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Abstract

This paper demonstrates that Semantic Context (SC), leveraging descriptive
tool information, is a foundational component for robust tool orchestration.
Our contributions are threefold. First, we provide a theoretical foundation
using contextual bandits, introducing SC-LinUCB and proving it achieves
lower regret and adapts favourably in dynamic action spaces. Second, we
provide parallel empirical validation with Large Language Models, showing
that SC is critical for successful in-context learning in both static (efficient
learning) and non-stationary (robust adaptation) settings. Third, we propose
the FiReAct pipeline, and demonstrate on a benchmark with over 10,000
tools that SC-based retrieval enables an LLM to effectively orchestrate
over a large action space. These findings provide a comprehensive guide to
building more sample-efficient, adaptive, and scalable orchestration agents.

1 Introduction

The capacity of intelligent systems, particularly Large Language Models (LLMs), is signifi-
cantly amplified by their ability to orchestrate external tools—such as APIs, auxiliary agents,
or specialized functions [I5] [I8] 20]. This orchestration is a sequential decision-making task:
given a user query and a dynamic tool catalogue, an agent must select and use the most
appropriate tool. While reinforcement learning (RL) offers a principled framework, naive
application (e.g., LLMs generating tool invocations token-by-token) creates intractably large
action spaces (V¥ with vocabulary size V and sequence length L), hindering learning. A
common simplification presents the agent with an explicit list of O available indices or tools,
Aavair = {a1, ..., a0}, from which to select. However, this often discards valuable semantic
descriptions D(a) associated with each tool (e.g., API doc strings, capability summaries)
a. Recent works using RL to train LLM to orchestrate tools rely on the provision of tool
names and descriptions in the prompts [0, 22], 26, [I7]. [I1] improve tool call reliability by
random augmentation of tool and argument names, thus pushing the model to rely on tool
descriptions. This paper investigates the critical and quantifiable advantages of equipping
agents with what we term the Semantic Context (SC)—the collection of semantic descriptions
for all currently available actions.

This SC is not merely a helpful addition but a fundamental component for effective tool
orchestration. Our work establishes this through three core findings.

First, we provide a theoretical and empirical foundation showing that even in static settings
with a fixed tool set, SC enables more efficient learning. To do this, we develop SC-LinUCB,
a bandit algorithm, and prove that it achieves favourable regret compared with non-semantic
baselines by creating a more parsimonious and accurate reward model (Section . Empirical
support is provided by SC-LINUCB and in-context learning experiments with LLM.
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Second, we demonstrate SC’s critical role in dynamic adaptation. Our experiments show
that as tools are added or removed, an agent leveraging SC adapts gracefully, whereas
baselines suffer from catastrophic forgetting and require costly retraining. This highlights
SC as a key enabler for continual learning in evolving environments for both, SC-LINUCB
and in-context learning LLM.

Finally, we show how SC makes tool orchestration practical at scale through a FiReAct
(Filter-Reason-Act) pipeline. We demonstrate that semantically filtering a large corpus
of tools into a small, relevant set is essential for maintaining high accuracy as the number of
tools grows into the thousands. This scalable application bridges our theoretical insights
with the practical challenges faced by modern LLM agents (SubSection .

Our research draws from the contextual bandit framework [9, [4], with LinUCB [I] as
a cornerstone, and contributes by rigorously analysing features from a priori semantic
embeddings of natural language action descriptions and quantifying their regret impact.
While action representation learning from interaction is common in RL [2] [14], and using
natural language for actions has been explored [23], our focus is on leveraging pre-existing,
structured semantic information. Addressing dynamic action spaces, central to continual
learning, we differ from Chandak et al. [3] who infer latent action structures; we demonstrate
how explicit, given semantic descriptions enable robust adaptation without relearning action
space representations. This complements continual RL’s focus on evolving reward /transition
functions [12] [7], aiming to furnish principled insights for more sample-efficient, generalizable,
and adaptive tool-orchestrating agents that explicitly leverage SC.

When dealing with high dimensional task-/ action spaces there is a variety of approaches
to dial down complexity. Examples include learning action elimination networks[24] to
approaches partitioning the task space based on task embeddings [I3]. More recent tool-RAG
methods tackle the problem from a retrieval perspective: small LMs learn a function-mask
head that suppresses irrelevant APIs at inference time [11]; completeness-oriented retrievers
rank tools so that only a minimal yet sufficient subset is forwarded to the reasoner [19] 21].

2 Problem Formulation

We model the task of selecting an appropriate tool for a given query as a contextual bandit
problem. This framework allows us to rigorously analyse the decision-making that underpins
tool orchestration.

At each discrete time step ¢t € {1,...,T}, an agent observes a context (a user query ¢; € Q)
and must select an action a; from a set of currently available tools, A; = {a1,...,a0,} of
magnitude O;. The environment is stochastic: for a given query ¢, each action a; € A; has
a true but unknown probability of success, p*(a;, ¢;). After selecting a;, the agent receives
a stochastic binary reward r; € {0,1}, drawn from a Bernoulli distribution governed by this
probability: 7; ~ Bernoulli(p®®(as, ¢;)).

The agent’s objective is to learn a policy 7(a¢|q:, H¢—1) that maximizes the cumulative reward

(or Return), Zthl r¢. This is equivalent to minimizing the Cumulative Expected Regret,
defined as the sum of the per-step differences between the expected reward of the optimal
action for a given query and the expected reward of the action the agent actually chose:

T
Ry = max p°(a, ¢;) — p(a ) 1
r= 3 (o0 ~ o) m
The central hypothesis of this paper is that an agent’s policy can learn more efficiently
and adapt faster to changes in the action space A if it explicitly leverages the Semantic
Context, the rich descriptions associated with each action, rather than treating actions as
abstract, opaque indices.

Definition 2.1 (Semantic Context, Cs(A;)). Given A;, the set of available actions at
time t, the semantic context Cs(A;) is the collection of semantic information related to
these actions. Specifically, Cs(A¢) = {(as, D(ai))}a,en,, where for each action a;, D(a;) is
its natural language description (e.g., docstring). Fach description is mapped to a demp-
dimensional semantic context embedding ¢(a;) = Z(D(a;)) via an embedding function
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=. This provides structured, a priori information about the available actions, allowing an
agent’s policy m(as|st, Cs(Ar)) to leverage both the usual state sy (which includes the query
qt) and the SC.

Definition 2.2 (Semantic Context Bandit, SC-Bandit). An SC-Bandit models a single-step
decision with a static action space Agypeq- At each step t, given a query q;, the agent selects
an action a; based on its policy m(at|qs, Cs(Aavair)), where the Semantic Context is fized.

For SC MDP [A7T] and the Lifelong SC MDP [A-2] with non-stationary action space we refer
to appendix In all frameworks, the central hypothesis is that explicit incorporation
and effective utilization of the Semantic Action Context Cs(.A;) enable agents to achieve
superior learning efficiency, generalization, and adaptability.

3 Theoretical Framework: Semantic LinUCB

We analyse Semantic Contextual Linear UCB (SC-LinUCB), an adaptation of the LinUCB
algorithm [I] that leverages semantic information from action descriptions. Our analysis
demonstrates that by incorporating well-structured semantic features, SC-LinUCB can
achieve significantly lower regret than LinUCB variants relying on non-semantic action rep-
resentations. This improvement stems from a more efficient representation of the underlying
reward structure, leading to better generalization and reduced exploration complexity.

Our theoretical contribution focuses on how the specific construction of semantic features
x(s¢m) for SC-LinUCB leads to a more favorable instantiation of this generic bound compared
to using non-semantic features.

3.1 Contextual Linear Bandits and Feature Design

We operate within the standard contextual linear bandit framework (detailed in Appendix
. At each time step ¢, given a query (context) embedding q; € R%, the agent selects a
tool 7; from the K available tools. Each tool 7; is associated with a semantic description
embedding ¢; € R, The expected reward E[R;|x; ;] = x/ ;6" is linear in the constructed
d-dimensional feature vector x; ;.

The core of our analysis lies in comparing two feature construction strategies: SC-LinUCB

Semantic Features (x(**™): We construct xif;m) = [as; ¢j;sim(qy, @;); 1]. The resulting

feature dimension is dsem = dg + dgesc + 1 + 1. This design explicitly incorporates query
attributes, tool semantic attributes, and their direct alignment. The SC-LinUCB algorithm

itself is Algorithm [2| (Appendix |B.2)).

LinUCB-NS Non-Semantic Features (x(""~*¢")): As a baseline, we use features

Ej;‘m_sem) = [qs; e;; 1], where e; € R is the one-hot encoding for tool 7;. The dimension is

dnon—sem = dq+ K +1. This baseline distinguishes tools by identity but lacks explicit shared
semantic information. The generic regret for LinUCB algorithms stated in Appendix ,
scaling as Ry = O(d - oefy - VT ), where d is the feature dimension and o,y is the effective
noise standard deviation (incorporating observation noise and linear model approximation
error).

3.2 Regret Advantage via Efficient Semantic Representation

To formalize the advantage of x(*¢™) | we introduce an assumption about the nature of the
true reward function.

Assumption 3.1 (Semantically Structured Rewards). The true expected reward function
f*(q, @) is primarily determined by a limited number of underlying semantic interaction
patterns between queries and tool semantic properties. Specifically, there exists an optimal

linear model in the semantic feature space, (ngjem))TB;kem, that approzimates f*(q, ¢;)

with a mean squared error o> Further, to achieve a comparable or better linear

approzx,sem*
. . . . . . (non—sem)\T px* ~
approzimation quality using non-semantic one-hot features, i.e., (th ) 0 o sem =
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I*(ae, ;) with error o2 > o2

approz.non—sem = Tapproz.sems the dimensionality dpon—sem (which
scales with K ) may be significantly larger than dgen, if K is large and there is semantic

redundancy across tools (i.e., dgesc +1 < K ).

