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Abstract
We study the problem of learning in zero-sum
matrix games with repeated play and bandit feed-
back. Specifically, we focus on developing uncou-
pled algorithms that guarantee, without commu-
nication between players, the convergence of the
last-iterate to a Nash equilibrium. Although the
non-bandit case has been studied extensively, this
setting has only been explored recently, with a
bound ofO(T−1/8) on the exploitability gap. We
show that, for uncoupled algorithms, guaranteeing
convergence of the policy profiles to a Nash equi-
librium is detrimental to the performance, with the
best attainable rate being Ω(T−1/4) in contrast to
the usual Ω(T−1/2) rate for convergence of the
average iterates. We then propose two algorithms
that achieve this optimal rate up to constant and
logarithmic factors. The first algorithm leverages
a straightforward trade-off between exploration
and exploitation, while the second employs a reg-
ularization technique based on a two-step mirror
descent approach.

1. Introduction
In zero sum matrix games, two players each take a single
action and accordingly receive for the first player a loss and
the second player a gain of the same magnitude. Such games
always admit for each player at least one minimax policy (a
specific case of Nash equilibrium), assuming a stochastic
choice of action (v. Neumann, 1928). Computing these
policies, however, is non-trivial and requires knowledge of
the underlying game matrix of payoffs.

We are interested in learning minimax policies by repeat-
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edly playing the game. Specifically, we consider the bandit
feedback setting, where the payoff matrix is unknown and
players only observe their losses or rewards.

Within the context of uncoupled learning, each player learns
the minimax policy independently, without communication
or knowledge of their opponent’s actions. This setup mo-
tivates the use of methods similar to those employed in
classical single-player online learning (Cesa-Bianchi & Lu-
gosi, 2006), where a player adapts to play optimally in an
adversarially changing environment.

These methods usually bound the player’s regret, defined
as the difference between the best possible cumulative loss
under a fixed policy and the actual cumulative loss incurred
by the player. They are known to be applicable in the con-
text of games to compute minimax policies (Cesa-Bianchi &
Lugosi, 2006). They however have two well-known weak-
nesses:

• The policies played over the iterations generally do not
converge or even approach an equilibrium.

• Instead, the average policy is computed and outputted
as a proxy for convergence. While averaging tabular
policies is simple and inexpensive, this step is not as
simple for practical applications. For instance, it is
not clear how to compute the average of policies rep-
resented by a neural network (Heinrich et al., 2015;
McAleer et al., 2022).

In part for this reason, a significant portion of the recent
literature studies methods with last-iterate convergence for
which the actual policies played over time converge toward
a Nash equilibrium. Some algorithms, such as Optimistic
Mirror Descent (OMD, Popov 1980; Rakhlin & Sridha-
ran 2013), exhibit this convergence despite being initially
proposed for their regret-bounding properties, but with a
vastly different analysis. For the OMD algorithm, in the
deterministic full-information feedback setting, the rate of
convergence of the exploitabilty gap toward zero is even
improved, transitioning from O(1/T ) for the average to a
linear rate for the last iterate (Wei et al., 2021).

However, the literature on last-iterate convergence with
stochastic feedback is limited, and even more so when con-
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sidering bandit feedback. While properties of the last-iterate
convergence have been studied in the broader context of
stochastic variational inequalities, these works often rely on
assumptions that are not applicable to matrix games, such as
second-order sufficiency (Azizian et al., 2021), in addition
to not accounting for the bandit feedback aspect.

Recently, some methods (Cai et al., 2023; Dong et al., 2024)
were proposed for this specific problem. They however only
obtained an upper bound of O(T−1/8) on the exploitability
gap with high probability 1. Considering the best known
lower bound was Ω(T−1/2) from a reduction to the K-arms
bandit problem, Cai et al. (2023) raised the question of
whether a better lower bound was achievable.

In this work, we address the following question: What
is the best attainable rate for last-iterate convergence of
uncoupled learning with bandit feedback in matrix games?

2. Contributions
We focus in the above settings on zero-sum matrix games.

• We provide a better lower bound for the problem of
learning a minimax profile with uncoupled convergent
algorithms and bandit feedback. This lower bound, of
Ω(T−1/4) for the Lp convergence given p ∈ [2,∞],
shows that guaranteeing last-iterate convergence is
harder than just guaranteeing convergence for the aver-
age iterates, which can be done at a rate O(T−1/2).

Intuitively, this relies on the fact that, at least for some
simple 2× 2 games, there exists a minimax policy for
one player that renders all actions of the other player
equivalent, thereby preventing any learning on their
part. Meanwhile, a policy converging to this minimax
policy may not entirely prevent learning but will sig-
nificantly slow it down, as the difference between the
two action rewards converges to zero.

• This lower bound is also stated for p ∈ (0, 2], for which
it improves to Ω(T−1/(2+p)).

• We propose a general simple framework for transform-
ing an algorithm with classical anytime guarantees into
one with last-iterate guarantees, based on a simple
exploration-exploitation trade-off. We use this frame-
work to show that the above lower bound is tight: with
the EXP3-IX of Kocák et al. (2014), a Õ(T−1/(2+p))
rate can be attained for the Lp convergence, given any
p in (0, 2]. However, the computation of some aver-
age policies is still needed, as the framework relies on

1Dong et al. (2024) obtained a rate O(T−1/4) on the Kullback-
Leibler divergence between the profile and the Nash equilibrium,
which only translates in general into a rate O(T−1/8) for the
exploitability gap

the output of the underlying algorithm, which is here
regret-based.

• We also propose a more practical algorithm, based
on a strong regularization of the problem, which does
not require the computation of an average policy. It
enjoys a O(T−1/4) rate, thanks to the use of an un-
biased estimate of the losses in contrast to previous
approaches. However, even if the last iterate converges,
the algorithm is not completely anytime as the regu-
larization must be chosen with the knowledge of the
horizon T . To address this limitation, a doubling trick
approach is stated, which features the same exploration-
exploitation trade-off.

The different rates are summarized in Table 1.

3. Related works
Variational inequalities The problem of finding a Nash
equilibrium for a matrix game can be formulated as find-
ing the solution of a specific Lipschitz variational inequal-
ity (Mancino & Stampacchia, 1972), which is furthermore
monotone when the game is zero-sum.

Finding algorithms for solving monotone variational in-
equalities is a major part of the optimization literature,
starting with the proximal point algorithm (Martinet, 1970;
Tyrrell, 1976). In particular, using two samples at each
iteration, the Extra-Gradient method (Korpelevich, 1976;
Nemirovski, 2004) has a O(1/T ) convergence for the aver-
age iterate. With a strongly monotone operator, the rate is
even linear (Facchinei & Pang, 2004) for the last iterate.

For stochastic variational inequality, in which only an unbi-
ased estimate of the operator is observed, a rate O(1/

√
T )

is obtained by Juditsky et al. (2011) for the average iterates.
For strongly monotone operators, this rate can be improved
to O(1/T ) (Nemirovski et al., 2009).

An important way to generalize some of the aforementioned
methods is through the mirror descent approach, which ex-
tends Euclidean methods to other geometries, as discussed
by Nemirovskiı̆ & IUdin (1983). This generalization is par-
ticularly crucial when dealing with bandit feedback, with the
EXP3 algorithm, introduced by Auer et al. (2002), serving as
a key example of this approach under the Kullback-Leibler
geometry.

Instead of relying on two samples at each iteration as in the
Extra-gradient method, the Optimistic Mirror Descent re-
uses the previous one as an estimate. While it can be traced
back to Popov (1980), it has regained interest relatively
recently (Chiang et al., 2012; Rakhlin & Sridharan, 2013).
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Algorithm Convergence Rate

Cai et al. 2023 (Algorithm 1) High probability Õ(T−1/8)

L2 Õ(T−1/6)

Dong et al. 2024 (Algorithm 1) High probability Õ(T−1/8)

Simultaneous Explore or Exploit (this paper) Lp, p ∈ (0, 2] Õ(T−1/(2+p))

Uncoupled Regularized EXP3 (this paper) L2 Õ(T−1/4)

Lower bound (this paper) Lp, p ∈ (0, 2] O(T−1/(2+p))

Table 1. Rate of convergence of the exploitability gap of algorithms with last-iterate guarantees under bandit feedback. The notation Õ
hides logarithmic dependences in T , and in δ for algorithms that converges with probability at least 1− δ.

