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ABSTRACT

Human motion prediction combines the tasks of trajectory forecasting, human
pose prediction, and possibly also multi-person modeling. For each of the three
tasks, specialized, sophisticated models have been developed due to the complex-
ity and uncertainty of human motion. While compelling for each task, combin-
ing these models for holistic human motion prediction is non-trivial. Conversely,
holistic human motion prediction methods, which have been introduced recently,
have struggled to compete on established benchmarks for individual tasks. To
address this dichotomy, we study a simple yet effective model for human motion
prediction based on a transformer architecture. The model employs a stack of self-
attention modules to effectively capture both spatial dependencies within a pose
and temporal relationships across a motion sequence. This simple, streamlined,
end-to-end model is sufficiently versatile to handle pose-only, trajectory-only, and
combined prediction tasks without task-specific modifications. We demonstrate
that our approach achieves state-of-the-art results across all tasks through exten-
sive experiments on a wide range of benchmark datasets, including Human3.6M,
AMASS, ETH-UCY, and 3DPW. Our results challenge the prevailing notion that
architectural complexity is a prerequisite for achieving accuracy and generality in
human motion prediction. Code will be released.

1 INTRODUCTION

Human motion prediction, the task of forecasting future 3D human motion from a sequence of past
observations, is a critical challenge with wide-ranging applications in autonomous driving (Zheng
et al., 2022; Paden et al., 2016), robotics (Zou, 2024; Salzmann et al., 2023), virtual reality (Clark
et al., 2020; Fu et al., 2020; Ro et al., 2019), and sports analytics (Li et al., 2021). Because human
motion is inherently multi-dimensional, non-linear, and highly uncertain, the literature has largely
tackled prediction of human motion by addressing distinct tasks individually: trajectory predic-
tion (Gu et al., 2022; Bae et al., 2022; Shi et al., 2023; Bae et al., 2024; Yao et al., 2024; Fang
et al., 2025), pose prediction (Dang et al., 2022; Barquero et al., 2023; Sun & Chowdhary, 2024;
Hosseininejad et al., 2025; Curreli et al., 2025; Xu et al., 2024), and multi-person motion predic-
tion (Jeong et al., 2024; Zheng et al., 2025).

While making individual tasks easier to address, this differentiation also opens up a gap: tasks like
pose and trajectory forecasting are fundamentally interrelated and governed by the same underlying
dynamics (Zheng et al., 2025), yet they are modeled separately using task-specific architectures.
This has led to the development of complex, specialized models that excel at one task but struggle to
generalize, limiting their applicability and introducing unnecessary complexity. Notable exceptions
that jointly model these different tasks, particularly in the context of multi-person motion, are Jeong
et al. (2024) and Zheng et al. (2025). However, the results of these holistic models are suboptimal on
established benchmarks for individual sub-tasks. Consequently, models that predict jointly tend to
create their own benchmarks or evaluation protocols, making it difficult to assess their effectiveness
against specialized methods directly. Their performance limitations on pose and trajectory predic-
tion show the need for a solution that not only addresses human motion prediction holistically but
also excels on established, task-specific benchmarks.

To achieve this, we present a general and, in hindsight, very simple approach to 3D human mo-
tion prediction. Our model is built upon a stack of self-attention modules to effectively capture
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Figure 1: An overview of our SimpliHuMoN architecture. Past motion, consisting of trajectory Tpast
and/or pose, is encoded alongside a set of learnable queries Qin into context C and query C tensors,
respectively.

both the spatial dependencies within a single pose and the temporal relationships across the entire
motion sequence. This design allows us to model a variety of complex motion dynamics while main-
taining a streamlined and efficient framework. Unlike more complicated, multi-stage models, our
method employs a unified, end-to-end training process, which improves training stability and over-
all performance. Our findings demonstrate that a well-designed, attention-based model can achieve
benchmark performance across all tasks, challenging the notion that architectural complexity is a
prerequisite for accuracy and generality in this field.

We validate our approach through extensive experiments on a wide range of public datasets, includ-
ing Human3.6M (Ionescu et al., 2013) and AMASS (Mahmood et al., 2019) for pose prediction,
ETH-UCY (Lerner et al., 2007; Pellegrini et al., 2009) and SDD (Robicquet et al., 2016) for tra-
jectory prediction, as well as MOCAP-UMPM (CMU Graphics Lab, 2003; van der Aa et al., 2011)
and 3DPW (von Marcard et al., 2018) for combined pose and trajectory tasks. Our results show
that our model outperforms or matches current best methods across various metrics while being
computationally efficient.

The key contributions of this paper are summarized as follows:

• We introduce SimpliHuMoN, a unified Transformer framework that challenges the prevail-
ing trend of architectural complexity in human motion prediction.

• We establish state-of-the-art performance across pose, trajectory, and holistic prediction
tasks, showing that a single, simple architecture can outperform highly specialized models.

2 SIMPLIHUMON

We propose a simple yet effective 3D human motion prediction model based on a transformer de-
coder architecture. The model is designed to be as simple as possible, learning a mapping from a
person’s past movements to their future movements while accommodating various input and output
configurations.

The input Xpast consists of two components, each over a historical time horizon of H timesteps. On
the one hand, the trajectory Tpast ∈ RH×3 represents the path of a root joint (e.g., the hip). On the
other hand, the relative body pose Ppast ∈ RH×M×3 represents the state of M joints relative to the
root joint. Our framework can operate on either of these inputs individually or on both combined: for
trajectory prediction, the model only operates on Tpast; for pose prediction, the model only operates
on Ppast; and for joint pose and trajectory prediction, the model operates on both.

The model aims to predict the corresponding future state Xfut, over a prediction horizon of F
timesteps. To capture the uncertainty of motion, following prior work (Jeong et al., 2024), the model
generates K distinct proposal states, i.e., Xfut = (X1

fut, ..., X
K
fut). Each proposal Xk

fut, k ∈ {1, ...,K},
consists of a complete predicted future state. The composition of Xk

fut mirrors that of the input; it
can include a future root trajectory Tfut ∈ RF×3, a future relative body pose Pfut ∈ RF×M×3, or
both, depending on what was provided as input.
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Overview of our method. As illustrated in Fig. 1, our model begins by independently processing
the historical observations Xpast and a set of learnable query tokens Qin = (Q1

in, ...,QF
in ) ∈ RF×3

into a context tensor C and a query tensor Q respectively (Sec. 2.1). A self-attention-based trans-
former then processes the tensors (Sec. 2.2). Finally, a multi-modal prediction head regresses the
decoder’s output Z into K distinct trajectories and pose hypotheses to give the final output, Xfut
(Sec. 2.3). We describe the training procedure and model configurations in Sec. 2.4.

