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Abstract

Sequence-to-sequence Neural Machine Trans-001
lation (NMT) models have achieved excellent002
performance. However, the NMT decoder003
only makes predictions based on the source004
and the target historical context, ignores the005
target future information completely, leading006
to a problem that NMT does not consider po-007
tential future information when making de-008
cisions. To alleviate this problem, we pro-009
pose a simple and effective Future-fused NMT010
model called FUNMT, which introduces a re-011
verse decoder to explicitly model the target012
future information, then adopts an agreement013
mechanism to enable the forward decoder to014
learn this future information. Empirical stud-015
ies on multiple benchmarks show that our pro-016
posed model significantly improves translation017
quality.018

1 Introduction019

Recently, NMT models (Sutskever et al., 2014;020

Bahdanau et al., 2014; Wu et al., 2016; Gehring021

et al., 2017; Vaswani et al., 2017) have become the022

most widely-used models and occupying a dom-023

inant position. NMT models treat the Machine024

Translation (MT) as a sequence-to-sequence task025

and apply an encoder-decoder framework. The de-026

coder predicts the translation word by word from027

left to right, all tokens after each step in the target028

sequence are masked to ensure the autoregressive-029

ness (Gu et al., 2018) of the decoder during training.030

However, given the bilingual parallel corpus, it is031

obvious that the target future information is observ-032

able for each training step. The autoregressiveness033

makes the NMT model totally ignore the explicit034

future information of the target sequence in the035

training set. Moreover, although the source sen-036

tence already contains all the semantic information,037

it may not be enough to make predictions only us-038

ing the source context and the partial translation039

as the conditions (Zhang et al., 2019; Duan et al.,040

Source-1 wǒ shì jı̄ngcháng zuò zhè chē

Reference I often take this train .

Trans.Big I often sit in this car .

Source-2 shípı̌n ānquán jì yìngyòng yíngyǎng
zhōngxı̄n shì měiguó wèishēng yǔ
gōngzhòng fúwùbù zhı̄xià de zhèngfǔ
jı̄guān .

Reference cfsan is a government body formed under
the united states department of health and
human services .

Trans.Big the centre is a government agency under
the us department of health and public ser-
vice .

Table 1: Translation examples showing the insuffi-
ciency of translating source sentences based only on
the source context and partially-generated translations.

2020). Sometimes the potential future information 041

of the target sequence also needs to be considered. 042

To show the importance of unseen information in 043

the target sequence, we select two examples from 044

the training set, as shown in Table 1. Even if the 045

entire source sentence Source-1 in the first exam- 046

ple is exposed to the Transformer-big 1 (denoted 047

as Trans.Big), the word “zuò” is incorrectly trans- 048

lated as “sit”, which resulted in improper subse- 049

quent translation “sit in this car” (red part). When 050

the model predict the third token, the unseen token 051

“train” in the target sequence should also be consid- 052

ered to help generate commonly used combinations 053

“take · · · train”. Similarly, for the second example 054

Source-2, the NMT model incorrectly translates 055

the blue part into “the centre” and lost lots of in- 056

formation. We claim that the above problem stems 057

from the fact that the model lacks ability to control 058

the global situation when making predictions at 059

each step. It tends to select high-frequency tokens 060

in the training set, but these tokens may have a 061

negative impact on the generation of subsequent 062

translations. To mitigate this problem, the most in- 063

tuitive approach is to predict the translation based 064

1The model is trained on the NIST Chinese-English dataset
with model average

1



on the context of the entire source and target se-065

quences. But this will make the training fall into a066

non-autoregressive mode and lead to messy trans-067

lations at inference, which is obviously unfeasible.068

In this paper, we propose a simple and effec-069

tive framework that can explicitly model the entire070

future information of the target sequence. Con-071

cretely, we introduce a reverse decoder to perform072

left-masked self-attention so that the representa-073

tion learned by each step contains target future074

information. A future agreement mechanism is de-075

signed to integrate the learned future context into076

the Transformer decoder, so that the decoder could077

leverage the potential future information at infer-078

ence. The effect is that although the model chooses079

a word with relatively small short-term benefits080

when making a decision at a certain step, the global081

benefits brought by it will be relatively large. The082

proposed model mainly contributes to making the083

Transformer encoder integrate the target future in-084

formation captured by an introduced reverse de-085

coder, without affecting the translation efficiency086

at inference. Compared with related works, our087

model can achieve a better trade-off between infer-088

ence efficiency and translation performance. Em-089

pirical experiments show that our proposed model090

can significantly outperform the strong baseline091

models and related models.092

2 Background093

Our method can be plugged into most sequence-to-094

sequence frameworks. Without loss of generality,095

we take the Transformer model as an example to096

introduce our method. Assuming that one of the097

sentence pairs in the training set consists of the098

source sequence x and the observed translation y∗099

x =
{
x1, · · · , x|x|

}
; y∗ =

{
y∗1 , · · · , y∗|y∗|

}
(1)100

Encoder In each layer of the L stacked same lay-101

ers, the output of Self-Attention sub-layer (SAtt)102

is fed into the feed-forward sub-layer (FFN) 2.103

The output of each sub-layer can be formatted as104

LN(x+sublayer(x)), where LN(·) is Layer Nor-105

malization (Ba et al., 2016) and + means the Resid-106

ual Connection.107

hl = LN
(
hl−1 + SAtt

(
hl−1, hl−1, hl−1

))
; (2)108

hl = LN
(
hl + FFN

(
hl
))

(3)109

2Refer to Vaswani et al. (2017) for the details about SAtt
and FFN, we omit dropout for convenience.