Theorem 3.2 (Regret Reduction for SC-LinUCB). Under Assumption
(for both SC-LinUCB  with (dsem,0cff sems SsemsLsem) and LinUCB-NS  with
(dnon—sem» Ocffnon—sem> Snon—sems Lnon—sem)) and Assumption : SC-LinUCB achieves
a cumulative regret Rp(SC) that is less than or equal to the regret of LinUCB-NS, Ry (NS),
if its semantic features lead to a more favorable combination of dimensionality and effective
notse. Specifically, Rp(SC) < Rr(NS) if the factor dsem - Ocffsem (tgnoring constants and
polylog terms from o) is smaller than dnon—sem - Ocf fnon—sem- A significant improvement
(Rr(SC) <« Rp(NS)) is realized if:

1. Parsimonious Representation: dgsem < dpon—sem (achievable if dgese + 1 <
K) while maintaining comparable or better approzimation quality (Ocffsem <
Ocffnon—sem). The regret reduction factor is roughly dsem /dnon—sem -

2. Superior Fit: Even if dsemn = dnon—sem, if semantic features provide a substantially
better linear approximation, then Octf sem <K Ocffnon—sem, leading to a regret
reduction factor of roughly ocff sem/Tef fnon—sem-

Proof Sketch. By the standard LinUCB analysis (self-normalized concentration and the
elliptical potential argument), a d-dimensional linear model with effective noise oog incurs
O(d oetVT ) regret, with constants and polylog terms absorbed into « (Appendix .
Under our feature maps, LinUCB-NS uses dyon-sem = dg + K + 1 one-hot augmented features,
while SC-LinUCB uses dsem = dg + dgesc + 2 semantic features that do not scale with
K when tools share redundant semantics (Assumption Appendix . Comparing
the leading factors yields Ry (SC) < Ry (NS) whenever dsemOefr,sem < dnon-semTeff,non-sem
with strict gains either from parsimony (dsem < dnon-sem @t comparable fit) or superior fit
(Ceft,sem K Oeff,non-sem at comparable dimension). Formally, applying the same confidence-set
and potential bounds to both feature maps shows the cumulative uncertainty term scales
with their respective dimensions (e.g., Lemma , completing Theorem 3.2 O

4 SC-LinUCBExperiments

To empirically evaluate the impact of semantic information in contextual bandit settings, we
employ two variants of the shared LinUCB algorithm [I]. Both agents aim to learn a single
shared parameter vector 8* € R? to predict expected rewards E[R;|x; ;] ~ xij*. Their
core distinction lies in the construction of the feature vector x; ; for a given query (context)
q; and tool (action) 7;.

We compare SC-LinUCB and LinUCB-OneHot using their respective semantic and non-
semantic feature constructions detailed in Section [3:1] For this experiment with K = 6 tools,
dsem = 6 and dpon—sem = 9. Results are averaged over N,.,s = 15 seeds.

We conduct a series of experiments to empirically validate our theoretical findings and
demonstrate the practical benefits of using semantic action features. We first focus on an
intra-episode setting with a fixed action set, then evaluate adaptation in a continual learning
scenario with dynamic action sets. Experiments are run on Colab (free tier CPU).

4.1 Experiment 1: Intra-Episode Efficiency in a Multi-Context Environment

Objective. This experiment validates our theoretical claim that SC-LinUCB achieves
lower regret than LinUCB-OneHot by leveraging semantic action features in a multi-context
setting with a fixed action set (K = 6).

Environment Setup. The environment features Ng = 3 distinct query types (contexts)
that cycle periodically over 7' = 10000 timesteps. Each of the K = 6 tools 7; is associated
with a 2D toy semantic embedding ¢;, derived from one of three underlying archetypes plus
noise. Each query type is designed to align semantically with one specific tool archetype.
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Stochastic rewards R, € {0, 1} are determined by the semantic alignment between the current
query q; and the chosen tool’s embedding ¢;. Full details are in Appendix [C.1.2}

Results. Figure[la|presents the average cumulative regret (log scale). SC-LinUCB (orange
line) shows substantially superior performance, maintaining an exceptionally low cumulative
regret (around 10°) over 10000 timesteps, indicating rapid convergence to a nearly optimal
policy across contexts. LinUCB-OneHot (blue line), while exhibiting sublinear regret
(indicating learning), incurs orders-of-magnitude higher regret (exceeding 10%). This stark
difference underscores SC-LinUCB’s ability to generalize semantic patterns across different
(context, tool) pairings, leading to vastly improved sample efficiency compared to the baseline,
which learns tool utilities more independently. Both algorithms used o = 0.3. For ablations
over the value of o we refer to figure [
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SC-LinUCB and LinUCB-OneHot in the multi- (b) Average Cumulative Regret (log scale) for SC-
context (switching) with fixed toolset experiemnt. LinUCB and LinUCB-OneHot in the continual
Time steps T' = 10000, averaged over 15 runs and adaptation experiment. Fach phase is 2500 steps,
a=0.3). changes indicated by dashed lines.

4.2 Experiment 2: Continual Adaptation to Dynamic Toolsets

Objective. This experiment evaluates the agents’ ability to adapt to a dynamically changing
tool set over four distinct phases (Tppqese = 2500 steps each, for a total of T' = 10000 steps),
involving tool addition, removal, and the introduction of novel semantic types alongside new
relevant queries. The setup tests the robustness and generalization capabilities crucial for
lifelong learning. The environment cycles through three base query types (qa,qs5,q¢) for
the first three phases, with a fourth query type (qp) introduced in Phase 4. Full phase
details, including specific tool archetype assignments and query cycling, are in Appendix
LinUCB-OneHot re-initializes it’s model matrices (A4, b) when K changes due to its feature
space dependency on K. SC-LinUCB’s model matrices and dge,, remain fixed. Both agents
use an exploration parameter o = 0.5 for this illustrative plot (sensitivity to « is explored in
Appendix . Results are averaged over N,.,s = 15 independent seeds.

Results. Figure (see figure [5| for corresponding reward plots) illustrates the average
cumulative regret on a log scale. The performance of SC-LinUCB (Semantic, orange
line) is remarkably robust. Its cumulative regret remains very low, consistently around
10* (approximately 10-20 units), across all four phases and 10000 time steps. Crucially, at
the phase transitions (dashed vertical lines at ¢t = 2500, 5000, 7500), its regret curve shows
almost no perturbation. This demonstrates SC-LinUCB’s ability to gracefully handle tool
removal, leverage its existing semantic knowledge to quickly incorporate new tools with
familiar semantic embeddings (Phase 3), and effectively learn about novel semantic types
when new queries make them relevant (Phase 4), all without catastrophic forgetting or costly
re-learning phases.

In stark contrast, LinUCB-OneHot (Non-Semantic, blue line) exhibits significantly
higher regret and poor adaptation. Its regret climbs steeply, exceeding 10% by the end
of the experiment. At each phase transition where the number of tools K changes, its
regret curve shows a pronounced upward jump or a sharply increased slope. This is a direct
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consequence of its model matrices (A, b) being re-initialized due to the change in its feature
space dimensionality (dpon—sem = dq + K + 1), forcing it to largely relearn the value of tools
from scratch for the new configuration.

These results strongly underscore the high cost of adaptation for a non-semantic agent in
dynamic environments. SC-LinUCB’s fixed-dimensional semantic feature space, combined
with its capacity for semantic generalization, provides robust, efficient, and truly continual
learning in the face of a changing action landscape.

5 SC in LLM Tool Orchestrators

Using and training LLM to orchestrate across O many tools can be done in a broad variety
of methods. As previously mentioned it can be e.g. a classic policy mapping the query
to an action (id or name) or a policy taking in the query alongside the semantic context.
Crucially there is a variety of training regimes. A popular branch of methods used LLM
fine-tuning techniques (full rank or low rank) using supervised fine-tuning [16] with RL
reasoning [6 [26] and algorithms like PPO or GRPO. All of these provide semantic context
in their implementations. An alternative is to follow the recipe in [5] and train a hierarchical
policy that predicts in the first step for a given query a text description of the action it wants
to take (or an embedding of the action) and performs in the second stage nearest-neighbour
search/ softmax over k-nearest neighbours to select the respective action. A third method is
to rely on the in-context learning abilities.

We rigorously evaluate how SC impacts LLM in-context learning efficacy for sequential tool
selection. We frame this as a multi-armed bandit (MAB) problem: an LLM agent learns to
select optimal tools based on query context and interaction history presented via its prompt.
Our investigation spans static and dynamic environments, assessing learning and adaptation.

5.1 Experimental Design

Our experimental design focuses on varying the semantic richness of action representations
provided to the LLM. We consider four conditions:

Index Only (I0): Actions are presented as abstract, non-informative indices (e.g., “Action
17, “Action 2”). This baseline tests the LLM’s ability to learn solely from correlations in
the interaction history, Name Only (NO): Actions are presented by their names (e.g.,
“Data Analyzer”, “QuickTranslate”). This provides a concise signal, yet it is quite fragile,
Name + Description (ND): Actions are presented with their names and detailed functional
descriptions, offering the richest semantic context and Description Only (DO): Actions are
presented as abstract non-informative indices together with detailed functional descriptions.

The LLM for all experiments is Gemini 2.0 Flash. Each experiment was conducted for
multiple independent trials (5 for static environments, 7 for dynamic environments). The
full prompt structure, LLM parameters (temperature 0.5, max output tokens 500 — 1500),
and detailed configurations of arms and queries are provided in appendix We report the
average return over trials, where the expectation is taken over the stochasticity of rewards
and LLM responses in figure 2} Average cumulative regrets are presented in figure [6]

We designed four distinet experimental scenarios: Exp 1 (fQfA): fixed query and fixed tools
probes baseline in-context learning of best arm selection; Exp 2 (mQfA): varied queries
with fixed tools test contextual generalisation; Exp 3 (fQmA): fixed query with evolving
tools measures adaptation; Exp 4 (m@mA): both queries and tools shift, stressing full
non-stationary robustness.

5.2 Results and Analysis

The experimental results, depicted by the average cumulative reward curves in [2| reveal a
nuanced and significant impact of semantic context on the LLM’s in-context learning and
adaptation for tool selection. For the corresponding regret plot we refer the reader to figure
[6]in the appendix. With the small action gap and the poor performance of the index only,
the cumulative reward plot tells the semantic baselines better apart.
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Figure 2: Semantic Context yields higher average return across Experiments 1-4. Subplot
titles indicate: f=Fixed, m=Moving, Q=Queries, A=Actions. Shaded regions represent +1
standard error of the mean (SEM) across trials. Higher values indicate better performance.
Note the varying x and y-axis scales.

Static Environments (fQfA - Expl; mQfA - Exp2): In environments with fixed
action spaces (Expl and Exp2 panels in , providing richer semantic context generally leads
to higher cumulative rewards. ND (green solid line) and NO (orange dash-dot line) both
outperform IO (blue dashed line). In Expl (fQfA), ND and NO perform very similarly, both
achieving near-optimal reward accumulation, indicating that even names are sufficient for
the single, repeated query. In Exp2 (mQfA), which involves multiple queries, ND maintains
a slight edge over NO, suggesting that descriptions help differentiate tools more effectively
as contextual complexity increases. IO consistently lags, demonstrating the LLM’s difficulty
in accumulating rewards without semantic cues to guide its choices.

Dynamic Environments (fQmA - Exp3; mQmA - Exp4): The introduction of
non-stationarity through changing action spaces and/or queries highlights more complex
interactions. In Experiment 3 (fQmA: fixed query, moving actions), the reward plot Exp3
panel) shows that the ND condition adapts most effectively to the introduction of a superior
tool (“E3_ SuperCalc”) around turn 17 (phase details in|C.1.4)). Its reward accumulation rate
increases sharply after this point, surpassing NO. The NO condition also shows adaptation
and reward growth but appears to either identify or commit to the superior tool with a
delay or less consistency. The IO condition is slow in picking up the dynamic reward signal.
Experiment 4 (mQmA: moving queries and actions) presents the most striking results (2]
Exp4 panel). In this highly dynamic scenario, the NO achieves the highest cumulative reward,
notably outperforming ND. This intriguing outcome suggests that when both tasks and tools
are frequently changing, the conciseness of tool names might offer an advantage in terms of
agile decision-making or reduced risk of misinterpretation compared to longer descriptions.
The ND condition still performs well and significantly better than IOThe IO condition again
accumulates the least reward, underscoring its inadequacy in complex dynamic settings.