2.1 INPUT PROCESSING AND EMBEDDING MODULE

This module prepares the raw input data for the transformer decoder by normalizing it and map-
ping it into a shared high-dimensional latent space of dimension dmodel. The process creates two
main tensors: a context tensor, C, from historical observations and a query tensor, Q, from a set of
learnable parameters.

2.1.1 PAST CONTEXT ENCODING

To compute the context tensor C, the historical input sequence is processed using one or both of two
parallel streams, depending on the task: one for trajectory Tpast and one for relative body pose Ppast.

Root Trajectory Processing. The 3D coordinates of the root joint are extracted from the input
sequence. To normalize the motion, the root’s position at the final input frame is subtracted from
all historical root positions. This normalized trajectory is then projected into the dmodel-dimensional
embedding space by a linear layer.

Relative Pose Processing. The pose is represented relative to the root (hip) joint for each timestep.
If a dataset provides absolute coordinates, we normalize the pose by subtracting the root joint’s
position from all other body joint positions. This relative pose vector is then processed by a two-
layer MLP (with a GELU activation function), which outputs an embedding of dimension dmodel.

After their initial embedding, both streams are enhanced. First, a sinusoidal positional encoding is
added to each sequence to encode the specific position of each of the H timesteps along the time
axis. Then, a learnable type embedding E is added to each token. The type embedding encodes
whether a given token represents part of the root trajectory or the body pose. Finally, the processed
sequences are concatenated (if both are present) along the sequence dimension to form the final
context tensor, C. The shape of C is therefore R2H×dmodel for combined inputs, and RH×dmodel when
only a single input modality is provided.

2.1.2 FUTURE QUERY GENERATION

The queries used to prompt the decoder are learnable tensors Qin ∈ RF×3. These learnable prompts
guide the decoder in its computation. These tokens are first projected into the dmodel space by a
linear layer. The resulting sequence is then explicitly split into trajectory QT ∈ RF×dmodel and pose
QP ∈ RF×dmodel queries if both modalities are required. Similar to the past context encoding, these
query sequences are enriched with positional encodings and their corresponding type embeddings.
The two query sequences are then concatenated (if both are present) to create the final query tensor,
Q (∈ R2F×dmodel for combined inputs, RF×dmodel for single), ensuring that it perfectly mirrors the
composition and format of C.

This explicit separation of queries into trajectory and pose streams enables the model’s flexibility.
The architecture learns a strong association between each query type and its corresponding output
modality, reinforced by the type embeddings. This allows the same model to handle different tasks
without any architectural modifications.

2.2 TRANSFORMER DECODER

The major computations in our model are performed by a decoder-only transformer with L identical
layers, utilizing a pre-LayerNorm configuration. Each layer operates on the concatenation of two
input tensors: a context tensor, C, derived from historical observations, and a query tensor, Q,
derived from learnable latent variables.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

A key distinction from standard encoder-decoder or cross-attention-based models is our use of a uni-
fied attention mechanism. Within each layer, we perform a single multi-head self-attention operation
over the sequence [C;Q] concatenated over the time dimension. This design allows every token in
the context and query sequences to directly attend to all other tokens, providing a global exchange
of information in a single step. For enhanced training stability, we apply Root Mean Square Layer
Normalization (RMSNorm) to the query and key projections within each attention head before the
dot-product operation. The standard feed-forward network (FFN) sub-layer uses a GELU activation.

After passing through the stack of L decoder layers, the model produces an output tensor, Z, with
the exact dimensions as the input query Q. Having attended to the full context, these output query
tokens now serve as rich, context-aware representations ready to be mapped into future predictions
by the output heads.

The decoder’s ability to handle different prediction tasks is a direct consequence of this unified
attention design. The architecture is agnostic to the composition of the context C. For combined
prediction, the trajectory and pose queries can attend to their corresponding context streams. If the
task is trajectory-only, C will only contain trajectory information, and the query tokens Q will attend
to this relevant context. This allows the model to implicitly specialize its query representations based
on the available input, providing a flexible foundation for all task variations.

2.3 MULTI-MODAL PREDICTION HEADS

To account for the stochastic nature of the prediction task, the prediction head decodes the final la-
tent representation from the decoder into K distinct future hypotheses. The latent tensor first passes
through a linear projection to create K parallel branches. Two dedicated output heads then process
each branch, if both are being modeled, to regress the future root trajectory (T k

fut) and body pose
(P k

fut), respectively, ensuring each of the K proposals is a complete and comparable hypothesis. Ar-
chitecturally, these heads mirror the input processing module: a linear layer regresses the trajectory
and a two-layer MLP regresses the pose, effectively inverting the initial embedding process.

2.4 IMPLEMENTATION DETAILS

The model is trained end-to-end using a “winner-takes-all” loss, where gradients are backpropagated
only through the single hypothesis k that minimizes the Euclidean distance to the ground truth future.
Formally, the training loss L for a given ground truth Xgt

fut is computed via

L(Xpast, X
gt
fut) = mink∈{1,...,K}∥Xgt

fut −Xk
fut(Xpast)∥2, (1)

where Xk
fut(Xpast) is the kth prediction hypothesis computed from Xpast via the model. This formu-

lation ensures that gradients are only computed for the best prediction, encouraging the model’s K
output modes to specialize and cover diverse, plausible futures.

We report results for two configurations: a “wide” model (L = 6, dmodel = 192) and a “deep” model
(L = 16, dmodel = 48). In all experiments, we use the AdamW optimizer (β1 = 0.95, β2 = 0.999)
with a weight decay of 10−4. All models are trained for 300 epochs with a batch size of 64 and
standard data augmentation on one NVIDIA RTX A6000 GPU. The number of modes, K, is set as
a hyperparameter to follow prior work per task.

