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ABSTRACT

Human motion prediction combines the tasks of trajectory forecasting, human
pose prediction, and possibly also multi-person modeling. For each of the three
tasks, specialized, sophisticated models have been developed due to the complex-
ity and uncertainty of human motion. While compelling for each task, combin-
ing these models for holistic human motion prediction is non-trivial. Conversely,
holistic human motion prediction methods, which have been introduced recently,
have struggled to compete on established benchmarks for individual tasks. To
address this dichotomy, we study a simple yet effective model for human motion
prediction based on a transformer architecture. The model employs a stack of self-
attention modules to effectively capture both spatial dependencies within a pose
and temporal relationships across a motion sequence. This simple, streamlined,
end-to-end model is sufficiently versatile to handle pose-only, trajectory-only, and
combined prediction tasks without task-specific modifications. We demonstrate
that our approach achieves state-of-the-art results across all tasks through exten-
sive experiments on a wide range of benchmark datasets, including Human3.6M,
AMASS, ETH-UCY, and 3DPW. Our results challenge the prevailing notion that
architectural complexity is a prerequisite for achieving accuracy and generality in
human motion prediction. Code will be released.

1 INTRODUCTION

Human motion prediction, the task of forecasting future 3D human motion from a sequence of past
observations, is a critical challenge with wide-ranging applications in autonomous driving (Zheng
et al., |2022; |Paden et al., 2016), robotics (Zou, 2024; |[Salzmann et al., [2023)), virtual reality (Clark
et al., 2020; [Fu et al., [2020; Ro et al., [2019), and sports analytics (Li et al.,|2021)). Because human
motion is inherently multi-dimensional, non-linear, and highly uncertain, the literature has largely
tackled prediction of human motion by addressing distinct tasks individually: trajectory predic-
tion (Gu et al.l 2022; Bae et al., 2022; [Shi et al., [2023} |Bae et al., 2024} |Yao et al.l 2024} |[Fang
et al., |2025)), pose prediction (Dang et al., 2022 [Barquero et al., 2023} [Sun & Chowdhary, 2024;
Hosseininejad et al., [2025; (Currel1 et al., [2025; Xu et al., 2024), and multi-person motion predic-
tion (Jeong et al.,|2024; |Zheng et al., 2025)).

While making individual tasks easier to address, this differentiation also opens up a gap: tasks like
pose and trajectory forecasting are fundamentally interrelated and governed by the same underlying
dynamics (Zheng et al.| [2025), yet they are modeled separately using task-specific architectures.
This has led to the development of complex, specialized models that excel at one task but struggle to
generalize, limiting their applicability and introducing unnecessary complexity. Notable exceptions
that jointly model these different tasks, particularly in the context of multi-person motion, are |Jeong
et al.| (2024)) and|[Zheng et al.| (2025)). However, the results of these holistic models are suboptimal on
established benchmarks for individual sub-tasks. Consequently, models that predict jointly tend to
create their own benchmarks or evaluation protocols, making it difficult to assess their effectiveness
against specialized methods directly. Their performance limitations on pose and trajectory predic-
tion show the need for a solution that not only addresses human motion prediction holistically but
also excels on established, task-specific benchmarks.

To achieve this, we present a general and, in hindsight, very simple approach to 3D human mo-
tion prediction. Our model is built upon a stack of self-attention modules to effectively capture
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both the spatial dependencies within a single pose and the temporal relationships across the entire
motion sequence. This design allows us to model a variety of complex motion dynamics while main-
taining a streamlined and efficient framework. Unlike more complicated, multi-stage models, our
method employs a unified, end-to-end training process, which improves training stability and over-
all performance. Our findings demonstrate that a well-designed, attention-based model can achieve
benchmark performance across all tasks, challenging the notion that architectural complexity is a
prerequisite for accuracy and generality in this field.

We validate our approach through extensive experiments on a wide range of public datasets, includ-
ing Human3.6M (lonescu et al} 2013) and AMASS (Mahmood et al., 2019) for pose prediction,
ETH-UCY (Lerner et al.l [2007; Pellegrini et al., [2009) and SDD (Robicquet et al.| [2016) for tra-
jectory prediction, as well as MOCAP-UMPM (CMU Graphics Lab, 2003} van der Aa et al.,[2011)
and 3DPW (von Marcard et al.l |2018) for combined pose and trajectory tasks. Our results show
that our model outperforms or matches current best methods across various metrics while being
computationally efficient.

The key contributions of this paper are summarized as follows:

* We introduce SimpliHuMoN, a simple, unified transformer architecture that can outper-
form results of complex, specialized human motion prediction modelsunified-Fransformer

O 9 1 o h O 5 —H-Raanm

* We establish state-of-the-art performance across pose, trajectory, and holistic prediction
tasks rshewine-thata-singlesimple-architecture-can-outperform-hiehly-spectali

2  SIMPLIHUMON

We propose a simple yet effective 3D human motion prediction model based on a transformer de-
coder architecture. The model is designed to be as simple as possible, learning a mapping from a
person’s past movements to their future movements while accommodating various input and output
configurations.

The input X, consists of two components, each over a historical time horizon of H timesteps. On
the one hand, the trajectory Tas € R*3 represents the path of a root joint (e.g., the hip). On the
other hand, the relative body pose Py € R *M>3 represents the state of M joints relative to the
root joint. Our framework can operate on either of these inputs individually or on both combined: for
trajectory prediction, the model only operates on T,y ; for pose prediction, the model only operates
on P,,; and for joint pose and trajectory prediction, the model operates on both.

The model aims to predict the corresponding future state Xy, over a prediction horizon of F
timesteps. To capture the uncertainty of motion, following prior work (Jeong et al.,|2024)), the model
generates K distinct proposal states, i.e., Xgye = (X[, ..., XX ). Bach proposal X[, k € {1,..., K},
consists of a complete predicted future state. The composition of X%, mirrors that of the input; it
can include a future root trajectory Tj,, € R¥*3, a future relative body pose Py, € R *M*3 or
both, depending on what was provided as input.

Overview of our method. As illustrated in Fig. [I} our model begins by independently processing
the historical observations X, and a set of learnable query tokens Qi, = (Qiln, . Qf: ) € RFX3
into a context tensor C and a query tensor Q respectively (Sec. [2.1). A self-attention-based trans-
former then processes the tensors (Sec. [2.2)). Finally, a multi-modal prediction head regresses the
decoder’s output Z into K distinct trajectories and pose hypotheses to give the final output, Xy

(Sec.[2.3). We describe the training procedure and model configurations in Sec. 2.4}

2.1 INPUT PROCESSING AND EMBEDDING MODULE

This module prepares the raw input data for the transformer decoder by normalizing it and map-
ping it into a shared high-dimensional latent space of dimension dyge1- The process creates two
main tensors: a context tensor, C, from historical observations and a query tensor, Q, from a set of
learnable parameters.
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Figure 1: An overview of our architecture. Past observations of 3D poses (F) and trajectories
(Tpast) are jointly processed by an encoder. Learnable input queries (Q;,), representing potential
future states, interact with the encoded past motion within a decoder to produce K distinct future
motion proposals (X[, for all agents over a specified horizon.

2.1.1 PAST CONTEXT ENCODING

To compute the context tensor C, the historical input sequence is processed using one or both of two
parallel streams, depending on the task: one for trajectory T}, and one for relative body pose Fpag.

Root Trajectory Processing. The 3D coordinates of the root joint are extracted from the input
sequence. To normalize the motion, the root’s position at the final input frame is subtracted from
all historical root positions. This normalized trajectory is then projected into the dyoge1-dimensional
embedding space by a linear layer.

