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Abstract

Implicit neural representations (INRs) have garnered significant interest recently for their
ability to model complex, high-dimensional data without explicit parameterisation. In this
work, we introduce TRIDENT, a novel function for implicit neural representations characterised
by a trilogy of nonlinearities. Firstly, it is designed to represent high-order features through
order compactness. Secondly, TRIDENT efficiently captures frequency information, a feature
called frequency compactness. Thirdly, it has the capability to represent signals or images
such that most of its energy is concentrated in a limited spatial region, denoting spatial
compactness. We demonstrated through extensive experiments on various inverse problems
that our proposed function outperforms existing implicit neural representation functions.

1 Introduction

Implicit Neural Representations (INRs) signify a fundamental shift from conventional grid-based data struc-
tures. INRs represent a significant departure from the traditional, grid-based approach to data representation.
Instead of storing data in fixed, discrete units such as pixels or voxels, INRs employ a neural network to
encode data as a continuous function, symbolically represented as f : R™ - R™, where n signifies the input
dimensions (e.g., spatial coordinates) and m the output dimensions (e.g., colour intensity in images). This
enables INRs to capture complex details without being confined by grid resolution, making them particularly
useful for various inverse problems, allowing for high-fidelity and resolution-independent processing. In
contrast, traditional grid-based approaches rely on fixed, discrete grids—such as pixels in images or voxels
in 3D models—leading to limitations in resolution and increased memory consumption for high-resolution
datasets or complex shapes. Thus, INRs provide a more flexible, memory-efficient alternative, facilitating
enhanced control and manipulation of data, applicable across a broad spectrum of fields.

Implicit Neural Representations (INRs) have rapidly gained prominence in diverse domains, such as medical
imaging (Zou et al., 2023), computer graphics (Mildenhall et al., 2021), and robotics (Khargonkar et al.,
2023), due to their remarkable practical applicability. INRs offer a unique approach to encoding complex
data, leveraging deep neural networks to represent information implicitly and continuously. Researchers have
undertaken substantial efforts to improve INRs, introducing various techniques from sinusoidal functions like
SIREN to wavelet transforms like WIRE (Saragadam et al., 2023). Despite these advancements, existing INR
techniques grapple with critical challenges.

Firstly, a fundamental issue arises from the specialised nature of existing INR techniques, which are often
designed for specific tasks, resulting in a lack of adaptability and generalisability across diverse problem
domains(Song et al., 2023). This inherent task-specific imposes limitations on their broader applicability,
constraining their efficacy in addressing a wide spectrum of inverse problems.

Secondly, current INR functions have inherent difficulties when attempting to capture intricate fine-grained
details while simultaneously avoiding the introduction of undesirable artifacts. Notably, they often encounter
challenges in representing high-order information within low-order domains, which leads to a degradation
of information fidelity and the generation of inaccurate representations. Furthermore, these methods may
exhibit suboptimal performance in efficiently encoding frequency information and spatial regions, thereby
impeding their effectiveness in representing complex data structures in several tasks.
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In this study, we introduce a novel Implicit Neural Representation function named TRIDENT. Our approach is
distinguished by a trilogy of nonlinearities, which set it apart from existing techniques in the field. Firstly,
we incorporate order compactness into TRIDENT, enabling the transformation of high-order information into a
low-order representation. This part enhances our function’s capacity to represent complex data efficiently.
Secondly, frequency compactness is another component of our trilogy, boosting TRIDENT to adeptly capture
and represent frequency information, ultimately improving its fidelity in encoding intricate data structures.
Lastly, our function offers spatial compactness, ensuring that it represents signals or images with a focus on
concentrating the majority of their energy within limited spatial regions. This feature enhances TRIDENT’s
ability to faithfully capture essential spatial features. Our contributions are summarised next.

 We introduce a novel function called TRIDENT for implicit neural representation, that stands out for:

o TRIDENT proposed a unique trilogy of nonlinearities being the first INR function that carefully is
designed to enforce better approximations that generalise well across several inverse problems.

o TRIDENT proposed trilogy enforces: higher-order features (order compactness), better representation
of frequency information (frequency compactness), and concentration on useful spatial regions for
fine-grained details (spatial compactness).