Findings: The results consistently demonstrate that the absence of semantic context (I0)
severely limits the LLM’s ability to effectively learn and accumulate rewards in these tool-
selection bandit tasks. Providing semantic information is crucial. Rich descriptions (ND) are
generally powerful, particularly for rapid optimal tool identification in static settings and
for adapting to clear improvements (like a new superior tool for a known task) in dynamic
environments. However, the superior performance of Names Only in the most complex, fully
dynamic scenario (Exp4) is a key finding. It suggests a potential trade-off: while detailed
descriptions offer depth, concise and sufficiently indicative names might facilitate greater
agility or reduce the processing/interpretation burden on the LLM when faced with rapid
and multifaceted environmental changes. This implies that the optimal level of semantic
detail for action representation may not be monolithic but rather depend on the stability
and complexity of the operational environment. It is also crucial to reiterate the finding of
[11] that the naming of tools alters much more across developers than descriptions, making
this approach more fragile.

Analysis of the Reasoning traces

Reasoning traces from Gemini 2.0 Flash (detailed examples in App. [C.3)) reveal how LLMs
leverage semantic context.
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"Reasoning: The query mentions \"sales figures\" and \"growth pattern\", which
indicates numerical data and the need to find trends. The Data Analyzer tool is
specifically designed for processing numerical data arrays to find trends. The
other tools, Text Formatter and Image Resizer, are not relevant to this query.
Therefore, the Data Analyzer is the most likely to yield a reward.\n\n Chosen
Action: Data Analyzer"

Two main decision mechanisms are apparent: the reliance on previous experience (ICL
exploration [§]), and semantic matching. Particularly with ND and NO, the LLM often
engages in a two-step semantic matching process: 1) analyse the user query to infer the
abstract capability required; 2) match this inferred need against the semantic information of
available tools, selecting the best aligner. This resembles the two-step action selection [5]
where the policy maps first to a desired description (proto action) and subsequently selects
the most appropriate match. For instance, for a sales growth query, the LLM with ND or
NO typically identifies a "Data Analyser" by matching functionality. The richness of ND
can lead to more nuanced initial alignments (Exp3), while the conciseness of NO might offer
faster, if less precise, matching in dynamic scenarios (Exp4), potentially reducing cognitive
load. This relies however on the concise tool naming ability of the tool creator. [I1] raise
that tool and argument naming is more user-sensitive than the function description, making
the latter more robust. Crucially, NO and even more ND can enable LLM to prioritize
semantic fit over immediate past negative rewards for the best tool. In contrast, IO relies
solely on the ICL ability of LLM. The observed two-step reasoning provides a qualitative
explanation for SC’s quantitative benefits, suggesting that LLMs internalize descriptions for
structured decision-making beyond simple index-based pattern matching.

5.3 Semantic Context for Scaling Action Space

(a) Ground Truth Tool (b) LLM as a Judge
100% [ - gzt Lemmm—om
90% L o
_,,‘.;';3"" _',..-;')'/
> 80% x7 g
[$)
o
3 70% ‘.
60%
50% X
40% S
2 12 102 1002 10002 2 12 102 1002 10002
Total Number of Tools (Log Scale) Total Number of Tools (Log Scale)
Semantic Context name + description description only name only
Filtering —e— top 1 -x= top5 e Q|

Figure 3: Semantic Context is essential for scalable tool selection with top 5 filtering followed
by ND yields the strongest performance for large tool sets. Accuracy is plotted against the
total number of tools (log scale). The left plot shows accuracy of identifying the ground
truth tool, whereas the right plot uses an LLM as judge to evaluate the tool correctness.

In the previous subsection reasoning traces showed a two step of action description and action
selection pattern. In all this experiments all tools and descriptions were part of the policy
LLM context. To be practical, an orchestrator must scale to large amounts of tools. As the
context of LLM runs naturally at some point out, we propose a "filter-then-reason-then-act"
(FiReAct) pipeline. Pseudocode of FiReAct is provided in alg|l] and can be thought of as
Tool-RAG version of RAG [I0].
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Algorithm 1 The FiReAct Pipeline

Require: Embedding model ¢, LLM policy 7, query ¢, toolset A;, num candidates k
1: Filter: Retrieve candidate subset A.qung C A; of size k via semantic search using ¢(q;)
and {¢(a’)|a’ € As}.
2: Reason & Act: Select final action ageiected € Acang using the LLM policy
W(Qta CS (ACand))-

3: return agejected

There exist a variety of methods to filter for the candidate action set A.qnq. One could
for example simply ask an LLM to do it. We instantiate the FiReAct pipeline using a
text-embedding-004 retriever and a gemini-2.0-flash LLM policy. Firstly query and
tools are embedded and the top k tools selected. These are feed (in the respective descriptive
format (I0, ND,NO,DO) together with the query to the LLM policy. Based on this, the tool
is selected. FireAct can be deployed at both test and train time. We demonstrate its usage
at test time in a O-shot pipeline on a challenging benchmark constructed from the XLAM
dataset [25], evaluating 100 queries against a corpus of over 10,000 tools. Figure [3| plots
tool selection accuracy for three strategies: pure semantic retrieval (‘top 1¢), LLM-filtered
reasoning (‘top 5°), and exhaustive unfiltered reasoning (‘all‘). The results are unequivocal:
without SC, performance is catastrophic. The IO condition yields 0-shot just random pulls,
thus (1/0) success rate.

Given SC’s necessity, its quality is paramount. Rich ND context (green lines) consistently
provides the highest accuracy across all methods, offering a distinct advantage over the weaker
‘name only‘ and ‘description only‘ signals. This shows that while any semantic signal is
beneficial, more detailed information provides critical disambiguation power, especially as the
number of distractor tools increases. Note however the superiour/ competitive performance of
NO with N+D for up to 100 distractor tools. This demonstrates that more detailed semantic
information provides critical disambiguation power in complex environments. However less
SC (NO) is sometimes simpler, we hypothesize due to the smaller context window.

The most crucial finding, however, reveals how to best leverage SC at scale. While pure
retrieval (‘top 1°) is powerful, its top-1 precision degrades as the tool space grows; with 10,000
distractors, the accuracy for ‘name + description‘ context falls to 75%(80% with LLM Judge).
The retriever’s recall within the top 5 remains high, however, creating a vital opportunity for
a reasoning step. By having the LLM re-rank these ‘top 5° candidates, we restore accuracy
to nearly 90%. This 15% accuracy gain validates the FiReAct pipeline as a robust, scalable
strategy, where SC is the essential for both initial filtering and final reasoning.

6 Future Work and Conclusion

This paper shows that explicit Semantic Context (SC) from action descriptions substantially
improves tool orchestration: in linear contextual bandits, SC-LinUCB learns faster and
adapts more robustly to dynamic action sets than non-semantic baselines, the same principle
carries to LLMs via in-context learning, and our FiReAct pipeline scales the approach to
thousands of tools. Limitations and directions include sharpening regret bounds for formally
non-stationary toolsets (A;), analyzing robustness to noisy or imperfect semantic features,
and—on the LLM side—moving beyond model- and prompt-specific results toward theory
for in-context tool learning; empirically, extending to fine-tuning and end-to-end trainable
retrieval-reasoning pipelines is promising. Overall, by formalizing the “semantic advantage,”
we argue for modeling actions by meaning rather than opaque indices, and we observe
consistent benefits from linear models to large transformers. Structured action descriptions
thus provide a principled path to agents that are more sample-efficient, adaptive, and scalable
for complex, evolving toolsets.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not
remove the checklist: The papers not including the checklist will be desk rejected.
The checklist should follow the references and follow the (optional) supplemental material.
The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions.
For each question in the checklist:

o You should answer [Yes] , ,or [NA] .

e [NA| means either that the question is Not Applicable for that particular paper or
the relevant information is Not Available.

o Please provide a short (1-2 sentence) justification right after your answer (even for
NA).

The checklist answers are an integral part of your paper submission. They are
visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be
asked to also include it (after eventual revisions) with the final version of your paper, and its
final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their
evaluation. While "[Yes] " is generally preferable to " " it is perfectly acceptable to

answer " " provided a proper justification is given (e.g., "error bars are not reported
because it would be too computationally expensive" or "we were unable to find the license for
the dataset we used"). In general, answering " "or "[NA] " is not grounds for rejection.

While the questions are phrased in a binary way, we acknowledge that the true answer
is often more nuanced, so please just use your best judgment and write a justification to
elaborate. All supporting evidence can appear either in the main paper or the supplemental
material, provided in appendix. If you answer [Yes] to a question, in the justification please
point to the section(s) where related material for the question can be found.

IMPORTANT, please:

e Delete this instruction block, but keep the section heading “NeurIPS
Paper Checklist",

o Keep the checklist subsection headings, questions/answers and guidelines
below.

¢« Do not modify the questions and only use the provided macros for your
answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately
reflect the paper’s contributions and scope?

Answer: [Yes]

Justification: The introduction clearly mentions our contributions.

We had to restructure the paper. While the abstract mentions " Formally, we cast
this as a Description-Augmented Lifelong MDP and provide theoretical analysis.
We conclude this study by empirical studies in linear bandit and full reinforcement
learning." We use slightly differnt naming conventions and stick with in context
reinforcement learning (strictly speaking bandit, but the use of reinforcement learning
related to LLM is increasingly fluid.

Guidelines:

e The answer NA means that the abstract and introduction do not include the
claims made in the paper.

o The abstract and/or introduction should clearly state the claims made, including
the contributions made in the paper and important assumptions and limitations.
A No or NA answer to this question will not be perceived well by the reviewers.
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e The claims made should match theoretical and experimental results, and reflect
how much the results can be expected to generalize to other settings.

o It is fine to include aspirational goals as motivation as long as it is clear that
these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the
authors?

Answer: [Yes|
Justification: The conclusions mentions limitations.
Guidelines:

e The answer NA means that the paper has no limitation while the answer No
means that the paper has limitations, but those are not discussed in the paper.

e The authors are encouraged to create a separate "Limitations" section in their
paper.

e The paper should point out any strong assumptions and how robust the results
are to violations of these assumptions (e.g., independence assumptions, noiseless
settings, model well-specification, asymptotic approximations only holding
locally). The authors should reflect on how these assumptions might be violated
in practice and what the implications would be.

e The authors should reflect on the scope of the claims made, e.g., if the approach
was only tested on a few datasets or with a few runs. In general, empirical
results often depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the
approach. For example, a facial recognition algorithm may perform poorly when
image resolution is low or images are taken in low lighting. Or a speech-to-text
system might not be used reliably to provide closed captions for online lectures
because it fails to handle technical jargon.

e The authors should discuss the computational efficiency of the proposed algo-
rithms and how they scale with dataset size.

o If applicable, the authors should discuss possible limitations of their approach
to address problems of privacy and fairness.

e While the authors might fear that complete honesty about limitations might
be used by reviewers as grounds for rejection, a worse outcome might be that
reviewers discover limitations that aren’t acknowledged in the paper. The
authors should use their best judgment and recognize that individual actions in
favor of transparency play an important role in developing norms that preserve
the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assump-
tions and a complete (and correct) proof?

