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Abstract

This paper demonstrates that Semantic Context (SC), leveraging descriptive1

tool information, is a foundational component for robust tool orchestration.2

Our contributions are threefold. First, we provide a theoretical foundation3

using contextual bandits, introducing SC-LinUCB and proving it achieves4

lower regret and adapts favourably in dynamic action spaces. Second, we5

provide parallel empirical validation with Large Language Models, showing6

that SC is critical for successful in-context learning in both static (efficient7

learning) and non-stationary (robust adaptation) settings. Third, we propose8

the FiReAct pipeline, and demonstrate on a benchmark with over 10,0009

tools that SC-based retrieval enables an LLM to effectively orchestrate10

over a large action space. These findings provide a comprehensive guide to11

building more sample-efficient, adaptive, and scalable orchestration agents.12

1 Introduction13

The capacity of intelligent systems, particularly Large Language Models (LLMs), is signifi-14

cantly amplified by their ability to orchestrate external tools—such as APIs, auxiliary agents,15

or specialized functions [15, 18, 20]. This orchestration is a sequential decision-making task:16

given a user query and a dynamic tool catalogue, an agent must select and use the most17

appropriate tool. While reinforcement learning (RL) offers a principled framework, naive18

application (e.g., LLMs generating tool invocations token-by-token) creates intractably large19

action spaces (V L with vocabulary size V and sequence length L), hindering learning. A20

common simplification presents the agent with an explicit list of O available indices or tools,21

Aavail = {a1, . . . , aO}, from which to select. However, this often discards valuable semantic22

descriptions D(a) associated with each tool (e.g., API doc strings, capability summaries)23

a. Recent works using RL to train LLM to orchestrate tools rely on the provision of tool24

names and descriptions in the prompts [6, 22, 26, 17]. [11] improve tool call reliability by25

random augmentation of tool and argument names, thus pushing the model to rely on tool26

descriptions. This paper investigates the critical and quantifiable advantages of equipping27

agents with what we term the Semantic Context (SC)—the collection of semantic descriptions28

for all currently available actions.29

This SC is not merely a helpful addition but a fundamental component for effective tool30

orchestration. Our work establishes this through three core findings.31

First, we provide a theoretical and empirical foundation showing that even in static settings32

with a fixed tool set, SC enables more efficient learning. To do this, we develop SC-LinUCB,33

a bandit algorithm, and prove that it achieves favourable regret compared with non-semantic34

baselines by creating a more parsimonious and accurate reward model (Section 3). Empirical35

support is provided by SC-LINUCB and in-context learning experiments with LLM.36
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Second, we demonstrate SC’s critical role in dynamic adaptation. Our experiments show37

that as tools are added or removed, an agent leveraging SC adapts gracefully, whereas38

baselines suffer from catastrophic forgetting and require costly retraining. This highlights39

SC as a key enabler for continual learning in evolving environments for both, SC-LINUCB40

and in-context learning LLM.41

Finally, we show how SC makes tool orchestration practical at scale through a FiReAct42

(Filter-Reason-Act) pipeline. We demonstrate that semantically filtering a large corpus43

of tools into a small, relevant set is essential for maintaining high accuracy as the number of44

tools grows into the thousands. This scalable application bridges our theoretical insights45

with the practical challenges faced by modern LLM agents (SubSection 5.3).46

Our research draws from the contextual bandit framework [9, 4], with LinUCB [1] as47

a cornerstone, and contributes by rigorously analysing features from a priori semantic48

embeddings of natural language action descriptions and quantifying their regret impact.49

While action representation learning from interaction is common in RL [2, 14], and using50

natural language for actions has been explored [23], our focus is on leveraging pre-existing,51

structured semantic information. Addressing dynamic action spaces, central to continual52

learning, we differ from Chandak et al. [3] who infer latent action structures; we demonstrate53

how explicit, given semantic descriptions enable robust adaptation without relearning action54

space representations. This complements continual RL’s focus on evolving reward/transition55

functions [12, 7], aiming to furnish principled insights for more sample-efficient, generalizable,56

and adaptive tool-orchestrating agents that explicitly leverage SC.57

When dealing with high dimensional task-/ action spaces there is a variety of approaches58

to dial down complexity. Examples include learning action elimination networks[24] to59

approaches partitioning the task space based on task embeddings [13]. More recent tool-RAG60

methods tackle the problem from a retrieval perspective: small LMs learn a function-mask61

head that suppresses irrelevant APIs at inference time [11]; completeness-oriented retrievers62

rank tools so that only a minimal yet sufficient subset is forwarded to the reasoner [19, 21].63

2 Problem Formulation64

We model the task of selecting an appropriate tool for a given query as a contextual bandit65

problem. This framework allows us to rigorously analyse the decision-making that underpins66

tool orchestration.67

At each discrete time step t ∈ {1, . . . , T}, an agent observes a context (a user query qt ∈ Q)68

and must select an action at from a set of currently available tools, At = {a1, . . . , aOt} of69

magnitude Ot. The environment is stochastic: for a given query qt, each action ai ∈ At has70

a true but unknown probability of success, peff(ai, qt). After selecting at, the agent receives71

a stochastic binary reward rt ∈ {0, 1}, drawn from a Bernoulli distribution governed by this72

probability: rt ∼ Bernoulli(peff(at, qt)).73

The agent’s objective is to learn a policy π(at|qt, Ht−1) that maximizes the cumulative reward74

(or Return),
∑T

t=1 rt. This is equivalent to minimizing the Cumulative Expected Regret,75

defined as the sum of the per-step differences between the expected reward of the optimal76

action for a given query and the expected reward of the action the agent actually chose:77

RT =
T∑

t=1

(
max
a∈At

peff(a, qt)− peff(at, qt)
)

. (1)

The central hypothesis of this paper is that an agent’s policy can learn more efficiently78

and adapt faster to changes in the action space At if it explicitly leverages the Semantic79

Context, the rich descriptions associated with each action, rather than treating actions as80

abstract, opaque indices.81

Definition 2.1 (Semantic Context, CS(At)). Given At, the set of available actions at82

time t, the semantic context CS(At) is the collection of semantic information related to83

these actions. Specifically, CS(At) = {(ai, D(ai))}ai∈At , where for each action ai, D(ai) is84

its natural language description (e.g., docstring). Each description is mapped to a demb-85

dimensional semantic context embedding ϕ(ai) = Ξ(D(ai)) via an embedding function86
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Ξ. This provides structured, a priori information about the available actions, allowing an87

agent’s policy π(at|st, CS(At)) to leverage both the usual state st (which includes the query88

qt) and the SC.89

Definition 2.2 (Semantic Context Bandit, SC-Bandit). An SC-Bandit models a single-step90

decision with a static action space Aavail. At each step t, given a query qt, the agent selects91

an action at based on its policy π(at|qt, CS(Aavail)), where the Semantic Context is fixed.92

For SC MDP A.1 and the Lifelong SC MDP A.2 with non-stationary action space we refer93

to appendix A.2. In all frameworks, the central hypothesis is that explicit incorporation94

and effective utilization of the Semantic Action Context CS(At) enable agents to achieve95

superior learning efficiency, generalization, and adaptability.96

3 Theoretical Framework: Semantic LinUCB97

We analyse Semantic Contextual Linear UCB (SC-LinUCB), an adaptation of the LinUCB98

algorithm [1] that leverages semantic information from action descriptions. Our analysis99

demonstrates that by incorporating well-structured semantic features, SC-LinUCB can100

achieve significantly lower regret than LinUCB variants relying on non-semantic action rep-101

resentations. This improvement stems from a more efficient representation of the underlying102

reward structure, leading to better generalization and reduced exploration complexity.103

Our theoretical contribution focuses on how the specific construction of semantic features104

x(sem) for SC-LinUCB leads to a more favorable instantiation of this generic bound compared105

to using non-semantic features.106

3.1 Contextual Linear Bandits and Feature Design107

We operate within the standard contextual linear bandit framework (detailed in Appendix108

B.1). At each time step t, given a query (context) embedding qt ∈ Rdq , the agent selects a109

tool τj from the Kt available tools. Each tool τj is associated with a semantic description110

embedding ϕj ∈ Rddesc . The expected reward E[Rt|xt,j ] = xT
t,jθ

∗ is linear in the constructed111

d-dimensional feature vector xt,j .112

The core of our analysis lies in comparing two feature construction strategies: SC-LinUCB113

Semantic Features (x(sem)): We construct x(sem)
t,j = [qt;ϕj ; sim(qt,ϕj); 1]. The resulting114

feature dimension is dsem = dq + ddesc + 1 + 1. This design explicitly incorporates query115

attributes, tool semantic attributes, and their direct alignment. The SC-LinUCB algorithm116

itself is Algorithm 2 (Appendix B.2).117

LinUCB-NS Non-Semantic Features (x(non−sem)): As a baseline, we use features118

x(non−sem)
t,j = [qt; ej ; 1], where ej ∈ RK is the one-hot encoding for tool τj . The dimension is119

dnon−sem = dq + K + 1. This baseline distinguishes tools by identity but lacks explicit shared120

semantic information. The generic regret for LinUCB algorithms stated in Appendix B.3),121

scaling as RT = Õ(d · σeff ·
√

T ), where d is the feature dimension and σeff is the effective122

noise standard deviation (incorporating observation noise and linear model approximation123

error).124

3.2 Regret Advantage via Efficient Semantic Representation125

To formalize the advantage of x(sem), we introduce an assumption about the nature of the126

true reward function.127

Assumption 3.1 (Semantically Structured Rewards). The true expected reward function128

f∗(q,ϕ) is primarily determined by a limited number of underlying semantic interaction129

patterns between queries and tool semantic properties. Specifically, there exists an optimal130

linear model in the semantic feature space, (x(sem)
t,j )Tθ∗

sem, that approximates f∗(qt,ϕj)131

with a mean squared error σ2
approx,sem. Further, to achieve a comparable or better linear132

approximation quality using non-semantic one-hot features, i.e., (x(non−sem)
t,j )Tθ∗

non−sem ≈133
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f∗(qt,ϕj) with error σ2
approx,non−sem ≥ σ2

approx,sem, the dimensionality dnon−sem (which134

scales with K) may be significantly larger than dsem if K is large and there is semantic135

redundancy across tools (i.e., ddesc + 1≪ K).136

Theorem 3.2 (Regret Reduction for SC-LinUCB). Under Assumption B.1137

(for both SC-LinUCB with (dsem, σeff,sem, Ssem, Lsem) and LinUCB-NS with138

(dnon−sem, σeff,non−sem, Snon−sem, Lnon−sem)) and Assumption 3.1: SC-LinUCB achieves139

a cumulative regret RT (SC) that is less than or equal to the regret of LinUCB-NS, RT (NS),140

if its semantic features lead to a more favorable combination of dimensionality and effective141

noise. Specifically, RT (SC) ≤ RT (NS) if the factor dsem · σeff,sem (ignoring constants and142

polylog terms from α) is smaller than dnon−sem · σeff,non−sem. A significant improvement143

(RT (SC)≪ RT (NS)) is realized if:144

1. Parsimonious Representation: dsem ≪ dnon−sem (achievable if ddesc + 1 ≪145

K) while maintaining comparable or better approximation quality (σeff,sem ≲146

σeff,non−sem). The regret reduction factor is roughly dsem/dnon−sem.147

2. Superior Fit: Even if dsem ≈ dnon−sem, if semantic features provide a substantially148

better linear approximation, then σeff,sem ≪ σeff,non−sem, leading to a regret149

reduction factor of roughly σeff,sem/σeff,non−sem.150

Proof Sketch. By the standard LinUCB analysis (self-normalized concentration and the151

elliptical potential argument), a d-dimensional linear model with effective noise σeff incurs152

