
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THE PERILS OF OPTIMIZING LEARNED REWARD FUNC-
TIONS: LOW TRAINING ERROR DOES NOT GUARANTEE
LOW REGRET

Anonymous authors
Paper under double-blind review

ABSTRACT

In reinforcement learning, specifying reward functions that capture the intended
task can be very challenging. Reward learning aims to address this issue by learning
the reward function. However, a learned reward model may have a low error on
the data distribution, and yet subsequently produce a policy with large regret. We
say that such a reward model has an error-regret mismatch. The main source of
an error-regret mismatch is the distributional shift that commonly occurs during
policy optimization. In this paper, we mathematically show that a sufficiently low
expected test error of the reward model guarantees low worst-case regret, but that
for any fixed expected test error, there exist realistic data distributions that allow
for error-regret mismatch to occur. We then show that similar problems persist
even when using policy regularization techniques, commonly employed in methods
such as RLHF. We hope our results stimulate the theoretical and empirical study
of improved methods to learn reward models, and better ways to reliably measure
their quality.

1 INTRODUCTION

To solve a sequential decision problem with reinforcement learning (RL), we must first formalize
that decision problem using a reward function (Sutton & Barto, 2018). However, for complex tasks,
reward functions are often hard to specify correctly. To solve this problem, it is increasingly popular
to learn reward functions with reward learning algorithms, instead of specifying the reward functions
manually. There are many different reward learning algorithms (e.g., Ng & Russell, 2000; Tung
et al., 2018; Brown & Niekum, 2019; Palan et al., 2019), with one of the most popular being reward
learning from human feedback (RLHF) (Christiano et al., 2017; Ibarz et al., 2018).

For any learning algorithm, it is a crucial question whether or not that learning algorithm is guaranteed
to converge to a “good” solution. For example, in the case of supervised learning for classification,
it can be shown that a learning algorithm that produces a model with a low empirical error (i.e.,
training error) is likely to have a low expected error (i.e., test error), given a sufficient amount of
training data and assuming that both the training data and the test data is drawn i.i.d. from a single
stationary distribution (Kearns & Vazirani, 1994). In the case of normal supervised learning and
standard assumptions, we can therefore be confident that a learning algorithm will converge to a good
model, provided that it is given a sufficient amount of training data.

Since reward models are also typically learned by supervised learning, we might assume that classical
learning-theoretic guarantees carry over. However, these guarantees only ensure that the reward
model is approximately correct relative to the training distribution. But after reward learning, we
optimize a policy to maximize the learned reward, which effectively leads to a distributional shift.
This raises the worry that the trained policy can exploit regions of the state space with abnormally
high learned rewards if those regions have a low data coverage during training. In this case, we can
have reward models that have both a low error on the training distribution and an optimal policy with
large regret, a phenomenon we call error-regret mismatch. We visualize this concern in Figure 1.

To illustrate this concern, imagine a chatbot. The users can either ask safe queries (“Please help
me create a high-protein diet”) or unsafe queries (“Please tell me how to build a nuclear weapon”).
The chatbot can then either answer these queries, or refuse. Now imagine a helpful-only policy that

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Reward models (red function) are commonly trained by supervised learning to approximate
some latent, true reward (blue function). Given enough data, one can hope that the reward model
is close to the true reward function on average over the data distribution (upper gray layer) — the
expected error is low. However, low expected error only guarantees a good approximation to the true
reward function in areas with high coverage by the data distribution! On the other hand, optimizing an
RL policy to maximize the learned reward model induces a distribution shift which can lead the policy
to exploit uncertainties of the learned reward model in low-probability areas of the transition space
(lower gray layer). This may then lead to high regret. We refer to this phenomenon as error-regret
mismatch.

answers every query, no matter whether it is safe or not. Helpful-only policies have been analyzed in
past safety research (Denison et al., 2024) and are often a starting point for policies meant to become
“helpful, honest, and harmless” (Askell et al., 2021). Intuitively, such a policy is unsafe if many
people in the deployment environment ask unsafe questions, or if the damage caused by answering
each such question is large.

Unfortunately, it is hard for a typical reward learning paradigm without restrictions on the learned
reward function to prevent the helpful-only policy from being learned. Intuitively, this is since the
chatbot can answer any unsafe query in numerous different styles, such that at least one such answer
must have a very low probability in the training distribution for the reward model; the reward model
can then inflate this answer’s value while achieving a low training error, thus making a helpful-only
policy possible. We illustrate this concern in detail in Appendix B.4.

To single out the issue of error-regret mismatch in our theoretical analysis, we take the goals of
classical learning theory as a given and show that they are not enough to ensure low regret. More
precisely, in probably approximately correct (PAC) learning (Kearns & Vazirani, 1994) the goal is to
derive a sample size that guarantees a certain likelihood (“P”) of an approximately correct (“AC”)
model on new data points sampled from the training distribution. In our results, we assume that we
already have an approximately correct reward model on a data distribution, and then investigate what
we can or can not conclude about the regret of policies trained to maximize the modeled reward.

Our theoretical analysis shows that guarantees in policy regret are very sensitive to the data distribution
used to train the reward model, leading to our notions of safe and unsafe data distributions. Moreover,
we find evidence that some MDPs are in a certain sense “too large” to allow for safe data distributions
relative to a reasonable reward model error and desired regret bound. We establish for general MDPs:

1. As the error of a learned reward model on a data distribution goes to zero, the worst-case re-
gret of optimizing a policy according to that reward model also goes to zero (Propositions 3.1
and 3.2)

2. However, for any ϵ > 0, whenever a data distribution has sufficiently low coverage of
some bad policy, it is unsafe; in other words, there exists a reward model that achieves
an expected error of ϵ but has a high-regret optimal policy (Proposition 3.3), a case of
error-regret mismatch.

3. As a consequence, when an MDP has a large number of independent bad policies, every
data distribution is unsafe (Corollary 3.4).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

4. More precisely, we derive a set of linear constraints that precisely characterize the safe data
distributions for a given MDP (Theorem 3.5).

We then investigate the case of regularized policy optimization (including KL-regularized policy
optimization, which is commonly used in methods such as RLHF). We derive regularized versions
of Propositions 3.1 and 3.3 in Proposition 4.1 and Theorem 4.2. This shows that regularization alone
is no principled solution to error-regret mismatch.

We then develop several generalizations of our results for different types of data sources for reward
model training, such as preferences over trajectories (Propositions C.25 and C.26), and trajectory
scoring (Proposition C.24). Lastly, motivated by the recent success of large language models (OpenAI,
2022; Gemini Team, 2023; Anthropic, 2023), we provide an analysis for the special case of RLHF
in the contextual bandit case where we prove a stronger version (Theorem 6.1) of the failure mode
already discussed in Theorem 4.2 for general MDPs.

1.1 RELATED WORK

Note: We provide a more extensive related work section in Appendix A

In offline reinforcement learning, we aim to learn low-regret policies for an MDP ⟨S,A, τ, µ0, R, γ⟩
where the reward function (and sometimes transition distribution (Wang et al., 2022b; Uehara & Sun,
2021)) is unknown and must be learned from an offline dataset {(s, a, r)i}ni=1 sampled from a data
distribution D ∈ ∆(S×A). A key research question is understanding what data coverage conditions
ensure learning a near-optimal policy with an efficient sample complexity. Existing theoretical work
primarily falls into two categories, covering both MDPs (Foster et al., 2021; Wang et al., 2022b;
2020; Amortila et al., 2020; Uehara & Sun, 2021; Uehara et al., 2021) and contextual bandits (Nika
et al., 2024; Cen et al., 2024):

Lower bound results prove that various data-coverage conditions are insufficient for sample-efficient
offline RL by establishing worst-case sample complexity bounds. Research in this area (Foster et al.,
2021; Wang et al., 2022b; 2020; Amortila et al., 2020; Nika et al., 2024) identifies adversarial MDPs
that satisfy specific data-coverage conditions where achieving low regret is either computationally
intractable due to excessive sample requirements (Foster et al., 2021; Wang et al., 2022b; 2020; Nika
et al., 2024) or fundamentally impossible regardless of sample size (Amortila et al., 2020).

Upper bound results, on the other hand, establish positive guarantees under specific structural
assumptions. Works in this category (Wang et al., 2022b; 2020; Uehara & Sun, 2021; Nika et al.,
2024; Cen et al., 2024; Song et al., 2024) develop algorithms with provable sample-efficiency bounds
by making structural assumptions about the MDP structure, reward learning process, or policy
optimization approach.

Intuitively, the quality of a reward model that is being approximated from a finite dataset is influenced
by two key factors: the dataset size n and the dataset quality, specifically how well the data distribution
D covers the data space S×A. Prior work confirms this intuition, with most works deriving
variants of the following template (see for example recent work Nika et al. (2024)): Regret ∈
O
(
poly

(
Cov·Struct

n

))
. Here, Cov represents some measure of the coverage of D, while Struct

captures the structural assumptions of the specific approach. Such structural assumptions may
include: realizability of function classes (Wang et al., 2022b; Uehara & Sun, 2021; Foster et al., 2021;
Nika et al., 2024), linear function approximation (Nika et al., 2024; Cen et al., 2024; Wang et al.,
2022b), and various constraints on reward- or policy functions (Wang et al., 2020; Uehara & Sun,
2021; Nika et al., 2024).

Our paper differs from these works in two key aspects: a) we explicitly analyze how the reward
modeling error ϵ affects the final policy regret, rather than focusing on the number of samples (prior
works only implicitly consider ϵ), and b) we examine worst-case scenarios instead of probabilistic
guarantees. The most relevant work in this area is Song et al. (2024), which analyzes RLHF
specifically. Their setup in section 3, combined with their Assumption 3, perfectly recovers our safe
distribution definition (see Definition 2.1) when applied to the special case of RLHF and when using
the mean squared error metric. Their Theorem 4.2 demonstrates that Regret ∈ O

(
Cov ·

√
ϵ
)
, where

the square root emerges from using the mean squared error during the reward learning step.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

While Song et al. (2024) focus on RLHF with mean-squared error metric, we provide similar
results for general classes of regularized and unregularized policy optimization (for both MDPs
and contextual bandits), as well as a wide range of different error metrics. Similar to prior sample-
complexity results, we investigate the influence of different coverage constraints on regret guarantees.
For our initial results (Propositions 3.1, 3.2 and 4.1) we use the condition min(s,a) D(s, a) > 0. Since
we assume that all states of our MDPs are reachable, this is equivalent to a full coverage condition
(see Table 1 of Uehara & Sun (2021) for an overview of different coverage conditions). We then
relax the constraints to partial coverage constraints and prove several negative results (Proposition 3.3
and theorems 4.2 and 6.1). Finally, we fully generalize our results from Propositions 3.1 to 3.3
and corollary 3.4 into a single theorem (Theorem 3.5) which allows us to determine the worst-case
safety of arbitrary data distributions. To the best of our knowledge, we are the first work to achieve
such a level of generality.

2 PRELIMINARIES

A Markov Decision Process (MDP) is a tuple ⟨S,A, τ, µ0, R, γ⟩ where S is a set of states, A is a
set of actions, τ : S×A → ∆(S) is a transition function, µ0 ∈ ∆(S) is an initial state distribution,
R : S×A → R is a reward function, and γ ∈ (0, 1) is a discount rate. We define the range of a
reward function R as range R := max(s,a)∈S×A R(s, a)−min(s,a)∈S×A R(s, a).

A policy is a function π : S → ∆(A). We denote the set of all policies by Π. A trajectory
ξ = ⟨s0, a0, s1, a1, ...⟩ is a possible path in an MDP. The return function G gives the cumulative
discounted reward of a trajectory, G(ξ) =

∑∞
t=0 γ

tR(st, at), and the evaluation function J gives the
expected trajectory return given a policy, J(π) = Eξ∼π [G(ξ)]. A policy maximizing J is an optimal
policy. We define the regret of a policy π with respect to reward function R as

RegR (π) :=
maxπ′∈Π JR(π

′)− JR(π)

maxπ′∈Π JR(π′)−minπ′∈Π JR(π′)
∈ [0, 1].

Here, JR is the policy evaluation function for R.

In this paper, we assume that S and A are finite, and that all states are reachable under τ and µ0. We
also assume that max JR −min JR ̸= 0 (since the reward function would otherwise be trivial). Note
that this implies that range R > 0, and that RegR (π) is well-defined.

The state-action occupancy measure is a function η : Π → R|S×A| mapping each policy π ∈ Π
to the corresponding "state-action occupancy measure", describing the discounted frequency that
each state-action tuple is visited by a policy. Formally, η(π)(s, a) = ηπ(s, a) =

∑∞
t=0 γ

t · P (st =

s, at = a | ξ ∼ π). Note that by writing the reward function R as a vector R⃗ ∈ R|S×A|, we can
split J into a function that is linear in R: J(π) = ηπ · R⃗. By normalizing a state-action occupancy
measure ηπ we obtain a policy-induced distribution Dπ := (1− γ) · ηπ .

2.1 PROBLEM FORMALIZATION OF RL WITH REWARD LEARNING

In RL with reward learning, we assume that we have an MDP ⟨S,A, τ, µ0, R, γ⟩ where the reward
function R is unknown. We may also assume that τ and µ0 are unknown, as long as we can sample
from them (though S, A, and γ must generally be known, at least implicitly). We then first learn a
reward model R̂ that approximates the true reward R and then optimize a policy π̂ to maximize R̂.
The aim of this two-step procedure is for π̂ to achieve low regret under the true reward function R.
We now formalize these aspects in detail for our theoretical analysis, with a visualization provided in
Figure 2:

Reward learning We first learn a reward model R̂ from data. There are many possible data sources
for reward learning, like demonstrations (Ng & Russell, 2000), preferences over trajectories (Chris-
tiano et al., 2017), or even the initial environment state (Shah et al., 2019); a taxonomy can be found
in (Jeon et al., 2020). Since we are concerned with problems that remain even when the reward
model is already approximately correct, we abstract away the data sources and training procedures
and assume that we learn a reward model R̂ which satisfies

E(s,a)∼D

[
|R̂(s, a)−R(s, a)|

range R

]
≤ ϵ (1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Policy
Optimization

Reward
Learning

D
at

a
S

pa
ce

 Low Expected Error 1 Low Regret3

Guaranteed by Safe Data Distributions

 Optimality2

Figure 2: An abstract model of the classical reward learning pipeline. A reward model R̂ is trained
to approximate the true reward function R under some data distribution D. The training process
converges when R̂ is similar to R in expectation (see 1). In the second step, a policy π̂ is trained to
achieve high learned reward, possibly involving a regularization (see 2). We are interested in the
question of when exactly this training process guarantees that π̂ has low regret. More formally, we
call a data distribution D safe whenever the implication 1 =⇒ 3 holds for all reward models R̂
that satisfy 1 .

for some ϵ > 0 and stationary distribution D over transitions S×A. Note that this is the true
expectation under D, rather than an estimate of this expectation based on some finite sample. We
divide by range R, since the absolute error ϵ is only meaningful relative to the overall scale of the
reward R.

To be clear, most reward learning algorithms cannot guarantee a bound as in Equation (1) since most
realistic data sources do not determine the true reward function, even for infinite data (Skalse et al.,
2023). Instead, we choose Equation (1) because it serves as an upper bound to many common reward
learning training objectives (see Appendix C.5). Thus, when we show in later sections that high regret
is possible even when this inequality holds, then this problem can be expected to generalize to other
data sources. We make this generalization precise for some data sources in Section 5. In particular,
we will show that Equation (1) implies a low cross-entropy error between the choice distributions of
the true reward function and the reward model, as is commonly used for RLHF, e.g. in the context of
language models (Ziegler et al., 2019).

Policy optimization Given R̂, we then learn a policy π̂ by solving the MDP ⟨S,A, τ, µ0, R̂, γ⟩.
In the most straightforward case, we do this by simply finding a policy that is optimal according
to R̂. However, it is also common to perform regularized optimization. In that case, we make use
of an additional regularization function ω : Π → R, with ω(π) ≥ 0 for all π ∈ Π. Given R̂, a
regularization function ω, and a regularization weight λ ∈ [0,∞), we say that π̂ is (λ, ω)-optimal if

π̂ ∈ argmax
π

JR̂(π)− λω(π). (2)

Typically, λ punishes large deviations from some reference policy πref , e.g. with the regularization
function given by the KL-divergence ω(π) = DKL (π||πref). πref may also be used to collect training
data for the reward learning algorithm, in which case we may assume D = Dπ in Equation (1). Most
of our results to not depend on these specific instantiations, however.

Regret minimization The aim of the previous two steps is for the policy π̂ to have low regret
RegR (π̂) under the true reward function R. Our question is thus if and when it is sufficient to ensure
that R̂ satisfies Equation 1, in order to guarantee that a policy π̂ optimal according to Equation (2)
has low regret RegR (π̂).

2.2 SAFE DATA DISTRIBUTIONS

We now make the elaborations from the previous subsections more concrete by providing a formal
definition of a safe data distribution. In particular, we say that a data distribution D is safe, whenever
it holds that for every reward model R̂ that satisfies Equation (1) for D, all optimal policies of R̂
have low regret. We provide a visualization of this concept in Figure 2 and a formal definition in
Definition 2.1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Definition 2.1 (Safe- and unsafe data distributions). For a given MDP ⟨S,A, τ, µ0, R, γ⟩, let ϵ > 0,
L ∈ [0, 1], and λ ∈ [0,∞). Let ω be a continuous function with ω(π) ≥ 0 for all π ∈ Π. Then the
set of safe data distributions safe(R, ϵ, L, λ, ω) is the set of all distributions D ∈ ∆(S×A) such that
for all possible reward models R̂ : S×A → R and policies π̂ : S → ∆(A) that satisfy the following
two properties:

1. Low expected error: R̂ is ϵ-close to R under D, i.e., E(s,a)∼D

[
|R̂(s,a)−R(s,a)|

range R

]
≤ ϵ.

2. Optimality: π̂ is (λ, ω)-optimal with respect to R̂, i.e. π̂ ∈ argmaxπ JR̂(π)− λω(π).

we can guarantee that π̂ has regret smaller than L, i.e.:

3. Low regret: π̂ has a regret smaller than L with respect to R, i.e., RegR (π̂) < L.

Similarly, we define the set of unsafe data distributions to be the complement of safe(R, ϵ, L, λ, ω):

unsafe(R, ϵ, L, λ, ω) := { D ∈ ∆(S×A) | D /∈ safe(R, ϵ, L, λ, ω)}.

Thus, unsafe(R, ϵ, L, λ, ω) consists of the data distributions D for which there exists a reward model
R̂ that is ϵ-close to R and a policy π̂ that is (λ, π)-optimal with respect to R̂, but such that π̂ has large
regret RegR (π̂) ≥ L. In this sense, we are operating under a worst-case framework for the reward
model and policy learned by our training algorithms. Whenever we consider the unregularized
case (λ = 0 or ω = 0), we drop the λ and ω to ease the notation and just use safe(R, ϵ, L) and
unsafe(R, ϵ, L) instead. Lastly, we mention that while we use the mean absolute error (MAE) in
condition 1, one could in principle also work with the mean-squared error. All our results then have
analogous versions. We explain this in Appendix B.3.

Note: Throughout this paper, we will use the terminology that a data distribution D “allows for
error-regret mismatch” as a colloquial term to express that D ∈ unsafe(R, ϵ, L, λ, ω).

3 ERROR-REGRET MISMATCH FOR UNREGULARIZED POLICY OPTIMIZATION

In this section, we investigate the case where no regularization is used in the policy optimization stage.
We seek to determine if it is sufficient for a reward model to be close to the true reward function on a
data distribution in order to ensure low regret for the learned policy.

In our first result, we show that under certain conditions, a low expected error ϵ does indeed guarantee
that policy optimization will yield a policy with low regret.

Proposition 3.1. Let ⟨S,A, τ, µ0, R, γ⟩ be an arbitrary MDP, let L ∈ (0, 1], and let D ∈ ∆(S×A)
be a positive data distribution (i.e., a distribution such that D(s, a) > 0 for all (s, a) ∈ S×A). Then
there exists an ϵ > 0 such that D ∈ safe(R, ϵ, L).

The proof of Proposition 3.1 can be found in Appendix D.1 (see Corollary D.7) and is based on an
application of Berge’s maximum theorem (Berge, 1963), and the fact that the expected distance
between the true reward function and the learned reward model under D is induced from a norm. See
Theorem 6.1 for a similar result in which the expected error in rewards is replaced by an expected
error in choice probabilities.

One might be inclined to conclude that the guarantee of Proposition 3.1 allows one to practically
achieve low regret by ensuring a low error ϵ (as measured by Equation 1). However, in the following
result we provide a more detailed analysis that shows that low regret requires a prohibitively low ϵ:
Proposition 3.2. Let the setting be as in Proposition 3.1. If ϵ > 0 satisfies

ϵ <
1− γ√

2
· range J

R

range R
· min
(s,a)∈S×A

D(s, a) · L

then D ∈ safe(R, ϵ, L).

The proof can be found in Theorem D.11, Appendix D.2. Example D.13 shows that the bound
on ϵ is tight up to a factor of

√
2. This result is problematic in practice due to the dependence on

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the minimum of D. Realistic MDPs usually contain a massive amount of states and actions, which
necessarily requires D to give a very small support to at least some transitions. The dependence of
the upper bound on D also shows that there is no ϵ for which every distribution D is guaranteed to be
safe, as min(s,a)∈D D(s, a) can be arbitrarily small. We concretize this intuition by showing that in
every MDP and for every ϵ > 0, there exist weak assumptions for which a data distribution allows
for a large error-regret mismatch.

Proposition 3.3. Let M = ⟨S,A, τ, µ0, R, γ⟩ be an MDP, D ∈ ∆(S×A) a data distribution,
ϵ > 0, and L ∈ [0, 1]. Assume there exists a policy π̂ with the property that RegR (π̂) ≥ L and
D(supp Dπ̂) < ϵ, where supp Dπ̂ is defined as the set of state-action pairs (s, a) ∈ S×A such that
Dπ̂(s, a) > 0. In other words, there is a “bad” policy for R that is not very supported by D. Then,
D allows for error-regret mismatch to occur, i.e., D ∈ unsafe(R, ϵ, L).

The proof of Proposition 3.3 can be found in Appendix C.2 (see Proposition C.5). The intuition is
straightforward: There exists a reward model R̂ that is very similar to the true reward function R
outside the support of Dπ̂ but has very large rewards for the support of Dπ̂ . Because D(supp Dπ̂) is
very small, this still allows R̂ to have a very small expected error w.r.t. to D, while π̂, the optimal
policy for R̂, will have regret at least L. To avoid confusions, we show in Proposition C.7 that the
assumptions on ϵ in Proposition 3.2 and Proposition 3.3 cannot hold simultaneously. This is as
expected since otherwise the conclusions of these propositions would imply that a data distribution
can be both safe and unsafe.

Note that the conditions for unsafe data distributions in Proposition 3.3 also cover positive data
distributions (that we showed to be eventually safe for small enough ϵ in Proposition 3.1). Furthermore,
especially in very large MDPs, it is very likely that the data distribution will not sufficiently cover
large parts of the support of some policies, especially since the number of (deterministic) policies
grows exponentially with the number of states. Sometimes, this can lead to all data distributions
being unsafe, as we show in the following corollary:

Corollary 3.4. Let M = ⟨S,A, τ, µ0, R, γ⟩ be an MDP, ϵ > 0, and L ∈ [0, 1]. Assume there exists
a set of policies ΠL with:

• RegR (π) ≥ L for all π ∈ ΠL;

• supp Dπ ∩ supp Dπ′
= ∅ for all π, π′ ∈ ΠL; and

• |ΠL| ≥ 1/ϵ.

Then unsafe(R, ϵ, L) = ∆(S ×A), i.e.: all distributions are unsafe.

The proof of Corollary 3.4 can be found in Appendix C.2 (see Corollary C.6).

Corollary 3.4 outlines sufficient conditions for a scenario where all possible data distributions are
unsafe for a given MDP. This happens when there exist many different policies with large regret and
disjoint support, which requires there to be a large action space. This could for example happen in
the case of a language model interacting with a user if there are many mutually distinct styles to
answer unsafe queries. We illustrated this concern in slightly more detail in the introduction, and in
full detail in Appendix B.4.

We conclude by stating the main result of this section, which unifies all previous results and derives the
most general conditions, i.e. necessary and sufficient conditions, for when exactly a data distribution
allows for error-regret mismatch to occur:

Theorem 3.5. For all MDPs ⟨S,A, τ, µ0, R, γ⟩ and L ∈ [0, 1], there exists a matrix M such that for
all ϵ > 0 and D ∈ ∆(S×A) we have:

D ∈ safe(R, ϵ, L) ⇐⇒ M ·D > ϵ · range R · 1, (3)

where we use the vector notation of D, and 1 is a vector containing all ones.

The proof of Theorem 3.5 can be found in Appendix C.3 (see Theorem C.16) and largely relies on
geometric arguments that arise from comparing the set of unsafe reward models and the set of reward
models that are close to the true reward function. Interestingly, this means that the set of safe data

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

distributions resembles a polytope, in the sense that it is a convex set and is defined by the intersection
of an open polyhedral set (defined by the system of strict inequalities M ·D > ϵ · range R · 1), and
the closed data distribution simplex.

While Theorem 3.5 only proves the existence of such a matrix M , we provide further results and
analyses in the appendix, namely:

1. In Appendix C.3.2 we derive closed-form expressions of the rows of matrix M , and show
that its entries depend on multiple factors, such as the original reward function R, the state
transition distribution τ , and the set of deterministic policies that achieve regret at least L.

2. In Appendix C.3.3 we provide an algorithm to compute matrix M .
3. In Appendix C.3.4 we provide a worked example of computing and visualizing the set of

safe distributions for a toy example.

Lastly, we note that M does not depend on ϵ, and M only contains non-negative entries (see
Appendix C.3.2). This allows us to recover Proposition 3.1, since by letting ϵ approach zero, the set
of data distributions that fulfill the conditions in Equation (3) approaches the entire data distribution
simplex. On the other hand, the dependence of M on the true reward function and the underlying
MDP implies that computing M is infeasible in practice since many of these components are not
known, restricting the use of M to theoretical analysis.

4 ERROR-REGRET MISMATCH FOR REGULARIZED POLICY OPTIMIZATION

In this section, we investigate the error-regret mismatch for regularized policy optimization. First, we
prove that for almost any reference policy πref that achieves regret L and minimizes the regularization
term ω, there exists a sufficiently small ϵ such that reward learning within ϵ of the true reward function
preserves the regret bound L.

Proposition 4.1. Let λ ∈ (0,∞), let ⟨S,A, τ, µ0, R, γ⟩ be any MDP, and let D ∈ S×A be any
data distribution that assigns positive probability to all transitions. Let ω : Π→ R be a continuous
regularization function that has a reference policy πref as a minimum.1 Assume that πref is not (λ, ω)-
optimal for R and let L = RegR (πref). Then there exists ϵ > 0 such that D ∈ safe(R, ϵ, L, λ, ω).

The proof of Proposition 4.1 can be found in Appendix D.4 (see Theorem D.21) and is again an
application of Berge’s theorem (Berge, 1963). Note that the regret bound L is defined as the regret of
the reference policy. This makes intuitively sense, as regularized policy optimization constrains the
policy under optimization π̂ to not deviate too strongly from the reference policy πref , which will also
constrain the regret of π̂ to stay close to the regret of πref . Under the conditions of Proposition 4.1, the
regret of πref serves as an upper regret bound because for small enough ϵ the learned reward R̂ and
the true reward R are close enough such that maximizing R̂ also improve reward with respect to R.
Furthermore, we note that it is also possible to derive a version of the theorem in which the expected
error in rewards is replaced by a KL divergence in choice probabilities, similar to Proposition D.14,
by combining the arguments in that proposition with the arguments in Berge’s theorem. A full
formulation and proof of the result can be found in Theorem D.22.

Similar to Proposition 3.1, Proposition 4.1 does not guarantee the existence of a universal ϵ such that
all data distributions D are in safe(R, ϵ, L, λ, ω). In our next result, we show that such an ϵ does
not exist, since for each ϵ, there is a nontrivial set of data distributions that allows for error-regret
mismatch to occur:
Theorem 4.2. Let M = ⟨S,A, τ, µ0, R, γ⟩ be an arbitrary MDP, λ ∈ (0,∞), L ∈ (0, 1), and
ω : Π → R be a regularization function. Furthermore, let π∗ be a determinstic worst-case policy
for R, meaning that RegR (π∗) = 1. Let C := C(M, π∗, L, λ, ω) < ∞ be the constant defined in
Equation (107) in the appendix. Let ϵ > 0. Then for all data distributions D ∈ ∆(S×A) with

D(supp Dπ∗) ≤ ϵ

1 + C
, (4)

we have D ∈ unsafe(R, ϵ, L, λ, ω).

1E.g., if πref(a | s) > 0 for all (s, a) ∈ S×A and ω(π) := DKL (π||πref), then the minimum is πref .

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

The proof of Theorem 4.2 can be found in Appendix C.5 (see Theorem C.41). The general idea is as
follows: To prove that D is unsafe, define R̂ to be equal to R outside of supp Dπ∗ , and very large in
supp Dπ∗ . If it is sufficiently large in this region, then regularized optimization leads to a policy π̂

with RegR (π̂) ≥ L. Finally, the condition that D(supp Dπ∗) ≤ ϵ
1+C ensures that R̂ has a reward

error bounded by ϵ.