Note that x with position encoding is used as h0 110

and hl means the output of the lth layer. 111

Decoder In each layer of another L stacked same 112

layers, besides the two sub-layers applied in each 113

encoder layer, a Cross-Attention sub-layer (CAtt) 114

is employed to extract source information (called 115

context vector). Assuming that slj represents the 116

encoding of the jth word in the lth layer. 117

slj = LN
(
sl−1
<j + SAtt

(
sl−1
<j , s

l−1
<j , s

l−1
<j

))
; (4) 118

slj = LN
(
slj + FFN

(
slj

))
; (5) 119

slj = LN
(
slj +CAtt

(
slj , h

L, hL
))

(6) 120

Due to the autoregressive property, at the jth step, 121

the Self-Attention sub-layer only attends to all pre- 122

vious positions. For convenience, we express the 123

calculation of the multilayer decoder as 124

sl2j = Decl1→l2
(
sl1<j , h

L, hL
)

(7) 125

where l2 > l1, the calculation for each layer is the 126

same as Eq. 5∼6 and sl2j represents the hidden state 127

output by the lth2 layer at the jth step. The word 128

probability distribution Pj over all the words in the 129

target vocabulary is estimated conditioned on sLj . 130

Pj = softmax
(
Wss

L
j + bs

)
(8) 131

where the trainable parameters Ws and bs map sLj 132

to a vector with the size of vocabulary. 133

Training The objective is to maximize the prob- 134

ability of the ground truth sequence by Maximum 135

Likelihood Estimation (MLE) 136

L (θ) = −
∑|y∗|

j=1
logPj [y

∗
j ] (9) 137

where |y∗| indicates the length of the ground truth 138

translation y∗, Pj [y
∗
j ] is the predicted probability 139

of generating the golden word y∗j at the jth step, 140

θ represents all trainable parameters related to the 141

naive translation model. 142

3 Proposed Model 143

The proposed FUNMT consists of three modules: 144

Future-matched Decoder (FmDecoder), Reverse 145

Decoder (RDecoder) and Future-fused Decoder 146

(FfDecoder). The Transformer decoder is com- 147

posed of FmDecoder and FfDecoder. 148
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Naive Loss

Reverse Loss
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Add & Norm
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Multi-Head 
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Positional Encoding

Embedding

x =
{
x1, · · · , x|x|

}

Add & Norm

Feed Forward

Add & Norm

Positional Encoding

Embedding
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Multi-Head 
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Left Masked

Multi-Head

Self-Attention

y∗ =
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y∗1 , · · · , y∗|y∗|

}

Add & Norm
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Add & Norm

Positional Encoding

Embedding

Add & Norm
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Right Masked

Multi-Head

Self-Attention

y∗ =
{
y∗1 , · · · , y∗|y∗|

}

Future-fused Decoder

Encoder

L× L×

Decoder

FmDecoder RDecoder

(L− k)×

k×

Figure 1: The architecture diagram of our proposed FUNMT model. “Add” and “Norm” represent Residual
Connection and Layer Normalization respectively, and other terms are referred in the model section.

3.1 Future-matched Decoder149

We delicately design the FmDecoder so that the150

Transformer model has the ability to perceive the151

future context in the target sequence, while ensur-152

ing the autoregressiveness and decoding efficiency153

of the decoder. Assuming that both naive Trans-154

former encoder and decoder 3 have L same layers,155

we use the first k layers as the FmDecoder.156

According to the Eq. 7, the hidden state output157

by FmDecoder at the jth step can be calculated as:158159

fkj = Dec0→k
(
f0≤j , h

L, hL
)

(10)160

Consistent with the naive Transformer decoder, at161

the jth step, FmDecoder performs Right Masked162

Multi-Head Self-Attention with all subsequent to-163

kens (y∗>j) masked, as shown in the green upper164

triangular matrix in the left box of Figure 1. The in-165

put f0≤j of the FmDecoder is the embedding of y∗166

with positional encoding. FmDecoder aims to fit167

the future context information explicitly modelled168

by Reverse Decoder through a Future Agreement169

mechanism. Next, we elaborate on the Reverse170

Decoder and the Future Agreement mechanism.171

3.2 Reverse Decoder172

Different from FmDecoder, RDecoder executes173

Left Masked Multi-Head Self-Attention and masks174

all previous tokens (y∗<j) out, as shown in the green175

lower triangular matrix in the right box of Figure 1.176

3Here we refer to the original Transformer encoder and de-
coder as naive Transformer encoder and decoder respectively.