Answer: [Yes|

Justification: We provide the theorem together with a proof sketch in the main paper.
As the improvement is only in the constants we argue just for an improvement basic
linucb remains in place.

Guidelines:

e The answer NA means that the paper does not include theoretical results.

e All the theorems, formulas, and proofs in the paper should be numbered and
cross-referenced.

o All assumptions should be clearly stated or referenced in the statement of any
theorems.

e The proofs can either appear in the main paper or the supplemental material,
but if they appear in the supplemental material, the authors are encouraged to
provide a short proof sketch to provide intuition.
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e Inversely, any informal proof provided in the core of the paper should be
complemented by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce
the main experimental results of the paper to the extent that it affects the main
claims and/or conclusions of the paper (regardless of whether the code and data are
provided or not)?

Answer: [Yes|
Justification: We describe in detail how to reproduce the results.
Guidelines:

e The answer NA means that the paper does not include experiments.

o If the paper includes experiments, a No answer to this question will not be
perceived well by the reviewers: Making the paper reproducible is important,
regardless of whether the code and data are provided or not.

o If the contribution is a dataset and/or model, the authors should describe the
steps taken to make their results reproducible or verifiable.

e Depending on the contribution, reproducibility can be accomplished in various
ways. For example, if the contribution is a novel architecture, describing the
architecture fully might suffice, or if the contribution is a specific model and
empirical evaluation, it may be necessary to either make it possible for others
to replicate the model with the same dataset, or provide access to the model. In
general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate
the results, access to a hosted model (e.g., in the case of a large language model),
releasing of a model checkpoint, or other means that are appropriate to the
research performed.

e While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may
depend on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it
clear how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should
describe the architecture clearly and fully.

(c¢) If the contribution is a new model (e.g., a large language model), then there
should either be a way to access this model for reproducing the results or a
way to reproduce the model (e.g., with an open-source dataset or instructions
for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which
case authors are welcome to describe the particular way they provide for
reproducibility. In the case of closed-source models, it may be that access to
the model is limited in some way (e.g., to registered users), but it should be
possible for other researchers to have some path to reproducing or verifying
the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?

Answer: [Yes]

Justification: The appendix contains detailed reproduction instructions. After
acceptance code will be released.

Guidelines:

e The answer NA means that paper does not include experiments requiring code.
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o Please see the NeurIPS code and data submission guidelines (https://nips!
cc/public/guides/CodeSubmissionPolicy)) for more details.

o While we encourage the release of code and data, we understand that this might
not be possible, so “No” is an acceptable answer. Papers cannot be rejected
simply for not including code, unless this is central to the contribution (e.g., for
a new open-source benchmark).

o The instructions should contain the exact command and environment needed
to run to reproduce the results. See the NeurIPS code and data submis-
sion guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy)
for more details.

e The authors should provide instructions on data access and preparation, in-
cluding how to access the raw data, preprocessed data, intermediate data, and
generated data, etc.

e The authors should provide scripts to reproduce all experimental results for
the new proposed method and baselines. If only a subset of experiments are
reproducible, they should state which ones are omitted from the script and why.

e At submission time, to preserve anonymity, the authors should release
anonymized versions (if applicable).

e Providing as much information as possible in supplemental material (appended
to the paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to
understand the results?

Answer: [Yes|
Justification: We provide full experimental details in the appendix.
Guidelines:
e The answer NA means that the paper does not include experiments.
e The experimental setting should be presented in the core of the paper to a level
of detail that is necessary to appreciate the results and make sense of them.

o The full details can be provided either with the code, in appendix, or as
supplemental material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other
appropriate information about the statistical significance of the experiments?

Answer: [Yes|

Justification: We report mean + std bands over 15 seeds for the LinUCB experiments
and 5 (fQfA) respectively 7 seeds in the in-context learning experiment.

Guidelines:

e The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars,
confidence intervals, or statistical significance tests, at least for the experiments
that support the main claims of the paper.

e The factors of variability that the error bars are capturing should be clearly
stated (for example, train/test split, initialization, random drawing of some
parameter, or overall run with given experimental conditions).

e The method for calculating the error bars should be explained (closed form
formula, call to a library function, bootstrap, etc.)

o The assumptions made should be given (e.g., Normally distributed errors).

o It should be clear whether the error bar is the standard deviation or the standard
error of the mean.
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8.

10.

e It is OK to report l-sigma error bars, but one should state it. The authors
should preferably report a 2-sigma error bar than state that they have a 96%
ClI, if the hypothesis of Normality of errors is not verified.

e For asymmetric distributions, the authors should be careful not to show in
tables or figures symmetric error bars that would yield results that are out of
range (e.g. negative error rates).

e If error bars are reported in tables or plots, The authors should explain in the
text how they were calculated and reference the corresponding figures or tables
in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed
to reproduce the experiments?

Answer: [Yes]

Justification: We run all experiments in free tier colab cpu. We indicate this fact in
the experimental section. For the ICL experiments we use gemini-2.0-flash via api.

Guidelines:

e The answer NA means that the paper does not include experiments.

e The paper should indicate the type of compute workers CPU or GPU, internal
cluster, or cloud provider, including relevant memory and storage.

e The paper should provide the amount of compute required for each of the
individual experimental runs as well as estimate the total compute.

e The paper should disclose whether the full research project required more
compute than the experiments reported in the paper (e.g., preliminary or failed
experiments that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with
the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: No conflict with ethics guidelines due to conceptual nature.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code
of Ethics.

o If the authors answer No, they should explain the special circumstances that
require a deviation from the Code of Ethics.

e The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and
negative societal impacts of the work performed?

Answer:

Justification: The nature of the work is conceptual. RL training orchestrators could
theoretically be used in a harmfull way through.

Guidelines:

e The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no
societal impact or why the paper does not address societal impact.

o Examples of negative societal impacts include potential malicious or unintended
uses (e.g., disinformation, generating fake profiles, surveillance), fairness consid-
erations (e.g., deployment of technologies that could make decisions that unfairly
impact specific groups), privacy considerations, and security considerations.
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11.

12.

e The conference expects that many papers will be foundational research and
not tied to particular applications, let alone deployments. However, if there
is a direct path to any negative applications, the authors should point it out.
For example, it is legitimate to point out that an improvement in the quality
of generative models could be used to generate deepfakes for disinformation.
On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate
Deepfakes faster.

e The authors should consider possible harms that could arise when the technology
is being used as intended and functioning correctly, harms that could arise when
the technology is being used as intended but gives incorrect results, and harms
following from (intentional or unintentional) misuse of the technology.

o If there are negative societal impacts, the authors could also discuss possible
mitigation strategies (e.g., gated release of models, providing defenses in addition
to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a
system learns from feedback over time, improving the efficiency and accessibility
of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for
responsible release of data or models that have a high risk for misuse (e.g., pretrained
language models, image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA]
Guidelines:

e The answer NA means that the paper poses no such risks.

o Released models that have a high risk for misuse or dual-use should be released
with necessary safeguards to allow for controlled use of the model, for example
by requiring that users adhere to usage guidelines or restrictions to access the
model or implementing safety filters.

o Datasets that have been scraped from the Internet could pose safety risks. The
authors should describe how they avoided releasing unsafe images.

o We recognize that providing effective safeguards is challenging, and many papers
do not require this, but we encourage authors to take this into account and
make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models),
used in the paper, properly credited and are the license and terms of use explicitly
mentioned and properly respected?

Answer: [NA]
Justification: We use nothing beyond standard python and the connected ecosystem.
Guidelines:

e The answer NA means that the paper does not use existing assets.

e The authors should cite the original paper that produced the code package or
dataset.

e The authors should state which version of the asset is used and, if possible,
include a URL.

o The name of the license (e.g., CC-BY 4.0) should be included for each asset.

o For scraped data from a particular source (e.g., website), the copyright and
terms of service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in
the package should be provided. For popular datasets, paperswithcode.com/
datasets| has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.
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o For existing datasets that are re-packaged, both the original license and the
license of the derived asset (if it has changed) should be provided.

o If this information is not available online, the authors are encouraged to reach
out to the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the
documentation provided alongside the assets?

Answer: [NA]
Justification: [NA]
Guidelines:

e The answer NA means that the paper does not release new assets.

o Researchers should communicate the details of the dataset/code/model as part
of their submissions via structured templates. This includes details about
training, license, limitations, etc.

e The paper should discuss whether and how consent was obtained from people
whose asset is used.

e At submission time, remember to anonymize your assets (if applicable). You
can either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does
the paper include the full text of instructions given to participants and screenshots,
if applicable, as well as details about compensation (if any)?

Answer: [NA]
Justification: [NA]
Guidelines:
e The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.
¢ Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as
possible should be included in the main paper.
e According to the NeurIPS Code of Ethics, workers involved in data collection,
curation, or other labor should be paid at least the minimum wage in the
country of the data collector.

Institutional review board (IRB) approvals or equivalent for research
with human subjects

Question: Does the paper describe potential risks incurred by study participants,
whether such risks were disclosed to the subjects, and whether Institutional Review

Board (IRB) approvals (or an equivalent approval/review based on the requirements
of your country or institution) were obtained?

Answer: [NA]
Justification: [NA]
Guidelines:

e The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

o Depending on the country in which research is conducted, IRB approval (or
equivalent) may be required for any human subjects research. If you obtained
IRB approval, you should clearly state this in the paper.

o We recognize that the procedures for this may vary significantly between insti-
tutions and locations, and we expect authors to adhere to the NeurIPS Code of
Ethics and the guidelines for their institution.

e For initial submissions, do not include any information that would break
anonymity (if applicable), such as the institution conducting the review.
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818 16. Declaration of LLM usage

819 Question: Does the paper describe the usage of LLMs if it is an important, original,
820 or non-standard component of the core methods in this research? Note that if
821 the LLM is used only for writing, editing, or formatting purposes and does not
822 impact the core methodology, scientific rigorousness, or originality of the research,
823 declaration is not required.

824 Answer: [Yes|

825 Justification: LLM inspire the problem we study, we use LLM extensively for writing/
826 formulating/ verificaton, assisting in writing code/ debugging, giving feedback on
827 code/ sections of the paper, brainstorming and finding related articles.

828 Guidelines:

829 e The answer NA means that the core method development in this research does
830 not involve LLMs as any important, original, or non-standard components.