W We demonstrate the capabilities of our TRIDENT function through extensive experiments across various
inverse problems, showing that it not only outperforms existing methods in the literature but also generalises
well across tasks, consistently delivering the best performance

2 Related Work

This section revisits existing literature on Implicit Neural Representations and the core principles of our novel
technique, providing a basis for contrasting it with current solutions.

Implicit Neural Representation. An Implicit Neural Representations (INR) employs a neural network to
model a continuous function that can interpolate or approximate the underlying data distribution of a dataset.
In contrast to conventional grid-based approaches which discretely represent data, INR , built upon multilayer
perceptron (MLP) networks, offer a continuous and differentiable framework for signal recovery (Yiice et al.,
2022). Tt inherently differ from traditional Deep Neural Networks (DNNs) by focusing on learning from a
single data instance, rather than relying on extensive training datasets. Previous research has demonstrated
the versatility of INR in addressing a wide spectrum of challenges across diverse domains, ranging from
medical imaging (Zou et al., 2023), signal processing (Sitzmann et al., 2020), occupancy volume (Mescheder
et al., 2019) to computer graphics (Mildenhall et al., 2021).

The community has explored different alternatives to improve INR. The traditionally popular ReLLU activation
function fails to represent features in the high-frequency domain well (Hao et al., 2022), leading to low
accuracy of ReLU-INR. Several improvements in network architectures have been proposed in recent years.
Borrowing the idea from position encoding (Miiller et al., 2022; Mildenhall et al., 2021), the authors of Tancik
et al. (2020) proposed Fourier Encoding to represent high-frequency features in low-dimensional domains.
Despite a significant improvement in representativeness, training with the ReLLU activation function still
results in low accuracy.

Inspired by the principles of Fourier Transformation, the authors of Sitzmann et al. (2020) introduced a
network leveraging sinusoidal functions, referred to as SIREN, with the aim of enhancing the representational
capacity of the network. Additionally, it is noteworthy that various other alternatives to nonlinearity have
been under consideration including Ramasinghe & Lucey (2022). The Multiplicative Filter Networks, use
sinusoidal functions and the Gabor wavelet to function as a filter to replace the activation function in INR
architecture (Fathony et al., 2020) Analogous to SIREN, the WIRE model, as proposed in Saragadam et al.
(2023), also adopts the Gabor wavelet as the activation function for the Implicit Neural Representation (INR).

Inverse problems. Inverse problems manifest in several crucial practical applications, spinning from
image restoration to acoustic source reconstruction. The community has discussed rigorous mathematical
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foundations (Devaney, 2012; Bertero et al., 2021; Vogel, 2002) for understanding inverse problems on imaging,
from its ill-posedness (Rudin et al., 1992; Candes et al., 2006; Venkatakrishnan et al., 2013) to the parameter
selection (Wei et al., 2022).

The classical approaches for addressing inverse problems are knowledge-driven. One category involves
providing approximating solutions with boundary conditions that guarantee the existence of the ill-posed
problems (Engl et al., 1996; Kirsch et al., 2011), while the other integrates knowledge of targeted parameter
structures with sparsity assumptions (Daubechies et al., 2004; Jin & Maass, 2012) or stochastic models (Kaipio
& Somersalo, 2007; Mueller & Siltanen, 2012). However, the classical methods have their inherent limitations.
The former approaches suffers from limited physical priors from the observation and high computational
cost for accurate analytical models, the latter is limited by its instability in capturing the task-specific data
structures (Arridge et al., 2019).

Recent advancement in deep learning techniques also offers solutions on inverse problems with data-driven
models (Ongie et al., 2020; McCann et al., 2017). They take data examples on specific problems with the
prior knowledge which generates the data for training to learn the data structure, while in many applications
the lack of sufficient data prevents it from being robust, thus insufficient to support an entirely data-driven
approach. A recent avenue of progress is now combining the knowledge- and data-driven models to solve
inverse problems. Several algorithms (Venkatakrishnan et al., 2013; Lucas et al., 2018) have been proposed for
this combination, yet these findings predominantly remain experimental and lack a comprehensive theoretical
underpinning. Nevertheless, there is an emergence of certain mathematical concepts for addressing data-driven
approaches in the context of inverse problems (Arridge et al., 2019). The majority of data-driven techniques
rely on a large amount of data, hindering their wide applicability. Implicit Neural Representations (INR)
allow solving and deriving inverse problems from a single sample.