Õ
(
d σeff

√
T

)
regret, with constants and polylog terms absorbed into α (Appendix B.3).153

Under our feature maps, LinUCB-NS uses dnon-sem = dq + K + 1 one-hot augmented features,154

while SC-LinUCB uses dsem = dq + ddesc + 2 semantic features that do not scale with155

K when tools share redundant semantics (Assumption 3.1; Appendix B.1). Comparing156

the leading factors yields RT (SC) ≤ RT (NS) whenever dsemσeff,sem ≤ dnon-semσeff,non-sem,157

with strict gains either from parsimony (dsem ≪ dnon-sem at comparable fit) or superior fit158

(σeff,sem ≪ σeff,non-sem at comparable dimension). Formally, applying the same confidence-set159

and potential bounds to both feature maps shows the cumulative uncertainty term scales160

with their respective dimensions (e.g., Lemma B.3), completing Theorem 3.2.161

4 SC-LinUCBExperiments162

To empirically evaluate the impact of semantic information in contextual bandit settings, we163

employ two variants of the shared LinUCB algorithm [1]. Both agents aim to learn a single164

shared parameter vector θ∗ ∈ Rd to predict expected rewards E[Rt|xt,j ] ≈ xT
t,jθ

∗. Their165

core distinction lies in the construction of the feature vector xt,j for a given query (context)166

qt and tool (action) τj .167

We compare SC-LinUCB and LinUCB-OneHot using their respective semantic and non-168

semantic feature constructions detailed in Section 3.1. For this experiment with K = 6 tools,169

dsem = 6 and dnon−sem = 9. Results are averaged over Nruns = 15 seeds.170

We conduct a series of experiments to empirically validate our theoretical findings and171

demonstrate the practical benefits of using semantic action features. We first focus on an172

intra-episode setting with a fixed action set, then evaluate adaptation in a continual learning173

scenario with dynamic action sets. Experiments are run on Colab (free tier CPU).174

4.1 Experiment 1: Intra-Episode Efficiency in a Multi-Context Environment175

Objective. This experiment validates our theoretical claim that SC-LinUCB achieves176

lower regret than LinUCB-OneHot by leveraging semantic action features in a multi-context177

setting with a fixed action set (K = 6).178

Environment Setup. The environment features NQ = 3 distinct query types (contexts)179

that cycle periodically over T = 10000 timesteps. Each of the K = 6 tools τj is associated180

with a 2D toy semantic embedding ϕj , derived from one of three underlying archetypes plus181

noise. Each query type is designed to align semantically with one specific tool archetype.182
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Stochastic rewards Rt ∈ {0, 1} are determined by the semantic alignment between the current183

query qt and the chosen tool’s embedding ϕj . Full details are in Appendix C.1.2.184

Results. Figure 1a presents the average cumulative regret (log scale). SC-LinUCB (orange185

line) shows substantially superior performance, maintaining an exceptionally low cumulative186

regret (around 100) over 10000 timesteps, indicating rapid convergence to a nearly optimal187

policy across contexts. LinUCB-OneHot (blue line), while exhibiting sublinear regret188

(indicating learning), incurs orders-of-magnitude higher regret (exceeding 103). This stark189

difference underscores SC-LinUCB’s ability to generalize semantic patterns across different190

(context, tool) pairings, leading to vastly improved sample efficiency compared to the baseline,191

which learns tool utilities more independently. Both algorithms used α = 0.3. For ablations192

over the value of α we refer to figure 4.193

(a) Average Cumulative Regret (log scale) for
SC-LinUCB and LinUCB-OneHot in the multi-
context (switching) with fixed toolset experiemnt.
Time steps T = 10000, averaged over 15 runs and
α = 0.3).

(b) Average Cumulative Regret (log scale) for SC-
LinUCB and LinUCB-OneHot in the continual
adaptation experiment. Each phase is 2500 steps,
changes indicated by dashed lines.

4.2 Experiment 2: Continual Adaptation to Dynamic Toolsets194

Objective. This experiment evaluates the agents’ ability to adapt to a dynamically changing195

tool set over four distinct phases (Tphase = 2500 steps each, for a total of T = 10000 steps),196

involving tool addition, removal, and the introduction of novel semantic types alongside new197

relevant queries. The setup tests the robustness and generalization capabilities crucial for198

lifelong learning. The environment cycles through three base query types (qA, qB , qC) for199

the first three phases, with a fourth query type (qD) introduced in Phase 4. Full phase200

details, including specific tool archetype assignments and query cycling, are in Appendix B.8.201

LinUCB-OneHot re-initializes it’s model matrices (A, b) when K changes due to its feature202

space dependency on K. SC-LinUCB’s model matrices and dsem remain fixed. Both agents203

use an exploration parameter α = 0.5 for this illustrative plot (sensitivity to α is explored in204

Appendix B.8). Results are averaged over Nruns = 15 independent seeds.205

Results. Figure 1b (see figure 5 for corresponding reward plots) illustrates the average206

cumulative regret on a log scale. The performance of SC-LinUCB (Semantic, orange207

line) is remarkably robust. Its cumulative regret remains very low, consistently around208

101 (approximately 10-20 units), across all four phases and 10000 time steps. Crucially, at209

the phase transitions (dashed vertical lines at t = 2500, 5000, 7500), its regret curve shows210

almost no perturbation. This demonstrates SC-LinUCB’s ability to gracefully handle tool211

removal, leverage its existing semantic knowledge to quickly incorporate new tools with212

familiar semantic embeddings (Phase 3), and effectively learn about novel semantic types213

when new queries make them relevant (Phase 4), all without catastrophic forgetting or costly214

re-learning phases.215

In stark contrast, LinUCB-OneHot (Non-Semantic, blue line) exhibits significantly216

higher regret and poor adaptation. Its regret climbs steeply, exceeding 103 by the end217

of the experiment. At each phase transition where the number of tools K changes, its218

regret curve shows a pronounced upward jump or a sharply increased slope. This is a direct219
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consequence of its model matrices (A, b) being re-initialized due to the change in its feature220

space dimensionality (dnon−sem = dq + K + 1), forcing it to largely relearn the value of tools221

from scratch for the new configuration.222

These results strongly underscore the high cost of adaptation for a non-semantic agent in223

dynamic environments. SC-LinUCB’s fixed-dimensional semantic feature space, combined224

with its capacity for semantic generalization, provides robust, efficient, and truly continual225

learning in the face of a changing action landscape.226

5 SC in LLM Tool Orchestrators227

Using and training LLM to orchestrate across O many tools can be done in a broad variety228

of methods. As previously mentioned it can be e.g. a classic policy mapping the query229

to an action (id or name) or a policy taking in the query alongside the semantic context.230

Crucially there is a variety of training regimes. A popular branch of methods used LLM231

fine-tuning techniques (full rank or low rank) using supervised fine-tuning [16] with RL232

reasoning [6, 26] and algorithms like PPO or GRPO. All of these provide semantic context233

in their implementations. An alternative is to follow the recipe in [5] and train a hierarchical234

policy that predicts in the first step for a given query a text description of the action it wants235

to take (or an embedding of the action) and performs in the second stage nearest-neighbour236

search/ softmax over k-nearest neighbours to select the respective action. A third method is237

to rely on the in-context learning abilities.238

We rigorously evaluate how SC impacts LLM in-context learning efficacy for sequential tool239

selection. We frame this as a multi-armed bandit (MAB) problem: an LLM agent learns to240

select optimal tools based on query context and interaction history presented via its prompt.241

Our investigation spans static and dynamic environments, assessing learning and adaptation.242

5.1 Experimental Design243

Our experimental design focuses on varying the semantic richness of action representations244

provided to the LLM. We consider four conditions:245

Index Only (IO): Actions are presented as abstract, non-informative indices (e.g., “Action246

1”, “Action 2”). This baseline tests the LLM’s ability to learn solely from correlations in247

the interaction history, Name Only (NO): Actions are presented by their names (e.g.,248

“Data Analyzer”, “QuickTranslate”). This provides a concise signal, yet it is quite fragile,249

Name + Description (ND): Actions are presented with their names and detailed functional250

descriptions, offering the richest semantic context and Description Only (DO): Actions are251

presented as abstract non-informative indices together with detailed functional descriptions.252

The LLM for all experiments is Gemini 2.0 Flash. Each experiment was conducted for253

multiple independent trials (5 for static environments, 7 for dynamic environments). The254

full prompt structure, LLM parameters (temperature 0.5, max output tokens 500− 1500),255

and detailed configurations of arms and queries are provided in appendix C.1. We report the256

average return over trials, where the expectation is taken over the stochasticity of rewards257

and LLM responses in figure 2. Average cumulative regrets are presented in figure 6.258

We designed four distinct experimental scenarios: Exp 1 (fQfA): fixed query and fixed tools259

probes baseline in-context learning of best arm selection; Exp 2 (mQfA): varied queries260

with fixed tools test contextual generalisation; Exp 3 (fQmA): fixed query with evolving261

tools measures adaptation; Exp 4 (mQmA): both queries and tools shift, stressing full262

non-stationary robustness.263

5.2 Results and Analysis264

The experimental results, depicted by the average cumulative reward curves in 2, reveal a265

nuanced and significant impact of semantic context on the LLM’s in-context learning and266

adaptation for tool selection. For the corresponding regret plot we refer the reader to figure267

6 in the appendix. With the small action gap and the poor performance of the index only,268

the cumulative reward plot tells the semantic baselines better apart.269
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Figure 2: Semantic Context yields higher average return across Experiments 1-4. Subplot
titles indicate: f=Fixed, m=Moving, Q=Queries, A=Actions. Shaded regions represent ±1
standard error of the mean (SEM) across trials. Higher values indicate better performance.
Note the varying x and y-axis scales.

Static Environments (fQfA - Exp1; mQfA - Exp2): In environments with fixed270

action spaces (Exp1 and Exp2 panels in 2), providing richer semantic context generally leads271

to higher cumulative rewards. ND (green solid line) and NO (orange dash-dot line) both272

outperform IO (blue dashed line). In Exp1 (fQfA), ND and NO perform very similarly, both273

achieving near-optimal reward accumulation, indicating that even names are sufficient for274

the single, repeated query. In Exp2 (mQfA), which involves multiple queries, ND maintains275

a slight edge over NO, suggesting that descriptions help differentiate tools more effectively276

as contextual complexity increases. IO consistently lags, demonstrating the LLM’s difficulty277

in accumulating rewards without semantic cues to guide its choices.278

Dynamic Environments (fQmA - Exp3; mQmA - Exp4): The introduction of279

non-stationarity through changing action spaces and/or queries highlights more complex280

interactions. In Experiment 3 (fQmA: fixed query, moving actions), the reward plot (2, Exp3281

panel) shows that the ND condition adapts most effectively to the introduction of a superior282

tool (“E3_SuperCalc”) around turn 17 (phase details in C.1.4). Its reward accumulation rate283

increases sharply after this point, surpassing NO. The NO condition also shows adaptation284

and reward growth but appears to either identify or commit to the superior tool with a285

delay or less consistency. The IO condition is slow in picking up the dynamic reward signal.286

Experiment 4 (mQmA: moving queries and actions) presents the most striking results (2,287

Exp4 panel). In this highly dynamic scenario, the NO achieves the highest cumulative reward,288

notably outperforming ND. This intriguing outcome suggests that when both tasks and tools289

are frequently changing, the conciseness of tool names might offer an advantage in terms of290

agile decision-making or reduced risk of misinterpretation compared to longer descriptions.291

The ND condition still performs well and significantly better than IOThe IO condition again292

accumulates the least reward, underscoring its inadequacy in complex dynamic settings.293