Learning in games In the case of a deterministic feed-
back, classical regret-bounding algorithms can be shown to
enjoy a O(1/

√
T ) rate for the average iterates. Optimistic

mirror descent in particular improves this rate to O(1/T )
(Rakhlin & Sridharan, 2013; Kangarshahi et al., 2018). Us-
ing a problem-dependent constant, the rate can even be
shown to be linear (Tseng, 1995; Wei et al., 2021) for the
last iterate. However, Cai et al. (2024) recently proved that
for some algorithms, including OMD, obtaining a O(1/T )
rate for the last iterate without this problem-dependent con-
stant is impossible.

This work focuses on learning a minimax strategy with ban-
dit feedback using uncoupled algorithms. In the context
of smooth monotone games, several recent studies, build-
ing on the foundational work of Bravo et al. (2018), have
explored a setting where only the value associated with
the chosen policy profile is observed (Hsieh et al., 2019;
Drusvyatskiy et al., 2022; Tatarenko & Kamgarpour, 2022;
Huang & Hu, 2024; Ba et al., 2025). However, this approach
does not account for the inherent stochasticity present in
the K-arms bandit problem:: particularly in matrix games,
this observed value represents the average of the rewards un-
der the policies, rather than the reward of a single sampled
action profile.

Meanwhile, Abe et al. (2023) considered a stochastic feed-
back, but without the specific bandit aspect. Muthukumar
et al. (2020) showed an impossibility result that some of
the algorithms with no-regret guarantees cannot converge
almost surely to a Nash equilibrium.

In our setting, Cai et al. (2023) recently showed that a
O(T−1/8) rate can be attained, a result later extended by
Dong et al. (2024) to smooth monotone games.

4. Setting
Zero-sum matrix game Two players, called the min- and
the max-player, respectively play actions a ∈ A and b ∈ B,
in sets of cardinality A and B, to receive a loss L(a, b) ∈
[0, 1]: the min-player wants to minimize this loss, while the

max-player wants to maximize it.

The two players are allowed to play stochas-
tically: they choose two mixed policies µ ∈
∆A :=

{
µ,
∑A

a=1 µ(a) = 1
}

and ν ∈ ∆B :={
ν,
∑B

b=1 ν(b) = 1
}

and optimize their choice according
to the expected loss L(µ, ν) defined by:

L(µ, ν) = Ea∼µ,b∼ν [L(a, b)] .

A tuple (µ, ν) ∈ ∆A × ∆B of policies will be called a
profile

We look to obtain a minimax profile (a special case of the
later Nash-equilibrium, Nash Jr 1950), defined as a profile
(µ⋆, ν⋆) that satisfies

µ⋆ ∈ argmin
µ†∈∆A

L(µ†, ν⋆) and ν⋆ ∈ argmax
ν†∈∆B

L(µ⋆, ν†) ,

whose existence is guaranteed (v. Neumann, 1928).

The proximity of a profile (µ, ν) to the set of Nash equilibria
can be characterized using the exploitability gap:

EG(µ, ν) = − min
µ†∈∆A

L(µ†, ν) + max
ν†∈∆B

L(µ, ν†)

Note that the exploitability gap is zero if and only if (µ, ν)
is a Nash equilibrium.

Sequential learning with bandit feedback We assume
that at each iteration t, both players select some policies µt

and νt, sample two actions at ∼ µt and bt ∼ νt, and get
a stochastic loss ℓt ∈ [0, 1] associated to these two moves.
Formally, we assume the existence, for each a ∈ A and
b ∈ B, of a probability distribution p(a, b) on [0, 1] such
that

∀t ∈ N, ℓt|F t−1, at, bt ∼ p(at, bt)

and Eℓ∼p(a,b) [ℓ] = L(a, b)

where F = (F t)t∈N is a filtration recursively defined by
the observations,

F t = σ
(
ω, a1, b1, ℓ1..., at, bt, ℓt

)
,
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with ω the internal randomness (extra to the sampling of
actions) of both players.

This filtration summarizes all information available to both
players up to the beginning of round t + 1. A sequence
of profile (µt, νt)t∈N will especially be called a learning
sequence if it is predictable with respect to F .

Last-iterate convergence We define, for all p > 0 the
F -norm ∥·∥p (Banach, 1932) for some real random variable
X by

∥X∥p := E [|X|p]
1
p .

Now, let f = (f t)t∈N be a positive sequence decreasing to
0. A learning sequence (µt, νt) will satisfy a Lp last-iterate
convergence of rate f if

∀t ∈ N, ∥EG(µt, νt)∥p ≤ f t .

It is asymptotic if there simply exists some T0 ∈ N such
that

∀t ≥ T0, ∥EG(µt, νt)∥p ≤ f t .

This requires both players to play policies they deem near-
optimal during each iteration, instead of simply outputting
one good policy each at the end of the procedure.

Output convergence On the other end, an algorithm has
an Lp output convergence of rate g, with g = (gt)t∈N a
sequence decreasing to 0, if it can output a learning sequence
(µ̂t, ν̂t) such that:

∀t ∈ N, ∥EG(µ̂t, ν̂t)∥p ≤ gt .

This restriction is weaker than the previous last-iterate con-
vergence, as it does not put any constraint on the actual
policies played at each round. It however still forces the
algorithm to have anytime guarantees.

Uncoupled algorithm We say an algorithm is uncoupled
if it independently controls the two players, without active
communication between the two instances. In particular,
we assume that observation of the opponent’s action is not
possible.

This definition is a bit informal as completely characterizing
the impossibility of communication is hard mathematically.
Indeed, even if direct communication is forbidden, the two
instances are not isolated as the loss of one player still
depends on the actions of the other. Nothing technically
prevents one player from passing bits of information to the
other through artificial choices of policies.

5. Lower bound
In this section, we establish that these assumptions com-
bined are quite restrictive. Especially, we show it is impos-
sible to guarantee a better rate than ⊗(T−1/(2+p)) for the
Lp last-iterate convergence with p ∈ (0, 2].

For this purpose, we will consider the following 2×2 games,
for any ε ∈ [−1/12, 1/12]:

Mε =

[
B(2/3− ε) B(1/3 + ε)
B(1/3) B(2/3)

]
where B denotes a Bernoulli distribution.

For these games, regardless of the choice of ε in the domain,
it is easily shown that

ν⋆ =

[
1/2
1/2

]
is the only min-max max player policy, with an associated
value of 1/2. Furthermore, the exploitability gap of any
profile (µt, νt) is at least proportional to the distance |δt|
between νt and ν⋆, with δt = νt(1)− 1/2.

On the contrary, the min-max min-player policy depends on
the choice of ε, as there exists no policy for the min-player
policy that is good regardless of this choice. Especially, the
exploitability gap of any profile (µ, ν) can be shown to be
at least proportional to |ε| for one of the two games M−ε

and Mε.

We therefore assume that the game matrix is either Mε

or M−ε, but that the exact choice is unknown. At each
iteration t, conditioning on F t−1, the law of the reward
vector (i.e. the law of the rewards for each action) for the
min-player is given by:

with Mε :

[
B (1/2 + δt/3− 2δtε)
B (1/2− δt/3)

]
with M−ε :

[
B (1/2 + δt/3 + 2δtε)
B (1/2− δt/3)

]
,

where we re-used the value δt characterizing the difference
between νt and the min-max policy ν⋆.

Guaranteeing an exploitability gap in o(ε) at any horizon T
implies the min-player can discriminate between these two
options. Using some additive properties of the Kullback-
Leibler divergence, we know that, without the observation
of the max-player actions (bt)t∈N, this discrimination is
only possible with an arbitrarily high probability when:

T∑
t=1

µt(1)(δtε)2 I{at=1} = Ω(1) .