3 EXPERIMENTS

3.1 DATASETS

We evaluate our model on several standard benchmarks to cover a range of motion forecasting tasks.
For 3D human pose prediction, we use Human3.6M (Ionescu et al., 2013), a large-scale lab-based
dataset, and AMASS (Mahmood et al., 2019), a comprehensive motion capture archive used for
generative modeling. For trajectory forecasting, we use the pedestrian datasets ETH-UCY (Lerner
et al., 2007; Pellegrini et al., 2009) and the Stanford Drone Dataset (SDD) (Ro et al., 2019), which
contains varied persons from an aerial view. Finally, we evaluate joint pose and trajectory prediction
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using Mocap-UMPM (CMU Graphics Lab, 2003; van der Aa et al., 2011), a mixed dataset of

Mocap and UMPM containing synthesized human interaction between three people, and 3DPW
(von Marcard et al., 2018), a dataset with two people traversing a real-world environment. We report
results on each benchmark after training our model on its respective dataset in Table 1, which uses
the same color scheme to visually group the results by task.

3.2 METRICS

We evaluate our model following common practice for multi-modal models that generate K pro-
posals, reporting the minimum error among all generated proposals. For pose prediction, we report
the minimum Average/Final Displacement Error (ADE/FDE) averaged across all body joints over
K = 7 proposals, following Hosseininejad et al. (2025). For trajectory prediction, we report the

ADE/FDE on the root joint over K = 20 proposals, following Yao et al. (2024). In the combined
pose and trajectory prediction task, we assess local and global accuracy over K = 6 proposals,
following Jeong et al. (2024). For this, we use two metrics: Aligned mean per joint Position Error
(APE), which measures pose error after root-alignment, and Joint Precision Error (JPE), which mea-
sures the overall error of all joints in the world coordinate system. Consistent with prior work, for
datasets containing multiple people, the final reported metric is the average of the errors computed
for each individual.

3.3 BASELINES

We compare our method against a wide range of state-of-the-art models across three distinct pre-
diction tasks. In the domain of pose-only prediction, we evaluate against several recent generative
approaches, including DivSamp (Dang et al., 2022), and prominent diffusion-based models such as
BeLFusion (Barquero et al., 2023), CoMusion (Sun & Chowdhary, 2024), and SkeletonDiff (Cur-
reli et al., 2025). Our comparison in this category also includes Motionmap (Hosseininejad et al.,
2025) and the state-space diffusion model SLD (Xu et al., 2024). For trajectory-only prediction, we
benchmark against MID (Gu et al., 2022), GP-Graph (Bae et al., 2022), TUTR (Shi et al., 2023),
SingularTrajectory (Bae et al., 2024), the vision-language model TrajCLIP (Yao et al., 2024), and
NMRF (Fang et al., 2025). Finally, for the comprehensive task of multi-person motion prediction,
which involves forecasting combined human trajectory and pose, we include EMPMP (Zheng et al.,
2025) and T2P (Jeong et al., 2024).

3.4 QUANTITATIVE RESULTS

Our proposed simple model demonstrates versatile and robust performance, improving state-of-
the-art results across a diverse range of motion forecasting tasks, as shown in Table 1. Its suc-
cess as a generalist architecture is particularly noteworthy given that many competing methods are
highly specialized and incorporate sophisticated, domain-specific inductive biases. For instance,
top-performing baselines often rely on complex operations such as the Discrete Cosine Transform
(DCT) to model motion in the frequency domain (Xu et al., 2024) or employ graph convolutional
networks (GCNs) to explicitly encode the body’s kinematic structure (Sun & Chowdhary, 2024).
The results for our two primary configurations—a “wide” model and a “deep” model—highlight the
effectiveness of our simple, unified approach in challenging established, task-specific methods.

On the Human3.6M benchmark, our model’s performance matches the leading methods in Aver-
age Displacement Error (ADE) while outperforming compared methods in Final Displacement Error
(FDE). This strength in long-term forecasting is further confirmed on AMASS , where it again sur-
passes existing models on the FDE metric. This success illustrates that attention-based transformers
can effectively and accurately model high-dimensional pose data. Notably, our model achieves this
performance in a single, deterministic forward pass. This differs from the iterative sampling process
required for inference by leading generative models (Curreli et al., 2025; Sun & Chowdhary, 2024).

On trajectory prediction, our “wide” model’s performance is on par with the current best techniques,
matching the leading results on both ADE and FDE metrics for the ETH-UCY dataset, with a
detailed breakdown of the individual ETH components available in the appendix. Given that these
scenes can contain up to 57 pedestrians, our model’s success is particularly notable, as it challenges
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Table 1: Detailed comparison of model performance. Lower values are better (↓), with the best
results shown in bold. An asterisk (*) denotes models we recomputed for this setup, a dagger (†)
marks models adapted for the specific task, while a (∧) notes models that use external training data.

Pose Prediction Trajectory Prediction Pose + Trajectory Prediction

Dataset
In/Out length (s)

Metric

Human3.6M
0.5/2.0

ADE↓/FDE↓

AMASS
0.5/2.0

ADE↓/FDE↓

ETH-UCY (Avg)
3.2/4.8

ADE↓/FDE↓

SDD
3.2/4.8

ADE↓/FDE↓

MOCAP-UMPM
1.0/2.0

APE↓/JPE↓

3DPW
0.8/1.6

APE↓/JPE↓

Po
se

DivSamp 0.48/0.68 0.48/0.64 - - - -
BeLFusion 0.44/0.60 0.35/0.48 - - - -
CoMusion 0.43/0.61 0.31/0.46 - - - -
Motionmap 0.47/0.60 0.32/0.45 - - - -
SkeletonDiff 0.64/0.77* 0.56/0.71* - - - -
SLD 0.42/0.59* 0.30/0.45* - - - -

Tr
aj

MID - - 0.21/0.38 7.61/14.32 - -
GP-Graph - - 0.23/0.39 9.10/13.76 - -
TUTR - - 0.21/0.36 7.76/12.69 - -
SingularTrajectory - - 0.22/0.34 7.26/12.58 - -
TrajCLIP - - 0.18/0.33∧ 6.29/11.79∧ - -
NMRF - - 0.19/0.32 7.20/11.29 - -