Note that Theorem 4.2 is very general and covers a large class of different regularization methods. In
Corollary C.43 we provide a specialized result for the case of KL-regularized policy optimization,
and in Section 6 we investigate error-regret mismatch in the RLHF framework. At the end of our
conceptual example described in the introduction and in detail in Appendix B.4, we also discuss the
simple intuition that simply giving a low enough training probability to some unsafe actions can be
enough to lead to unsafe reward inference and policy optimization even in the regularized case. This
is in accordance with Theorem 4.2.

5 GENERALIZATION OF THE ERROR MEASUREMENT

Our results have so far expressed the error of the learned reward R̂ in terms of Equation (1), i.e.,
in terms of the expected error of individual transitions. In Appendix C.4.1, we show that many
common reward learning training objectives can be upper-bounded in terms of the expected error
metric defined in Equation (1). This in turn means that our negative results generalize to reward
learning algorithms that use these other training objectives. In particular, if we have two error metrics
f(R, R̂), g(R, R̂), such that for all R, R̂ we have g(R, R̂) < f(R, R̂), then it holds for any arbitrary
data distribution D ∈ S×A that:

D ∈ unsafef (R, ϵ, L, λ, ω) =⇒ D ∈ unsafeg(R, ϵ, L, λ, ω)

6 ERROR-REGRET MISMATCH IN RLHF

In this section we use the generalization results from Section 5 to extend our results to reinforcement
learning from human feedback (RLHF). We provide more general results about the class of KL-
regularized optimization policy optimization methods in Appendix C.4.6.

RLHF, especially in the context of large language models, is usually modeled in a contextual bandit
setting (Ziegler et al., 2019; Stiennon et al., 2020; Bai et al., 2022; Ouyang et al., 2022; Rafailov
et al., 2023). A contextual bandit ⟨S,A, µ0, R⟩ is defined by a set of states S, a set of actions A, a
data distribution µ0 ∈ ∆(S), and a reward function R : S×A → R. The goal is to learn a policy
π : S → ∆(A) that maximizes the expected return J(π) = Es∼µ0,a∼π(·|s) [R(s, a)]. In the context
of language models, S is usually called the set of prompts or contexts, and A the set of responses.

We state the following theorem using a more precise version of Definition 2.1 tailored to the
RLHF setting. In particular, we replace the similarity metric (property 1. of Definition 2.1)
with the expected similarity in choice probabilities. A precise mathematical definition can be
found in Appendix C.4.4. We denote the resulting sets of safe- and unsafe data distributions by
safeRLHF

(
R, ϵ, L, λ,DKL (·||πref)

)
and unsafeRLHF

(
R, ϵ, L, λ,DKL (·||πref)

)
.

By making use of the specifics of this setting, we can derive more interpretable and stronger results.
In particular, we specify a set of reference distributions for which performing KL-regularized policy
optimization allows for error-regret mismatch to occur.

Theorem 6.1. Let ⟨S,A, µ0, R⟩ be a contextual bandit. Given L ∈ [0, 1), we define for every state
s ∈ S the reward threshold:RL(s) := (1 − L) · maxa∈A R(s, a) + L · mina∈A R(s, a). Lastly,
let πref : S → A be an arbitrary reference policy for which it holds that for every (s, a) ∈ S×A,
πref(a|s) > 0, and there exists at least one action as ∈ A such that R(s, as) < RL(s) and πref(as|s)
satisfies the following inequality:

πref(as|s) ≤
(RL(s)−R(s, as))

L
· range R

exp
(
1
λ · range R

) · ϵ2

4 · λ2
.

Let Dref(s, a) := µ0(s) · πref(a|s). Then Dref ∈ unsafeRLHF
(
R, 2 · ϵ, L, λ,DKL (·||πref)

)
9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

The proof of Theorem 6.1 can be found in Appendix C.4.5 (see Propositions C.34 and C.35). We
expect the conditions on the reference policy πref to be likely to hold in real-world cases as the
number of potential actions (or responses) is usually very large, and language models typically assign
a large portion of their probability mass to only a tiny fraction of all responses. This means that for
every state/prompt s, a huge majority of actions/responses a have a very small probability πref(a | s).
See also our conceptual example in the introduction and Appendix B.4 to make this intuition concrete.

7 DISCUSSION

In this paper, we contributed to the foundations of reward learning theory by studying the relationship
between the training error of the learned reward function and the regret of policies that then result
from policy optimization. We showed that as the expected error of a reward model R̂ goes to zero,
the regret of the resulting policy (with or without regularization) also goes to zero (Proposition 3.1)
or is bounded by the regret of a reference policy (Proposition 4.1). However, in Proposition 3.2 we
showed that the training error needed to ensure a certain regret is proportional to the minimum of
the data distribution D. Consequently, there exists no training error that can universally ensure low
regret.

More specifically, low expected error of R̂ does not ensure low regret for all realistic data distributions
(Proposition 3.3, Theorem 4.2 and Theorem 6.1). We refer to this phenomenon as error-regret
mismatch. This is due to policy optimization involving a distributional shift. Moreover, for some
MDPs with very large action spaces there does not exist any safe data distribution relative to a
reasonable reward model error and desired regret bound (Corollary 3.4). We also showed that our
results generalize to other data sources, such as preferences over trajectories (Propositions C.25
and C.26) and trajectory scores (Proposition C.24), supporting the conclusion that this issue is a
fundamental problem of reward learning.

Lastly, for the case of unregularized optimization, we derive a set of necessary and sufficient
conditions based on linear programming that allow us to determine the set of safe data distributions
for arbitrary MDPs, thereby completely answering the question of when exactly a data distribution is
safe (Theorem 3.5).

7.1 LIMITATIONS AND FUTURE WORK

Our work focuses on a worst-case setting with respect to the learned reward function and and optimal
policy. Future work could take the inductive biases of common optimization procedures into account
and consider non-optimal policies that result from realistic training processes. One could also attempt
to analyze the likelihood of high-regret instead of simply proving its existence.

Furthermore, it is important to theoretically analyze improved reward learning and policy optimization
procedures. There is already some empirical work on using reward model ensembles (Coste et al.,
2023) or weight averaged reward models (Ramé et al., 2024) to overcome problems of reward
model overoptimization. In the special case of multi-armed bandits, iterated data-smoothing has
been proposed and analyzed theoretically and empirically (Zhu et al., 2024). Very recent work also
considers learning reward models on online data for mitigating distribution shifts and thus reward
overoptimization (Lang et al., 2024a) or even theoretically analyzes such a setting for the special case
of linear reward functions (Song et al., 2024). We hope that a careful theoretical analysis of all these
settings in similar generality as our work can identify reliable ways to improve upon the “theoretical
baseline” established by our work.

In addition to improving the theory and practice of reward learning itself, there are other ways to
improve safety. For example, one could research evaluation methods for learned reward functions
that go beyond looking at the training error, e.g. by using interpretability methods (Michaud et al.,
2020; Jenner & Gleave, 2022) or finding better ways to quantify reward function distance (Gleave
et al., 2020; Skalse et al., 2024). We are also excited about efforts to evaluate policies for dangerous
capabilities (Phuong et al., 2024), red-teaming (Perez et al., 2022), safety cases (Clymer et al., 2024),
shields (Alshiekh et al., 2018), and a numerous suite of other approaches (Anwar et al., 2024). All of
these are largely unsolved research problems that deserve further attention.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alekh Agarwal, Miroslav Dudík, Satyen Kale, John Langford, and Robert Schapire. Contextual
bandit learning with predictable rewards. In Artificial Intelligence and Statistics, pp. 19–26. PMLR,
2012.

Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum, and
Ufuk Topcu. Safe Reinforcement Learning via Shielding. Proceedings of the AAAI Conference
on Artificial Intelligence, 32(1), Apr. 2018. doi: 10.1609/aaai.v32i1.11797. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/11797.

Philip Amortila, Nan Jiang, and Tengyang Xie. A variant of the wang-foster-kakade lower bound for
the discounted setting. arXiv preprint arXiv:2011.01075, 2020.

Anthropic. Introducing Claude. https://www.anthropic.com/index/
introducing-claude, 2023. Accessed: 2023-09-05.

Anthropic. Responsible Scaling Policy, 2024. URL https://
assets.anthropic.com/m/24a47b00f10301cd/original/
Anthropic-Responsible-Scaling-Policy-2024-10-15.pdf. Accessed:
2024/11/26.

Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase,
Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, Benjamin L. Edelman,
Zhaowei Zhang, Mario Günther, Anton Korinek, Jose Hernandez-Orallo, Lewis Hammond, Eric
Bigelow, Alexander Pan, Lauro Langosco, Tomasz Korbak, Heidi Zhang, Ruiqi Zhong, Seán Ó
hÉigeartaigh, Gabriel Recchia, Giulio Corsi, Alan Chan, Markus Anderljung, Lilian Edwards, Alek-
sandar Petrov, Christian Schroeder de Witt, Sumeet Ramesh Motwan, Yoshua Bengio, Danqi Chen,
Philip H. S. Torr, Samuel Albanie, Tegan Maharaj, Jakob Foerster, Florian Tramer, He He, Atoosa
Kasirzadeh, Yejin Choi, and David Krueger. Foundational Challenges in Assuring Alignment and
Safety of Large Language Models, 2024. URL https://arxiv.org/abs/2404.09932.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
Nicholas Joseph, Ben Mann, Nova DasSarma, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernan-
dez, Jackson Kernion, Kamal Ndousse, Catherine Olsson, Dario Amodei, Tom Brown, Jack Clark,
Sam McCandlish, Chris Olah, and Jared Kaplan. A General Language Assistant as a Laboratory
for Alignment, 2021. URL https://arxiv.org/abs/2112.00861.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Andrea Bajcsy, Dylan P Losey, Marcia K O’malley, and Anca D Dragan. Learning robot objectives
from physical human interaction. In Conference on robot learning, pp. 217–226. PMLR, 2017.

Claude Berge. Topological Spaces: Including a Treatment of Multi-valued Functions, Vector
Spaces and Convexity. Macmillan, 1963. URL https://books.google.nl/books?id=
0QJRAAAAMAAJ.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. The method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Daniel S Brown and Scott Niekum. Deep Bayesian reward learning from preferences. arXiv preprint
arXiv:1912.04472, 2019.

Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open problems
and fundamental limitations of reinforcement learning from human feedback. arXiv preprint
arXiv:2307.15217, 2023.

Shicong Cen, Jincheng Mei, Katayoon Goshvadi, Hanjun Dai, Tong Yang, Sherry Yang, Dale
Schuurmans, Yuejie Chi, and Bo Dai. Value-incentivized preference optimization: A unified
approach to online and offline rlhf. arXiv preprint arXiv:2405.19320, 2024.

11

https://ojs.aaai.org/index.php/AAAI/article/view/11797
https://ojs.aaai.org/index.php/AAAI/article/view/11797
https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://assets.anthropic.com/m/24a47b00f10301cd/original/Anthropic-Responsible-Scaling-Policy-2024-10-15.pdf
https://assets.anthropic.com/m/24a47b00f10301cd/original/Anthropic-Responsible-Scaling-Policy-2024-10-15.pdf
https://assets.anthropic.com/m/24a47b00f10301cd/original/Anthropic-Responsible-Scaling-Policy-2024-10-15.pdf
https://arxiv.org/abs/2404.09932
https://arxiv.org/abs/2112.00861
https://books.google.nl/books?id=0QJRAAAAMAAJ
https://books.google.nl/books?id=0QJRAAAAMAAJ

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Joshua Clymer, Nick Gabrieli, David Krueger, and Thomas Larsen. Safety Cases: How to Justify the
Safety of Advanced AI Systems, 2024. URL https://arxiv.org/abs/2403.10462.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generalization
in reinforcement learning. In International conference on machine learning, pp. 1282–1289. PMLR,
2019.

Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward model ensembles help
mitigate overoptimization. arXiv preprint arXiv:2310.02743, 2023.

Justin Cui, Wei-Lin Chiang, Ion Stoica, and Cho-Jui Hsieh. OR-Bench: An Over-Refusal Benchmark
for Large Language Models, 2024. URL https://arxiv.org/abs/2405.20947.

Carson Denison, Monte MacDiarmid, Fazl Barez, David Duvenaud, Shauna Kravec, Samuel Marks,
Nicholas Schiefer, Ryan Soklaski, Alex Tamkin, Jared Kaplan, Buck Shlegeris, Samuel R. Bowman,
Ethan Perez, and Evan Hubinger. Sycophancy to subterfuge: Investigating reward-tampering in
large language models, 2024. URL https://arxiv.org/abs/2406.10162.

Jesse Farebrother, Marlos C Machado, and Michael Bowling. Generalization and regularization in
dqn. arXiv preprint arXiv:1810.00123, 2018.

Dylan J Foster, Alexander Rakhlin, David Simchi-Levi, and Yunzong Xu. Instance-dependent
complexity of contextual bandits and reinforcement learning: A disagreement-based perspective.
arXiv preprint arXiv:2010.03104, 2020.

Dylan J Foster, Akshay Krishnamurthy, David Simchi-Levi, and Yunzong Xu. Offline reinforcement
learning: Fundamental barriers for value function approximation. arXiv preprint arXiv:2111.10919,
2021.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835–10866. PMLR, 2023.

Google Gemini Team. Gemini: A Family of Highly Capable Multimodal Mod-
els. https://storage.googleapis.com/deepmind-media/gemini/gemini_
1_report.pdf, 2023. Accessed: 2023-12-11.

Adam Gleave, Michael Dennis, Shane Legg, Stuart Russell, and Jan Leike. Quantifying differences
in reward functions. arXiv preprint arXiv:2006.13900, 2020.

Charles AE Goodhart. Problems of monetary management: the UK experience. Springer, 1984.

Christopher A Hennessy and Charles AE Goodhart. Goodhart’s law and machine learning: a structural
perspective. International Economic Review, 64(3):1075–1086, 2023.

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in Atari. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems, volume 31, pp. 8022–8034,
Montréal, Canada, 2018. Curran Associates, Inc., Red Hook, NY, USA.

Erik Jenner and Adam Gleave. Preprocessing reward functions for interpretability, 2022.

Hong Jun Jeon, Smitha Milli, and Anca Dragan. Reward-rational (implicit) choice: A unifying
formalism for reward learning. Advances in Neural Information Processing Systems, 33:4415–4426,
2020.

Xiang Ji, Huazheng Wang, Minshuo Chen, Tuo Zhao, and Mengdi Wang. Provable benefits of policy
learning from human preferences in contextual bandit problems. arXiv preprint arXiv:2307.12975,
2023.

Jacek Karwowski, Oliver Hayman, Xingjian Bai, Klaus Kiendlhofer, Charlie Griffin, and Joar Skalse.
Goodhart’s Law in Reinforcement Learning. arXiv preprint arXiv:2310.09144, 2023.

12

https://arxiv.org/abs/2403.10462
https://arxiv.org/abs/2405.20947
https://arxiv.org/abs/2406.10162
https://storage.googleapis.com/deepmind-media/gemini/gemini_1_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_1_report.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Michael J. Kearns and Umesh Vazirani. An Introduction to Computational Learning Theory. The
MIT Press, 08 1994. ISBN 9780262276863. doi: 10.7551/mitpress/3897.001.0001. URL
https://doi.org/10.7551/mitpress/3897.001.0001.

Victoria Krakovna. Specification gaming: The flip side of Ai Ingenu-
ity, Apr 2020. URL https://deepmind.google/discover/blog/
specification-gaming-the-flip-side-of-ai-ingenuity/.

Hao Lang, Fei Huang, and Yongbin Li. Fine-Tuning Language Models with Reward Learning on
Policy. arXiv preprint arXiv:2403.19279, 2024a.

Leon Lang, Davis Foote, Stuart Russell, Anca Dragan, Erik Jenner, and Scott Emmons. When Your
AIs Deceive You: Challenges with Partial Observability of Human Evaluators in Reward Learning.
arXiv preprint arXiv:2402.17747, 2024b.

Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Out-of-distribution generalization on graphs:
A survey. arXiv preprint arXiv:2202.07987, 2022.

Ying Li, Xingwei Wang, Rongfei Zeng, Praveen Kumar Donta, Ilir Murturi, Min Huang, and
Schahram Dustdar. Federated domain generalization: A survey. arXiv preprint arXiv:2306.01334,
2023.

Jiashuo Liu, Zheyan Shen, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui. Towards
out-of-distribution generalization: A survey. arXiv preprint arXiv:2108.13624, 2021.

Viraj Mehta, Vikramjeet Das, Ojash Neopane, Yijia Dai, Ilija Bogunovic, Jeff Schneider, and Willie
Neiswanger. Sample efficient reinforcement learning from human feedback via active exploration.
OpenReview, 2023.

Eric J. Michaud, Adam Gleave, and Stuart Russell. Understanding learned reward functions, 2020.

Andrew Y Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In Proceedings of
the Seventeenth International Conference on Machine Learning, volume 1, pp. 663–670, Stanford,
California, USA, 2000. Morgan Kaufmann Publishers Inc.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1,
pp. 2, 2000.

Andi Nika, Debmalya Mandal, Parameswaran Kamalaruban, Georgios Tzannetos, Goran Radanović,
and Adish Singla. Reward Model Learning vs. Direct Policy Optimization: A Comparative
Analysis of Learning from Human Preferences. arXiv preprint arXiv:2403.01857, 2024.

OpenAI. Introducing ChatGPT. https://openai.com/blog/chatgpt, 2022. Accessed:
2024-02-06.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Malayandi Palan, Nicholas Charles Landolfi, Gleb Shevchuk, and Dorsa Sadigh. Learning reward
functions by integrating human demonstrations and preferences. In Proceedings of Robotics:
Science and Systems, Freiburg im Breisgau, Germany, June 2019. doi: 10.15607/RSS.2019.XV.023.

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia Glaese,
Nat McAleese, and Geoffrey Irving. Red Teaming Language Models with Language Models, 2022.
URL https://arxiv.org/abs/2202.03286.

Mary Phuong, Matthew Aitchison, Elliot Catt, Sarah Cogan, Alexandre Kaskasoli, Victoria Krakovna,
David Lindner, Matthew Rahtz, Yannis Assael, Sarah Hodkinson, Heidi Howard, Tom Lieberum,
Ramana Kumar, Maria Abi Raad, Albert Webson, Lewis Ho, Sharon Lin, Sebastian Farquhar, Mar-
cus Hutter, Gregoire Deletang, Anian Ruoss, Seliem El-Sayed, Sasha Brown, Anca Dragan, Rohin
Shah, Allan Dafoe, and Toby Shevlane. Evaluating Frontier Models for Dangerous Capabilities,
2024. URL https://arxiv.org/abs/2403.13793.

13

https://doi.org/10.7551/mitpress/3897.001.0001
https://deepmind.google/discover/blog/specification-gaming-the-flip-side-of-ai-ingenuity/
https://deepmind.google/discover/blog/specification-gaming-the-flip-side-of-ai-ingenuity/
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2202.03286
https://arxiv.org/abs/2403.13793

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Martin L Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1994.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. arXiv
preprint arXiv:2305.18290, 2023.

Alexandre Ramé, Nino Vieillard, Léonard Hussenot, Robert Dadashi, Geoffrey Cideron, Olivier
Bachem, and Johan Ferret. Warm: On the benefits of weight averaged reward models. arXiv
preprint arXiv:2401.12187, 2024.

R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer Science &
Business Media, 2009.

Andreas Schlaginhaufen and Maryam Kamgarpour. Identifiability and generalizability in constrained
inverse reinforcement learning. In International Conference on Machine Learning, pages=30224–
30251. PMLR, 2023.

Rohin Shah, Dmitrii Krasheninnikov, Jordan Alexander, Pieter Abbeel, and Anca Dragan. Preferences
Implicit in the State of the World. arXiv e-prints, art. arXiv:1902.04198, February 2019. doi:
10.48550/arXiv.1902.04198.

Joar Skalse and Alessandro Abate. Misspecification in inverse reinforcement learning, 2023.

Joar Skalse and Alessandro Abate. Quantifying the sensitivity of inverse reinforcement learning to
misspecification, 2024.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and characterizing
reward gaming. Advances in Neural Information Processing Systems, 35:9460–9471, 2022.

Joar Skalse, Lucy Farnik, Sumeet Ramesh Motwani, Erik Jenner, Adam Gleave, and Alessandro
Abate. Starc: A general framework for quantifying differences between reward functions, 2024.

Joar Max Viktor Skalse, Matthew Farrugia-Roberts, Stuart Russell, Alessandro Abate, and Adam
Gleave. Invariance in policy optimisation and partial identifiability in reward learning. In Interna-
tional Conference on Machine Learning, pp. 32033–32058. PMLR, 2023.

Yuda Song, Gokul Swamy, Aarti Singh, Drew Bagnell, and Wen Sun. The importance of online data:
Understanding preference fine-tuning via coverage. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

Richard Stanley. Chapter 1: Basic Definitions, the Intersection Poset and the Characteristic
Polynomial. In Combinatorial Theory: Hyperplane Arrangements—MIT Course No. 18.315.
MIT OpenCourseWare, Cambridge MA, 2024. URL https://ocw.mit.edu/courses/
18-315-combinatorial-theory-hyperplane-arrangements-fall-2004/
pages/lecture-notes/. MIT OpenCourseWare.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008–3021, 2020.

Marilyn Strathern. ‘Improving ratings’: audit in the British University system. European review, 5
(3):305–321, 1997.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT Press, second
edition, 2018. ISBN 9780262352703.

Jeremy Tien, Jerry Zhi-Yang He, Zackory Erickson, Anca D Dragan, and Daniel S Brown. Causal
confusion and reward misidentification in preference-based reward learning. arXiv preprint
arXiv:2204.06601, 2022.

Hsiao-Yu Tung, Adam W Harley, Liang-Kang Huang, and Katerina Fragkiadaki. Reward learning
from narrated demonstrations. In Proceedings: 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 7004–7013, Salt Lake City, Utah, USA, June 2018. IEEE
Computer Society, Los Alamitos, CA, USA. doi: 10.1109/CVPR.2018.00732.

14

https://ocw.mit.edu/courses/18-315-combinatorial-theory-hyperplane-arrangements-fall-2004/pages/lecture-notes/
https://ocw.mit.edu/courses/18-315-combinatorial-theory-hyperplane-arrangements-fall-2004/pages/lecture-notes/
https://ocw.mit.edu/courses/18-315-combinatorial-theory-hyperplane-arrangements-fall-2004/pages/lecture-notes/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning under partial
coverage. arXiv preprint arXiv:2107.06226, 2021.

Masatoshi Uehara, Masaaki Imaizumi, Nan Jiang, Nathan Kallus, Wen Sun, and Tengyang Xie. Finite
sample analysis of minimax offline reinforcement learning: Completeness, fast rates and first-order
efficiency. arXiv preprint arXiv:2102.02981, 2021.

Robert J Vanderbei. Linear programming: foundations and extensions. Journal of the Operational
Research Society, 49(1):94–94, 1998.

Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wenjun
Zeng, and S Yu Philip. Generalizing to unseen domains: A survey on domain generalization. IEEE
transactions on knowledge and data engineering, 35(8):8052–8072, 2022a.

Ruosong Wang, Dean P Foster, and Sham M Kakade. What are the statistical limits of offline rl with
linear function approximation? arXiv preprint arXiv:2010.11895, 2020.

Xinqi Wang, Qiwen Cui, and Simon S Du. On gap-dependent bounds for offline reinforcement
learning. Advances in Neural Information Processing Systems, 35:14865–14877, 2022b.

Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fürnkranz. A survey of preference-
based reinforcement learning methods. Journal of Machine Learning Research, 18(136):1–46,
2017.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
kl-constraint. In Forty-first International Conference on Machine Learning, 2024.

Jee Seok Yoon, Kwanseok Oh, Yooseung Shin, Maciej A Mazurowski, and Heung-Il Suk. Domain
Generalization for Medical Image Analysis: A Survey. arXiv preprint arXiv:2310.08598, 2023.

Wenhao Zhan, Masatoshi Uehara, Nathan Kallus, Jason D Lee, and Wen Sun. Provable Offline
Preference-Based Reinforcement Learning. In The Twelfth International Conference on Learning
Representations, 2023.

Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting and generalization in
continuous reinforcement learning. arXiv preprint arXiv:1806.07937, 2018.

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4):4396–4415, 2022.

Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforcement learning with human
feedback from pairwise or k-wise comparisons. In International Conference on Machine Learning,
pp. 43037–43067. PMLR, 2023.

Banghua Zhu, Michael I Jordan, and Jiantao Jiao. Iterative data smoothing: Mitigating reward
overfitting and overoptimization in rlhf. arXiv preprint arXiv:2401.16335, 2024.

Simon Zhuang and Dylan Hadfield-Menell. Consequences of misaligned AI. In Proceedings of the
34th International Conference on Neural Information Processing Systems, NIPS’20, pp. 15763–
15773, Red Hook, NY, USA, December 2020. Curran Associates Inc. ISBN 978-1-71382-954-6.

Simon Zhuang and Dylan Hadfield-Menell. Consequences of misaligned AI. Advances in Neural
Information Processing Systems, 33:15763–15773, 2020.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

APPENDIX
This appendix develops the theory outlined in the main paper in a self-contained and complete way,
including all proofs. In Appendix B, we present the setup of all concepts and the problem formulation,
as was already contained in the main paper. In Appendix C, we present all “negative results”.
Conditional on an error threshold in the reward model, these results present conditions for the data
distribution that allow reward models to be learned that allow for error-regret mismatch. That section
also contains Theorem C.16 which is an equivalent condition for the absence of error-regret mismatch
but could be considered a statement about error-regret mismatch by negation. In Appendix D, we
present sufficient conditions for safe optimization in several settings. Typically, this boils down to
showing that given a data distribution, a sufficiently small error in the reward model guarantees that
its optimal policies have low regret.

CONTENTS OF THE APPENDIX

A Extended related work 17

B Introduction 18

B.1 Preliminaries . 18

B.2 Problem formalization . 19

B.3 The mean-squared error as an alternative distance measure 19

B.3.1 Transfer of positive results . 20

B.3.2 Transfer of the remaining results results 20

B.4 A conceptual example of overoptimization concerns 21

B.4.1 Specifying the contextual bandit . 21

B.4.2 Regret analysis for always-helping policy 22

B.4.3 Reward learning analysis . 23

C Existence of error-regret mismatch 24

C.1 Assumptions . 25

C.2 Intuitive unregularized existence statement . 25

C.3 General existence statements . 27

C.3.1 More interpretable statement . 31

C.3.2 Deriving the conditions on D . 33

C.3.3 Algorithm to compute the conditions on D 38

C.3.4 Working example of computing matrix M 39

C.3.5 Building up on Theorem 3.5 . 40

C.4 Existence of negative results in the RLHF setting 40

C.4.1 Generalization of the error measurement: Overview 40

C.4.2 Generalization of the error measurement: Proofs 41

C.4.3 RLHF bandit formulation . 44

C.4.4 Safe and unsafe data distributions for RLHF 45

C.4.5 Negative results . 45

C.4.6 Another negative result with regularization 53

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C.5 A regularized negative result for general MDPs 54

D Requirements for safe optimization 61

D.1 Applying Berge’s maximum theorem . 61

D.2 Elementary proof of a regret bound . 64

D.3 Safe optimization via approximated choice probabilities 67

D.4 Positive result for regularized RLHF . 71

A EXTENDED RELATED WORK

Reward Learning Reward learning is a key concept in reinforcement learning that involves learning
the reward function for complex tasks with latent and difficult-to-specify reward functions. Many
methods have been developed to incorporate various types of human feedback into the reward learning
process (Wirth et al., 2017; Ng et al., 2000; Bajcsy et al., 2017; Jeon et al., 2020).

Challenges in Reward Learning Reward learning presents several challenges (Casper et al., 2023;
Lang et al., 2024b; Skalse & Abate, 2023; 2024), such as reward misgeneralization, where the
reward model learns a different reward function that performs well on in-distribution data but differs
strongly on out-of-distribution data (Skalse et al., 2023). This can lead to unintended consequences
in real-world applications.

Reward misgeneralization can also result in reward hacking (Krakovna, 2020), a consequence of
Goodhart’s law (Goodhart, 1984; Zhuang & Hadfield-Menell, 2020; Hennessy & Goodhart, 2023;
Strathern, 1997; Karwowski et al., 2023). Reward hacking has been extensively studied both
theoretically (Skalse et al., 2022; 2024; Zhuang & Hadfield-Menell, 2020) and empirically (Zhang
et al., 2018; Farebrother et al., 2018; Cobbe et al., 2019; Krakovna, 2020; Gao et al., 2023; Tien et al.,
2022).

Offline RL In offline reinforcement learning, we aim to learn low-regret policies for an MDP
⟨S,A, τ, µ0, R, γ⟩ where the reward function (and sometimes transition distribution (Wang et al.,
2022b; Uehara & Sun, 2021)) is unknown and must be learned from an offline dataset {(s, a, r)i}ni=1
sampled from a data distribution D ∈ ∆(S×A). A key research question is understanding what
data coverage conditions ensure learning a near-optimal policy with an efficient sample complexity.
Existing theoretical work primarily falls into two categories, covering both MDPs (Foster et al.,
2021; Wang et al., 2022b; 2020; Amortila et al., 2020; Uehara & Sun, 2021; Uehara et al., 2021) and
contextual bandits (Nika et al., 2024; Cen et al., 2024):

Lower bound results prove that various data-coverage conditions are insufficient for sample-efficient
offline RL by establishing worst-case sample complexity bounds. Research in this area (Foster et al.,
2021; Wang et al., 2022b; 2020; Amortila et al., 2020; Nika et al., 2024) identifies adversarial MDPs
that satisfy specific data-coverage conditions where achieving low regret is either computationally
intractable due to excessive sample requirements (Foster et al., 2021; Wang et al., 2022b; 2020; Nika
et al., 2024) or fundamentally impossible regardless of sample size (Amortila et al., 2020).