Given full control of δt over the iterations, the ideal choice
would be δt = ±1/2, which gives the usual lower bound
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|ε| ≥ Ω(T−1/2). However, the last-iterate convergence
assumption implies that δt must also converge to 0. De-
pending on how strong this convergence of δt must be, the
minimum value of |ε| that allows the discrimination greatly
increases.

This idea is formalized in the following theorem, proven in
Appendix A.
Theorem 5.1. Assume that the sampled action bt ∼ νt

of the max-player at each iteration t is never observed.
Then, for any p ∈ (0, 2], no learning sequence can achieve
simultaneously for all 2× 2 matrix games described above
an Lp last iterate convergence of

f t =
4

−1
p

118
t

−1
2+p ,

even asymptotically.
Remark 5.2. As mentioned in Section 4, the uncoupling of
the two instances is hard to formalize mathematically. In
the above theorem, this formalization is done through the
assumption that the max player’s sampled action is never
observed. As the max-player already knows its optimal
policy ν⋆ and consequently does not need this knowledge
for learning, we consider this assumption to be reasonable.

Furthermore, this assumption of not observing the oppo-
nent’s moves is important for the rate. Indeed, the obser-
vation of these moves would allow the estimation of each
entry of the game matrix at a rate Õ

(
t−1/2

)
, assuming that

each action is played for a non-negligible proportion of the
iterations. With this estimated game matrix, asymptotically
playing the associated minimax profile would lead to the
same Õ

(
t−1/2

)
rate for the exploitability gap.

The p > 2 case: Theorem 5.1 only deals with p ∈ (0, 2).
For p ∈ (2,∞], using ∥·∥p ≤ ∥·∥2 for any random variable
(Rudin, 2006), we immediately get the following corollary.
Corollary 5.3. Under the same assumption as Theorem 5.1,
for any p ∈ (2,∞], no learning sequence can achieve si-
multaneously for all 2 × 2 matrix games described above
an Lp last iterate convergence of

f t =
1

236
t
−1
4 ,

even asymptotically.

The next section shows that the lower bound cannot be
improved in rate for p ∈ (0, 2], as it is tight up to some
constant and logarithmic factors. We conjecture that, despite
the above loose bounding, it also cannot be improved for
p ∈ (2,∞).

6. Exploration-Exploitation trade-off
The above theorem shows that for uncoupled algorithms, Lp

last-iterate convergence is strictly harder than output con-

Algorithm 1 Simultaneous Explore or Exploit
1: Input: Algorithm A with Lp output convergence

Sequence (pt) ∈ [0, 1]
2: Initialize: k0 ← 0

Draw u ∼ U([0, 1]) common to both players
3: Algorithm: For t = 1 to +∞:

kt ← ⌊
∑t

i=1 p
i + u⌋

If kt > kt−1:
Play current profile (µkt

A , νk
t

A ) and update algo-
rithm A

Otherwise:
Play the output (µ̂kt

A , ν̂k
t

A )
4: Output: Learning sequence of policies with L2 last-

iterate convergence

vergence. Indeed, the anytime version of EXP3-IX (Kocák
et al., 2014; Neu, 2015) achieves a rate of Õ(t−1/2) for the
average profile with high probability, which can be trans-
lated into the same rate for the Lp output convergence for
any p > 0.

While these two ways of converging are not equivalent,
there is a procedure that transforms any algorithm A with
Lp output convergence guarantees into one with Lp last-
iterate convergence, at a price of a worse rate. The idea
is simple: at each iteration, either both players ”explore”
by playing one iteration of A and updating accordingly, or
”exploit” by both playing the current estimate.

If the probabilities (pt)t∈N of exploring at each iterations
satisfy:

lim
t−→+∞

pt = 0 and
+∞∑
t=1

pt = +∞ ,

the resulting learning sequence has last-iterate convergence.
Indeed, the first condition makes the exploration contri-
bution to the exploitability gap negligible asymptotically,
while the second ensures that the outputs of A converge to
some minimax policies.

The players need to be synchronized in their choices of
exploration and exploitation steps. This can be done by
sharing a single seed u ∼ U([0, 1]) as shown in Lemma B.1
of the appendix.

The procedure is summarized in Algorithm 1. The follow-
ing lemma, proven in Appendix B, formalizes the above
intuition, given some rate for the output of algorithm A.

Lemma 6.1. Assume thatA satisfies an output convergence
of rate g. Then Algorithm 1 satisfies an Lp last iterate
convergence of rate f defined by

f t = 2
1
p

[(
pt
) 1

p + gr
t
]
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where rt =
⌊∑t

k=1 p
k
⌋

.

We obtain the following theorem with the anytime version
of EXP3-IX and the appropriate parameters.

Theorem 6.2. Using Algorithm 1 with probabilities pt =
t−p/(2+p), and as A, the algorithm EXP3-IX with param-
eters ηtmin = 2γt

min =
√

log(A)/ (At) for the min-player
and ηtmax = 2γt

max =
√

log(B)/ (Bt) for the max-player,
we obtain an Lp last-iterate convergence rate of

f t = 17
√
A+B 2

1
p t−

1
2+p log

(
4(A+B)t2/p

)
.

This approach thus reaches the optimal rate Õ(t
−1
2+p ) men-

tioned above for the Lp convergence, up to some logarithmic
and constant factors. However, it has several drawbacks that
make it not applicable in real settings:

• No communication is required, but the players are not
truly uncoupled in the usual sense as they still need to
share a common seed (a sample from a uniform law at
the beginning of the game). Note that this does not go
against the hypothesis of Theorem 5.1, as this seed can
be the random variable ω of the filtration F .

• The exploitation steps are only performed to respect
the anytime guarantees and have no practical use.

• One of the main points of the last-iterate convergence
is to avoid the computation of the average necessary
in the regret-based algorithm. Not only is this com-
putation still required here (the output of EXP3-IX is
an average), but also needs to be done at almost every
iteration.

7. Regularized mirror descent
Because of these drawbacks, we propose another algorithm
instead based on some regularized dynamics for the conver-
gence.

Loss estimation As explained in the settings, at each iter-
ation t, the mean loss vectors L(·, νt) and 1− L(µt, ·) for
respectively the min and max players are not observed, only
one sample ℓt is observed by both players. It can however
be estimated through the importance sampling estimators:

ℓ̂tmin =
ℓ̂t

µt(at)
I{a=at}

ℓ̂tmax =
1− ℓ̂t

νt(bt)
I{b=bt} .

While these estimators are unbiased, their variance is not
bounded as the probabilities associated to any action can
become arbitrarily small. For this reason, their use alone

theoretically prevents the convergence to the minimax pol-
icy, even in average (Kozuno et al., 2021). A simple way
to counteract this issue is to use IX estimation (Neu, 2015)
and add an additive term γt to the denominator, but this
biases the estimation and potentially worsens the rate. The-
orem 7.2 shows that this bias is not necessary, at least for
the L2 convergence.

Regularization Given τ > 0, we define the regularized
zero-sum game Lτ over ∆A ×∆B with

Lτ (µ, ν) = Eµ,ν [L(a, b)] + τDKL(µ, µ
0)− τDKL(ν, ν

0)

where DKL is the Kullback-Leibler divergence between two
distributions and (µ0, ν0) an arbitrary profile. This game
admits a unique Nash equilibrium, which will be denoted
by (µ⋆,τ , ν⋆,τ ).

Similarly to the regularization of a convex function in or-
der to make it strongly convex, the point of this transfor-
mation is to transform the monotone pseudo-gradient op-
erator F : ∆A × ∆B −→ RA+B defined by F (µ, ν) :=
(∇µL(µ, ν),−∇νL(µ, ν)) into a strongly monotone opera-
tor F τ (µ, ν) := (∇µL

τ (µ, ν),−∇νL
τ (µ, ν)), which satis-

fies, for all (µ, ν), (µ′, ν′) ∈ ∆A ×∆B :

⟨F τ (µ, ν)− F τ (µ′, ν′), (µ− µ′, ν − ν′)⟩

≥ τ
(
∥µ− µ′∥21 + ∥ν − ν′∥21

)
.