831  Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
832 for what should or should not be described.
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A Background

A.1 Notation at a Glance

Table 1: Notation at a glance

Symbol  Meaning

Ay action set available at round ¢ of cardinality O;
o¢(a) semantic feature vector of action a

dsem smnlarlty metric on X

0, unknown linear reward vector

Vi design matrix at round ¢

A.2 Semantic Context MDP

Definition A.1 (Semantic Context MDP, SC-MDP). An SC-MDP describes sequential
decision-making with a fized toolset Agvqii and its corresponding fized Semantic Action
Context Cs(Aquvair). It is an MDP (S, A, P, R,~) where: The state s; € S is typically (he, qt),
representing history and current query. The action space A consists of choices (aj, args(a;))
where a; € Agpqir- The policy m(as|s:) implicitly utilizes the fivred Cs(Aquait) (which defines
this specific MDP environment) to select az. Transitions P(st11|8¢,at) and rewards R(sg, ar)
are standard. Tool execution yields an output og, forming part of hyyq.

Definition A.2 (Lifelong Semantic Context MDP, LSC-MDP). An LSC-MDP models sce-
narios with a dynamically changing tool set A;. It is an MDP (Spsc, Arsc, PLsc, Rosc, ),
where the state s; € Spsc s (he,qi, Cs(Ar)), explicitly includes the time-dependent SC
Cs(A¢) that changes as the tool set A; evolves. The action space Apsc(st) comprises choices
(aj, args(a;)) where aj € A;. The policy is w(ai|sy). Transition dynamics Prsc(Sit1]st, at)
determine the next query qi41 and, crucially, the next available toolset Asi1 (and thus

Cs(Aiy1)).

B Appendix Semantic Context LINUCB

B.1 Formal Assumptions

For the linear bandit setting we have the following standard assumptions.

Assumption B.1 (Contextual Linear Bandit Setting (Restated)). Ouver T timesteps, t €
{1,...,T}:

1. A context s; is observed, from which a dg-dimensional query embedding qi = q(s¢) s
derived.

2. The agent selects an action (tool) a; from a fized set of K tools A= {ai,...,ax}.

3. Each tool a; € A has a dges.-dimensional semantic description embedding ¢; =

¢(Da,)-

4. For each context-tool pair (q;,a;), a d-dimensional feature vector x;; = x(qe, ¢;) is
constructed. We assume ||X¢ ;|2 < Lg.

5. The expected reward is linear in these features: E[Ry(xy;)|x: ;] = XZJH* for an
unknown true parameter vector 0* € R%. We assume ||0* |2 < Sp.

6. Observed rewards are Ri(X:;) = XZJH* + 15, where ng; s conditionally o-

subGaussian noise: E[n, j|x; ;] = 0 and E[e*i|x; ;] < X' /2 for all X € R.
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B.2 SC-LinUCB Algorithm Detail

Algorithm 2 SC-LinUCB (Shared Model) - Appendix Version

Require: Exploration parameter o > 0, regularization Ap.qy > 0.

1: Initialize A = )\regIda b =0,.

2: fort=1,...,T do

3: Observe query q;.

4: For each tool a; € A (with semantic embedding ¢,), construct feature vector

Xt,j = ff(Qta¢j)~

5 Compute A~

6: Compute 0, = A~ b.
7 For each tool a; € A:
8
9

. T A—1 .
St,j Xt,jA Xt,j

A
Dij xt’jet + st

10: Choose a; = argmax;c(y, g} Pt,j (break ties randomly).
11: Let Xf}wse” = Xt,q,;-

12: Play tool a;, observe reward R;(x¢hosen).

13: A «— A_i_Xghosen(X?hosen)T-

14: b«<b + Rt(xghosen)xghosen.

15: end for

B.3 Standard Lemmas and Proof for Generic LinUCB Regret

Theorem B.2 (Confidence Set for 8*, Theorem 2 from Abbasi-Yadkori et al. [1]). Under
Assumption let 6 € (0,1) and Areg > 0. Define

12
ay(0) = a\/Q log(1/8) + dlog (1 + tLi ) + v/ AregSo

>\reg

(This form of « is closer to the direct statement in Abbasi- Yadkori et al., Theorem 2, which
uses log(det(Ay)/ det(Aregl)) < dlog(l+tL2/(Aregd))). Then, with probability at least 1 — 4,

for all t > 1, 6* lies in the set C, = {0 € R : ||0, — O]|a, < &,(8)}. This implies that for
any x € R? with ||x||s < Ly, |xT(8, — 6*)| < a}(6)\/xTA;*x. For the main paper, we use

a slightly simplified o > o/-(0) for clarity, which might incorporate a log K term for uniform
convergence over arms at each step if not absorbed into 6.

Proof. See proof of theorem 2 from Abbasi-Yadkori et al. [I] for full derivation. O

Lemma B.3 (Elliptical Potential Lemma, Lemma 11 from Abbasi-Yadkori et al. [I]).
Let x1,...,x7 € R? be a sequence of feature vectors such that ||x¢||s < L.. Let Ay =
Aregla + 22;11 ij?. Then,

T

TL?
Zmin(l,xtTAt_lxt) < 2dlog (1 + = )
P )\regd

Proof. See proof of Lemma 11 from Abbasi-Yadkori et al. [I]. O

B.4 Elleptical potential lemma

We restate and proof the elleptical potential lemmas:

Lemma B.4 (Elliptical Potential Lemma, Lemma 11 from Abbasi-Yadkori et al. [I]).
Let x1,...,x7 € R? be a sequence of feature vectors such that ||x;||2 < L,. Let Ay =
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)\regId + Z;;ll XjX?. Then,

T
TL?
Zmin(l,x?A[lxt) <2dlog |1+ =
P )\regd

If Areg > L2, then xI'A 7 x; < X7 (Aregla) 1xy = H;Z” < % <1, so the min(1,-) can be
removed. For a general A,cq, the bound still holds with the min.

Proof. See Lemma 11 and Appendix A.3 in Abbasi-Yadkori et al. [IJ. O

B.5 Detailed Argument for Theorem (Advantage of SC-LinUCB)

Theorem posits that SC-LinUCB achieves lower regret than LinUCB-NS by enabling
more efficient exploration and generalization through its semantic features. We elaborate on
the two main mechanisms:

1. More Parsimonious Effective Model (Relating to d): The regret bound for

LinUCB scales roughly with d, the feature dimensionality. For SC-LinUCB, features ng_em) =

[a¢; @5 sim(qy, ¢;); 1] have dimension dgem = dq+dgesec +1+ 1. For LInUCB-NS with one-hot
(non—sem) __

tool encodings, x; ;

= [qs; e;; 1] has dimension dyon—sem = dg + K + 1.

Assumption |B.1] E implies that the true reward function f*(q:, ¢;) depends on shared semantic
properties encoded in ¢; and their interaction with q;. If the diversity of K tools can be
meaningfully captured by dges.-dimensional semantic embeddings such that dgesc < K (e.g.,
tools fall into fewer semantic archetypes than K, or their reward-relevant variations are
low-dimensional), then dsem can be substantially smaller than dpon—sem- SC-LinUCB learns
a single parameter vector Oyern € R%em . This vector effectively models the utility of semantic
*attributes* (dimensions of q;, dimensions of ¢;, and their similarity) and how they combine
to predict reward. This model is shared across all K tools. LinUCB-NS, on the other hand,
needs to learn parameters in énon_sem € Rinon—sem where K of these dimensions (from e;)
are dedicated to capturing the unique identity and behavior of each tool. If there is underlying
semantic redundancy across tools that LinUCB-NS cannot exploit, it is effectively learning a
higher-dimensional model than necessary. Thus, if dsern < dpon—sem and both feature sets
achieve a comparable quality of linear approximation (i.e., Geff sem = Oeff,non—sem), the d
factor in the regret bound directly favors SC-LinUCB. This represents a reduction in the
complexity of the parameter space to be learned.

2. Faster Reduction of Uncertainty for Semantically Similar Options (Relating

to > si.4,): The instantaneous regret 7, is bounded by 2as; 4, = 2ay /xfatA_lxt a,- The
cumulative regret depends on the sum of these exploratlon terms. Consider the update to
the covariance matrix A,y 1 = Ay +x,x; . The inverse At 1 shrinks based on the direction of

. The exploration term sf,’j = xf,yjAt 11Xy for any arm j at a future step ¢’ will decrease

more significantly if x, ; has a substantial component along the direction of x; (the chosen
arm’s features at time t).

For SC-LinUCB, if tool a, is chosen at time ¢ (with features x(sem)) the update to Agep
(se

m .
reflects increased certainty along the semantic dimensions present in x; , ). Now, consider

another tool ap. If ap is semantically similar to a, with respect to context q; (or a similar

(sem) (sem)
ta and X4/ p

components (e.g., similar ¢ components, similar interaction terms). Consequently, the

context gy ), then their feature vectors x will share many active semantic

exploration term st, ) for tool ap will also be reduced due to the information gained from

pulling a,. The agent effectively learns about a "semantic neighborhood" of tools with each
pull.

For LinUCB-NS,; the feature vectors xi’jf" sem) = [q¢;€4;1] and Xgr;on sem) = [q¢; ep; 1] (for

a # b) have orthogonal tool-identity components e, and e,. An update from pulling a,
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(involving e,) primarily reduces uncertainty associated with e, and its interaction with q;.
It has minimal effect on reducing the uncertainty associated with the distinct orthogonal
direction ep. Thus, LinUCB-NS learns little about a;’s specific utility from pulling a,, even
if a, and ap are semantically very similar.

This implies that SC-LinUCB can "cross off" or gain confidence about larger regions of the
(context x semantic tool property) space with each observation. As a result, the sum of
exploration terms 23;1 ¢4, is expected to be smaller for SC-LinUCB compared to LinUCB-
NS over T steps, as it requires fewer "distinctly exploratory" pulls to identify good actions
across the spectrum of contexts and tools. While the Elliptical Potential Lemma (Lemma
B.3) bounds )~ s7,, by O(dlogT) for both, the actual sequence of s; 4, values chosen by

-LinUCB can be smaller on average due to this generalization, leading to a tighter sum
for > s;.4, when applying Cauchy-Schwarz.

Combining a potentially smaller dse,,, with a more efficient exploration dynamic (leading to a
smaller effective sum of exploration bonuses), SC-LinUCB achieves lower cumulative regret.

B.6 SC-LinUCB in the continual setting

Beyond efficiency with a fixed set of tools, SC-LinUCB’s semantic feature design offers
significant advantages in continual learning scenarios where the set of available tools A;
(and thus its size K;) changes over time. This is a critical capability for agents in evolving
environments.

Consider a setting with phases, where within each phase p, the toolset A® is fixed, but it
can change between phases (e.g., A+1) — (.A(p) \ Aremoved) U Aadded )-

Theorem B.5 (Low-Cost Adaptation of SC-LinUCB to Dynamic Toolsets). Let SC-LinUCB
use semantic features x5¢™) of fized dimension dsem and LinUCB-NS use one-hot features
x(non=sem) o f dimension Anon—sem (K1) = dg+ K +1. When the set of available tools changes

from AP (size K®)) to APTYD (size KP+D)):

1. SC-LinUCB (Semantic):

e [ts feature dimension dgse,, remains constant.

e [Its learned parameter vector éﬁ’;}n (from phase p) and covariance matriz Ag@n

remain valid and are directly carried over to phase p + 1.
e For any newly added tool anew € Agddeq with semantic embedding @pew, SC-

LinUCB can immediately compute its feature vector X,(Isﬁ?u), and estimate its

utility using the existing éﬁ’;Zn, yielding an informed initial UCB score.
o The "cost of adaptation" is primarily the exploration required for new semantic
aspects introduced by Agqdqeq that were not sufficiently covered by ég@n If new

tools are semantically similar to previously seen optimal tools, adaptation is
very fast.