Relative Pose Processing. The pose is represented relative to the root (hip) joint for each timestep.
If a dataset provides absolute coordinates, we normalize the pose by subtracting the root joint’s
position from all other body joint positions. This relative pose vector is then processed by a two-
layer MLP (with a GELU activation function), which outputs an embedding of dimension dpoge|-

After their initial embedding, both streams are enhanced. First, a sinusoidal positional encoding is
added to each sequence to encode the specific position of each of the H timesteps along the time
axis. Then, a learnable type embedding £ is added to each token. The type embedding encodes
whether a given token represents part of the root trajectory or the body pose. Finally, the processed
sequences are concatenated (if both are present) along the sequence dimension to form the final
context tensor, C. The shape of C is therefore R2H xdmoel for combined inputs, and R Xdmotel \yhen
only a single input modality is provided.

2.1.2 FUTURE QUERY GENERATION

The queries used to prompt the decoder are learnable tensors Q;, € RF*3. Similar to the ob-
ject queries in DETR (Carion et al.| [2020) or learnable soft prompts in language modeling (Lester
et al.,|2021), these are input-independent parameters optimized during training. They serve as initial
“slots” for the F' future tlmesteps pr0v1d1ng the decoder W1th a temporal structure to fill based on
the context.Thes : - These tokens are first
projected into the dmodel space by a hnear layer. The resultmg sequence is then explicitly split into
trajectory Qp € RI>¥dnae and pose Qp € R dmo queries if both modalities are required. Simi-
lar to the past context encoding, these query sequences are enriched with positional encodings and
their corresponding type embeddings. The two query sequences are then concatenated (if both are
present) to create the final query tensor, Q (€ R2F"*dnowl for combined inputs, Rt for single),
ensuring that it perfectly mirrors the composition and format of C.

This explicit separation of queries into trajectory and pose streams enables the model’s flexibility.
The architecture learns a strong association between each query type and its corresponding output
modality, reinforced by the type embeddings. This allows the same model to handle different tasks
without any architectural modifications.
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2.2 TRANSFORMER DECODER

The core of SimpliHuMOoN is a decoder-only transformer that processes historical context and fu-
ture queries as a single, continuous sequence. Unlike standard encoder-decoder architectures that
separate inputs into distinct processing streams connected only by cross-attention, we concate-
nate the context C and query Q tensors along the temporal dimension to form a unified input se-

quence C; Q] R<H ) X dmose for self—attentronAkeydrs&ne&e&«fref&staﬂdardeﬁeeder-deeeder

&medrmeﬂﬁefr Thls desrgn allows every token in the context and query sequences to drrectly at-
tend to all other tokens, providing a global exchange of information in a single step. For enhanced
training stability, we employ pre-LayerNorm with Root Mean Square Layer Normalization (RM-
SNorm) for trarnrng stabrhty and a standard Feed Forward Network (FFN) wrth GELU actrvatron

After passing through the stack of L decoder layers, the model produces an output tensor, Z, with
the exact dimensions as the input query Q. Having attended to the full context, these output query
tokens now serve as rich, context-aware representations ready to be mapped into future predictions
by the output heads.

This unified architecture is task-agnostic: whether the input C contains only trajectory, only pose,
or both, the self attention mechanrsm naturally adapts to model the avallable dependencresT—he

2.3 MULTI-MODAL PREDICTION HEADS

To account for the stochastic nature of the prediction task, the prediction head decodes the final
latent representation from the decoder into K distinct future hypotheses. The mechanism is a single
linear projection from the decoder’s output tensor Z (shape [F), diodel]) to an output tensor of shape
[F, K x C], where C is the output dimension (e.g. 3 for trajectory, M x 3 for pose). This is then
reshaped to [F, K, C], creating K parallel branches.

pfojee&eﬁteereate%épafaﬂe}%ranehe& Two dedicated output heads then process each branch, if
both are being modeled, to regress the future root trajectory (Tful) and body pose (Pful) respectively,
ensuring each of the K proposals is a complete and comparable hypothesis. Architecturally, these
heads mirror the input processing module: a linear layer regresses the trajectory and a two-layer
MLP regresses the pose, effectively inverting the initial embedding process.

2.4 IMPLEMENTATION DETAILS

The model is trained end-to-end using a “winner-takes-all” loss, where gradients are backpropagated
only through the single hypothesis & that minimizes the Euclidean distance to the ground truth future.

Formally, the training loss £ for a given ground truth Xf‘fn is computed via

E(Xpa%thmt) miNge(q, . K}H fut Xrlfn(Xpast)”% (1)

where Xf’f“(Xpast) is the &kt prediction hypothesis computed from X, via the model. This formu-
lation ensures that gradients are only computed for the best prediction, encouraging the model’s K
output modes to specialize and cover diverse, plausible futures.
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We report results for two configurations: a “wide” model (L = 6, dmodel = 192) and a “deep” model
(L = 16, dmogel = 48). In all experiments, we use the AdamW optimizer (5; = 0.95, 82 = 0.999)
with a weight decay of 10~%. All models are trained for 300 epochs with a batch size of 64 and
standard data augmentation on one NVIDIA RTX A6000 GPU. The number of modes, K, is set as
a hyperparameter to follow prior work per task.

3 EXPERIMENTS

3.1 DATASETS

We evaluate our model on several standard benchmarks to cover a range of motion forecasting tasks.
For 3D human pose prediction, we use Human3.6M (Ionescu et al.,2013)), a large-scale lab-based
dataset, and AMASS (Mahmood et al., [2019), a comprehensive motion capture archive used for
generative modeling. For trajectory forecasting, we use the pedestrian datasets ETH-UCY (Lerner

et al., [2007; |Pellegrini et al., | 2009) and the Stanford Drone Dataset (SDD) (Ro et al.,[2019), which
contains varied persons from an aerial view. Finally, we evaluate joint pose and trajectory prediction
using Mocap-UMPM (CMU Graphics Lab) 2003} [van der Aa et al, [2011), a mixed dataset of

Mocap and UMPM containing synthesized human interaction between three people, and 3DPW
(von Marcard et al.,2018)), a dataset with two people traversing a real-world environment. We report
results on each benchmark after training our model on its respective dataset in Table |1} which uses
the same color scheme to visually group the results by task.

3.2 METRICS

We evaluate our model following common practice for multi-modal models that generate K pro-
posals, reporting the minimum error among all generated proposals. For pose prediction, we report
the minimum Average/Final Displacement Error (ADE/FDE) averaged across all body joints over
K =7 proposals, following Hosseininejad et al.[(2025)). For trajectory prediction, we report the
ADE/FDE on the root joint over K = 20 proposals, following |Yao et al.[{(2024). In the combined

pose and trajectory prediction task, we assess local and global accuracy over K = 6 proposals,
following Jeong et al.| (2024). For this, we use two metrics: Aligned mean per joint Position Error
(APE), which measures pose error after root-alignment, and Joint Precision Error (JPE), which mea-
sures the overall error of all joints in the world coordinate system. Consistent with prior work, for
datasets containing multiple people, the final reported metric is the average of the errors computed
for each individual.

3.3 BASELINES

We compare our method against a wide range of state-of-the-art models across three distinct pre-
diction tasks. In the domain of pose-only prediction, we evaluate against several recent generative
approaches, including DivSamp (Dang et al., [2022)), and prominent diffusion-based models such as
BeLFusion (Barquero et al.l [2023)), CoMusion (Sun & Chowdharyl, [2024), and SkeletonDiff (Cur-
reli et al.|, 2025). Our comparison in this category also includes Motionmap (Hosseininejad et al.,
20235)) and the state-space diffusion model SLD (Xu et al.,|2024). For trajectory-only prediction, we
benchmark against MID (Gu et al., 2022)), GP-Graph (Bae et al.| [2022), TUTR (Shi et al., 2023)),
SingularTrajectory (Bae et al.| [2024), the vision-language model TrajCLIP (Yao et al.| [2024), and
NMREF (Fang et al., 2025). Finally, for the comprehensive task of multi-person motion prediction,
which involves forecasting combined human trajectory and pose, we include EMPMP (Zheng et al.,
2025) and T2P (Jeong et al., 2024)).