Po
se

+T
ra

j T2P 0.80/1.03† 0.63/0.94† 0.19/0.39† 8.11/8.59† 151.71/262.73 150.04/236.24
EMPMP 0.45/0.72† 0.42/0.65† 0.63/0.72† 10.29/10.51† 146.52/250.41* 150.62/235.44*
Ours (wide) 0.42/0.59 0.31/0.45 0.18/0.32 6.70/7.63 125.70/212.72 142.89/230.97
Ours (deep) 0.44/0.57 0.35/0.47 0.19/0.32 6.26/7.61 131.41/211.76 148.91/231.48

the conventional wisdom that highly complex components are required for navigating crowded envi-
ronments. For instance, our simple transformer architecture does not rely on the external knowledge
of massive, pre-trained vision-language models as in TrajCLIP, or the continuous, field-based scene
representations used by NMRF. Furthermore, on the SDD benchmark, both of our models outper-
form the prior work, with our deep configuration improving on FDE by 32%.

In the comprehensive task of combined pose and trajectory prediction, the advantages of our unified
architecture are most prominent. On both the MOCAP-UMPM and 3DPW datasets, our models
substantially outperform prior methods like T2P and EMPMP. These competing approaches often
rely on complex, multi-stage pipelines, where localized and global aspects of motion are processed
during separate stages (Jeong et al., 2024). In contrast, by jointly modeling pose and trajectory
within a single end-to-end framework, our approach more effectively captures the coupled dynamics
between local body articulation and global root movement, leading to significant performance gains
across all metrics. For instance, on MOCAP-UMPM, our models lower the APE by more than
10.3% and JPE by 15%.

Our model’s strong performance on multi-person datasets is achieved without any explicit interac-
tion modules, since we treat any individuals in a scene independently. The success stems from our
powerful single-agent motion representation, which not only validates the foundational architecture
but also reveals a clear opportunity for future work: integrating an explicit interaction mechanism
could yield even better results.

Table 2: Throughput comparison in sam-
ples/second. Higher values are better (↑).

Model Training
Throughput

Inference
Throughput

T2P 187 401
EMPMP 812 2041
Ours (wide) 862 2251
Ours (deep) 928 3673

Additionally, we want to note that our model is
computationally very efficient. To demonstrate this,
we benchmarked all models that perform joint pose
and trajectory prediction on the MOCAP-UMPM
dataset, comparing the average number of samples
processed per second. Our “deep” configuration is
not only more accurate but also more computation-
ally efficient than the lightweight EMPMP model,
showing a 14.3% increase in training throughput
and processing inference samples nearly 1.8 times
faster. Please see Table 2 for details.

3.5 QUALITATIVE RESULTS

We provide a qualitative comparison of predicted motions on the MOCAP-UMPM dataset in Fig-
ure 2. The figure illustrates a challenging sample where three individuals are walking backward,
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T2P

EMPMP

Ours (wide)

Ours (deep)

Model

Figure 2: Visualization of results on a MOCAP-UMPM scene. Model predictions are in color, and
ground truth future poses are black dashes. The last-known input positions are colored dashes.

a motion that requires complex coordination. Our “wide” and “deep” models both generate fluid
and physically plausible motion sequences that accurately capture the underlying dynamics. The
articulation of the arms and torso is notably realistic, showcasing the model’s ability to learn natu-
ral human motion without being constrained by explicit structural priors. In particular, our “deep”
configuration demonstrates exceptional performance over the long term, maintaining high-quality,
dynamic predictions even at the final t = 2.0s timestep.

The performance of the baseline models highlights the advantages of our unified approach. T2P re-
sorts to an overly conservative strategy when challenged with this tricky, high-uncertainty scenario.
Its predictions become increasingly static over time, collapsing towards a mean pose with very lit-
tle movement to avoid large errors. In contrast, EMPMP attempts to generate dynamic motion but
struggles with physical plausibility. Its predictions exhibit noticeable artifacts, such as the unnatural
arm posture of the person in green and the awkward leg movements of the person in blue. These
qualitative results underscore that our model not only achieves superior quantitative accuracy but
also produces motions that are significantly more realistic and coherent than competing methods.

3.6 ABLATION STUDIES

In this section, we conduct a series of ablation studies to investigate the impact of our model’s key
components and hyperparameters. We perform these experiments on the MOCAP-UMPM dataset
for the joint pose and trajectory prediction task to analyze the effectiveness of our multi-modal
prediction head and the trade-offs in our transformer architecture.

3.6.1 CHOICE OF TRANSFORMER HYPERPARAMETERS

Our model’s major computations are performed using a simple transformer decoder. We analyze the
trade-offs between its depth (number of layers, L) and width (embedding dimension, dmodel). We
experimented with various configurations, keeping the overall parameter count relatively low, to find
effective deep net architecture designs. The results are summarized in Table 3.

The analysis reveals a clear relationship between depth, width, and predictive accuracy. Our “wide”
configuration (L = 6, dmodel = 192) achieves the best APE, suggesting that a more expansive
embedding space is beneficial for capturing fine-grained pose details. Decreasing the depth to L = 4
or increasing it to L = 8 with the same width leads to a decline in performance, indicating a sweet
spot for this configuration.

Conversely, our “deep” model (L = 16, dmodel = 48) obtains the lowest JPE, demonstrating that a
deeper stack of attention layers is more effective at modeling complex, long-range spatio-temporal
dependencies for global trajectory prediction, even with a constrained embedding dimension. As
expected, performance degrades significantly with shallower or narrower architectures. These re-
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Table 3: Comparison of our model’s performance with different hyperparameter configurations.

Depth Embed dim Total Params APE JPE
8 192 5.2M 126.05 212.84
6 192 4.0M 125.70 212.72
4 192 2.8M 126.22 213.40

12 96 1.9M 128.47 212.08
6 96 1.0M 128.52 212.45

12 64 860K 130.72 212.30
16 48 642K 131.41 211.76
12 48 490K 131.09 212.73
16 36 367K 134.52 215.36 1.0 2.0 3.0 4.0 5.0

Total Params (In Millions)
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Best JPE (“deep”)

sults validate our choice of the “wide” and “deep” models, as they represent two distinct and highly
effective points in the architecture design space, tailored for different aspects of motion prediction.