3 Methodology

This section details two key aspects of our TRIDENT approach: firstly, the formulation, and secondly, its
theoretical foundation.

3.1 TRIDENT Formulation

In this work, we introduce a novel implicit neural representation function, which stands out for its several
advantages over existing methodologies in the field. Our new function reads:

exp(—|so([x, - cos (271'Uj/mx) ,sin (27raj/mx) -~-]T)|2), (1)

where o represents the frequency parameter, m is the mapping size and j stands for the mapping index,
je{1,2,...,m}, while so denotes the scale parameter. Our function equation 1 is then considered within our
defined network architecture, which is structured as follows:

D(x) =W, (¢pp-100p-20...0¢107)(x) + by, (2)

where o, W, b represent the activation function, weights, and biases of the network, respectively. Moreover,
each element of the input vector x; is transformed by ¢; as:

X; = ¢i (Xz) =exp (_50|Wixi + bz|2)

. ) T
Moreover, the first-layer mapping, -, is defined as: v(v) = [v, ...,COS (27mj/mv) ,sin (27T03/mv) s ] , and
¢; : RMi » RYi s the i'" layer of the network.

3.2 Theoretical Foundation of TRIDENT

What properties characterise our proposed implicit neural representation function, and how do they set it apart
from existing models? Unique in its approach, our function is distinguished by a set of theoretically-motivated
properties. These properties not only endow our function with novel capabilities but also align it with
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TRIDENT Without Frequency Compactness Without Order Compactness Without Spatial Compactness
SSIM: 0.86 SSIM: 0.84 SSIM: 0.82 SSIM: 0.80

Figure 1: Visualisation comparison of CT reconstruction task on 100 projections among TRIDENT, and
TRIDENT without Frequency, Order, and Spatial Compactness separately.

fundamental theoretical principles that have not been fully explored in prior work. Without losing generality,
we simplify equation 1 to exp (—|cos(z)[*) and let ¢(z) = ¢1 o y(z). We next introduce TRIDENT foundation
based on a trilogy of nonlinearities.

? Order Compactness. The first concept we used is order compactness. It refers to the ability of a
representation to encapsulate information efficiently across different orders of derivative or variation within
the data. Moreover, order relates to the smoothness and the level of detail that the representation can capture.
Mathematically, this can be associated with the representation’s capacity to approximate functions and their
derivatives to a certain degree of accuracy. In real context, a continuous function on closed intervals can be
expanded as a series of cosine functions, e.g., Y-, A, cos “HE . Meanwhile, known from the Stone-Weierstrass
theorem, continuous functions on closed intervals can be uniformly approximated by polynomial series.
Inspired by the above two theorems, we aim to enable our function, ¢(x) to represent high-order information
in the low-order domain, augmenting the representational capacity of our function. By elevating the series
index n to the exponent of the cosine function in the Fourier cosine series, we obtain:

amr

o(x) = ;An cos™ (T), (3)

where « is the frequency coefficient and [ is the length of the domain. Without loss of generality, let o = 2

and [ = 1, yielding: ¢(z) = ¥ An cos™(22). "
Consequently, with ¢(z) as our formula, the network is enabled to represent high-order features, which we
call Order Compactness.

? Frequency Compactness. In our work, we use the concept of frequency compactness to describe the
efficiency with which a representation can encapsulate information at different frequencies. A representation
with high frequency compactness can accurately reproduce both the overarching structures and the intricate
details of the data. If a continuous function is expanded as a series of cosine functions, each appropriately
scaled and shifted, it implies that this Fourier series provides an efficient way to represent frequency features, a
concept we can refer to as frequency compactness. Consequently, if our formula takes the form as in equation 3,
it will inherently preserve the strong frequency compactness characteristic of the Fourier cosine series, as
demonstrated by:

n 1 {n 2 27y
cos 9:271( n )+2"1§J( A )cos[(n—Zk)G] 4)

which means that our formula, ¢(z), like the property of the Fourier series, has the capacity to represent
frequency information efficiently, bringing our method frequency compactness.