3.4 QUANTITATIVE RESULTS

Our proposed simple model demonstrates versatile and robust performance, improving state-of-
the-art results across a diverse range of motion forecasting tasks, as shown in Table [T} Its suc-
cess as a generalist architecture is particularly noteworthy given that many competing methods are
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Table 1: Detailed comparison of model performance. Lower values are better ({), with the best
results shown in bold. An asterisk (*) denotes models we recomputed for this setup, a dagger (T)
marks models adapted for the specific task, while a (A) notes models that use external training data.

\ Pose Prediction Trajectory Prediction Pose + Trajectory Prediction
Dataset Human3.6M AMASS ETH-UCY (Avg) SDD MOCAP-UMPM 3DPW
In/Out length (s) 0.5/2.0 0.5/2.0 3.2/4.8 3.2/4.8 1.0/2.0 0.8/1.6
Metric ADE|/FDE| ADE//FDE| ADE|/FDE] ADE//FDE| APE|/JPE] APE//JPE|
DivSamp 0.48/0.68 0.48/0.64 - - - -
BeLFusion 0.44/0.60 0.35/0.48 - - - -

2 CoMusion 0.43/0.61 0.31/0.46 - - - -

&  Motionmap 0.47/0.60 0.32/0.45 - - - -
SkeletonDiff 0.64/0.77* 0.56/0.71% - - - -

SLD 0.42/0.59* 0.30/0.45% - - - -
MID - - 0.21/0.38 7.61/14.32 - -
GP-Graph - - 0.23/0.39 9.10/13.76 - -

‘= TUTR - - 0.21/0.36 7.76/12.69 - -

& SingularTrajectory - - 0.22/0.34 7.26/12.58 - -
TrajCLIP - - 0.18/0.33" 6.29/11.79" - -
NMRF - - 0.19/0.32 7.20/11.29 - -

® T2P 0.80/1.03" 0.63/0.94F 0.19/0.39% 8.11/8.591 151.71/262.73 150.04/236.24

g EMPMP 0.45/0.72F 0.42/0.65F 0.63/0.72F 10.29/10.511 146.52/250.41* 150.62/235.44*

2 Ours (wide) 0.42/0.59 0.31/0.45 0.18/0.32 6.70/7.63 125.70/212.72 142.89/230.97

£ Ours (deep) 0.44/0.57 0.35/0.47 0.19/0.32 6.26/7.61 131.41/211.76 148.91/231.48

highly specialized and incorporate sophisticated, domain-specific inductive biases. For instance,
top-performing baselines often rely on complex operations such as the Discrete Cosine Transform
(DCT) to model motion in the frequency domain (Xu et al., 2024)) or employ graph convolutional
networks (GCNs) to explicitly encode the body’s kinematic structure (Sun & Chowdhary, [2024)).
The results for our two primary configurations—a “wide” model and a “deep” model—highlight the
effectiveness of our simple, unified approach in challenging established, task-specific methods.

On the Human3.6M benchmark, our model’s performance matches the leading methods in Aver-
age Displacement Error (ADE) while outperforming compared methods in Final Displacement Error
(FDE). This strength in long-term forecasting is further confirmed on AMASS , where it again sur-
passes existing models on the FDE metric. This success illustrates that attention-based transformers
can effectively and accurately model high-dimensional pose data. Notably, our model achieves this
performance in a single, deterministic forward pass. This differs from the iterative sampling process
required for inference by leading generative models (Curreli et al., |2025; |Sun & Chowdharyl, 2024)).

On trajectory prediction, our “wide” model’s performance is on par with the current best techniques,
matching the leading results on both ADE and FDE metrics for the ETH-UCY dataset, with a
detailed breakdown of the individual ETH components available in the appendix. Given that these
scenes can contain up to 57 pedestrians, our model’s success is particularly notable, as it challenges
the conventional wisdom that highly complex components are required for navigating crowded envi-
ronments. For instance, our simple transformer architecture does not rely on the external knowledge
of massive, pre-trained vision-language models as in TrajCLIP, or the continuous, field-based scene
representations used by NMRF. Furthermore, on the SDD benchmark, both of our models outper-
form the prior work, with our deep configuration improving on FDE by 32%.

In the comprehensive task of combined pose and trajectory prediction, the advantages of our unified
architecture are most prominent. On both the MOCAP-UMPM and 3DPW datasets, our models
substantially outperform prior methods like T2P and EMPMP. These competing approaches often
rely on complex, multi-stage pipelines, where localized and global aspects of motion are processed
during separate stages (Jeong et al., [2024). In contrast, by jointly modeling pose and trajectory
within a single end-to-end framework, our approach more effectively captures the coupled dynamics
between local body articulation and global root movement, leading to significant performance gains
across all metrics. For instance, on MOCAP-UMPM, our models lower the APE by more than
10.3% and JPE by 15%.

Our model’s strong performance on multi-person datasets is achieved without any explicit interac-
tion modules, since we treat any individuals in a scene independently. The success stems from our
powerful single-agent motion representation, which not only validates the foundational architecture
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but also reveals a clear opportunity for future work: integrating an explicit interaction mechanism

could yield even better results.

Additionally, we want to note that
our model is computationally very
efficient. To demonstrate this,
we benchmarked all models that
perform joint pose and trajectory
prediction on the MOCAP-UMPM
dataset, comparing the average num-
ber of samples processed per sec-
ond. Our “deep” configuration is not
only more accurate but also more
computationally efficient than the
lightweight EMPMP model, show-
ing a 14.3% increase in training

Table 2: Throughput mean + std calculated over 10 runs
on MOCAP-UMPM data. All models are run on a NVIDIA
RTX A6000 GPU with batch size 64. Higher values are bet-

ter (1). An asterisk(*) denotes models we recomputed for
this experiment.
Model Training Throughput Test Throughput
(samples/sec) 1 (samples/sec) 1
T2P* 187 £ 22 401 £+ 64
EMPMP* 812 £ 58 2041 £+ 129
Ours (wide) 862 + 43 2251 4+ 140
Ours (deep) 928 + 45 3673 + 161

throughput and processing test sam-
ples nearly 1.8 times faster. Please see Table 2] for details.

3.5 QUALITATIVE RESULTS

We provide a qualitative comparison of predicted motions on the MOCAP-UMPM dataset in Fig-
ure 2] The figure illustrates a challenging sample where three individuals are walking backward,
a motion that requires complex coordination. Our “wide” and “deep” models both generate fluid
and physically plausible motion sequences that accurately capture the underlying dynamics. The
articulation of the arms and torso is notably realistic, showcasing the model’s ability to learn natu-
ral human motion without being constrained by explicit structural priors. In particular, our “deep”
configuration demonstrates exceptional performance over the long term, maintaining high-quality,
dynamic predictions even at the final ¢ = 2.0s timestep.

The performance of the baseline models highlights the advantages of our unified approach. T2P re-
sorts to an overly conservative strategy when challenged with this tricky, high-uncertainty scenario.
Its predictions become increasingly static over time, collapsing towards a mean pose with very lit-
tle movement to avoid large errors. In contrast, EMPMP attempts to generate dynamic motion but
struggles with physical plausibility. Its predictions exhibit noticeable artifacts, such as the unnatural
arm posture of the person in green and the awkward leg movements of the person in blue. These
qualitative results underscore that our model not only achieves superior quantitative accuracy but
also produces motions that are significantly more realistic and coherent than competing methods.