A higher τ allows for faster convergence but at the price of
a slightly different Nash-equilibrium (µ⋆,τ , ν⋆,τ ). This im-
plies a trade-off, as the exploitability gap of this regularized
Nash equilibrium for the base game can be shown to be at
most proportional to τ .

Regularized updates Given τ > 0, a common way of up-
dating is to do a mirror-descent with the regularized pseudo-
gradient F τ , which is for example used by in this setting
Cai et al. (2023). We instead use the following updates:

µt = argmin
µ∈∆A

(1− τηt)DKL(µ, µ
τ,t) + τηtDKL(µ, µ

0)

νt = argmin
ν∈∆B

(1− τηt)DKL(ν, ν
τ,t) + τηtDKL(ν, ν

0)

µτ,t+1 = argmin
µ∈∆A

ηt
〈
ℓ̂tmin, µ

〉
+DKL(µ, µ

t)

ντ,t+1 = argmin
ν∈∆B

ηt
〈
ℓ̂tmax, ν

〉
+DKL(ν, ν

t) .

This method is similar to the one proposed by Munos et al.
(2023), but is here able to deal with non-symmetric games
and bandit feedback. It works in two steps. First, the two
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Algorithm 2 Uncoupled Regularized EXP3
1: Input: Learning rates ηt > 0

Regularization parameter τ > 0
2: Algorithm: Initialize µτ,1 and ντ,1 to the uniform poli-

cies µ0 and ν0.
For t = 1 to +∞:

µt ← argminµ∈∆A
(1 − τηt)DKL(µ, µ

τ,t) +

τηtDKL(µ, µ
0)

νt ← argminν∈∆B
(1 − τηt)DKL(ν, ν

τ,t) +
τηtDKL(ν, ν

0)

Sample and play at ∼ µt, bt ∼ νt

Observe ℓt

µτ,t+1 ← argminµ∈∆A
ηt
〈
ℓ̂tmin, µ

〉
+DKL(µ, µ

t)

ντ,t+1 ← argminν∈∆B
ηt
〈
ℓ̂tmax, ν

〉
+DKL(ν, ν

t)

where ℓ̂tmin = ℓt

µt(at) I{at} and ℓ̂tmax = 1−ℓt

νt(bt) I{bt}
3: Output: Learning sequence (µt, νt).

policies are regularized proportionally to the learning rate.
This gives the two policies µt and νt that are used to sample
ℓt. Then a regular mirror step update (with the Kullback-
Leibler divergence) is applied with the unbiased estimate
of the loss. The whole procedure is summarized in Algo-
rithm 2.

These updates allow a relatively simple bound on the
Kullback-Leibler divergence between the intermediate pro-
files (µτ,t, ντ,t) and the regularized Nash equilibrium,
proven in Appendix C.
Lemma 7.1. Let τ ∈ (0, 1]. Taking ηt = 2/ (τ(t+ 1))
along with µτ,1 = µ0 and ντ,1 = ν0 the uniform policies
gives with the above updates

E
[
DKL(µ

τ,⋆, µτ,t) +DKL(ν
τ,⋆, ντ,t)

]
≤ 2(A+B)

τ2 t

for all t ∈ N.

To our knowledge, this is the first result of a O(1/(τ2T ))
rate for the Kullback-Leibler divergence between the regu-
larized solution of a game and the iterates under the bandit
setting for a matrix game. This improves the rateO(1/τ

√
t)

obtained by Dong et al. (2024), although this latter result
was obtained with high probability (and not only in expec-
tation), in addition of holding for any τ -strongly monotone
operator.

Using Pinsker inequality (Pinsker, 1964), this results in
a O(1/(τ

√
T )) bound for the 1-norm between (µτ,t, ντ,t)

and (µτ,⋆, ντ,⋆). Considering that the gap between Lτ , for
which (µτ,⋆, ντ,⋆) is optimal, and that L is at most propor-
tional to τ , the best value of τ for the trade-off seems to
be obtained when τ ≍ 1/(τ

√
T ) where ≍ denotes asymp-

totic equivalence up to a constant. This corresponds to
τ ≍ T−1/4,

The following theorem, proven in Appendix C, formalizes
this idea and provides guarantees for the final output of
Algorithm 2.

Theorem 7.2. Let T be a fixed horizon. Then, using regular-
ization τ = ((A+B) /T )

1/4
√
2/ (log(A) + log(B)) and

the learning rates ηt = 2/(τ(t+ 1)) for all t, Algorithm 2
guarantees

∥EG(µT , νT )∥2 ≤ 3
√
2

(
A+B

T

)1/4√
log(AB) .

With the correct choice of regularization, Algorithm 2 there-
fore benefits from an optimal L2 rate of O(T−1/4) for the
final output. However, as explained above, this choice of
regularization depends on the horizon T , and the above rate
is thus only guaranteed near the final output. The actual
last-iterate guarantee of the whole sequence up to T is given
by

f t ≍ min

(
1,

T 1/4

t1/2

)
which technically does not match the lower bound of Theo-
rem 5.1.
Remark 7.3. An intuitive way of fixing this issue would
be to use an adaptive regularization parameter τ t ≍ t−1/4

that decreases over time. Unfortunately, we failed to show
the convergence of this method. The main reason is that,
while the regularized solution can be shown to converge to
the minimax profile minimizing the entropy as τ t goes to
0, the convergence is sometimes too slow when one of the
two minimax policies is on the border of the simplex. This
can be interpreted through the perspectives of Azizian et al.
(2021): the Legendre exponent of the entropy is different on
the border.

8. Doubling trick and regularization
In order to get the anytime guarantees required for Algo-
rithm 2, the usual solution in the online learning literature
is the doubling trick. It consists in starting the algorithm
with a small horizon T1, and recursively restarting it every
time the horizon is reached with a new horizon Ti = 2Ti−1.
However, its use is not straightforward for this problem, as a
complete restart of the algorithm would go directly against
the last-iterate convergence assumption.

For this reason, we propose to use the doubling trick with
a slight adjustment. Instead of directly restarting with a
weaker regularization and discarding the current iterate after
every subloop i, the meta-procedure will perform a trade-off
between playing the old instance i− 1, which has already
been played over many iterations, and the new instance i,
which has better asymptotical guarantees. Specifically, it
will play the new instance with a certain probability pji , close
to 0 at the beginning and increasing to 1 over the iteration

7
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j of subloop i as the new instance gets played more and
obtains better guarantees.

This meta-procedure is summarized in Algorithm 3. As in
Algorithm 1, the two players need to be synchronized in
their choice between the old and the new instances, hence
the same seed is sampled for both at the initialization.

The following theorem gives the rate of this meta-procedure.
Theorem 8.1. Using Algorithm 3 with, for each Ai, the
algorithms and parameterization of Theorem 7.2, along
with Ti = 32(i2i) and Si = 8(2i), we obtain the bound

∥EG(µt, νt)∥2 ≤ 30

(
A+B

t

)1/4√
log(AB) log(t)

for any total number of iterations t = T1 + ...+ Ti−1 + j.

The proof is given in Appendix C, and relies on a careful
choice of the probabilities pji at each loop i to compensate
for the imperfect anytime guarantees of Algorithm 2. More
precisely, this probability pji must be inversely proportional
to the squared exploitability gap of the new iterates. This
squared exploitability gap is roughly given by the Kullback-
Leibler divergence between the iterates and the new regular-
ized solution, whose inverse is proportional to the number
of iterations from Lemma 7.1. This justifies an exponential
increase up to 1, after which the procedure can be safely
restarted.

Synchronisation Algorithm 3 therefore reaches the opti-
mal rate Õ(T−1/4) for the L2 last-iterate convergence, up
to logarithmic and constant factors. However, it shares some
of the weaknesses of Algorithm 1, as it still requires the two
players to synchronize their choices of either instance Ai

or Ai−1, with the latter being only played for the anytime
guarantees.

9. Conclusion
We studied the convergence of uncoupled algorithms for
learning zero-sum games with bandit feedback. We showed
that imposing anytime last-iterate convergence worsens the
rate compared to just requiring convergence of the average
policies, with a lower bound of Ω(T−1/(2+p)) for the Lp F -
norm of the exploitability gap given p ∈ (0, 2], in contrast
of the usual rate O(T−1/2).

