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Abstract

Sequence-to-sequence Neural Machine Trans-
lation (NMT) models have achieved excellent
performance. However, the NMT decoder
only makes predictions based on the source
and the target historical context, ignores the
target future information completely, leading
to a problem that NMT does not consider po-
tential future information when making de-
cisions. To alleviate this problem, we pro-
pose a simple and effective Future-fused NMT
model called FUNMT, which introduces a re-
verse decoder to explicitly model the target
future information, then adopts an agreement
mechanism to enable the forward decoder to
learn this future information. Empirical stud-
ies on multiple benchmarks show that our pro-
posed model significantly improves translation
quality.

1 Introduction

Recently, NMT models (Sutskever et al., 2014;
Bahdanau et al., 2014; Wu et al., 2016; Gehring
et al., 2017; Vaswani et al., 2017) have become the
most widely-used models and occupying a dom-
inant position. NMT models treat the Machine
Translation (MT) as a sequence-to-sequence task
and apply an encoder-decoder framework. The de-
coder predicts the translation word by word from
left to right, all tokens after each step in the target
sequence are masked to ensure the autoregressive-
ness (Gu et al., 2018) of the decoder during training.
However, given the bilingual parallel corpus, it is
obvious that the target future information is observ-
able for each training step. The autoregressiveness
makes the NMT model totally ignore the explicit
future information of the target sequence in the
training set. Moreover, although the source sen-
tence already contains all the semantic information,
it may not be enough to make predictions only us-
ing the source context and the partial translation
as the conditions (Zhang et al., 2019; Duan et al.,

Source-1 | wo shi jingchdng zud zhe ché

Reference | I often take this train .

Trans.Big | Ioften sitin this car .

Source-2 shipin anquin ji yingyong yingydng
zhongxin shi méigué weishéng yu
gongzhong fiwubu zhixia de zheéngfu
jiguan .

Reference cfsan is a government body formed under
the united states department of health and
human services .

Trans.Big the centre is a government agency under
the us department of health and public ser-
vice .

Table 1: Translation examples showing the insuffi-
ciency of translating source sentences based only on
the source context and partially-generated translations.

2020). Sometimes the potential future information
of the target sequence also needs to be considered.
To show the importance of unseen information in
the target sequence, we select two examples from
the training set, as shown in Table 1. Even if the
entire source sentence Source-1 in the first exam-
ple is exposed to the Transformer-big ! (denoted
as Trans.Big), the word “zu0” is incorrectly trans-
lated as “sit”, which resulted in improper subse-
quent translation “sit in this car” (red part). When
the model predict the third token, the unseen token
“train” in the target sequence should also be consid-
ered to help generate commonly used combinations
“take - - - train”. Similarly, for the second example
Source-2, the NMT model incorrectly translates
the blue part into “the centre” and lost lots of in-
formation. We claim that the above problem stems
from the fact that the model lacks ability to control
the global situation when making predictions at
each step. It tends to select high-frequency tokens
in the training set, but these tokens may have a
negative impact on the generation of subsequent
translations. To mitigate this problem, the most in-
tuitive approach is to predict the translation based

!"The model is trained on the NIST Chinese-English dataset
with model average



on the context of the entire source and target se-
quences. But this will make the training fall into a
non-autoregressive mode and lead to messy trans-
lations at inference, which is obviously unfeasible.

In this paper, we propose a simple and effec-
tive framework that can explicitly model the entire
future information of the target sequence. Con-
cretely, we introduce a reverse decoder to perform
left-masked self-attention so that the representa-
tion learned by each step contains target future
information. A future agreement mechanism is de-
signed to integrate the learned future context into
the Transformer decoder, so that the decoder could
leverage the potential future information at infer-
ence. The effect is that although the model chooses
a word with relatively small short-term benefits
when making a decision at a certain step, the global
benefits brought by it will be relatively large. The
proposed model mainly contributes to making the
Transformer encoder integrate the target future in-
formation captured by an introduced reverse de-
coder, without affecting the translation efficiency
at inference. Compared with related works, our
model can achieve a better trade-off between infer-
ence efficiency and translation performance. Em-
pirical experiments show that our proposed model
can significantly outperform the strong baseline
models and related models.