Model t=0.4s t =0.8s t =1.6s t =2.0s

T2P

EMPMP

Ours (wide)

Ours (deep)

Figure 2: Visualization of predictions on a MOCAP-UMPM scene. Model predictions are in color,
and ground truth future poses are black dashes. The last-known input positions are colored dashes.

7
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Table 3: Comparison of our model’s performance with different hyperparameter configurations.

F215.5

Depth Embed dim Total Params APE JPE 13141 —e— APE _

Y% Best APE (“wide”) | 215.0
8 192 5.2M 126.05 212.84 e ;ZZJPE cdoep) 2115
6 192 4.0M 12570 212.72 132
4 192 2.8M 12622 21340 210
12 96 1.9M 128.47 212.08 & 1301 215 &
6 96 1.0M 128.52 21245 L2130
12 64 860K 130.72 21230 1284 .
16 48 642K 131.41 211.76 i
12 48 490K 131.09 21273 ey & 2120
16 36 367K 134.52 215.36 10 20 30 40 50
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3.6 ABLATION STUDIES

In this section, we conduct a series of ablation studies to investigate the impact of our model’s key
components and hyperparameters. We perform these experiments on the MOCAP-UMPM dataset
for the joint pose and trajectory prediction task to analyze the effectiveness of our multi-modal
prediction head and the trade-offs in our transformer architecture.

3.6.1 CHOICE OF TRANSFORMER HYPERPARAMETERS

Our model’s major computations are performed using a simple transformer decoder. We analyze the
trade-offs between its depth (number of layers, L) and width (embedding dimension, dpoge1). We
experimented with various configurations, keeping the overall parameter count relatively low, to find
effective deep net architecture designs. The results are summarized in Table

The analysis reveals a clear relationship between depth, width, and predictive accuracy. Our “wide”
configuration (L = 6,dmeder = 192) achieves the best APE, suggesting that a more expansive
embedding space is beneficial for capturing fine-grained pose details. Decreasing the depthto L = 4
or increasing it to L = 8 with the same width leads to a decline in performance, indicating a sweet
spot for this configuration.

Conversely, our “deep” model (L = 16, diyoqel = 48) obtains the lowest JPE, demonstrating that a
deeper stack of attention layers is more effective at modeling complex, long-range spatio-temporal
dependencies for global trajectory prediction, even with a constrained embedding dimension. As
expected, performance degrades significantly with shallower or narrower architectures. These re-
sults validate our choice of the “wide” and “deep” models, as they represent two distinct and highly
effective points in the architecture design space, tailored for different aspects of motion prediction.

3.6.2 EFFECT OF MULTI-MODAL PREDICTION

While multi-modal prediction is standard in trajectory forecasting, state-of-the-art methods for joint
pose and trajectory prediction, such as EMPMP, have often favored a deterministic approach, pre-
dicting a single future outcome. However, human motion is inherently stochastic, and a single
prediction can fail to capture the full range of plausible futures. We therefore conduct an ablation
to quantify the advantage of our multi-modal prediction head explicitly. We compare our model’s
performance when generating multiple proposals (K = 6) against a deterministic setting (K = 1),
mirroring the setup of prior work (Jeong et al., [2024).

The results in Table @ clearly demon- Table 4: Model performance with 2 different modes
strate the limitations of a deterministic ap- on MOCAP-UMPM data. Lower values are better (/).
proach. Even in a deterministic setting, our

“wide” model is already competitive with K—=1 K—6
EMPMP. However, by embracing multi-

modality, our model achieves a dramatic Model APE JPE APE JPE
performance gain. The APE improves by  Top 1544 3664 1517 2627
13.8% and the JPE by a substantial 24.2%. EMPMP 1472  283.1 146.5 2504

This highlights that our model doesn’t just  Qurs (wide) 145.84 280.8 12570 212.72
produce a better single guess; it effectively  Qurs (deep) 149.35 286.96 131.41 211.76
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captures a distribution of high-quality future motions. Interestingly, prior works do not benefit from
multiple modes to the same degree. For instance, EMPMP’s APE barely improves, suggesting its
architecture may struggle to generate genuinely distinct futures. While a full analysis of why the
baselines are less suited to multi-modal prediction is beyond the scope of this paper, it suggests that
our unified architecture is particularly effective at leveraging the “winner-takes-all” loss to produce a
diverse and plausible set of outcomes—a crucial capability that deterministic models lack by design.

4 RELATED WORK

Human motion requires a holistic assessment, as local body articulation (pose) and global displace-
ment (trajectory) are deeply intertwined. Our research community, however, has largely tackled
motion prediction by decomposing this process into specialized sub-problems: pose, trajectory, and
multi-person motion prediction. This specialization has driven progress on narrow benchmarks but
created a dichotomy: specialized models fail to generalize, while the few holistic models struggle
to compete on established task-specific leaderboards. This “benchmark effect” has incentivized an
escalation in architectural complexity, with increasingly elaborate models gaining an edge.

In this context, the transformer has emerged as a powerful tool for sequence modeling. However, its
application to human motion has often followed the increasing complexity trend, where it merely
serves as a backbone for other domain-specific modules. This paper challenges that approach. We
posit that the transformer’s true power lies not in its ability to support additional complex compo-
nents, but in its inherent capacity to address the problem in a simple, direct, and unified manner.

4.1 HUMAN POSE PREDICTION

The task of human pose prediction involves forecasting a future sequence of 3D skeletal joint lo-
cations relative to the root joint based on an observed history of poses (Hosseininejad et al., 2025}
see Appendix C). To address the stochastic nature of human behavior, the field has shifted from de-
terministic models (Medjaouri & Desail [2022; Ma et al} |2022) to complex generative frameworks,
particularly diffusion models. This pursuit of generative fidelity has fueled a cycle of escalating com-
plexity, with methods like BeLFusion (Barquero et al.| 2023) introducing a “behavioral latent space”
and CoMusion (Sun & Chowdharyl |2024) employing a hybrid Transformer-GCN architecture that
operates in the Discrete Cosine Transform (DCT) (Mao et al., 2021) space to model skeletal kine-
matics explicitly. Recent methods like SkeletonDiff (Curreli et al., [2025) and SLD (Xu et al., [2024)
focus on skeleton-aware generation or long-sequence efficiency, while non-diffusion approaches like
Motionmap (Hosseininejad et al., 2025) introduce novelties such as multi-stage heatmap pipelines.

4.2 HUMAN TRAJECTORY PREDICTION

Trajectory forecasting aims to predict the future path of an agent’s root joint, a task complicated by
latent intent, social interactions, and environmental constraints. Recent state-of-the-art approaches
have often relied on massive external knowledge sources or engineered, multi-stage pipelines. A
prominent trend involves leveraging large foundation models; TrajCLIP (Yao et al., 2024), for ex-
ample, incorporates knowledge from vision-language models (VLMs) to provide contextual cues,
effectively outsourcing the learning problem. Another approach involves building complex frame-
works for generality, such as Singular Trajectory (Bae et al.l [2024), whose “universal” status is the
result of an engineered pipeline involving Singular Value Decomposition and a diffusion-based re-
finer, or NMRF (Fang et al., [2025), which uses sophisticated modules like continuous, field-based
scene representations.