Upper bound results, on the other hand, establish positive guarantees under specific structural
assumptions. Works in this category (Wang et al., 2022b; 2020; Uehara & Sun, 2021; Nika et al.,
2024; Cen et al., 2024; Song et al., 2024) develop algorithms with provable sample-efficiency bounds
by making structural assumptions about the MDP structure, reward learning process, or policy
optimization approach.

Intuitively, the quality of a reward model that is being approximated from a finite dataset is influenced
by two key factors: the dataset size n and the dataset quality, specifically how well the data distribution
D covers the data space S×A. Prior work confirms this intuition, with most works deriving
variants of the following template (see for example recent work Nika et al. (2024)): Regret ∈
O
(
poly

(
Cov·Struct

n

))
. Here, Cov represents some measure of the coverage of D, while Struct

captures the structural assumptions of the specific approach. Such structural assumptions may
include: realizability of function classes (Wang et al., 2022b; Uehara & Sun, 2021; Foster et al., 2021;

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Nika et al., 2024), linear function approximation (Nika et al., 2024; Cen et al., 2024; Wang et al.,
2022b), and various constraints on reward- or policy functions (Wang et al., 2020; Uehara & Sun,
2021; Nika et al., 2024).

Our paper differs from these works in two key aspects: a) we explicitly analyze how the reward
modeling error ϵ affects the final policy regret, rather than focusing on the number of samples (prior
works only implicitly consider ϵ), and b) we examine worst-case scenarios instead of probabilistic
guarantees. The most relevant work in this area is Song et al. (2024), which analyzes RLHF
specifically. Their setup in section 3, combined with their Assumption 3, perfectly recovers our safe
distribution definition (see Definition 2.1) when applied to the special case of RLHF and when using
the mean squared error metric. Their Theorem 4.2 demonstrates that Regret ∈ O

(
Cov ·

√
ϵ
)
, where

the square root emerges from using the mean squared error during the reward learning step.

While Song et al. (2024) focus on RLHF with mean-squared error metric, we provide similar
results for general classes of regularized and unregularized policy optimization (for both MDPs
and contextual bandits), as well as a wide range of different error metrics. Similar to prior sample-
complexity results, we investigate the influence of different coverage constraints on regret guarantees.
For our initial results (Propositions 3.1, 3.2 and 4.1) we use the condition min(s,a) D(s, a) > 0. Since
we assume that all states of our MDPs are reachable, this is equivalent to a full coverage condition
(see Table 1 of Uehara & Sun (2021) for an overview of different coverage conditions). We then
relax the constraints to partial coverage constraints and prove several negative results (Proposition 3.3
and theorems 4.2 and 6.1). Finally, we fully generalize our results from Propositions 3.1 to 3.3
and corollary 3.4 into a single theorem (Theorem 3.5) which allows us to determine the worst-case
safety of arbitrary data distributions. To the best of our knowledge, we are the first work to achieve
such a level of generality.

Advancements in Addressing Distribution Shifts Several approaches have been proposed to ad-
dress the issue of out-of-distribution robustness in reward learning, such as ensembles of conservative
reward models (Coste et al., 2023), averaging weights of multiple reward models (Ramé et al., 2024),
iteratively updating training labels (Zhu et al., 2024), on-policy reward learning (Lang et al., 2024a),
and distributionally robust planning (Zhan et al., 2023).

Our work further emphasizes the usefulness of exploring additional assumptions or methods to
mitigate the perils of distribution shift, as we show that without any additional assumptions, there
are next to no guarantees. We therefore hope that our work can serve as a theoretical baseline, that
people can use to express and analyze their new assumptions or methods.

In classical machine learning, research in out-of-distribution generalization has a long history, and a
rich literature of methods exists (Li et al., 2022; Zhou et al., 2022; Wang et al., 2022a; Liu et al.,
2021; Li et al., 2023; Yoon et al., 2023). These methods could potentially be adapted to address
distribution shift challenges in reinforcement learning.

Contextual Bandits In Section 6 we work in the contextual bandit setting and derive variants of
our results for RLHF. Several theoretical results have been developed that investigate the challenge of
RLHF (Xiong et al., 2024; Zhu et al., 2023; Ji et al., 2023; Mehta et al., 2023) and reward learning in
general, (Agarwal et al., 2012; Foster et al., 2020) in the contextual bandit setting. Compared to this
prior work, we focus on the offline setting where the data distribution D has been pre-generated by a
reference policy.

B INTRODUCTION

B.1 PRELIMINARIES

A Markov Decision Process (MDP) is a tuple ⟨S,A, τ, µ0, R, γ⟩ where S is a set of states, A is a
set of actions, τ : S×A → ∆(A) is a transition function, µ0 ∈ ∆(S) is an initial state distribution,
R : S×A → R is a reward function, and γ ∈ (0, 1) is a discount rate. A policy is a function
π : S → ∆(A). A trajectory ξ = ⟨s0, a0, s1, a1, ...⟩ is a possible path in an MDP. The return
function G gives the cumulative discounted reward of a trajectory, G(ξ) =

∑∞
t=0 γ

tR(st, at, st+1),
and the evaluation function J gives the expected trajectory return given a policy, J(π) = Eξ∼π [G(ξ)].
A policy maximizing J is an optimal policy. The state-action occupancy measure is a function

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

η : Π → R|S×A| which assigns each policy π ∈ Π a vector of occupancy measure describing the
discounted frequency that a policy takes each action in each state. Formally, η(π)(s, a) = ηπ(s, a) =∑∞

t=0 γ
t · P (st = s, at = a | ξ ∼ π). Note that by writing the reward function R as a vector

R⃗ ∈ R|S×A|, we can split J into a linear function of π: J(π) = ηπ · R⃗. The value function V of a
policy encodes the expected future discounted reward from each state when following that policy. We
useR to refer to the set of all reward functions. When talking about multiple rewards, we give each
reward a subscript Ri, and use Ji, Gi, and V π

i , to denote Ri’s evaluation function, return function,
and π-value function.

B.2 PROBLEM FORMALIZATION

The standard RL process using reward learning works roughly like this:

1. You are given a dataset of transition-reward tuples {(si, ai, ri)}ni=0. Here, each (si, ai) ∈
S×A is a transition from some (not necessarily known) MDP ⟨S,A, τ, µ0, R, γ⟩ that has
been sampled using some distribution D ∈ ∆(S×A), and ri = R(si, ai). The goal of the
process is to find a policy π̂ which performs roughly optimally for the unknown true reward
function R. More formally: JR(π̂) ≈ maxπ∈Π JR(π).

2. Given some error tolerance ϵ ∈ R, a reward model R̂ : S×A → R is learned using the
provided dataset. At the end of the learning process R̂ satisfies some optimality criterion
such as: E(s,a)∼D

[
|R̂(s, a)−R(s, a)|

]
< ϵ

3. The learned reward model R̂ is used to train a policy π̂ that fulfills the following optimality
criterion: π̂ = argmaxπ∈Π JR̂(π).

The problem is that training π̂ to optimize R̂ effectively leads to a distribution shift, as the tran-
sitions are no longer sampled from the original data distribution D but some other distribution
D̂ (induced by the policy π̂). Depending on the definition of D, this could mean that there are
no guarantees about how close the expected error of R̂ to the true reward function R is (i.e.,
E(s,a)∼D̂

[
|R̂(s, a)−R(s, a)|

]
could not be upper-bounded).

This means that we have no guarantee about the performance of π̂ with respect to the original
reward function R, so it might happen that π̂ performs arbitrarily bad under the true reward R:
JR(π̂)≪ maxπ JR(π).

If for a given data distribution D there exists a reward model R̂ such that R̂ is close in expectation to
the true reward function R but it is possible to learn a policy that performs badly under JR despite
being optimal for R̂, we say that D allows for error-regret mismatch and that R̂ has an error-regret
mismatch.

B.3 THE MEAN-SQUARED ERROR AS AN ALTERNATIVE DISTANCE MEASURE

In the main paper, particular in Definition 2.1, we use the mean absolute error (MAE) as our error
measure in the reward function. In this appendix section, we explain what changes in the results if
one were to use the mean-squared error (MSE) instead.

We define the mean-squared error by

dMSE
D (R, R̂) := E(s,a)∼D

(R̂(s, a)−R(s, a)

range R

)2
 .

This is like the usual MSE, with the difference that we divide by range R since the distance is only
meaningful relative to the range of the true reward function R. In the main paper, we work with the
following mean absolute error instead:

dMAE
D (R, R̂) = E(s,a)

[
|R̂(s, a)−R(s, a)|

range R

]
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Then for any distance measure dX (with X = MSE or X = MAE) involving a data distribution D, we
can define the set of safe data distributions safeX(R, ϵ, L, λ, ω), slightly generalizing Definition 2.1:
safe(R, ϵ, L, λ, ω) is the set of all distributions D such that for all R̂ that are ϵ-close to R according
to dXD and all π̂ that are (λ, ω)-optimal with respect to R̂, we have RegR (π̂) < L. The complement
of this set is unsafeX(R, ϵ, L, λ, ω).

We now explain that for all of our results where in the main paper we talk about safeMAE, there is a
corresponding result for safeMSE, and the same for unsafeMAE and unsafeMSE.

B.3.1 TRANSFER OF POSITIVE RESULTS

Proposition B.1. If D ∈ safeMAE(R, ϵ, L, λ, ω), then D ∈ safeMSE(R, ϵ2, L, λ, ω).

Proof. Assume the condition. Let R̂, π̂ be such that dMSE
D (R, R̂) ≤ ϵ2 and π̂ is (λ, ω)-optimal with

respect to R̂. Due to Jensen’s inequality, we have

dMAE
D (R, R̂)2 = E(s,a)∼D

[
|R̂(s, a)−R(s, a)|

range R

]2

≤ E(s,a)∼D

(R̂(s, a)−R(s, a)

range R

)2


= dMSE
D (R, R̂)

≤ ϵ2.

It follows dMAE
D (R, R̂) < ϵ. By the definition of safeMAE(R, ϵ, L, λ, ω) and the assumption, this

results in RegR (π̂) < L. Since R̂, π̂ were arbitrary, this shows D ∈ safeMSE(R, ϵ2, L, λ, ω).

This proposition implies that our positive results (Proposition 3.1 and Proposition 4.1) transfer over
from safeMAE to safeMSE. Proposition 3.2 transfers as well, with the condition on ϵ replaced by a
square of the old condition:

ϵ <

(
1− γ√

2
· range J

R

range R
·min
(s,a)

D(s, a) · L
)2

.

B.3.2 TRANSFER OF THE REMAINING RESULTS RESULTS

The negative results do not transfer automatically since we would need an inequality between dMAE

and dMSE in the other direction, which does not exist without further assumptions. Nevertheless, it
is easily possible to modify most the proofs, where appropriate, to obtain corresponding results. In
particular:

• Proposition 3.3 and Corollary 3.4 hold verbatim with unsafeMSE instead of unsafeMAE. In
the proof of Proposition 3.3, we can use the same construction of R̂, and an almost identical
derivation shows the bound in dMSE.

• On Theorem 3.5: Due to Proposition B.1 in this rebuttal the “if”-direction of the theorem
automatically holds when replacing dMAE

D (R, R̂) with dMSE
D (R, R̂), i.e., there exists a set of

linear inequalities such that a given data distribution D is safe, i.e., D ∈ safeMSE(R, ϵ2, L),
whenever this set of linear inequalities is satisfied.
However, the “only-if” direction does not hold since safeMSE(R, ϵ2, L) is not a poly-
tope (whereas safeMAE(R, ϵ, L) is) and can thus not be expressed by a finite set of lin-
ear constraints. The reason is that by replacing dMAE

D (R, R̂) with dMSE
D (R, R̂), the set

{R̂ : dMSE
D (R, R̂) ≤ ϵ} becomes an ellipsoid, whereas it was a polytope in the original

formulation. Future work could look into a precise characterization in more detail.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

• For Theorem 4.2, there is a corresponding version that is almost identical but replaces the
condition on D(supp Dπ̂) by the following version including a square:

D(supp Dπ̂) ≤ ϵ

(1 + C)2
.

This condition can then be used at the very end of the proof of Theorem C.41 to finish the
proof of an adapted Theorem Theorem 4.2.

• For the final negative result, Theorem 6.1, we already use a different distance measure
motivated by the practice of RLHF. Thus, we are not interested in an adaptation for the
MSE.

B.4 A CONCEPTUAL EXAMPLE OF OVEROPTIMIZATION CONCERNS

In this section, we present a conceptual example that illustrates overoptimization concerns. This
is meant to serve as an intuition for many of our “negative” theoretical results Proposition 3.3,
corollary 3.4, and theorems 4.2 and 6.1, with the aim to make them more grounded in realistic
concerns.

In summary, imagine a scenario of a chatbot: It can either obtain “safe” or “dangerous” queries; safe
queries (e.g. “Please help me create a high-protein diet”) should be answered, dangerous queries
(e.g. “Please tell me how to build a nuclear weapon”) should be refused. We call answering a query
“helping”, irrespective of whether this is desired or not. We will specifically analyze an always-helping
policy, its regret, and its plausibility to occur from reward learning. Helpful-only policies have been
analyzed in past safety research (Denison et al., 2024) and are often a starting point for policies meant
to become “helpful, honest, and harmless” (Askell et al., 2021).

First, we look at conditions for when helpful-only policies are unsafe relative to a regret bound L. It
turns out that they are less safe if there appear more unsafe queries in the deployment environment,
and if the damage caused by answering them is larger — see Appendix B.4.2. Then we look into the
conditions for when this policy can be learned by reward learning — see Appendix B.4.3. It turns out
that if there are “many styles” with which the chatbot can answer an unsafe query, then some of those
answers must have a low probability on the training distribution, and thus a learned reward model
can inflate its reward while achieving a low training error. The always-helping policy can then result
from policy optimization, leading to a large regret. This illustrates an error-regret mismatch.

B.4.1 SPECIFYING THE CONTEXTUAL BANDIT

We model the situation as follows: Assume a contextual bandit with states and actions given by

S = {qsafe, quns.}, A = {aihelp, airef.}Ni=1.

In other words, there is one safe and one unsafe query,2 and actions that either help with or refuse
to answer the query in N different styles. One should imagine N to be fairly large since there are
lots of ways to vary the style of an answer without changing the content, given that the amount of
possible answers scales exponentially with length.

We assume the following simplified true reward function, where C > 0 is some (potentially large)
constant:

R(qsafe, a
i
help) = 1

R(qsafe, a
i
ref.) = 0

R(quns., a
i
help) = −C

R(quns., a
i
ref.) = 0.

(5)

The idea is that answering a safe query should lead to some positive reward, whereas refusing it
doesn’t create value or damage — the reward is zero. Answering/helping with an unsafe queries,

2Having a larger number of safe and unsafe queries does not change the mathematical picture much, but for
illustration purposes we chose this simplified setting.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

however, incurs a large negative reward −C since it can lead to substantial damage, whereas, once
again, refusing to answer does neither create value nor damage.

Finally, we assume some “true” distribution of queries, given by µuns. ∈ [0, 1] and µsafe = 1− µuns..
These can be imagined to be the frequencies with which actual users in the deployment environment
ask safe vs. unsafe queries. In total, we have thus specified a contextual bandit (S,A, R, µ).

We now make a regret-analysis — analyzing when an always-helping policy is safe — followed by a
reward learning analysis — under which conditions can an always-helping policy result from reward
learning?

B.4.2 REGRET ANALYSIS FOR ALWAYS-HELPING POLICY

For a policy π̂ with answer probabilities π̂(a | q), the policy evaluation (i.e., expected reward) is
given by

JR(π̂) = µsafe ·
N∑
i=1

π̂(aihelp | qsafe)− (1− µsafe) · C ·
N∑
i=1

π̂(aihelp | quns.). (6)

This follows directly from (5). The idea is that under a safe query, which happens with probability
µsafe, the reward is the probability to help with the query. For an unsafe query, which happens with
probability 1− µsafe, the reward is −C times the probability that the model helps with that query.

Now, the highest expected reward JR can be achieved if π̂ always helps with a safe query and never
helps with an unsafe query. This is hard to achieve in practice since training the model to refuse
unsafe queries often leads to “over-refusal” on safe queries (Cui et al., 2024). In contrast, the lowest
expected reward JR is achieved is π̂ never helps with a safe query and always helps with an unsafe
query. Thus, the maximum and minimum expected values are given by:

max
π̂

JR(π̂) = µsafe,

min
π̂

JR(π̂) = −(1− µsafe) · C.
(7)

Now, for purposes of illustration we look at one specific type of policy π̂: one that always helps.
Let π̂ be such a policy. There are several such policies since they can differ in their allocation of
probabilities to answers of different styles, but the defining property is that their action probabilities
for helpful answers sum to 1:

N∑
i=1

π̂(aihelp | qsafe) = 1,

N∑
i=1

π̂(aihelp | quns.) = 1.

Using (6), its expected value is given by:

JR(π̂) = µsafe − (1− µsafe) · C. (8)

Additionally using (7), the regret of this policy is:

RegR (π̂) =
maxπ JR(π)− JR(π̂)

maxπ JR(π)−minπ JR(π)

=
µsafe − µsafe + (1− µsafe) · C

µsafe + (1− µsafe) · C

=
(1− µsafe) · C

µsafe + (1− µsafe) · C

=
µuns. · C

1− µuns. + µuns. · C
.

(9)

Now, imagine our goal is to have a regret lower than the bound L ∈ [0, 1] — a threshold that we find
“safe enough” for deployment. Is π̂ unsafe? It depends on the value of µuns., i.e., the frequency of
unsafe queries. Indeed, using (9), the inequality RegR (π̂) ≥ L is equivalent to:

µuns. ≥
L

(1− L) · C + L
. (10)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
L

0.0

0.2

0.4

0.6

0.8

1.0

_{
un

s.}
^C

(L
)

C=0.5
C=1
C=2

C=5
C=10
C=20

C=50
C=100
C=200

Figure 3: In our conceptual example, we analyze when an always-helping policy π̂ is unsafe. This
depends on the probability of an unsafe query µuns.. For a given damage C of answering such a
query and a given regret bound L, π̂ has a regret of at least L if µuns. is larger than the plotted
µC
uns.(L) = L/[(1− L) · C + L]. µC

uns.(L) grows with growing L and shrinks with growing C.

In Figure 3 we analyze for several different values of the damage C the relationship between the
regret bound L and the smallest probability µC

uns.(L) := L/[(1− L) · C + L] of the unsafe query for
which the policy π̂ would have a regret of at least L. We observe the following:

• For each C, as the regret bound L gets larger, one needs a larger probability µuns. for π̂ to
have regret at least L. This makes sense: π̂ acts correctly on safe queries, and so only unsafe
queries can contribute to the regret. Thus, the more unsafe queries the policy encounters,
the larger its regret becomes.

• For each regret bound L, as the damage of helping with an unsafe query, C, gets larger, a
smaller probability µuns. is sufficient for π̂ to reach regret at least L. This makes sense since
the policy’s overall performance is then more and more dominated by its performance on
unsafe queries.

Note that over time, language models are approaching more concerning “dangerous capabili-
ties” (Phuong et al., 2024; Anthropic, 2024), which means that the caused damage C for following
through with unsafe requests can be imagined to go up over time with increased capabilities. Positive
value goes up, too, but plausibly in the near-term not as fast as the tailrisks. Thus, we can reasonably
think that even for large values of the regret bound L, a small probability µuns. of an unsafe query
would already cause the always-helping policy π̂ to have a regret of at least L, and thus to be unsafe.

Alternatively, instead of looking at regret, we could also think directly about the expected value
JR(π̂) computed in (8). Then we might say: the policy is unsafe if its expected value is negative, i.e.,
it causes more damage than it provides value. With growing damage C for more capable models, the
expected value eventually becomes negative, and so also this viewpoint suggests that π̂ is not a safe
policy.

B.4.3 REWARD LEARNING ANALYSIS

Now, lets assume that the relationship between L, C, and µuns. as per eq. (10) is such that an
always-helping policy π̂ is unsafe, i.e., has regret at least L. Now the question becomes: Under what
conditions could such a policy be learned by reward learning followed by policy optimization? To
be clear, there are also other policies that have regret at least L (e.g., a policy that doesn’t help for
safe queries and always helps for unsafe queries is even worse), but since we are operating under a
worst-case framework under the policy optimization, it is already bad if any always-helping policy π̂
can be learned. Thus, we are searching for sufficient conditions for this to happen.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Thus, let R̂ be the learned reward function. For this to give rise to the policy π̂ under unregularized
policy optimization, R̂ needs to favor at least one helpful answers over every refusing answer for
both queries:

∃i∀j : R̂(qsafe, a
i
help) > R̂(qsafe, a

j
ref.),

∃i∀j : R̂(quns., a
i
help) > R̂(quns., a

j
ref.).

(11)

Again, since we are operating under a worst-case framework, it is enough if we find one specific
learned reward function with these conditions that can be learned in practice. Thus, for simplicity,
we assume R̂(qsafe, a

i
help) = 1, R̂(qsafe, a

i
ref.) = 0 for all i. Also assume R̂(quns., a

i
ref.) = 0 for all

i. Assume there exists a single i0 with B := R̂(quns., a
i0
help) > 0, and that R̂(quns., a

i
help) = −C for

all i ̸= i0. Then the conditions from (11) are met, and the learned reward function almost everywhere
agrees with the true reward function R from (5).

Now we want to determine the (mean absolute) training error of this reward model. For this, assume
we train on some data distribution D ∈ ∆(S ×A), given by D(q, a) = D(q) ·D(a | q).3 Since our
reward model equals the true reward function in every query-answer pair except (quns., ai0help), the
training error becomes:

E(q,a)∼D

[
|R̂(q, a)−R(q, a)|

range R

]
= D(quns., a

i0
help) ·

B + C

1 + C
.

Assume we train until we have achieved a small but realistic training error ϵ. Then the question is
under what conditions R̂ can “slip through” the training by leading to an error bounded above by ϵ.
This is the case if:

D(quns., a
i0
help) <

(1 + C) · ϵ
B + C

. (12)

Thus, if there is some i0 for which this inequality holds, then R̂ can be learned, and the always-helping
policy π̂ results. Now, note that if the number of “styles” i = 1, . . . , N is very large relative to the
inverse of ϵ, this is automatic. Namely, if

N >
D(quns.) · (B + C)

ϵ · (1 + C)
, (13)

then since the probabilities sum to 1 there is an i0 ∈ {1, . . . , N} with D(ai0help | quns.) ≤ 1/N , and
we automatically obtain the result, (12).

A note on regularized policy optimization: Regularization can prevent π̂ from being learned even
if R̂ favors this policy. However, if B = R̂(quns., a

i0
help) > 0 is very large, then this creates so

much reward that the regularization effect with constant regularization strength can be counteracted.
Growing B just leads to the need for larger N in (13), and so we can say: If the number of styles N
is large enough (leading to a small training-probability of some bad action) and the always-helping
policy π̂ has regret larger then L, then supervised reward learning up to reasonable errors ϵ followed
by (un)regularized policy optimization can result in a policy with regret ≥ L. Thus, there is then an
error-regret mismatch, and the distribution D is unsafe, as per Definition 2.1. That a large number of
“bad options” or a small probability of some bad option can lead to an error-regret mismatch is the
core intuition behind our negative results Proposition 3.3, corollary 3.4, and theorems 4.2 and 6.1.

C EXISTENCE OF ERROR-REGRET MISMATCH

In this section, we answer the question under which circumstances error-regret mismatch could
occur. We consider multiple different settings, starting from very weak statements, and then steadily
increasing the strength and generality.

3D(qsafe) is not necessarily equal to µsafe, the likelihood of safe queries in the deployment environment.
This is intuitive: Before deploying a chatbot in the real world, it may be hard to know what proportion of requests
will be safe, and the proportion during training may be different.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

C.1 ASSUMPTIONS

For every MDP ⟨S,A, τ, µ0, R, γ⟩ that we will define in the following statements, we assume the
following properties:

• Finiteness: Both the set of states S and the set of actions A are finite

• Reachability: Every state in the given MDP’s is reachable, i.e., for every state s ∈ S, there
exists a path of transitions from some initial state s0 (s.t. µ0(s0) > 0) to s, such that every
transition (s, a, s) in this path has a non-zero probability, i.e., τ(s′|s, a) > 0. Note that this
doesn’t exclude the possibility of some transitions having zero probability in general.

C.2 INTUITIVE UNREGULARIZED EXISTENCE STATEMENT

Definition C.1 (Regret). We define the regret of a policy π with respect to reward function R as

RegR (π) :=
max JR − JR(π)

max JR −min JR
∈ [0, 1].

Here, J is the policy evaluation function corresponding to R.

Definition C.2 (Policy-Induced Distribution). Let π be a policy. Then we define the policy-induced
distribution Dπ by

Dπ := (1− γ) · ηπ.

Definition C.3 (Range of Reward Function). Let R be a reward function. Its range is defined as

range R := maxR−minR.

Lemma C.4. for any policy π, Dπ is a distribution.

Proof. This is clear.

Proposition C.5. Let M = ⟨S,A, τ, µ0, R, γ⟩ be an MDP, D ∈ ∆(S×A) a data distribution,
and ϵ > 0, L ∈ [0, 1]. Assume there exists a policy π̂ with the property that RegR (π̂) ≥ L and
D(supp Dπ̂) < ϵ, where supp Dπ̂ is defined as the set of state-action pairs (s, a) ∈ S×A such that
Dπ̂(s, a) > 0. In other words, there is a “bad” policy for R that is not very supported by D. Then,
D allows for error-regret mismatch to occur, i.e., D ∈ unsafe(R, ϵ, L).

Proof. We will show that whenever there exists a policy π̂ with the following two properties:

• RegR (π̂) ≥ L;

• D(supp Dπ̂) < ϵ.

Then there exists a reward function R̂ for which π̂ is optimal, and such that

E(s,a)∼D

[
|R(s, a)− R̂(s, a)|

range R

]
≤ ϵ.

Define

R̂(s, a) :=

{
R(s, a), (s, a) /∈ supp Dπ̂;

maxR, else.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Then obviously, π̂ is optimal for R̂. Furthermore, we obtain

E(s,a)∼D

[
|R(s, a)− R̂(s, a)|

range R

]
=
∑
(s,a)

D(s, a)
|R(s, a)− R̂(s, a)|

range R

=
∑

(s,a)∈supp Dπ̂

D(s, a)
maxR−R(s, a)

range R

≤
∑

(s,a)∈supp Dπ̂

D(s, a)

= D(supp Dπ̂)

≤ ϵ.

That was to show.

Corollary C.6. Let M = ⟨S,A, τ, µ0, R, γ⟩ be an MDP, ϵ > 0, and L ∈ [0, 1]. Assume there exists
a set of policies ΠL with:

• RegR (π) ≥ L for all π ∈ ΠL;

• supp Dπ ∩ supp Dπ′
= ∅ for all π, π′ ∈ ΠL; and

• |ΠL| ≥ 1/ϵ.

Then unsafe(R, ϵ, L) = ∆(S ×A), i.e.: all distributions are unsafe.

Proof. Let D ∈ ∆(S ×A). Let π ∈ argminπ′∈ΠL
D(supp Dπ′

). We obtain

|ΠL| ·D(supp Dπ) ≤
∑

π′∈ΠL

D(supp Dπ′
) = D

(⋃
π′∈ΠL

supp Dπ′

)
≤ 1,

and therefore D(supp Dπ) ≤ 1/|ΠL| < ϵ. The result follows from Proposition 3.3.

Proposition C.7. The assumptions on ϵ in Proposition 3.2 and Proposition 3.3 cannot hold simulta-
neously.

Proof. If they would hold simultaneously, we would get:

min
(s,a)∈S×A

D(s, a) ≤ D
(
suppDπ̂

)
< ϵ <

1− γ√
2
· rangeJR

rangeR
· min
(s,a)∈S×A

D(s, a) · L.

Here, the first step is clear, the second step is the assumption from Proposition 3.3, and the third step
is the assumption from Proposition 3.2. We now show that this leads to a contradiction.

Dividing by the minimum on both sides, we obtain

1 <
L√
2
· (1− γ)rangeJR

rangeR
. (14)

Clearly, we have L/
√
2 < 1. We also claim that the second fraction is smaller or equal to 1, which

then leads to the desired contradiction. Indeed, let π∗ and π∗ be an optimal and a worst-case policy,
respectively. Then we have

(1− γ)rangeJR = (1− γ)(JR(π
∗)− JR(π∗))

= (1− γ)ηπ
∗
· R⃗− (1− γ)ηπ∗ · R⃗

= Dπ∗
· R⃗−Dπ∗ · R⃗

=
∑

(s,a)∈S×A

Dπ∗
(s, a)R(s, a)−

∑
(s,a)∈S×A

Dπ∗(s, a)R(s, a)

≤ max
(s,a)∈S×A

R(s, a)− min
(s,a)∈S×A

R(s, a)

= rangeR.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Here, we used the formulation of the policy evaluation function in terms of the occupancy measure η,
and then that 1− γ is a normalizing factor that transforms the occupancy measure into a distribution.
Overall, this means that (1 − γ)rangeJR/rangeR ≤ 1, contradicting (14). Consequently, the
assumptions of Proposition 3.2 and Proposition 3.3 cannot hold simultaneously.