2 Background

Our method can be plugged into most sequence-to-
sequence frameworks. Without loss of generality,
we take the Transformer model as an example to
introduce our method. Assuming that one of the
sentence pairs in the training set consists of the
source sequence x and the observed translation y*

X:{.:Cl, vx\x\}7 y*:{yT7

Encoder In each layer of the L stacked same lay-
ers, the output of Self-Attention sub-layer (SAtt)
is fed into the feed-forward sub-layer (FFIN) 2,
The output of each sub-layer can be formatted as
LN(z + sublayer(x)), where LN (-) is Layer Nor-
malization (Ba et al., 2016) and + means the Resid-
ual Connection.

iy}

B = LN (hH 1 SAtt (hl’l,hl’l, h“)) e
B = LN (h’ 4+ FFN (hl)) 3)

ZRefer to Vaswani et al. (2017) for the details about SAtt
and FFN, we omit dropout for convenience.

Note that x with position encoding is used as h°
and h! means the output of the I*" layer.

Decoder In each layer of another L stacked same
layers, besides the two sub-layers applied in each
encoder layer, a Cross-Attention sub-layer (CAtt)
is employed to extract source information (called
context vector). Assuming that sé- represents the

encoding of the j* word in the [*" layer.

s) = LN (s5' + st (sL )0 551 ))s @
sy = LN (s} + FFN (s})) 5 )

s} = LN (s} + CAtt (s, n",n")) ©®)

Due to the autoregressive property, at the ;%" step,

the Self-Attention sub-layer only attends to all pre-
vious positions. For convenience, we express the
calculation of the multilayer decoder as

la _ l1—l2 5
sp= Dec SZj»

RERE) ()
where l5 > 1, the calculation for each layer is the
same as Eq. 5~6 and sé? represents the hidden state
output by the 4" layer at the ;' step. The word
probability distribution P; over all the words in the

target vocabulary is estimated conditioned on SJL.

P; = softmax (Wssf + bs) (8)

where the trainable parameters W 3 and b map Sjl-’
to a vector with the size of vocabulary.

Training The objective is to maximize the prob-
ability of the ground truth sequence by Maximum
Likelihood Estimation (MLE)

ly*|

£(0) == logPjly]] ©)

where |y*| indicates the length of the ground truth
translation y*, P;[y7] is the predicted probability
of generating the golden word y;‘ at the j* step,
0 represents all trainable parameters related to the
naive translation model.

3 Proposed Model

The proposed FUNMT consists of three modules:
Future-matched Decoder (FmDecoder), Reverse
Decoder (RDecoder) and Future-fused Decoder
(FfDecoder). The Transformer decoder is com-
posed of FmDecoder and FfDecoder.
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Figure 1: The architecture diagram of our proposed FUNMT model. “Add” and “Norm” represent Residual
Connection and Layer Normalization respectively, and other terms are referred in the model section.

3.1 Future-matched Decoder

We delicately design the FmDecoder so that the
Transformer model has the ability to perceive the
future context in the target sequence, while ensur-
ing the autoregressiveness and decoding efficiency
of the decoder. Assuming that both naive Trans-
former encoder and decoder * have L same layers,
we use the first k layers as the FmDecoder.
According to the Eq. 7, the hidden state output
by FmDecoder at the 5" step can be calculated as:

fF = Dec®* (2, h*, nh) (10)

Consistent with the naive Transformer decoder, at
the j*" step, FmDecoder performs Right Masked
Multi-Head Self-Attention with all subsequent to-
kens (y< ;) masked, as shown in the green upper
triangular matrix in the left box of Figure 1. The in-
put f2 ; of the FmDecoder is the embedding of y*
with positional encoding. FmDecoder aims to fit
the future context information explicitly modelled
by Reverse Decoder through a Future Agreement
mechanism. Next, we elaborate on the Reverse
Decoder and the Future Agreement mechanism.

3.2 Reverse Decoder

Different from FmDecoder, RDecoder executes
Left Masked Multi-Head Self-Attention and masks
all previous tokens (y~ ;) out, as shown in the green
lower triangular matrix in the right box of Figure 1.

3Here we refer to the original Transformer encoder and de-
coder as naive Transformer encoder and decoder respectively.

The j* token is only associated with all subse-
quent tokens (y? ;), which therefore represents the
contextual information of the future.

rf = LN (@;1 1 SAtt (rigl,rﬁgl,rigl)) (11)
rf = LN (rf + FNN(r})) (12)
rf = LN (i} + CAtt (i, 0" 0")) (3)

where L denotes the layers number of the RDe-
coder. er , the hidden state produced by the last
layer, can be reasonably regarded as the future con-
text including information of y? ;.

