clips and weighting coefficients, yet all outcomes under every parameter exceed the baseline.
These results reconfirm the indispensability of the RPO algorithm’s introspection mechanism. It fos-
ters in-depth experiential learning from new short trajectories formed by preceding and succeeding
states, promoting stable and enhanced performance, and expediting the model’s convergence rate.

Secondly, we conducted an ablation study on the number of states, as shown in Figure 5. The results
reveal that selecting three states with sequential relationships yields an equivalent effect to choosing
two states. Thus, we think that the number of trajectories in RPO need not exceed two, as two states
suffice for effective reflection.

Finally, we conducted ablation experiments on whether the two ratios were clipped together or not,
and by comparing it with the RPO clip(r1r2) (this means that the two ratios are clipped together)
algorithm, it is evident that my formula exhibits greater performance, as indicated by the results.

6 CONCLUSION

In this paper, we propose a simple on-policy algorithm, called Reflective Policy Optimization (RPO).
This method aims to combine the previous and next state and action information of the trajectory
data to optimize the current policy, thus allowing the agent to reflect on and modify the action of the
current state to some extent. Furthermore, theoretical analyses show that our proposed method, in
addition to satisfying the desirable property of the monotonic improvement of policy performance,
can effectively reduce the solution space of the optimized policy, resulting in speeding up the training
procedure of the algorithm. we verify the feasibility and effectiveness of the proposed method by a
toy example and achieve better performance on RL benchmarks

9

Under review as a conference paper at ICLR 2024

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
Proceedings of the 34th International Conference on Machine Learning, ICML, volume 70, pp.
22–31. PMLR, 2017.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Kristopher De Asis, J Hernandez-Garcia, G Holland, and Richard Sutton. Multi-step reinforcement
learning: A unifying algorithm. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https:
//github.com/openai/baselines, 2017.

Yaqi Duan and Martin J Wainwright. A finite-sample analysis of multi-step temporal difference
estimates. In Learning for Dynamics and Control Conference, pp. 612–624. PMLR, 2023.

Helmut Finner. A generalization of holder’s inequality and some probability inequalities. The Annals
of Probability, 20(4):1893–1901, 1992.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Proceedings of the 35th International Conference on Machine Learning,
ICML, volume 80, pp. 1582–1591. PMLR, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th
International Conference on Machine Learning, ICML, volume 80 of Proceedings of Machine
Learning Research, pp. 1856–1865. PMLR, 2018.

J Fernando Hernandez-Garcia and Richard S Sutton. Understanding multi-step deep reinforcement
learning: A systematic study of the dqn target. arXiv preprint arXiv:1901.07510, 2019.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence, pp. 3215–3222. AAAI Press, 2018.

Sham M. Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In Machine Learning, Proceedings of the Nineteenth International Conference, ICML, pp. 267–
274, 2002.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In 4th
International Conference on Learning Representations, ICLR, 2016.

Wenjia Meng, Qian Zheng, Yue Shi, and Gang Pan. An off-policy trust region policy optimization
method with monotonic improvement guarantee for deep reinforcement learning. IEEE Transac-
tions on Neural Networks and Learning Systems, 33(5):2223–2235, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
volume 518, pp. 529–533, 2015.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc G. Bellemare. Safe and efficient off-
policy reinforcement learning. In Advances in Neural Information Processing Systems, pp. 1046–
1054, 2016.

James Queeney, Yannis Paschalidis, and Christos G. Cassandras. Generalized proximal policy opti-
mization with sample reuse. In Advances in Neural Information Processing Systems 34, NeurIPS,
pp. 11909–11919, 2021.

10

https://github.com/openai/baselines
https://github.com/openai/baselines

Under review as a conference paper at ICLR 2024

John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learn-
ing,ICML, volume 37, pp. 1889–1897. JMLR.org, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, 2017.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin A. Riedmiller.
Deterministic policy gradient algorithms. In Proceedings of the 31th International Conference on
Machine Learning, ICML, volume 32, pp. 387–395. JMLR, 2014.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an introduction. 1998.

Yunhao Tang, Michal Valko, and Rémi Munos. Taylor expansion policy optimization. In Interna-
tional Conference on Machine Learning, pp. 9397–9406. PMLR, 2020.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pp. 5026–
5033. IEEE, 2012.