4.3 COMBINED POSE AND TRAJECTORY PREDICTION

The simultaneous prediction of pose and trajectory is where the limitations of fragmented archi-
tectures become most apparent, as this task requires modeling the critical coupling between local
articulation and global movement. Early work such as Tripod (Adeli et al.||2021) and work by |Zaier,
et al.| (2023) established the importance of forecasting these dynamics jointly, typically employing
graph-based or multi-branch architectures to capture the dependencies. More recent approaches
have explored pre-training strategies, such as Multi-transmotion (Gao et al.,|2024), to learn general-
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izable motion representations. Despite this progress, priorPrier work has typically imposed strong
architectural priors on how pose and trajectory information should interact. T2P (Jeong et al., 2024)
employs a sequential, “coarse-to-fine” strategy, first predicting the global trajectory and then con-
ditioning the pose prediction on that result. This design imposes a one-way causal assumption that
trajectory dictates pose and is susceptible to error propagation. An alternative, seen in EMPMP
(Zheng et al.| |2025), uses parallel branches to process local and global information separately be-
fore fusion. This avoids direct error propagation but imposes a prior: that local and global features
are separable concerns. This rigid separation may preclude the model from learning more complex,
deeply intertwined representations where local and global dynamics are jointly encoded from the
outset. Consequently, although EMPMP was explicitly designed to be “lightweight”, its architec-
ture is built from individually light but intricately integrated components and struggles to leverage
hardware parallelism effectively.

5 CONCLUSION

This paper introduces SimpliHuMoN, a simple and unified transformer-based model that addresses
the prevailing trends of fragmentation and escalating complexity in human motion prediction. We
challenge the field by demonstrating how a single, end-to-end framework effectively learns the dy-
namics of human movement across various tasks. Extensive experiments across a wide range of
standard benchmarks validate this approach, showing that our model achieves state-of-the-art accu-
racy while also proving more computationally efficient than prior methods. Ultimately, this work
serves as evidence that architectural simplicity, when thoughtfully applied, can outperform engi-
neered complexity, suggesting that the path forward in motion prediction lies not in adding more
intricate components but in refining simple and truly generalizable foundations.

6 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. Our model’s architecture, loss
function, training procedure, and key hyperparameters are described in detail in Section [2] of the
main paper, with further analysis in our ablation studies (Section [3.6). For data handling, Ap-
pendix |A| provides a complete description of all datasets and the exact preprocessing steps, which
follow established protocols from prior work. The precise mathematical definitions for all evaluation
metrics are detailed in Appendix [B] Finally, our supplementary website, referenced in Appendix [C
offers additional qualitative results. Collectively, these resources provide a comprehensive guide for
reproducing our experimental findings. We will also release all code.
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APPENDIX: SIMPLIHUMON: SIMPLIFYING HUMAN MOTION PREDICTION

This appendix is structured as follows: In Sec.[A]we provide additional dataset and metric details. In
Sec. [B|we detail additional experimental results. In Sec. [C] we highlight the website which is part of
the provided appendix. In Sec.[D]we discuss joint training results. In Sec. [E|we provide information
about our LLM usage.

A ADDITIONAL DATASET AND METRIC DETAILS

A.1 SOURCES AND PROCESSING OF DATA

All experiments are conducted on publicly available, open-source datasets. To ensure a fair and
direct comparison with prior work, we strictly adhere to the established data processing and evalu-
ation protocols from recent top-performing methods for each prediction task. This standardization
ensures that the performance improvements reported in this paper are attributable to our model’s
architecture rather than differences in data handling. The specific protocols are as follows: For pose
prediction on the Human3.6M and AMASS datasets, we follow the data processing methodology,
sequence lengths, and evaluation splits established by BeLFusion (Barquero et al.,2023). For trajec-
tory prediction on the ETH-UCY and SDD, our data handling and evaluation procedures align with
the protocol set forth by NMRF (Fang et al., 2025)). For combined pose and trajectory Prediction
on the MOCAP-UMPM and 3DPW datasets, we adopt the data preparation and processing pipeline
outlined by T2P (Jeong et al.| 2024).

A.2 METRIC FORMULAE

Given the predicted motion proposal Xt = {zf,,} € RF>*M*3 for k € {1,2,..., K} across F

time frames with M joints per person, along with the corresponding ground truth ngutl = {xftm} the
following metrics are used for evaluation. For multi-modal predictions, we follow common practice
and report the minimum error among all K generated proposals for each metric (e.g., minADE,
minFDE). Consistent with prior work, for datasets containing multiple people, the final reported
error is the average of the metric computed for all individuals. All metrics in the main paper are
reported for the final output timestep, t = F.

APE. Aligned mean per joint Position Error (APE) is used as a metric to evaluate the forecasted
local motion. Euclidean distance of each joint relative to the root (hip) joint is averaged over all
joints for a given timestep, t:

APEt(ngJta Xfut = M Z ” ‘Tt mo Ty hlp) (xf,m - xf,hip)HQ' (2)

JPE. Joint Precision Error (JPE) evaluates both global and local predictions by the average Eu-
clidean distance of all joints for a given timestep, ¢:

M
1
IPE(XE, X = 77 D e = 2llz- 3)
m=1

ADE. Average Displacement Error (ADE) measures the Euclidean distance between the ground
truth and predicted sequences, averaged over all joints and all future time frames:

ADE(thuthfut F % M Z Z th m xfm'b (4)

t=1 m=1

FDE. Final Displacement Error (FDE) measures the Euclidean distance between the ground truth
and the prediction, averaged over all joints for a given timestep, t:

FDEt(ngJwaut M Z Hx xt mll2- &)
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Table 5: Trajectory prediction performance (ADE/FDE) on ETH-UCY. Lower values are better, with
the best results shown in bold. A dagger () marks models adapted for the specific task, while a (A)
notes models that use external training data.

Model | ETH HOTEL UNIV ZARA1 ZARA2 | AVG

MID 0.39/0.66 0.13/0.22 0.22/0.45 0.17/0.30 0.13/0.27 | 0.21/0.38
GP-Graph 0.43/0.63 0.18/0.30 0.24/042 0.17/0.31 0.15/0.29 | 0.23/0.39
TUTR 0.40/0.61 0.11/0.18 0.23/0.42 0.18/0.34 0.13/0.25 | 0.21/0.36
SingularTrajectory | 0.35/0.42 0.13/0.19 0.25/0.44 0.19/0.32 0.15/0.25 | 0.22/0.34
TrajCLIP" 0.36/0.57 0.10/0.17 0.19/0.41 0.16/0.28 0.11/0.20 | 0.18/0.33
NMRF 0.26/0.37 0.11/0.17 0.28/0.49 0.17/0.30 0.14/0.25 | 0.19/0.32
T2Pf 0.29/0.55 0.15/0.27 0.25/0.53 0.16/0.33 0.12/0.26 | 0.19/0.39
EMPMP' 0.99/0.98 0.70/0.87 0.69/0.89 0.43/0.50 0.32/0.35 | 0.63/0.72
Ours (wide) 0.28/0.44 0.13/0.24 0.24/0.44 0.16/0.29 0.11/0.21 | 0.18/0.32
Ours (deep) 0.29/0.44 0.14/0.24 0.24/0.43 0.17/0.29 0.13/0.21 | 0.19/0.32

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 PER-DATASET SPLIT ON ETH-UCY

On the ETH-UCY datasets, our model demonstrates highly competitive performance against leading
methods, as detailed in Table E} While models like TrajCLIP (Yao et al., 2024) and NMRF (Fang
et al 2025)) achieve the best results on some of the individual scenes, our “wide” configuration
achieves the best overall performance, tying for the best average ADE (0.18) and the best average
FDE (0.32).

This result is particularly noteworthy when considering the architectural differences between our
model and methods like TrajCLIP. TrajCLIP’s strong performance stems from its use of a large,
pre-trained VLM to provide rich semantic priors. Specifically, it uses natural language prompts
(e.g., “a person walking”) to generate contextual embeddings from the VLM’s text encoder, which
are then fused with visual features to guide the trajectory prediction. This approach effectively
outsources a part of the learning problem to a massive external knowledge base. While powerful,
this creates a dependency on computationally heavy external models and assumes that general web-
scale knowledge is optimally suited for the fine-grained physics of trajectory prediction.