RDecoder is also optimized to predict the ground
truth target sequence. The calculation method of
Reverse Loss is similar to Eq. 8 and Eq. 9:

Py = softmax (W,rF + b;) (14)
, |ly™| -
L) == " logPly] (15

where the trainable parameters W, and b, map er
to a vector with the size of vocabulary. P; is the
probability distribution of the j* token predicted
by RDecoder.

3.3 Future Agreement

Inspired by the work of Liu et al. (2017) which min-
imizes the Mean Squared Error (MSE) between the
hidden vectors produced by the decoder and the
future vectors on the Language Model (LM) task to
make the decoder consider the future information,



we analogously minimize the MSE between the hid-
den state f Jk output by FmDecoder and the future
context er produced by RDecoder to let FmDe-
coder fuse the future information. The MSE loss is
defined as:
* 2
e =530 -]

i1 (16)

where m is the dimension of future context vector.

3.4 Future-fused Decoder

Except for the input and the number of layers, the
FfDecoder module is exactly the same as the naive
Transformer decoder. Both autoregressively en-
code the target sequence from left to right, which
means that only the information before each token
is considered. In our model, we only use the last
L — k layers of the naive Transformer decoder as
FfDecoder. We define the input of FfDecoder as
s¥. Most directly, we take the output of the FmDe-
coder as the input of the FfDecoder (sh=f k). As
mentioned earlier, because we minimize the MSE
optimization objective to make the output of the
FmDecoder match the future context, although the
future context information is actually inaccessible
at inference, our FmDecoder has approximately
learned the potential future information in the train-
ing set.

3.5 Training Objective

We finally minimize the following loss function:
LO) = (1-\)*L (9f) FA KL (07) Aok L (0%) (17)

where )\, and A\, are used to balance the three
losses. In our experiments, we explore the hyper-
parameters A, on the validation set. Besides, we de-
sign an on-the-fly phased training strategy to make
the model fully leverage future information. In de-
tail, the Transformer decoder and RDecoder are
synchronously optimized from scratch in the first
stage. When the training reaches the E*" epoch *,
the MSE constraint starts to take effect and affects
the training, making FmDecoder start learning the
future context. We design ), as follows:

0
Aa:{
1

where e;4, denotes the index of epoch.

Zf Cidr < E
Zf €idx Z B

4 Additional experiments show that different E values have
a weak effect on the translation results. We empirically set E
as 1/7 of the maximum epoch. Thus, strictly speaking, E is
not a hyper-parameters.

4 Related Works

Lots of related works conduct different strategies
to leverage future information, which are listed:
Future Modeling Liu et al. (2017) embedded
the rest of the sequence into future vectors and
incorporated these future vectors with the LSTM-
based LM. Serdyuk et al. (2018) proposed to en-
courage generative RNNs to plan ahead and ease
modeling of long-term dependencies by using twin
networks. These works considered the future infor-
mation on the tasks of LM, speech recognition and
image capture respectively, and are not applicable
to the NMT model. Zheng et al. (2018) and Zheng
et al. (2019) modeled translated past contents and
untranslated future contents on the source side for
NMT model. Comparing to them, we introduce a
different method to model the future information
on the target side. Duan et al. (2020) estimated
the future cost based on the current generated tar-
get word by previewing the translation cost of next
target word at the current time-step. Our proposed
method can model the entire target future informa-
tion, not just the next one word.

Knowledge distillation Zhang et al. (2019) dis-
tilled the future information produced by R2L de-
coder through KL divergences and alleviated the er-
ror propagation problem during generation. Zhang
et al. (2019) presented a future-aware knowledge
distillation framework which enables the unidirec-
tional decoder to explore the future context for
word prediction. They also use the entire future
information, but either the model is not robust
enough, or two decoders need to be retained at
inference, resulting in a worse trade-off between
translation performance and efficiency.
Bidirectional Decoding Zhang et al. (2018)
equipped RNN-based encoder-decoder NMT
framework with a backward decoder and fully lever-
aged the target-side context. Zhou et al. (2019) pro-
posed a synchronous bidirectional NMT model that
adopts one decoder to generate outputs with left-
to-right and right-to-left directions simultaneously
and interactively. Although these works improved
translation performance, they need two-pass decod-
ing directly or indirectly. While our method can
achieve better translation quality without affecting
translation efficiency.