C.3 GENERAL EXISTENCE STATEMENTS

We start by giving some definitions:
Definition C.8 (Minkowski addition). Let A,B be sets of vectors, then the Minkowski addition of
A,B is defined as:

A+B := {a+ b | a ∈ A, b ∈ B}.

(Karwowski et al., 2023) showed in their proposition 1, that for every MDP, the corresponding
occupancy measure space Ω forms a convex polytope. Furthermore, for each occupancy measure
η ∈ Ω there exists at least one policy πη such that ∀(s, a) ∈ S×A, ηπ(s, a) = η(s, a) (see Theorem
6.9.1, Corollary 6.9.2, and Proposition 6.9.3 of (Puterman, 1994)). In the following proofs, we will
refer multiple times to vertices of the occupancy measure space Ω whose corresponding policies have
high regret. We formalize this in the following definition:
Definition C.9 (High regret vertices). Given a lower regret bound L ∈ [0, 1], an MDP
⟨S,A, τ, µ0, R, γ⟩ and a corresponding occupancy measure Ω, we define the set of high-regret
vertices of Ω, denoted by V L

R , to be the set of vertices v of Ω for which RegR (πv) ≥ L

Definition C.10 (Active inequalities). Let ⟨S,A, τ, µ0, R, γ⟩ be an MDP with corresponding occu-
pancy measure space Ω. For every η ∈ Ω, we define the set of transitions (s, a) for which η(s, a) = 0
by zeros(η).
Definition C.11 (Normal cone). The normal cone of a convex set C ⊂ Rn at point x ∈ C is defined
as:

NC(x) := {n ∈ Rn | nT · (x′ − x) ≤ 0 for all x′ ∈ C} (15)

We first state a theorem from prior work that we will use to prove some lemmas in this section:
Theorem C.12 ((Schlaginhaufen & Kamgarpour, 2023)). Let ⟨S,A, τ, µ0, γ⟩ be an MDP without
reward function and denote with Ω its corresponding occupancy measure space. Then, for every
reward function R and occupancy measure η ∈ Ω, it holds that:

η is optimal for R ⇐⇒ R ∈ NΩ(η), (16)

where the normal cone is equal to:

NΩ(η) = Φ + cone
(
{−es,a}(s,a)∈zeros(η)

)
(17)

where Φ is the linear subspace of potential functions used for reward-shaping, and the addition is
defined as the Minkowski addition.

Proof. This is a special case of theorem 4.5 of Schlaginhaufen & Kamgarpour (2023), where we
consider the unconstrained- and unregularized RL problem.

From the previous lemma, we can derive the following corollary which uses the fact that Ω is a closed,
and bounded convex polytope (see Proposition 1 of Karwowski et al. (2023)).
Corollary C.13. Given an MDP ⟨S,A, τ, µ0, R, γ⟩ and a corresponding occupancy measure space
Ω, then for every reward function R̂ : S×A → R, and lower regret bound L ∈ [0, 1], the following
two statements are equivalent:

a) There exists an optimal policy π̂ for R̂ such that π̂ has regret at least L w.r.t. the original
reward function, i.e., RegR (π̂) ≥ L.

b) R̂ ∈ Φ +
⋃

v∈V L
R

cone
(
{−es,a}(s,a)∈zeros(v)

)
, where Φ is the linear subspace of potential

functions used for reward-shaping, the addition is defined as the Minkowski addition.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Proof. Let R̂ be chosen arbitrarily. Statement a) can be formally expressed as:

∃π̂ ∈ Π, RegR̂ (π̂) = 0 ∧ RegR (π̂) ≥ L.

Using Theorem C.12, it follows that:

∃π̂ ∈ Π, RegR̂ (π̂) = 0 ∧ RegR (π̂) ≥ L

⇐⇒ ∃π̂ ∈ Π, R̂ ∈ NΩ(η
π̂) ∧ RegR (π̂) ≥ L

⇐⇒ R̂ ∈
⋃

η: RegR(πη)≥L

NΩ(η).

It remains to be shown that the union in the previous derivation is equivalent to a union over just all
V L
R . First, note that by definition of the set of high-regret vertices V L

R (see Definition C.9), it trivially
holds that: ⋃

v∈V L
R

NΩ(v) ⊆
⋃

η: RegR(πη)≥L

NΩ(η), (18)

Next, because Ω is a convex polytope, it can be defined as the intersection of a set of defining
half-spaces which are defined by linear inequalities:

Ω = {η | aTi · η ≤ bi, for i = 1, ...,m}.

By defining the active index set of a point η ∈ Ω as IΩ(η) = {ai | aTi · η = bi}, Rockafellar & Wets
(2009) then show that:

NΩ(η) =
{
y1 · a1 + ...+ ym · am | yi ≥ 0 for i ∈ IΩ(η), yi = 0 for i /∈ IΩ(η)

}
, (19)

(see their theorem 6.46). Note that, because Ω lies in an |S| · (|A| − 1) dimensional affine subspace
(see Proposition 1 of (Karwowski et al., 2023)), a subset of the linear inequalities which define Ω
must always hold with equality, namely, the inequalities that correspond to half-spaces which define
the affine subspace in which Ω resides. Therefore, the corresponding active index set, let’s denote
it by IΩ,Φ(η) because the subspace orthogonal to the affine subspace in which Ω lies corresponds
exactly to Φ, is always non-empty and the same for every η ∈ Ω.

Now, from Equation (19), it follows that for every η ∈ Ω, there exists a vertex v of Ω, such that
NΩ(η) ⊆ NΩ(v). We take this one step further and show that for every η with RegR (πη) ≥ L,
there must exist a vertex v with RegR (πv) ≥ L such that NΩ(η) ⊆ NΩ(v). We prove this via case
distinction on η.

• η is in the interior of Ω. In this case, the index set IΩ(η) reduces to IΩ,Φ(η) and because we
have IΩ,Φ(η) ⊆ IΩ(η) for every η ∈ Ω, the claim is trivially true.

• η itself is already a vertex in which case the claim is trivially true.

• η is on the boundary of Ω. In this case η can be expressed as the convex combination of
some vertices Vη which lie on the same face of Ω as η. Note that all occupancy measures
with regret ≥ L must lie on one side of the half-space defined by the equality RT · η =
L · ηmin + (1− L) · ηmax, where ηmin and ηmax are worst-case and best-case occupancy
measures. By our assumption, η also belongs to this side of the half-space. Because η lies in
the interior of the convex hull of the vertices Vη , at least one v ∈ Vη must therefore also lie
on this side of the hyperplane and have regret ≥ L. Because v and η both lie on the same
face of Ω, we have IΩ(η) ⊂ IΩ(v) and therefore also NΩ(η) ⊆ NΩ(v).

Hence, it must also hold that: ⋃
η: RegR(πη)≥L

NΩ(η) ⊆
⋃

v∈V L
R

NΩ(v),

which, together with Equation (18) proves the claim.

The following lemma relates the set of reward functions to the set of probability distributions D

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Lemma C.14. Given an MDP ⟨S,A, τ, µ0, R, γ⟩ and a second reduced reward function R̂ : S×A →
R, then the following two statements are equivalent:

a) There exists a data distribution D ∈ ∆(S×A) such that E(s,a)∼D

[
|R(s, a)− R̂(s, a)|

]
<

ϵ · range R

b) At least one component R̂i of R̂ is "close enough" to R, i.e., it holds that for some transition
(s, a): |R(s, a)− R̂(s, a)| < ϵ · range R.

Proof. We first show the direction b)⇒ a). Assume that |R(s∗, a∗)− R̂(s∗, a∗)| < ϵ · range R for
a given R̂ and transition (s∗, a∗). In that case, we can construct the data distribution D which we
define as follows:

D(s, a) =

{
p if (s, a) ̸= (s∗, a∗)

1− (|S×A| − 1) · p if (s, a) = (s∗, a∗)

where we choose p < min

(
ϵ·range R−|R(s∗,a∗)−R̂(s∗,a∗)|∑

(s,a)̸=(s∗,a∗) |R(s,a)−R̂(s,a)| ,
1

|S×A|

)
. From this it can be easily seen

that:

E(s,a)∼D

[
|R(s, a)− R̂(s, a)|

]
= (1− (|S×A| − 1) · p) · |R(s∗, a∗)− R̂(s∗, a∗)|

+ p ·
∑

(s,a) ̸=(s∗,a∗)

|R(s, a)− R̂(s, a)|

< ϵ · range R

We now show the direction a)⇒ b) via contrapositive. Whenever it holds that |R(s, a)− R̂(s, a)| ≥
ϵ · range R for all transitions (s, a) ∈ S×A, then the expected difference under an arbitrary data
distribution D ∈ ∆(S×A) can be lower bounded as follows:

E(s,a)∼D

[
|R(s, a)− R̂(s, a)|

]
=

∑
(s,a)∈S×A

D(s, a) · |R(s, a)− R̂(s, a)|

≥ ϵ · range R ·
∑

(s,a)∈S×A

D(s, a)

= ϵ · range R

Because this holds for all possible data distributions D we have ¬b) ⇒ ¬a) which proves the
result.

Corollary C.13 describes the set of reward functions R̂ for which there exists an optimal policy π̂
that achieves worst-case regret under the true reward function R. Lemma C.14 on the other hand,
describes the set of reward functions R̂, for which there exists a data distribution D such that R̂ is
close to the true reward function R under D. We would like to take the intersection of those two sets
of reward functions, and then derive the set of data distributions D corresponding to this intersection.
Toward this goal we first present the following lemma:
Lemma C.15. For all ϵ > 0, L ∈ [0, 1], MDP M = ⟨S,A, τ, µ0, R, γ⟩ and all data distributions
D ∈ ∆(S×A), there exists a system of linear inequalities, such that D ∈ unsafe(R, ϵ, L) if and
only if the system of linear inequalities is solvable.

More precisely, let V L
R be the set of high-regret vertices defined as in Definition C.9. Then, there exists

a matrix C, as well as a matrix U(v) and a vector b(v) for every v ∈ V L
R such that the following two

statements are equivalent:

1. D ∈ unsafe(R, ϵ, L), i.e., there exists a reward function R̂ and a policy π̂ such that:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

(a) E(s,a)∼D

[
|R̂(s,a)−R(s,a)|

range R

]
≤ ϵ;

(b) RegR (π̂) ≥ L

(c) RegR̂ (π̂) = 0

2. There exists a vertex v ∈ V L
R such that the linear system[

U(v)
C · diag (D)

]
·B ≤

[
b(v)

ϵ · range R · 1

]
(20)

has a solution B. Here, we use the vector notation of the data distribution D.

Proof. We can express any reward function R̂ as R̂ = R + B, i.e. describing R̂ as a deviation
B : S×A → R from the true reward function. Note that in this case, we get R̂−R = B. Next, note
that the expression:

E(s,a)∼D [|B(s, a)|] ≤ ϵ · range R (21)

describes a “weighted L1 ball” around the origin in which B must lie:

E(s,a)∼D [|B(s, a)|] ≤ ϵ · range R (22)

⇐⇒
∑

(s,a)∈S×A

D(s, a) · |B(s, a)| ≤ ϵ · range R (23)

⇐⇒ B ∈ C(D) :=

{
x ∈ R|S×A|

∣∣∣ ∑
(s,a)∈S×A

D(s, a) · |xs,a| ≤ ϵ · range R
}
. (24)

This “weighted L1 ball” is a polyhedral set, which can be described by the following set of inequalities:

D(s1, a1) ·B(s1, a1) +D(s1, a2) ·B(s1, a2) + ... ≤ ϵ · range R
−D(s1, a1) ·B(s1, a1) +D(s1, a2) ·B(s1, a2) + ... ≤ ϵ · range R
D(s1, a1) ·B(s1, a1)−D(s1, a2) ·B(s1, a2) + ... ≤ ϵ · range R
−D(s1, a1) ·B(s1, a1)−D(s1, a2) ·B(s1, a2) + ... ≤ ϵ · range R

· · · .

This can be expressed more compactly in matrix form, as:

C · diag (D) ·B ≤ ϵ · range R · 1, (25)

where C ∈ R2|S×A|×|S×A|, diag (D) ∈ R|S×A|×|S×A|, B ∈ R|S×A|, 1 ∈ {1}|S×A| and the
individual matrices are defined as follows:

C =


1 1 · · · 1
−1 1 · · · 1
1 −1 · · · 1
· · · · · · · · · · · ·
−1 −1 · · · −1

 , diag (D) =

D(s1, a1) 0
. . .

0 D(sn, am)

 . (26)

Next, from Corollary C.13 we know that a reward function R̂ = R+B has an optimal policy with
regret larger or equal to L if and only if:

R+B ∈ Φ+
⋃

v∈V L
R

cone
(
{−es,a}(s,a)∈zeros(v)

)
⇐⇒ B ∈ −R+Φ+

⋃
v∈V L

R

cone
(
{−es,a}(s,a)∈zeros(v)

)
(27)

We can rephrase the above statement a bit. Let’s focus for a moment on just a single ver-
tex v ∈ V L

R . First, note that because Φ and cone
(
{−es,a}(s,a)∈zeros(v)

)
, are polyhedral,

Φ + cone
(
{−es,a}(s,a)∈zeros(v)

)
must be polyhedral as well (this follows directly from Corol-

lary 3.53 of (Rockafellar & Wets, 2009)). Therefore, the sum on the right-hand side can be expressed
by a set of linear constraints U(v) ·B ≤ b(v).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Hence, a reward function, R̂ = R+B is close in expected L1 distance to the true reward function R,
and has an optimal policy that has large regret with respect to R, if and only if there exists at least
one vertex v ∈ V L

R , such that:[
U(v)

C · diag (D)

]
·B ≤

[
b(v)

ϵ · range R · 1

]
(28)

holds.

In the next few subsections, we provide a more interpretable version of the linear system of inequalities
in Equation (20), and the conditions for when it is solvable and when not.

C.3.1 MORE INTERPRETABLE STATEMENT

Ideally, we would like to have a more interpretable statement about which classes of data distributions
D fulfill the condition of Equation (20). We now show that for an arbitrary MDP and data distribution
D, D is a safe distribution, i.e., error-regret mismatch is not possible, if and only if D fulfills a fixed
set of linear constraints (independent of D).
Theorem C.16. For all MDPs ⟨S,A, τ, µ0, R, γ⟩ and L ∈ [0, 1], there exists a matrix M such that
for all ϵ > 0 and D ∈ ∆(S×A) we have:

D ∈ safe(R, ϵ, L) ⇐⇒ M ·D > ϵ · range R · 1, (29)

where we use the vector notation of D, and 1 is a vector containing all ones.

Proof. Remember from Lemma C.15, that a data distribution D is safe, i.e., D ∈ safe(R, ϵ, L), if
and only if for all unsafe vertices v ∈ V L

R the following system of linear inequalities:[
U(v)

C · diag (D)

]
·B ≤

[
b(v)

ϵ · range R · 1

]
(30)

has no solution. Let v ∈ V L
R be chosen arbitrarily and define Uv := {B ∈ R|S×A| | U(v) ·B ≤ b(v)},

i.e., Uv is the set of all B ∈ R|S×A|, such that R̂ := R+B has an optimal policy with regret at least
L. Then, Equation (30) has no solution if and only if:

∀B ∈ Uv, C · diag (D) ·B ≰ ϵ · range R · 1 (31)

⇐⇒ ∀B ∈ Uv, abs(B)T ·D > ϵ · range R, (32)

where we used the definition of the matrices C, and diag (D) (see Equation (25)) and abs(·) denotes
the element-wise absolute value function. Now, we will finish the proof by showing that there exists
a finite set of vectors X ⊂ Uv (which is independent of the choice of D), such that for every x ∈ X ,
Equation (32) holds if and only if it is true for all B, i.e., more formally:

∀B ∈ X, abs(B)T ·D > ϵ · range R
⇐⇒ ∀B ∈ Uv, abs(B)T ·D > ϵ · range R.

And since X is finite, we can then summarize the individual elements of X as rows of a matrix M
and get the desired statement by combining the previous few statements, namely:

D ∈ safe(R, ϵ, L) ⇐⇒ M ·D > ϵ · range R · 1 (33)

Towards this goal, we start by reformulating Equation (32) as a condition on the optimal value of a
convex optimization problem:

∀x ∈ Uv, abs(x)T ·D > ϵ · range R

⇐⇒
(
min
x∈Uv

abs(x)T ·D
)
> ϵ · range R

⇐⇒ abs(x∗)T ·D > ϵ · range R, where x∗ := arg min
x∈Uv

abs(x)T ·D

⇐⇒ abs(x∗)T ·D > ϵ · range R, where x∗ := argmin
x

abs(x)T ·D, (34)

subject to U(v) · x ≤ b(v)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Note that the optimal value x∗ of this convex optimization problem depends on the precise definition
of the data distribution D. But importantly, the set over which we optimize (i.e., Uv defined as the
set of all x, such that U(v) · x ≤ b) does not depend on D! The goal of this part of the proof is
to show that for all possible D the optimal value of the optimization problem in Equation (34) is
always going to be one of the vertices of Uv . Therefore, we can transform the optimization problem
in Equation (34) into a new optimization problem that does not depend on D anymore. It will then be
possible to transform this new optimization problem into a simple set of linear inequalities which
will form the matrix M in Equation (33).

Towards that goal, we continue by splitting up the convex optimization problem into a set of
linear programming problems. For this, we partition R|S×A| into its different orthants Oc for
c ∈ {−1, 1}|S×A| (a high-dimensional generalization of the quadrants). More precisely, for every
x ∈ Oc, we have diag (c) · x = abs(x). Using this definition, we can reformulate the constraint on
the convex optimization problem as follows:

min
c∈{−1,1}|S×A|

xc ̸=∅

(diag (c) · xc)
T ·D > ϵ · range R, (35)

where the individual xc are defined as the solution of linear programming problems:

xc := argmin
x

(diag (c) · x)T ·D (36)

subject to U(v) · x ≤ b(v)

diag (c) · x ≥ 0,

or xc := ∅ in case the linear program is infeasible. Finally, by re-parametrizing each linear program
using the variable transform x′ = diag (c) · x we can convert these linear programs into standard
form:

xc := diag (c) · argmin
x′

x′T ·D (37)

subject to U(v) · diag (c) · x′ ≤ b(v)

x′ ≥ 0,

where we used twice the fact that diag (c)−1
= diag (c), and hence, x = diag (c) ·x′. Because it was

possible to transform these linear programming problems described in Equation (36) into standard
form using a simple variable transform, we can apply standard linear programming theory to draw
the following conclusions (see Theorem 3.4 and Section 6 of Chapter 2 of (Vanderbei, 1998) for
reference):

1. The set of constraints in Equations (36) and (37) are either infeasible or they form a
polyhedral set of feasible solutions.

2. If the set of constraints in Equations (36) and (37) are feasible, then there exists an optimal
feasible solution that corresponds to one of the vertices (also called basic feasible solutions)
of the polyhedral constraint sets. This follows from the fact that the objective function is
bounded from below by zero.

Let’s denote the polyhedral set of feasible solutions defined by the constraints in Equation (36) by
Fc(v). Because Fc(v) does not depend on the specific choice of the data distribution, this must mean
that for every possible data distribution D, we have either xc = ∅ or xc is one of the vertices of
Fc(v), denoted by vertices(Fc(v))! Note that, by definition of xc, it holds that:

∀x ∈ vertices(Fc(v)), (diag (c) · xc)
T ·D ≤ (diag (c) · x)T ·D. (38)

Therefore, we can define:

X(v) :=
⋃

c∈{−1,1}|S×A|

vertices(Fc(v)) = {x1, ..., xk}, and MX(v) :=

abs(x1)
T

· · ·
abs(xk)

T

 ,

(39)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

where MX(v) contains the element-wise absolute value of all vectors of X(v) as row vectors. Let D
be an arbitrary data distribution. Then, we’ve shown the following equivalences:

∀B ∈ Uv, abs(B)T ·D > ϵ · range R (see Equation (32))

⇐⇒ min
c∈{−1,1}|S×A|

xc ̸=∅

(diag (c) · xc)
T ·D > ϵ · range R (see Equation (35))

⇐⇒ min
x∈X(v)

abs(x)T ·D > ϵ · range R (due to Equation (38))

⇐⇒ MX(v) ·D > ϵ · range R · 1

Now, by combining the individual sets of vertices X(v), as follows:

X :=
⋃

v∈V L
R

X(v) = {x1, ..., xl}, and M =

abs(x1)
T

· · ·
abs(xl)

T

 , (40)

we are now ready to finish the proof by combining all previous steps:

D ∈ safe(R, ϵ, L)

⇐⇒ ∀v ∈ V L
R , ∀B ∈ Uv, abs(B)T ·D > ϵ · range R

⇐⇒ ∀v ∈ V L
R , MX(v) ·D > ϵ · range R · 1

⇐⇒ M ·D > ϵ · range R · 1.

That was to show.

C.3.2 DERIVING THE CONDITIONS ON D

In Theorem C.16 we’ve shown that there exists a set of linear constraints M ·D > ϵ · range R · 1,
such that whenever a data distribution D satisfies these constraints, it is safe. In this subsection, we
derive closed-form expressions for the individual rows of M to get a general idea about the different
factors determining whether an individual data distribution is safe.

In the proof of Theorem C.16, we showed that M has the form:

M =

abs(x1)
T

...
abs(xl)

T

 ,

for some set X = {x1, ..., xl}, where each x ∈ X belongs to a vertex of the set of linear constraints
defined by the following class of system of linear inequalities:[

U(v)
−diag (c)

]
· x ≤

[
b(v)
0

]
(Corresponds to the set of unsafe reward functions)
(Corresponds to the orthant Oc)

(41)

for some v ∈ V L
R (the set of unsafe vertices of Ω), and some c ∈ {−1, 1}|S×A| (defining the orthant

Oc).

To ease the notation in the following paragraphs, we will use the notation Uv for the polyhedral set of
x such that U(v) · x ≤ b(v), and Fc(v) for the set of solutions to the full set of linear inequalities in
Equation (41). Furthermore, we will use n := |S| and m := |A|.
We start by giving a small helper definition.
Definition C.17 (General position, (Stanley, 2024)). LetH be a set of hyperplanes in Rn. ThenH is
in general position if:

{H1, ...,Hp} ⊆ H, p ≤ n =⇒ dim(H1 ∩ ... ∩Hp) = n− p

{H1, ...,Hp} ⊆ H, p > n =⇒ H1 ∩ ... ∩Hp = ∅

We will use this definition in the next few technical lemmas. First, we claim that each of the vertices
of Fc(v) must lie on the border of the orthant Oc.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Lemma C.18 (Vertices lie on the intersection of the two constraint sets.). All vertices of the polyhedral
set, defined by the system of linear inequalities:[

U(v)
−diag (c)

]
· x ≤

[
b(v)
0

]
(42)

must satisfy some of the inequalities of −diag (c) · x ≤ 0 with equality.

Proof. Let Uv be the set of solutions of the upper part of the system of linear equations in Equation (42)
and Oc be the set of solutions of the lower part of the system of linear equations in Equation (42).
The lemma follows from the fact that Uv can be expressed as follows (see Equation (27) and the
subsequent paragraph):

Uv = −R+Φ+ cone
(
{−es,a}(s,a)∈zeros(v)

)
, (43)

where Φ is a linear subspace. Hence, for every x that satisfies the constraints U(v) · x ≤ b(v), x lies
on the interior of the line segment spanned between x′ = x+ ϕ, and x′′ = x− ϕ for some ϕ ∈ Φ,
ϕ ̸= 0. Note that every point on this line segment also satisfies the constraints U(v) · x ≤ b(v).
Therefore, x can only be a vertex if it satisfies some of the additional constraints, provided by the
inequalities −diag (c) · x ≤ 0, with equality.

Consequently, every vertex of Fc(v) is the intersection of some k-dimensional surface of Uv and
k > 0 standard hyperplanes (hyperplanes whose normal vector belongs to the standard basis).

Lemma C.19 (Basis for Φ. (Schlaginhaufen & Kamgarpour, 2023)). The linear subspace Φ of
potential shaping transformations can be defined as:

Φ = span(A− γ · P),

where A,P ∈ R(n·m)×n for n = |S|,m = |A| are matrices defined as:

A :=


1m 0m · · · 0m

0m 1m · · · 0m

· · · · · ·
. . . · · ·

0m 0m · · · 1m

 , P :=

 τ(· | s1, a1)
τ(· | s1, a2)

· · · · · · · · ·
τ(· | sn, am)

 ,

where 0m,1m are column vectors and τ(·|si, aj) is a row vector of the form
[τ(s1 | si, aj), · · · , τ(sn | si, aj)].

Furthermore, we have dimΦ = n.

Proof. This has been proven by (Schlaginhaufen & Kamgarpour, 2023) (see their paragraph "Iden-
tifiability" of Section 4). The fact that dimΦ = n follows from the fact that Φ is the linear space
orthogonal to the affine space containing the occupancy measure space Ω, i.e. Φ⊥ = L where
L is the linear subspace parallel to span(Ω) (see the paragraph Convex Reformulation of Section
3 of (Schlaginhaufen & Kamgarpour, 2023)) and the fact that dim span(Ω) = n · (m − 1) (see
Proposition 1 of (Karwowski et al., 2023)).

Lemma C.20 (Dimension of Uv). dimUv = n ·m.

Proof. Remember that Uv can be expressed as follows (see Equation (27) and the subsequent
paragraph):

Uv = −R+Φ+ cone
(
{−es,a}(s,a)∈zeros(v)

)
, (44)

From Lemma C.19 we know that dimΦ = n. We will make the argument that:

a) dim
[
cone

(
{−es,a}(s,a)∈zeros(v)

)]
≥ n · (m− 1)

b) There exist exactly n · (m− 1) basis vectors of cone
(
{−es,a}(s,a)∈zeros(v)

)
such that the

combined set of these vectors and the basis vectors of Φ is linearly independent.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

From this, it must follow that:

dim
[
Φ+ cone

(
{−es,a}(s,a)∈zeros(v)

)]
= dim

[
Φ
]
+ n · (m− 1) = n ·m

For a), remember that v is a vertex of the occupancy measure space Ω and that each vertex v of Ω
corresponds to at least one deterministic policy πv (see Proposition 1 of (Karwowski et al., 2023)).
And since every deterministic policy is zero for exactly n · (m− 1) transitions, it must follow that v
is also zero in at least n · (m− 1) transitions, since whenever πv(a|s) = 0 for some (s, a) ∈ S×A,
we have:

v(s, a) =

∞∑
t=0

γt·P (st = s, at = a | πv, τ) = πv(a|s)·
∞∑
t=0

γt·P (st = s | πv, τ) = 0.

Therefore, it follows that dim
[
cone

(
{−es,a}(s,a)∈zeros(v)

)]
≥ n · (m− 1).

For b), (Puterman, 1994) give necessary and sufficient conditions for a point x ∈ Rn·m to be part of
Ω (see the dual linear program in section 6.9.1 and the accompanying explanation), namely:

x ∈ Ω ⇐⇒
[
(A− γ · P)T · x = µ0 and I · x ≥ 0

]
,

where I is the identity matrix and we use the vector notation of the initial state distribution µ0.
Because v is a vertex of Ω, it can be described as the intersection of n ·m supporting hyperplanes of
Ω that are in general position. Because (A− γ · P) has rank n (see Lemma C.19), this must mean
that for v at least n · (m− 1) inequalities of the system I · v ≥ 0 hold with equality and the combined
set of the corresponding row vectors and the row vectors of (A− γ · P)T is linearly independent (as
the vectors correspond to the normal vectors of the set of n ·m hyperplanes in general position).

Note that the set of unit vectors that are orthogonal to v is precisely defined by {−es,a}(s,a)∈zeros(v),
since, by definition of zeros(v) (see Definition C.10), we have

∀x ∈ {−es,a}(s,a)∈zeros(v), xT · v = 0.

From this, it must follow that the polyhedral set Uv , has dimension n ·m.

Lemma C.21 (Defining the faces of Uv). Each k-dimensional face F of Uv (with k ≥ n) can be
expressed as:

−R+Φ+ cone (EF) , where EF ⊂ {−es,a}(s,a)∈zeros(v), (45)

such that |EF | = k − n and the combined set of vectors of EF and the columns of A − γ · P is
linearly independent.

Proof. Remember that Uv can be expressed as follows (see Equation (27) and the subsequent
paragraph):

Uv = −R+Φ+ cone
(
{−es,a}(s,a)∈zeros(v)

)
, (46)

This means that we can express Uv as a polyhedral cone, spanned by non-negative combinations of:

• The column vectors of the matrix A− γ · P .

• The column vectors of the matrix −(A− γ · P). Since Φ is a linear subspace and a cone
is spanned by only the positive combinations of its set of defining vectors we also have to
include the negative of this matrix to allow arbitrary linear combinations.

• The set of vectors {−es,a}(s,a)∈zeros(v).

Consequently, each face of Uv of dimension k is spanned by a subset of the vectors that span Uv
and is therefore also a cone of these vectors. Because the face has dimension k, we require exactly
k linearly independent vectors, as it’s not possible to span a face of dimension k with less than k
linearly independent vectors, and every additional linearly independent vector would increase the
dimension of the face. Furthermore, since Φ is a linear subspace that is unbounded by definition, it
must be part of every face. Therefore, every face of Uv has a dimension of at least n (the dimension
of Φ).

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Note that the converse of Lemma C.21 doesn’t necessarily hold, i.e., not all sets of the form described
in Equation (45) are necessarily surfaces of the polyhedral set U(v) · x ≤ b(v).