We then proposed two algorithms that match this rate. The
first relies on some synchronization of the two players to bal-
ance between efficient exploration of the game and exploita-
tion of a near-optimal policy. A second algorithm relies
instead on a regularization of the game and also matches the
rate for the L2 norm. However, the latter does not have the
required anytime guarantees. A doubling trick effectively
solves this issue, using a synchronization similar to the first
algorithm.

Algorithm 3 Doubling trick approach
1: Input:

Algorithms A0,A1,A2, ...
Horizons T1, T2, ... ∈ N
Parameters S1, S2, ... ∈ R>0

2: Initialize: Draw u ∼ U([0, 1]) common to both players
3: Algorithm: For i = 1 to +∞:

For j = 1 to Ti:
pji ← min{1, 1

Ti
e

j
Si }

kji ← ⌊
∑j

l=1 p
l
i + u⌋

If kji > kj−1
i :

Play one iteration of Ai

Otherwise:
Play one iteration of Ai−1

4: Output: Learning sequence of policies with L2 last-
iterate convergence

This article opens the following research directions:

Extensive-form games: These results could be extended
to the more general setting of extensive-form games (Kuhn,
1953), in which the players take multiple successive actions
without complete knowledge of the current game state. The
two approaches proposed in this article could be adapted
in a relatively straight-forward way (using IXOMD (Kozuno
et al., 2021) as algorithm A for the first, and the dilated
Shannon entropy (Kroer et al., 2015) as the regularizer for
the second) and obtain the same rate with respect to the
horizon T . However, an interesting question arises: what
is the optimal dependence on the total size of the action
sets? This becomes particularly important in the context of
extensive-form games where the number of actions 2 is very
large.

More natural methods: Is it possible to obtain anytime last-
iterate guarantees without relying on some synchronicity
between the two players?

Stronger convergence: Is the Ω(T−1/4) lower bound tight
for the uncoupled Lp convergence given p > 2, and for the
uncoupled convergence with high probability?

We especially wonder if these last two questions could be
solved using a modified version of the optimistic mirror
descent algorithm, for example by tweaking the estimated
losses or the learning rates.

Impact statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be

2The number of state-action pairs to be precise.
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specifically highlighted here.
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A. Lower bound
Theorem 5.1. Assume that the sampled action bt ∼ νt of the max-player at each iteration t is never observed. Then, for
any p ∈ (0, 2], no learning sequence can achieve simultaneously for all 2× 2 matrix games described above an Lp last
iterate convergence of

f t =
4

−1
p

118
t

−1
2+p ,

even asymptotically.

Proof. We will use the games mentioned in the main body, defined with:

Mε =

[
2/3− ε 1/3 + ε
1/3 2/3

]
with ε ∈ [−1/12, 1/12].

where the entries of the matrix indicate the parameters of some i.i.d Bernoulli for the actual game.

We will assume that the learning sequence satisfies an asymptotic Lp last iterate convergence with f of the form

f t = Cp t
−1
2+p with Cp ∈ (0, 1] ,

and show that this is impossible for all games given Cp low enough.

Notations Let zt denote the knowledge of both players up to round t included with zt :=
(
ω, a1, ℓ1, ..., at, ℓt

)
, such

that the sequences (µt) and (νt) of policies are predictable with respect to the filtration (σ(zt))t∈N rather than F from the
assumption.

We will consider the games M0, MεT and M−εT with a fixed choice of εT that we will specify later. Let P0, PT and
P−T respectively be the probabilities associated to playing these games, with ∥·∥0, p, ∥·∥T, p and ∥·∥−T, p the associated p

(pseudo)-norms. For any random variable X and θ ∈ Z, we will denote by PX
θ the probability distribution on X given Pθ.

Now, given an horizon T , let ET and E−T respectively be the two events ET :=
{
µT (1) ≤ 1/2

}
and E−T :={

µT (1) ≥ 1/2
}

. ET denotes a suboptimal choice for the game MεT , and E−T a suboptimal choice for the game
M−εT as we will show in the next section. Under P0, one of these two events happens with a probability of at least 1/2, we
will denote it with θT ∈ {−T, T}

For clarity, we will take the strategy of the max-player νt to be in the form
[
1/2 + δt

1/2− δt

]
with δt ∈ [−1/2, 1/2]..

Link between the policies and exploitability gaps The exploitability gap will be lower bounded twice in this section: for
the max-player under the game M0 and for the min-player under the games MεT and M−εT . We will use the fact that the
value of all of these games is 1/2.

Given a max-player policy νt, we have

M0.νt =

[
1/2 + δt/3
1/2− δt/3

]
which implies (for M0), EG(µt, νt) ≥ 1/2−minµ

〈
µ,M0.νt

〉
= δt/3

On the other hand, given a min-player policy µT =

[
µT (1)

1− µT (1)

]
and any ε ∈ [−1/12, 1/12],

(Mε)
T
.µT =

[
1/3 + 1/3µT (1)− εµT (1)
2/3− 1/3µT (1) + εµT (1)

]
.

(with the MT notation for the transpose). Then, using the vectors e1 =

[
1
0

]
and e2 =

[
0
1

]
,

12



The Harder Path: Last Iterate Convergence for Uncoupled Learning in Zero-Sum Games with Bandit Feedback

With MεT under event ET =
{
µT (1) ≤ 1/2

}
:
〈
e2, (MεT )

T
.µT
〉
≥ 1/2 + εT /2,

hence: EG(µt, νt) ≥ max
ν

〈
ν, (MεT )

T
.µT
〉
− 1/2 ≥ εT /2

With M−εT under event E−T =
{
µT (1) ≥ 1/2

}
:
〈
e1,
(
M−εT

)T
.µT
〉
≥ 1/2 + εT /2,

hence: EG(µt, νt) ≥ max
ν

〈
ν,
(
M−εT

)T
.µT
〉
− 1/2 ≥ εT /2

In both cases, the exploitability gap is at least εt/2.

Asymptotic KL divergence From the definition of the sequence (zt) and the additive properties of the KL divergence, we
obtain the following inequalities

DKL

(
PzT

0 ,PzT

θT

)
= DKL

(
Pz0

0 ,Pz0

θT

)
+ E0

[
T∑

t=1

DKL

(
Pzt|zt−1

0 ,Pzt|zt−1

θT

)]

= DKL (Pω
0 ,Pω

θT ) + E0

[
T∑

t=1

DKL

(
Pat|zt−1

0 ,Pat|zt−1

θT

)]
+ E0

[
T∑

t=1

DKL

(
Pℓt|zt−1

0 ,Pℓt|zt−1

θT

)]

= E0

[
T∑

t=1

µt(1)DKL
(
1/2 + δt/3, 1/2 + δt/3− 2δtsign(θT )εT

)]

≤ 24ε2TE0

[
T∑

t=1

∣∣δt∣∣2]

≤ 24ε2TE0

[
T∑

t=1

∣∣δt∣∣p]

≤ 24ε2TE0

[
T∑

t=1

(
3EG(µt, νt)

)p]

≤ 216ε2T

T∑
t=1

∥EG(µt, νt)∥p0,p

where we especially used the reversed Pinsker inequality with 1/6 ≤ 1/2 + δt/3− 2δtsign(θT )εT ≤ 5/6, and the previous
lower bound of the exploitability gap under P0. For the third equality:

• DKL
(
Pω
0 ,Pω

θT

)
is 0 as the internal randomness do not depend on the model.

• DKL

(
Pat|zt−1

0 ,Pat|zt−1

θT

)
is also 0, for all t, as the choice of the action (conditionally on the previous move) also does

not depend on the model.

• From the computations above, DKL

(
Pℓt|zt−1

0 ,Pℓt|zt−1

θT

)
corresponds to the KL divergence between a Bernoulli

B(1/2 + δt/3) and a Bernoulli B(1/2 + δt/3 − 2δtsign(θT )εT ) if the first move is played by the first player, 0
otherwise.