The jth token is only associated with all subse- 177

quent tokens (y∗>j), which therefore represents the 178

contextual information of the future. 179

rLj = LN
(
rL−1
≥j + SAtt

(
rL−1
>j , rL−1

>j , rL−1
>j

))
(11) 180

181rLj = LN
(
rLj + FNN(rLj )

)
(12) 182

183rLj = LN
(
rLj +CAtt

(
rLj , h

L, hL
))

(13) 184

where L denotes the layers number of the RDe- 185

coder. rLj , the hidden state produced by the last 186

layer, can be reasonably regarded as the future con- 187

text including information of y∗>j . 188

RDecoder is also optimized to predict the ground 189

truth target sequence. The calculation method of 190

Reverse Loss is similar to Eq. 8 and Eq. 9: 191

P r
j = softmax

(
Wrr

L
j + br

)
(14) 192

L (θr) = −
∑|y∗|

j=1
logP r

j [y
∗
j ] (15) 193

where the trainable parameters Wr and br map rLj 194

to a vector with the size of vocabulary. P r
j is the 195

probability distribution of the jth token predicted 196

by RDecoder. 197

3.3 Future Agreement 198

Inspired by the work of Liu et al. (2017) which min- 199

imizes the Mean Squared Error (MSE) between the 200

hidden vectors produced by the decoder and the 201

future vectors on the Language Model (LM) task to 202

make the decoder consider the future information, 203
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we analogously minimize the MSE between the hid-204

den state fkj output by FmDecoder and the future205

context rLj produced by RDecoder to let FmDe-206

coder fuse the future information. The MSE loss is207

defined as:208

L (θa) = 1

m

∑|y∗|

j=1

∥∥∥fkj − rLj
∥∥∥
2

(16)209

where m is the dimension of future context vector.210

3.4 Future-fused Decoder211

Except for the input and the number of layers, the212

FfDecoder module is exactly the same as the naive213

Transformer decoder. Both autoregressively en-214

code the target sequence from left to right, which215

means that only the information before each token216

is considered. In our model, we only use the last217

L− k layers of the naive Transformer decoder as218

FfDecoder. We define the input of FfDecoder as219

sk. Most directly, we take the output of the FmDe-220

coder as the input of the FfDecoder (sk = fk). As221

mentioned earlier, because we minimize the MSE222

optimization objective to make the output of the223

FmDecoder match the future context, although the224

future context information is actually inaccessible225

at inference, our FmDecoder has approximately226

learned the potential future information in the train-227

ing set.228

3.5 Training Objective229

We finally minimize the following loss function:230

L(θ) = (1−λr)∗L
(
θf
)
+λr ∗L (θr)+λa ∗L (θa) (17)231

where λr and λa are used to balance the three
losses. In our experiments, we explore the hyper-
parameters λr on the validation set. Besides, we de-
sign an on-the-fly phased training strategy to make
the model fully leverage future information. In de-
tail, the Transformer decoder and RDecoder are
synchronously optimized from scratch in the first
stage. When the training reaches the Eth epoch 4,
the MSE constraint starts to take effect and affects
the training, making FmDecoder start learning the
future context. We design λa as follows:

λa =

{
0 if eidx < E

1 if eidx ≥ E

where eidx denotes the index of epoch.232

4Additional experiments show that different E values have
a weak effect on the translation results. We empirically set E
as 1/7 of the maximum epoch. Thus, strictly speaking, E is
not a hyper-parameters.