We are now ready to develop closed-form expressions for the vertices ofFc(v). Note that it is possible
for 0 ∈ Rn·m to be a vertex of Fc(v). But in this case, according to Theorem C.16, this must mean
that the linear system of inequalities M ·D > ϵ · range R · 1 is infeasible (since M would contain a
zero row and all elements on the right-hand side are non-negative), which means that in this case
safe(R, ϵ, L) = ∅. We will therefore restrict our analysis to all non-zero vertices of Fc(v).

Proposition C.22 (Vertices of Fc(v).). Every vertex vFG of Fc(v), with vFG ̸= 0, lies on the
intersection of some face F of the polyhedral set Uv and some face G of the orthant Oc and is defined
as follows:

vFG = −R+ [A− γ · P,EF] ·
(
EG · [A− γ · P,EF]

)−1

· EG ·R,

where EF , EG are matrices whose columns contain standard unit vectors, such that:

F = −R+Φ+ cone (EF) , for EF ⊂ {−es,a}(s,a)∈zeros(v)

G = {x ∈ Rn·m | EG · x = 0}.

Proof. We start by defining the faces of the orthant Oc. Remember that Oc is the solution set to the
system of inequalities diag (c) · x ≥ 0. Therefore, each defining hyperplane of Oc is defined by one
row i of diag (c), i.e. diag (c)i · x = 0. Note that since c ∈ {−1, 1}n·m, this is equivalent to the
equation eTi · x = 0 where ei is either the i’th standard unit vector or its negative. And because every
l-dimensional face G of Oc is the intersection of l standard hyperplanes {ei1 , ..., eil}, this must mean
that G is defined as the set of solutions to the system of equations EG · x = 0 where EG is the matrix
whose row vectors are the vectors {ei1 , ..., eil}.
Next, let vFG be an arbitrary non-zero vertex of Fc(v). As proven in Lemma C.18, every vertex of
Fc(v) must satisfy some of the inequalities diag (c) · x ≥ 0 for c ∈ {−1, 1}n·m with equality. This
means that vFG must lie on some face G of the orthant Oc. The non-zero property guarantees that
not all inequalities of the system of inequalities diag (c) · x ≥ 0 are satisfied with equality, i.e. that G
is not a vertex. Assume that k > 0 inequalities are not satisfied with equality. Therefore, G must
have dimension k, and EG ∈ Rn·m×k.

Since vFG is a vertex of the intersection of the orthant Oc and the polyhedral set Uv, and it only
lies on a k-dimensional face of Oc, it must also lie on a n ·m− k dimensional face F of Uv such
that the combined set of hyperplanes defining F and G is in general position. The condition that the
combined set of hyperplanes is in general position is necessary, to guarantee that vFG has dimension
0 and is therefore a proper vertex.

From Lemma C.21 we know that F can be expressed as:

−R+Φ+ cone (EF) , where EF ⊂ {−es,a}(s,a)∈zeros(v), (47)

such that |EF | = n · (m−1)−k and the combined set of vectors of EF and the columns of A−γ ·P
are linearly independent.

Because vFG is part of both, F and G, we can combine all information that we gathered about F and
G and deduce that it must hold that:

EG · vFG = 0︸ ︷︷ ︸
equivalent to vFG∈G

, and ∃x ∈ Rn·m−k, vFG = −R+ [A− γ · P,EF] · x︸ ︷︷ ︸
equivalent to vFG∈F

, (48)

where for x in Equation (48) it additionally must hold that ∀i ∈ {n+ 1, ..., n ·m− k}, xi ≥ 0. This
must hold because these last entries of x should form a convex combination of the vectors in EF (as
F is defined to lie in the cone of EF , see Equation (47)). We briefly state the following two facts that
will be used later in the proof:

a) vFG is the only vector in Rn·m that fulfills both conditions in Equation (48). This is because
we defined F in such a way that the intersection of F and G is a single point. And only
points in this intersection fulfill both conditions in Equation (48).

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

b) For every non-zero vertex vFG, there can only exist a single x that satisfies the two conditions
in Equation (48). This follows directly from the assumption that the combined set of vectors
of EF and the columns of A− γ · P are linearly independent (see Equation (47) and the
paragraph below).

We can combine the two conditions in Equation (48) to get the following, unified condition that is
satisfied for every non-zero vertex vFG:

∃x ∈ Rn·m−k, EG ·
(
−R+ [A− γ · P,EF] · x

)
= 0n·m−k, (49)

From this, it is easy to compute the precise coordinates of vFG:

x =
(
EG · [A− γ · P,EF]

)−1

· EG ·R (50)

=⇒ vFG = −R+ [A− γ · P,EF] ·
(
EG · [A− γ · P,EF]

)−1

· EG ·R. (51)

We finish the proof by showing that the matrix inverse in Equation (50) always exists for every
non-zero vertex vFG. Assume, for the sake of contradiction, that the matrix EG · [A − γ · P,EF]
is not invertible. We will show that in this case, there exists a z ∈ Rn·m with z ̸= vFG such that z
fulfills both conditions in Equation (48). As we’ve shown above in fact a) this is not possible, hence
this is a contradiction.

Assuming that EG · [A− γ · P,EF] is not invertible, we know from standard linear algebra that in
that case the kernel of this matrix has a dimension larger than zero. Let y1, y2, be two elements of
this kernel with y1 ̸= y2.

Earlier in this proof, we showed that for every non-zero vertex vFG, Equation (49) is satisfiable. Let
x be a solution to Equation (49). From our assumptions, it follows that both x+ y1 and x+ y2 must
also be solutions to Equation (49) as:

∀y ∈ {y1, y2}, EG ·
(
−R+ [A− γ · P,EF] · (x+ y)

)
= −EG ·R + EG · [A− γ · P,EF] · (x+ y)

= −EG ·R + EG · [A− γ · P,EF] · x

= EG ·
(
−R+ [A− γ · P,EF] · x

)
= 0n·m−k.

And from this, it will follow that both, x+y1 and x+y2 must satisfy both conditions in Equation (48).
Because x+ y1 ̸= x+ y2, it must also hold that:

−R+ [A− γ · P,EF] · (x+ y1) ̸= −R+ [A− γ · P,EF] · (x+ y2),

see fact b) above for a proof of this. And this would mean that there exists at least one z ∈ Rn·m

with z ̸= vFG such that z fulfills both conditions in Equation (48). But as we have shown in fact a),
this is not possible. Therefore, the matrix EG · [A− γ · P,EF] must be invertible for every non-zero
vertex vFG.

We are now ready to provide more specific information about the exact conditions necessary for a
data distribution D to be safe.
Corollary C.23 (Vertices of Fc(v).). For all ϵ > 0, L ∈ [0, 1] and MDPs ⟨S,A, τ, µ0, R, γ⟩, there
exists a matrix M such that:

D ∈ safe(R, ϵ, L) ⇐⇒ M ·D > ϵ · range R · 1, (52)

for all D ∈ ∆(S×A), where we use the vector notation of D, and 1 is a vector containing all ones.

The matrix M is defined as:

M =

abs(x1)
T

· · ·
abs(xl)

T

 ,

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Algorithm 1 Computes the set of conditions used to determine the safety of a data distribution.

1: function COMPUTEM(MDP = ⟨S,A, τ, µ0, R, γ⟩, L ∈ [0, 1])
2: I ← the set of all unit vectors of dimension |S×A|. Create a fixed ordering of S and A and

denote each vector of I by e(s,a) for a unique tuple (s, a) ∈ S×A.

3: candidates← []
4: Πd ← Set of deterministic policies of MDP
5: for π ∈ {π′ ∈ Πd : RegR (π′) ≥ L} do ▷ Create a set of potential row candidates.
6: E ← {e(s,a) ∈ I : π(a|s) = 0}
7: for EF ⊂ E do
8: for subset ⊆ I \ EF , |subset| = |S| do
9: EG ← EF ∪ subset

10: EF , EG ← ColumnMatrix(EF), RowMatrix(EG)
11: candidates.append((EF , EG))

12: rows← [] ▷ Find the valid rows amongst the candidates
13: for (EF , EG) ∈ candidates do
14: k ← num_columns(EF)

15: if rank
(
EG · [A− γ · P,−EF]

)
= n+ k then

16: x←
(
EG · [A− γ · P,−EF]

)−1

· EG ·R
17: if ∀i ∈ {n, n+ 1, ..., n+ k} xi ≥ 0 then

18: row← abs
(
−R+ [A− γ · P,−EF] · x

)T
19: rows.append

(
row

)
20: M ← RowMatrix(rows)
21: return M

where an individual row xi of M can either be all zeros, or

xi = −R+ [A− γ · P,Ei1] ·
(
Ei2 · [A− γ · P,Ei1]

)−1

· Ei2 ·R, (53)

where Ei1, Ei2 are special matrices whose columns contain standard unit vectors.

Proof. This is a simple combination of Theorem C.16 and Proposition C.22.

In particular, Equation (53) shows that whether a particular data distribution D is safe or not depends
on the true reward function R, as well as the transition distribution τ (encoded by the matrix P).

C.3.3 ALGORITHM TO COMPUTE THE CONDITIONS ON D

The derivations of Appendix C.3.2 can be used to define a simple algorithm that constructs matrix
M . An outline of such an algorithm is presented in Algorithm 1. We use the terms RowMatrix and
ColumnMatrix to denote functions that take a set of vectors and arrange them as rows/columns of a
matrix.

To give a brief explanation of the algorithm:

• Line 4 follows from the definitions of V L
R , X(v) and X (see Definition C.9 and eqs. (39)

and (40)).
• Line 6 are taken from the definition of EF in Proposition B.20 (except that we don’t take

the negative of the vectors and instead negate EF in the final formula).
• Lines 7 and 8 are taken from the definition of EG (see the first two paragraphs of Propo-

sition C.22). We additionally ensure that EF is a subset of EG as otherwise, the matrix
EG · [A− γ · P,−EF] is not invertible (due to the multiplication of EG ·EF) and we know
that the matrix must be invertible for every vertex.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

s

a1

a2

a3

R(a1 | s) = 2.78

R(a2 | s) = 1.98

R(a3 | s) = 1.6

d 2

d1
γ = 0.4 (Discount factor)

L = 0.8 (Largest allowed norm. regret)

ε = 0.2 (Largest reward model train error)

Reward

MDP

Setup Result Visualization

A data distribution D = (d1, d2, d3)
is safe if and only if:

a
b
c
d

a

b

c

d

Figure 4: A working example of how to compute the matrix M on a very simple MDP with a single
state and three actions. Given the information in the Setup column, matrix M can be computed using
Algorithm 1. The constructed matrix M contains four linear constraints that a data distribution D has
to fulfill in order to be in safe(R, ϵ, L). The four constraints are plotted in the right-most column.

• Lines 15 and 17 compute the row of the matrix M . The formulas are a combination of the
definition of the sets X(v), X (see Equations (39) and (40)), the matrix MX (Equation (40))
and Proposition C.22.

• Line 14 checks whether the matrix EG · [A− γ · P,−EF] is invertible. This is always the
case for the rows of M (see the last few paragraphs of the proof of Proposition C.22) but
might not be true for other candidates.

• To explain Line 16, remember that every row of the matrix M corresponds to the element-
wise absolute value of a vector that lies on the intersection of two polyhedral sets F , and G
(see Proposition C.22). The polyhedral set F is defined via a convex cone. To check that
our solution candidate lies in this convex cone, we have to check whether the last entries of
x = (EG · [A− γ · P,−EF])

−1 · EG · R, the entries belonging to the vectors in EF , are
non-negative.

The asymptotic runtime of this naive algorithm is exponential in |S ×A| due to the iterations over all
subsets in Lines 6 and 7. However, better algorithms might exist and we consider this an interesting
direction for future work.

C.3.4 WORKING EXAMPLE OF COMPUTING MATRIX M

Figure 4 shows a simple toy-MDP with a single state and three actions, for which we then compute
matrix M using Algorithm 1. Due to the simple structure of the MDP, the auxiliary matrix A and the
state-transition matrix P (both used in Algorithm 1) become trivial:

A =

[
1
1
1

]
, and P =

[
1
1
1

]

The resulting four constraints that a given data distribution over the state-action space of this MDP
has to fulfill to be in safe(R, ϵ, L) are then visualized in the right-most column of Figure 4. Note that
the constraints are over three-dimensional vectors. However, because D is a probability distribution,
it must live in a two-dimensional subspace of this three-dimensional space, and using the identity
d3 = 1− d1 − d2 we can transform the constraints as follows: m1 m2 m3

 · [d1d2
d3

]
>

 b

 ⇐⇒

 m1 −m3 m2 −m3

 · [d1d2
]
>

 b−m3


39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

The brown triangle in Figure 4 depicts the 2d-probability simplex of all distributions over the three
actions of the MDP.

Note that constraint a⃝ is a redundant constraint that is already covered by the constraint d⃝ and the
border of the simplex. It would therefore be possible to disregard the computation of such constraints
entirely, which could speed up the execution of Algorithm 1. In the next section, we discuss this
possibility, as well as other potential directions in which we can extend Theorem 3.5.

C.3.5 BUILDING UP ON THEOREM 3.5

There are multiple ways how future work can build up on the results of Theorem 3.5:

Finding sufficient conditions for safety that require less information about the true reward
function: It would be very interesting to investigate whether there exists some subset of the set of safe
data distributions for which it is possible to more easily determine membership. This could be helpful
in practice, as knowing that a provided data distribution is safe directly yields safety guarantees for
the resulting optimal policy.

Developing faster methods to construct M: While the algorithm we provide above runs in expo-
nential time it is unclear whether this has to be the case. The set of vectors that are computed by
our algorithm is redundant in the sense that some elements can be dropped as the conditions they
encode are already covered by other rows of M. Depending on what fraction of computed elements
are redundant it might be possible to develop an algorithm that prevents the computation of redundant
rows and can therefore drastically reduce computation time. Alternatively, it would be interesting to
develop fast algorithms to compute only parts of M. This could be especially interesting to quickly
prove the unsafety of a data distribution, which only requires that a single constraint is violated.

Extending Theorem 3.5 to the regularized policy optimization case: This would allow one to
extend the use case we described above to an even wider variety of reward learning algorithms, such
as RLHF.

A theoretical baseline (a broader view on the previous point): Most of the options above reveal
the properties of the “baseline algorithm” of reinforcement learning under unknown rewards: First, a
reward model is trained, and second, a policy is optimized against the trained reward model. The
matrix M is valid for the simplest such baseline algorithms without any regularization in either the
reward model or the policy. As we mentioned in comments to other reviewers, it would be valuable
to study other training schemes (e.g., regularized reward modeling, or switching back and forth
between policy optimization and reward modeling on an updated data distribution), for which the set
of safe data distributions (or “safe starting conditions”) is likely more favorable than for the baseline
case. Then, similar to how empirical work compares new algorithms empirically against baseline
algorithms, we hope our work can be a basis to theoretically study improved RL algorithms under
unknown rewards, e.g. by deriving a more favorable analog of the matrix M and comparing it with
our work.

C.4 EXISTENCE OF NEGATIVE RESULTS IN THE RLHF SETTING

C.4.1 GENERALIZATION OF THE ERROR MEASUREMENT: OVERVIEW

Our results have so far expressed the error of the learned reward R̂ in terms of Equation (1), i.e., in
terms of the expected error of individual transitions. In this section, we show that many common
reward learning training objectives can be upper-bounded in terms of the expected error metric
defined in Equation (1). This in turn means that our negative results generalize to reward learning
algorithms that use these other training objectives. We state all upper bounds for MDPs with finite
time horizon T (but note that these results directly generalize to MDPs with infinite time horizon by
taking the limit of T →∞).

In the finite horizon setting, trajectories are defined as a finite list of states and actions: ξ =
s0, a0, s1, ..., aT−1. We use Ξ for the set of all trajectories of length T . As in the previous sections,
G : Ξ→ R denotes the trajectory return function, defined as G(ξ) =

∑T−1
t=0 γt ·R(st, at). We start

by showing that low expected error in transitions implies low expected error in trajectory returns:

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Proposition C.24. Given an MDP ⟨S,A, τ, µ0, R, γ⟩, a data sampling policy π : S → ∆(A) an its
resulting data distribution Dπ = 1−γ

1−γT · ηπ and a second reward function R̂ : S×A → R, we can
upper bound the expected difference in trajectory evaluation as follows:

Eξ∼π

[
|GR(ξ)−GR̂(ξ)|

]
≤ 1− γT

1− γ
· E(s,a)∼Dπ

[
|R(s, a)− R̂(s, a)|

]
.

The proof of Proposition C.24 can be found in Appendix C.4.2 (see Proposition C.27). Furthermore,
a low expected error of trajectory returns implies a low expected error of choice distributions (a
distance metric commonly used as the loss in RLHF (Christiano et al., 2017)). Namely, given a
reward function R, define the probability of trajectory ξ1 being preferred over ξ2 to be pR(ξ1 ≻
ξ2) = σ(GR(ξ1)−GR(ξ2)) = exp(GR(ξ1))

exp(GR(ξ1))+exp(GR(ξ2))
. We then have:

Proposition C.25. Given an MDP ⟨S,A, τ, µ0, R, γ⟩, a data sampling policy π : S → ∆(A) and
a second reward function R̂ : S×A → R, we can upper bound the expected KL divergence over
trajectory preference distributions as follows:

Eξ1,ξ2∼π×π

[
DKL

(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)]
≤ 2 · Eξ∼π

[
|GR(ξ)−GR̂(ξ)|

]
.

The proof of Proposition C.25 can be found in Appendix C.4.2 (see Proposition C.28).

Finally, in some RLHF scenarios, for example in RLHF with prompt-response pairs, one prefers to
only compare trajectories with a common starting state. In the following proposition, we upper-bound
the expected error of choice distributions with trajectories that share a common starting state by the
expected error of choice distributions with arbitrary trajectories:

Proposition C.26. Given an MDP ⟨S,A, τ, µ0, R, γ⟩, a data sampling policy π : S → ∆(A) and
a second reward function R̂ : S×A → R, we can upper bound the expected KL divergence of
preference distributions over trajectories with a common starting state as follows:

E s0∼µ0,
ξ1,ξ2∼π(s0)

[
DKL

(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)]
≤

Eξ1,ξ2∼π×π

[
DKL

(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)]
mins′∈S,µ0(s′)>0 µ0(s′)

.

The proof of Proposition C.26 can be found in Appendix C.4.2 (see Proposition C.29).

C.4.2 GENERALIZATION OF THE ERROR MEASUREMENT: PROOFS

In this subsection we test the extent to which the results of the previous section generalize to different
distance definitions. To ensure compatibility with the positive results of Appendix D.3, we consider
MDPs with finite time horizon T . In this setting, trajectories are defined as a finite list of states and
actions: ξ = s0, a0, s1, ..., aT−1. Let Ξ bet the set of all trajectories of length T . As in the previous
sections, G : Ξ→ R denotes the trajectory return function, defined as:

G(ξ) =

T−1∑
t=0

γt ·R(st, at)

Proposition C.27. Given an MDP ⟨S,A, τ, µ0, R, γ⟩, a data sampling policy π : S → ∆(A) and a
second reward function R̂ : S×A → R, we can upper bound the expected difference in trajectory
evaluation as follows:

Eξ∼π

[
|GR(ξ)−GR̂(ξ)|

]
≤ 1− γT

1− γ
· E(s,a)∼Dπ

[
|R(s, a)− R̂(s, a)|

]
(54)

where Dπ = 1−γ
1−γT · ηπ .

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Proof. This follows from the subsequent derivation:

Eξ∼π

[
|GR(ξ)−GR̂(ξ)|

]
=
∑
ξ∈Ξ

P (ξ | π) ·

∣∣∣∣∣
T−1∑
t=0

γt · (R(st, at)− R̂(st, at))

∣∣∣∣∣
≤
∑
ξ∈Ξ

P (ξ | π) ·
T−1∑
t=0

γt ·
∣∣∣R(st, at)− R̂(st, at)

∣∣∣
=

∑
(s,a)∈S×A

(
T−1∑
t=0

γt · P (st = s, at = a | π)

)
·
∣∣∣R(s, a)− R̂(s, a)

∣∣∣
=

∑
(s,a)∈S×A

ηπ(s, a) ·
∣∣∣R(s, a)− R̂(s, a)

∣∣∣
=

1− γT

1− γ
· E(s,a)∼Dπ

[∣∣∣R(s, a)− R̂(s, a)
∣∣∣]

Given some reward function R, define the probability of trajectory ξ1 being preferred over trajectory
ξ2 to be:

pR(ξ1 ≻ ξ2) = σ(GR(ξ1)−GR(ξ2)) =
exp(GR(ξ1))

exp(GR(ξ1)) + exp(GR(ξ2))
.

Then, the following statement holds:
Proposition C.28. Given an MDP ⟨S,A, τ, µ0, R, γ⟩, a data sampling policy π : S → ∆(A) and
a second reward function R̂ : S×A → R, we can upper bound the expected KL divergence over
trajectory preference distributions as follows:

Eξ1,ξ2∼π×π

[
DKL

(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)]
≤ 2 · Eξ∼π

[
|GR(ξ)−GR̂(ξ)|

]
, (55)

Proof. The right-hand-side of Equation (55) can be lower bounded as follows:

2· Eξ∼π

[
|GR(ξ)−GR̂(ξ)|

]
(56)

= Eξ1,ξ2∼π×π

[
|GR(ξ1)−GR̂(ξ1)|+ |GR(ξ2)−GR̂(ξ2)|

]
(57)

≥ Eξ1,ξ2∼π×π

[∣∣(GR(ξ1)−GR(ξ2))− (GR̂(ξ1)−GR̂(ξ2))
∣∣] (58)

= Eξ1,ξ2∼π×π [|xξ1,ξ2 − yξ1,ξ2 |] , (59)

where from Equation (57) to Equation (58) we used the triangle inequality and did some rearranging
of the terms, and from Equation (58) to Equation (59) we simplified the notation a bit by defining
xξ1,ξ2 := GR(ξ1)−GR(ξ2) and yξ1,ξ2 := GR̂(ξ1)−GR̂(ξ2).

Similarly, we can reformulate the left-hand-side of Equation (55) as follows:

Eξ1,ξ2∼π×π

[
DKL

(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)]
(60)

= Eξ1,ξ2∼π×π

 ∑
i,j∈{1,2}

i ̸=j

pR(ξi ≻ ξj |ξ1, ξ2) · log
(
pR(ξi ≻ ξj |ξ1, ξ2)
pR̂(ξi ≻ ξj |ξ1, ξ2)

) (61)

= Eξ1,ξ2∼π×π

 ∑
i,j∈{1,2}

i ̸=j

σ(GR(ξi)−GR(ξj)) · log
(
σ(GR(ξi)−GR(ξj))

σ(GR̂(ξi)−GR̂(ξj))

) (62)

= Eξ1,ξ2∼π×π

 ∑
i,j∈{1,2}

i ̸=j

σ(xξi,ξj) · log
(
σ(xξi,ξj)

σ(yξi,ξj)

) . (63)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

We will now prove the lemma by showing that for all (ξ1, ξ2) ∈ Ξ× Ξ we have:∑
i,j∈{1,2}

i ̸=j

σ(xξi,ξj) · log
(
σ(xξi,ξj)

σ(yξi,ξj)

)
≤ |xξ1,ξ2 − yξ1,ξ2 |, (64)

from which it directly follows that Equation (63) is smaller than Equation (59).

Let (ξ1, ξ2) ∈ Ξ×Ξ be chosen arbitrarily. We can then upper bound the left-hand side of Equation (64)
as follows:

σ(xξ1,ξ2) · log
(
σ(xξ1,ξ2)

σ(yξ1,ξ2)

)
+ σ(xξ2,ξ1) · log

(
σ(xξ2,ξ1)

σ(yξ2,ξ1)

)
(65)

≤ log

(
σ(xξ1,ξ2)

σ(yξ1,ξ2)

)
+ log

(
σ(xξ2,ξ1)

σ(yξ2,ξ1)

)
(66)

= log

(
σ
(
xξ1,ξ2

)
· σ
(
−xξ1,ξ2

)
σ
(
yξ1,ξ2

)
· σ
(
−yξ1,ξ2

)) (67)

= log

(
exp(xξ1,ξ2) · (1 + exp(yξ1,ξ2))

2

exp(yξ1,ξ2) · (1 + exp(xξ1,ξ2))
2

)
(68)

= xξ1,ξ2 − yξ1,ξ2 + 2 · log
(
1 + exp(yξ1,ξ2)

1 + exp(xξ1,ξ2)

)
, (69)

where we used the fact that xξ1,ξ2 = GR(ξ1)−GR(ξ2) and therefore, −xξ1,ξ2 = xξ2,ξ1 (similar for
yξ1,ξ2). We now claim that for all (ξ1, ξ2) ∈ Ξ× Ξ it holds that:

xξ1,ξ2 − yξ1,ξ2 + 2 · log
(
1 + exp(yξ1,ξ2)

1 + exp(xξ1,ξ2)

)
≤ |xξ1,ξ2 − yξ1,ξ2 | (70)

We prove this claim via proof by cases:

xξ1,ξ2 > yξ1,ξ2 : In this case we have |xξ1,ξ2 − yξ1,ξ2 | = xξ1,ξ2 − yξ1,ξ2 and Equation (70) becomes:

2 · log
(
1 + exp(yξ1,ξ2)

1 + exp(xξ1,ξ2)

)
≤ 0.

And since xξ1,ξ2 > yξ1,ξ2 the fraction inside the logarithm is smaller than 1, this equation must hold.

xξ1,ξ2 = yξ1,ξ2 : In this case, Equation (70) reduces to 0 ≥ 0 which is trivially true.

xξ1,ξ2 < yξ1,ξ2 : In this case, we have |xξ1,ξ2 − yξ1,ξ2 | = yξ1,ξ2 − xξ1,ξ2 and we can reformulate
Equation (70) as follows:

xξ1,ξ2 − yξ1,ξ2 + 2 · log
(
1 + exp(yξ1,ξ2)

1 + exp(xξ1,ξ2)

)
≤ yξ1,ξ2 − xξ1,ξ2

⇐⇒ 1 + exp(yξ1,ξ2)

1 + exp(xξ1,ξ2)
≤ exp(yξ1,ξ2)

exp(xξ1,ξ2)

⇐⇒ exp(xξ1,ξ2) ≤ exp(yξ1,ξ2).

Because we assume that xξ1,ξ2 < yξ1,ξ2 , the last equation, and therefore also the first, must be true.

Combining all the previous statements concludes the proof.

Finally, in some RLHF scenarios, one prefers to only compare trajectories with a common starting
state. In the last lemma, we upper-bound the expected error in choice distributions with trajectories
that share a common starting state by the expected error in choice distributions with arbitrary
trajectories:

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Proposition C.29. Given an MDP ⟨S,A, τ, µ0, R, γ⟩, a data sampling policy π : S → ∆(A) and
a second reward function R̂ : S×A → R, we can upper bound the expected KL divergence of
preference distributions over trajectories with a common starting state as follows:

E s0∼µ0,
ξ1,ξ2∼π(s0)

[
DKL

(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)]
≤ 1

min
s′∈S

µ0(s
′)>0

µ0(s′)
Eξ1,ξ2∼π×π

[
DKL

(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)]
.

(71)

Proof. Let s0 : Ξ → S define the function which outputs the starting state s ∈ S of a trajectory
ξ ∈ Ξ. We can then prove the lemma by directly lower-bounding the right-hand side of Equation (71):

Eξ1,ξ2∼π×π

[
DKL

(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)]
=

∑
s1,s2∈S×S

µ0(s1) · µ0(s2) ·
∑

ξ1,ξ2∈Ξ×Ξ
s0(ξ1)=s1
s0(ξ2)=s2

pπ,τ (ξ1|s1) · pπ,τ (ξ2|s2) · DKL
(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)

=
∑

s1=s2

µ0(s1) · µ0(s2) ·
∑

ξ1,ξ2∈Ξ×Ξ
s0(ξ1)=s1
s0(ξ2)=s2

pπ,τ (ξ1|s1) · pπ,τ (ξ2|s2) · DKL
(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)

+
∑

s1 ̸=s2

µ0(s1) · µ0(s2) ·
∑

ξ1,ξ2∈Ξ×Ξ
s0(ξ1)=s1
s0(ξ2)=s2

pπ,τ (ξ1|s1) · pπ,τ (ξ2|s2) · DKL
(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)

≥
∑

s1=s2

µ0(s1) · µ0(s2) ·
∑

ξ1,ξ2∈Ξ×Ξ
s0(ξ1)=s1
s0(ξ2)=s2

pπ,τ (ξ1|s1) · pπ,τ (ξ2|s2) · DKL
(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)

≥ min
s′∈S

µ0(s
′)>0

µ0(s
′) ·
∑
s∈S

µ0(s) ·
∑

ξ1,ξ2∈Ξ×Ξ
s0(ξ1)=s
s0(ξ2)=s

pπ,τ (ξ1|s) · pπ,τ (ξ2|s) · DKL
(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)

= min
s′∈S

µ0(s
′)>0

µ0(s
′) · E s0∼µ0,

ξ1,ξ2∼π(s0)

[
DKL

(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)]
,

where we used the fact that the KL divergence is always positive.