Now assume that the restriction holds for all t > T0, then for any T > T0
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DKL

(
PzT

0 ,PzT

θT

)
≤ 216ε2T

(
T0 +

T∑
t=T0+1

(
f t
)p)

≤ 216ε2T

(
T0 +

T∑
t=1

t
−p
2+p

)

≤ 216ε2T

(
T0 +

∫ T

0

t
2

2+p−1dt

)

= 216ε2T

(
T0 +

2 + p

2
T

2
2+p

)
≤ 216ε2T

(
T0 + 2T

2
2+p

)
.

Which implies the asymptotic bound:

lim sup
T−→+∞

DKL

(
PzT

0 ,PzT

θT

)
T

−2
2+p ≤ 432ε2T .

Probability of a suboptimal choice Defining ∥·∥TV the total variation between two probabilities P and Q:

∥P−Q∥TV = sup
E event

|P(E)−Q(E)|

and using the measurability of EθT

with respect to σ
(
zT
)
, the fact that P0(E

θT

) ≥ 1/2 by definition and Pinsker inequality,
we get

lim inf
T−→+∞

PθT (EθT

) ≥ lim inf
T−→+∞

[
P0(E

θT

)−
∥∥∥PzT

0 − PzT

θT

∥∥∥
TV

]
≥ 1

2
− lim sup

T−→+∞

√
1

2
DKL

(
PzT

0 ,PzT

θT

)
≥ 1

2
− 6
√
6 lim sup

T−→+∞
εTT

1
2+p

.

This implies that fixing εT = 1
24

√
6
T

−1
2+p forces the probability of this suboptimal choice to be at least 1

4 asymptotically.

Final bound Combining the previous choice of εT with the suboptimality of µT under EθT

,

lim inf
T−→+∞

∥EG(µT , νT )∥θT , p T
1

2+p ≥ lim inf
T−→+∞

(
PθT

(
EθT

)
EθT

[(
EG(µT , νT )

p
∣∣∣EθT

)]) 1
p

T
1

2+p

≥ lim inf
T−→+∞

PθT

(
EθT

) 1
p εT

2
T

1
2+p

=
1

48
√
6
lim inf
T−→+∞

PθT

(
EθT

) 1
p

≥ 4
−1
p

48
√
6
.

As 1
48

√
6
> 1

118 , this implies that the guarantees cannot be attained asymptotically for all games assuming f is defined with

f t =
4

−1
p

118
t

−1
2+p .
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B. Proofs for the Simultaneous Explore or Exploit approach
Lemma B.1. Let (pt) ∈ [0, 1]N. The sequence of Bernoulli random variables (Bt)t∈N defined by

Bt = ⌊st + u⌋ − ⌊st−1 + u⌋ where st =

t∑
i=1

pi and u ∼ U([0, 1])

satisfies:

∀t ∈ N, E[Bt] = pt and
t∑

i=1

Bi ≥
⌊
st
⌋
.

Proof. Let x, y ∈ R such that 0 ≤ y − x ≤ 1. Let {·} denote the fractional part. We distinguish two cases with the same
result:

• If {x} ≤ {y} (and consequently ⌊x⌋ = ⌊y⌋), then

P (⌊x+ u⌋+ 1 = ⌊y + u⌋) = P (u ∈ [1− {y}, 1− {x})) = {y} − {x} = y − x

• If {x} > {y} (which necessarily implies ⌊x⌋ = ⌊y⌋ − 1),

P (⌊x+ u⌋+ 1 = ⌊y + u⌋) = P (u ∈ [0, 1− {x}) ∪ [1− {y}, 1]) = 1− {x}+ {y} = y − x .

Using, for each t ∈ N, x = st−1 and y = st yields the first equality. The inequality is obtained by telescoping the term:

T∑
i=1

Bi =
⌊
sT + u

⌋
− ⌊u⌋ ≥

⌊
sT
⌋

.

Lemma B.2. Assume that A satisfies an output convergence of rate g. Then Algorithm 1 satisfies an Lp last iterate
convergence of rate f defined by

f t = 2
1
p

[(
pt
) 1

p + gr
t
]

where rt =
⌊∑t

k=1 p
k
⌋

.

Proof. Using the previous lemma where Bt is the action of exploring, we obtain as g is non-increasing,

∥EG(µt, νt)∥p = E
[
EG(µt, νt)p

] 1
p

=
(
ptE

[
EG(µt, νt)

]
+ (1− pt)E

[
EG(µ̂kt

, ν̂k
t
]) 1

p

≤
(
pt +

(
gr

t
)p) 1

p

≤ 2
1
p

[(
pt
)p

+ gr
t
]

where we used the notation kt = ⌊
∑t

k=1 p
k + u⌋ and the inequalities, for all x, y ∈ R>0:

(x+ y)q ≤ 2q−1(xq + yq) for q ≥ 1 from the convexity of xq

(x+ y)q ≤ (xq + yq) for q < 1 as y 7→ (x+ y)q − xq − yq is decreasing on R>0.
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Theorem B.3. (Neu, 2015) Given A arms and δ ∈ (0, 1), setting ηt = 2γt =
√

log A
At for all t, the bound of EXP3-IX is

RT ≤ 4
√
AT log(A) +

(
2

√
AT

log A
+ 1

)
log(2/δ)

with probability 1− δ

Applying this theorem to both Rt
min and Rt

max with δ′ = δ/2 gives the bound, with probability at least 1− δ:

Rt
min +Rt

max ≤ 4
√
At log(A) +

(
2

√
At

log A
+ 1

)
log(4/δ) + 4

√
Bt log(B) +

(
2

√
Bt

log B
+ 1

)
log(4/δ)

≤ 8
√

(A+B)t log(A+B) +
(
2
√
At+ 2

√
Bt
)
log(4/δ)

≤ 8
√
(A+B)t log(4(A+B)/δ)

where we used very loose upper bounds for simplicity.
Theorem 6.2. Using Algorithm 1 with probabilities pt = t−p/(2+p), and as A, the algorithm EXP3-IX with parameters
ηtmin = 2γt

min =
√

log(A)/ (At) for the min-player and ηtmax = 2γt
max =

√
log(B)/ (Bt) for the max-player, we obtain an

Lp last-iterate convergence rate of

f t = 17
√
A+B 2

1
p t−

1
2+p log

(
4(A+B)t2/p

)
.

Proof. Lp bound

We first show that the average policy played by EXP3-IX converges for the Lp norm. Let p ∈ (0, 2] and t ∈ N, we consider
δ = p/tp in the above inequality. Then, as the sum of the two regrets is bounded by T ,

∥EG(µ̂t, ν̂t)∥p = E
[
EG(µ̂t, ν̂t)p

] 1
p

≤ 1

t

[(
Rt

min +Rt
max

)p] 1
p

≤ 1

t

[
δtp + (1− δ)

(
8
√
(A+B)t log(4(A+B)/δ)

)p] 1
p

≤ 1

t

[
p+

(
8
√

(A+B)t log(4(A+B)t2/p)
)p] 1

p

.

As for all x ≥ 1, from the concavity of the log function,

(p+ xp)
1
p = e

1
p log(p+xp) ≤ e

1
p log(xp)+1 = ex ,

we obtain

∥EG(µ̂t, ν̂t)∥p ≤ 6

√
A+B

t
log
(
4(A+B)t2/p

)
Lemma application We apply Lemma 6.1 with pt = t−

p
2+p . As in this case,⌊

rt
⌋
≥
⌊∫ t+1

1

u− p
2+p du

⌋
≥
⌊
2 + p

p

(
(t+ 1)

2
2+p − 1

)⌋
≥ 2

(
t

2
2+p − 2

)
.