4 Related Works 233

Lots of related works conduct different strategies 234

to leverage future information, which are listed: 235

Future Modeling Liu et al. (2017) embedded 236

the rest of the sequence into future vectors and 237

incorporated these future vectors with the LSTM- 238

based LM. Serdyuk et al. (2018) proposed to en- 239

courage generative RNNs to plan ahead and ease 240

modeling of long-term dependencies by using twin 241

networks. These works considered the future infor- 242

mation on the tasks of LM, speech recognition and 243

image capture respectively, and are not applicable 244

to the NMT model. Zheng et al. (2018) and Zheng 245

et al. (2019) modeled translated past contents and 246

untranslated future contents on the source side for 247

NMT model. Comparing to them, we introduce a 248

different method to model the future information 249

on the target side. Duan et al. (2020) estimated 250

the future cost based on the current generated tar- 251

get word by previewing the translation cost of next 252

target word at the current time-step. Our proposed 253

method can model the entire target future informa- 254

tion, not just the next one word. 255

Knowledge distillation Zhang et al. (2019) dis- 256

tilled the future information produced by R2L de- 257

coder through KL divergences and alleviated the er- 258

ror propagation problem during generation. Zhang 259

et al. (2019) presented a future-aware knowledge 260

distillation framework which enables the unidirec- 261

tional decoder to explore the future context for 262

word prediction. They also use the entire future 263

information, but either the model is not robust 264

enough, or two decoders need to be retained at 265

inference, resulting in a worse trade-off between 266

translation performance and efficiency. 267

Bidirectional Decoding Zhang et al. (2018) 268

equipped RNN-based encoder-decoder NMT 269

framework with a backward decoder and fully lever- 270

aged the target-side context. Zhou et al. (2019) pro- 271

posed a synchronous bidirectional NMT model that 272

adopts one decoder to generate outputs with left- 273

to-right and right-to-left directions simultaneously 274

and interactively. Although these works improved 275

translation performance, they need two-pass decod- 276

ing directly or indirectly. While our method can 277

achieve better translation quality without affecting 278

translation efficiency. 279

Reinforcement Learning There are also a line 280

of works to estimate a score representing future in- 281

formation through reinforcement learning to guide 282

the prediction of the current step. Li et al. (2017) 283
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Model NIST Zh⇒En
MT03 MT04 MT05 MT06 MT08 Avg.

Transformer-base 45.29 45.31 45.18 44.31 35.39 43.10
+ FUNMT 46.17∗ 47.19† 46.58† 45.55† 36.35 44.37

Transformer-base + ensemble 45.83 46.41 46.72 45.86 36.75 44.31
+ FUNMT 47.21∗ 48.14† 47.77 46.95∗ 38.06† 45.63

Transformer-big 46.88 46.63 46.60 45.69 37.36 44.63
+ FUNMT 48.46† 48.31† 48.95† 46.91† 38.46† 46.22

Transformer-big + ensemble 46.82 47.61 47.94 46.73 38.18 45.46
+ FUNMT 49.17† 48.65† 49.14∗ 47.89 39.39† 46.85

Table 2: Translation performance of different models on the NIST Zh⇒En translation task. “∗” and “†” indicate
statistically significant difference with p<0.05 and p<0.01 from Transformer respectively.

introduced a simple actor-critic model, where the284

actor employed the MLE-based token generation285

policy and the critic acted as a value function that286

estimates the future value of the desired property287

for decision making. Bahdanau et al. (2016) in-288

troduced a critic network that is trained to predict289

the value of an output token, given the policy of an290

actor network. He et al. (2017) developed a new291

decoding scheme for NMT, which considers not292

only the local conditional probability of a candi-293

date word, but also its long-term reward for future294

decoding predicted by a proposed value network.295

Generally, equipped with RL, the RNN-based NMT296

model is difficult to optimize and the performance297

improvement is limited. In addition, it is impracti-298

cal to apply RL to attention-based Transformer, but299

our method is not limited to model architecture.300

5 Experiments301

Datasets For the small-scale scenario, we choose302

IWSLT’14 German⇒English (De⇒En) and AS-303

PEC Chinese⇒Japanese (Zh⇒Jp) translation task,304

which contain 160K and 672K sentence pairs. We305

follow Edunov et al. (2018) and Nakazawa et al.306

(2016) to do data splitting. We employ Byte Pair307

Encoding (BPE) (Sennrich et al., 2016) model308

jointly learned using 10k and 30k merging oper-309

ations for the two language pairs.310

For the middle-scale scenario, we use311

NIST Chinese⇒English (Zh⇒En), WMT’14312

English⇒German (En⇒De) and WMT’17313

English⇒German (En⇒De), containing 1.25M,314

3.9M and 5.2M training samples respectively.315

Sentences are encoded using BPE with 32k, 37k316

and 40k joint merging operations respectively.†317

For the large-scale scenario, we use the WMT’14318

English⇒French (En⇒Fr) dataset with 35.8M319

training samples. BPE model is jointly learned us-320

ing 40k merging operations to generate subwords.321

All datasets except the Zh⇒En are publicly avail- 322

able. For Zh⇒En, the training set is mainly ex- 323

tracted from LDC corpora, and we use the NIST 324

2002 (MT02) test set as the validation set. 325

Setting Our implementation is based on fairseq. 326

The setting transformer_iwslt_de_en is used for 327

both De⇒En and Zh⇒Jp tasks. For Zh⇒En and 328

WMT’14 En⇒De tasks, transformer_wmt_en_de 329

and transformer_vaswani_wmt_en_de_big are 330

used for base and big settings. For En⇒Fr, trans- 331

former_vaswani_wmt_en_fr_big setting is applied. 332

More details about data and model are described in 333

Appendix 6 334

Evaluation Metrics We measure the translation 335

quality with 4-gram BLEU scores (Papineni et al., 336

2002). For IWSLT’14 De⇒En, case-insensitive 337

BLEU score is calculated by multi-bleu.pl. For 338

NIST Zh⇒En, we employ four raw references and 339

compute the case-insensitive BLEU with Sacre- 340

BLEU 5 (Post, 2018). We compute the case- 341

sensitive tokenized BLEU for WMT’14 En⇒De 342

and En⇒Fr. For WMT’17 En⇒De translation task, 343

we do not tokenize the references and calculate the 344

case-sensitive BLEU with SacreBLEU 6. To en- 345

sure comparability, we keep the evaluation metrics 346

consistent with the previous works. 347

5.1 Translation Performance 348

Different Model Architectures We verified the 349

effect of our model on the Transformer base and big 350

settings on the Zh⇒En datasets. To futher make 351

the conclusion convincing, we also explore the im- 352

pact of the single models and averaged models (+ 353

ensemble) for both settings. As shown in Table 2, 354

5BLEU+case.mixed+lang.zh-en+numrefs.4+
smooth.exp+tok.13a+version.1.4.4

6BLEU+case.mixed+lang.en-de+numrefs.1+
smooth.exp+tok.13a+version.1.4.4
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Model WMT14 WMT17 Speed
En⇒De En⇒Fr En⇒De Train Inference