Findings: The results consistently demonstrate that the absence of semantic context (IO)294

severely limits the LLM’s ability to effectively learn and accumulate rewards in these tool-295

selection bandit tasks. Providing semantic information is crucial. Rich descriptions (ND) are296

generally powerful, particularly for rapid optimal tool identification in static settings and297

for adapting to clear improvements (like a new superior tool for a known task) in dynamic298

environments. However, the superior performance of Names Only in the most complex, fully299

dynamic scenario (Exp4) is a key finding. It suggests a potential trade-off: while detailed300

descriptions offer depth, concise and sufficiently indicative names might facilitate greater301

agility or reduce the processing/interpretation burden on the LLM when faced with rapid302

and multifaceted environmental changes. This implies that the optimal level of semantic303

detail for action representation may not be monolithic but rather depend on the stability304

and complexity of the operational environment. It is also crucial to reiterate the finding of305

[11] that the naming of tools alters much more across developers than descriptions, making306

this approach more fragile.307

Analysis of the Reasoning traces308

Reasoning traces from Gemini 2.0 Flash (detailed examples in App. C.3) reveal how LLMs309

leverage semantic context.310
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"Reasoning: The query mentions \"sales figures\" and \"growth pattern\", which
indicates numerical data and the need to find trends. The Data Analyzer tool is
specifically designed for processing numerical data arrays to find trends. The
other tools, Text Formatter and Image Resizer, are not relevant to this query.
Therefore, the Data Analyzer is the most likely to yield a reward.\n\n Chosen
Action: Data Analyzer"

311

Two main decision mechanisms are apparent: the reliance on previous experience (ICL312

exploration [8]), and semantic matching. Particularly with ND and NO, the LLM often313

engages in a two-step semantic matching process: 1) analyse the user query to infer the314

abstract capability required; 2) match this inferred need against the semantic information of315

available tools, selecting the best aligner. This resembles the two-step action selection [5]316

where the policy maps first to a desired description (proto action) and subsequently selects317

the most appropriate match. For instance, for a sales growth query, the LLM with ND or318

NO typically identifies a "Data Analyser" by matching functionality. The richness of ND319

can lead to more nuanced initial alignments (Exp3), while the conciseness of NO might offer320

faster, if less precise, matching in dynamic scenarios (Exp4), potentially reducing cognitive321

load. This relies however on the concise tool naming ability of the tool creator. [11] raise322

that tool and argument naming is more user-sensitive than the function description, making323

the latter more robust. Crucially, NO and even more ND can enable LLM to prioritize324

semantic fit over immediate past negative rewards for the best tool. In contrast, IO relies325

solely on the ICL ability of LLM. The observed two-step reasoning provides a qualitative326

explanation for SC’s quantitative benefits, suggesting that LLMs internalize descriptions for327

structured decision-making beyond simple index-based pattern matching.328

5.3 Semantic Context for Scaling Action Space329

Figure 3: Semantic Context is essential for scalable tool selection with top 5 filtering followed
by ND yields the strongest performance for large tool sets. Accuracy is plotted against the
total number of tools (log scale). The left plot shows accuracy of identifying the ground
truth tool, whereas the right plot uses an LLM as judge to evaluate the tool correctness.

In the previous subsection reasoning traces showed a two step of action description and action330

selection pattern. In all this experiments all tools and descriptions were part of the policy331

LLM context. To be practical, an orchestrator must scale to large amounts of tools. As the332

context of LLM runs naturally at some point out, we propose a "filter-then-reason-then-act"333

(FiReAct) pipeline. Pseudocode of FiReAct is provided in alg 1 and can be thought of as334

Tool-RAG version of RAG [10].335
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Algorithm 1 The FiReAct Pipeline
Require: Embedding model ϕ, LLM policy π, query qt, toolset At, num candidates k
1: Filter: Retrieve candidate subset Acand ⊆ At of size k via semantic search using ϕ(qt)

and {ϕ(ai)|ai ∈ At}.
2: Reason & Act: Select final action aselected ∈ Acand using the LLM policy

π(qt, CS(Acand)).
3: return aselected

There exist a variety of methods to filter for the candidate action set Acand. One could336

for example simply ask an LLM to do it. We instantiate the FiReAct pipeline using a337

text-embedding-004 retriever and a gemini-2.0-flash LLM policy. Firstly query and338

tools are embedded and the top k tools selected. These are feed (in the respective descriptive339

format (IO, ND,NO,DO) together with the query to the LLM policy. Based on this, the tool340

is selected. FireAct can be deployed at both test and train time. We demonstrate its usage341

at test time in a 0-shot pipeline on a challenging benchmark constructed from the XLAM342

dataset [25], evaluating 100 queries against a corpus of over 10,000 tools. Figure 3 plots343

tool selection accuracy for three strategies: pure semantic retrieval (‘top 1‘), LLM-filtered344

reasoning (‘top 5‘), and exhaustive unfiltered reasoning (‘all‘). The results are unequivocal:345

without SC, performance is catastrophic. The IO condition yields 0-shot just random pulls,346

thus (1/O) success rate.347

Given SC’s necessity, its quality is paramount. Rich ND context (green lines) consistently348

provides the highest accuracy across all methods, offering a distinct advantage over the weaker349

‘name only‘ and ‘description only‘ signals. This shows that while any semantic signal is350

beneficial, more detailed information provides critical disambiguation power, especially as the351

number of distractor tools increases. Note however the superiour/ competitive performance of352

NO with N+D for up to 100 distractor tools. This demonstrates that more detailed semantic353

information provides critical disambiguation power in complex environments. However less354

SC (NO) is sometimes simpler, we hypothesize due to the smaller context window.355

The most crucial finding, however, reveals how to best leverage SC at scale. While pure356

retrieval (‘top 1‘) is powerful, its top-1 precision degrades as the tool space grows; with 10,000357

distractors, the accuracy for ‘name + description‘ context falls to 75%(80% with LLM Judge).358

The retriever’s recall within the top 5 remains high, however, creating a vital opportunity for359

a reasoning step. By having the LLM re-rank these ‘top 5‘ candidates, we restore accuracy360

to nearly 90%. This 15% accuracy gain validates the FiReAct pipeline as a robust, scalable361

strategy, where SC is the essential for both initial filtering and final reasoning.362

6 Future Work and Conclusion363

This paper shows that explicit Semantic Context (SC) from action descriptions substantially364

improves tool orchestration: in linear contextual bandits, SC-LinUCB learns faster and365

adapts more robustly to dynamic action sets than non-semantic baselines, the same principle366

carries to LLMs via in-context learning, and our FiReAct pipeline scales the approach to367

thousands of tools. Limitations and directions include sharpening regret bounds for formally368

non-stationary toolsets (At), analyzing robustness to noisy or imperfect semantic features,369

and—on the LLM side—moving beyond model- and prompt-specific results toward theory370

for in-context tool learning; empirically, extending to fine-tuning and end-to-end trainable371

retrieval-reasoning pipelines is promising. Overall, by formalizing the “semantic advantage,”372

we argue for modeling actions by meaning rather than opaque indices, and we observe373

consistent benefits from linear models to large transformers. Structured action descriptions374

thus provide a principled path to agents that are more sample-efficient, adaptive, and scalable375

for complex, evolving toolsets.376
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NeurIPS Paper Checklist453

The checklist is designed to encourage best practices for responsible machine learning research,454

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not455

remove the checklist: The papers not including the checklist will be desk rejected.456

The checklist should follow the references and follow the (optional) supplemental material.457

The checklist does NOT count towards the page limit.458

Please read the checklist guidelines carefully for information on how to answer these questions.459

For each question in the checklist:460

• You should answer [Yes] , [No] , or [NA] .461

• [NA] means either that the question is Not Applicable for that particular paper or462

the relevant information is Not Available.463

• Please provide a short (1–2 sentence) justification right after your answer (even for464

NA).465

The checklist answers are an integral part of your paper submission. They are466

visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be467

asked to also include it (after eventual revisions) with the final version of your paper, and its468

final version will be published with the paper.469

The reviewers of your paper will be asked to use the checklist as one of the factors in their470

evaluation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to471

answer "[No] " provided a proper justification is given (e.g., "error bars are not reported472

because it would be too computationally expensive" or "we were unable to find the license for473

the dataset we used"). In general, answering "[No] " or "[NA] " is not grounds for rejection.474

While the questions are phrased in a binary way, we acknowledge that the true answer475

is often more nuanced, so please just use your best judgment and write a justification to476

elaborate. All supporting evidence can appear either in the main paper or the supplemental477

material, provided in appendix. If you answer [Yes] to a question, in the justification please478

point to the section(s) where related material for the question can be found.479

IMPORTANT, please:480

• Delete this instruction block, but keep the section heading “NeurIPS481

Paper Checklist",482

• Keep the checklist subsection headings, questions/answers and guidelines483

below.484

• Do not modify the questions and only use the provided macros for your485

answers.486

1. Claims487

Question: Do the main claims made in the abstract and introduction accurately488

reflect the paper’s contributions and scope?489

Answer: [Yes]490

Justification: The introduction clearly mentions our contributions.491

We had to restructure the paper. While the abstract mentions " Formally, we cast492

this as a Description-Augmented Lifelong MDP and provide theoretical analysis.493

We conclude this study by empirical studies in linear bandit and full reinforcement494

learning." We use slightly differnt naming conventions and stick with in context495

reinforcement learning (strictly speaking bandit, but the use of reinforcement learning496

related to LLM is increasingly fluid.497

Guidelines:498

• The answer NA means that the abstract and introduction do not include the499

claims made in the paper.500

• The abstract and/or introduction should clearly state the claims made, including501

the contributions made in the paper and important assumptions and limitations.502

A No or NA answer to this question will not be perceived well by the reviewers.503

12



• The claims made should match theoretical and experimental results, and reflect504

how much the results can be expected to generalize to other settings.505

• It is fine to include aspirational goals as motivation as long as it is clear that506

these goals are not attained by the paper.507

2. Limitations508

Question: Does the paper discuss the limitations of the work performed by the509

authors?510

Answer: [Yes]511

Justification: The conclusions mentions limitations.512

Guidelines:513

• The answer NA means that the paper has no limitation while the answer No514

means that the paper has limitations, but those are not discussed in the paper.515

• The authors are encouraged to create a separate "Limitations" section in their516

paper.517

• The paper should point out any strong assumptions and how robust the results518

are to violations of these assumptions (e.g., independence assumptions, noiseless519

settings, model well-specification, asymptotic approximations only holding520

locally). The authors should reflect on how these assumptions might be violated521

in practice and what the implications would be.522

• The authors should reflect on the scope of the claims made, e.g., if the approach523

was only tested on a few datasets or with a few runs. In general, empirical524

results often depend on implicit assumptions, which should be articulated.525

• The authors should reflect on the factors that influence the performance of the526

approach. For example, a facial recognition algorithm may perform poorly when527

image resolution is low or images are taken in low lighting. Or a speech-to-text528

system might not be used reliably to provide closed captions for online lectures529

because it fails to handle technical jargon.530

• The authors should discuss the computational efficiency of the proposed algo-531

rithms and how they scale with dataset size.532

• If applicable, the authors should discuss possible limitations of their approach533

to address problems of privacy and fairness.534

• While the authors might fear that complete honesty about limitations might535

be used by reviewers as grounds for rejection, a worse outcome might be that536

reviewers discover limitations that aren’t acknowledged in the paper. The537

authors should use their best judgment and recognize that individual actions in538

favor of transparency play an important role in developing norms that preserve539

the integrity of the community. Reviewers will be specifically instructed to not540

penalize honesty concerning limitations.541

3. Theory assumptions and proofs542

Question: For each theoretical result, does the paper provide the full set of assump-543

tions and a complete (and correct) proof?544

Answer: [Yes]545

Justification: We provide the theorem together with a proof sketch in the main paper.546