C.4.3 RLHF BANDIT FORMULATION

RLHF, especially in the context of large language models, is usually modeled in a contextual bandit
setting ((Ziegler et al., 2019; Stiennon et al., 2020; Bai et al., 2022; Ouyang et al., 2022; Rafailov
et al., 2023)). A contextual bandit ⟨S,A, µ0, R⟩ is defined by a set of states S, a set of actions
A, a data distribution µ0 ∈ ∆(S), and a reward function R : S×A → R. The goal is to learn a
policy π : S → ∆(A) which maximizes the expected return J(π) = Es∼µ0,a∼π(·|s) [R(s, a)]. In the
context of language models, S is usually called the set of prompts/contexts, andA the set of responses.
We model the human preference distribution over the set of answers A using the Bradley-Terry model
(Bradley & Terry, 1952). Given a prompt s ∈ S and two answers a1, a2 ∈ A, then the probability
that a human supervisor prefers answer a1 to answer a2 is modelled as:

pR(a1 ≻ a2| s) =
exp(R(s, a1))

exp(R(s, a1)) + exp(R(s, a2))
, (72)

where R : S×A → R is assumed to be the true, underlying reward function of the human.

RLHF is usually done with the following steps:

1. Supervised finetuning: Train/Fine-tune a language model πref using supervised training.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

2. Reward learning: Given a data distribution over prompts µ ∈ ∆(S), use µ and πref to
sample a set of transitions (s, a0, a1) ∈ S×A×A where s ∼ µ and a0, a1 ∼ πref(·|s). Use
this set of transitions to train a reward model R̂ which minimizes the following loss:

LR(R̂) = −E(s,a0,a1,c)∼µ,πref ,pR

[
log
(
σ(R̂(s, ac)− R̂(s, a1−c))

)]
, (73)

where c ∈ {0, 1} and p(c = 0|s, a0, a1) = pR(a0 ≻ a1|s).
3. RL finetuning: Use the trained reward model R̂ to further finetune the language model πref

using reinforcement learning. Make sure that the new model does not deviate too much
from the original model by penalizing the KL divergence between the two models. This can
be done by solving the following optimization problem for some λ > 0:

π = argmax
π

Es∼µ,a∼π(·|s)

[
R̂(s, a)

]
− λ · DKL (π(a|s)||πref(a|s)) (74)

C.4.4 SAFE AND UNSAFE DATA DISTRIBUTIONS FOR RLHF

Definition C.30 (Safe- and unsafe data distributions for RLHF). For a given contextual ban-
dit ⟨S,A, µ0, R⟩, let ϵ > 0, L ∈ [0, 1], λ ∈ [0,∞), and πref : S → ∆(A) an arbi-
trary reference policy. Similarly to Definition 2.1, we define the set of safe data distributions
safeRLHF

(
R, ϵ, L, λ,DKL (·||πref)

)
for RLHF as all D ∈ ∆(S×A) such that for all reward func-

tions R̂ : S×A → R and policies π̂ : S → ∆(A) that satisfy the following two properties:

1. Low expected error: R̂ is similar to R in expected choice probabilities under D, i.e.:

E(s,a1,a2)∼D

[
DKL

(
pR(·|s, a1, a2)||pR̂(·|s, a2, a2)

)]
≤ ϵ · range R.

2. Optimality: π̂ is optimal with respect to R̂, i.e.:

π̂ ∈ argmax
π

JR̂(π)− λ · DKL (π(a|s)||πref(a|s)) .
we can guarantee that π̂ has regret smaller than L, i.e.:

3. Low regret: π̂ has a regret smaller than L with respect to R, i.e., RegR (π̂) < L.

Similarly, we define the set of unsafe data distributions to be the complement of
safeRLHF

(
R, ϵ, L, λ,DKL (·||πref)

)
:

unsafeRLHF
(
R, ϵ, L, λ,DKL (·||πref)

)
:=
{
D ∈ ∆(S×A) |D /∈ safeRLHF

(
R, ϵ, L, λ,DKL (·||πref)

)}
.

Note: Property 1 of Definition C.30 is commonly phrased as minimizing (with respect to R̂)
the loss −E(s,a1,a2)∼D,pR

[
log(σ(R̂(s, a1)− R̂(s, a2)))

]
(which includes pR, the probability that

a1 is the preferred action over a2, in the expectation). Our version of Property 1 is equiv-
alent to this and can be derived from the former by adding the constant (w.r.t. R̂) term
E(s,a1,a2)∼D,pR

[log(σ(R(s, a1)−R(s, a2)))].

C.4.5 NEGATIVE RESULTS

A more advanced result can be achieved by restricting the set of possible pre-trained policies πref . In
the following proofs, we will define πrlhf

R,λ to be the optimal policy after doing RLHF on πref with
some reward function R, i.e.,:
Definition C.31 (RLHF-optimal policy). For any λ ∈ R+, reward function R and reference policy
πref , we define the policy maximizing the RLHF objective by:

πrlhf
R,λ = argmax

π
Es∼µ,a∼π(·|s) [R(s, a)]− λ · DKL (π(a|s)||πref(a|s)) (75)

πrlhf
R,λ does have the following analytical definition (see Appendix A.1 of (Rafailov et al., 2023) for a

derivation):

πrlhf
R,λ(a|s) :=

πref(a|s) · exp
(
1
λ ·R(s, a)

)∑
a′∈A πref(a′|s) · exp

(
1
λ ·R(s, a′)

) . (76)

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Before stating the next negative result, we prove a small helper lemma which states that doing RLHF
with some reward function R on a policy πref is guaranteed to improve the policy return concerning
R:

Lemma C.32. For any λ ∈ R+, reward function R and reference policy πref , it holds that:

JR

(
πrlhf
R,λ

)
≥ JR

(
πref

)
(77)

Proof. We have

JR
(
πrlhf
R,λ

)
− λDKL

(
πrlhf
R,λ||πref

)
= JR

KL(π
rlhf
R,λ, πref)

≥ JR
KL(πref , πref)

= JR(πref).

The result follows from the non-negativity of the KL divergence.

We begin by proving a helper lemma that we are going to use in subsequent proofs.

Lemma C.33. Let ⟨S,A, µ0, R⟩ be a contextual bandit

Given a lower regret bound L ∈ [0, 1), we define for every state s ∈ S the reward threshold:

RL(s) := (1− L) ·max
a∈A

R(s, a) + L ·min
a∈A

R(s, a),

and define as ∈ A to be an action such that R(s, as) < RL(s).

Let πref : S → A be an arbitrary reference policy for which it holds that for every state s ∈ S we
have πref(a|s) > 0.

Then, performing KL-regularized policy optimization, starting from πref ∈ Π and using the reward
function:

R̂(s, a) :=

{
R(s, a) if a ̸= as
cs ∈ R+ if a = as

, (78)

results in an optimal policy π̂ such that RegR (π̂) ≥ L, whenever the constants cs are larger than the
following lower bound:

cs ≥ λ · log

[∑
a̸=as

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1
λ ·R(s, a)

)
(RL(s)−R(s, as)) · πref(as|s)

]
.

Proof. Denote by πrlhf
R̂,λ

the optimal policy for the following KL-regularized optimization problem:

πrlhf
R̂,λ
∈ argmax

π
JR̂(π)− λ · DKL (π(a|s)||πref(a|s)) .

The closed-form solution for this optimization problem is known (see Definition C.31). Now, we
prove the statement, by assuming the specific definition of R̂ (see Equation (78)), as well as that πrlhf

R̂,λ

has a regret at least L, and then work backward to derive a necessary lower bound for the individual
constants cs.

We start by defining a small helper policy. Let π⊤ be a deterministic optimal policy for R and π⊥ be
a deterministic worst-case policy for R. We then define πL(a|s) as a convex combination of π⊤ and
π⊥:

πL(a|s) := (1− L) · π⊤(a|s) + L · π⊥(a|s)

=


1 if R(s, a) = mina′∈A R(s, a′) = maxa′∈A R(s, a′)

1− L if R(s, a) = maxa′∈A R(s, a′)

L if R(s, a) = mina′∈A R(s, a′)

0 Otherwise

(79)

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Next, we show that the regret of πL is L. Let η⊤ and η⊥ be the corresponding occupancy measures
of π⊤ and π⊥. Then, we have:

JR(πL) = (1− L) ·RT · η⊤ + L ·RT · η⊥,

from which it directly follows that:

RegR (πL) =
RT · η⊤ −

[
(1− L) ·RT · η⊤ + L ·RT · η⊥

]
RT · η⊤ −RT · η⊥

= L.

Now, having defined πL, we start the main proof. Assume that RegR
(
πrlhf
R̂,λ

)
≥ L, which is

equivalent to J(πrlhf
R̂,λ

) ≤ J(πL). By using the definition of the policy evaluation function, we get:

J(πrlhf
R̂,λ

) ≤ J(πL)

⇐⇒ RT · (ηπ
rlhf
R̂,λ − ηπL) ≤ 0

⇐⇒
∑

(s,a)∈S×A

R(s, a) · µ0(s) · (πrlhf
R̂,λ

(a|s)− πL(a|s)) ≤ 0

We will prove the sufficient condition, that for every s ∈ S, we have:∑
a∈A

R(s, a) ·
(
πrlhf
R̂,λ

(a|s)− πL(a|s)
)
≤ 0 (80)

Before continuing, note that with our definition of πL (see Equation (79)) we have:∑
a∈A

R(s, a) · πL(a|s) = (1− L) ·max
a∈A

R(s, a) + L ·min
a∈A

R(s, a) =: RL(s).

Now, using this fact as well as the definitions of πL and πrlhf
R̂,λ

(see Definition C.31) we prove under
which conditions Equation (80) holds:∑

a∈A
R(s, a) ·

(
πrlhf
R̂,λ

(a|s)− πL(a|s)
)
≤ 0

⇐⇒
∑
a∈A

R(s, a) ·

 πref(a|s) · exp
(

1
λ · R̂(s, a)

)
∑

a′∈A πref(a′|s) · exp
(

1
λ · R̂(s, a′)

) − πL(a|s)

 ≤ 0

⇐⇒
∑
a∈A

R(s, a)·πref(a|s) · exp
(
1

λ
· R̂(s, a)

)

≤

[∑
a∈A

R(s, a) · πL(a|s)

]
·
∑
a′∈A

πref(a
′|s) · exp

(
1

λ
· R̂(s, a′)

)
⇐⇒

∑
a∈A

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1

λ
· R̂(s, a)

)
≤ 0

⇐⇒
∑
a∈A

R(s,a)>RL(s)

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1

λ
· R̂(s, a)

)

≤
∑
a∈A

R(s,a)<RL(s)

(RL(s)−R(s, a)) · πref(a|s) · exp
(
1

λ
· R̂(s, a)

)

Now, according to the assumptions of the lemma, we know that there exists some action as for which
R(s, as) < RL(s) and πref(as|s) > 0. According to our definition of R̂ (see Equation (78)), we
have R̂(s, as) = cs and R̂(s, a) = R(s, a) for all other actions. We can use this definition to get a

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

lower bound for cs:∑
a∈A

R(s,a)>RL(s)

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1

λ
· R̂(s, a)

)

≤
∑
a∈A

R(s,a)<RL(s)

(RL(s)−R(s, a)) · πref(a|s) · exp
(
1

λ
· R̂(s, a)

)
(81)

⇐⇒
∑
a̸=as

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1

λ
·R(s, a)

)

≤ (RL(s)−R(s, as)) · πref(as|s) · exp
(
1

λ
· R̂(s, as)

) (82)

⇐⇒ λ · log

[∑
a̸=as

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1
λ ·R(s, a)

)
(RL(s)−R(s, as)) · πref(as|s)

]
≤ R̂(s, as). (83)

We can now use this lemma to prove a more general result:

Proposition C.34. Let ⟨S,A, µ0, R⟩ be a contextual bandit.

Given a lower regret bound L ∈ [0, 1), we define for every state s ∈ S the reward threshold:

RL(s) := (1− L) ·max
a∈A

R(s, a) + L ·min
a∈A

R(s, a),

Lastly, πref : S → A be an arbitrary reference policy for which it holds that for every state s ∈ S,
πref(a|s) > 0 and there exists at least one action as ∈ A such that:

a) πref(as|s) is small enough, that the following inequality holds:

log

∑
a ̸=as

πref(a|s) · exp
(
1

λ
· (R(s, a)−R(s, as))

)
· R(s, a)−RL(s)

RL(s)−R(s, as)

 ≤ ϵ · range R
2 · λ · πref(as|s)

+log (πref(as|s))

(84)

b) R(s, as) < RL(s)

Then, for all ϵ > 0, λ ∈ [0,∞), data distributions µ ∈ ∆(S), and true reward functions R : S×A →
R, there exists a reward function R̂ : S×A → R, and a policy π̂ : S → ∆(A) such that:

1. Es,a1,a2∼µ,πref

[
DKL

(
pR(·|s, a1, a2)||pR̂(·|s, a1, a2)

)]
≤ ϵ · range R

2. π̂ ∈ argmaxπ JR̂(π)− λ · DKL (π(a|s)||πref(a|s))

3. RegR (π̂) ≥ L,

Proof. We will prove the lemma by construction. Namely, we choose:

R̂(s, a) :=

{
R(s, a) if a ̸= as
cs ∈ R+ if a = as

(85)

where the different cs are some positive constants defined as follows:

R̂(s, as) = cs ≥ ls := max

(
R(s, as), λ · log

[∑
a ̸=as

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1
λ ·R(s, a)

)
(RL(s)−R(s, as)) · πref(as|s)

])
.

(86)

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

Furthermore, the closed-form of the optimal policy π̂ of the KL-regularized optimization problem is
known to be πrlhf

R̂,λ
(see Definition C.31). We now claim that this choice of R̂ and π̂ fulfills properties

(1) and (3) of the lemma (property (2) is true by assumption).

Property (3) is true because every reference policy πref and corresponding reward function R that
fulfills the conditions of this proposition also fulfills the conditions of Lemma C.33. Hence, we can
directly apply Lemma C.33 and get the guarantee that RegR (π̂) ≥ L.

All that remains to be shown, is that condition (1) can be satisfied by using the definition of R̂ and
the lower bounds in Equation Equation (86). First, note that we can reformulate the expected error
definition in condition (1) as follows:

Es,a1,a2∼µ,πref

[
DKL

(
pR(·|s, a1, a2)||pR̂(·|s, a1, a2)

)]
=
∑
s∈S

µ0(s) ·
∑

a1,a2∈A×A
πref(a1|s) · πref(a2|s) ·

∑
i,j∈{1,2}

σ(R(s, ai)−R(s, aj)) · log

(
σ(R(s, ai)−R(s, aj))

σ(R̂(s, ai)− R̂(s, aj))

)

= 2 ·
∑
s∈S

µ0(s) ·
∑

a1,a2∈A×A
πref(a1|s) · πref(a2|s) · σ(R(s, a1)−R(s, a2)) · log

(
σ(R(s, a1)−R(s, a2))

σ(R̂(s, a1)− R̂(s, a2))

)
︸ ︷︷ ︸

=:IS(a1,a2)

= 2 ·
∑
s∈S

µ0(s) ·
∑

a1,a2∈A×A
πref(a1|s) · πref(a2|s) · IS(a1, a2).

Next, note that for every tuple (a1, a2) ∈ A, the sum IS(a1, a2) + IS(a2, a1) can be reformulated
as follows:

IS(a1, a2) + IS(a2, a1)

= σ(R(s, a1)−R(s, a2)) · log

(
σ(R(s, a1)−R(s, a2))

σ(R̂(s, a1)− R̂(s, a2))

)

+ σ(R(s, a2)−R(s, a1)) · log

(
σ(R(s, a2)−R(s, a1))

σ(R̂(s, a2)− R̂(s, a1))

)

= σ(R(s, a1)−R(s, a2)) · log

(
σ(R(s, a1)−R(s, a2))

σ(R̂(s, a1)− R̂(s, a2))

)

+

(
1− σ(R(s, a1)−R(s, a2))

)
· log

(
σ(R(s, a2)−R(s, a1))

σ(R̂(s, a2)− R̂(s, a1))

)

= σ(R(s, a1)−R(s, a2)) ·

[
log

(
σ(R(s, a1)−R(s, a2))

σ(R̂(s, a1)− R̂(s, a2))

)
− log

(
σ(R(s, a2)−R(s, a1))

σ(R̂(s, a2)− R̂(s, a1))

)]
︸ ︷︷ ︸

(A)

+ log

(
σ(R(s, a2)−R(s, a1))

σ(R̂(s, a2)− R̂(s, a1))

)
︸ ︷︷ ︸

(B)

.

The term (A) can now be simplified as follows:

log

(
σ(R(s, a1)−R(s, a2))

σ(R̂(s, a1)− R̂(s, a2))

)
− log

(
σ(R(s, a2)−R(s, a1))

σ(R̂(s, a2)− R̂(s, a1))

)

= log

(
σ(R(s, a1)−R(s, a2))

1− σ(R(s, a1)−R(s, a2))

)
+ log

(
1− σ(R̂(s, a1)− R̂(s, a2))

σ(R̂(s, a1)− R̂(s, a2))

)
= [R(s, a1)−R(s, a2)]− [R̂(s, a1)− R̂(s, a2)],

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

where we used the definition of the inverse of the logistic function. Similarly, the term (B) can be
simplified as follows:

log

(
σ(R(s, a2)−R(s, a1))

σ(R̂(s, a2)− R̂(s, a1))

)

= log

(
exp(R(s, a2)−R(s, a1))

1 + exp(R(s, a2)−R(s, a1)
· 1 + exp(R̂(s, a2)− R̂(s, a1)

exp(R̂(s, a2)− R̂(s, a1)

)

= [R(s, a2)−R(s, a1)]− [R̂(s, a2)− R̂(s, a1)] + log

(
1 + exp(R̂(s, a2)− R̂(s, a1))

1 + exp(R(s, a2)−R(s, a1))

)

These expressions, together with the fact that IS(a, a) = 0 for all a ∈ A, allow us to choose an
arbitrary ordering ≺ on the set of actions A, and then re-express the sum:

∑
a1,a2∈A×A

πref(a1|s)·πref(a2|s)·IS(a1, a2) =
∑

a1,a2∈A×A
a1≺a2

πref(a1|s)·πref(a2|s)·
(
IS(a1, a2)+IS(a2, a1)

)
.

(87)
Summarizing all the equations above, we get:

Es,a1,a2∼µ,πref

[
DKL

(
pR(·|s, a1, a2)||pR̂(·|s, a1, a2)

)]
= 2 ·

∑
s∈S

µ0(s) ·
∑

a1,a2∈A×A
πref(a1|s) · πref(a2|s) · IS(a1, a2)

= 2 ·
∑
s∈S

µ0(s) ·
∑

a1,a2∈A×A
a1≺a2

πref(a1|s) · πref(a2|s) ·

[(
[R(s, a1)−R(s, a2)]− [R̂(s, a1)− R̂(s, a2)]

)

·
(
σ(R(s, a1)−R(s, a2)) − 1

)
+ log

(
1 + exp(R̂(s, a2)− R̂(s, a1))

1 + exp(R(s, a2)−R(s, a1))

)]
.

(88)

Now, by using our particular definition of R̂ (see Equation (85)), we notice that whenever both
a1 ̸= as, and a2 ̸= as, the inner summand of Equation (88)is zero. What remains of Equation (88)
can be restated as follows:

= 2 ·
∑
s∈S

µ0(s) · πref(as|s) ·
∑
a∈A

πref(a|s) ·

[(
R(s, as)− cs

)
·
(
σ(R(s, as)−R(s, a)) − 1

)

+ log

(
1 + exp(R(s, a)− cs)

1 + exp(R(s, a)−R(s, as))

)]
(89)

To prove property (1), we must show that Equation (89) is smaller or equal to ϵ · range R. We do
this in two steps. First, note that for all states s it holds that cs ≥ R(s, as) (this is obvious from
the definition of cs, see Equation (86)). This allows us to simplify Equation (89) by dropping the
logarithm term.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

Es,a1,a2∼µ,πref

[
DKL

(
pR(·|s, a1, a2)||pR̂(·|s, a1, a2)

)]
= 2 ·

∑
s∈S

µ0(s) · πref(as|s) ·
∑
a∈A

πref(a|s) ·

[(
R(s, as)− cs

)
·
(
σ(R(s, as)−R(s, a)) − 1

)

+ log

(
1 + exp(R(s, a)− cs)

1 + exp(R(s, a)−R(s, as))

)]

= 2 ·
∑
s∈S

µ0(s) · πref(as|s) ·
(
cs −R(s, as)

)
·
∑
a∈A

πref(a|s) ·
(
1− σ(R(s, as)−R(s, a))

)
+ 2 ·

∑
s∈S

µ0(s) · πref(as|s) ·
∑
a∈A

πref(a|s) · log
(

1 + exp(R(s, a)− cs)

1 + exp(R(s, a)−R(s, as))

)
.

(90)

Now, we choose to define cs := ls + δs, where ls is defined in Equation (86) and δs ≥ 0 such that:

2 ·
∑
s∈S

µ0(s) · πref(as|s) ·
(
ls + δs −R(s, as)

)
·
∑
a∈A

πref(a|s) ·
(
1− σ(R(s, as)−R(s, a))

)
︸ ︷︷ ︸

<1

+ 2 ·
∑
s∈S

µ0(s) · πref(as|s) ·
∑
a∈A

πref(a|s) · log
(

1 + exp(R(s, a)− ls − δs)

1 + exp(R(s, a)−R(s, as))

)
︸ ︷︷ ︸

≤0 (because cs:=ls+δs≥R(s,as))

≤ 2 ·
∑
s∈S

µ0(s) · πref(as|s) ·
(
ls −R(s, as)

) !
≤ ϵ · range R. (91)

Note that the first inequality is always feasible, as we could just choose δs = 0 for all s ∈ S in which
case the inequality must hold due to the last term in the first line being smaller than one and the last
term in the second line being negative. Now, to prove Equation (91), we prove the sufficient condition
that for every state s ∈ S:

πref(as|s) · (ls −R(s, as))
!
≤ ϵ · range R

2
. (92)

In case that ls = R(s, as), the left-hand side of Equation (92) cancels and the inequality holds
trivially. We can therefore focus on the case where ls > R(s, as). In this case, we get:

πref(as|s) · λ · log

[∑
a̸=as

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1
λ ·R(s, a)

)
(RL(s)−R(s, as)) · πref(as|s) · exp

(
1
λ ·R(s, as)

)]
!
≤ ϵ · range R

2

⇐⇒ log

∑
a ̸=as

πref(a|s) · exp
(
1

λ
· (R(s, a)−R(s, as))

)
· R(s, a)−RL(s)

RL(s)−R(s, as)


!
≤ ϵ · range R

2 · λ · πref(as|s)
+ log(πref(as|s))

which holds by assumption (a) of the lemma. Therefore, property (1) of the lemma must hold as well
which concludes the proof.

Proposition C.35. Let ⟨S,A, µ0, R⟩ be a contextual bandit.

Given a lower regret bound L ∈ [0, 1), we define for every state s ∈ S the reward threshold:

RL(s) := (1− L) ·max
a∈A

R(s, a) + L ·min
a∈A

R(s, a),

Lastly, let πref : S → A be an arbitrary reference policy for which it holds that for every state s ∈ S ,
πref(a|s) > 0, and there exists at least one action as ∈ A such that:

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

a) πref(as|s) > 0, but πref(as|s) is also small enough, that the following inequality holds:

πref(as|s) ≤
(RL(s)−R(s, as))

L
· range R

exp
(
1
λ · range R

) · ϵ2

4 · λ2
(93)

b) R(s, as) < RL(s)

Then Π is a subset of the set of policies in Proposition C.34.

Proof. We show this via a direct derivation:

πref(as|s) ≤ RL(s)−R(s, as)

L
· range R

exp
(
1
λ · range R

) · ϵ2

4 · λ2

=⇒ 1√
range R

· λ ·

√
πref(as|s) · L · exp

(
1
λ · range R

)
RL(s)−R(s, as)

≤ ϵ

2

=⇒ πref(as|s) · λ ·

√
L · range R · exp

(
1
λ · range R

)
(RL(s)−R(s, as)) · πref(as|s)

≤ ϵ · range R
2

We continue by lower-bounding the square-root term as follows:

λ ·

√
L · range R · exp

(
1
λ · range R

)
(RL(s)−R(s, as)) · πref(as|s)

≥ λ · log

[
L · range R · exp

(
1
λ · range R

)
(RL(s)−R(s, as)) · πref(as|s)

]

≥ λ · log

[
L · range R · exp

(
1
λ ·
[
maxa∈A R(s, a)−R(s, as)

])
(RL(s)−R(s, as)) · πref(as|s)

]

≥ λ · log

[
(maxa∈A R(s, a)−RL(s)) · exp

(
1
λ ·maxa∈A R(s, a)

)
(RL(s)−R(s, as)) · πref(as|s) · exp

(
1
λ ·R(s, as)

)]

≥ λ · log

[∑
a̸=as

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1
λ ·R(s, a)

)
(RL(s)−R(s, as)) · πref(as|s) · exp

(
1
λ ·R(s, as)

)]

By applying this lower bound, we can finish the proof:

πref(as|s) ≤ RL(s)−R(s, as)

L
· range R

exp
(
1
λ · range R

) · ϵ2

4 · λ2

=⇒ πref(as|s) · λ ·

√
L · range R · exp

(
1
λ · range R

)
(RL(s)−R(s, as)) · πref(as|s)·

≤ ϵ · range R
2

=⇒ πref(as|s) · λ · log

[∑
a̸=as

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1
λ ·R(s, a)

)
(RL(s)−R(s, as)) · πref(as|s) · exp

(
1
λ ·R(s, as)

)]
≤ ϵ · range R

2

=⇒ log

[∑
a ̸=as

πref(a|s) · exp

(
1

λ
· (R(s, a)−R(s, as))

)
· R(s, a)−RL(s)

RL(s)−R(s, as)

]

≤ ϵ · range R
2 · λ · πref(as|s)

+ log(πref(as|s))

That was to show.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

C.4.6 ANOTHER NEGATIVE RESULT WITH REGULARIZATION

Proposition C.36. Let ⟨S,A, µ0, R⟩ be a contextual bandit.

Given a lower regret bound L ∈ [0, 1), we define for every state s ∈ S the reward threshold:

RL(s) := (1− L) ·max
a∈A

R(s, a) + L ·min
a∈A

R(s, a),

Lastly, let πref : S → A be an arbitrary reference policy for which it holds that for every state s ∈ S ,
πref(a|s) > 0 and there exists at least one action as ∈ A such that:

a) πref(as|s) is small enough, that the following inequality holds:

πref(as|s) ≤
(RL(s)−R(s, as))

L
· range R

exp
(
1
λ · range R

) · ϵ2
λ2

(94)

b) R(s, as) < RL(s)

Let Dref(s, a) := µ0(s) · πref(a | s). Then Dref ∈ unsafe(R, ϵ, L, λ, ω).

Proof. To prove the proposition we show that there exists some reward function R̂, as well as a policy
π̂ such that the following properties hold:

1. E(s,a)∼Dref

[
|R(s,a)−R̂(s,a)|

range R

]
≤ ϵ.

2. π̂ ∈ argmaxπ JR̂(π)− λω(π)

3. RegR (π̂) ≥ L.

In particular, we choose:

R̂(s, a) :=

{
R(s, a) if a ̸= as
cs ∈ R+ if a = as

, (95)

where the different cs are some positive constants defined as follows:

R̂(s, as) = cs := max

(
R(s, as), λ · log

[∑
a ̸=as

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1
λ ·R(s, a)

)
(RL(s)−R(s, as)) · πref(as|s)

])
.

(96)
Furthermore, the closed-form of the optimal policy π̂ of the KL-regularized optimization problem is
known to be πrlhf

R̂,λ
(see Definition C.31). We now claim that this choice of R̂ and π̂ fulfills properties

(1) and (3) of the lemma (property (2) is true by assumption).

Property (3) is true because every reference policy πref and corresponding reward function R that
fulfills the conditions of this proposition also fulfills the conditions of Lemma C.33. Hence, we can
directly apply Lemma C.33 and get the guarantee that RegR (π̂) ≥ L.

All that remains to be shown, is that condition (1) can be satisfied by using the definition of R̂ and in
particular, the definition of the individual cs (see Equation (96)). The expected error expression in
condition (1) can be expanded as follows:

E(s,a)∼Dref

[
|R(s, a)− R̂(s, a)|

range R

]
=

∑
(s,a)∈S×A

µ0(s) · πref(a|s) ·
|R(s, a)− R̂(s, a)|

range R

!
≤ ϵ.

We show the sufficient condition that for each state s ∈ S it holds:∑
a∈A

πref(a|s) ·
|R(s, a)− R̂(s, a)|

range R

!
≤ ϵ.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

By using our definition of R̂ (see Equation (95)), this further simplifies as follows:∑
a∈A

πref(a|s) ·
|R(s, a)− R̂(s, a)|

range R
= πref(as|s) ·

R̂(s, as)−R(s, as)

range R

!
≤ ϵ. (97)

In the last equation, we were able to drop the absolute value sign because our definition of the
constants cs (see Equation (96)) guarantees that R̂(s, as) ≥ R(s, as).

Next, note that whenever R̂(s, as) = R(s, as) the left-hand side of Equation (97) cancels out and
so the inequality holds trivially. In the following, we will therefore only focus on states where
R̂(s, as) > R(s, as). Note that this allows us to drop the max statement in the definition of the cs
constants (see Equation (96)).