Reinforcement Learning There are also a line
of works to estimate a score representing future in-
formation through reinforcement learning to guide
the prediction of the current step. Li et al. (2017)



Model NIST Zh=En
MTO03 | MT04 | MTO05 | MT06 | MTOS | Avg.
Transformer-base 45.29 | 45.31 45.18 | 44.31 35.39 | 43.10
+ FUNMT 46.17* | 47.19 | 46.58" | 45.55" | 36.35 | 44.37
Transformer-base + ensemble || 45.83 | 46.41 46.72 | 45.86 | 36.75 | 44.31
+ FUNMT 47.21% | 48.14" | 47.77 | 46.95* | 38.06" | 45.63
Transformer-big 46.88 | 46.63 | 46.60 | 45.69 | 37.36 | 44.63
+ FUNMT 48.46" | 48.31" | 48.95" | 46.91" | 38.46" | 46.22
Transformer-big + ensemble 46.82 | 47.61 | 4794 | 46.73 | 38.18 | 45.46
+ FUNMT 49.17" | 48.65" | 49.14* | 47.89 | 39.39" | 46.85

Table 2: Translation performance of different models on the NIST Zh=-En translation task. “x

9

and “4” indicate

statistically significant difference with p<0.05 and p<0.01 from Transformer respectively.

introduced a simple actor-critic model, where the
actor employed the MLE-based token generation
policy and the critic acted as a value function that
estimates the future value of the desired property
for decision making. Bahdanau et al. (2016) in-
troduced a critic network that is trained to predict
the value of an output token, given the policy of an
actor network. He et al. (2017) developed a new
decoding scheme for NMT, which considers not
only the local conditional probability of a candi-
date word, but also its long-term reward for future
decoding predicted by a proposed value network.
Generally, equipped with RL, the RNN-based NMT
model is difficult to optimize and the performance
improvement is limited. In addition, it is impracti-
cal to apply RL to attention-based Transformer, but
our method is not limited to model architecture.

5 Experiments

Datasets For the small-scale scenario, we choose
IWSLT’ 14 German=-English (De=-En) and AS-
PEC Chinese=-Japanese (Zh=-Jp) translation task,
which contain 160K and 672K sentence pairs. We
follow Edunov et al. (2018) and Nakazawa et al.
(2016) to do data splitting. We employ Byte Pair
Encoding (BPE) (Sennrich et al., 2016) model
jointly learned using 10k and 30k merging oper-
ations for the two language pairs.

For the middle-scale scenario, we use
NIST Chinese=-English (Zh=-En), WMT’14
English=German (En=De) and WMT 17
English=-German (En=-De), containing 1.25M,
3.9M and 5.2M training samples respectively.
Sentences are encoded using BPE with 32k, 37k
and 40k joint merging operations respectively.t

For the large-scale scenario, we use the WMT’ 14
English=French (En=-Fr) dataset with 35.8M
training samples. BPE model is jointly learned us-
ing 40k merging operations to generate subwords.

All datasets except the Zh=-En are publicly avail-
able. For Zh=-En, the training set is mainly ex-
tracted from LDC corpora, and we use the NIST
2002 (MTO02) test set as the validation set.

Setting Our implementation is based on fairseq.
The setting transformer_iwslt_de_en is used for
both De=-En and Zh=-Jp tasks. For Zh=-En and
WMT’ 14 En=>De tasks, transformer_wmt_en_de
and transformer_vaswani_wmt_en_de_big are
used for base and big settings. For En=-Fr, trans-
former_vaswani_wmt_en_fr_big setting is applied.
More details about data and model are described in
Appendix 6

Evaluation Metrics We measure the translation
quality with 4-gram BLEU scores (Papineni et al.,
2002). For IWSLT’14 De=-En, case-insensitive
BLEU score is calculated by multi-bleu.pl. For
NIST Zh=-En, we employ four raw references and
compute the case-insensitive BLEU with Sacre-
BLEU ° (Post, 2018). We compute the case-
sensitive tokenized BLEU for WMT’ 14 En=-De
and En=-Fr. For WMT’ 17 En=-De translation task,
we do not tokenize the references and calculate the
case-sensitive BLEU with SacreBLEU °. To en-
sure comparability, we keep the evaluation metrics
consistent with the previous works.