3.6.2 EFFECT OF MULTI-MODAL PREDICTION

While multi-modal prediction is standard in trajectory forecasting, state-of-the-art methods for joint
pose and trajectory prediction, such as EMPMP, have often favored a deterministic approach, pre-
dicting a single future outcome. However, human motion is inherently stochastic, and a single
prediction can fail to capture the full range of plausible futures. We therefore conduct an ablation
to quantify the advantage of our multi-modal prediction head explicitly. We compare our model’s
performance when generating multiple proposals (K = 6) against a deterministic setting (K = 1),
mirroring the setup of prior work (Jeong et al., 2024).

Table 4: Model performance with 2 different modes
on MOCAP-UMPM data. Lower values are better (↓).

K = 1 K = 6

Metric APE JPE APE JPE
T2P 154.4 366.4 151.7 262.7
EMPMP 147.2 283.1 146.5 250.4
Ours (wide) 145.84 280.8 125.70 212.72
Ours (deep) 149.35 286.96 131.41 211.76

The results in Table 4 clearly demon-
strate the limitations of a deterministic ap-
proach. Even in a deterministic setting, our
“wide” model is already competitive with
EMPMP. However, by embracing multi-
modality, our model achieves a dramatic
performance gain. The APE improves by
13.8% and the JPE by a substantial 24.2%.
This highlights that our model doesn’t just
produce a better single guess; it effectively
captures a distribution of high-quality fu-
ture motions. Interestingly, prior works do
not benefit from multiple modes to the same
degree. For instance, EMPMP’s APE barely improves, suggesting its architecture may struggle to
generate genuinely distinct futures. While a full analysis of why the baselines are less suited to
multi-modal prediction is beyond the scope of this paper, it suggests that our unified architecture is
particularly effective at leveraging the “winner-takes-all” loss to produce a diverse and plausible set
of outcomes—a crucial capability that deterministic models lack by design.

4 RELATED WORK

Human motion requires a holistic assessment, as local body articulation (pose) and global displace-
ment (trajectory) are deeply intertwined. Our research community, however, has largely tackled
motion prediction by decomposing this process into specialized sub-problems: pose, trajectory, and
multi-person motion prediction. This specialization has driven progress on narrow benchmarks but
created a dichotomy: specialized models fail to generalize, while the few holistic models struggle
to compete on established task-specific leaderboards. This “benchmark effect” has incentivized an
escalation in architectural complexity, with increasingly elaborate models gaining an edge.

In this context, the transformer has emerged as a powerful tool for sequence modeling. However, its
application to human motion has often followed the increasing complexity trend, where it merely
serves as a backbone for other domain-specific modules. This paper challenges that approach. We

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

posit that the transformer’s true power lies not in its ability to support additional complex compo-
nents, but in its inherent capacity to address the problem in a simple, direct, and unified manner.

4.1 HUMAN POSE PREDICTION

The task of human pose prediction involves forecasting a future sequence of 3D skeletal joint lo-
cations relative to the root joint based on an observed history of poses (Hosseininejad et al., 2025,
see Appendix C). To address the stochastic nature of human behavior, the field has shifted from de-
terministic models (Medjaouri & Desai, 2022; Ma et al., 2022) to complex generative frameworks,
particularly diffusion models. This pursuit of generative fidelity has fueled a cycle of escalating com-
plexity, with methods like BeLFusion (Barquero et al., 2023) introducing a “behavioral latent space”
and CoMusion (Sun & Chowdhary, 2024) employing a hybrid Transformer-GCN architecture that
operates in the Discrete Cosine Transform (DCT) (Mao et al., 2021) space to model skeletal kine-
matics explicitly. Recent methods like SkeletonDiff (Curreli et al., 2025) and SLD (Xu et al., 2024)
focus on skeleton-aware generation or long-sequence efficiency, while non-diffusion approaches like
Motionmap (Hosseininejad et al., 2025) introduce novelties such as multi-stage heatmap pipelines.

4.2 HUMAN TRAJECTORY PREDICTION

Trajectory forecasting aims to predict the future path of an agent’s root joint, a task complicated by
latent intent, social interactions, and environmental constraints. Recent state-of-the-art approaches
have often relied on massive external knowledge sources or engineered, multi-stage pipelines. A
prominent trend involves leveraging large foundation models; TrajCLIP (Yao et al., 2024), for ex-
ample, incorporates knowledge from vision-language models (VLMs) to provide contextual cues,
effectively outsourcing the learning problem. Another approach involves building complex frame-
works for generality, such as Singular Trajectory (Bae et al., 2024), whose “universal” status is the
result of an engineered pipeline involving Singular Value Decomposition and a diffusion-based re-
finer, or NMRF (Fang et al., 2025), which uses sophisticated modules like continuous, field-based
scene representations.

4.3 COMBINED POSE AND TRAJECTORY PREDICTION

The simultaneous prediction of pose and trajectory is where the limitations of fragmented archi-
tectures become most apparent, as this task requires modeling the critical coupling between local
articulation and global movement. Prior work has typically imposed strong architectural priors on
how pose and trajectory information should interact. T2P (Jeong et al., 2024) employs a sequential,
“coarse-to-fine” strategy, first predicting the global trajectory and then conditioning the pose predic-
tion on that result. This design imposes a one-way causal assumption that trajectory dictates pose
and is susceptible to error propagation. An alternative, seen in EMPMP (Zheng et al., 2025), uses
parallel branches to process local and global information separately before fusion. This avoids direct
error propagation but imposes a prior: that local and global features are separable concerns. This
rigid separation may preclude the model from learning more complex, deeply intertwined represen-
tations where local and global dynamics are jointly encoded from the outset. Consequently, although
EMPMP was explicitly designed to be “lightweight”, its architecture is built from individually light
but intricately integrated components and struggles to leverage hardware parallelism effectively.