We continue by upper-bounding the difference R̂(s, as)−R(s, as). By making use of the following
identity:

R(s, as) = λ · log
[
exp

(
1

λ
·R(s, as)

)]
,

we can move the R(s, as) term into the logarithm term of the cs constants, and thereby upper-
bounding the difference R̂(s, as)−R(s, as) as follows:

R̂(s, as)−R(s, as)

= λ · log

[∑
a̸=as

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1
λ ·R(s, a)

)
(RL(s)−R(s, as)) · πref(as|s) · exp

(
1
λ ·R(s, as)

)]

≤ λ · log

[
(maxa∈A R(s, a)−RL(s)) · exp

(
1
λ ·maxa∈A R(s, a)

)
(RL(s)−R(s, as)) · πref(as|s) · exp

(
1
λ ·R(s, as)

)]

≤ λ · log

[
L · range R · exp

(
1
λ ·
[
maxa∈A R(s, a)−R(s, as)

])
(RL(s)−R(s, as)) · πref(as|s)

]

≤ λ · log

[
L · range R · exp

(
1
λ · range R

)
(RL(s)−R(s, as)) · πref(as|s)

]

≤ λ ·

√
L · range R · exp

(
1
λ · range R

)
(RL(s)−R(s, as)) · πref(as|s)

We can now put this upper bound back into Equation (97) and convert the inequality into an upper
bound for πref(as|s) as follows:

πref(as|s) ·
R̂(s, as)−R(s, as)

range R

≤ πref(as|s)
range R

· λ ·

√
L · range R · exp

(
1
λ · range R

)
(RL(s)−R(s, as)) · πref(as|s)

=
1√

range R
· λ ·

√
πref(as|s) · L · exp

(
1
λ · range R

)
RL(s)−R(s, as)

!
≤ ϵ

=⇒ πref(as|s) ≤ RL(s)−R(s, as)

L
· range R

exp
(
1
λ · range R

) · ϵ2
λ2

.

The last line in the previous derivation holds by assumption of the proposal. That was to show.

C.5 A REGULARIZED NEGATIVE RESULT FOR GENERAL MDPS

Throughout, let ⟨S,A, τ, µ0, R, γ⟩ be an MDP. Additionally, assume there to be a data distribution
D ∈ ∆(S×A) used for learning the reward function. We do a priori not assume that D is induced by
a reference policy, but we will specialize to that case later on.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

We also throughout fix ϵ > 0, λ > 0, L ∈ (0, 1), which will represent, respectively, an approximation-
error for the reward function, the regularization strength, and a lower regret bound. Furthermore,
let ω : Π → R be any continuous regularization function of policies with ω(π) ≥ 0 for all
π ∈ Π. For example, if there is a nowhere-zero reference policy πref , then ω could be given by
ω(π) = DKL (π||πref). For any reward function R̂, a policy π̂ exists that is optimal with respect to
regularized maximization of reward:

π̂ ∈ argmax
π

JR̂(π)− λω(π).

We will try to answer the following question: Do there exist realistic conditions on ω and D for
which there exists R̂ together with π̂ such that the following properties hold?

• E(s,a)∼D

[
|R̂(s,a)−R(s,a)|

range R

]
≤ ϵ.

• RegR (π̂) ≥ L.

Furthermore, we now fix π∗, a worst-case policy for R, meaning that RegR (π∗) = 1. We assume π∗
to be deterministic.
Lemma C.37. Define C(L,R) := (1−L)·range JR

∥R∥ . Then the following implication holds:

∥Dπ −Dπ∗∥ ≤ C(L,R) =⇒ RegR (π) ≥ L.

Proof. Using the Cauchy-Schwarz inequality, the left side of the implication implies:
JR(π)−min JR = JR(π)− JR(π∗)

=
(
Dπ −Dπ∗

)
·R

≤ ∥Dπ −Dπ∗∥ · ∥R∥
≤ (1− L) · range JR.

By subtracting range JR = max JR −min JR from both sides, then multiplying by −1, and then
dividing by range R, we obtain the result.

Lemma C.38. For any (s, a), we have

Dπ(s, a)

1− γ
=

∞∑
t=0

γt
∑

s0,a0,...,st−1,at−1

τ(s0, a0, . . . , st−1, at−1, s) · π(s0, a0, . . . , st−1, at−1, s, a),

where

τ(s0, a0, . . . , s) := µ0(s0) ·

[
t−1∏
i=1

τ(si | si−1, ai−1)

]
· τ(s | st−1, at−1),

which is the part in the probability of a trajectory that does not depend on the policy, and

π(s0, a0, . . . , s, a) := π(a | s) ·
t−1∏
i=0

π(ai | si).

Proof. We have

Dπ(s, a)

1− γ
=

∞∑
t=0

γtP (st = s, at = a | ξ ∼ π)

=

∞∑
t=0

γt
∑

s0,a0,...,st−1,at−1

P (s0, a0, . . . , st−1, at−1, s, a | π)

=
∞∑
t=0

γt
∑

s0,a0,...,st−1,at−1

µ0(s0)π(a0 | s0)

[
t−1∏
i=1

τ(si | si−1, ai−1)π(ai | si)

]
τ(s | st−1, at−1)π(a | s)

=

∞∑
t=0

γt
∑

s0,a0,...,st−1,at−1

τ(s0, a0, . . . , st−1, at−1, s) · π(s0, a0, . . . , st−1, at−1, s, a).

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

Lemma C.39. Let 1 ≥ δ > 0. Assume that π(a | s) ≥ 1− δ for all (s, a) ∈ supp Dπ∗ and that π∗
is a deterministic policy.4 Then for all (s, a) ∈ S×A, one has

Dπ∗(s, a)− δ · (1− γ) · ∂

∂γ

(
γ

1− γ
Dπ∗(s, a)

)
≤ Dπ(s, a) ≤ Dπ∗(s, a) +

δ

1− γ
. (98)

This also results in the following two inequalities:

Dπ(supp Dπ∗) ≥ 1− δ

1− γ
, ∥Dπ −Dπ∗∥ ≤

√
|S×A| · δ

1− γ
. (99)

Proof. Let (s, a) ∈ supp Dπ∗ . We want to apply the summation formula in Lemma C.38, which we
recommend to recall. For simplicity, in the following we will write s0, a0, . . . when we implicitly
mean trajectories up until st−1, at−1. Now, we will write “π∗-comp” into a sum to indicate that we
only sum over states and actions that make the whole trajectory-segment compatible with policy π∗,
meaning all transitions have positive probability and the actions are deterministically selected by π∗.
Note that if we restrict to such summands, then each consecutive pair (si, ai) ∈ supp Dπ∗ is in the
support of Dπ∗ , and thus we can use our assumption π(ai | si) ≥ 1− δ on those. We can use this
strategy for a lower-bound:

Dπ(s, a)

1− γ
≥

∞∑
t=0

γt
∑

s0,a0,...
π∗−comp

τ(s0, a0, . . . , s) · π(s0, a0, . . . , s, a)

≥
∞∑
t=0

γt
∑

s0,a0,...
π∗−comp

τ(s0, a0, . . . , s) · (1− δ)t+1

≥
∞∑
t=0

γt
∑

s0,a0,...
π∗−comp

τ(s0, a0, . . . , s) ·
(
1− δ · (t+ 1)

)
.

(100)

In the last step, we used the classical formula (1− δ)t ≥ 1− δ · t, which can easily be proved by
induction over t. Now, we split the sum up into two parts. For the first part, we note:

∞∑
t=0

γt
∑

s0,a0,...
π∗−comp

τ(s0, a0, . . . , s) · 1 =

∞∑
t=0

γt
∑

s0,a0,...
π∗−comp

τ(s0, a0, . . . , s) · π∗(s0, a0, . . . , s, a)

=

∞∑
t=0

γt
∑

s0,a0,...

τ(s0, a0, . . . , s) · π∗(s0, a0, . . . , s, a)

=
Dπ∗(s, a)

1− γ
.

(101)

For the second part, we similarly compute:

∞∑
t=0

(t+ 1)γt
∑

s0,a0,...
π∗−comp

τ(s0, a0, . . . , s) =

∞∑
t=0

∂

∂γ
γt+1P (st = s, at = a | π∗)

=
∂

∂γ

(
γ

1− γ
·Dπ∗(s, a)

)
.

(102)

Putting Equations (101) and (102) into Equation (100) gives the first equation of Equation (98) for
the case that (s, a) ∈ supp Dπ∗ . For the case that (s, a) /∈ supp Dπ∗(s, a), the inequality is trivial
since then Dπ∗(s, a) = 0 and since the stated derivative is easily shown to be non-negative by writing
out the occupancy explicitly (i.e., by reversing the previous computation).

4In this lemma, one does not need the assumption that π∗ is a worst-case policy, but this case will be the only
application later on.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

This then implies

Dπ(supp Dπ∗) =
∑

(s,a)∈supp Dπ∗

Dπ(s, a)

≥
∑

(s,a)∈supp Dπ∗

(
Dπ∗(s, a)− δ · (1− γ) · ∂

∂γ

(
γ

1− γ
Dπ∗(s, a)

))

= 1− δ · (1− γ) · ∂

∂γ

 γ

1− γ

∑
(s,a)∈supp Dπ∗

Dπ∗(s, a)


= 1− δ · (1− γ) · 1

(1− γ)2

= 1− δ

1− γ
.

This shows the first inequality in Equation (99). To show the second inequality in Equation (98), we
use the first one and compute:

Dπ(s, a) = 1−
∑

(s′,a′) ̸=(s,a)

Dπ(s′, a′)

≤ 1−
∑

(s′,a′)∈supp Dπ∗\{(s,a)}

Dπ(s′, a′)

≤ 1−
∑

(s′,a′)∈supp Dπ∗\{(s,a)}

Dπ∗(s′, a′)

+
∑

(s′,a′)∈supp Dπ∗\{(s,a)}

δ · (1− γ) · ∂

∂γ

(
γ

1− γ
Dπ∗(s′, a′)

)

≤ Dπ∗(s, a) +
δ

1− γ
,

where in the last step we again used the trick of the previous computation of pulling the sum through
the derivative. Finally, we prove the second inequality in Equation (99), using what we know so far.
First, note that

δ · (1− γ) · ∂

∂γ

(
γ

1− γ
Dπ∗(s, a)

)
≤ δ

1− γ

since we showed that the left-hand-side is non-negative and sums to the right-hand-side over all (s, a).
Consequently, we obtain:

∥Dπ −Dπ∗∥ =
√∑

(s,a)

(
Dπ(s, a)−Dπ∗(s, a)

)2
≤

√√√√∑
(s,a)

∣∣∣∣ δ

1− γ

∣∣∣∣2
=
√
|S×A| · δ

1− γ
.

This finishes the proof.

We now fix more constants and notation. Define S0 := supp µ0 as the support of µ0, and more
generally St as the states reachable within t timesteps using the fixed worst-case policy π∗:

St :=
{
s
∣∣ ∃π∗ − compatible sequence s0, a0, . . . , sk−1, ak−1, s for k ≤ t

}
.

Since there are only finitely many states and St ⊆ St+1, there is a t0 such that St0 is maximal. Set
Dπ∗(s) :=

∑
a D

π∗(s, a). Recall the notation τ from Lemma C.38. Define the following constant

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

which, given the MDP, only depends on δ > 0 and π∗:
C(δ, π∗, µ0, τ, γ) := min

t∈[0:t0]
s0,a0,...,st−1,at−1,s: π∗−comp

γtτ(s0, a0 . . . , s) · (1− δ)t · δ > 0. (103)

We get the following result:

Lemma C.40. Define the reward function R̂ : S×A → R as follows:

R̂(s, a) :=

{
R(s, a), (s, a) /∈ supp Dπ∗ ,

maxR+ λ
C(δ,π∗,µ0,τ,γ)

· ω(π∗), else.
(104)

Assume that π̂ is (λ, ω)-RLHF optimal with respect to R̂. Then for all (s, a) ∈ supp Dπ∗ , we have
π̂(a | s) ≥ 1− δ.

Proof. We show this statement by induction over the number of timesteps that π∗ needs to reach a
given state. Thus, first assume s ∈ S0 and a = π∗(s). We do a proof by contradiction. Thus, assume
that π̂(a | s) < 1− δ. This means that

∑
a′ ̸=a π̂(a

′ | s) ≥ δ, and consequently∑
a′ ̸=a

Dπ̂(s, a′) ≥ µ0(s) · δ ≥ C(δ, π∗, µ0, τ, γ). (105)

We now claim that from this it follows that π∗ is more optimal than π̂ with respect to RLHF, a
contradiction to the optimality of π̂. Indeed:

JR̂(π̂)− λω(π̂)
(1)

≤ JR̂(π̂)

(2)
=
∑
a′ ̸=a

Dπ̂(s, a′) ·R(s, a′) +
∑

(s′,a′)/∈{s}×A\{a}

Dπ̂(s′, a′) · R̂(s′, a′)

(3)

≤
∑
a′ ̸=a

Dπ̂(s, a′) ·maxR+ R̂(s, a) ·
∑

(s′,a′)/∈{s}×A\{a}

Dπ̂(s′, a′′)

=
∑
a′ ̸=a

Dπ̂(s, a′) ·maxR+

1−
∑
a′ ̸=a

Dπ̂(s, a′)

 · R̂(s, a)

(4)

≤ C(δ, π∗, µ0, τ, γ) ·maxR+
(
1− C(δ, π∗, µ0, τ, γ)

)
· R̂(s, a)

(5)
= JR̂(π∗) + C(δ, π∗, µ0, τ, γ) ·

(
maxR− R̂(s, a)

)
(6)
= JR̂(π∗)− C(δ, π∗, µ0, τ, γ) ·

λ

C(δ, π∗, µ0, τ, γ)
· ω(π∗)

= JR̂(π∗)− λω(π∗).

(106)

In step (1), we use the non-negativity of ω. In step (2), we use that (s, a′) /∈ supp Dπ∗ , and
so R̂(s, a′) = R(s, a′). In the right term in step (3), we use that (s, a) ∈ supp Dπ∗ , and thus
R̂(s, a) ≥ R̂(s′, a′), by definition of R̂. In step (4), we use that R̂(s, a) ≥ maxR and Equation (105).
Step (5) uses that JR̂(π∗) = R̂(s, a), following from the fact that R̂ is constant for policy π∗. Step
(6) uses the concrete definition of R̂. Thus, we have showed a contradiction to the RLHF-optimality
of π̂, from which it follows that π̂(a | s) ≥ 1− δ.

Now assume the statement is already proven for t − 1 and let s ∈ St \ St−1. Then there exists a
π∗-compatible sequence s0, a0, . . . , st−1, at−1 leading to s. We necessarily have si ∈ Si for all
i = 0, . . . , t−1, and so we obtain π̂(ai | si) ≥ 1−δ by the induction hypothesis. Now, let a := π∗(s)
and assume we had π̂(a | s) < 1− δ. As before, we then have

∑
a′ ̸=a π̂(a

′ | s) ≥ δ. Consequently,
we get ∑

a′ ̸=a

Dπ̂(s, a′) ≥ γt ·
∑
a′ ̸=a

τ(s0, a0, . . . , s) · π̂(s0, a0, . . . , s, a′)

≥ γt · τ(s0, a0, . . . , s) · (1− δ)t · δ
≥ C(δ, π∗, µ0, τ, γ)

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2025

Then the same computation as in Equation (106) leads to the same contradiction again, and we are
done.

Theorem C.41. Define

δ :=
(1− γ) · (1− L) · range JR√

|S×A| · ∥R∥
> 0.

LetM = ⟨S,A, τ, µ0, R, γ⟩ be our MDP. Set

C := C(M, π∗, L, λ, ω) :=
λ · ω(π∗)

range R · C(δ, π∗, µ0, τ, γ)
<∞, (107)

with the “inner” C(δ, π∗, µ0, τ, γ) defined in Equation (103). Assume that

D(supp Dπ∗) ≤ ϵ

1 + C
. (108)

Then D ∈ unsafe(R, ϵ, L, λ, ω).

Proof. We prove the theorem by showing that for every data distribution D ∈ ∆(S×A) that fulfills
the conditions of Theorem C.41, there exists a reward function R̂ together with a (λ, ω)-RLHF
optimal policy π̂ with respect to R̂ such that

• E(s,a)∼D

[
|R̂(s,a)−R(s,a)|

range R

]
≤ ϵ,

• RegR (π̂) ≥ L.

Towards that goal, define R̂ as in Equation (104) and π̂ as a (λ, ω)-RLHF optimal policy for R̂.
Then Lemma C.40 shows that π̂(s | a) ≥ 1−δ for all (s, a) ∈ suppDπ∗ . Consequently, Lemma C.39
implies that

∥Dπ̂ −Dπ∗∥ ≤
√
|S×A| · δ

1− γ
=

(1− L) · range JR
∥R∥

.

Consequently, Lemma C.37 shows that RegR (π̂) ≥ L, and thus the second claim. For the first claim,
note that

E(s,a)∼D

[
|R̂(s, a)−R(s, a)|

]
=

∑
(s,a)∈supp Dπ∗

D(s, a) ·
(
maxR+

λ

C(δ, π∗, µ0, τ, γ)
ω(π∗)−R(s, a)

)

≤ D(supp Dπ∗) ·
(
range R+

λ

C(δ, π∗, µ0, τ, γ)
ω(π∗)

)
≤ ϵ · range R,

where the last claim follows from the assumed inequality in D(supp Dπ∗).

We obtain the following corollary, which is very similar to Proposition C.5. The main difference is
that the earlier result only assumed a poliy of regret L and not regret 1:

Corollary C.42. Theorem C.41 specializes as follows for the case λ = 0: Assume D(suppDπ∗) ≤ ϵ.
Then there exists a reward function R̂ together with an optimal policy π̂ that satisfies the two
inequalities from the previous result.

Proof. This directly follows from λ = 0. For completeness, we note that the definition of R̂ also
simplifies, namely to

R̂(s, a) =

{
R(s, a), (s, a) /∈ supp Dπ∗

maxR, else.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2025

We now present another specialization of Theorem C.41. Namely, from now on, assume that
D = Dπref and ω(π) = DKL (π||πref). In other words, the dataset used to evaluate the reward
function is sampled from the same (safe) policy used in KL-regularization. This leads to the following
condition specializing the one from Equation (108):

Dπref (supp Dπ∗) ≤ ϵ

1 + λ·DKL(π∗||πref)
range R·C(δ,π∗,µ0,τ,γ)

. (109)

πref now appears on both the left and right side of the equation, and so one can wonder whether
it is ever possible that the inequality holds. After all, if Dπref (supp Dπ∗) “gets smaller”, then
DKL (π∗||πref) should usually get “larger”. However, halfing each of the probabilities Dπref (s, a)
for (s, a) ∈ supp Dπ∗ leads to only an increase by the addition of log 2 of DKL (π∗||πref). Thus,
intuitively, we expect the inequality to hold when the left-hand-side is very small. An issue is that the
KL divergence can disproportionately blow up in size if some individual probabilities Dπref (s, a) for
(s, a) ∈ supp Dπ∗ are very small compared to other such probabilities. This can be avoided by a
bound in the proportional difference of these probabilities. We thus obtain the following sufficient
condition for a “negative result”:5

Corollary C.43. Let the notation be as in Theorem C.41 and assume D = Dπref and ω(π) =
DKL (π||πref). Let K ≥ 0 be a constant such that

max
(s,a)∈supp Dπ∗

Dπref (s, a) ≤ K · min
(s,a)∈supp Dπ∗

Dπref (s, a).

Assume that

min
(s,a)∈supp Dπ∗

Dπref (s, a) ≤

 ϵ

K · |S| ·
(
1 + λ

range R·C(δ,π∗,µ0,τ,γ)

)
2

. (110)

Then Equation (108) holds, and the conclusion of the theorem thus follows.

Proof. As argued before, the equation to show can be written as Equation (109). We can upper-bound
the left-hand-side as follows:

Dπref (supp Dπ∗) =
∑

(s,a)∈supp Dπ∗

Dπref (s, a)

≤ |supp Dπ∗ | · max
(s,a)∈supp Dπ∗

Dπref (s, a)

≤ |S| ·K · min
(s,a)∈supp Dπ∗

Dπref (s, a).

(111)

In one step, we used that π∗ is assumed to be deterministic, which leads to a bound in the size of the
support. Now, we lower-bound the other side by noting that

DKL (π∗||πref) =
∑

(s,a)∈supp Dπ∗

Dπ∗(s, a) · log Dπ∗(s, a)

Dπref (s, a)

≤
∑

(s,a)∈supp Dπ∗

Dπ∗(s, a) · log 1

min(s′,a′)∈supp Dπ∗ Dπref (s′, a′)

= log
1

min(s,a)∈supp Dπ∗ Dπref (s, a)
.

Thus, for the right-hand-side, we obtain
ϵ

1 + λ·DKL(π∗||πref)
range R·C(δ,π∗,µ0,τ,γ)

≥ ϵ

1 + λ
range R·C(δ,π∗,µ0,τ,γ)

· log 1
min(s,a)∈supp Dπ∗ Dπref (s,a)

(112)

Now, set A := |S| ·K, B := λ
range R·C(δ,π∗,µ0,τ,γ)

and x := min(s,a)∈supp Dπ∗ Dπref (s, a). Then
comparing with Equations (111) and (112), we are left with showing the following, which we also

5The condition is quite strong and we would welcome attempts to weaken it.

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2025

equivalently rewrite:

A · x ≤ ϵ

1 +B · log 1
x

⇐⇒A ·
(
x+Bx log

1

x

)
≤ ϵ.

Now, together with the assumed condition on x from Equation (110), and upper-bounding the
logarithm with a square-root, and x by

√
x since x ≤ 1, we obtain:

A ·
(
x+Bx log

1

x

)
≤ A ·

(
x+B

√
x
)

≤ A ·
(
(1 +B) ·

√
x
)

≤ A · (1 +B) · ϵ

A · (1 +B)

= ϵ.

That was to show.

D REQUIREMENTS FOR SAFE OPTIMIZATION

In this section, we answer the question under which circumstances we can guarantee a safe optimiza-
tion of a given reward function. Wherever applicable, we make the same assumptions as stated in
Appendix C.1.

D.1 APPLYING BERGE’S MAXIMUM THEOREM

Definition D.1 (Correspondence). Let X,Y be two sets. A correspondence C : X ⇒ Y is a function
X → P(Y) from X to the power set of Y .

Definition D.2 (Upper Hemicontinuous, Lower Hemicontinuous, Continuous, Compact-Valued). Let
C : X ⇒ Y be a correspondence where X and Y are topological spaces. Then:

• C is called upper hemicontinuous if for every x ∈ X and every open set V ⊆ Y with
C(x) ⊆ V , there exists an open set U ⊆ X with x ∈ U and such that for all x′ ∈ U one
has C(x′) ⊆ V .

• C is called lower hemicontinuous if for every x ∈ X and every open set V ⊆ Y with
C(x) ∩ V ̸= ∅, there exists an open set U ⊆ X with x ∈ U and such that for all x′ ∈ U
one has C(x′) ∩ V ̸= ∅.

• C is called continuous if it is both upper and lower hemicontinuous.

• C is called compact-valued if C(x) is a compact subset of Y for all x ∈ X .

Theorem D.3 (Maximum Theorem, (Berge, 1963)). Let Θ and X be topological spaces, f : Θ×X →
R a continuous function, and C : Θ ⇒ X be a continuous, compact-valued correspondence such
that C(θ) ̸= ∅ for all θ ∈ Θ. Define the optimal value function f∗ : Θ→ R by

f∗(θ) := max
x∈C(θ)

f(θ, x)

and the maximizer function C∗ : Θ ⇒ X by

C∗(θ) := argmax
x∈C(θ)

f(θ, x) =
{
x ∈ C(θ) | f(θ, x) = f∗(θ)

}
.

Then f∗ is continuous and C∗ is a compact-valued, upper hemicontinuous correspondence with
nonempty values, i.e. C∗(θ) ̸= ∅ for all θ ∈ Θ.

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2025

We now show that this theorem corresponds to our setting. Namely, replace X be by Π, the set of all
policies. Every policy π ∈ Π can be viewed as a vector π⃗ =

(
π(a | s)

)
s∈S,a∈A ∈ RS×A, and so we

view Π as a subset of RS×A. Π inherits the standard Euclidean metric and thus topology from RS×A.
Replace Θ by R, the set of all reward functions. We can view each reward function R ∈ R as a
vector R⃗ =

(
R(s, a)

)
(s,a)∈S×A ∈ RS×A. So we viewR as a subset of RS×A and thus a topological

space. Replace f by the function J : R×Π→ R given by

J(R, π) := JR(π) = ηπ · R⃗.

Take as the correspondence C : R ⇒ Π the trivial function C(R) := Π that maps every reward
function to the full set of policies.
Proposition D.4. These definitions satisfy the conditions of Theorem D.3, that is:

1. J : R×Π→ R is continuous.

2. C : R⇒ Π is continuous and compact-valued with non-empty values.

Proof. Let us prove 1. Since the scalar product is continuous, it is enough to show that η : Π→ RS×A

is continuous. Let (s, a) ∈ S×A be arbitrary. Then it is enough to show that each componentfunction
η(s, a) : Π→ R given by [

η(s, a)
]
(π) := ηπ(s, a)

is continuous.

Now, for any t ≥ 0, define the function Pt(s, a) : Π→ R by[
Pt(s, a)

]
(π) := P (st = s, at = a | ξ ∼ π).

We obtain

η(s, a) =

∞∑
t=0

γtPt(s, a).

Furthermore, this convergence is uniform since
[
Pt(s, a)

]
(π) ≤ 1 for all π and since

∑∞
t=0 γ

t is a
convergent series. Thus, by the uniform limit theorem, it is enough to show that each Pt(s, a) is a
continuous function.

Concretely, we have[
Pt(s, a)

]
(π) =

∑
s0,a0,...,st−1,at−1

P
(
s0, a0, . . . , st−1, at−1, s, a | ξ ∼ π

)
=

∑
s0,a0,...,st−1,at−1

µ0(s0) · π(a0 | s0) ·

[
t−1∏
l=1

τ(sl | sl−1, al−1) · π(al | sl)

]
· τ(s | st−1, at−1) · π(a | s).

Since S and A are finite, this whole expression can be considered as a polynomial with variables
given by all π(a | s) for all (s, a) ∈ S×A and coefficients specified by µ0 and τ . Since polynomials
are continuous, this shows the result.

Let us prove 2. Since Π ̸= ∅, C has non-empty values. Furthermore, Π is compact because it is a
finite cartesian product of compact simplices. And finally, since C is constant, it is easily seen to be
continuous. That was to show.

Define the optimal value function J∗ : R → R by

J∗(R) := max
π∈Π

JR(π)

and the maximizer function Π∗ : R⇒ Π by

Π∗(R) := argmax
π∈Π

JR(π) =
{
π ∈ Π | JR(π) = J∗(R)

}
.

Corollary D.5. J∗ is continuous and Π∗ is upper hemicontinuous and compact-valued with non-
empty values.

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2025

Proof. This follows from Theorem D.3 and Proposition D.4.

In particular, every reward function has a compact and non-empty set of optimal policies, and their
value changes continuously with the reward function. The most important part of the corollary is the
upper hemicontinuity, which has the following consequence:
Corollary D.6. Let R be a fixed, non-trivial reward function, meaning that max JR ̸= min JR. Let
U ∈ (0, 1] be arbitrary. Then there exists ϵ > 0 such that for all R̂ ∈ Bϵ (R) and all π̂ ∈ Π∗(R̂), we
have RegR (π̂) < U .

Proof. The condition max JR ̸= min JR ensures that the regret function RegR : Π → [0, 1] is
well-defined. Recall its definition:

RegR (π) =
max JR − JR(π)

max JR −min JR
.

Since JR is continuous by Proposition D.4, the regret function RegR is continuous as well. Conse-
quently, the set V :=

(
RegR

)−1(
[0, U)

)
is open in Π.

Notice that Π∗(R) ⊆ V (optimal policies have no regret). Thus, by Corollary D.5, there exists an
open set W ⊆ R with R ∈ W such that for all R̂ ∈ W we have Π∗(R̂) ⊆ V . Consequently, for
all π̂ ∈ Π∗(R̂), we get RegR (π̂) < U . Since W is open, it contains a whole epsilon ball around R,
showing the result.

Now we translate the results to the distance defined by D, a data distribution. Namely, let D ∈
∆(S×A) a distribution that assigns a positive probability to each transition. Then define the D-norm
by

dD(R) := E(s,a)∼D

[∣∣R(s, a)
∣∣] .

This is indeed a norm, i.e.: for all α ∈ R and all R,R′ ∈ R, we have

• dD(R+R′) ≤ dD(R) + dD(R′);
• dD(α ·R) = |α| · dD(R);
• dD(R) = 0 if and only if R = 0.

For the third property, one needs the assumption that D(s, a) > 0 for all (s, a) ∈ S×A.

This norm then induces a metric that we denote the same way:

dD(R,R′) := dD(R−R′).

We obtain:
Corollary D.7. Let ⟨S,A, τ, µ0, R, γ⟩ be an arbitrary non-trivial MDP, meaning that max JR ̸=
min JR. Furthermore, let L ∈ (0, 1] be arbitrary, and D ∈ ∆(S×A) a positive data distribution,
i.e., a distribution D such that ∀(s, a) ∈ S×A, D(s, a) > 0. Then there exists ϵ > 0 such that
D ∈ safe(R, ϵ, L)

Proof. To prove the corollary, we will show that there exists ϵ > 0 such that for all R̂ ∈ R with

dD(R, R̂)

range R
< ϵ

and all π̂ ∈ Π∗(R̂) we have RegR (π̂) < L. We know from Corollary D.6 that there is ϵ′ > 0 such
that for all R̂ ∈ Bϵ′ (R) and all π̂ ∈ Π∗(R̂), we have RegR (π̂) < L. Now, let c > 0 be a constant
such that

c · ∥R′ −R′′∥ ≤ dD(R′, R′′)

for all R′, R′′ ∈ R, where ∥ · ∥ is the standard Euclidean norm. This exists since all norms in RS×A

are equivalent, but one can also directly argue that

c := min
(s,a)∈S×A

D(s, a)

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2025

is a valid choice. Then, set
ϵ := ϵ′ · c

range R
.