Our model, in contrast, is entirely self-contained, learning all necessary dynamics exclusively from
the provided motion data. The performance difference on the ETH scene, where our model signif-
icantly outperforms TrajCLIP, suggests a key advantage of this self-sufficient approach. The ETH
dataset represents a scenario where the visual-semantic cues that TrajCLIP relies on are less infor-
mative and reliable than in other scenes. In such cases, our model’s ability to learn robustly from
the motion dynamics alone allows it to generalize more effectively, leading to a more consistent
performance profile across all five datasets. This consistency is what enables our model to achieve
better average performance without relying on external priors, challenging the notion that they are a
prerequisite for top-tier trajectory forecasting.

Furthermore, a key architectural difference is TrajCLIP’s explicit modeling of social and environ-
mental interactions through two dedicated modules. They are designed to capture the dynamics
between different agents and integrate visual context from the environment to make predictions
physically consistent with the static scene. In contrast, our current model processes each agent
independently and contains no such explicit interaction mechanisms. The fact that our simpler, non-
interactive approach still achieves state-of-the-art average performance highlights the remarkable
strength and efficiency of its core motion representation. This also points to a promising avenue for
future work: integrating a lightweight interaction mechanism into our powerful architecture could
potentially push performance even further.
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Table 6: Comparison of APE/JPE metrics across models and datasets. Lower values are better ({),
with the best results shown in bold. An asterisk (*) denotes models we recomputed for this setup.

\ MOCAP-UMPM 3DPW

In/Out Length (s) \ 04s 08s 12s 16s 2.0s 04s 08s 1.2s 1.6s

T2P* 71.7 107.8 1204 137.1 151.7 982 114.6 1353 150.0
E EMPMP* 60.1 960 1169 1316 146.5 963 111.9 1344 150.6
< Ours (wide) 57.3 877 1045 1153 1257 928 107.1 130.0 142.9

Ours (deep) 62.3 895 107.3 119.0 1285 93.2 1084 131.5 1489

T2P* 70.2  139.2 160.1 2264 2627 107.7 142.6 181.0 236.2
=  EMPMP* 68.0 1239 170.3 219.1 2504 103.6 140.2 179.8 2354
F% Ours (wide) 64.6 108.6 1439 177.7 2127 994 137.3 172.1 231.0

Ours (deep) 689 1099 1453 177.2 2103 100.1 138.2 171.6 231.5

B.2 DETAILED METRICS ACROSS KEY FRAMES

To scrutinize performance over the forecast horizon, Table [6] presents a time-step-level analysis on
the MOCAP-UMPM and 3DPW datasets. The results reveal not only the consistent superiority of
our models over T2P and EMPMP at every interval but also a crucial architectural trade-off.

Our “wide” model establishes a new standard for local pose accuracy (APE), excelling at capturing
fine-grained kinematics, particularly in the short term. Conversely, our “deep” model demonstrates
its strength in long-range forecasting, achieving the best overall world-coordinate accuracy (JPE) at
the final timesteps. This divergence highlights a key finding: architectural depth appears more crit-
ical for maintaining global trajectory coherence, while width is more effective for local pose detail.
Most notably, the performance gap between our models and the baselines widens as the prediction
horizon increases. This demonstrates our architecture’s superior robustness against the error accu-
mulation that typically plagues sequential prediction tasks. This detailed analysis confirms that our
simple, unified framework is not just more accurate overall but is also more effective at handling
the challenges of long-term motion forecasting compared to competing multi-stage or specialized
approaches.

C WEBSITE

We provide a website with additional visualizations demonstrating our method’s performance, which
can be accessed using the provided HTML file.

We observe that the generated motions exhibit high physical plausibility, with no unrealistic arti-
facts such as foot sliding. Body poses are consistently realistic, respecting natural body constraints
and capturing fine-grained details without grouping different joints into unnatural, blocky move-
ments. Furthermore, our model adeptly handles both independent and coupled motion dynamics; it
accurately predicts localized movements (e.g., arm gestures without a change in trajectory) and com-
plex actions where limb articulation and global trajectory are deeply intertwined. Our model excels
in multi-person scenes by processing agents independently. This avoids a key limitation of rigid,
graph-based interaction models (GNNSs), which can corrupt individual forecasts by forcing informa-
tion aggregation from non-interacting neighbors. This finding does not diminish the importance of
interaction modeling but rather clarifies the need to learn it dynamically.

D JOINT TRAINING

To test the full generalization capability of our architecture, we train a single, universal model jointly
on all datasets across all tasks (pose, trajectory, and combined prediction). This experiment aims
to create a single set of weights that can perform any of the specialized tasks without retraining.
Handling the significant diversity in data formats, skeleton structures, and sequence lengths requires
a carefully designed methodology, which we detail below.
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Table 7: Mapping from dataset-specific skeletons to our 22-joint canonical representation. AMASS
serves as the canonical skeleton itself. Dashes (—) indicate that a direct mapping for that specific
canonical joint is unavailable in the source dataset.

# AMASS Human3.6M MOCAP-UMPM 3DPW

1 Pelvis - Hips Pelvis
2 L.Hip LeftUpLeg LHip LHip

3  R.Hip RightUpLeg RHip RHip

4  Spinel Spine Spine -

5 L_Knee LeftLeg LKnee LKnee
6 R _Knee RightLeg RKnee RKnee
7  Spine2 - - -

8 L_Ankle LeftFoot LAnkle -

9 R_Ankle RightFoot RAnkle -

10 Spine3 - - -

11 L_Foot - - LFoot
12 R_Foot - - RFoot
13 Neck Neck Neck -

14 L_Collar - - -

15 R_Collar - - -

16 Head Head / Head-top Head -

17 L_Shoulder LeftArm LShoulder LShoulder
18 R_Shoulder RightArm RShoulder RShoulder
19 L_Elbow LeftForeArm LEIbow LElIbow
20 R_Elbow RightForeArm RElbow RElbow
21  L_Wrist LeftHand LWrist LWrist
22 R_Wrist RightHand - RWrist

D.1 METHODOLOGY

Data Unification and Canonical Skeleton. A primary challenge is the heterogeneity of the
datasets. To create a consistent input format, all data is preprocessed into a normalized tensor of
shape T'x M x 3 (sequence length X joints x coordinates). We pad the data with a zero Z-dimension
for 2D trajectory datasets (ETH-UCY, SDD) to create a consistent 3D representation.

To address the varying skeleton definitions, we establish a 22-joint canonical skeleton, using the
AMASS dataset as our standard. All other datasets are mapped to this representation, as shown in
Table[7} This mapping allows us to use a fixed set of learnable joint embeddings, ensuring that input
data for a given semantic body part (e.g., the ‘Left Knee’) is always processed by its corresponding
embedding, regardless of the source dataset. For trajectory-only datasets, the single trajectory point
is mapped to the ‘Pelvis’ joint embedding.

Dataset-Balanced Batching. We employ a dataset-balanced batching strategy to prevent the
model from overfitting to larger datasets (e.g., AMASS). Each training batch contains samples drawn
from only a single dataset. We iterate through an equal number of batches from every dataset dur-
ing each epoch, ensuring the model is exposed to a balanced distribution of tasks and data sources
during training.

Task-Specific Processing. We use a task-type flag associated with each dataset to direct samples
through the appropriate processing pipelines. For instance, a ‘trajectory’ flag ensures that data only
passes through the trajectory-related input and output heads of the model, while a ‘joint’ flag ac-
tivates both pose and trajectory heads. This allows the shared transformer core to learn a general
motion representation while the specialized heads handle the task-specific details.