We obtain (loosely) a rate

f t = 2
1
p

[
(pt)

1
p + gr

t
]

≤ 2
1
p

[
t−

1
2+p + 11

√
2
√
A+B log

(
4(A+B)t2/p

)
t−

1
2+p

]
≤ 2

1
p 17
√
A+B log

(
4(A+B)t2/p

)
t−

1
2+p .
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C. Proofs for the Regularized EXP3 algorithm
Notations: In this section, the computations will be done directly in the space W = ∆A ×∆B using w = (µ, ν) and the
operators, for τ > 0,

F (w) = (L(·, ν), 1− L(µ, ·))

F̂ t = (ℓ̂tmin, ℓ̂
t
max)

h(w) =

A∑
a=1

µ(a) (log(µ(a))− 1) +

B∑
b=1

ν(b) (log(ν(b))− 1)

F τ (w) = (L(·, ν), 1− L(µ, ·)) + τ
(
∇h(w)−∇h(w0)

)
D(w,w′) = DKL(µ, µ

′) +DKL(ν, ν
′) .

With these notations, we have the following properties:

• F is a monotone operator over W , and the solutions w⋆ ∈W of the variational inequalities

∀w ∈W, ⟨F (w⋆), w⋆ − w⟩ ≤ 0

are the Nash equilibrium of the game associated to L.

• F τ is a strongly monotone operator. It has only one solution wτ,⋆, for which the above inequality is always an equality
and satisfies for all w,w′ ∈W :

⟨F τ (w)− F τ (w′), w − w′⟩ = τ (D(w,w′) +D(w′, w))

• E(F̂ t|F t−1) = F (wt)

• D is the Bregman divergence associated to h, and especially satisfies the law of cosines, for all x, y, z ∈W :

D(x, z) = D(x, y) +D(y, z) + ⟨∇h(z)−∇h(y), y − x⟩

Before proving the lemma, we can notice that the updates of Algorithm 2 can be rewritten in the W space (if τηt ≤ 1):

wt = argmin
w∈W

(1− ηtτ)D(w,wτ,t) + ηtτD(w,w0)

wτ,t+1 = argmin
w∈W

ηt
〈
F̂ t, w

〉
+D(w,wt)

which are equivalent to the updates, taking the gradient of the above expressions,

∇h(wt) ≡ (1− τηt)∇h(wτ,t) + τηt∇h(w0)

∇h(wτ,t+1) ≡ ∇h(wt)− ηtF̂ t

where we used the notations
x ≡ y ⇐⇒ ∀w ∈W, ⟨x− y, w⟩ = 0

Lemma C.1. Let τ ∈ (0, 1]. Taking ηt = 2/ (τ(t+ 1)) along with µτ,1 = µ0 and ντ,1 = ν0 the uniform policies gives
with the above updates

E
[
DKL(µ

τ,⋆, µτ,t) +DKL(ν
τ,⋆, ντ,t)

]
≤ 2(A+B)

τ2 t

for all t ∈ N.
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Proof. Updates: From the law of cosines applied to the two updates, we have:

(1) (1− ηtτ)D(wτ,⋆, wτ,t) = (1− ηtτ)D(wτ,⋆, wt) + (1− ηtτ)D(wt, wτ,t)

+ (1− ηtτ)
〈
∇h(wτ,t)−∇h(wt), wt − wτ,⋆

〉
≥ (1− ηtτ)D(wτ,⋆, wt) + ηtτ

〈
∇h(wt)−∇h(w0), wt − wτ,⋆

〉
and

(2) D(wτ,⋆, wτ,t+1) = D(wτ,⋆, wt) +D(wt, wτ,t+1) +
〈
∇h(wτ,t+1)−∇h(wt), wt − wτ,⋆

〉
= D(wτ,⋆, wt) +D(wt, wτ,t+1)− ηt

〈
F̂ t, wt − wτ,⋆

〉
.

(2)− (1) yields when conditioned on F t−1:

E
[
D(wτ,⋆, wτ,t+1)|F t−1

]
≤ (1− ηtτ)D(wτ,⋆, wτ,t) + E

[
D(wt, wτ,t+1)|F t−1

]
+ ηtτD(wτ,⋆, wt)− ηt

〈
wt − wτ,⋆, F τ (wt)

〉
= (1− ηtτ)D(wτ,⋆, wτ,t) + E

[
D(wt, wτ,t+1)|F t−1

]
+ ηtτD(wτ,⋆, wt)− ηt

〈
wt − wτ,⋆, F τ (wt)− F τ (wτ,⋆)

〉
= (1− ηtτ)D(wτ,⋆, wτ,t) + E

[
D(wt, wτ,t+1)|F t−1

]
− ηtτD(wt, wτ,⋆)

≤ (1− ηtτ)D(wτ,⋆, wτ,t) + E
[
D(wt, wτ,t+1)|F t−1

]
,

Second order bound: We now want to show

E
[
D(wt, wτ,t+1)|F t−1

]
≤
(
ηt
)2 A+B

2
.

We start by showing

E
[
DKL(µ

t, µτ,t+1)|F t−1
]
≤
(
ηt
)2 A

2

and the rest will follow by symmetry. This inequality is classic in the bandit literature, but we provide a quick proof below
for completeness.

If we define µ̃τ,t+1 as the unprojected update defined by:

∇hA(µ̃
τ,t+1) = ∇hA(µ

t)− ηtℓ̂tmin

we know, because of the generalized Pythagorean theorem (Hiriart-Urruty & Lemaréchal, 2001), that

E
[
DKL(µ

t, µτ,t+1)|F t−1
]
≤ E

[
DKL(µ

t, µ̃τ,t+1)|F t−1
]
.

Then, using the convex conjugate h⋆ (Hiriart-Urruty & Lemaréchal, 2001), the following holds, using classical properties of
the Bregman divergence:

E
[
DKL(µ

t, µ̃τ,t+1)|F t−1
]
= E

[
Dh⋆

A
(∇hA(µ̃

τ,t+1),∇hA(µ
t))|F t−1

]
= E

[
Dh⋆

A
(∇hA(µ

t)− ηtℓ̂tmin,∇hA(µ
t))|F t−1

]
≤ (ηt)

2

2
E
[〈
∇2h⋆

A(∇h(µt)).ℓ̂tmin, ℓ̂
t
min

〉
|F t−1

]
=

(ηt)
2

2

A∑
a=1

µt(a)
ℓt(a)2

µt(a)2
µt(a)

≤
(
ηt
)2 A

2
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where we used Taylor inequality along with the fact that the hessian

∇2h⋆
A(∇hA(µ)) = ∇2hA(µ)

−1 = Diag(µ(a))a=1,...,A

is increasing on all components with respect to µ, which implies the negativity of the third-order term. Indeed, each
component of the unprojected policy decreases along the update.

Recursion We then have the recursive property, taking the global expectation:

E
[
D(wτ,⋆, wτ,t+1)

]
≤ (1− ηtτ)E

[
D(wτ,⋆, wτ,t)

]
+ (ηt)2

A+B

2
.

With ηt = 2
τ(t+1) , this is everything we need for the desired property

E
[
D(wτ,⋆, wτ,t)

]
≤ 2

A+B

τ2t
.

Indeed, for t = 1, the property immediately follows from, as wτ,1 is the uniform profile,

D(wτ,⋆, wτ,1) = h(wτ,⋆) ≤ log(A) + log(B) ≤ A+B

τ2

and τ ≤ 1 by assumption.

Then, assuming the property holds for t, we notice that for t+ 1

E
[
D(wτ,⋆, wt+1)

]
≤ 2

(
1− 2

t+ 1

)
A+B

τ2.t
+ 2

A+B

τ2(t+ 1)2

= 2
A+B

τ2

(
1

t
− 2

t(t+ 1)
+

1

(t+ 1)2

)
≤ 2

A+B

τ2

(
1

t
− 1

t(t+ 1)

)
= 2

A+B

τ2(t+ 1)
.

Lemma C.2. For a zero-sum game with rewards in (0, 1), the exploitability gap is 1-Lipchitz with respect to the 1-norm.