2. LinUCB-NS (Non-Semantic Baseline):

o If KD £ K®) s feature dimension dyon—sem(K:) changes.  This
necessitates a change in its parameter wvector énon,sem and matrices
A’I’LO’I’L—SEm? bnon—sem .

o Common strategies for LinUCB-NS include: (a) Full Re-initialization:
A on_sem and byon_sem are Teset. The agent effectively relearns from scratch

for the new toolset APTV)  incurring regret similar to starting a new ban-
dit problem of size K®+1), (b) Heuristic Adaptation: Attempting to adapt
A on—sems Pron—sem (€-9., adding/removing rows/columns) is complex and typ-
ically still treats new tool IDs as completely unknown entities requiring extensive
exploration.

o For any newly added tool aney, LinUCB-NS has no prior information derived
from other tools about its utility, as its one-hot encoding is orthogonal to others.
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o The "cost of adaptation" involves significant relearning for the entire (or sub-
stantial parts of) the new toolset.

Consequently, over a sequence of phases with changing toolsets, SC-LinUCB 1is expected to
achieve substantially lower cumulative regret than LinUCB-NS due to its fized-dimensional
semantic representation, knowledge transfer via ésem, and ability to gracefully incorporate or
ignore tools based on their semantic features without model restructuring.

Proof Sketch for Theorem [B.5 This theorem’s argument builds on the properties of the
agents and the implications of Theorem ?7 applied piecewise.

For SC-LinUCB: The feature space R%<m and the parameter vector 8%, are defined
over semantic properties, not tool identities or the count K;. Thus, the learned model

(ésem, A.) retains its validity and utility when the set of available tools A; changes.

o Tool Addition: When aney (With ¢pew) is added, SC-LinUCB calculates ngﬁ?lg
and its UCB score using the current Osern and Agep,. If Gnew aligns semantically
with query features for which 0. has learned high weights, aneq Will be explored
efficiently. The exploration cost is for resolving uncertainty about this specific x((fﬁ?u),
within the existing learned model structure. No part of the model needs to be
"resized" or "reset."

e Tool Removal: If aremoved is removed, SC-LinUCB simply no longer considers it for

selection. Its learned Og.,, and Ay, (which contain information from past pulls of
Gremoved) Temain valid for evaluating the remaining tools.

The regret within any phase p where A®) is fixed is governed by Theorem ?? with d = dgem.
The transitions between phases incur minimal structural cost.

For LinUCB-NS (OneHot): The feature space Rnon—sem(Kt) explicitly depends on the
current number of tools K; via the one-hot encodings e; € R¥:.

o Tool Addition (K increases): dnon—sem increases. The matrices A, on—sem and
bron—sem must be expanded. The new dimensions corresponding to the new tool ID
have no prior history. Effectively, the agent must learn about this new tool’s interac-
tion with all query types from scratch. If the agent fully resets A, on—sems Pron—sem
(as done in our Experiment 2 for a clear baseline), it starts a new learning prob-
lem with regret O(dmn,sem(Knew) Tphase). Even with more sophisticated matrix
adaptation, the components of 6* relevant to the new tool are unknown.

non—sem

o Tool Removal (K decreases): dpon—sem decreases. The agent might discard rows/-
columns from A.,,0n—sem, Pron—sem- Lhis is less detrimental than addition if no reset
occurs, but the overall problem structure for its features has changed.

The key issue is that LinUCB-NS’s learned knowledge is tied to specific tool indices. If these
indices change, or new ones appear, extensive relearning is often needed for those affected
dimensions. The strategy of re-initializing A, b upon change in K (as implemented for
LinUCB-OneHot in our Experiment 2) represents a clear case where it incurs a full bandit
learning cost for the new configuration.

Comparing Adaptation Costs: The "cost" can be seen as the additional regret incurred
during a phase transition compared to an oracle that was already adapted. For SC-LinUCB,
this cost is low because ésem provides immediate, semantically-informed estimates for new
tools, and its structure is stable. For LinUCB-NS (with resets on K change), this cost is
high, equivalent to the initial regret of a new bandit problem. Thus, over multiple phases
of toolset changes, the cumulative regret of SC-LinUCB will be substantially lower due to
these significantly reduced adaptation costs at phase boundaries, on top of its potential
intra-phase efficiency from Theorem [3:2] O
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B.7 Experiment 1: Detailed Setup and Full Results for Intra-Episode
Efficiency

This section provides further details for Experiment 1, which evaluates the intra-episode
efficiency of SC-LinUCB with semantic features against LinUCB-OneHot with non-semantic
features in a multi-context toy environment.

Environment Design. The environment is a contextual bandit task designed to highlight
the benefits of semantic generalization.

o Timesteps (T'): Each experimental run consists of 7' = 10000 timesteps.
o Tools (K): There are K = 6 tools available throughout each run.

« Tool Semantic Archetypes and Embeddings (¢;): Tools are designed around
Ngren, = 3 underlying semantic archetypes. Each tool a; is assigned one of these
archetypes. Its dioo1 sem = 2 dimensional toy semantic embedding ¢; is generated
by taking the corresponding archetype vector and adding Gaussian noise with zero
mean and standard deviation gemp noise = 0.05. This noise is re-generated for each
of the N,.ns independent experimental trials to ensure robustness of results to minor
variations in embeddings. The archetype vectors are:

— Archetype 1 (daren1): [0.9,0.1]7 (2 tools assigned this archetype)
— Archetype 2 (Garen2): [0.1,0.9]7 (2 tools assigned this archetype)

— Archetype 3 (¢arens): [—0.7, —0.7]7 (2 tools assigned this archetype, replacing
the previous 1 ’type3’ and 1 'noise’ for more symmetry)

o Queries/Contexts (q;): There are Ng = 3 distinct query types, each represented
by a dgy = 2 dimensional toy embedding. These queries cycle periodically every Ng
timesteps (i.e., ¢a,985,9¢,494,498,4c, - - - ). The query embeddings are:

— Query A (qa): [1.0,0.2]7, designed to align best with Tool Archetype 1.
— Query B (qp): [0.2,1.0]7, designed to align best with Tool Archetype 2.
— Query C (qc¢): [-0.8,—0.8]7, designed to align best with Tool Archetype 3.

o Reward Function (R;): The reward R; € {0,1} is stochastic, drawn from a
Bernoulli distribution. The success probability P(success|qy, ¢;) is determined by
the semantic alignment between the current query q; and the chosen tool’s embedding
¢;. Specifically:

P(SUCCGSS) = Clip(Pbase + Csim : (q?¢g) + Baligna Pmina Pmam)

where Py,se = 0.45 is a base success rate, Cy;,, = 0.40 scales the dot product
similarity, and Baign = 0.25 is a bonus awarded if the chosen tool’s true archetype
matches the current query’s preferred archetype. Probabilities are clipped to [P, =
0.05, Pz = 0.95]. This structure ensures that tools whose semantic embeddings
align well with the current query, especially those of the preferred archetype, have a
higher expected reward.

Agent Configurations. Both SC-LinUCB and LinUCB-OneHot are instances of the
stanard LinUCB algorithm differing only in their feature construction:

e SC-LinUCB (Semantic): Uses dsem = dg + diool_sem + 1(similarity) + 1(bias) =

242+ 1+ 1 = 6 dimensional features: xifjm) = [as; 955 QtTﬁbj; 1].

+ LinUCB-OneHot (Non-Semantic Baseline): Uses dpon—sem = dg + K +
1(bias) = 24+ 6 + 1 = 9 dimensional features: Xl(t"r;onfsem) = [a;; ej;1], where
e; is the one-hot encoding for tool a;.

Both agents use A\..; = 1.0. We evaluate exploration parameters a € {0.3,0.5,1.0}.
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Evaluation Metrics. Results are averaged over N,,,s = 15 independent Monte Carlo
runs. We report:

: .1 Nruns T (run)
1. Average Cumulative Reward: —— Do > Ry
1

2. Average Cumulative Regret: S Nrune SN (E[R|qy, af] —E[R|qt,a§mn)]).

run=1 t=1
Here, E[R|qt, a] is the true expected reward (success probability) of tool a for query
d:, and aj is the tool with the maximum expected reward for q;. This uses expected
instantaneous regret for smoother non-decreasing cumulative regret curves.

Full Experimental Results. Figure |4 shows both the average cumulative reward and
average cumulative regret on logarithmic y-axes for all tested « values.

107 4

log Average Cumulative Reward
log Average Cumulative Regret

1004
— SC-LinUCB 0.3 —— SC-LinUCB 0.3

LinUCB 0.3 LinUCB 0.3
10° —— SC-LinUCB 0.5 —— SC-LinuUCB 0.5
— LinucB 0.5 —— LinUCB 0.5
—— SC-LinUCB 1.0 —— SC-LinUCB 1.0
— LinUCB 1.0 —— LinUCB 1.0
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Figure 4: Full results for Experiment 1: SC-LinUCB (Semantic) vs. LinUCB-OneHot
(Non-Semantic) in the multi-context toy environment (7" = 10000, 15 runs). Left: Average
Cumulative Reward (log scale). Right: Average Cumulative Regret (log scale). Different line
styles/colors within agent types correspond to « € {0.3,0.5,1.0}.

The results clearly indicate the superiority of SC-LinUCB. In the reward plot (left), SC-
LinUCB variants (particularly with o = 1.0, purple dashed line) accumulate substantially
more reward over time compared to LinUCB-OneHot variants. The log scale emphasizes the
sustained higher rate of reward collection.

The regret plot (right) offers the most striking comparison. SC-LinUCB agents maintain
an extremely low cumulative regret (primarily between 10° and 10'), indicating rapid
convergence to near-optimal policies for the cycling contexts. The SC-LinUCB (Semantic)
a = 0.3 (blue solid line) shows the lowest regret overall. In stark contrast, all LinUCB-
OneHot variants incur regret that is orders of magnitude higher, reaching 103. While their
regret curves are sublinear (indicating learning), their inefficiency compared to SC-LinUCB
is evident. The LinUCB-OneHot agent with o = 1.0 (brown solid line) performs best among
the non-semantic baselines but is still vastly outperformed.

These empirical findings strongly corroborate our theoretical analysis (Theorem [3.2)). The
ability of SC-LinUCB to generalize across tools and contexts using a compact semantic
feature space (dgsem = 6) leads to substantially more efficient learning than LinUCB-OneHot,
which must learn more independently for each tool ID within its higher-dimensional feature
space (dnon—sem = 9). The semantic features provide a powerful inductive bias that aligns
with the problem structure, reducing the effective complexity faced by the learning algorithm.