As the improvement is only in the constants we argue just for an improvement basic547

linucb remains in place.548

Guidelines:549

• The answer NA means that the paper does not include theoretical results.550

• All the theorems, formulas, and proofs in the paper should be numbered and551

cross-referenced.552

• All assumptions should be clearly stated or referenced in the statement of any553

theorems.554

• The proofs can either appear in the main paper or the supplemental material,555

but if they appear in the supplemental material, the authors are encouraged to556

provide a short proof sketch to provide intuition.557
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• Inversely, any informal proof provided in the core of the paper should be558

complemented by formal proofs provided in appendix or supplemental material.559

• Theorems and Lemmas that the proof relies upon should be properly referenced.560

4. Experimental result reproducibility561

Question: Does the paper fully disclose all the information needed to reproduce562

the main experimental results of the paper to the extent that it affects the main563

claims and/or conclusions of the paper (regardless of whether the code and data are564

provided or not)?565

Answer: [Yes]566

Justification: We describe in detail how to reproduce the results.567

Guidelines:568

• The answer NA means that the paper does not include experiments.569

• If the paper includes experiments, a No answer to this question will not be570

perceived well by the reviewers: Making the paper reproducible is important,571

regardless of whether the code and data are provided or not.572

• If the contribution is a dataset and/or model, the authors should describe the573

steps taken to make their results reproducible or verifiable.574

• Depending on the contribution, reproducibility can be accomplished in various575

ways. For example, if the contribution is a novel architecture, describing the576

architecture fully might suffice, or if the contribution is a specific model and577

empirical evaluation, it may be necessary to either make it possible for others578

to replicate the model with the same dataset, or provide access to the model. In579

general. releasing code and data is often one good way to accomplish this, but580

reproducibility can also be provided via detailed instructions for how to replicate581

the results, access to a hosted model (e.g., in the case of a large language model),582

releasing of a model checkpoint, or other means that are appropriate to the583

research performed.584

• While NeurIPS does not require releasing code, the conference does require all585

submissions to provide some reasonable avenue for reproducibility, which may586

depend on the nature of the contribution. For example587

(a) If the contribution is primarily a new algorithm, the paper should make it588

clear how to reproduce that algorithm.589

(b) If the contribution is primarily a new model architecture, the paper should590

describe the architecture clearly and fully.591

(c) If the contribution is a new model (e.g., a large language model), then there592

should either be a way to access this model for reproducing the results or a593

way to reproduce the model (e.g., with an open-source dataset or instructions594

for how to construct the dataset).595

(d) We recognize that reproducibility may be tricky in some cases, in which596

case authors are welcome to describe the particular way they provide for597

reproducibility. In the case of closed-source models, it may be that access to598

the model is limited in some way (e.g., to registered users), but it should be599

possible for other researchers to have some path to reproducing or verifying600

the results.601

5. Open access to data and code602

Question: Does the paper provide open access to the data and code, with sufficient603

instructions to faithfully reproduce the main experimental results, as described in604

supplemental material?605

Answer: [Yes]606

Justification: The appendix contains detailed reproduction instructions. After607

acceptance code will be released.608

Guidelines:609

• The answer NA means that paper does not include experiments requiring code.610
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• Please see the NeurIPS code and data submission guidelines (https://nips.611

cc/public/guides/CodeSubmissionPolicy) for more details.612

• While we encourage the release of code and data, we understand that this might613

not be possible, so “No” is an acceptable answer. Papers cannot be rejected614

simply for not including code, unless this is central to the contribution (e.g., for615

a new open-source benchmark).616

• The instructions should contain the exact command and environment needed617

to run to reproduce the results. See the NeurIPS code and data submis-618

sion guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy)619

for more details.620

• The authors should provide instructions on data access and preparation, in-621

cluding how to access the raw data, preprocessed data, intermediate data, and622

generated data, etc.623

• The authors should provide scripts to reproduce all experimental results for624

the new proposed method and baselines. If only a subset of experiments are625

reproducible, they should state which ones are omitted from the script and why.626

• At submission time, to preserve anonymity, the authors should release627

anonymized versions (if applicable).628

• Providing as much information as possible in supplemental material (appended629

to the paper) is recommended, but including URLs to data and code is permitted.630

6. Experimental setting/details631

Question: Does the paper specify all the training and test details (e.g., data splits,632

hyperparameters, how they were chosen, type of optimizer, etc.) necessary to633

understand the results?634

Answer: [Yes]635

Justification: We provide full experimental details in the appendix.636

Guidelines:637

• The answer NA means that the paper does not include experiments.638

• The experimental setting should be presented in the core of the paper to a level639

of detail that is necessary to appreciate the results and make sense of them.640

• The full details can be provided either with the code, in appendix, or as641

supplemental material.642

7. Experiment statistical significance643

Question: Does the paper report error bars suitably and correctly defined or other644

appropriate information about the statistical significance of the experiments?645

Answer: [Yes]646

Justification: We report mean + std bands over 15 seeds for the LinUCB experiments647

and 5 (fQfA) respectively 7 seeds in the in-context learning experiment.648

Guidelines:649

• The answer NA means that the paper does not include experiments.650

• The authors should answer "Yes" if the results are accompanied by error bars,651

confidence intervals, or statistical significance tests, at least for the experiments652

that support the main claims of the paper.653

• The factors of variability that the error bars are capturing should be clearly654

stated (for example, train/test split, initialization, random drawing of some655

parameter, or overall run with given experimental conditions).656

• The method for calculating the error bars should be explained (closed form657

formula, call to a library function, bootstrap, etc.)658

• The assumptions made should be given (e.g., Normally distributed errors).659

• It should be clear whether the error bar is the standard deviation or the standard660

error of the mean.661
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• It is OK to report 1-sigma error bars, but one should state it. The authors662

should preferably report a 2-sigma error bar than state that they have a 96%663

CI, if the hypothesis of Normality of errors is not verified.664

• For asymmetric distributions, the authors should be careful not to show in665

tables or figures symmetric error bars that would yield results that are out of666

range (e.g. negative error rates).667

• If error bars are reported in tables or plots, The authors should explain in the668

text how they were calculated and reference the corresponding figures or tables669

in the text.670

8. Experiments compute resources671

Question: For each experiment, does the paper provide sufficient information on the672

computer resources (type of compute workers, memory, time of execution) needed673

to reproduce the experiments?674

Answer: [Yes]675

Justification: We run all experiments in free tier colab cpu. We indicate this fact in676

the experimental section. For the ICL experiments we use gemini-2.0-flash via api.677

Guidelines:678

• The answer NA means that the paper does not include experiments.679

• The paper should indicate the type of compute workers CPU or GPU, internal680

cluster, or cloud provider, including relevant memory and storage.681

• The paper should provide the amount of compute required for each of the682

individual experimental runs as well as estimate the total compute.683

• The paper should disclose whether the full research project required more684

compute than the experiments reported in the paper (e.g., preliminary or failed685

experiments that didn’t make it into the paper).686

9. Code of ethics687

Question: Does the research conducted in the paper conform, in every respect, with688

the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?689

Answer: [Yes]690

Justification: No conflict with ethics guidelines due to conceptual nature.691

Guidelines:692

• The answer NA means that the authors have not reviewed the NeurIPS Code693

of Ethics.694

• If the authors answer No, they should explain the special circumstances that695

require a deviation from the Code of Ethics.696

• The authors should make sure to preserve anonymity (e.g., if there is a special697

consideration due to laws or regulations in their jurisdiction).698

10. Broader impacts699

Question: Does the paper discuss both potential positive societal impacts and700

negative societal impacts of the work performed?701

Answer: [No]702

Justification: The nature of the work is conceptual. RL training orchestrators could703

theoretically be used in a harmfull way through.704

Guidelines:705

• The answer NA means that there is no societal impact of the work performed.706

• If the authors answer NA or No, they should explain why their work has no707

societal impact or why the paper does not address societal impact.708

• Examples of negative societal impacts include potential malicious or unintended709

uses (e.g., disinformation, generating fake profiles, surveillance), fairness consid-710

erations (e.g., deployment of technologies that could make decisions that unfairly711

impact specific groups), privacy considerations, and security considerations.712
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• The conference expects that many papers will be foundational research and713

not tied to particular applications, let alone deployments. However, if there714

is a direct path to any negative applications, the authors should point it out.715

For example, it is legitimate to point out that an improvement in the quality716

of generative models could be used to generate deepfakes for disinformation.717

On the other hand, it is not needed to point out that a generic algorithm for718

optimizing neural networks could enable people to train models that generate719

Deepfakes faster.720

• The authors should consider possible harms that could arise when the technology721

is being used as intended and functioning correctly, harms that could arise when722

the technology is being used as intended but gives incorrect results, and harms723

following from (intentional or unintentional) misuse of the technology.724

• If there are negative societal impacts, the authors could also discuss possible725

mitigation strategies (e.g., gated release of models, providing defenses in addition726

to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a727

system learns from feedback over time, improving the efficiency and accessibility728

of ML).729

11. Safeguards730

Question: Does the paper describe safeguards that have been put in place for731

responsible release of data or models that have a high risk for misuse (e.g., pretrained732

language models, image generators, or scraped datasets)?733

Answer: [NA]734

Justification: [NA]735

Guidelines:736

• The answer NA means that the paper poses no such risks.737

• Released models that have a high risk for misuse or dual-use should be released738

with necessary safeguards to allow for controlled use of the model, for example739

by requiring that users adhere to usage guidelines or restrictions to access the740

model or implementing safety filters.741

• Datasets that have been scraped from the Internet could pose safety risks. The742

authors should describe how they avoided releasing unsafe images.743

• We recognize that providing effective safeguards is challenging, and many papers744

do not require this, but we encourage authors to take this into account and745

make a best faith effort.746

12. Licenses for existing assets747

Question: Are the creators or original owners of assets (e.g., code, data, models),748

used in the paper, properly credited and are the license and terms of use explicitly749

mentioned and properly respected?750

Answer: [NA]751

Justification: We use nothing beyond standard python and the connected ecosystem.752

Guidelines:753

• The answer NA means that the paper does not use existing assets.754

• The authors should cite the original paper that produced the code package or755

dataset.756

• The authors should state which version of the asset is used and, if possible,757

include a URL.758

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.759

• For scraped data from a particular source (e.g., website), the copyright and760

terms of service of that source should be provided.761

• If assets are released, the license, copyright information, and terms of use in762

the package should be provided. For popular datasets, paperswithcode.com/763

datasets has curated licenses for some datasets. Their licensing guide can help764

determine the license of a dataset.765
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• For existing datasets that are re-packaged, both the original license and the766

license of the derived asset (if it has changed) should be provided.767

• If this information is not available online, the authors are encouraged to reach768

out to the asset’s creators.769

13. New assets770

Question: Are new assets introduced in the paper well documented and is the771

documentation provided alongside the assets?772

Answer: [NA]773

Justification: [NA]774

Guidelines:775

• The answer NA means that the paper does not release new assets.776

• Researchers should communicate the details of the dataset/code/model as part777

of their submissions via structured templates. This includes details about778

training, license, limitations, etc.779

• The paper should discuss whether and how consent was obtained from people780

whose asset is used.781

• At submission time, remember to anonymize your assets (if applicable). You782

can either create an anonymized URL or include an anonymized zip file.783

14. Crowdsourcing and research with human subjects784

Question: For crowdsourcing experiments and research with human subjects, does785

the paper include the full text of instructions given to participants and screenshots,786

if applicable, as well as details about compensation (if any)?787

Answer: [NA]788

Justification: [NA]789

Guidelines:790

• The answer NA means that the paper does not involve crowdsourcing nor791

research with human subjects.792

• Including this information in the supplemental material is fine, but if the main793

contribution of the paper involves human subjects, then as much detail as794

possible should be included in the main paper.795

• According to the NeurIPS Code of Ethics, workers involved in data collection,796

curation, or other labor should be paid at least the minimum wage in the797

country of the data collector.798

15. Institutional review board (IRB) approvals or equivalent for research799

with human subjects800

Question: Does the paper describe potential risks incurred by study participants,801

whether such risks were disclosed to the subjects, and whether Institutional Review802