5 CONCLUSION

This paper introduces SimpliHuMoN, a simple and unified transformer-based model that addresses
the prevailing trends of fragmentation and escalating complexity in human motion prediction. We
challenge the field by demonstrating how a single, end-to-end framework effectively learns the dy-
namics of human movement across various tasks. Extensive experiments across a wide range of
standard benchmarks validate this approach, showing that our model achieves state-of-the-art accu-
racy while also proving more computationally efficient than prior methods. Ultimately, this work
serves as evidence that architectural simplicity, when thoughtfully applied, can outperform engi-
neered complexity, suggesting that the path forward in motion prediction lies not in adding more
intricate components but in refining simple and truly generalizable foundations.

9
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6 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. Our model’s architecture, loss
function, training procedure, and key hyperparameters are described in detail in Section 2 of the
main paper, with further analysis in our ablation studies (Section 3.6). For data handling, Ap-
pendix A provides a complete description of all datasets and the exact preprocessing steps, which
follow established protocols from prior work. The precise mathematical definitions for all evaluation
metrics are detailed in Appendix B. Finally, our supplementary website, referenced in Appendix C,
offers additional qualitative results. Collectively, these resources provide a comprehensive guide for
reproducing our experimental findings. We will also release all code.
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APPENDIX: SIMPLIHUMON: SIMPLIFYING HUMAN MOTION PREDICTION

This appendix is structured as follows: In Sec. A we provide additional dataset and metric details. In
Sec. B we detail additional experimental results. In Sec. C we highlight the website which is part of
the provided appendix. In Sec. D we discuss joint training results. In Sec. E we provide information
about our LLM usage.

A ADDITIONAL DATASET AND METRIC DETAILS

A.1 SOURCES AND PROCESSING OF DATA

All experiments are conducted on publicly available, open-source datasets. To ensure a fair and
direct comparison with prior work, we strictly adhere to the established data processing and evalu-
ation protocols from recent top-performing methods for each prediction task. This standardization
ensures that the performance improvements reported in this paper are attributable to our model’s
architecture rather than differences in data handling. The specific protocols are as follows: For pose
prediction on the Human3.6M and AMASS datasets, we follow the data processing methodology,
sequence lengths, and evaluation splits established by BeLFusion (Barquero et al., 2023). For trajec-
tory prediction on the ETH-UCY and SDD, our data handling and evaluation procedures align with
the protocol set forth by NMRF (Fang et al., 2025). For combined pose and trajectory Prediction
on the MOCAP-UMPM and 3DPW datasets, we adopt the data preparation and processing pipeline
outlined by T2P (Jeong et al., 2024).

A.2 METRIC FORMULAE

Given the predicted motion proposal Xk
fut = {xk

t,m} ∈ RF×M×3 for k ∈ {1, 2, ...,K} across F

time frames with M joints per person, along with the corresponding ground truth Xgt
fut = {xgt

t,m}, the
following metrics are used for evaluation. For multi-modal predictions, we follow common practice
and report the minimum error among all K generated proposals for each metric (e.g., minADE,
minFDE). Consistent with prior work, for datasets containing multiple people, the final reported
error is the average of the metric computed for all individuals. All metrics in the main paper are
reported for the final output timestep, t = F .

APE. Aligned mean per joint Position Error (APE) is used as a metric to evaluate the forecasted
local motion. Euclidean distance of each joint relative to the root (hip) joint is averaged over all
joints for a given timestep, t:

APEt(X
gt
fut, X

k
fut) =

1

M

M∑
m=1

∥(xgt
t,m − xgt

t,hip)− (xk
t,m − xk

t,hip)∥2. (2)

JPE. Joint Precision Error (JPE) evaluates both global and local predictions by the average Eu-
clidean distance of all joints for a given timestep, t:

JPEt(X
gt
fut, X

k
fut) =

1

M

M∑
m=1

∥xgt
t,m − xk

t,m∥2. (3)

ADE. Average Displacement Error (ADE) measures the Euclidean distance between the ground
truth and predicted sequences, averaged over all joints and all future time frames:

ADE(Xgt
fut, X

k
fut) =

1

F ×M

F∑
t=1

M∑
m=1

∥xgt
t,m − xk

t,m∥2. (4)

FDE. Final Displacement Error (FDE) measures the Euclidean distance between the ground truth
and the prediction, averaged over all joints for a given timestep, t:

FDEt(X
gt
fut, X

k
fut) =

1

M

M∑
m=1

∥xgt
t,m − xk

t,m∥2. (5)
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Table 5: Trajectory prediction performance (ADE/FDE) on ETH-UCY. Lower values are better, with
the best results shown in bold. A dagger (†) marks models adapted for the specific task, while a (∧)
notes models that use external training data.

Model ETH HOTEL UNIV ZARA1 ZARA2 AVG
MID 0.39/0.66 0.13/0.22 0.22/0.45 0.17/0.30 0.13/0.27 0.21/0.38
GP-Graph 0.43/0.63 0.18/0.30 0.24/0.42 0.17/0.31 0.15/0.29 0.23/0.39
TUTR 0.40/0.61 0.11/0.18 0.23/0.42 0.18/0.34 0.13/0.25 0.21/0.36
SingularTrajectory 0.35/0.42 0.13/0.19 0.25/0.44 0.19/0.32 0.15/0.25 0.22/0.34
TrajCLIP∧ 0.36/0.57 0.10/0.17 0.19/0.41 0.16/0.28 0.11/0.20 0.18/0.33
NMRF 0.26/0.37 0.11/0.17 0.28/0.49 0.17/0.30 0.14/0.25 0.19/0.32
T2P† 0.29/0.55 0.15/0.27 0.25/0.53 0.16/0.33 0.12/0.26 0.19/0.39
EMPMP† 0.99/0.98 0.70/0.87 0.69/0.89 0.43/0.50 0.32/0.35 0.63/0.72
Ours (wide) 0.28/0.44 0.13/0.24 0.24/0.44 0.16/0.29 0.11/0.21 0.18/0.32
Ours (deep) 0.29/0.44 0.14/0.24 0.24/0.43 0.17/0.29 0.13/0.21 0.19/0.32

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 PER-DATASET SPLIT ON ETH-UCY

On the ETH-UCY datasets, our model demonstrates highly competitive performance against leading
methods, as detailed in Table 5. While models like TrajCLIP (Yao et al., 2024) and NMRF (Fang
et al., 2025) achieve the best results on some of the individual scenes, our “wide” configuration
achieves the best overall performance, tying for the best average ADE (0.18) and the best average
FDE (0.32).