B.8 Experiment 2: Detailed Results for Continual Adaptation with Varying
Exploration

This section provides the full results for Experiment 2, which evaluates the continual
adaptation capabilities of SC-LinUCB (Semantic) and LinUCB-OneHot (Non-Semantic) in
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an environment with dynamically changing toolsets. We present a sensitivity analysis with
respect to the exploration parameter a € {0.3,0.5,1.0}.

Experimental Setup Recap. The environment consists of four distinct phases, each
lasting Tphase = 2500 timesteps (total T' = 10000). The set of available tools (K) and active
query types (Ng) evolve across these phases, involving tool addition (of both semantically
familiar and novel types), tool removal, and the introduction of new query types corresponding
to novel tools.

o Phase 1 (K = 4,Ng = 3): Initial tools: {aa1,aa2(typel);api,apa(type2)}.
Queries: qa,95,qc-
o Phase 2 (K =3, Ng = 3): Tool aas (typel) removed. (Starts at ¢ = 2500)

o Phase 3 (K = 4,Ng = 3): New tool aa3 (typel, semantically similar to aa1)
added. (Starts at ¢t = 5000)

o Phase 4 (K =5,Ng =4): New tool ap; (novel semantic type4) added; query qp
(aligning with type4) becomes active. (Starts at ¢t = 7500)

LinUCB-OneHot re-initializes its model matrices (A, b) when K changes. SC-LinUCB’s core
model matrices and semantic feature dimension (dse,, = 6) remain fixed. Toy embeddings
and the reward function are as described in Appendix (or a dedicated Exp2 setup
section if it differs significantly). All results are averaged over N,,,s = 15 independent seeds.

Results with Varying Alphas. Figure [5|displays the average cumulative reward (left,
log scale) and average cumulative regret (right, log scale) for both SC-LinUCB and LinUCB-
OneHot across the three tested values of a.

Experiment 2: Continual Adaptation to Dynamic Toolsets (Toy Embeddings)
Exp 2 Continual: Reward (15 Runs) Exp 2 Continual: Regret (15 Runs)

10%

b3

101 4

Average Cumulative Reward
log Average Cumulative Regret
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i
|

—— SC-LinUCB (Semantic) 0.3 —— SC-LiNUCB (Semantic) 0.3

i i LinUCB (OneHot) 0.3 i i LinUCB (OneHot) 0.3

| | —— SC-LINUCB (Semantic) 0.5 ! ! —— SC-LINUCB (Semantic) 0.5
—— LinUCB (OneHot) 0.5 10-14 H H —— LinUCB (OneHot) 0.5

100 i i —— SC-LInUCB (Semantic) 1.0 | | —— SC-LinUCB (Semantic) 1.0

H H —— LinUCB (OneHot) 1.0 | | —— LinUCB (OneHot) 1.0

| | ——- Phase 2 Start | | -—- Phase Switch

Figure 5: Experiment 2 (Continual Adaptation): Performance of SC-LinUCB (Semantic) and
LinUCB-OneHot (Non-Semantic) with varying exploration parameters « € {0.3,0.5,1.0}.
Results over 4 x 2500 timesteps, averaged over 15 runs. Vertical dashed lines indicate phase
shifts. Left: Average Cumulative Reward (log scale). Right: Average Cumulative Regret (log
scale).

Cumulative Reward Analysis (Figure Left): SC-LinUCB variants consistently
achieve higher cumulative rewards than LinUCB-OneHot variants across all tested « values.
For SC-LinUCB, « = 1.0 (purple dashed line) yields the highest overall reward, suggesting
that with strong semantic features, a reasonably high level of exploration can be beneficial
for maximizing long-term reward, even in a changing environment. For LinUCB-OneHot,
a = 1.0 (brown dashed line) is also its best configuration, but it still lags significantly
behind all SC-LinUCB variants. The SC-LinUCB curves maintain a steadier rate of reward
accumulation across phase transitions, whereas the LinUCB-OneHot curves show more
pronounced slowdowns or changes in slope, indicative of their relearning periods.
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Cumulative Regret Analysis (Figure [5, Right): The regret plot starkly illustrates the
advantages of SC-LinUCB.

o SC-LinUCB (Semantic): All variants (blue o = 0.3, green o = 0.5, purple

a = 1.0) maintain exceptionally low cumulative regret, generally staying within the
10° to 10" range over 10000 steps. The phase transitions cause only minor, temporary
increases in regret, from which they recover quickly. SC-LinUCB with a = 0.3 and
a = 0.5 show particularly stable and low regret. The o = 1.0 variant, while achieving
high rewards, exhibits slightly higher regret and notably wider variance (shaded
area), especially around phase shifts, likely due to more extensive exploration when
the environment changes. This indicates that while higher exploration can find good
policies, it might come at the cost of some initial suboptimality if the semantic signal
is already strong.

LinUCB-OneHot (Non-Semantic): All variants incur substantially higher regret,
ending up in the 10? to 10> range. Crucially, at each phase transition where K
changes (vertical dashed lines), there is a distinct upward turn or steepening of the
regret slope. This clearly visualizes the significant cost of adaptation incurred by
LinUCB-OneHot as it re-initializes its model and relearns the utility of tools largely
from scratch. Increased exploration (e.g., & = 1.0, brown line) helps LinUCB-OneHot
achieve lower regret compared to its lower « counterparts, but it remains orders of
magnitude worse than any SC-LinUCB variant.

Conclusion from Alpha Sensitivity. SC-LinUCB demonstrates robust superiority
over LinUCB-OneHot across the tested range of exploration parameters in this continual
learning setting. Its ability to leverage fixed-dimensional semantic features allows for graceful
adaptation to dynamic toolsets with minimal regret cost. While LinUCB-OneHot does
benefit from increased exploration, its fundamental inability to generalize semantically across
tools and its need to restructure its feature space when the number of tools changes impose
a significant and persistent learning burden. For the main paper, we typically present results
for a representative « (e.g., @ = 0.5) that showcases good performance for SC-LinUCB, as
seen in Figure [ID] This detailed ablation confirms the general trends.
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C Appendix ICL Experiments

C.1 Experimental Setup Details

This section provides comprehensive details of the configurations used for all experiments
discussed in the main paper, ensuring reproducibility.

C.1.1 LLM Parameters and Prompt Structure

The Large Language Model (LLM) utilized across all four experiments was Gemini 2.0 Flash,
accessed via the models/gemini-2.0-flash API endpoint. Key generation parameters were
consistently set as follows:

e Temperature: 0.5

¢ Maximum Output Tokens: 500 for Experiments 1 & 2; 1500 for Experiments 3 & 4
(to accommodate potentially longer reasoning with dynamic changes).

No specialized safety settings beyond API defaults were applied.

The fundamental prompt structure provided to the LLM comprised a system message defining
the task and action presentation, followed by the interaction history and the current query.

System Prompt Template:

You are an intelligent assistant playing a multi-armed bandit game.

Your goal is to maximize your total reward over many turns.

The available actions (tools) or types of queries may change over time.

In each turn, you are presented with a user query and a list of currently
available actions. Each action, when chosen for a query it is suited for,
has a specific hidden probability of yielding a reward of 1, and O otherwise.
If an action is not suited for the query, or no suitable action is available,
it will likely yield a reward of O.

You must choose one action if suitable options exist.

If no actions are available or suitable, state that.

Available actions: [
{Formatted list of actions based on experimental condition}

]

The placeholder {Formatted list of actioms...} was populated according to the active
experimental condition (Index Only, Names Only, Description Only or Names + Descriptions)
for the currently available tools in that phase/turn.

User Message Template per Turn:

Interaction History (most recent 20 turns shown for LLM context):

{Interaction history string, e.g.,

Turn 1: Query: "Full Query Text 1", Your Choice: ActionNamel, Outcome: Reward
0

Turn K: Query: "Full Query Text K", Your Choice: ActionNameK, Outcome: Reward
R_K
}

Current User Query (Global Turn {current_global_turn}): "{Current Query Text
}ll
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Think step-by-step about which action is best for the current query.
Consider the query, CURRENTLY available action descriptions, and past

After your reasoning, state your final choice clearly.
For example: "Reasoning: [...reasons...]. Chosen Action: ActionName Or Index".

If no action is suitable or available, you can state ’Chosen Action: Nome’.
Which action do you choose?

experiences.

The interaction history provided in the prompt to the LLM contained the full text of the
past 20 queries, chosen actions, and their rewards. The experimental framework maintained
the complete history for logging and analysis. Each experiment was run for a set number of
independent trials: 5 trials for Experiments 1 and 2 (static), and 7 trials for Experiments 3
and 4 (dynamic).

C.1.2

C.1.3

Experiment 1 (fQfA) Configuration Details

Description: Single query repeated for T' = 10 turns, fixed action space.

Query (q_analyze): “I have a list of sales figures for the last quarter, can you help
me understand the growth pattern?” (Optimal Arm: tool_A)

Arm Configurations:

b

— tool_A (Data Analyzer): “Processes numerical data arrays to find trends.
<ptrue — 0.9,psubopt — 055>

— tool_B (Text Formatter): “Cleans and formats long text strings.” (Designed
with p'™i® = 0.9, used with p*'P°P* = 0.5 when chosen for q_analyze)

— tool_C (Image Resizer): “Changes the dimensions of image files.” (Designed
with p'™i¢ = 0.8, used with p*'P°P* = 0.6 when chosen for q_analyze)

b2

7

Experiment 2 (mQfA) Configuration Details

Description: Queries randomly drawn from a fixed set for 7' = 50 turns, fixed
action space.

Arm Configurations:

tool_translate (QuickTranslate): “Translates short text snippets between common
languages.” (p*™"¢ = 0.85, p*uPoPt = (.5)

tool_summarize (BriefSummary): “Creates a one-sentence summary of a paragraph.”
(ptruc — 0.75’psubopt — 05)

tool_calendar (EventScheduler): “Adds events to a user’s primary calendar’
(ptrue — 0'9’psubopt — 055)

tool_filesearch (DocFinder): “Searches for local documents by keyword.” (p
0.7, p™PoPt = 0.6)

Query Configurations (Randomly Sampled from this set):

)

true __

q_trans_hello: “How do you say ’hello’ in Spanish?” (Optimal: tool_translate)

q_sum_paragraph: “Give me the gist of this: "The quick brown fox jumps over the
lazy dog every day.”” (Optimal: tool_summarize)

q_sched_meeting: “Schedule a meeting with Jane for tomorrow at 2 PM.” (Optimal:
tool_calendar)

q_find_report: “Find the Q3 sales report document on my drive” (Optimal:
tool_filesearch)

q_trans_bye: “What is 'goodbye’ in French?” (Optimal: tool_translate)

q_sum_news: “Briefly, what’s this news about: 'Local team wins championship after
a dramatic final’?” (Optimal: tool_summarize)
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C.14

C.1.5

Experiment 3 (fQmA) Configuration Details
Description: Single query repeated for T' = 35 turns (total across phases), action
space changes in phases.