Reproduced Transformer (Vaswani et al., 2017) 28.68 43.35 27.88 - -
+asynchronous bidirectional (Zhang et al., 2018) 28.22 - - -43.0% -63.9%
+future-aware KD (Zhang et al., 2019) 29.42 28.80 -48.8% -52.4%
+synchronous bidirectional (Zhou et al., 2019) 29.21 - - -39.1% -10.5%
+next word prediction (Duan et al., 2020) 29.12 42.02 - -7.9% -0.0%
+our work 29.73† 43.65 28.92† -45.4% -0.0%

Table 3: Comparison with existing works of future modeling on the benchmarking datasets. The value in the speed
column represents the percentage of the drop in training and infer speed compared to the Transformer-big model.
“†” indicates statistically significant difference with p<0.01 from Transformer.

Model De⇒En Zh⇒Jp
Transformer 34.32 49.40

+ FUNMT 35.32 50.06

Table 4: Translation performance on small-scale
IWSLT14 De⇒En and ASPEC Zh⇒Jp datasets.

for Transformer-base, in both cases of using only355

single model and model average, our model can356

bring an average improvement of 1.3 BLEU scores357

to the baseline model on all test sets.358

A similar situation occurs on the Transformer-359

big setting. Our proposed single model brings an360

average improvement of 1.6 BLEU scores on all361

Zh⇒En test sets compared with the baseline model.362

When equipped with the model average technique,363

FUNMT can outperform the baseline system by an364

average of 1.4 BLEU points on all test sets. It can365

also be observed from the Table 2 that in any case,366

our proposed model can significantly and steadily367

improve the baseline model on most test sets.368

Small-Scale Datasets In order to further prove369

the effectiveness of our proposed method, we con-370

duct experiments on two other small-scale datasets.371

Our proposed method also improves the baseline372

model by 1.0 BLEU scores on the IWSLT’14373

De⇒En test set, as shown in Table 4.374

Most languages have a subject-verb-object375

(SVO) syntactic structure, while the most signif-376

icant feature of Japanese is the post-predicate,377

which is the syntactic structure of the subject-378

object-verb (SOV). In view of this, we assume379

that Japanese has a strong long-distance depen-380

dence, and the generation of Japanese is more de-381

pendent on future information. In order to verify382

whether our method is helpful for the translation383

whose target language has the SOV syntactic struc-384

ture, we adopt the ASPEC Zh⇒Jp translation task385

whose target language is Japanese. As shown in386

Table 4, our method has an improvement of 0.7387

BLEU scores on the baseline model.388

Comparison with Existing Work In order to 389

make a fair comparison with the other two related 390

works, we also trained Transformer-base model on 391

the WMT’17 En⇒De dataset, which is exactly the 392

same as that reported in the two related works. All 393

results are listed in Table 3. It can be seen from Ta- 394

ble 3 that our proposed FUNMT improves the base- 395

lines by 1.04 and 0.3 BLEU points on the WMT’14 396

En⇒De and En⇒Fr test sets, respectively. 397

Our work has similar training efficiency to the 398

asynchronous bidirectional work (Zhang et al., 399

2018). However, the two-way decoding results 400

in a decrease in translation speed 7 of 63.9%. Our 401

proposed approach has significant advantages in 402

translation performance and efficiency. 403

Although the method of future-aware KL also 404

makes full use of the target future information 405

and has a significant improvement in translation 406

effect over the baseline system on the WMT’17 407

test set, their proposed method requires two de- 408

coders at inference, so the efficiency of training 409

and decoding is about half reduced. The training 410

efficiency of future-aware KL and the performance 411

on the WMT’17 test set are both comparable to our 412

method, while our method has obvious advantages 413

in inference efficiency compared with it. 414

Although the training efficiency has slightly 415

decreased, the translation quality of our pro- 416

posed FUNMT is 0.72 BLEU higher than the 417

synchronous bidirectional NMT model on the 418

WMT’14 En⇒De test set, and the translation effi- 419

ciency is also superior to synchronous bidirectional 420

NMT model. 421

Compared with the method of next word pre- 422

diction, our training efficiency has no advantage. 423

But Duan et al. (2020) only considers the next one 424

word when predicting the translation, so their work 425

7We compare the reduction of the training/testing speed
of the methods relative to the baseline systems, so even if
the computing environment is different, we claim that the
comparison is fair.
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Models #mistranslated #missed
Transformer-big 27 46

FUNMT 15 32

Table 5: Statistics of mistranslated and under-translated
words on all NIST Zh⇒En test sets.