> Spatial Compactness. Another relevant concept that we use in our work is spatial compactness, which
express variations within a specific, usually limited, spatial region. It is crucial in the context of INR as it
determines how well the representation can be localise and render details within distinct pats of the space
being modelled. Apart from the frequency compactness and the spatial compactness already brought by ¢(z)
in the form of equation 3, we aim to utilise the choice of A,, to further enhance spatial compactness. This
refers to the ability to represent a signal or an image in a way that concentrates most of its energy in a limited
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spatial region. If we define oy, as ay, = PR ENEDE

3% 52 to =, the series Y72 e
j=0 on+j on J:() 2n,+_7‘,(n!).(j!)

Consequently, this allows us to express A,, as:

Given that |ay,| < ﬁ, and consider the convergence of

is determined to converge uniformly by the Weierstrass M-test.

P I C

So2n - (nh) - (51
We then get:

(_l)n+j

n=0 \j=0 2m+3 - (nl) - (41)

(i ()™ (n+j>!cosn(2x))

27+ i(n+ ) nlj!

) cos” (2x)

& A ; (-1)°
"2 (Z G-nte” (233))- 27l
(

:2 ;le?’ [Cosi(Qx) + (i) COSi_l(Zaj) " ]
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& (-1)" [ 1+ cos(2z) ‘
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Linking back to the exponential series: expz = Y15 ‘f—,, we finally get:

o(x) = ioAn cos”(2z) = exp (| cos(x)|2) (6)

which becomes our simplified formula. Thanks to the Gaussian window, we can represent the signal or image
in a well-localised spatial domain. Consequently, our simplified formula enjoys the benefit of the nonlinear
Trilogy: order, frequency, and spatial compactness.

However, it is well known that while the full Fourier cosine series effectively represents the even part of
a function, it falls short of capturing the odd part. Our approach enhances the representativeness of odd
components by incorporating dedicated sine channels. Additionally, to ensure the preservation of non-Fourier
components, an input channel is integrated into our system, with which comes the three-channel formula:
exp(=|so([z, cos (2mx) , sin (27x)]")[?). Finally, for a more efficient representation, we introduce a frequency
parameter o and apply a log-linear strategy. This strategy is designed to balance magnitudes of different
scales and aims to improve the output. Our function then reads:

exp(—|so([x, .-~ COS (27r0j/mx) ,sin (27mj/mx) ]T)|2)

While Fourier series can indeed approximate arbitrary functions, the compactness properties enhance the
efficiency and effectiveness of learning by reducing the model’s complexity and improving generalisation.
Essentially, our properties guide the selection of functions that the model can approximate well, focusing on
those that are significant for the application.

We demonstrate the nonlinearity trilogy of our formula, which encompasses order, frequency, and spatial
compactness. To visually illustrate the impact of each compactness type, we refer to Figure 1. The outputs in
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Table 1: Properties comparison of the state-of-the-art Implicit Neural Representations against our proposed
TRIDENT.

Method Principle Disadvantages

SIREN frequency compactness instability

FourierNet represent high-frequency features frequency limitation

WIRE wavelet transform not good in high dimension
TRIDENT order, frequency and spatial compactness —

Table 2: Table showing experiments’ results of SIREN, WIRE, the baseline(RELU+POS.ENC.), MFN, and
TRIDENT.