Proof. Let w = (µ, ν) and w′ = (µ′, ν′) be two profiles in ∆A ×∆B , then

|EG(w)− EG(w′)| =

∣∣∣∣∣supµ†
L(µ†, ν)− sup

µ†
L(µ†, ν′)− sup

ν†
L(µ, ν†) + sup

ν†
L(µ′, ν†)

∣∣∣∣∣
≤

∣∣∣∣∣supµ†
L(µ†, ν)− sup

µ†
L(µ†, ν′)

∣∣∣∣∣+
∣∣∣∣sup
ν†

L(µ, ν†)− sup
ν†

L(µ′, ν†)

∣∣∣∣
≤ ∥ν − ν′∥1 + ∥µ− µ′∥1
≤ ∥w − w′∥1

following the fact that, for any (µ†, ν†), ν 7→ L(µ†, ν) and µ 7→ L(µ, ν†) are both 1-Lipschitz as the coefficients of the
matrix are in [0, 1].

Theorem 7.2. Let T be a fixed horizon. Then, using regularization τ = ((A+B) /T )
1/4
√
2/ (log(A) + log(B)) and the

learning rates ηt = 2/(τ(t+ 1)) for all t, Algorithm 2 guarantees

∥EG(µT , νT )∥2 ≤ 3
√
2

(
A+B

T

)1/4√
log(AB) .
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Proof. We can safely assume T ≥ A+B ≥ 4 as the bound is immediate otherwise. We first notice, at iteration T :

• From the optimality of wτ,⋆ up to the regularization,

EG(wτ,⋆) ≤ τDKL(w
τ,⋆, w0) ≤ τ (log(A) + log(B)) .

• From Pinsker inequality and Lemma 7.1,

∥wτ,T − wτ,⋆∥21 ≤ 2DKL(w
τ,⋆, wτ,T ) ≤ 4(A+B)

τ2 T
.

• By definition of wT as an argmin,

(1− ηT τ)DKL(w
T , wτ,T ) + τηTDKL(w

T , w0) ≤ ηT τDKL(w
τ,T , w0).

Hence, re-using Pinsker inequality,

∥wT−wτ,T ∥21 ≤ 2DKL(w
T , wτ,T ) ≤ 2

ηT τ

1− ηT τ
DKL(w

τ,t, w0) ≤ 4ηT τ (log(A) + log(B)) =
8

T + 1
(log(A) + log(B))

where we used ηT = 2
τ(T+1) , and in particular ηT τ ≤ 1

2 as T ≥ 3 by assumption.

With all these inequalities together, along with Lemma C.2 for the 1-Lipschitzness of the exploitability gap,

E
[
EG(wT )2

]
≤ E

[(
EG(wτ,⋆) + ∥wT − wτ,⋆∥1

)2]
≤ E

[(
EG(wτ,⋆) + ∥wτ,T − wτ,⋆∥1 + ∥w

T − wτ,T ∥1
)2]

≤ 3E
[
EG(wτ,⋆)2 + ∥wτ,T − wτ,⋆∥21 + ∥w

T − wτ,T ∥21
]

≤ 3

(
τ2 (log(A) + log(B))

2
+

4(A+B)

τ2 T
+

8

T + 1
(log(A) + log(B))

)
.

In particular, with τ2 = 2
log(A)+log(B)

√
A+B
T , we obtain,

E
[
EG(wT )2

]
≤ 3

(
4

√
A+B

T
+

8

T

)
(log(A) + log(B))

hence, as T ≥ 4 and A+B ≥ 4,

E
[
EG(wT )2

]
≤ 18

√
A+B

T
(log(A) + log(B))

and by taking the square root,

∥EG(wT )∥2 ≤ 3
√
2

(
A+B

T

)1/4√
log(A) + log(B) .

Theorem 8.1. Using Algorithm 3 with, for each Ai, the algorithms and parameterization of Theorem 7.2, along with
Ti = 32(i2i) and Si = 8(2i), we obtain the bound

∥EG(µt, νt)∥2 ≤ 30

(
A+B

t

)1/4√
log(AB) log(t)

for any total number of iterations t = T1 + ...+ Ti−1 + j.
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Proof. Let EG(i, s) be the exploitability gap of sub-algorithm Mi after s iterations. With the notations

CA,B = 18
√
A+B (log(A) + log(B)) ,

we have from the proof of Theorem 7.2, taking T = s and τ2 = 2
log(A)+log(B)

√
A+B
Ti

,

E
[
EG(i, s)2

]
≤ CA,B

√
Ti

s

assuming s ≤ Ti.

We will also use the notation, for any j ≤ Ti, s
j
i =

∑j
l=1 p

l
k, the expected sum of calls of sub-algorithm Mi during the loop

i. Note that, because of the sampling method, the actual number of calls s will be at least sji − 1.

We notice, for any 1
2Si log(Ti) ≤ j ≤ Si log(Ti),

sji =
e

j+1
Si − 1

Ti

(
e

1
Si − 1

)
and in particular,

sji − 1 =
e

j+1
Si − 1

Ti

(
e

1
Si − 1

) − 1

≥ 4Si

5Ti

(
e

j+1
Si − 2

)
≥ 4(1− 2e−2)

5

Si

Ti
e

j+1
Si

≥ Si

2Ti
e

j+1
Si (∗)

where we used e
1
Si ≤ 1 + 1

Si
+ 1

S2
i
≤ 1 + 5

4Si
, e

j+1
Si ≥ e

log(Ti)

2 ≥ e2 .

Now, for any j ≤ Ti and t = T1 + ...+ Ti−1 + j. We have

E
[
EG(µt, νt)2

]
= pji E

[
EG(i, s)2

]︸ ︷︷ ︸
α(i,j)

+(1− pji )E
[
EG(i− 1, s′)2

]︸ ︷︷ ︸
β(i,j)

where s ≥ suk − 1 and s′ ≥ s
Ti−1

i−1 − 1.

First term (α(i, j)):

• Either j ≤ Si

2 log(Tk), then α(i, j) ≤ pji ≤ 1√
Ti

using EG(i, s) ≤ 1

• Either 1
2Si log(Ti) < j ≤ Si log(Tj), in this case, using (∗) we obtain

s ≥ sji − 1 ≥ Si

2Ti
e

j+1
Si ≥ Si

2
pji

This yields

α(i, j) ≤ 2CA,B

√
Ti

Si
= 8iCA,B

1√
Ti

.

• Either Si log(Ti) < j, in this case, using (∗) again with ⌊Si log(Ti)⌋ instead of j, we obtain:

s ≥ sji − 1 ≥ sji − 1 ≥ Si

2Ti
e

j+1
Si ≥ Si

2
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which again yields:

α(i, j) ≤ 2CA,B

√
Ti

Si
= 8iCA,B

1√
Ti

.

as pji ≤ 1.

Second term (β(i, j))

For the second term, which depends on the total number of call of algorithm Mi−1, we will lower-bound this number using
only the calls during the loop i− 1. As Ti−1 ≥ ⌊Si−1 log(Ti−1)⌋, we have, using inequality (∗) on the loop i− 1, with the
previous quantity, as above,

s′ ≥ s
Ti−1

i−1 − 1 ≥ svi−1 − 1 ≥ Si−1

2

and we obtain:

β(i, j) ≤ 2CA,B

√
Ti−1

Si−1
= 8(i− 1)CA,B

1√
Ti−1

.

Final bound : To conclude, we will also need the simple inequalities:

• Ti ≥
∑i−1

l=1 Tl (and thus t ≤ 2Ti if t is in loop i).

• 4Ti−1 ≥ Ti

• i ≤ log(Ti−1)/ log(2)

Using these, we obtain, for any i, j and t = T1 + ...+ Ti−1 + j:

E
[
EG(µt, νt)2

]
= α(i, j) + β(i, j)

≤ 8iCA,B
1√
Ti

+ 8(i− 1)CA,B
1√
Ti−1

≤ 8

log(2)

(√
2 + 2

√
2
)
CA,B

log(Ti)√
t

≤ 8

log(2)

(√
2 + 2

√
2
)
CA,B

log(t)√
t

.

Finally, taking the square root and using the definition of CA,B ,

∥EG(µt, νt)∥2 ≤

√
144

log(2)

(√
2 + 2

√
2
)(A+B

t

)1/4√
(log(A) + log(B)) log(t)

≤ 30

(
A+B

t

)1/4√
(log(A) + log(B)) log(t) .

22