Figure 2: Transformer vs. FUNMT on NIST Zh⇒En
validation set for different λr values.

is not able to utilize the future information fully. Al-426

though it does not affect the efficiency of inference,427

the performance of translation is 0.71 and 1.63428

BLEU points lower than FUNMT on WMT’14429

En⇒De and En⇒Fr respectively.430

Briefly, our proposed FUNMT can outperform431

all related works on all medium-scale and large-432

scale datasets. Although FUNMT incorporates a433

additional RDecoder during the training process,434

which reduces the training efficiency by 45.4% ,435

RDecoder is not needed at inference, so FUNMT436

has no effect on the inference speed.437

Human Evaluation We conduct human evalua-438

tion on the NIST Zh⇒En test set. We first merge all439

the test sets MT03-08, and then select 50 sentences440

from them to form 50 triples (S, Ta, Tb), where Ta441

and Tb represent the translation generated by the442

baseline and FUNMT respectively. We let people443

who are proficient in English count the number of444

mistranslated and under-translated words in source445

according to Ta and Tb, as shown in Table 5. It can446

be seen that there are fewer words incorrectly trans-447

lated or ignored by FUNMT, which means that the448

fusion of future information can alleviate the phe-449

nomenon of mistranslations and under-translations.450
451

5.2 Ablation Study452

We perform all ablation experiments on the NIST453

Zh⇒En validation set.454

Hyper-parameters λr We first investigate the455

impact of different values of λr on the validation456

set. As shown in Table 2, when λr is equal to 0.5,457

the BLEU score on the validation set reaches the458

maximum. The results are intuitive. When the for-459

ward decoder and the backward decoder are trained460

RDecoder DropNet Constraint BLEU
X × MSE 49.01
X X MSE 48.57
X × KL 48.98

Table 6: Ablation study of the RDecoder, DropNet and
Constraint on NIST Zh⇒En MT02 validation set.

in a balanced manner, FmDecoder can make full 461

use of the future information of the target sequence. 462463

DropNet Since the number of parameters of the 464

Transformer decoder remains invariant, we sus- 465

pect that the decoder’s representation ability is not 466

enough that the representation capacity of the de- 467

coder is not enough to learn the target-side histori- 468

cal and future information simultaneously. In view 469

of this, we fuse y and fk based on DropNet (Zhu 470

et al., 2020) to verify whether the model can be 471

further improved. It can be observed from Table 6 472

that, unfortunately, DropNet does not work in our 473

scenario, but instead reduces the translation per- 474

formance by about 0.5 BLEU points. In our ex- 475

periments, we do not conduct the DropNet-based 476

fusion strategy. 477

KL vs MSE KL divergence has been proven ef- 478

fective as a measure of the similarity between two 479

probability distributions (Zhang et al., 2019; Feng 480

et al., 2020). We also try to replace the MSE con- 481

straint in the Future Agreement module with KL 482

divergence, which means the Eq. 16 is updated to: 483

L
(
θKL

)
=
∑|y∗|

j=1
KL

{
softmax

(
Wff

k
j

)
|| softmax

(
Wrr

L
j

)} (18) 484

where the trainable parameters Wf and Wr are 485

used to map fkj and rLj to vectors with the size 486

of vocabulary. After that, we observe the impact 487

of different constraints on translation performance. 488

Comparing the first and third row in Table 6, we 489

observe that in our scenario, KL divergence does 490

not bring benefits, and the results obtained are very 491

close to the MSE constraints. For all experiments 492

reported in our work, we use MSE constraints. 493

k L− k BLEU
3 3 46.57
4 2 46.56
5 1 46.51

Table 7: Comparison between different layers of FmDe-
coder on the average BLEU of all Zh⇒En test sets.

About k Value We also conduct experiments to 494

explore the effect of different layers of FmDecoder 495
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Source-1 tàiguó dāngjú pàijı̄ cóng jiǎnpǔzhài chèlí tàiqiáo
Reference thai authorities sent planes to evacuate thai nationals from cambodia
Trans.Big thai authorities evacuate thai nationals from cambodia
FUNMT thai authorities [send plane to] evacuate thai from cambodia

Source-2 Zài nóngcūn xiǎng gǎo diǎn wénhuà huódòng , zhǎo diǎn “ lè” zi tài nánle,
Reference It is too difficult to organize some cultural activities , to find some fun in rural areas .
Trans.Big It is too difficult to find some " music " ; in rural areas .
FUNMT It is too difficult to [carry out some cultural activities] in the rural areas .

Source-3 nàijílìyà zhèngfǔ zhèng jiāqiáng gōngzuò , zǔzhı̌ zài fēizhōu dàlù de bìngdú chuánrǎn gěi rénlèi .
Reference the nigerian government is stepping up efforts to prevent the virus on the african continent from spreading to

humans .
Trans.Big the nigerian government is working harder to prevent the virus from spreading to human beings in africa .
FUNMT the nigerian government is stepping up efforts to stop the spread of [the virus across the african continent] to

humans .