Marcin B Tomczak, Dongho Kim, Peter Vrancx, and Kee-Eung Kim. Policy optimization through
approximate importance sampling. arXiv preprint arXiv:1910.03857, 2019.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 2094–
2100, 2016.

Zifan Wu, Chao Yu, Chen Chen, Jianye Hao, and Hankz Hankui Zhuo. Models as agents: Optimiz-
ing multi-step predictions of interactive local models in model-based multi-agent reinforcement
learning. In Thirty-Seventh AAAI Conference on Artificial Intelligence, pp. 10435–10443. AAAI
Press, 2023.

Tang Yunhao, Rémi Munos, Mark Rowland, Bernardo Ávila Pires, Will Dabney, and Marc G. Belle-
mare. The nature of temporal difference errors in multi-step distributional reinforcement learning.
In NeurIPS, 2022.

Shangtong Zhang. Modularized implementation of deep rl algorithms in pytorch. https://
github.com/ShangtongZhang/DeepRL, 2018.

11

https://github.com/ShangtongZhang/DeepRL
https://github.com/ShangtongZhang/DeepRL

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 PROOF

Let’s start with some useful lemmas.

Lemma A.1. ((Kakade & Langford, 2002)) Consider any two policies π̂ and π, we have

η(π)− η(π̂) =
1

1− γ
Es,a∼ρπAπ̂(s, a).

Corollary A.1. Consider any two policies π̂ and π, we have

• V π(s0)− V π̂(s0) =
1

1−γEs,a∼ρπ(·|s0)A
π̂(s, a).

• Qπ(s0, a0)−Qπ̂(s0, a0) =
γ

1−γEs,a∼ρπ(·|s0,a0)A
π̂(s, a).

Proof. The first formula is simple, due to η(π) = Es0∼ρ0
V π(s0).

Let’s prove the second formula.

Qπ(s0, a0)−Qπ̂(s0, a0)

=γEs′∼P (s′|s0,a0)

[
V π(s′)− V π̂(s′)

]
=

γ

1− γ
Es′∼P (s′|s0,a0)Es,a∼ρπ(·|s′)A

π̂(s, a)

=
γ

1− γ
Es,a∼ρπ(·|s0,a0)A

π̂(s, a).

Lemma A.2. ((Tomczak et al., 2019)) Consider any two policies π̂ and π, we have

η(π)− η(π̂) =
1

1− γ
Es∼ρπ̂,a∼πA

π̂(s, a) +
1

1− γ
Es,a∼ρπ̂

[
π(a|s)
π̂(a|s)

− 1

] [
Qπ(s, a)−Qπ̂(s, a)

]
Lemma A.3. Consider a current policy π̂, and any policies π, we have

Es,a∼ρπ(·)A
π̂(s, a)− Es∼ρπ̂,a∼πA

π̂(s, a)

=
γ

1− γ
E

s,a∼ρπ̂(·)
s′,a′∼ρπ(·|s,a)

[
π(a|s)
π̂(a|s)

− 1]Aπ̂(s′, a′)

Proof. From Lemma A.1 and A.2, we have

Es,a∼ρπAπ̂(s, a)− Es∼ρπ̂,a∼πA
π̂(s, a)

=Es,a∼ρπ̂

[
π(a|s)
π̂(a|s)

− 1

] [
Qπ(s, a)−Qπ̂(s, a)

]
According to Corollary A.1, it is easy to get the conclusion.

Theorem A.1. Consider a current policy π̂, and any policies π, we have

η(π) = η(π̂) +

k−1∑
i=0

αiLi(π, π̂) + βkGk(π, π̂)

12

Under review as a conference paper at ICLR 2024

where

Li(π, π̂) = E
s0,a0∼ρπ̂(·)

···
si−1,ai−1∼ρπ̂(·|si−2,ai−2)

i−1∏
t=0

(It − 1)li(π, π̂),

Gk(π, π̂) = E
s0,a0∼ρπ̂(·)

···
sk−1,ak−1∼ρπ̂(·|sk−2,ak−2)

k−1∏
t=0

(It − 1)gk(π, π̂),

li(π, π̂) = Esi∼ρπ̂(·|si−1,ai−1),ai∼π(·|si)A
π̂(si, ai),

gk(π, π̂) = Esk,ak∼ρπ(·|sk−1,ak−1)A
π̂(sk, ak),

and

It =
π(at|st)
π̂(at|st)

, αi =
γi

(1− γ)i+1
, βk =

γk

(1− γ)k+1
.