This result is particularly noteworthy when considering the architectural differences between our
model and methods like TrajCLIP. TrajCLIP’s strong performance stems from its use of a large,
pre-trained VLM to provide rich semantic priors. Specifically, it uses natural language prompts
(e.g., “a person walking”) to generate contextual embeddings from the VLM’s text encoder, which
are then fused with visual features to guide the trajectory prediction. This approach effectively
outsources a part of the learning problem to a massive external knowledge base. While powerful,
this creates a dependency on computationally heavy external models and assumes that general web-
scale knowledge is optimally suited for the fine-grained physics of trajectory prediction.

Our model, in contrast, is entirely self-contained, learning all necessary dynamics exclusively from
the provided motion data. The performance difference on the ETH scene, where our model signif-
icantly outperforms TrajCLIP, suggests a key advantage of this self-sufficient approach. The ETH
dataset represents a scenario where the visual-semantic cues that TrajCLIP relies on are less infor-
mative and reliable than in other scenes. In such cases, our model’s ability to learn robustly from
the motion dynamics alone allows it to generalize more effectively, leading to a more consistent
performance profile across all five datasets. This consistency is what enables our model to achieve
better average performance without relying on external priors, challenging the notion that they are a
prerequisite for top-tier trajectory forecasting.

Furthermore, a key architectural difference is TrajCLIP’s explicit modeling of social and environ-
mental interactions through two dedicated modules. They are designed to capture the dynamics
between different agents and integrate visual context from the environment to make predictions
physically consistent with the static scene. In contrast, our current model processes each agent
independently and contains no such explicit interaction mechanisms. The fact that our simpler, non-
interactive approach still achieves state-of-the-art average performance highlights the remarkable
strength and efficiency of its core motion representation. This also points to a promising avenue for
future work: integrating a lightweight interaction mechanism into our powerful architecture could
potentially push performance even further.
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Table 6: Comparison of APE/JPE metrics across models and datasets. Lower values are better (↓),
with the best results shown in bold. An asterisk (*) denotes models we recomputed for this setup.

MOCAP-UMPM 3DPW
In/Out Length (s) 0.4s 0.8s 1.2s 1.6s 2.0s 0.4s 0.8s 1.2s 1.6s

A
PE

T2P* 71.7 107.8 120.4 137.1 151.7 98.2 114.6 135.3 150.0
EMPMP* 60.1 96.0 116.9 131.6 146.5 96.3 111.9 134.4 150.6
Ours (wide) 57.3 87.7 104.5 115.3 125.7 92.8 107.1 130.0 142.9
Ours (deep) 62.3 89.5 107.3 119.0 128.5 93.2 108.4 131.5 148.9

JP
E

T2P* 70.2 139.2 160.1 226.4 262.7 107.7 142.6 181.0 236.2
EMPMP* 68.0 123.9 170.3 219.1 250.4 103.6 140.2 179.8 235.4
Ours (wide) 64.6 108.6 143.9 177.7 212.7 99.4 137.3 172.1 231.0
Ours (deep) 68.9 109.9 145.3 177.2 210.3 100.1 138.2 171.6 231.5

B.2 DETAILED METRICS ACROSS KEY FRAMES

To scrutinize performance over the forecast horizon, Table 6 presents a time-step-level analysis on
the MOCAP-UMPM and 3DPW datasets. The results reveal not only the consistent superiority of
our models over T2P and EMPMP at every interval but also a crucial architectural trade-off.

Our “wide” model establishes a new standard for local pose accuracy (APE), excelling at capturing
fine-grained kinematics, particularly in the short term. Conversely, our “deep” model demonstrates
its strength in long-range forecasting, achieving the best overall world-coordinate accuracy (JPE) at
the final timesteps. This divergence highlights a key finding: architectural depth appears more crit-
ical for maintaining global trajectory coherence, while width is more effective for local pose detail.
Most notably, the performance gap between our models and the baselines widens as the prediction
horizon increases. This demonstrates our architecture’s superior robustness against the error accu-
mulation that typically plagues sequential prediction tasks. This detailed analysis confirms that our
simple, unified framework is not just more accurate overall but is also more effective at handling
the challenges of long-term motion forecasting compared to competing multi-stage or specialized
approaches.

C WEBSITE

We provide a website with additional visualizations demonstrating our method’s performance, which
can be accessed using the provided HTML file.

We observe that the generated motions exhibit high physical plausibility, with no unrealistic arti-
facts such as foot sliding. Body poses are consistently realistic, respecting natural body constraints
and capturing fine-grained details without grouping different joints into unnatural, blocky move-
ments. Furthermore, our model adeptly handles both independent and coupled motion dynamics; it
accurately predicts localized movements (e.g., arm gestures without a change in trajectory) and com-
plex actions where limb articulation and global trajectory are deeply intertwined. Our model excels
in multi-person scenes by processing agents independently. This avoids a key limitation of rigid,
graph-based interaction models (GNNs), which can corrupt individual forecasts by forcing informa-
tion aggregation from non-interacting neighbors. This finding does not diminish the importance of
interaction modeling but rather clarifies the need to learn it dynamically.

D JOINT TRAINING

To test the full generalization capability of our architecture, we train a single, universal model jointly
on all datasets across all tasks (pose, trajectory, and combined prediction). This experiment aims
to create a single set of weights that can perform any of the specialized tasks without retraining.
Handling the significant diversity in data formats, skeleton structures, and sequence lengths requires
a carefully designed methodology, which we detail below.
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Table 7: Mapping from dataset-specific skeletons to our 22-joint canonical representation. AMASS
serves as the canonical skeleton itself. Dashes (–) indicate that a direct mapping for that specific
canonical joint is unavailable in the source dataset.