Then for all R̂ ∈ R with
dD(R, R̂)

range R
< ϵ

we obtain

∥R− R̂∥ ≤ dD(R, R̂)

c

=
dD(R,R′)

range R
· range R

c

≤ ϵ · range R
c

= ϵ′.

Thus, for all π̂ ∈ Π∗(R̂), we obtain RegR (π̂) < L, showing the result.

Remark D.8. If c := min(s,a)∈S×A D(s, a) is very small, then the proof of the preceding corollary
shows that dD(R, R̂) must be correspondingly smaller to guarantee a low regret of π̂ ∈ Π∗(R̂). This
makes sense since a large effective distance between R and R̂ can “hide” in the regions where D is
small when distance is measured via dD.

D.2 ELEMENTARY PROOF OF A REGRET BOUND

In this section, we provide another elementary proof of a regret bound, but without reference to
Berge’s theorem. This will also lead to a better quantification of the bound. In an example, we will
show that the bound we obtain is tight.

Define the cosine of an angle between two vectors ad hoc as usual:

cos
(
ang

(
v, w

))
:=

v · w
∥v∥ · ∥w∥

,

where v · w is the dot product.
Lemma D.9. Let R, R̂ be two reward functions. Then for any policy π, we have

JR(π)− J R̂(π) =
1

1− γ
· ∥Dπ∥ ·

∥∥R− R̂
∥∥ · cos(ang (ηπ, R⃗− ⃗̂

R
))

.

Proof. We have

JR(π)− J R̂(π) = ηπ ·
(
R⃗− ⃗̂

R
)
= ∥ηπ∥ ·

∥∥R⃗− ⃗̂
R
∥∥ · cos(ang (ηπ, R⃗− ⃗̂

R
))

.

The result follows from ηπ = 1
1−γ ·D

π .

we will make use of another lemma:
Lemma D.10. Let a, â, and r be three vectors. Assume a · â ≥ 0, where · is the dot product. Then

cos
(
ang(a, r)

)
− cos

(
ang(â, r)

)
≤
√
2.

Proof. None of the angles change by replacing any of the vectors with a normed version. We can
thus assume ∥a∥ = ∥â∥ = ∥r∥ = 1. We obtain∣∣ cos (ang(a, r))− cos

(
ang(â, r)

)∣∣2 =
∣∣a · r − â · r

∣∣2
=
∣∣(a− â) · r

∣∣2
≤ ∥a− â∥2 · ∥r∥2

= ∥a− â∥2

= ∥a∥2 + ∥â∥2 − 2a · â
≤ 2.

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2025

In the first, fourth, and sixth step, we used that all vectors are normed. In the third step, we used the
Cauchy-Schwarz inequality. Finally, we used that a · â ≥ 0. The result follows.

Recall that for two vectors v, w, the projection of v onto w is defined by

projw v :=
v · w
∥w∥2

w.

This projection is a multiple of w, and it minimizes the distance to v:∥∥v − projw v
∥∥ = min

α∈R

∥∥v − αw
∥∥.

We can now formulate and prove our main regret bound:
Theorem D.11. Let R be a fixed, non-trivial reward function, meaning that max JR ̸= min JR.
Then for all R̂ ∈ R and all π̂ ∈ Π∗(R̂), we have

RegR (π̂) ≤
√
2

(1− γ) · (max JR −min JR)
·
∥∥R⃗− ⃗̂

R
∥∥.

Furthermore, if R⃗ · ⃗̂R ≥ 0, then we also obtain the following stronger bound:

RegR (π̂) ≤
√
2

(1− γ) · (max JR −min JR)
·
∥∥∥R⃗− proj ⃗̂

R
R⃗
∥∥∥.

Now, let D ∈ ∆(S×A) be a data distribution. Then we obtain the following consequence:

RegR (π̂) ≤
√
2

(1− γ) ·
(
max JR −min JR

)
·min(s,a)∈S×A D(s, a)

· dD
(
R, R̂).

Proof. We start with the first claim. First, notice that the inequality we want to show is equivalent to
the following:

JR(π̂) ≥ max JR −
√
2

1− γ
·
∥∥R⃗− ⃗̂

R
∥∥. (113)

From Lemma D.9, we obtain

JR(π̂) = J R̂(π̂) +
1

1− γ
· ∥Dπ̂∥ ·

∥∥R⃗− ⃗̂
R
∥∥ · cos(ang (ηπ̂, R− R̂

))
.

Now, let π ∈ Π∗(R) be an optimal policy for R. Then also from Lemma D.9, we obtain

max JR = JR(π) = J R̂(π) +
1

1− γ
· ∥Dπ∥ ·

∥∥R⃗− ⃗̂
R
∥∥ · cos(ang (ηπ, R− R̂

))
≤ J R̂(π̂) +

1

1− γ
· ∥Dπ∥ ·

∥∥R⃗− ⃗̂
R
∥∥ · cos(ang (ηπ, R− R̂

))
.

In the last step, we used that π̂ ∈ Π∗(R⃗) and so J R̂(π) ≤ J R̂(π̂). Combining both computations, we
obtain:

JR(π̂) ≥ max JR− 1

1− γ
·
∥∥R⃗− ⃗̂

R
∥∥·[∥Dπ∥·cos

(
ang

(
ηπ, R−R̂

))
−∥Dπ̂∥·cos

(
ang

(
ηπ̂, R−R̂

))]
Since we want to show Equation (113), we are done if we can bound the big bracket by

√
2. By the

Cauchy-Schwarz inequality, cos
(
ang

(
v, w

))
∈ [−1, 1] for all vectors v, w. Thus, if the first cosine

term is negative or the second cosine term is positive, then since ∥Dπ∥ ≤ ∥Dπ∥1 = 1, the bound by√
2 is trivial. Thus, assume that the first cosine term is positive and the second is negative. We obtain

∥Dπ∥ · cos
(
ang

(
ηπ, R− R̂

))
− ∥Dπ̂∥ · cos

(
ang

(
ηπ̂, R− R̂

))
≤ cos

(
ang

(
ηπ, R− R̂

))
− cos

(
ang

(
ηπ̂, R− R̂

))
≤
√
2

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2025

by Lemma D.10. Here, we used that ηπ and ηπ̂ have only non-negative entries and thus also
nonnegative dot product ηπ · ηπ̂ ≥ 0.

For the second claim, notice the following: if R⃗ · ⃗̂R ≥ 0, then proj ⃗̂
R
R⃗ = α · ⃗̂R for some constant

α ≥ 0. Consequently, we have π̂ ∈ Π∗
(
proj ⃗̂

R
R⃗
)

. The claim thus follows from the first result.

For the third claim, notice that

min
(s,a)∈S×A

D(s, a) ·
∥∥R⃗− ⃗̂

R
∥∥ ≤ min

(s,a)∈S×A
D(s, a) ·

∥∥R⃗− ⃗̂
R
∥∥
1

= min
(s,a)∈S×A

D(s, a) ·
∑

(s,a)∈S×A

∣∣R(s, a)− R̂(s, a)
∣∣

≤
∑

(s,a)∈S×A

D(s, a) ·
∣∣R(s, a)− R̂(s, a)

∣∣
= dD(R, R̂).

So the first result implies the third.

Remark D.12. As one can easily see geometrically, but also prove directly, there is the following
equality of sets for a reward function R

{
proj ⃗̂

R
R⃗
∣∣ R̂ ∈ R

}
=

{
1

2
R⃗+

1

2
∥R⃗∥v

∣∣ v ∈ RS×A, ∥v∥ = 1

}
.

In other words, the projections form a sphere of radius 1
2∥R⃗∥ around the midpoint 1

2 R⃗.

We now show that the regret bound is tight:

Example D.13. Let U ∈ [0, 1] and γ ∈ [0, 1) be arbitrary. Then there exists an MDP

⟨S,A, τ, µ0, R, γ⟩ together with a reward function R̂ with R⃗ · ⃗̂R ≥ 0 and a policy π̂ ∈ Π∗(R̂)
such that

U = RegR (π̂) =

√
2

(1− γ) ·
(
max JR −min JR

) · ∥∥∥R⃗− proj ⃗̂
R
R⃗
∥∥∥.

Furthermore, there exists a data distribution D ∈ ∆(S×A) such that

RegR (π̂) =
1

(1− γ) ·
(
max JR −min JR

)
·min(s,a)∈S×A D(s, a)

· dD
(
R, R̂

)
.

Proof. If U = 0 then R̂ = R always works. If U > 0, then set S = {⋆} and A = {a, b, c}. This
determines τ and µ0. Define R(x) := R(⋆, x, ⋆) for any action x ∈ A. Let R(a) > R(b) be arbitrary
and set

R(c) := R(a)− R(a)−R(b)

U
≤ R(b).

Define

R̂(a) := R̂(b) :=
R(a) +R(b)

2
, R̂(c) := R(c).

For a policy π, define π(x) := π(x | ⋆) for any action x ∈ A and set the policy π̂ by π̂(b) = 1.

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2025

We obtain: ∥∥R⃗− ⃗̂
R
∥∥ =

√(
R(a)− R̂(a)

)2
+
(
R(b)− R̂(b)

)2
+
(
R(c)− R̂(c)

)2
=

1

2
·
√(

R(a)−R(b)
)2

+
(
R(b)−R(a)

)2
=

1√
2
·
(
R(a)−R(b)

)
= U · R(a)−R(c)√

2

= U · maxR−minR√
2

= U ·
(1− γ) ·

(
max JR −min JR

)
√
2

.

Furthermore, we have

RegR (π̂) =

1
1−γ ·R(a)− 1

1−γ ·R(b)
1

1−γ ·R(a)− 1
1−γ ·R(c)

= U.

This shows

U = RegR (π̂) =

√
2

(1− γ) ·
(
max JR −min JR

) · ∥∥R⃗− ⃗̂
R
∥∥.

We are done if we can show that proj ⃗̂
R
R⃗ =

⃗̂
R. This is equivalent to

⃗̂
R · R⃗ =

∥∥ ⃗̂R∥∥2,
which is in turn equivalent to

⃗̂
R ·
[
R⃗− ⃗̂

R
]
= 0.

This can easily be verified.

Finally, for the claim about the data distribution, simply set D(a) = D(b) = D(c) = 1
3 . Then one

can easily show that

√
2 ·
∥∥R⃗− ⃗̂

R
∥∥ = R(a)−R(b) =

dD(R, R̂)

min(s,a)∈S×A D(s, a)
.

That shows the result.

D.3 SAFE OPTIMIZATION VIA APPROXIMATED CHOICE PROBABILITIES

In this section, we will show that for any chosen upper regret bound U , there is an ϵ > 0 s.t. if the
choice probabilities of R̂ are ϵ-close to those of R, the regret of an optimal policy for R̂ is bounded
by U .

Assume a finite time horizon T . Trajectories are then given by ξ = s0, a0, s1, . . . , aT−1, sT . Let Ξ
be the set of all trajectories of length T . Let D ∈ ∆(Ξ) be a distribution. Assume that the human has
a true reward function R and makes choices in trajectory comparisons given by

PR

(
1 | ξ1, ξ2

)
=

exp
(
G(ξ1)

)
exp

(
G(ξ1)

)
+ exp

(
G(ξ2)

) . (114)

Here, the return function G is given by

G(ξ) =

T−1∑
t=0

γtR(st, at, st+1).

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2025

We can then define the choice distance of proxy reward R̂ to true reward R as

dDKL(R, R̂) := Eξ1,ξ2∼D×D

[
DKL

(
PR

(
· | ξ1, ξ2

) ∥∥ PR̂

(
· | ξ1, ξ2

))]
Here, DKL

(
PR

(
· | ξ1, ξ2

) ∥∥ PR̂

(
· | ξ1, ξ2

))
is the Kullback-Leibler divergence of two binary

distributions over values 1, 2. Explicitly, for P := PR

(
· | ξ1, ξ2

)
and similarly P̂ , we have

DKL

(
P ∥ P̂

)
= P (1) log

P (1)

P̂ (1)
+
(
1− P (1)

)
log

1− P (1)

1− P̂ (1)

= −
[
P (1) log P̂ (1) +

(
1− P (1)

)
log
(
1− P̂ (1)

)]
−H

(
P (1)

)
.

(115)

Here, H(p) := −
[
p log p+ (1− p) log(1− p)

]
is the binary entropy function.

Fix in this whole section the true reward function R with max JR ̸= min JR in a fixed MDP.

The goal of this section is to prove the following proposition:

Proposition D.14. Let U ∈ (0, 1]. Then there exists an ϵ > 0 such that for all R̂ with

dDKL(R, R̂) < ϵ

and all π̂ ∈ Π∗(R̂) we have RegR (π̂) < U .

We prove this by chaining together four lemmas. The first of the four lemmas needs its own lemma,
so we end up with five lemmas overall:

Lemma D.15. Assume R, R̂ are two reward functions and π a policy. Then∣∣JR(π)− J R̂(π)
∣∣ ≤ max

ξ∈Ξ

∣∣G(ξ)− Ĝ(ξ)
∣∣.

Proof. We have ∣∣JR(π)− J R̂(π)
∣∣ = ∣∣D̃π ·

(
G− Ĝ

)∣∣
=

∣∣∣∣∣∑
ξ∈Ξ

D̃π(ξ) ·
(
G(ξ)− Ĝ(ξ)

)∣∣∣∣∣
≤
∑
ξ∈Ξ

D̃π(ξ) ·
∣∣G(ξ)− Ĝ(ξ)

∣∣
≤ max

ξ∈Ξ

∣∣G(ξ)− Ĝ(ξ)
∣∣ ·∑

ξ∈Ξ

D̃π(ξ)

= max
ξ∈Ξ

∣∣G(ξ)− Ĝ(ξ)
∣∣

In the last step, we used that distributions sum to one.

Lemma D.16. Let U ∈ (0, 1]. Then there exists σ(U) > 0 such that for all R̂ and π̂ ∈ Π∗(R̂) for
which there exists c ∈ R such that maxξ∈Ξ

∣∣Ĝ(ξ)−G(ξ)− c
∣∣ < σ(U), we have RegR (π̂) < U .

Concretely, we can set σ(U) := max JR−min JR

2 · U .

Proof. Set σ(U) as stated and let R̂, π̂ and c have the stated properties. The regret bound we want to
show is equivalent to the following statement:

JR(π̂) > max JR −
(
max JR −min JR

)
· U = max JR − 2σ(U). (116)

Let c̃ be the constant such that Ĝ − c is the return function of R̂ − c̃. Concretely, one can set
c̃ = 1−γ

1−γT+1 · c. Lemma D.15 ensures that

JR(π̂) > J R̂−c̃(π̂)− σ(U). (117)

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2025

Now, let π be an optimal policy for R. Again, Lemma D.15 ensures

max JR = JR(π) < J R̂−c̃(π) + σ(U) ≤ J R̂−c̃(π̂) + σ(U). (118)
In the last step, we used that π̂ is optimal for R̂ and thus also R̂ − c̃. Combining Equations (117)
and (118), we obtain the result, Equation (116).

Lemma D.17. For q ∈ (0, 1), define gq : (−q, 1− q)→ R by

gq(x) := log
q + x

1− (q + x)
.

Then for all σ > 0 there exists δ(q, σ) > 0 such that for all x ∈ (−q, 1− q) with |x| < δ(q, σ), we
have |gq(x)− gq(0)| < σ.

Concretely, one can choose

δ(q, σ) :=
(
exp(σ)− 1

)
·min

{
1

1
q + exp(σ)

1−q

,
1

1
1−q + exp(σ)

q

}

Proof. If one does not care about the precise quantification, then the result is simply a reformulation
of the continuity of gq at the point x0 = 0.

Now we show more specifically that δ(q, σ), as defined above, has the desired property. Namely,
notice the following sequence of equivalences (followed by a one-sided implication) that holds
whenever x ≥ 0:∣∣gq(x)− gq(0)

∣∣ < σ ⇐⇒ log
(q + x) · (1− q)(
1− (q + x)

)
· q

< σ

⇐⇒ (q + x) · (1− q)(
1− (q + x)

)
· q

< exp(σ)

⇐⇒ (q + x) < (1− q − x) · q

1− q
· exp(σ)

⇐⇒
(
1 +

q

1− q
· exp(σ)

)
· x < q ·

(
exp(σ)− 1

)
⇐⇒ x <

exp(σ)− 1
1
q + exp(σ)

1−q

⇐= |x| < δ(q, σ).

In the first step, we used the monotonicity of gq to get rid of the absolute value. Similarly, whenever
x ≤ 0, we have ∣∣gq(x)− gq(0)

∣∣ < σ ⇐⇒ x >
1− exp(σ)
1

1−q + exp(σ)
q

⇐= |x| < δ(q, σ).

This shows the result.

Lemma D.18. For q ∈ (0, 1), define fq : (0, 1)→ R by
fq(p) := −

[
q log p+ (1− q) log(1− p)

]
.

Then for all δ > 0 there exists µ(δ) > 0 such that for all p ∈ (0, 1) with fq(p) < H(q) + µ(δ), we
have |p− q| < δ. Concretely, one can choose µ(δ) := 2δ2.

Proof. Let δ > 0 and define µ(δ) := 2δ2. Assume that fq(p) < H(q)+µ(δ). By Pinker’s inequality,
we have

2(p− q)2 ≤ q log
q

p
+ (1− q) · log 1− q

1− p

= −H(q) + fq(p)

< µ(δ)

= 2δ2.

Consequently, we have |p− q| < δ.

69

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2025

Lemma D.19. Define fq(p) as in Lemma D.18. Then for all µ > 0 there exists ϵ(µ) > 0 such that
for all R̂ with dDKL(R, R̂) < ϵ(µ), we have the following for all ξ1, ξ2 ∈ Ξ:

fPR(1|ξ1,ξ2)
(
PR̂(1 | ξ1, ξ2)

)
< H

(
PR(1 | ξ1, ξ2)

)
+ µ.

Concretely, we can set ϵ(µ) := µ ·minξ1,ξ2∈Ξ D(ξ1) ·D(ξ2)

Proof. We have the following for all ξ1, ξ2 ∈ Ξ:

µ ·min
ξ,ξ′

D(ξ) ·D(ξ) = ϵ(µ)

> dDKL(R, R̂)

= Eξ,ξ′∼D×D

[
DKL

(
PR

(
· | ξ, ξ′

) ∥∥ PR̂

(
· | ξ, ξ′

))]
≥
(
min
ξ,ξ′

D(ξ) ·D(ξ′)
)
·DKL

(
PR

(
· | ξ1, ξ2

) ∥∥ PR̂

(
· | ξ1, ξ2

))
Now, Equation (115) shows that

DKL

(
PR

(
· | ξ1, ξ2

) ∥∥ PR̂

(
· | ξ1, ξ2

))
= fPR(1|ξ1,ξ2)

(
PR̂(1 | ξ1, ξ2)

)
−H

(
PR(1 | ξ1, ξ2)

)
.

The result follows.

Corollary D.20. Let σ > 0. Then there exists ϵ := ϵ(σ) > 0 such that dDKL(R, R̂) < ϵ implies that
there exists c ∈ R such that

∥∥G− (Ĝ− c
)∥∥

∞ < σ.

Proof. Set
δ := min

ξ1,ξ2∈Ξ×Ξ
δ
(
PR(1 | ξ1, ξ2), σ

)
, µ := µ(δ), ϵ := ϵ(µ),

with the constants satisfying the properties from Lemmas D.17, D.18, and D.19. Now, let R̂ be such
that dDKL(R, R̂) < ϵ.

First of all, Lemma D.19 ensures that

fPR(1|ξ1,ξ2)
(
PR̂(1 | ξ1, ξ2)

)
< H

(
PR(1 | ξ1, ξ2)

)
+ µ

for all ξ1, ξ2 ∈ Ξ. Then Lemma D.18 shows that∣∣PR̂(1 | ξ1, ξ2)− PR(1 | ξ1, ξ2)
∣∣ < δ

for all ξ1, ξ2 ∈ Ξ. From Lemma D.17, we obtain that∣∣∣∣gPR(1|ξ1,ξ2)

(
PR̂

(
1 | ξ1, ξ2

)
− PR

(
1 | ξ1, ξ2

))
− gPR(1|ξ1,ξ2)(0)

∣∣∣∣ < σ (119)

for all ξ1, ξ2 ∈ Ξ. Now, note that

gPR(1|ξ1,ξ2)

(
PR̂

(
1 | ξ1, ξ2

)
− PR

(
1 | ξ1, ξ2

))
= gPR̂(1|ξ1,ξ2)(0).

Furthermore, for R′ ∈ {R, R̂}, Equation (114) leads to the following computation:

gPR′ (1|ξ1,ξ2)(0) = log
PR′(1 | ξ1, ξ2)
PR′(2 | ξ1, ξ2)

= log
exp

(
G′(ξ1)

)
exp

(
G′(ξ2)

)
= G′(ξ1)−G′(ξ2).

Therefore, Equation (119) results in∣∣∣(Ĝ(ξ1)−G(ξ1)
)
−
(
Ĝ(ξ2)−G(ξ2)

)∣∣∣ = ∣∣∣(Ĝ(ξ1)− Ĝ(ξ2)
)
−
(
G(ξ1)−G(ξ2)

)∣∣∣ < σ

for all ξ1, ξ2 ∈ Ξ. Now, let ξ∗ ∈ Ξ be any reference trajectory. Define c := Ĝ(ξ∗)−G(ξ∗). Then
the preceding equation shows that ∣∣Ĝ(ξ)−G(ξ)− c

∣∣ < σ

for all ξ ∈ Ξ. That shows the claim.

70

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2025

Proof of Proposition D.14. We prove Proposition D.14 by chaining together the constants from the
preceding results. We have U ∈ (0, 1] given. Then, set σ := σ(U) and ϵ := ϵ(σ) as in Lemma D.16
and Corollary D.20. Now, let R̂ be such that dDKL(R, R̂) < ϵ and let π̂ ∈ Π∗(R̂). Our goal is to show
that RegR (π̂) < U .

By Corollary D.20, there is c > 0 such that maxξ∈Ξ

∣∣Ĝ(ξ) − G(ξ) − c
∣∣ < σ. Consequently,

Lemma D.16 ensures that RegR (π̂) < U . This was to show.

D.4 POSITIVE RESULT FOR REGULARIZED RLHF

Here, we present simple positive results for regularized RLHF, both in a version with the expected
reward distance, and in a version using the distance in choice probabilities. Some of it will directly
draw from the positive results proved before.
Theorem D.21. Let λ ∈ (0,∞) be given and fixed. Assume we are given an MDP ⟨S,A, τ, µ0, R, γ⟩,
and a data distribution D ∈ S×A which assigns positive probability to all transitions, i.e., ∀(s, a) ∈
S×A, D(s, a) > 0. Let ω : Π → R be a continuous regularization function that has a reference
policy πref as one of its minima.6 Assume that πref is not (λ, ω)-optimal for R and let L =

RegR (πref). Then there exists ϵ > 0 such that D ∈ safe(R, ϵ, L, λ, ω).

Proof. We prove the theorem by showing that for every D ∈ ∆(S×A) such that D(s, a) > 0 for
all (s, a) ∈ S×A, there exists ϵ > 0 such that for all R̂ with E(s,a)∼D

[
|R̂(s,a)−R(s,a)|

range R

]
< ϵ and

all policies π̂ that are (λ, ω)-RLHF optimal wrt. R̂, we have RegR (π̂) < RegR (πref). Because
L = RegR (π̂) < RegR (πref) this proves that then D ∈ safe(R, ϵ, L, λ, ω).

The proof is an application of Berge’s maximum Theorem, Theorem D.3. Namely, define the function

f : R×Π→ R, f(R, π) := JR(π)− λω(π).

Furthermore, define the correspondence C : R⇒ Π as the trivial map C(R) = Π. Let f∗ : R → R
map a reward function to the value of a (λ, ω)-RLHF optimal policy, i.e., f∗(R) := maxπ∈Π f(R, π).
Define C∗ as the corresponding argmax, i.e., C∗(R) :=

{
π | f(R, π) = f∗(R)

}
. Assume on R

we have the standard Euclidean topology. Since ω is assumed continuous and by Proposition D.4
also J is continuous, it follows that f is continuous. Thus, Theorem D.3 implies that C∗ is upper
hemicontinuous, see Definition D.2. The rest of the proof is simply an elaboration of why upper
hemicontinuity of C∗ gives the result.

Now, define the set
V :=

{
π′ ∈ Π | RegR (π′) < RegR (πref)

}
.

Since the regret is a continuous function, this set is open. Now, let π ∈ C∗(R) be (λ, ω)-RLHF
optimal with respect to R. It follows

JR(π) = f(R, π) + λω(π)

> f(R, πref) + λω(πref)

= JR(πref),

where we used the optimality of π for f , that πref is not optimal for it, and that πref is the minimum
of ω. So overall, this shows C∗(R) ⊆ V .

Since C∗ is upper hemicontinuous, this means there exists an open set U ⊆ R with R ∈ U and
such that for all R̂ ∈ U , we have C∗(R̂) ⊆ V . Let ϵ > 0 be so small that all reward functions R̂
with E(s,a)∼D

[
|R̂(s,a)−R(s,a)|

range R

]
< ϵ satisfy R̂ ∈ U — which exists since U is open in the Euclidean

topology. Then for all such R̂ and any policy π̂ that is (λ, ω)-RLHF optimal wrt. R̂, we by definition
have

π̂ ∈ C∗(R̂) ⊆ V,
and thus, by definition of V , the desired regret property. This was to show.

6E.g., if πref(a | s) > 0 for all (s, a) ∈ S×A and ω(π) := DKL (π||πref), then the minimum is given by
πref .

71

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2025

Now, we show the same result, but with the choice distance instead of expected reward distance:
Theorem D.22. Let λ ∈ (0,∞) be given and fixed. Assume we are given an MDP ⟨S,A, τ, µ0, R, γ⟩,
and a data distribution D ∈ S×A which assigns positive probability to all transitions, i.e., ∀(s, a) ∈
S×A, D(s, a) > 0. Let ω : Π → R be a continuous regularization function that has a reference
policy πref as one of its minima. Assume that πref is not (λ, ω)-optimal for R and let L = RegR (πref).
Then there exists ϵ > 0 such that D ∈ safeDKL

(
R, ϵ, L, λ, ω

)
.

Proof. Let G := RΞ be the vector space of return functions, which becomes a topological space when
equipped with the infinity norm. Define the function

f : G ×Π→ R, f(G, π) := JG(π)− λω(π),

where JG(π) := Eξ∼π [G(ξ)] is the policy evaluation function of the return function G. f is
continuous. Define the correspondence C : G ⇒ Π as the trivial map C(G) = Π. Let f∗ : G → R
map a return function to the value of a (λ, ω)-optimal policy, i.e., f∗(G) := maxπ∈Π f(G, π). Define
C∗ as the corresponding argmax. Then Theorem D.3 implies that C∗ is upper hemicontinuous, see
Definition D.2. As in the previous proof, the rest is an elaboration of why this gives the desired result.

Set G as the return function corresponding to R. Define

V :=
{
π′ ∈ Π | RegR (π′) < L

}
.

We now claim that C∗(G) ⊆ V . Indeed, let π ∈ C∗(G). Then

JR(π) = f(G, π) + λω(π)

> f(G, πref) + λω(πref)

= JR(πref).

Note that we used the optimality of π for f , that πref is not optimal for it, and also that πref minimizes
ω by assumption. This shows RegR (π) < RegR (πref) = L, and thus the claim.

Since C∗ is upper hemicontinuous and V an open set, this implies that there exists σ > 0 such that
for all Ĝ ∈ G with

∥∥G− Ĝ
∥∥
∞ < σ, we have C∗(Ĝ) ⊆ V .

Now, define ϵ := ϵ(σ) as in Corollary D.20 and let R̂ be any reward function with dDKL(R, R̂) < ϵ.
Then by that corollary, there exists c ∈ R such that

∥∥G− (Ĝ− c
)∥∥

∞ < σ. Consequently, we have
C∗(Ĝ) = C∗(Ĝ− c) ⊆ V by what we showed before, which shows the result.

72

	Extended related work
	Introduction
	Preliminaries
	Problem formalization
	The mean-squared error as an alternative distance measure
	Transfer of positive results
	Transfer of the remaining results results

	A conceptual example of overoptimization concerns
	Specifying the contextual bandit
	Regret analysis for always-helping policy
	Reward learning analysis

	Existence of error-regret mismatch
	Assumptions
	Intuitive unregularized existence statement
	General existence statements
	More interpretable statement
	Deriving the conditions on D
	Algorithm to compute the conditions on D
	Working example of computing matrix M
	Building up on TheoremRef

	Existence of negative results in the RLHF setting
	Generalization of the error measurement: Overview
	Generalization of the error measurement: Proofs
	RLHF bandit formulation
	Safe and unsafe data distributions for RLHF
	Negative results
	Another negative result with regularization

	A regularized negative result for general MDPs

	Requirements for safe optimization
	Applying Berge's maximum theorem
	Elementary proof of a regret bound
	Safe optimization via approximated choice probabilities
	Positive result for regularized RLHF