Board (IRB) approvals (or an equivalent approval/review based on the requirements803

of your country or institution) were obtained?804

Answer: [NA]805

Justification: [NA]806

Guidelines:807

• The answer NA means that the paper does not involve crowdsourcing nor808

research with human subjects.809

• Depending on the country in which research is conducted, IRB approval (or810

equivalent) may be required for any human subjects research. If you obtained811

IRB approval, you should clearly state this in the paper.812

• We recognize that the procedures for this may vary significantly between insti-813

tutions and locations, and we expect authors to adhere to the NeurIPS Code of814

Ethics and the guidelines for their institution.815

• For initial submissions, do not include any information that would break816

anonymity (if applicable), such as the institution conducting the review.817
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16. Declaration of LLM usage818

Question: Does the paper describe the usage of LLMs if it is an important, original,819

or non-standard component of the core methods in this research? Note that if820

the LLM is used only for writing, editing, or formatting purposes and does not821

impact the core methodology, scientific rigorousness, or originality of the research,822

declaration is not required.823

Answer: [Yes]824

Justification: LLM inspire the problem we study, we use LLM extensively for writing/825

formulating/ verificaton, assisting in writing code/ debugging, giving feedback on826

code/ sections of the paper, brainstorming and finding related articles.827

Guidelines:828

• The answer NA means that the core method development in this research does829

not involve LLMs as any important, original, or non-standard components.830

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)831

for what should or should not be described.832
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A Background833

A.1 Notation at a Glance834

Table 1: Notation at a glance
Symbol Meaning
At action set available at round t of cardinality Ot

ϕt(a) semantic feature vector of action a
dsem similarity metric on X
θ⋆ unknown linear reward vector
Vt design matrix at round t

A.2 Semantic Context MDP835

Definition A.1 (Semantic Context MDP, SC-MDP). An SC-MDP describes sequential836

decision-making with a fixed toolset Aavail and its corresponding fixed Semantic Action837

Context CS(Aavail). It is an MDP (S,A, P, R, γ) where: The state st ∈ S is typically (ht, qt),838

representing history and current query. The action space A consists of choices (aj , args(aj))839

where aj ∈ Aavail. The policy π(at|st) implicitly utilizes the fixed CS(Aavail) (which defines840

this specific MDP environment) to select at. Transitions P (st+1|st, at) and rewards R(st, at)841

are standard. Tool execution yields an output ot, forming part of ht+1.842

Definition A.2 (Lifelong Semantic Context MDP, LSC-MDP). An LSC-MDP models sce-843

narios with a dynamically changing tool set At. It is an MDP (SLSC ,ALSC , PLSC , RLSC , γ),844

where the state st ∈ SLSC is (ht, qt, CS(At)), explicitly includes the time-dependent SC845

CS(At) that changes as the tool set At evolves. The action space ALSC(st) comprises choices846

(aj , args(aj)) where aj ∈ At. The policy is π(at|st). Transition dynamics PLSC(st+1|st, at)847

determine the next query qt+1 and, crucially, the next available toolset At+1 (and thus848

CS(At+1)).849

B Appendix Semantic Context LINUCB850

B.1 Formal Assumptions851

For the linear bandit setting we have the following standard assumptions.852

Assumption B.1 (Contextual Linear Bandit Setting (Restated)). Over T timesteps, t ∈853

{1, . . . , T}:854

1. A context st is observed, from which a dq-dimensional query embedding qt = q(st) is855

derived.856

2. The agent selects an action (tool) at from a fixed set of K tools A = {a1, . . . , aK}.857

3. Each tool aj ∈ A has a ddesc-dimensional semantic description embedding ϕj =858

ϕ(Daj ).859

4. For each context-tool pair (qt, aj), a d-dimensional feature vector xt,j = x(qt,ϕj) is860

constructed. We assume ∥xt,j∥2 ≤ Lx.861

5. The expected reward is linear in these features: E[Rt(xt,j)|xt,j ] = xT
t,jθ

∗ for an862

unknown true parameter vector θ∗ ∈ Rd. We assume ∥θ∗∥2 ≤ Sθ.863

6. Observed rewards are Rt(xt,j) = xT
t,jθ

∗ + ηt,j, where ηt,j is conditionally σ-864

subGaussian noise: E[ηt,j |xt,j ] = 0 and E[eληt,j |xt,j ] ≤ eλ2σ2/2 for all λ ∈ R.865
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B.2 SC-LinUCB Algorithm Detail866

Algorithm 2 SC-LinUCB (Shared Model) - Appendix Version
Require: Exploration parameter α > 0, regularization λreg > 0.
1: Initialize A = λregId, b = 0d.
2: for t = 1, . . . , T do
3: Observe query qt.
4: For each tool aj ∈ A (with semantic embedding ϕj), construct feature vector

xt,j = x(qt,ϕj).
5: Compute A−1.
6: Compute θ̂t = A−1b.
7: For each tool aj ∈ A:
8: st,j ←

√
xT

t,jA−1xt,j

9: pt,j ← xT
t,j θ̂t + αst,j

10: Choose at = arg maxj∈{1,...,K} pt,j (break ties randomly).
11: Let xchosen

t = xt,at
.

12: Play tool at, observe reward Rt(xchosen
t ).

13: A← A + xchosen
t (xchosen

t )T .
14: b← b + Rt(xchosen

t )xchosen
t .

15: end for

B.3 Standard Lemmas and Proof for Generic LinUCB Regret867

Theorem B.2 (Confidence Set for θ∗, Theorem 2 from Abbasi-Yadkori et al. [1]). Under
Assumption 3.1, let δ ∈ (0, 1) and λreg > 0. Define

α′
t(δ) := σ

√
2 log(1/δ) + d log

(
1 + tL2

x

λregd

)
+

√
λregSθ

(This form of α is closer to the direct statement in Abbasi-Yadkori et al., Theorem 2, which868

uses log(det(At)/ det(λregI)) ≤ d log(1 + tL2
x/(λregd))). Then, with probability at least 1− δ,869

for all t ≥ 1, θ∗ lies in the set Ct = {θ ∈ Rd : ∥θ̂t − θ∥At
≤ α′

t(δ)}. This implies that for870

any x ∈ Rd with ∥x∥2 ≤ Lx, |xT (θ̂t − θ∗)| ≤ α′
t(δ)

√
xT A−1

t x. For the main paper, we use871

a slightly simplified α ≥ α′
T (δ) for clarity, which might incorporate a log K term for uniform872

convergence over arms at each step if not absorbed into δ.873

Proof. See proof of theorem 2 from Abbasi-Yadkori et al. [1] for full derivation.874

Lemma B.3 (Elliptical Potential Lemma, Lemma 11 from Abbasi-Yadkori et al. [1]).
Let x1, . . . , xT ∈ Rd be a sequence of feature vectors such that ∥xt∥2 ≤ Lx. Let At =
λregId +

∑t−1
j=1 xjxT

j . Then,

T∑
t=1

min(1, xT
t A−1

t xt) ≤ 2d log
(

1 + TL2
x

λregd

)

Proof. See proof of Lemma 11 from Abbasi-Yadkori et al. [1].875

B.4 Elleptical potential lemma876

We restate and proof the elleptical potential lemma:877

Lemma B.4 (Elliptical Potential Lemma, Lemma 11 from Abbasi-Yadkori et al. [1]).
Let x1, . . . , xT ∈ Rd be a sequence of feature vectors such that ∥xt∥2 ≤ Lx. Let At =
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λregId +
∑t−1

j=1 xjxT
j . Then,

T∑
t=1

min(1, xT
t A−1

t xt) ≤ 2d log
(

1 + TL2
x

λregd

)

If λreg ≥ L2
x, then xT

t A−1
t xt ≤ xT

t (λregId)−1xt = ∥xt∥2

λreg
≤ L2

x

λreg
≤ 1, so the min(1, ·) can be878

removed. For a general λreg, the bound still holds with the min.879

Proof. See Lemma 11 and Appendix A.3 in Abbasi-Yadkori et al. [1].880

B.5 Detailed Argument for Theorem 3.2 (Advantage of SC-LinUCB)881

Theorem 3.2 posits that SC-LinUCB achieves lower regret than LinUCB-NS by enabling882

more efficient exploration and generalization through its semantic features. We elaborate on883

the two main mechanisms:884

1. More Parsimonious Effective Model (Relating to d): The regret bound for885

LinUCB scales roughly with d, the feature dimensionality. For SC-LinUCB, features x(sem)
t,j =886

[qt;ϕj ; sim(qt,ϕj); 1] have dimension dsem = dq +ddesc +1+1. For LinUCB-NS with one-hot887

tool encodings, x(non−sem)
t,j = [qt; ej ; 1] has dimension dnon−sem = dq + K + 1.888

Assumption B.1 implies that the true reward function f∗(qt,ϕj) depends on shared semantic889

properties encoded in ϕj and their interaction with qt. If the diversity of K tools can be890

meaningfully captured by ddesc-dimensional semantic embeddings such that ddesc ≪ K (e.g.,891

tools fall into fewer semantic archetypes than K, or their reward-relevant variations are892

low-dimensional), then dsem can be substantially smaller than dnon−sem. SC-LinUCB learns893

a single parameter vector θ̂sem ∈ Rdsem . This vector effectively models the utility of semantic894

*attributes* (dimensions of qt, dimensions of ϕj , and their similarity) and how they combine895

to predict reward. This model is shared across all K tools. LinUCB-NS, on the other hand,896

needs to learn parameters in θ̂non−sem ∈ Rdnon−sem where K of these dimensions (from ej)897

are dedicated to capturing the unique identity and behavior of each tool. If there is underlying898

semantic redundancy across tools that LinUCB-NS cannot exploit, it is effectively learning a899

higher-dimensional model than necessary. Thus, if dsem < dnon−sem and both feature sets900

achieve a comparable quality of linear approximation (i.e., σeff,sem ≈ σeff,non−sem), the d901

factor in the regret bound directly favors SC-LinUCB. This represents a reduction in the902

complexity of the parameter space to be learned.903

2. Faster Reduction of Uncertainty for Semantically Similar Options (Relating904

to
∑

st,at): The instantaneous regret rt is bounded by 2αst,at = 2α
√

xT
t,at

A−1
t xt,at . The905

cumulative regret depends on the sum of these exploration terms. Consider the update to906

the covariance matrix At+1 = At + xtxT
t . The inverse A−1

t+1 shrinks based on the direction of907

xt. The exploration term s2
t′,j = xT

t′,jA−1
t+1xt′,j for any arm j at a future step t′ will decrease908

more significantly if xt′,j has a substantial component along the direction of xt (the chosen909

arm’s features at time t).910

For SC-LinUCB, if tool aa is chosen at time t (with features x(sem)
t,a ), the update to Asem911

reflects increased certainty along the semantic dimensions present in x(sem)
t,a . Now, consider912

another tool ab. If ab is semantically similar to aa with respect to context qt (or a similar913

context qt′), then their feature vectors x(sem)
t,a and x(sem)

t′,b will share many active semantic914

components (e.g., similar ϕ components, similar interaction terms). Consequently, the915

exploration term s
(sem)
t′,b for tool ab will also be reduced due to the information gained from916

pulling aa. The agent effectively learns about a "semantic neighborhood" of tools with each917

pull.918

For LinUCB-NS, the feature vectors x(non−sem)
t,a = [qt; ea; 1] and x(non−sem)

t,b = [qt; eb; 1] (for919

a ̸= b) have orthogonal tool-identity components ea and eb. An update from pulling aa920
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(involving ea) primarily reduces uncertainty associated with ea and its interaction with qt.921

It has minimal effect on reducing the uncertainty associated with the distinct orthogonal922

direction eb. Thus, LinUCB-NS learns little about ab’s specific utility from pulling aa, even923

if aa and ab are semantically very similar.924

This implies that SC-LinUCB can "cross off" or gain confidence about larger regions of the925