5.1 Translation Performance

Different Model Architectures We verified the
effect of our model on the Transformer base and big
settings on the Zh=-En datasets. To futher make
the conclusion convincing, we also explore the im-
pact of the single models and averaged models (+
ensemble) for both settings. As shown in Table 2,

SBLEU+case .mixed+lang.zh-en+numrefs.4+
smooth.exp+tok.1l3a+version.1l.4.4

®BLEU+case .mixed+lang.en-de+numrefs.1l+
smooth.exp+tok.l3a+version.1.4.4



Model WMT14 WMT17 Speed
En=De | En=Fr | En=De Train | Inference
Reproduced Transformer (Vaswani et al., 2017) 28.68 43.35 27.88 - -
+asynchronous bidirectional (Zhang et al., 2018) 28.22 - - -43.0% -63.9%
+future-aware KD (Zhang et al., 2019) 29.42 28.80 -48.8% -52.4%
+synchronous bidirectional (Zhou et al., 2019) 29.21 - - -39.1% -10.5%
+next word prediction (Duan et al., 2020) 290.12 42.02 - -7.9% -0.0%
+our work 29,731 43.65 28.927 -45.4% -0.0%

Table 3: Comparison with existing works of future modeling on the benchmarking datasets. The value in the speed
column represents the percentage of the drop in training and infer speed compared to the Transformer-big model.
“+” indicates statistically significant difference with p<0.01 from Transformer.

Model De=En | Zh=Jp
Transformer | 34.32 49.40
+ FUNMT | 35.32 50.06
Table 4: Translation performance on small-scale

IWSLT14 De=En and ASPEC Zh=-Jp datasets.

for Transformer-base, in both cases of using only
single model and model average, our model can
bring an average improvement of 1.3 BLEU scores
to the baseline model on all test sets.

A similar situation occurs on the Transformer-
big setting. Our proposed single model brings an
average improvement of 1.6 BLEU scores on all
Zh=-En test sets compared with the baseline model.
When equipped with the model average technique,
FUNMT can outperform the baseline system by an
average of 1.4 BLEU points on all test sets. It can
also be observed from the Table 2 that in any case,
our proposed model can significantly and steadily
improve the baseline model on most test sets.

Small-Scale Datasets In order to further prove
the effectiveness of our proposed method, we con-
duct experiments on two other small-scale datasets.
Our proposed method also improves the baseline
model by 1.0 BLEU scores on the IWSLT’ 14
De=-En test set, as shown in Table 4.

Most languages have a subject-verb-object
(SVO) syntactic structure, while the most signif-
icant feature of Japanese is the post-predicate,
which is the syntactic structure of the subject-
object-verb (SOV). In view of this, we assume
that Japanese has a strong long-distance depen-
dence, and the generation of Japanese is more de-
pendent on future information. In order to verify
whether our method is helpful for the translation
whose target language has the SOV syntactic struc-
ture, we adopt the ASPEC Zh=-Jp translation task
whose target language is Japanese. As shown in
Table 4, our method has an improvement of 0.7
BLEU scores on the baseline model.

Comparison with Existing Work In order to
make a fair comparison with the other two related
works, we also trained Transformer-base model on
the WMT’ 17 En=-De dataset, which is exactly the
same as that reported in the two related works. All
results are listed in Table 3. It can be seen from Ta-
ble 3 that our proposed FUNMT improves the base-
lines by 1.04 and 0.3 BLEU points on the WMT’ 14
En=-De and En=-Fr test sets, respectively.

Our work has similar training efficiency to the
asynchronous bidirectional work (Zhang et al.,
2018). However, the two-way decoding results
in a decrease in translation speed 7 of 63.9%. Our
proposed approach has significant advantages in
translation performance and efficiency.

Although the method of future-aware KL also
makes full use of the target future information
and has a significant improvement in translation
effect over the baseline system on the WMT’ 17
test set, their proposed method requires two de-
coders at inference, so the efficiency of training
and decoding is about half reduced. The training
efficiency of future-aware KL and the performance
on the WMT’17 test set are both comparable to our
method, while our method has obvious advantages
in inference efficiency compared with it.

Although the training efficiency has slightly
decreased, the translation quality of our pro-
posed FUNMT is 0.72 BLEU higher than the
synchronous bidirectional NMT model on the
WMT’ 14 En=-De test set, and the translation effi-
ciency is also superior to synchronous bidirectional
NMT model.