Unified Model with Dynamic Slicing. The model’s internal parameters are defined by the max-
imum sequence length, max(7"), and maximum number of joints, max(M), across all datasets.
However, at runtime, a given sample’s input and output tensors are dynamically sliced to match the
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Table 8: Comparison of performance on individual vs. joint training. Lower values are better ({).

| Pose Prediction Trajectory Prediction Pose + Trajectory Prediction

Dataset Human3.6M AMASS ETH-UCY (Avg) SDD MOCAP-UMPM 3DPW
In/Out length (s) 0.5/2.0 0.5/2.0 3.2/4.8 3.2/4.8 1.0/2.0 0.8/1.6

Metric ADE|/FDE| ADE|/FDE| ADE|/FDE| ADE|/FDE| APE|/JPE| APE|/JPE]
Ours (wide, ind.) 0.42/0.59 0.31/0.45 0.18/0.32 6.70/7.63 125.70/212.72 142.89/230.97
Ours (deep, ind.) 0.44/0.57 0.35/0.47 0.19/0.32 6.26/7.61 131.41/211.76 148.91/231.48
Ours (wide, joint) 0.49/0.63 0.51/0.66 0.23/0.37 9.04/11.21 135.19/220.13 150.40/234.81
Ours (deep, joint) 0.55/0.70 0.62/0.78 0.25/0.39 10.66/12.14 138.20/223.49 151.46/235.05

specific 7" and M of its source dataset. This allows a single, fixed-size model to efficiently process
variable-dimension inputs and outputs.

D.2 RESULTS

The results of our joint training experiment, presented in Table 8] demonstrate both the promise
and the challenges of creating a single, universal motion prediction model. As expected, there is a
performance trade-off when compared to the specialized models trained on individual datasets. The
jointly trained models exhibit a degradation in accuracy across all tasks and datasets. However, the
degree of this degradation varies, providing valuable insights into the model’s behavior.

The “wide” model consistently outperforms the “deep” model in the joint training setting. This
is the inverse of our findings in some specialized tasks, and it suggests that the higher parameter
count and wider embedding dimension of the “wide” model provide the necessary capacity to learn
a shared representation across the seven diverse datasets. The “deep” model, with its constrained
architecture, likely lacks the capacity to effectively generalize across such a heterogeneous data
distribution, leading to a more significant performance drop. We also observe that the performance
degradation is most pronounced on the AMASS dataset. This is likely a direct consequence of our
dataset-balanced batching strategy. While this strategy prevents the model from overfitting to the
largest datasets, it also means that the model is significantly under-exposed to the vast and diverse
AMASS dataset, which is over 140 times larger than the smallest dataset (SDD). The model simply
does not see enough of the AMASS data distribution to learn it as effectively as the specialized
model.

Despite the performance trade-off, these results represent a successful proof of concept. The ability
of a single, simple architecture to perform pose prediction, trajectory forecasting, and combined
holistic prediction without any architectural changes is a powerful demonstration of its inherent
generality. The fact that the model produces reasonable, albeit less accurate, predictions across all
tasks indicates that it has learned a meaningful and transferable internal representation of human
motion. This experiment validates the potential for developing true “foundation models for motion.”
While our current approach shows a performance gap, it highlights a clear and promising research
direction. Future work could focus on more sophisticated data-balancing techniques, curriculum
learning strategies, or simply scaling the model’s capacity to bridge this gap. The ability to train
a single model that understands the principles of human motion across myriad contexts remains a
valuable and achievable goal for the field.

E LLM USAGE

While preparing this work, we used an LLM to assist with language editing and code generation
for LaTeX tables and visualizations. The LLM’s contributions were limited to improving the clarity
of the text and formatting results. The core research, experimental design, and all scientific claims
remain our original work.
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Figure 3: Distribution of winning mode indices (best-of-6) on pose + trajectory prediction task
across the training and validation sets of MOCAP-UMPM. The dashed line (- - -) indicates equal
distribution. Both distributions demonstrate balanced mode utilization without mode collapse.

F EVALUATING PREDICTION DIVERSITY

A key component of our model is the multi-modal prediction head, which generates K distinct
hypotheses to account for the uncertain nature of human motion. To validate its effectiveness, we
analyze two potential concerns: mode collapse and the true diversity of the generated futures.

F.1 MODE UTILIZATION ANALYSIS

To quantitatively verify that our model uses its full predictive capacity, we logged the index of
the best (lowest error) hypothesis for every sample in the MOCAP-UMPM training and validation
sets (K = 6). Figure 3] plots the distribution of these winning indices. The results show that the
model does not suffer from mode collapse. All six modes are actively utilized in both training and
validation, with utilization rates clustering around the ideal uniform distribution (16.7%, shown as
a dashed line). This confirms that the “winner-takes-all” loss, when applied to our architecture,
successfully encourages the different proposals to specialize and cover distinct, plausible outcomes.

t=0.4s t=0.8s t=1.2s t=1.6s t=2.0s
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Figure 4: Visualization of motion proposals (K = 6) of our (wide) model on MOCAP-UMPM data.

All model predictions are in color. Ground truth future poses are black dashes, and the last-known
input positions are colored dashes.
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Table 9: Comparison of pose prediction diversity. Lower values are better (J.), with the best results
shown in bold. An asterisk (*) denotes models we recomputed for this setup.

| Human3.6M AMASS
Model Type ‘ MMADE| MMFDE| MMADE| MMFDE|
DivSamp Stochastic (Gumbel-Softmax) 0.542 0.671 0.623 0.728
BeLFusion Stochastic (Latent Diffusion) 0.491 0.586 0.488 0.564
CoMusion Stochastic (Motion Diffusion) 0.531 0.623 0.526 0.602
Motionmap Stochastic (Multi-Stage Encoder-Decoder) 0.466 0.532 0.450 0.514
SkeletonDiff*  Stochastic (Gaussian Diffusion) 0.568 0.694 0.641 0.740
SLD* Stochastic (State-Space Diffusion) 0.497 0.576 0.482 0.551
Ours (wide) Deterministic (K-Proposal) 0.526 0.587 0.519 0.560
Ours (deep) Deterministic (K-Proposal) 0.535 0.597 0.521 0.571

F.2 QUALITATIVE DIVERSITY VISUALIZATION

Figure[d] provides a qualitative visualization of this diversity for a sample from the MOCAP-UMPM
dataset. The figure overlays all K = 6 proposals generated by our “wide” model. It clearly illustrates
that the model is capturing distinct, high-level behaviors; for instance, the agent in red is predicted
to either walk straight, stop, or turn, with each prediction representing a physically plausible and
coherent motion.

F.3 QUANTITATIVE DIVERSITY METRICS

To further assess the quality and diversity of our generated motion distribution, we report stan-
dard multimodal metrics, Minimum-over-K Average Displacement Error (MMADE) and Minimum-
over-K Final Displacement Error (MMFDE), on the pose-only benchmarks. Table [9] compares our
model’s performance against prominent stochastic and generative baselines. Our deterministic K-
proposal approach achieves MMADE/MMFDE scores that are competitive with these generative
methods, demonstrating that our K proposals capture a meaningful and diverse set of high-quality
future motions.

G ANALYSIS OF UNIFIED ARCHITECTURE

To validate our central claims, we present ablations addressing two critical questions. First, we
provide quantitative proof that jointly modeling pose and trajectory is mutually beneficial. Second,
we investigate why our simple, unified attention mechanism outperforms standard, more complex
encoder-decoder designs. We also extend our ablation study from Section [3.6] to test the inclusion
of some architectural components.

G.1 BENEFIT OF JOINT MODELING

A core hypothesis of our work is that pose and trajectory are deeply intertwined and that modeling
them jointly improves the prediction of both. We tested this hypothesis directly by training “pose-
only” and “trajectory-only” variants of our model and comparing them to our full, joint model on
MOCAP-UMPM.