Proof. From Lemma A.3, this formula creates a link between Es,a∼ρπ(·)A
π̂(s, a) and

Es′,a′∼ρπ(·|s,a)A
π̂(s′, a′), resulting in a recursive relationship.

According to Lemma A.2, and using recursive relationships, defined
li(π, π̂) = Esi∼ρπ̂(·|si−1,ai−1),ai∼π(·|si)A

π̂(si, ai),

we have
η(π)− η(π̂)

=
1

1− γ
Es0∼ρπ̂,a0∼πA

π̂(s0, a0) +
γ

(1− γ)2
Es0,a0∼ρπ̂ [I0 − 1]Es1,a1∼ρπ(·|s0,a0)A

π̂(s1, a1)

=
1

1− γ
l0(π, π̂)

+
γ

(1− γ)2
Es0,a0∼ρπ̂ [I0 − 1]

(
l1(π, π̂) +

γ

1− γ
Es1,a1∼ρπ̂(·|s0,a0)[I1 − 1]Es2,a2∼ρπ(·|s1,a1)A

π̂(s2, a2)

)
=

1

1− γ
l0(π, π̂) +

γ

(1− γ)2
Es0,a0∼ρπ̂ [I0 − 1]l1(π, π̂)

+
γ2

(1− γ)3
E

s0,a0∼ρπ̂(·)
s1,a1∼ρπ̂(·|s0,a0)
s2,a2∼ρπ(·|s1,a1)

[I0 − 1][I1 − 1]Aπ̂(s2, a2)

· · ·

=

k−1∑
i=0

αiLi(π, π̂) + βkGk(π, π̂)

Corollary A.2. According to the definition of Gk, we have

|βkGk(π, π̂)| ≤
γk

(1− γ)k+2
ϵk+1Rmax,

where ϵ ≜ ∥π − π̂∥1 = maxs
∑

a |π(a|s)− π̂(a|s)| and Rmax ≜ maxs,a |R(s, a)|.

Proof. According to the definition of Gk(π, π̂), and defined ϵ ≜ ∥π − π̂∥1, we have
|Gk(π, π̂)| ≤ ϵk · |Esk,ak∼ρπ(·|sk−1,ak−1)A

π̂(sk, ak)|

≤ ϵk · |
∫
a

(π − π̂)Qπ̂(s, a)da|

≤ Rmax

1− γ
ϵk+1

13

Under review as a conference paper at ICLR 2024

Combining with βk, we can get this conclusion.

Corollary A.3. Compared with Theorem 2 of the paper (Tang et al., 2020), we give a tighter lower
bound.

Proof. From the paper (Tang et al., 2020), they give the gap between the policy performance of π
and the general surrogate object

Ĝk =
1

γ(1− γ)

(
1− γ

1− γ
ϵ

)−1(
γϵ

1− γ

)K+1

Rmax

Next, from Corollary A.2, we will prove that the following inequality holds

γk

(1− γ)k+2
ϵk+1Rmax < Ĝk.

That is, we need to prove

γk

(1− γ)k+2
ϵk+1Rmax <

1

γ(1− γ)

(
1− γ

1− γ
ϵ

)−1(
γϵ

1− γ

)K+1

Rmax

After simplification, we get

1

1− γ
<

1

1− γ − γϵ
.

The inequality obviously holds. So, we give a tighter lower bound.

Theorem A.2. Consider a current policy π̂, and any policies π, we have

η(π)− η(π̂) ≥
k−1∑
i=0

αiL̂i(π, π̂)− Ĉk(π, π̂)

where

L̂i(π, π̂) = E
s0,a0∼ρπ̂(·)

···
si−1,ai−1∼ρπ̂(·|si−2,ai−2)

si,ai∼ρπ̂(·|si−1,ai−1)

i∏
t=0

ItA
π̂(si, ai),

Ĉk(π, π̂) =
γRmaxIk≥2

(1− γ)2(1− 2γ)

(
1− γk

(1− γ)k

)
∥π − π̂∥1 +

γkRmax

(1− γ)k+2
∥π − π̂∥21

and Ik≥2 is the indicator function w.r.t. k ∈ N , αi =
γi

(1−γ)i+1 .