Query (Q_ComplexMath): “Solve the integral of x ~ 2 * sin(x) from 0 to pi, and
also find the square root of 1764.” (Designated Optimal Arm (when available):
E3_SuperCalc)

Master Arm Configurations:

E3_Calculator (Basic Calculator): “Performs simple arithmetic (4, -, *, /)”
(ptruc — 0.7,psubopt — 01)

E3_SciCalculator (Scientific Calculator): “Advanced math functions: exponents,
logs, trig” (p'™¢ = 0.9, p>:PoPt = 0.15)

E3_UnitConverter (Unit Converter): “Converts units (e.g., kg to lbs, meters to
feet)” (p'™e = 0.8, p>PoPt = (.05)

E3_Plotter (Data Plotter): “Generates simple plots from data.” (p™™°¢ =
0.6, p™PoPt = 0.1)

E3_SuperCalc (SuperMath Solver): “Handles complex algebra, calculus, and sym-
bolic math. The ultimate math tool.” (p'¢ = 0.95, p>:boPt = 0.2)

Phase Details (Total 35 Turns):

— Phase 1 (P1_BasicTools, 7 Turns): Active Arms: {E3_Calculator,
E3_UnitConverter}.

— Phase 2 (P2_SciCalc_Added, 10 Turns): Active Arms: {E3_Calculator,
E3_SciCalculator, E3_UnitConverter}.

— Phase 3  (P3_SuperCalc_Arrives, 10 Turns): Active  Arms:
{E3_SciCalculator, E3_SuperCalc}.

— Phase 4 (P4_SuperCalc_Only, 8 Turns): Active Arms: {E3_SuperCalc,
E3_Plotter}.

Experiment 4 (mQmA) Configuration Details

Description: Both queries (randomly drawn from phase-specific sets) and actions
change over T = 28 turns (total across phases).

Master Arm Configurations:

E4_Translate_EN_DE (German Translator): (p'"¢ = 0.9, psuPoPt = (.1)
E4_Summarize_News (News Summarizer): (p'™u® = 0.85, pSiPoPt = (.15)
E4_Weather_API (City Weather): (p'™i¢ = 0.92, pSuPoPt = (.1)
E4_Image_Resize (Image Resizer): (p'™® = 0.8, ps"PoPt = 0.05)
E4_Code_Python (Python Code Assistant): (p'™¢ = 0.75, pSuPPt = (.2)
E4_General_ QA (Knowledge Bot): (p®¢ = 0.7, pSuboPt = (.3)

Master Query Configurations:

Q_Translate_Hello_DE (Optimal: E4_Translate_EN_DE)
Q_Summarize_Article (Optimal: E4_Summarize_News)
Q_Weather_Berlin (Optimal: E4_Weather API)

Q_Resize_Logo (Optimal: E4_Image_Resize)

Q_Python_Loop (Optimal: E4_Code_Python)

Q_Capital_France (Optimal: E4_General_QA)

Q_Weather_Tokyo (Optimal: E4_Weather_API)

Q_Python_Function (Optimal: E4_Code_Python)

Phase Details (Total 28 Turns):
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— Phase 1 (P1_Lang_Summary, 8 Turns): Active Arms: {E4_Translate_EN_DE,
E4_Summarize_News, E4_General QA}. Active Queries:
{Q_Translate_Hello_DE7 Q_Summarize_Article, Q_Capital_France}.

— Phase 2 (P2_Weather_Image, 10 Turns): Active Arms: {E4_Weather_ API,
E4_Image_Resize, E4_General QA}. Active Queries: {Q_Weather_Berlin,
Q_Resize_Logo, Q_Capital_France, Q_Weather_Tokyo}.

— Phase 3 (P3_Coding_Focus, 10 Turns): Active Arms: {E4_Code_Python,
E4_General_QA, E4_Weather_ API}. Active Queries: {Q_Python_Loop,
Q_Capital_France, Q_Weather_Tokyo, Q_Python_Function}.

C.2 Additional plots

The following figures illustrate the average cumulative regret accrued by the agent under
each condition. These trends generally corroborate the findings from the reward analysis.

fQfA (Exp1) mQfA (Exp2) fQmA (Exp3) mQmA (Exp4)

o o N @
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Figure 6: Average Cumulative Expected Regret across Experiments 1-4. Subplot titles use
abbreviations: f=Fixed, m=Moving, Q=Queries, A=Actions. Shaded regions represent +1
standard error of the mean (SEM) across trials. Note the varying x and y-axis scales across
subplots, reflecting different experiment durations and regret magnitudes.

The experimental results, summarized by the average cumulative expected regret curves in
figure [6] consistently demonstrate the profound impact of semantic context on the LLM’s
in-context learning and adaptation for tool selection.

Static Environments (Expl: fQfA; Exp2: mQfA): In environments with fixed action
spaces and query distributions, the provision of rich semantic information via Names +
Descriptions (ND) yields unequivocally superior performance. As illustrated in |§| (Expl
and Exp2 panels), the ND condition (green solid line) maintains a cumulative expected
regret near zero throughout. This indicates that detailed tool descriptions enable the LLM
to rapidly and accurately identify the optimal tool for a given query from the initial turn,
effectively bypassing the need for substantial exploration. The LLM, in this condition,
behaves as if endowed with strong priors that align well with the task structure.

In stark contrast, the Index Only (IO) condition (blue dashed line) results in the highest
cumulative regret, which increases approximately linearly. This suggests that in the absence
of semantic anchors, the LLM struggles to discern effective query-action mappings, leading
to inefficient, near-random exploration or persistent suboptimal choices. The Names Only
(NO) condition (orange dash-dot line) performs comparably poorly to IO in these static
settings, indicating that simple tool names alone provide insufficient semantic grounding for
the LLM to reliably infer optimal behavior or differentiate tool efficacies.

Dynamic Environments (Exp3: fQmA; Exp4: mQmA): Non-stationary environments,
characterized by changes in the available toolset and/or query distribution, reveal more
nuanced interactions between semantic context and adaptability.

In Experiment 3 (fQmA: fixed query, moving actions), the ND condition again demonstrates
robust adaptation @ Exp3 panel). While regret initially accumulates for all conditions due
to the unavailability of the globally optimal tool (“E3_SuperCalc”), the ND agent’s regret
plateaus sharply around turn 17. This event corresponds to a phase change introducing
“E3_SuperCalc” (details in [C.1.4)), which the ND agent immediately identifies and exploits
due to its descriptive alignment with the complex, fixed query. The NO agent also adapts,
but with a discernible delay and to a higher regret plateau, suggesting that names offer some
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utility for identifying new tools but are less efficient than full descriptions. The IO agent
fails to adapt effectively, its regret continuing to climb.

Experiment 4 (mQmA: moving queries and actions) presents the most complex scenario
and yields a particularly insightful result @ Exp4 panel). Here, while the ND condition
maintains very low regret overall, demonstrating strong adaptability, the Names Only
(NO) condition performs remarkably well, achieving comparable, and at times
even slightly lower, cumulative regret than ND, particularly in later phases. This
unexpected outcome suggests that in highly dynamic and complex environments, excessively
detailed or numerous descriptions might introduce a cognitive load or risk of misinterpretation
that slightly hampers agility. Concise, sufficiently indicative names, under such rapid flux,
might allow the LLM to maintain a more flexible mapping, leading to surprisingly robust
performance. Nevertheless, both NO and ND vastly outperform the IO condition, which
struggles profoundly with the compound dynamism.

C.3 Example Reasoning Traces

Consider, for example, responses to the query:

"query__text": "I have a list of sales figures for the last quarter, can you
help me understand the growth pattern?’,

e Index only:

— "Reasoning: The user is asking for help understanding sales figures and growth
patterns. This suggests a need for data analysis and visualization. Without
knowing the specific functionality of each action, I will assume Action 1 is a
general-purpose tool that can handle data analysis tasks. Actions 2 and 3 might
be specialized tools that are less likely to be relevant to this general request.\n\n
Chosen Action: Action 1\n',

— "Reasoning: The query is about sales figures and understanding growth patterns.
Action 1 has consistently provided rewards for similar queries in the past.
Therefore, it is likely the best choice for this query as well.\n Chosen Action:
Action 1",

e Names:

— "Reasoning: The query asks for help understanding a growth pattern in sales
figures. This clearly points to data analysis as the appropriate action. The
other actions, Text Formatter and Image Resizer, are not relevant to numerical
data analysis.\n\n Chosen Action: Data Analyzer",

— "Reasoning: The query is about understanding the growth pattern of sales
figures. The "Data Analyzer" tool has consistently provided a reward of 1 for
similar queries in the past. The other tools, "Text Formatter" and Image Resizer;
are not relevant to analyzing numerical data. Therefore, the "Data Analyzer" is
the most likely action to yield a reward.\n\n Chosen Action: Data Analyzer",

e Names + Descriptions:

— "Reasoning: The query mentions Sales figuresdnd growth pattern; which indicates
numerical data and the need to find trends. The Data Analyzer tool is specifically
designed for processing numerical data arrays to find trends. The other tools,
Text Formatter and Image Resizer, are not relevant to this query. Therefore,
the Data Analyzer is the most likely to yield a reward.\n\n Chosen Action:
Data Analyzer',

— "Reasoning: The query explicitly mentions Sales figuresdnd growth pattern,which
are numerical data-related tasks. The Data Analyzer is designed to process
numerical data arrays to find trends. In the previous turn with a similar query,
the Data Analyzer yielded a reward of 0. However, this could be due to chance,
and the Data Analyzer is still the most appropriate tool for this type of query.
The other tools are clearly not relevant.\n\n Chosen Action: Data Analyzer",
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1345 C.4 Filter Reason Act Pipeline

1346 We use the following prompt for 0-shot experiment:

f"""[BEGIN OF TASK INSTRUCTION]

You are an expert in composing functions. You are given a question and a set
of possible functions.

Based on the question, you will need to make one or more function/tool calls
to achieve the purpose.

If none of the function can be used, point it out and refuse to answer.

If the given question lacks the parameters required by the function, also
point it out.

[END OF TASK INSTRUCTION]

[BEGIN OF AVAILABLE TOOLS]

{actions_prompt_part}

[END OF AVAILABLE TOOLS]

[BEGIN OF FORMAT INSTRUCTION]

The output MUST strictly adhere to the following JSON format,

and NO other text MUST be included.

The example format is as follows. Please make sure the

parameter type is correct. If no function call is needed,

please make tool_calls an empty list []

{

"tool_calls": [

{{"name": "func_namel", "arguments": {{"argumentl": "valuel", "argument2": "
value2"}}}},

. (more tool calls as required)

]

1}

[END OF FORMAT INSTRUCTION]
[BEGIN OF QUERY]

User Query: {query}

[END OF QUERY]

1347

1348 where actions_prompt_part are the available actions with descriptions in the respective
1349 10, NO, DO or DN format and query is the respective task.

1350 The LLM as judge model used was gemini-2.5-flash-light.
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