Table [I0] presents these results, providing strong quantitative evidence for our hypothesis. The
data shows that pose prediction improves by ~11-12% when trajectory is provided as an input,
compared to a “pose-only” variant. Conversely, trajectory prediction improves by ~12-14% when
pose is provided as an input, compared to a “trajectory-only” variant. This confirms that our unified
framework successfully learns the physical coupling between local articulation (pose) and global
movement (trajectory), using information from one to refine its predictions for the other.

G.2 UNIFIED SELF-ATTENTION VS. CROSS-ATTENTION

A key question is why our simple architecture works so well. We hypothesize it is due to our
unified self-attention mechanism, where past context and future queries are concatenated as ([C;
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Table 10: Comparison of the influence of combined pose and trajectory information vs. individual
performance on MOCAP-UMPM data. Lower values are better (|), with the best results shown in
bold. A dagger (1) marks models adapted for the specific task.

Pose Prediction Trajectory Prediction
Training Method Only Pose Pose + Traj Only Traj Pose + Traj
Metric ADE|//FDE| ADE|//FDE| ADE|/FDE| ADE//FDE|
T2pPt - 0.61/0.95 - 0.20/0.29
EMPMP' - 0.53/0.65 - 0.14/0.20
Ours (wide) 0.46/0.58 0.41/0.51 0.09/0.18 0.08/0.16
Ours (deep) 0.46/0.59 0.42/0.51 0.09/0.18 0.08/0.17

Improvement (%) |

-11.4/-12.2 -13.7/-11.9

Table 11: Ablation study on attention mechanisms measuring metrics on MOCAP-UMPM. Lower
values are better (|.), with the best results shown in bold.

Attention Mechanism

Wide Deep
APE| JPE| APE| JPE|

Self-Attn over [C; Q] (Ours)
Self-Attn (C) + Cross (Q)

125.70  212.72 13141 211.76
134.61 229.05 14032 227.89

Q]) and processed in a single attention block. This differs from standard encoder-decoders that use
separate self-attention on the context and cross-attention for the queries. To test this, we built a new
baseline that replaces our unified attention with a standard encoder-decoder design, keeping all other

parameters and hyperparameters identical.

Table[I1]shows the results. Our unified Self-
Attn([C; Q]) mechanism outperforms the
standard cross-attention baseline, improving
APE by 6.6% and JPE by 7.1% for the wide
model. We believe this is because unified at-
tention allows for a richer, bidirectional in-
formation flow at every step.

Figure [5 provides a visualization of the
attention patterns in our first transformer
layer. The heatmap shows attention in
all four quadrants, representing the bidirec-
tional interactions between past context [C]
and future query [Q] tokens. Brighter col-
ors, indicating stronger attention, are visi-
ble for queries attending to the past context
(bottom-left quadrant) but also for queries
attending to other queries (bottom-right).
This explicitly shows the model is learning
the complex, bidirectional relationships and
not just the standard query-to-context flow,
enabled by our unified attention mechanism.

Context (Traj+Pose) Query Tokens
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[a]
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Figure 5: Attention patterns in the first transformer
block at epoch 100. Brighter colors indicate stronger
attention weights. Dashed lines (- - -) separate past
context from future query tokens.

This visual evidence supports our hypothesis that this richer, bidirectional attention is key to our

model’s effectiveness.

G.3 ARCHITECTURAL COMPONENT ABLATION

We investigate the contribution of our smaller architectural choices. Table [I2]analyzes the impact
of removing the Type Embedding (¢) and replacing RMSNorm with LayerNorm on the MOCAP-
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Table 12: Extended ablation study of architecture choices on MOCAP-UMPM. We explicitly com-
pare RMSNorm vs. LayerNorm and the effect of Type Embeddings. Lower values are better (),
with the best results shown in bold.

Components Ours (wide) Ours (deep)
RMSNorm LayerNorm Type Emb. APE| JPE| APE| JPE|
v v 126.24 213.85 132.09 212.13
v 127.37 213.06 132.80 214.85
v v 125.70 212.72 131.41 211.76
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Figure 6: Visualization of trajectory predictions (K = 20) of our (wide) model on ETH-UCY data.
X-Y coordinate values in the plots are in meters. All model predictions are in color, ground truth
future trajectories are black dashes, and input trajectories are in gray.

UMPM dataset. The results confirm their importance: removing the type embeddings degrades
performance (e.g., APE increases from 125.70 to 126.24 for the wide model), confirming they are
valuable for helping the model distinguish between pose and trajectory streams. RMSNorm also
provides a consistent, albeit minor, performance benefit over LayerNorm while being more compu-
tationally efficient.

H ADDITIONAL QUALITATIVE RESULTS

H.1 TRAJECTORY-ONLY VISUALIZATION

To provide qualitative results for the trajectory-only task, Figure [6] visualizes our model’s K = 20
proposals on challenging, crowded scenes from the ETH-UCY dataset. The visualizations show our
model’s ability to capture a wide, multi-modal distribution of plausible future paths, correctly iden-
tifying diverse outcomes (e.g., turning left, turning right, or stopping) in high-uncertainty scenarios.

H.2 FAILURE CASE ANALYSIS

While our model is robust, it is not without limitations, particularly in complex multi-person scenes.
Our model treats all individuals independently, which can lead to unrealistic predictions when
agents’ motions are strongly coupled or highly unusual. Figure [/| presents qualitative failure cases
from MOCAP-UMPM. The first example showcases an intricate interaction where the blue and
green agents are turning in a circle while holding hands. Our model, processing them independently,
fails to capture this complex, coupled motion. This also highlights that integrating explicit multi-
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t=0.4s t=0.8s t=1.2s t = 1.6s t=2.0s

Figure 7: Visualization of predictions of our (wide) model on MOCAP-UMPM data. All model pre-
dictions are in color. Ground truth future poses are black dashes, and the last-known input positions
are colored dashes.

agent interaction modules is a critical and promising direction for future work. The second example
shows the blue and green agents undergoing an unexpected, rapid acceleration. The model’s predic-
tions struggle to keep pace with this abrupt change in dynamics, likely defaulting to a smoother or
more mean-reverting trajectory, and thus accumulating significant error.

I PERFORMANCE ON HIGHLY INTERACTIVE SCENARIOS

To specifically address the model’s generalization capability on complex multi-agent interactions,
we conducted an evaluation on the challenging WorldPose dataset 2024). Unlike the
standard pedestrian dynamics in ETH-UCY or social mingling in UMPM, WorldPose features high-
intensity sports scenarios (soccer) characterized by rapid changes in velocity, complex contact inter-
actions, and adversarial intent. This serves as a rigorous stress test for our architecture in scenarios
where prior work typically relies on dedicated interaction modules.

1.1 EXPERIMENTAL SETUP

The WorldPose data was preprocessed to use an 80% train and 20% test split. The dataset contains
player poses (M = 24) recorded at 25 fps at soccer games. All models observed 1.0 seconds of past
motion and predicted the best of K = 10 proposals for 1.0 seconds into the future.

1.2 RESULTS AND ANALYSIS

The results in Table [I3]demonstrate that our simple, Taple 13: Comparison of APE/JPE metrics
unified framework substantially outperforms prior on WorldPose data. Lower values are better

complex, interaction-aware methods. Specifically, (), with the best results shown in bold. An
SimpliHuMoN reduces APE by 56.7% compared to  asterisk (*) denotes models we recomputed

T2P and 64.6% compared to EMPMP, likely due to  for this setup.
the difficulty of modeling rapid, non-cyclic sports

motions using architectures optimized for smoother

walking gaits. Our method’s ability to handle this Model APE) JPE
data without architectural modification highlights T2p* 362.7  913.6
the universality of the proposed Transformer de- EMPMP* 4434 981.5
coder, validating the strength of our core architecture Ours (wide)  156.8  746.3

while underscoring that integrating explicit multi-
agent interaction mechanisms remains a critical and
promising direction for future work.
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