METHOD Denoising (PSNR) | Occupancy (IoU) Super resolution (PSNR) Audio (Loss) CT Recon (SSIM)
Parrot  Butterfly Thai-Statue Zebra  Baby Monarch Pepper ‘ Friends ‘ 100 projections

SIREN 27.40 23.02 97.69 % 23.04  28.99 24.21 26.63 0.000235 0.84

WIRE 30.05 24.65 98.79 % 23.07  30.35 25.18 27.21 0.011515 0.82

RELU+ POS.ENC.  26.13 22.61 98.31% 20.55  27.36 23.84 24.83 0.002822 0.80

MFN 30.20 24.83 97.15% 17.21  21.67 21.51 20.39 NaN 0.68

TRIDENT 31.26 25.27 99.29% 23.26 30.56 25.34 27.27 0.000157 0.86

this figure were generated using the setting described in Section 4.6, using 100 projections. TRIDENT achieved
an Structural Similarity (SSIM (Wang et al., 2004)) of 0.86. Removing the sinusoid channels reduced the
SSIM to 0.84, impacting sensitivity to high-frequency features and detail preservation. We demonstrated the
loss of high-order information without order compactness. Substituting the Gaussian window with ReLU
activation, to test the absence of spatial compactness, resulted in an over-smoothed output with an SSIM of
0.80. These results underscore TRIDENT’s advantage in representing both odd and even features efficiently.

4 Experimental Results

This section details all experiments conducted to validate our proposed TRIDENT function.

4.1 Implementation Details & Evaluation Protocol

For fair comparison in all experiments, we used a share code-base. Every experiment was conducted using the
PyTorch platform and the Adam optimiser (Kingma & Ba, 2014). In this work, we consider five tasks: image
denoising, 3D occupancy reconstruction, image super-resolution, audio reconstruction, and CT reconstruction.
We evaluate each task using its corresponding metric, as stated in the respective task descriptions. Moreover,
we adhere to a standard protocol by employing a grid search technique to identify the optimal hyperparameter
values for our approach We therefore provide a set of recommended hyperparameter values that we found to
yield the best results in each task.

If not otherwise mentioned, we use 2 hidden layers with 256 hidden features in each layer. Apart from
the Audio task, we added the scheduler to all the other tasks to reduce the learning rate during training.
We compared our function against the current literature including Positional Encoding (Mildenhall et al.,
2021), MFN (Fathony et al., 2020), SIREN (Sitzmann et al., 2020) and WIRE (Saragadam et al., 2023). For
SIREN nonlinearity, we set the frequency parameter as 10 as suggested in Sitzmann et al. (2020), and use
the recommended parameters for WIRE from Saragadam et al. (2023).

4.2 Image Denoising

For evaluating our method’s robustness, we reconstruct a colourful (with high-frequency features) image from
the DIV2K dataset (Agustsson & Timofte, 2017). For orthogonality to the Gaussian window, we chose to
add independently poison-distributed noise to each pixel, with a maximum average photon noise of 30 and an
integration time of 2.



Under review as submission to TMLR

Baseline
(RELU +
POS. ENC.)

PSNR 26.13

PSNR 31.26

PSNR 27.40 PSNR 30.20

Figure 2: The visualization comparison of the denoising task on the "Parrot" example among the Baseline
(ReLU + Position Encoding), TRIDENT, SIREN, MFN, and WIRE methods.
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Figure 3: Visual comparison of the denoising task on the "Butterfly’ example among the Baseline (ReLU +

Position Encoding), TRIDENT, SIREN, MFN, and WIRE methods.

We use the Peak Signal-to-Noise Ratio (PSNR) as the metric to evaluate the experiment and train with 2K
iterations with different nonlinearities. We use I loss between the INR output and the input image. Figure 2
shows the denoising result of each nonlinearity.

Figures 2&3 show the denoising result for the parrot and butterfly images. Our method not only achieves
the best performance in both cases but is also the only one that effectively preserves detailed features,
demonstrating its robustness to noise. MFN and WIRE rank as the second-best, generally recovering the
images but falling short in detail preservation. SIREN and the Baseline (ReLU+POS.ENC.) perform the least
effectively, often resulting in over-smoothed outcomes. These examples underscore our method’s robustness
to noise, attributable to its spatial compactness, which is crucial for capturing important information
concentrated in specific image regions.