14

Under review as a conference paper at ICLR 2024

Proof. For the definition of Li(π, π̂), we have

η(π)− η(π̂)

=
1

1− γ
Es0∼ρπ̂,a0∼πA

π̂(s0, a0) +
γ

(1− γ)2
Es0,a0∼ρπ̂ [I0 − 1]Es1,a1∼ρπ(·|s0,a0)A

π̂(s1, a1)

=
1

1− γ
l0(π, π̂)−

γ

(1− γ)2
Es0,a0∼ρπ̂Es1,a1∼ρπ(·|s0,a0)A

π̂(s1, a1)

+
γ

(1− γ)2
Es0,a0∼ρπ̂I0

(
l1(π, π̂) +

γ

1− γ
Es1,a1∼ρπ̂(·|s0,a0)[I1 − 1]Es2,a2∼ρπ(·|s1,a1)A

π̂(s2, a2)

)
=

1

1− γ
l0(π, π̂)−

γ

(1− γ)2
Es0,a0∼ρπ̂Es1,a1∼ρπ(·|s0,a0)A

π̂(s1, a1)

+
γ

(1− γ)2
Es0,a0∼ρπ̂I0l1(π, π̂)−

γ2

(1− γ)3
Es0,a0∼ρπ̂I0Es1,a1∼ρπ̂(·|s0,a0)Es2,a2∼ρπ(·|s1,a1)A

π̂(s2, a2)

+
γ2

(1− γ)3
Es0,a0∼ρπ̂I0Es1,a1∼ρπ̂(·|s0,a0)I1Es2,a2∼ρπ(·|s1,a1)A

π̂(s2, a2)

=
1

1− γ
l0(π, π̂) +

γ

(1− γ)2
Es0,a0∼ρπ̂ [I0 − 1]l1(π, π̂)

+
γ2

(1− γ)3
E

s0,a0∼ρπ̂(·)
s1,a1∼ρπ̂(·|s0,a0)
s2,a2∼ρπ(·|s1,a1)

[I0 − 1][I1 − 1]Aπ̂(s2, a2)

· · ·

=

k−1∑
i=0

αiL̂i(π, π̂)−
k−1∑
i=1

αiĤi(π, π̂) + βkĜk(π, π̂)

where

L̂i(π, π̂) = E
s0,a0∼ρπ̂(·)

···
si−1,ai−1∼ρπ̂(·|si−2,ai−2)

si,ai∼ρπ̂(·|si−1,ai−1)

i∏
t=0

ItA
π̂(si, ai),

Ĥi(π, π̂) = E
s0,a0∼ρπ̂(·)

···
si−1,ai−1∼ρπ̂(·|si−2,ai−2)

si,ai∼ρπ(·|si−1,ai−1)

i−2∏
t=0

ItA
π̂(si, ai),

Ĝk(π, π̂) = E
s0,a0∼ρπ̂(·)

···
si−1,ai−1∼ρπ̂(·|si−2,ai−2)

si,ai∼ρπ(·|si−1,ai−1)

i−2∏
t=0

It[Ii−1 − 1]Aπ̂(si, ai),

and αi =
γi

(1−γ)i+1 , βk = γk

(1−γ)k+1 .

It is easy to prove that the following inequality holds

Ĥi(π, π̂) ≤
Rmax

1− γ
∥π − π̂∥1, Ĝk(π, π̂) ≤

Rmax

1− γ
∥π − π̂∥21.

Since
∑i=0

k−1 αi =
γ

(1−γ)(1−2γ)

(
1− γk

(1−γ)k

)
, we have

η(π)− η(π̂) ≥
k−1∑
i=0

αiL̂i(π, π̂)−
γRmaxIk≥2∥π − π̂∥1
(1− γ)2(1− 2γ)

(
1− γk

(1− γ)k

)
− γkRmax

(1− γ)k+2
∥π − π̂∥21

15

Under review as a conference paper at ICLR 2024

Theorem A.3. Define two sets

Ψ1 =
{
µ | α0L̂0(µ, π̂)− Ĉ1(µ, π̂) > 0

}
,

Ψ2 =
{
µ | α0L̂0(µ, π̂) + α1L̂1(µ, π̂)− Ĉ2(µ, π̂) > 0

}
,

then we have

Ψ2 ⊆ Ψ1.

Proof. Let µ ∈ Ψ1, we have

L̂0(π, π̂)−
γRmax

(1− γ)2
∥µ− π̂∥21 > 0 (7)

Below, we will show that µ may not be in the set Ψ2.