(context × semantic tool property) space with each observation. As a result, the sum of926

exploration terms
∑T

t=1 st,at
is expected to be smaller for SC-LinUCB compared to LinUCB-927

NS over T steps, as it requires fewer "distinctly exploratory" pulls to identify good actions928

across the spectrum of contexts and tools. While the Elliptical Potential Lemma (Lemma929

B.3) bounds
∑

s2
t,at

by O(d log T ) for both, the actual sequence of st,at
values chosen by930

SC-LinUCB can be smaller on average due to this generalization, leading to a tighter sum931

for
∑

st,at
when applying Cauchy-Schwarz.932

Combining a potentially smaller dsem with a more efficient exploration dynamic (leading to a933

smaller effective sum of exploration bonuses), SC-LinUCB achieves lower cumulative regret.934

B.6 SC-LinUCB in the continual setting935

Beyond efficiency with a fixed set of tools, SC-LinUCB’s semantic feature design offers936

significant advantages in continual learning scenarios where the set of available tools At937

(and thus its size Kt) changes over time. This is a critical capability for agents in evolving938

environments.939

Consider a setting with phases, where within each phase p, the toolset A(p) is fixed, but it940

can change between phases (e.g., A(p+1) = (A(p) \ Aremoved) ∪ Aadded).941

Theorem B.5 (Low-Cost Adaptation of SC-LinUCB to Dynamic Toolsets). Let SC-LinUCB942

use semantic features x(sem) of fixed dimension dsem and LinUCB-NS use one-hot features943

x(non−sem) of dimension dnon−sem(Kt) = dq +Kt +1. When the set of available tools changes944

from A(p) (size K(p)) to A(p+1) (size K(p+1)):945

1. SC-LinUCB (Semantic):946

• Its feature dimension dsem remains constant.947

• Its learned parameter vector θ̂
(p)
sem (from phase p) and covariance matrix A(p)

sem948

remain valid and are directly carried over to phase p + 1.949

• For any newly added tool anew ∈ Aadded with semantic embedding ϕnew, SC-950

LinUCB can immediately compute its feature vector x(sem)
q,new and estimate its951

utility using the existing θ̂
(p)
sem, yielding an informed initial UCB score.952

• The "cost of adaptation" is primarily the exploration required for new semantic953

aspects introduced by Aadded that were not sufficiently covered by θ̂
(p)
sem. If new954

tools are semantically similar to previously seen optimal tools, adaptation is955

very fast.956

2. LinUCB-NS (Non-Semantic Baseline):957

• If K(p+1) ̸= K(p), its feature dimension dnon−sem(Kt) changes. This958

necessitates a change in its parameter vector θ̂non−sem and matrices959

Anon−sem, bnon−sem.960

• Common strategies for LinUCB-NS include: (a) Full Re-initialization:961

Anon−sem and bnon−sem are reset. The agent effectively relearns from scratch962

for the new toolset A(p+1), incurring regret similar to starting a new ban-963

dit problem of size K(p+1). (b) Heuristic Adaptation: Attempting to adapt964

Anon−sem, bnon−sem (e.g., adding/removing rows/columns) is complex and typ-965

ically still treats new tool IDs as completely unknown entities requiring extensive966

exploration.967

• For any newly added tool anew, LinUCB-NS has no prior information derived968

from other tools about its utility, as its one-hot encoding is orthogonal to others.969
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• The "cost of adaptation" involves significant relearning for the entire (or sub-970

stantial parts of) the new toolset.971

Consequently, over a sequence of phases with changing toolsets, SC-LinUCB is expected to972

achieve substantially lower cumulative regret than LinUCB-NS due to its fixed-dimensional973

semantic representation, knowledge transfer via θ̂sem, and ability to gracefully incorporate or974

ignore tools based on their semantic features without model restructuring.975

Proof Sketch for Theorem B.5. This theorem’s argument builds on the properties of the976

agents and the implications of Theorem ?? applied piecewise.977

For SC-LinUCB: The feature space Rdsem and the parameter vector θ∗
sem are defined978

over semantic properties, not tool identities or the count Kt. Thus, the learned model979

(θ̂sem, Asem) retains its validity and utility when the set of available tools At changes.980

• Tool Addition: When anew (with ϕnew) is added, SC-LinUCB calculates x(sem)
q,new981

and its UCB score using the current θ̂sem and Asem. If ϕnew aligns semantically982

with query features for which θ̂sem has learned high weights, anew will be explored983

efficiently. The exploration cost is for resolving uncertainty about this specific x(sem)
q,new984

within the existing learned model structure. No part of the model needs to be985

"resized" or "reset."986

• Tool Removal: If aremoved is removed, SC-LinUCB simply no longer considers it for987

selection. Its learned θ̂sem and Asem (which contain information from past pulls of988

aremoved) remain valid for evaluating the remaining tools.989

The regret within any phase p where A(p) is fixed is governed by Theorem ?? with d = dsem.990

The transitions between phases incur minimal structural cost.991

For LinUCB-NS (OneHot): The feature space Rdnon−sem(Kt) explicitly depends on the992

current number of tools Kt via the one-hot encodings ej ∈ RKt .993

• Tool Addition (K increases): dnon−sem increases. The matrices Anon−sem and994

bnon−sem must be expanded. The new dimensions corresponding to the new tool ID995

have no prior history. Effectively, the agent must learn about this new tool’s interac-996

tion with all query types from scratch. If the agent fully resets Anon−sem, bnon−sem997

(as done in our Experiment 2 for a clear baseline), it starts a new learning prob-998

lem with regret Õ(dnon−sem(Knew)
√

Tphase). Even with more sophisticated matrix999

adaptation, the components of θ∗
non−sem relevant to the new tool are unknown.1000

• Tool Removal (K decreases): dnon−sem decreases. The agent might discard rows/-1001

columns from Anon−sem, bnon−sem. This is less detrimental than addition if no reset1002

occurs, but the overall problem structure for its features has changed.1003

The key issue is that LinUCB-NS’s learned knowledge is tied to specific tool indices. If these1004

indices change, or new ones appear, extensive relearning is often needed for those affected1005

dimensions. The strategy of re-initializing A, b upon change in K (as implemented for1006

LinUCB-OneHot in our Experiment 2) represents a clear case where it incurs a full bandit1007

learning cost for the new configuration.1008

Comparing Adaptation Costs: The "cost" can be seen as the additional regret incurred1009

during a phase transition compared to an oracle that was already adapted. For SC-LinUCB,1010

this cost is low because θ̂sem provides immediate, semantically-informed estimates for new1011

tools, and its structure is stable. For LinUCB-NS (with resets on K change), this cost is1012

high, equivalent to the initial regret of a new bandit problem. Thus, over multiple phases1013

of toolset changes, the cumulative regret of SC-LinUCB will be substantially lower due to1014

these significantly reduced adaptation costs at phase boundaries, on top of its potential1015

intra-phase efficiency from Theorem 3.2.1016
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B.7 Experiment 1: Detailed Setup and Full Results for Intra-Episode1017

Efficiency1018

This section provides further details for Experiment 1, which evaluates the intra-episode1019

efficiency of SC-LinUCB with semantic features against LinUCB-OneHot with non-semantic1020

features in a multi-context toy environment.1021

Environment Design. The environment is a contextual bandit task designed to highlight1022

the benefits of semantic generalization.1023

• Timesteps (T ): Each experimental run consists of T = 10000 timesteps.1024

• Tools (K): There are K = 6 tools available throughout each run.1025

• Tool Semantic Archetypes and Embeddings (ϕj): Tools are designed around1026

Narch = 3 underlying semantic archetypes. Each tool aj is assigned one of these1027

archetypes. Its dtool_sem = 2 dimensional toy semantic embedding ϕj is generated1028

by taking the corresponding archetype vector and adding Gaussian noise with zero1029

mean and standard deviation σemb_noise = 0.05. This noise is re-generated for each1030

of the Nruns independent experimental trials to ensure robustness of results to minor1031

variations in embeddings. The archetype vectors are:1032

– Archetype 1 (ϕarch1): [0.9, 0.1]T (2 tools assigned this archetype)1033

– Archetype 2 (ϕarch2): [0.1, 0.9]T (2 tools assigned this archetype)1034

– Archetype 3 (ϕarch3): [−0.7,−0.7]T (2 tools assigned this archetype, replacing1035

the previous 1 ’type3’ and 1 ’noise’ for more symmetry)1036

• Queries/Contexts (qt): There are NQ = 3 distinct query types, each represented1037

by a dq = 2 dimensional toy embedding. These queries cycle periodically every NQ1038

timesteps (i.e., qA, qB , qC , qA, qB , qC , . . . ). The query embeddings are:1039

– Query A (qA): [1.0, 0.2]T , designed to align best with Tool Archetype 1.1040

– Query B (qB): [0.2, 1.0]T , designed to align best with Tool Archetype 2.1041

– Query C (qC): [−0.8,−0.8]T , designed to align best with Tool Archetype 3.1042

• Reward Function (Rt): The reward Rt ∈ {0, 1} is stochastic, drawn from a
Bernoulli distribution. The success probability P (success|qt, ϕj) is determined by
the semantic alignment between the current query qt and the chosen tool’s embedding
ϕj . Specifically:

P (success) = clip(Pbase + Csim · (qT
t ϕj) + Balign, Pmin, Pmax)

where Pbase = 0.45 is a base success rate, Csim = 0.40 scales the dot product1043

similarity, and Balign = 0.25 is a bonus awarded if the chosen tool’s true archetype1044

matches the current query’s preferred archetype. Probabilities are clipped to [Pmin =1045

0.05, Pmax = 0.95]. This structure ensures that tools whose semantic embeddings1046

align well with the current query, especially those of the preferred archetype, have a1047

higher expected reward.1048

Agent Configurations. Both SC-LinUCB and LinUCB-OneHot are instances of the1049

stanard LinUCB algorithm differing only in their feature construction:1050

• SC-LinUCB (Semantic): Uses dsem = dq + dtool_sem + 1(similarity) + 1(bias) =1051

2 + 2 + 1 + 1 = 6 dimensional features: x(sem)
t,j = [qt; ϕj ; qT

t ϕj ; 1].1052

• LinUCB-OneHot (Non-Semantic Baseline): Uses dnon−sem = dq + K +1053

1(bias) = 2 + 6 + 1 = 9 dimensional features: x(non−sem)
t,j = [qt; ej ; 1], where1054

ej is the one-hot encoding for tool aj .1055

Both agents use λreg = 1.0. We evaluate exploration parameters α ∈ {0.3, 0.5, 1.0}.1056
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Evaluation Metrics. Results are averaged over Nruns = 15 independent Monte Carlo1057

runs. We report:1058

1. Average Cumulative Reward: 1
Nruns

∑Nruns

run=1
∑T

t=1 R
(run)
t .1059

2. Average Cumulative Regret: 1
Nruns

∑Nruns

run=1
∑T

t=1(E[R|qt, a∗
t ]− E[R|qt, a

(run)
t ]).1060

Here, E[R|qt, a] is the true expected reward (success probability) of tool a for query1061

qt, and a∗
t is the tool with the maximum expected reward for qt. This uses expected1062

instantaneous regret for smoother non-decreasing cumulative regret curves.1063

Full Experimental Results. Figure 4 shows both the average cumulative reward and1064

average cumulative regret on logarithmic y-axes for all tested α values.1065

Figure 4: Full results for Experiment 1: SC-LinUCB (Semantic) vs. LinUCB-OneHot
(Non-Semantic) in the multi-context toy environment (T = 10000, 15 runs). Left: Average
Cumulative Reward (log scale). Right: Average Cumulative Regret (log scale). Different line
styles/colors within agent types correspond to α ∈ {0.3, 0.5, 1.0}.