Source-4 cháoxiǎn bàndǎo yú yı̄jiǔsìbānián fènliè chéngwéi shíháng zı̄běnzhǔyì de nánhán yǔ gòngchǎnzhǔyì de běihán ,
shuāngfāng céng zài yı̄jiǔwǔ língnián zhì yı̄jiǔwǔsānnián de hánzhàn shíqı̄ xiānghù díduì .

Reference in 1948 , the korean peninsula was split into capitalist south korea and communist north korea. the two sides
engaged in hostile conflict during the 1950-1953 korean war .

Trans.Big in 1948 , the korean peninsula split into a capitalist north korea , where the two sides were hostile to each other
during the korean war from 1950 to 1953 .

FUNMT the korean peninsula [was split into a capitalist south korea and communist north korea] in 1948 , and the
two sides hostile each other during the korean war from 1950 to 1953 .

Table 8: Translation examples.

Figure 3: Comparison of the translation performance
of Transformer (black lines) and FUNMT (blue lines)
on the NIST Zh⇒En translation tasks according to the
length of different source sentences.

and FfDecoder on the results. The comprison re-496

sults are shown in Table 7. Considering that FmDe-497

coder needs to fit the information learnt by RDe-498

coder, we increase the number of layers of FmDe-499

coder and find that it has almost no effect on the500

translation performance.501

5.3 Analysis502

Sentence Length Intuitively, the generation of503

the translation is more sensitive to future informa-504

tion as the length of the source sentence increases.505

To explore the model’s ability to translate long sen-506

tences, we conduct comparative experiments on the507

test set of the NIST Zh⇒En tasks. First, we merge508

all test sets of MT03-08, then divide the merged test509

set into different groups at intervals of length 10510

according to the length of source sentences. Then511

Transformer and FUNMT translate each group sep-512

arately with corresponding BLEU scores shown in 513

Figure 3. It can be seen that FUNMT surpasses the 514

baseline system in all length intervals, especially 515

for long sentences. Since FUNMT has a “global 516

view” when generating translations, it will try to 517

make choices that maximize the benefits of the 518

entire translation at each step, and long sentence 519

translation benefits more from this. 520

Case Study We list four translation examples in 521

Table 8. Compared with the baseline model, our 522

model may either generate some seemingly incor- 523

rect translations in the early stages of translating 524

a sentence, such as “send plane” in the first ex- 525

ample, or generate some relatively uncommon ex- 526

pressions, such as “carry out” and “stepping up” in 527

the second and third examples, or miss some trans- 528

lations, such as “in 1948” in the fourth example. 529

But from a global perspective, translations gener- 530

ated by FUNMT are more faithful to the source 531

sentence. This can be explained as that when gener- 532

ating implausible translations, our model takes into 533

account the potential future information through 534

the representation rLj output by RDecoder. 535

6 Conclusion 536

We propose a simple and effective model FUNMT 537

that enables the NMT model to fuse potential fu- 538

ture information when making decisions without 539

loss of decoding efficiency. Experiments on mul- 540

tiple translation tasks show that FUNMT brings a 541

significant improvement in translation quality. 542
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We elaborate from three aspects.695

.1 datasets696

IWSLT’14 De⇒En The training set consists697

of 160K sentence pairs and we randomly select698

7, 283 samples from the training set as the vali-699

dation set. We concatenated dev2010, dev2012,700

tst2010, tst2011 and tst2012 as the test set, which701

contain 6, 750 sentences8. Byte-Pair Encodings702

(BPE) (Sennrich et al., 2016) model is jointly703

learned using 10K merging operations to encode704

the source and target sentences, generating a vocab-705

ulary of 10, 151 tokens.706

NIST Zh⇒En The training set consists of707

1.25M sentence pairs extracted from LDC corpora9.708

BPE model is jointly learned using 32K merging709

operations to generate subwords, producing a vo-710

cabulary of 42, 679 subwords. We tokenize Chi-711

nese and English by Stanford and Moses tokenizer712

respectively.713

WMT’14 En⇒De The training set contains714

3.9M sentence pairs10. newstest2013 and715

newstest2014 are used as the validation and test716

set, which contains 3, 000 and 3, 003 sentences re-717

spectively. Sentences are encoded using BPE with718

37K joint merging operations. The vocabulary con-719

tains 40, 727 tokens.720

WMT’14 En⇒Fr The training set contains721

35.8M sentence pairs11. 26, 854 sentences are ex-722

tracted from the training set as the development723

set to select the model. newstest2014 with 3, 003724

sentences are used as the test set. BPE model is725

jointly learned using 40K merging operations to en-726

code the English and French sentences, producing727

a vocabulary of 44, 511 subwords.728

8We adopt the script https://github.com/
pytorch/fairseq/blob/master/examples/
translation/prepare-iwslt14.sh to download
and preprocess the dataset, and follow previous works (Ran-
zato et al., 2016; Edunov et al., 2018) for data splitting.