Compared with the method of next word pre-
diction, our training efficiency has no advantage.
But Duan et al. (2020) only considers the next one
word when predicting the translation, so their work

"We compare the reduction of the training/testing speed
of the methods relative to the baseline systems, so even if
the computing environment is different, we claim that the
comparison is fair.



Models #mistranslated | #missed
Transformer-big 27 46
FUNMT 15 32

Table 5: Statistics of mistranslated and under-translated
words on all NIST Zh=-En test sets.
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Figure 2: Transformer vs. FUNMT on NIST Zh=-En
validation set for different \, values.

is not able to utilize the future information fully. Al-
though it does not affect the efficiency of inference,
the performance of translation is 0.71 and 1.63
BLEU points lower than FUNMT on WMT’ 14
En=-De and En=-Fr respectively.

Briefly, our proposed FUNMT can outperform
all related works on all medium-scale and large-
scale datasets. Although FUNMT incorporates a
additional RDecoder during the training process,
which reduces the training efficiency by 45.4% ,
RDecoder is not needed at inference, so FUNMT
has no effect on the inference speed.

Human Evaluation We conduct human evalua-
tion on the NIST Zh=-En test set. We first merge all
the test sets MT03-08, and then select 50 sentences
from them to form 50 triples (S, Ty, T3), where T,
and T represent the translation generated by the
baseline and FUNMT respectively. We let people
who are proficient in English count the number of
mistranslated and under-translated words in source
according to T, and T, as shown in Table 5. It can
be seen that there are fewer words incorrectly trans-
lated or ignored by FUNMT, which means that the
fusion of future information can alleviate the phe-
nomenon of mistranslations and under-translations.

5.2 Ablation Study

We perform all ablation experiments on the NIST
Zh=-En validation set.

Hyper-parameters A\, We first investigate the
impact of different values of A, on the validation
set. As shown in Table 2, when A, is equal to 0.5,
the BLEU score on the validation set reaches the
maximum. The results are intuitive. When the for-
ward decoder and the backward decoder are trained

RDecoder | DropNet | Constraint | BLEU
v X MSE 49.01
v v MSE 48.57
v X KL 48.98

Table 6: Ablation study of the RDecoder, DropNet and
Constraint on NIST Zh=-En MTO02 validation set.

in a balanced manner, FmDecoder can make full
use of the future information of the target sequence.

DropNet Since the number of parameters of the
Transformer decoder remains invariant, we sus-
pect that the decoder’s representation ability is not
enough that the representation capacity of the de-
coder is not enough to learn the target-side histori-
cal and future information simultaneously. In view
of this, we fuse y and f* based on DropNet (Zhu
et al., 2020) to verify whether the model can be
further improved. It can be observed from Table 6
that, unfortunately, DropNet does not work in our
scenario, but instead reduces the translation per-
formance by about 0.5 BLEU points. In our ex-
periments, we do not conduct the DropNet-based
fusion strategy.

KL vs MSE KL divergence has been proven ef-
fective as a measure of the similarity between two
probability distributions (Zhang et al., 2019; Feng
et al., 2020). We also try to replace the MSE con-
straint in the Future Agreement module with KL
divergence, which means the Eq. 16 is updated to:

GSE Z']yzl‘ K L{softmax (W f)

(18)
|| softmax (W,«TJI-‘) }

where the trainable parameters W and W, are
used to map ff and TJL to vectors with the size
of vocabulary. After that, we observe the impact
of different constraints on translation performance.
Comparing the first and third row in Table 6, we
observe that in our scenario, KL divergence does
not bring benefits, and the results obtained are very
close to the MSE constraints. For all experiments
reported in our work, we use MSE constraints.

k| L -k | BLEU
3 3 46.57
4 2 46.56
5 1 46.51

Table 7: Comparison between different layers of FmDe-
coder on the average BLEU of all Zh=>En test sets.

About k Value We also conduct experiments to
explore the effect of different layers of FmDecoder



Source-1 taigué dangju paiji cong jidnplizhai chelf taigido

Reference | thai authorities sent planes to evacuate thai nationals from cambodia

Trans.Big | thai authorities evacuate thai nationals from cambodia

FUNMT thai authorities [send plane to] evacuate thai from cambodia

Source-2 Zai néngciin xidng gdo didn wénhua huédong , zhao didn “ 1&” zi tai nanle,

Reference | Itis too difficult to organize some cultural activities , to find some fun in rural areas .

Trans.Big | Itis too difficult to find some " music " ; in rural areas .

FUNMT It is too difficult to [carry out some cultural activities] in the rural areas .