The results clearly indicate the superiority of SC-LinUCB. In the reward plot (left), SC-1066

LinUCB variants (particularly with α = 1.0, purple dashed line) accumulate substantially1067

more reward over time compared to LinUCB-OneHot variants. The log scale emphasizes the1068

sustained higher rate of reward collection.1069

The regret plot (right) offers the most striking comparison. SC-LinUCB agents maintain1070

an extremely low cumulative regret (primarily between 100 and 101), indicating rapid1071

convergence to near-optimal policies for the cycling contexts. The SC-LinUCB (Semantic)1072

α = 0.3 (blue solid line) shows the lowest regret overall. In stark contrast, all LinUCB-1073

OneHot variants incur regret that is orders of magnitude higher, reaching 103. While their1074

regret curves are sublinear (indicating learning), their inefficiency compared to SC-LinUCB1075

is evident. The LinUCB-OneHot agent with α = 1.0 (brown solid line) performs best among1076

the non-semantic baselines but is still vastly outperformed.1077

These empirical findings strongly corroborate our theoretical analysis (Theorem 3.2). The1078

ability of SC-LinUCB to generalize across tools and contexts using a compact semantic1079

feature space (dsem = 6) leads to substantially more efficient learning than LinUCB-OneHot,1080

which must learn more independently for each tool ID within its higher-dimensional feature1081

space (dnon−sem = 9). The semantic features provide a powerful inductive bias that aligns1082

with the problem structure, reducing the effective complexity faced by the learning algorithm.1083

B.8 Experiment 2: Detailed Results for Continual Adaptation with Varying1084

Exploration1085

This section provides the full results for Experiment 2, which evaluates the continual1086

adaptation capabilities of SC-LinUCB (Semantic) and LinUCB-OneHot (Non-Semantic) in1087
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an environment with dynamically changing toolsets. We present a sensitivity analysis with1088

respect to the exploration parameter α ∈ {0.3, 0.5, 1.0}.1089

Experimental Setup Recap. The environment consists of four distinct phases, each1090

lasting Tphase = 2500 timesteps (total T = 10000). The set of available tools (K) and active1091

query types (NQ) evolve across these phases, involving tool addition (of both semantically1092

familiar and novel types), tool removal, and the introduction of new query types corresponding1093

to novel tools.1094

• Phase 1 (K = 4, NQ = 3): Initial tools: {aA1, aA2(type1); aB1, aB2(type2)}.1095

Queries: qA, qB , qC .1096

• Phase 2 (K = 3, NQ = 3): Tool aA2 (type1) removed. (Starts at t = 2500)1097

• Phase 3 (K = 4, NQ = 3): New tool aA3 (type1, semantically similar to aA1)1098

added. (Starts at t = 5000)1099

• Phase 4 (K = 5, NQ = 4): New tool aD1 (novel semantic type4) added; query qD1100

(aligning with type4) becomes active. (Starts at t = 7500)1101

LinUCB-OneHot re-initializes its model matrices (A, b) when K changes. SC-LinUCB’s core1102

model matrices and semantic feature dimension (dsem = 6) remain fixed. Toy embeddings1103

and the reward function are as described in Appendix C.1.2 (or a dedicated Exp2 setup1104

section if it differs significantly). All results are averaged over Nruns = 15 independent seeds.1105

Results with Varying Alphas. Figure 5 displays the average cumulative reward (left,1106

log scale) and average cumulative regret (right, log scale) for both SC-LinUCB and LinUCB-1107

OneHot across the three tested values of α.1108

Figure 5: Experiment 2 (Continual Adaptation): Performance of SC-LinUCB (Semantic) and
LinUCB-OneHot (Non-Semantic) with varying exploration parameters α ∈ {0.3, 0.5, 1.0}.
Results over 4× 2500 timesteps, averaged over 15 runs. Vertical dashed lines indicate phase
shifts. Left: Average Cumulative Reward (log scale). Right: Average Cumulative Regret (log
scale).

Cumulative Reward Analysis (Figure 5, Left): SC-LinUCB variants consistently1109

achieve higher cumulative rewards than LinUCB-OneHot variants across all tested α values.1110

For SC-LinUCB, α = 1.0 (purple dashed line) yields the highest overall reward, suggesting1111

that with strong semantic features, a reasonably high level of exploration can be beneficial1112

for maximizing long-term reward, even in a changing environment. For LinUCB-OneHot,1113

α = 1.0 (brown dashed line) is also its best configuration, but it still lags significantly1114

behind all SC-LinUCB variants. The SC-LinUCB curves maintain a steadier rate of reward1115

accumulation across phase transitions, whereas the LinUCB-OneHot curves show more1116

pronounced slowdowns or changes in slope, indicative of their relearning periods.1117
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Cumulative Regret Analysis (Figure 5, Right): The regret plot starkly illustrates the1118

advantages of SC-LinUCB.1119

• SC-LinUCB (Semantic): All variants (blue α = 0.3, green α = 0.5, purple1120

α = 1.0) maintain exceptionally low cumulative regret, generally staying within the1121

100 to 101 range over 10000 steps. The phase transitions cause only minor, temporary1122

increases in regret, from which they recover quickly. SC-LinUCB with α = 0.3 and1123

α = 0.5 show particularly stable and low regret. The α = 1.0 variant, while achieving1124

high rewards, exhibits slightly higher regret and notably wider variance (shaded1125

area), especially around phase shifts, likely due to more extensive exploration when1126

the environment changes. This indicates that while higher exploration can find good1127

policies, it might come at the cost of some initial suboptimality if the semantic signal1128

is already strong.1129

• LinUCB-OneHot (Non-Semantic): All variants incur substantially higher regret,1130

ending up in the 102 to 103 range. Crucially, at each phase transition where K1131

changes (vertical dashed lines), there is a distinct upward turn or steepening of the1132

regret slope. This clearly visualizes the significant cost of adaptation incurred by1133

LinUCB-OneHot as it re-initializes its model and relearns the utility of tools largely1134

from scratch. Increased exploration (e.g., α = 1.0, brown line) helps LinUCB-OneHot1135

achieve lower regret compared to its lower α counterparts, but it remains orders of1136

magnitude worse than any SC-LinUCB variant.1137

Conclusion from Alpha Sensitivity. SC-LinUCB demonstrates robust superiority1138

over LinUCB-OneHot across the tested range of exploration parameters in this continual1139

learning setting. Its ability to leverage fixed-dimensional semantic features allows for graceful1140

adaptation to dynamic toolsets with minimal regret cost. While LinUCB-OneHot does1141

benefit from increased exploration, its fundamental inability to generalize semantically across1142

tools and its need to restructure its feature space when the number of tools changes impose1143

a significant and persistent learning burden. For the main paper, we typically present results1144

for a representative α (e.g., α = 0.5) that showcases good performance for SC-LinUCB, as1145

seen in Figure 1b. This detailed ablation confirms the general trends.1146
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C Appendix ICL Experiments1147

C.1 Experimental Setup Details1148

This section provides comprehensive details of the configurations used for all experiments1149

discussed in the main paper, ensuring reproducibility.1150

C.1.1 LLM Parameters and Prompt Structure1151

The Large Language Model (LLM) utilized across all four experiments was Gemini 2.0 Flash,1152

accessed via the models/gemini-2.0-flash API endpoint. Key generation parameters were1153

consistently set as follows:1154

• Temperature: 0.51155

• Maximum Output Tokens: 500 for Experiments 1 & 2; 1500 for Experiments 3 & 41156

(to accommodate potentially longer reasoning with dynamic changes).1157

No specialized safety settings beyond API defaults were applied.1158

The fundamental prompt structure provided to the LLM comprised a system message defining1159

the task and action presentation, followed by the interaction history and the current query.1160

System Prompt Template:1161

Prompt

You are an intelligent assistant playing a multi-armed bandit game.
Your goal is to maximize your total reward over many turns.
The available actions (tools) or types of queries may change over time.
In each turn, you are presented with a user query and a list of currently
available actions. Each action, when chosen for a query it is suited for,
has a specific hidden probability of yielding a reward of 1, and 0 otherwise.
If an action is not suited for the query, or no suitable action is available,
it will likely yield a reward of 0.
You must choose one action if suitable options exist.
If no actions are available or suitable, state that.

Available actions: [
{Formatted list of actions based on experimental condition}

]

1162

The placeholder {Formatted list of actions...} was populated according to the active1163

experimental condition (Index Only, Names Only, Description Only or Names + Descriptions)1164

for the currently available tools in that phase/turn.1165

User Message Template per Turn:1166

Prompt

Interaction History (most recent 20 turns shown for LLM context):
{Interaction history string, e.g.,
Turn 1: Query: "Full Query Text 1", Your Choice: ActionName1, Outcome: Reward

0
...
Turn K: Query: "Full Query Text K", Your Choice: ActionNameK, Outcome: Reward

R_K
}

Current User Query (Global Turn {current_global_turn}): "{Current Query Text
}"

1167

29



Think step-by-step about which action is best for the current query.
Consider the query, CURRENTLY available action descriptions, and past

experiences.
After your reasoning, state your final choice clearly.
For example: "Reasoning: [...reasons...]. Chosen Action: ActionName Or Index".

If no action is suitable or available, you can state ’Chosen Action: None’.
Which action do you choose?

1168

The interaction history provided in the prompt to the LLM contained the full text of the1169

past 20 queries, chosen actions, and their rewards. The experimental framework maintained1170

the complete history for logging and analysis. Each experiment was run for a set number of1171

independent trials: 5 trials for Experiments 1 and 2 (static), and 7 trials for Experiments 31172

and 4 (dynamic).1173

C.1.2 Experiment 1 (fQfA) Configuration Details1174

• Description: Single query repeated for T = 10 turns, fixed action space.1175

• Query (q_analyze): “I have a list of sales figures for the last quarter, can you help1176

me understand the growth pattern?” (Optimal Arm: tool_A)1177

• Arm Configurations:1178

– tool_A (Data Analyzer): “Processes numerical data arrays to find trends.”1179

(ptrue = 0.9, psubopt = 0.55)1180

– tool_B (Text Formatter): “Cleans and formats long text strings.” (Designed1181

with ptrue = 0.9, used with psubopt = 0.5 when chosen for q_analyze)1182

– tool_C (Image Resizer): “Changes the dimensions of image files.” (Designed1183

with ptrue = 0.8, used with psubopt = 0.6 when chosen for q_analyze)1184

C.1.3 Experiment 2 (mQfA) Configuration Details1185

• Description: Queries randomly drawn from a fixed set for T = 50 turns, fixed1186

action space.1187

• Arm Configurations:1188

• tool_translate (QuickTranslate): “Translates short text snippets between common1189

languages.” (ptrue = 0.85, psubopt = 0.5)1190

• tool_summarize (BriefSummary): “Creates a one-sentence summary of a paragraph.”1191

(ptrue = 0.75, psubopt = 0.5)1192

• tool_calendar (EventScheduler): “Adds events to a user’s primary calendar.”1193

(ptrue = 0.9, psubopt = 0.55)1194

• tool_filesearch (DocFinder): “Searches for local documents by keyword.” (ptrue =1195

0.7, psubopt = 0.6)1196

• Query Configurations (Randomly Sampled from this set):1197

• q_trans_hello: “How do you say ’hello’ in Spanish?” (Optimal: tool_translate)1198

• q_sum_paragraph: “Give me the gist of this: ’The quick brown fox jumps over the1199

lazy dog every day.”’ (Optimal: tool_summarize)1200

• q_sched_meeting: “Schedule a meeting with Jane for tomorrow at 2 PM.” (Optimal:1201

tool_calendar)1202

• q_find_report: “Find the Q3 sales report document on my drive.” (Optimal:1203

tool_filesearch)1204

• q_trans_bye: “What is ’goodbye’ in French?” (Optimal: tool_translate)1205

• q_sum_news: “Briefly, what’s this news about: ’Local team wins championship after1206

a dramatic final.’?” (Optimal: tool_summarize)1207
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C.1.4 Experiment 3 (fQmA) Configuration Details1208