4.3 3D Occupancy Reconstruction

To evaluate our method’s representativeness in a higher dimension, we learn to represent the occupancy
volume of a 3D image, the Thai statue. We sample the 3D image into a 5123 grid, assigning a value of 1 to
pixels outside the 3D shape and 0 to those inside. For the marching cubes algorithm, we set the threshold
at 0.5. The Intersection over Union (IoU) value was used as a metric to measure the reconstruction level.
During the experiments, we employed the Mean Squared Error (MSE) as the loss function and trained the
model with 4 different nonlinearities for 300 iterations.

Figure 4 visualises the results of the 3D Occupancy Reconstruction. TRIDENT achieves a 99.29% score, nearly
perfect, successfully reconstructing all fine details of the 3D Thai statue input. WIRE and the baseline
(ReLU+ POS. ENC.) attain scores between 98% and 99%, but lose some details during training. SIREN
and MFN, with results ranging between 97% and 98%, demonstrate less representational efficacy as the
dimensionality increases. This experiment highlights TRIDENT’s superior representativeness not only for
low-order features but also for high-order features.
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RELU +POS. ENC. TRIDENT SIREN
98.31% 99.29% 97.69% 97.15% 98.79%

Figure 4: The visualisation comparison of 3D Occupancy Reconstruction (4x) task on "Thai-Statue" example
among the Baseline (ReLU + Position Encoding), TRIDENT, SIREN, MFN, and WIRE methods.
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Figure 5: Visual comparison of single image super-resolution (4x) task on "Baby" example among the Baseline
(ReLU + Position Encoding), TRIDENT, SIREN, MFN, and WIRE methods.
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Figure 6: Visualisation comparison of single image super-resolution (4x) task on "Zebra" example among the
Baseline (RELU + Position Encoding), TRIDENT, SIREN, MFN, and WIRE methods.
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4.4 Single Image Super Resolution

In the task of image super-resolution, we aim to construct a high-resolution image from a low-resolution
one. INR’s high representativeness is particularly beneficial for super-resolution. We used the well-known
datasets Setb (Bevilacqua et al., 2012) and Set14 (Zeyde et al., 2012). We implemented 4x super-resolution
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GT Baseline (RELU + POS. ENC.) Loss 0.002822 TRIDENT Loss 0.000157
M el ’“ﬁ
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SIREN Loss 0.000235 MFN Loss NaN  WIRE Loss 0.011515

Figure 7: Visual comparison of audio reconstruction task on "Friends" example among the Baseline (ReLU +
Position Encoding), TRIDENT, SIREN, MFN and WIRE methods.

Baseline
(RELU +
POS. ENC.)

SSIM 0.80
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Figure 8: Visualisation comparison of CT reconstruction task on 100 projections among the Baseline (ReLU

+ Position Encoding), TRIDENT, SIREN, MFN and WIRE methods.

on four images randomly selected from these two datasets. For each task, we trained the model for 2000
iterations, using the ls loss between the input low-resolution picture and the INR output. We also employed
the Peak Signal-to-Noise Ratio (PSNR) between the INR output and the ground truth to assess the quality
of the images. Our method outperformed the other nonlinearities in all four tasks. Figure 5 presents the
4x super-resolution results for ‘the baby’ image using different nonlinearities, and Figure 5 visualises these
results.

TRIDENT achieved the highest average PSNR (26.61 dB) and produced a smooth result with no obvious noise.
WIRE and SIREN almost completely recovered the original images, albeit with some colour striation in the
output. The baseline (ReLU+ POS. ENC.) was unable to fully recover the ‘zebra’ sample but performed
relatively well with the ’baby’ image. However, MFN showed the least effective performance in both images.
Across these tasks, TRIDENT demonstrated its strong frequency compactness by effectively recovering both
high-frequency features (as in the zebra task) and low-frequency features (as in the baby task) compared to
the others, showcasing its stability and robustness during training to avoid colour striations.

4.5 Audio Reconstruction

Neural networks have shown the capability to represent audio signals (Agustsson & Timofte, 2017). However,
it is hard for an MLP to solve the inverse problem of audio because it contains many kinds of nonlinearities
including order and frequency features. To showcase the high representativeness and multimodality of our
method compared to others, we aim to represent audio signals using our INR model. We evaluated the
performance of MLPs with different nonlinearities on a selected four-second audio clip from the TV show
‘Friends’. This clip features not only Joey’s speech but also the background laughter of the audience. The
model was trained using the Mean Squared Error (MSE) loss between the INR output and the original audio
over 9000 iterations. We employ a 5-layer MLP with 256 hidden units in each layer for this task.