Source-3 naijiliya zhengfu zhéng jiagidng gongzuo , zlizhi zai f€izhou dalu de bingdd chuanran géi rénleéi .

Reference | the nigerian government is stepping up efforts to prevent the virus on the african continent from spreading to
humans .

Trans.Big | the nigerian government is working harder to prevent the virus from spreading to human beings in africa .

FUNMT the nigerian government is stepping up efforts to stop the spread of [the virus across the african continent] to
humans .

Source-4 chédoxidn banddo yu yijitisibanidn fenlie chéngwéi shihdng zibénzhtliyl de ndnhdn yu gongchdnzhtyi de béihdn ,
shuangfang céng zai yTjiiwu lingnidn zhi yjjiiwlsannian de hanzhan shiqr xianghu didui .

Reference | in 1948, the korean peninsula was split into capitalist south korea and communist north korea. the two sides
engaged in hostile conflict during the 1950-1953 korean war .

Trans.Big | in 1948, the korean peninsula split into a capitalist north korea , where the two sides were hostile to each other
during the korean war from 1950 to 1953 .

FUNMT the korean peninsula [was split into a capitalist south korea and communist north korea] in 1948 , and the
two sides hostile each other during the korean war from 1950 to 1953 .

Table 8: Translation examples.

—e— baseline (BLEU=45.85)
—e— FuNMT (BLEU=46.70)

4-gram BLEU
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Figure 3: Comparison of the translation performance
of Transformer (black lines) and FUNMT (blue lines)
on the NIST Zh=-En translation tasks according to the
length of different source sentences.

and FfDecoder on the results. The comprison re-
sults are shown in Table 7. Considering that FmDe-
coder needs to fit the information learnt by RDe-
coder, we increase the number of layers of FmDe-
coder and find that it has almost no effect on the
translation performance.

5.3 Analysis

Sentence Length Intuitively, the generation of
the translation is more sensitive to future informa-
tion as the length of the source sentence increases.
To explore the model’s ability to translate long sen-
tences, we conduct comparative experiments on the
test set of the NIST Zh=-En tasks. First, we merge
all test sets of MT03-08, then divide the merged test
set into different groups at intervals of length 10
according to the length of source sentences. Then
Transformer and FUNMT translate each group sep-

arately with corresponding BLEU scores shown in
Figure 3. It can be seen that FUNMT surpasses the
baseline system in all length intervals, especially
for long sentences. Since FUNMT has a “global
view” when generating translations, it will try to
make choices that maximize the benefits of the
entire translation at each step, and long sentence
translation benefits more from this.

Case Study We list four translation examples in
Table 8. Compared with the baseline model, our
model may either generate some seemingly incor-
rect translations in the early stages of translating
a sentence, such as “send plane” in the first ex-
ample, or generate some relatively uncommon ex-
pressions, such as “carry out” and “stepping up” in
the second and third examples, or miss some trans-
lations, such as “in 1948” in the fourth example.
But from a global perspective, translations gener-
ated by FUNMT are more faithful to the source
sentence. This can be explained as that when gener-
ating implausible translations, our model takes into
account the potential future information through
the representation er output by RDecoder.

6 Conclusion

We propose a simple and effective model FUNMT
that enables the NMT model to fuse potential fu-
ture information when making decisions without
loss of decoding efficiency. Experiments on mul-
tiple translation tasks show that FUNMT brings a
significant improvement in translation quality.
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We elaborate from three aspects.

.1 datasets

IWSLT’14 De=En The training set consists
of 160K sentence pairs and we randomly select
7,283 samples from the training set as the vali-
dation set. We concatenated dev2010, dev2012,
tst2010, tst2011 and tst2012 as the test set, which
contain 6, 750 sentences®. Byte-Pair Encodings
(BPE) (Sennrich et al., 2016) model is jointly
learned using 10K merging operations to encode
the source and target sentences, generating a vocab-
ulary of 10, 151 tokens.

NIST Zh=En The training set consists of
1.25M sentence pairs extracted from LDC corpora’.
BPE model is jointly learned using 32K merging
operations to generate subwords, producing a vo-
cabulary of 42,679 subwords. We tokenize Chi-
nese and English by Stanford and Moses tokenizer
respectively.