# AMASS Human3.6M MOCAP-UMPM 3DPW
1 Pelvis – Hips Pelvis
2 L Hip LeftUpLeg LHip LHip
3 R Hip RightUpLeg RHip RHip
4 Spine1 Spine Spine –
5 L Knee LeftLeg LKnee LKnee
6 R Knee RightLeg RKnee RKnee
7 Spine2 – – –
8 L Ankle LeftFoot LAnkle –
9 R Ankle RightFoot RAnkle –

10 Spine3 – – –
11 L Foot – – LFoot
12 R Foot – – RFoot
13 Neck Neck Neck –
14 L Collar – – –
15 R Collar – – –
16 Head Head / Head-top Head –
17 L Shoulder LeftArm LShoulder LShoulder
18 R Shoulder RightArm RShoulder RShoulder
19 L Elbow LeftForeArm LElbow LElbow
20 R Elbow RightForeArm RElbow RElbow
21 L Wrist LeftHand LWrist LWrist
22 R Wrist RightHand – RWrist

D.1 METHODOLOGY

Data Unification and Canonical Skeleton. A primary challenge is the heterogeneity of the
datasets. To create a consistent input format, all data is preprocessed into a normalized tensor of
shape T×M×3 (sequence length × joints × coordinates). We pad the data with a zero Z-dimension
for 2D trajectory datasets (ETH-UCY, SDD) to create a consistent 3D representation.

To address the varying skeleton definitions, we establish a 22-joint canonical skeleton, using the
AMASS dataset as our standard. All other datasets are mapped to this representation, as shown in
Table 7. This mapping allows us to use a fixed set of learnable joint embeddings, ensuring that input
data for a given semantic body part (e.g., the ‘Left Knee’) is always processed by its corresponding
embedding, regardless of the source dataset. For trajectory-only datasets, the single trajectory point
is mapped to the ‘Pelvis’ joint embedding.

Dataset-Balanced Batching. We employ a dataset-balanced batching strategy to prevent the
model from overfitting to larger datasets (e.g., AMASS). Each training batch contains samples drawn
from only a single dataset. We iterate through an equal number of batches from every dataset dur-
ing each epoch, ensuring the model is exposed to a balanced distribution of tasks and data sources
during training.

Task-Specific Processing. We use a task-type flag associated with each dataset to direct samples
through the appropriate processing pipelines. For instance, a ‘trajectory’ flag ensures that data only
passes through the trajectory-related input and output heads of the model, while a ‘joint’ flag ac-
tivates both pose and trajectory heads. This allows the shared transformer core to learn a general
motion representation while the specialized heads handle the task-specific details.

Unified Model with Dynamic Slicing. The model’s internal parameters are defined by the max-
imum sequence length, max(T ), and maximum number of joints, max(M), across all datasets.
However, at runtime, a given sample’s input and output tensors are dynamically sliced to match the
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Table 8: Comparison of performance on individual vs. joint training. Lower values are better (↓).
Pose Prediction Trajectory Prediction Pose + Trajectory Prediction

Dataset
In/Out length (s)

Metric

Human3.6M
0.5/2.0

ADE↓/FDE↓

AMASS
0.5/2.0

ADE↓/FDE↓

ETH-UCY (Avg)
3.2/4.8

ADE↓/FDE↓

SDD
3.2/4.8

ADE↓/FDE↓

MOCAP-UMPM
1.0/2.0

APE↓/JPE↓

3DPW
0.8/1.6

APE↓/JPE↓

Ours (wide, ind.) 0.42/0.59 0.31/0.45 0.18/0.32 6.70/7.63 125.70/212.72 142.89/230.97
Ours (deep, ind.) 0.44/0.57 0.35/0.47 0.19/0.32 6.26/7.61 131.41/211.76 148.91/231.48
Ours (wide, joint) 0.49/0.63 0.51/0.66 0.23/0.37 9.04/11.21 135.19/220.13 150.40/234.81
Ours (deep, joint) 0.55/0.70 0.62/0.78 0.25/0.39 10.66/12.14 138.20/223.49 151.46/235.05

specific T and M of its source dataset. This allows a single, fixed-size model to efficiently process
variable-dimension inputs and outputs.

D.2 RESULTS

The results of our joint training experiment, presented in Table 8, demonstrate both the promise
and the challenges of creating a single, universal motion prediction model. As expected, there is a
performance trade-off when compared to the specialized models trained on individual datasets. The
jointly trained models exhibit a degradation in accuracy across all tasks and datasets. However, the
degree of this degradation varies, providing valuable insights into the model’s behavior.

The “wide” model consistently outperforms the “deep” model in the joint training setting. This
is the inverse of our findings in some specialized tasks, and it suggests that the higher parameter
count and wider embedding dimension of the “wide” model provide the necessary capacity to learn
a shared representation across the seven diverse datasets. The “deep” model, with its constrained
architecture, likely lacks the capacity to effectively generalize across such a heterogeneous data
distribution, leading to a more significant performance drop. We also observe that the performance
degradation is most pronounced on the AMASS dataset. This is likely a direct consequence of our
dataset-balanced batching strategy. While this strategy prevents the model from overfitting to the
largest datasets, it also means that the model is significantly under-exposed to the vast and diverse
AMASS dataset, which is over 140 times larger than the smallest dataset (SDD). The model simply
does not see enough of the AMASS data distribution to learn it as effectively as the specialized
model.

Despite the performance trade-off, these results represent a successful proof of concept. The ability
of a single, simple architecture to perform pose prediction, trajectory forecasting, and combined
holistic prediction without any architectural changes is a powerful demonstration of its inherent
generality. The fact that the model produces reasonable, albeit less accurate, predictions across all
tasks indicates that it has learned a meaningful and transferable internal representation of human
motion. This experiment validates the potential for developing true “foundation models for motion.”
While our current approach shows a performance gap, it highlights a clear and promising research
direction. Future work could focus on more sophisticated data-balancing techniques, curriculum
learning strategies, or simply scaling the model’s capacity to bridge this gap. The ability to train
a single model that understands the principles of human motion across myriad contexts remains a
valuable and achievable goal for the field.

E LLM USAGE

While preparing this work, we used an LLM to assist with language editing and code generation
for LaTeX tables and visualizations. The LLM’s contributions were limited to improving the clarity
of the text and formatting results. The core research, experimental design, and all scientific claims
remain our original work.
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