• Description: Single query repeated for T = 35 turns (total across phases), action1209

space changes in phases.1210

• Query (Q_ComplexMath): “Solve the integral of x ˆ 2 * sin(x) from 0 to pi, and1211

also find the square root of 1764.” (Designated Optimal Arm (when available):1212

E3_SuperCalc)1213

• Master Arm Configurations:1214

• E3_Calculator (Basic Calculator): “Performs simple arithmetic (+, -, *, /).”1215

(ptrue = 0.7, psubopt = 0.1)1216

• E3_SciCalculator (Scientific Calculator): “Advanced math functions: exponents,1217

logs, trig.” (ptrue = 0.9, psubopt = 0.15)1218

• E3_UnitConverter (Unit Converter): “Converts units (e.g., kg to lbs, meters to1219

feet).” (ptrue = 0.8, psubopt = 0.05)1220

• E3_Plotter (Data Plotter): “Generates simple plots from data.” (ptrue =1221

0.6, psubopt = 0.1)1222

• E3_SuperCalc (SuperMath Solver): “Handles complex algebra, calculus, and sym-1223

bolic math. The ultimate math tool.” (ptrue = 0.95, psubopt = 0.2)1224

• Phase Details (Total 35 Turns):1225

– Phase 1 (P1_BasicTools, 7 Turns): Active Arms: {E3_Calculator,1226

E3_UnitConverter}.1227

– Phase 2 (P2_SciCalc_Added, 10 Turns): Active Arms: {E3_Calculator,1228

E3_SciCalculator, E3_UnitConverter}.1229

– Phase 3 (P3_SuperCalc_Arrives, 10 Turns): Active Arms:1230

{E3_SciCalculator, E3_SuperCalc}.1231

– Phase 4 (P4_SuperCalc_Only, 8 Turns): Active Arms: {E3_SuperCalc,1232

E3_Plotter}.1233

C.1.5 Experiment 4 (mQmA) Configuration Details1234

• Description: Both queries (randomly drawn from phase-specific sets) and actions1235

change over T = 28 turns (total across phases).1236

• Master Arm Configurations:1237

• E4_Translate_EN_DE (German Translator): (ptrue = 0.9, psubopt = 0.1)1238

• E4_Summarize_News (News Summarizer): (ptrue = 0.85, psubopt = 0.15)1239

• E4_Weather_API (City Weather): (ptrue = 0.92, psubopt = 0.1)1240

• E4_Image_Resize (Image Resizer): (ptrue = 0.8, psubopt = 0.05)1241

• E4_Code_Python (Python Code Assistant): (ptrue = 0.75, psubopt = 0.2)1242

• E4_General_QA (Knowledge Bot): (ptrue = 0.7, psubopt = 0.3)1243

• Master Query Configurations:1244

• Q_Translate_Hello_DE (Optimal: E4_Translate_EN_DE)1245

• Q_Summarize_Article (Optimal: E4_Summarize_News)1246

• Q_Weather_Berlin (Optimal: E4_Weather_API)1247

• Q_Resize_Logo (Optimal: E4_Image_Resize)1248

• Q_Python_Loop (Optimal: E4_Code_Python)1249

• Q_Capital_France (Optimal: E4_General_QA)1250

• Q_Weather_Tokyo (Optimal: E4_Weather_API)1251

• Q_Python_Function (Optimal: E4_Code_Python)1252

• Phase Details (Total 28 Turns):1253

31



– Phase 1 (P1_Lang_Summary, 8 Turns): Active Arms: {E4_Translate_EN_DE,1254

E4_Summarize_News, E4_General_QA}. Active Queries:1255

{Q_Translate_Hello_DE, Q_Summarize_Article, Q_Capital_France}.1256

– Phase 2 (P2_Weather_Image, 10 Turns): Active Arms: {E4_Weather_API,1257

E4_Image_Resize, E4_General_QA}. Active Queries: {Q_Weather_Berlin,1258

Q_Resize_Logo, Q_Capital_France, Q_Weather_Tokyo}.1259

– Phase 3 (P3_Coding_Focus, 10 Turns): Active Arms: {E4_Code_Python,1260

E4_General_QA, E4_Weather_API}. Active Queries: {Q_Python_Loop,1261

Q_Capital_France, Q_Weather_Tokyo, Q_Python_Function}.1262

C.2 Additional plots1263

The following figures illustrate the average cumulative regret accrued by the agent under1264

each condition. These trends generally corroborate the findings from the reward analysis.1265

Figure 6: Average Cumulative Expected Regret across Experiments 1-4. Subplot titles use
abbreviations: f=Fixed, m=Moving, Q=Queries, A=Actions. Shaded regions represent ±1
standard error of the mean (SEM) across trials. Note the varying x and y-axis scales across
subplots, reflecting different experiment durations and regret magnitudes.

The experimental results, summarized by the average cumulative expected regret curves in1266

figure 6, consistently demonstrate the profound impact of semantic context on the LLM’s1267

in-context learning and adaptation for tool selection.1268

Static Environments (Exp1: fQfA; Exp2: mQfA): In environments with fixed action1269

spaces and query distributions, the provision of rich semantic information via Names +1270

Descriptions (ND) yields unequivocally superior performance. As illustrated in 6 (Exp11271

and Exp2 panels), the ND condition (green solid line) maintains a cumulative expected1272

regret near zero throughout. This indicates that detailed tool descriptions enable the LLM1273

to rapidly and accurately identify the optimal tool for a given query from the initial turn,1274

effectively bypassing the need for substantial exploration. The LLM, in this condition,1275

behaves as if endowed with strong priors that align well with the task structure.1276

In stark contrast, the Index Only (IO) condition (blue dashed line) results in the highest1277

cumulative regret, which increases approximately linearly. This suggests that in the absence1278

of semantic anchors, the LLM struggles to discern effective query-action mappings, leading1279

to inefficient, near-random exploration or persistent suboptimal choices. The Names Only1280

(NO) condition (orange dash-dot line) performs comparably poorly to IO in these static1281

settings, indicating that simple tool names alone provide insufficient semantic grounding for1282

the LLM to reliably infer optimal behavior or differentiate tool efficacies.1283

Dynamic Environments (Exp3: fQmA; Exp4: mQmA): Non-stationary environments,1284

characterized by changes in the available toolset and/or query distribution, reveal more1285

nuanced interactions between semantic context and adaptability.1286

In Experiment 3 (fQmA: fixed query, moving actions), the ND condition again demonstrates1287

robust adaptation (6, Exp3 panel). While regret initially accumulates for all conditions due1288

to the unavailability of the globally optimal tool (“E3_SuperCalc”), the ND agent’s regret1289

plateaus sharply around turn 17. This event corresponds to a phase change introducing1290

“E3_SuperCalc” (details in C.1.4), which the ND agent immediately identifies and exploits1291

due to its descriptive alignment with the complex, fixed query. The NO agent also adapts,1292

but with a discernible delay and to a higher regret plateau, suggesting that names offer some1293
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utility for identifying new tools but are less efficient than full descriptions. The IO agent1294

fails to adapt effectively, its regret continuing to climb.1295

Experiment 4 (mQmA: moving queries and actions) presents the most complex scenario1296

and yields a particularly insightful result (6, Exp4 panel). Here, while the ND condition1297

maintains very low regret overall, demonstrating strong adaptability, the Names Only1298

(NO) condition performs remarkably well, achieving comparable, and at times1299

even slightly lower, cumulative regret than ND, particularly in later phases. This1300

unexpected outcome suggests that in highly dynamic and complex environments, excessively1301

detailed or numerous descriptions might introduce a cognitive load or risk of misinterpretation1302

that slightly hampers agility. Concise, sufficiently indicative names, under such rapid flux,1303

might allow the LLM to maintain a more flexible mapping, leading to surprisingly robust1304

performance. Nevertheless, both NO and ND vastly outperform the IO condition, which1305

struggles profoundly with the compound dynamism.1306

C.3 Example Reasoning Traces1307

Consider, for example, responses to the query:1308

"query_text": "I have a list of sales figures for the last quarter, can you1309

help me understand the growth pattern?",1310

• Index only:1311

– "Reasoning: The user is asking for help understanding sales figures and growth1312

patterns. This suggests a need for data analysis and visualization. Without1313

knowing the specific functionality of each action, I will assume Action 1 is a1314

general-purpose tool that can handle data analysis tasks. Actions 2 and 3 might1315

be specialized tools that are less likely to be relevant to this general request.\n\n1316

Chosen Action: Action 1\n",1317

– "Reasoning: The query is about sales figures and understanding growth patterns.1318

Action 1 has consistently provided rewards for similar queries in the past.1319

Therefore, it is likely the best choice for this query as well.\n Chosen Action:1320

Action 1",1321

• Names:1322

– "Reasoning: The query asks for help understanding a growth pattern in sales1323

figures. This clearly points to data analysis as the appropriate action. The1324

other actions, Text Formatter and Image Resizer, are not relevant to numerical1325

data analysis.\n\n Chosen Action: Data Analyzer",1326

– "Reasoning: The query is about understanding the growth pattern of sales1327

figures. The "Data Analyzer" tool has consistently provided a reward of 1 for1328

similar queries in the past. The other tools, "Text Formatter" and Ïmage Resizer̈,1329

are not relevant to analyzing numerical data. Therefore, the "Data Analyzer" is1330

the most likely action to yield a reward.\n\n Chosen Action: Data Analyzer",1331

• Names + Descriptions:1332

– "Reasoning: The query mentions s̈ales figuresänd g̈rowth pattern̈, which indicates1333

numerical data and the need to find trends. The Data Analyzer tool is specifically1334

designed for processing numerical data arrays to find trends. The other tools,1335

Text Formatter and Image Resizer, are not relevant to this query. Therefore,1336

the Data Analyzer is the most likely to yield a reward.\n\n Chosen Action:1337

Data Analyzer",1338

– "Reasoning: The query explicitly mentions s̈ales figuresänd g̈rowth pattern,ẅhich1339

are numerical data-related tasks. The Data Analyzer is designed to process1340

numerical data arrays to find trends. In the previous turn with a similar query,1341

the Data Analyzer yielded a reward of 0. However, this could be due to chance,1342

and the Data Analyzer is still the most appropriate tool for this type of query.1343

The other tools are clearly not relevant.\n\n Chosen Action: Data Analyzer",1344
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C.4 Filter Reason Act Pipeline1345

We use the following prompt for 0-shot experiment:1346

Prompt

f"""[BEGIN OF TASK INSTRUCTION]
You are an expert in composing functions. You are given a question and a set

of possible functions.
Based on the question, you will need to make one or more function/tool calls

to achieve the purpose.
If none of the function can be used, point it out and refuse to answer.
If the given question lacks the parameters required by the function, also

point it out.
[END OF TASK INSTRUCTION]
[BEGIN OF AVAILABLE TOOLS]
{actions_prompt_part}
[END OF AVAILABLE TOOLS]
[BEGIN OF FORMAT INSTRUCTION]
The output MUST strictly adhere to the following JSON format,
and NO other text MUST be included.
The example format is as follows. Please make sure the
parameter type is correct. If no function call is needed,
please make tool_calls an empty list []

{{
"tool_calls": [
{{"name": "func_name1", "arguments": {{"argument1": "value1", "argument2": "

value2"}}}},
... (more tool calls as required)
]
}}

[END OF FORMAT INSTRUCTION]
[BEGIN OF QUERY]
User Query: {query}
[END OF QUERY]
"""

1347

where actions_prompt_part are the available actions with descriptions in the respective1348

IO, NO, DO or DN format and query is the respective task.1349

The LLM as judge model used was gemini-2.5-flash-light.1350
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