For L̂1(π, π̂), we can get

L̂1(π, π̂) = E
s0∼ρπ̂(·),a0∼π(·|s0)

s1∼ρπ̂(·|s0,a0),a1∼π(·|s1)

Aπ̂(s1, a1) (8)

= E
s0∼ρπ̂(·),a0∼π̂(·|s0)

s1∼ρπ̂(·|s0,a0),a1∼π(·|s1)

Aπ̂(s1, a1) +

 E
s0∼ρπ̂(·),a0∼π(·|s0)

s1∼ρπ̂(·|s0,a0),a1∼π(·|s1)

− E
s0∼ρπ̂(·),a0∼π̂(·|s0)

s1∼ρπ̂(·|s0,a0),a1∼π(·|s1)

Aπ̂(s1, a1)

(9)

≥ E
s1∼ρπ̂(·),a1∼π(·|s1)

Aπ̂(s1, a1)−
Rmax

1− γ
∥π − π̂∥21 (10)

The last inequality uses Es0∼ρπ̂(·),a0∼π̂(·|s0)ρ
π̂(·|s0, a0) = ρπ̂(·) and Hölder’s inequality (Finner,

1992).

Combining with L̂0(π, π̂) and Ĉ2(π, π̂), we have

L̂0(π, π̂) +
γ

1− γ
L̂1(π, π̂)−

γRmax

(1− γ)2
∥π − π̂∥1 −

γ2Rmax

(1− γ)3
∥π − π̂∥21

≥L̂0(π, π̂) +
γ

1− γ

(
E

s1∼ρπ̂(·),a1∼π(·|s1)
Aπ̂(s1, a1)−

Rmax

1− γ
∥π − π̂∥21

)
− γRmax

(1− γ)2
∥π − π̂∥1 −

γ2Rmax

(1− γ)3
∥π − π̂∥21

=
1

1− γ
L̂0(π, π̂)−

γRmax

(1− γ)3
∥π − π̂∥21 −

γRmax

(1− γ)2
∥π − π̂∥1

Combining with the inequality (7), we have

L̂0(µ, π̂) +
γ

1− γ
L̂1(µ, π̂)−

γRmax

(1− γ)2
∥µ− π̂∥1 −

γ2Rmax

(1− γ)3
∥µ− π̂∥21 ≥ −

γRmax

(1− γ)2
∥µ− π̂∥1

From the above inequality, it shows that µ may not be in set Ψ2. So, we have Ψ2 ⊆ Ψ1.

A.2 ADDITIONAL EXPERIMENTAL RESULTS

To verify the effectiveness of the proposed RPO method, we select six continuous control tasks
from the MuJoCo environments (Todorov, Erez, and Tassa 2012) in OpenAI Gym (Brockman et al.
2016). We conduct all the experiments mainly based on the code from (Queeney, Paschalidis, and
Cassandras 2021). The test procedures are averaged over ten test episodes across ten independent
runs. The same neural network architecture is used for all methods The policy network is a Gaussian
distribution, and the output of the state-value network is a scalar value. The mean action of the
policy network and state-value network are a multi-layer perceptron with hidden layer fixed to [64,
64] and tanh activation (Henderson et al. 2018). The standard deviation of the policy network is

16

Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

0

500

1000

1500

2000

2500

3000

3500

4000

Av
er

ag
e

Re
tu

rn

PPO
RPO

(a) HalfCheetah

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

0

500

1000

1500

2000

2500

3000

3500

Av
er

ag
e

Re
tu

rn

PPO
RPO

(b) Hopper

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

40

35

30

25

20

15

10

5

0

Av
er

ag
e

Re
tu

rn

PPO
RPO

(c) Reacher

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

PPO
RPO

(d) Walker2d

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

20

40

60

80

100

120

140

160

180

Av
er

ag
e

Re
tu

rn

PPO
RPO

(e) Swimmer

0 1 2 3 4 5
Timesteps (Million)

1000

2000

3000

4000

5000

6000

Av
er

ag
e

Re
tu

rn

PPO
RPO

(f) Humanoid

Figure 6: Learning curves on the Gym environments. Performance of RPO vs. PPO.