WMT’14 En=-De The training set contains

3.9M sentence pairs'”. newstest2013 and

newstest2014 are used as the validation and test
set, which contains 3, 000 and 3, 003 sentences re-
spectively. Sentences are encoded using BPE with
37K joint merging operations. The vocabulary con-
tains 40, 727 tokens.

WMT’14 En=Fr The training set contains
35.8M sentence pairs'!'. 26, 854 sentences are ex-
tracted from the training set as the development
set to select the model. newstest2014 with 3, 003
sentences are used as the test set. BPE model is
jointly learned using 40K merging operations to en-
code the English and French sentences, producing
a vocabulary of 44, 511 subwords.

8We adopt the script https://github.com/
pytorch/fairseqg/blob/master/examples/
translation/prepare-iwsltl4.sh to download
and preprocess the dataset, and follow previous works (Ran-
zato et al., 2016; Edunov et al., 2018) for data splitting.

°The sentence pairs are mainly extracted from
LDC2002E18, LDC2003E07, LDC2003E14, Hansards
portion of LDC2004T07, LDC2004T08 and LDC2005T06,
we use the NIST 2002 (MTO02) test set as the validation set,
which has 878 sentences, and the NIST 2003 (MTO03), NIST
2004 (MTO04), NIST 2005 (MTO05), NIST 2006 (MT06) and
NIST 2008 (MTOS) as the test sets, containing 919, 1, 788,
1,082, 1,664 and 1, 357 sentences respectively.

"%We obtain the dataset by https://github.com/
pytorch/fairseqg/blob/master/examples/
translation/prepare-wmtl4en2de.sh

"We obtain the dataset by https://github.com/
pytorch/fairseq/blob/master/examples/
translation/prepare-wmtl4en2fr.sh
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ASPEC Zh=-Jp The training set of ASPEC-
JC 12 (Nakazawa et al., 2016) is composed of
672, 315 sentence pairs, the development set and
test set contains 2,090 and 2, 107 sentence pairs
respectively. We use jieba !> and MeCab '# to seg-
ment Chinese and Japanese. Sentences are further
segmented using BPE model with 30K merging
operations for source and target languages sepa-
rately. Data preprocessing produces vocabularies
of 25,063 subwords for Chinese and 25, 103 sub-
words for Japanese.

WMT’17 En=-De The training set is also ac-
quired by prepare-wmtl4en2de.sh without param-
eter “--icml17”, containing about 5.2M sentence
pairs. newstest2013 and newstest2017 are used
as the validation and test set.

Task #GPUs T F| Ir M
IWSLT’ 14 De=En 4(P40) 15K | 1 | 5ed | 150
ASPEC Zh=5Jp 4(P40) I5K | 1 | 5e4 | 150
NIST Zh=-En(base) 4(P40) 6144 | 2 | 7e4 30
NIST Zh=>En(big) 8(P40) 4096 | 3 | 5e-4 30
WMT’ 14 En=-De(base) | 8(V100) | 6144 | 2 | 7e-4 | 80K
WMT’ 14 En=-De(big) | 8(V100) | 6144 | 2 | 5e-4 | 200K
WMT’ 14 En=>Fr(big) 8(V100) | 6827 | 3 | 5e-4 | 150K
WMT’ 17 En=De(base) | 8(V100) | 12288 | 4 | le-3 | 150K

Table 9: Model settings on different translation tasks.
“T” means batch size on single GPU, “F’ means gradi-
ent accumulation times. “M” represents the maximum
number of training epochs (150) or updates (80K).

.2 Model Settings

All other settings are default, except the settings
listed in Table 9. Adam optimizer (Kingma and
Ba, 2014) with 81=0.9, 82=0.98 and e=1e-6 is em-
ployed. The learning rate is controlled based on the
inverse square root of the update number. The learn-
ing rate is initialized to 1e-07, linearly increases
to Ir in the first 4000 updates, and then is decayed
proportional to the number of updates. For De=FEn
and Zh=-Jp, we decode with a beam size of 5 and
length penalty o 0.6, for WMT’17 En=-De,
beam size is set to 12 and o = 0.4, and for all other
tasks, beam size is 4 and o = 0.6. We keep the
latest 10 checkpoints, average the latest 5 and 10
checkpoints respectively, and then select the model
with the largest BLEU score on the development
set from the 12 checkpoints as our best model.

2The dataset is described in http://orchid.kuee.
kyoto-u.ac.jp/ASPEC/

Bhttps://github.com/fxsjy/jieba

Y“https://pypi.org/project/
mecab-python3/
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