9The sentence pairs are mainly extracted from
LDC2002E18, LDC2003E07, LDC2003E14, Hansards
portion of LDC2004T07, LDC2004T08 and LDC2005T06,
we use the NIST 2002 (MT02) test set as the validation set,
which has 878 sentences, and the NIST 2003 (MT03), NIST
2004 (MT04), NIST 2005 (MT05), NIST 2006 (MT06) and
NIST 2008 (MT08) as the test sets, containing 919, 1, 788,
1, 082, 1, 664 and 1, 357 sentences respectively.

10We obtain the dataset by https://github.com/
pytorch/fairseq/blob/master/examples/
translation/prepare-wmt14en2de.sh

11We obtain the dataset by https://github.com/
pytorch/fairseq/blob/master/examples/
translation/prepare-wmt14en2fr.sh

ASPEC Zh⇒Jp The training set of ASPEC- 729

JC 12 (Nakazawa et al., 2016) is composed of 730

672, 315 sentence pairs, the development set and 731

test set contains 2, 090 and 2, 107 sentence pairs 732

respectively. We use jieba 13 and MeCab 14 to seg- 733

ment Chinese and Japanese. Sentences are further 734

segmented using BPE model with 30K merging 735

operations for source and target languages sepa- 736

rately. Data preprocessing produces vocabularies 737

of 25, 063 subwords for Chinese and 25, 103 sub- 738

words for Japanese. 739

WMT’17 En⇒De The training set is also ac- 740

quired by prepare-wmt14en2de.sh without param- 741

eter “--icml17”, containing about 5.2M sentence 742

pairs. newstest2013 and newstest2017 are used 743

as the validation and test set.

Task #GPUs T F lr M
IWSLT’14 De⇒En 4(P40) 15K 1 5e-4 150
ASPEC Zh⇒Jp 4(P40) 15K 1 5e-4 150
NIST Zh⇒En(base) 4(P40) 6144 2 7e-4 30
NIST Zh⇒En(big) 8(P40) 4096 3 5e-4 30
WMT’14 En⇒De(base) 8(V100) 6144 2 7e-4 80K
WMT’14 En⇒De(big) 8(V100) 6144 2 5e-4 200K
WMT’14 En⇒Fr(big) 8(V100) 6827 3 5e-4 150K
WMT’17 En⇒De(base) 8(V100) 12288 4 1e-3 150K

Table 9: Model settings on different translation tasks.
“T” means batch size on single GPU, “F” means gradi-
ent accumulation times. “M” represents the maximum
number of training epochs (150) or updates (80K). 744

.2 Model Settings 745

All other settings are default, except the settings 746

listed in Table 9. Adam optimizer (Kingma and 747

Ba, 2014) with β1=0.9, β2=0.98 and ε=1e-6 is em- 748

ployed. The learning rate is controlled based on the 749

inverse square root of the update number. The learn- 750

ing rate is initialized to 1e-07, linearly increases 751

to lr in the first 4000 updates, and then is decayed 752

proportional to the number of updates. For De⇒En 753

and Zh⇒Jp, we decode with a beam size of 5 and 754

length penalty α = 0.6, for WMT’17 En⇒De, 755

beam size is set to 12 and α = 0.4, and for all other 756

tasks, beam size is 4 and α = 0.6. We keep the 757

latest 10 checkpoints, average the latest 5 and 10 758

checkpoints respectively, and then select the model 759

with the largest BLEU score on the development 760

set from the 12 checkpoints as our best model. 761

12The dataset is described in http://orchid.kuee.
kyoto-u.ac.jp/ASPEC/

13https://github.com/fxsjy/jieba
14https://pypi.org/project/

mecab-python3/

11

https://github.com/pytorch/fairseq/blob/master/examples/translation/prepare-iwslt14.sh
https://github.com/pytorch/fairseq/blob/master/examples/translation/prepare-iwslt14.sh
https://github.com/pytorch/fairseq/blob/master/examples/translation/prepare-iwslt14.sh
https://github.com/pytorch/fairseq/blob/master/examples/translation/prepare-wmt14en2de.sh
https://github.com/pytorch/fairseq/blob/master/examples/translation/prepare-wmt14en2de.sh
https://github.com/pytorch/fairseq/blob/master/examples/translation/prepare-wmt14en2de.sh
https://github.com/pytorch/fairseq/blob/master/examples/translation/prepare-wmt14en2fr.sh
https://github.com/pytorch/fairseq/blob/master/examples/translation/prepare-wmt14en2fr.sh
https://github.com/pytorch/fairseq/blob/master/examples/translation/prepare-wmt14en2fr.sh
http://orchid.kuee.kyoto-u.ac.jp/ASPEC/
http://orchid.kuee.kyoto-u.ac.jp/ASPEC/
https://github.com/fxsjy/jieba
https://pypi.org/project/mecab-python3/
https://pypi.org/project/mecab-python3/