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

20

18

16

14

12

10

8

6

4

Av
er

ag
e

Re
tu

rn

PPO
RPO
RPO-3

(a) Reacher

0 1 2 3 4 5
Timesteps (Million)

1000

2000

3000

4000

5000

6000

Av
er

ag
e

Re
tu

rn

PPO
RPO
RPO-3

(b) Humanoid

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

0

500

1000

1500

2000

2500

3000

3500

Av
er

ag
e

Re
tu

rn

PPO
RPO
RPO-3

(c) Hopper

Figure 7: The performance of RPO vs. RPO-3 in three other environments.

parameterized separately (Schulman et al. 2015, 2017). For the experimental parameters, we use
the default parameters from (Dhariwal et al. 2017; Henderson et al. 2018), for example, the discount
factor is γ = 0.995, and we use the Adam optimizer (Diederik et al. 2015) throughout the training
progress. For PPO, the clipping parameter is ϵPPO = 0.2, and the batch size is B = 2048. For
GePPO, the clipping parameter is ϵPPO = 0.1, and the batch size of each policy is B = 1024. For
TRPO and off-policy TRPO (OTRPO), the bound of trust region is δ = 0.01, and the batch size of
each policy is B = 1024.

To verify the effectiveness of the proposed RPO method in discrete environments, we randomly
selected twelve Atari games for our experiments and the code is based on (Zhang, 2018). We run
our experiments across three seeds with fair evaluation metrics. We use the same hyperparameters
ϵ1 = 0.1 and β = 3.0 in all environments and do not fine-tune them.

17

Under review as a conference paper at ICLR 2024

0 10 20 30 40 50
Timesteps (Million)

0

2500

5000

7500

10000

12500

15000

17500

ev
al

ua
te

_r
et

ur
n_

tra
in

PPO
RPO

(a) Asterix

0 10 20 30 40 50
Timesteps (Million)

5000

10000

15000

20000

25000

30000

35000

ev
al

ua
te

_r
et

ur
n_

tra
in

(b) BattleZone

0 10 20 30 40 50
Timesteps (Million)

0

20

40

60

80

100

ev
al

ua
te

_r
et

ur
n_

tra
in

(c) Boxing

0 10 20 30 40 50
Timesteps (Million)

0

50

100

150

200

250

300

ev
al

ua
te

_r
et

ur
n_

tra
in

(d) Breakout

0 10 20 30 40 50
Timesteps (Million)

2000

3000

4000

5000

6000

ev
al

ua
te

_r
et

ur
n_

tra
in

(e) Centipede

0 10 20 30 40 50
Timesteps (Million)

18

16

14

12

10

8

6

4

ev
al

ua
te

_r
et

ur
n_

tra
in

(f) DoubleDunk

0 10 20 30 40 50
Timesteps (Million)

0

100

200

300

400

500

ev
al

ua
te

_r
et

ur
n_

tra
in

(g) Enduro

0 10 20 30 40 50
Timesteps (Million)

100

80

60

40

20

0

20

40

ev
al

ua
te

_r
et

ur
n_

tra
in

(h) FishingDerby

0 10 20 30 40 50
Timesteps (Million)

0

2000

4000

6000

8000

10000

12000

ev
al

ua
te

_r
et

ur
n_

tra
in

(i) Kangaroo

0 10 20 30 40 50
Timesteps (Million)

0

10000

20000

30000

40000

50000

ev
al

ua
te

_r
et

ur
n_

tra
in

(j) Phoenix

0 10 20 30 40 50
Timesteps (Million)

20

10

0

10

20

ev
al

ua
te

_r
et

ur
n_

tra
in

(k) Pong

0 10 20 30 40 50
Timesteps (Million)

0

2500

5000

7500

10000

12500

15000

ev
al

ua
te

_r
et

ur
n_

tra
in

(l) Qbert

Figure 8: Learning curves on the Atari environments. Performance of RPO vs. PPO.

18

Under review as a conference paper at ICLR 2024

Table 1: Hyperparameters for RPO on Mujoco tasks.

Hyperparameter Value

Discount rate γ 0.995
GAE parameter 0.97
Minibatches per epoch 32
Epochs per update 10
Optimizer Adam
Learning rate ϕ 3e-4
Minimum batch size (n) 2048
ϵ 0.2
ϵ1 0.1
weighting parameter β 0.3

19

	Introduction
	Preliminaries
	Markov Decision Process

	The Generalized Surrogate Function
	Reflective Policy Optimization
	The clipped generalized surrogate objection

	Experiments
	Visual Validation Experiment
	Main Experiment Analysis
	Ablation Experiment Analysis

	Conclusion
	Appendix
	Proof
	Additional experimental results