Figure 7 shows the visualisation of the audio signal we successfully recovered. Apart from SIREN and TRIDENT,
other INR approaches failed to reconstruct the waveforms accurately. Pos+ReLU can represent the speech
of Joey’s speech but failed to capture the audience’s laughter (particularly in the final i of the waveform).
WIRE resulted in an incorrect audio file, and MFN was unable to construct a waveform due to issues with
gradient descent. Only our model and SIREN were able to accurately reconstruct the audio signal, with our
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Figure 9: The 4x super-resolution result for TRIDENT with s0 = 1,5, 10, 20 separately.

—eerheigl) | e

GT TRIDENT WIRE

|

Figure 10: The visualisation of audio wave on a musical example "Bach’s Cello Suite No.1" after reconstruction
by TRIDENT and WIRE methods.

model achieving a lower loss than SIREN. This experiment highlights the exceptional representativeness of
our method, benefiting from the Nonlinear Trilogy, where order compactness and frequency compactness aid
in detailed recovery, and spatial compactness on specific regions of the signal.

4.6 CT reconstruction

To further test our method’s efficacy in solving underconstrained problems with priors, we conducted an
experiment focused on reconstructing a 2562 CT chest image (Clark et al., 2013), a challenging task for MLPs
due to the presence of both even and odd features in the image. The CT reconstruction task utilises X-ray
projections obtained from multiple angles to reconstruct internal structures through Radon transform, aiming
for high-fidelity imaging with reduced data (Beister et al., 2012). In the main experiment, we reconstructed
the image with 100 CT measurements. We increase the hidden features from 256 to 300 with 2 hidden layers
and train with 5000 iterations. SSIM between the ground truth and the INR output served as the metric to
measure the restoration quality.

Figure 8 displays the visualisations of the results from different nonlinearities. Our method produces the
sharpest image with clearly defined features. SIREN and WIRE also yield clear outputs, but their results
include some striation artifacts. The baseline approach (ReLU +POS.ENC.) leads to a blurred image. MFN
performed the worst in this task, resulting in an output image with excessive noise. This demonstrates that
our method, incorporating both odd and even elements in its formula, serves as an effective representation
tool for solving underconstrained inverse problems.

4.7 Further Experiments: Music Audio reconstruction

To further show the advantage of TRIDENT brought by the nonlinear trilogy: order, frequency, and spatial
compactness, we choose a hard task for MLP, music reconstruction. The first 7 seconds from Bach’s Cello
Suite No.1 is selected as input and the setting is the same as described in Section 4.5.

Figure 10 shows the visualisation of the reconstruction results of Bach’s music via TRIDENT and WIRE.
TRIDENT inherits almost all features from the ground truth, while WIRE fails to preserve any of them.
Through this ablation experiment, we further show TRIDENT’s high representativeness by the nonlinear trilogy.

4.8 Ablation Study: Choice of Parameter s,

The parameter sy controls the length of the window. A too-narrow window reduces representativeness by
losing low-frequency information and increasing sensitivity to rapid signal changes. Conversely, a too-large

10



Under review as submission to TMLR

window causes TRIDENT to lose spatial compactness and high-frequency information. Consequently, we
conducted a 4x super-resolution experiment with varying so values of 1, 5, 10, 20, with the same setting as in
section 4.4. The input ‘pepper’ is sourced from the well-known super-resolution dataset Set14 (Zeyde et al.,
2012).

75 PROJECTIONS 100 PROJECTIONS

The visualisation results are shown in Figure 9. With
so = 20, the image quality is poor due to the exces-
sively large window. For sg = 10, the result is over-
smoothed, losing high-frequency features. However,
with s¢p = 1, the window is too narrow, leading to
increased noise sensitivity. Our conclusion is that
setting so around 5 is optimal, achieving a PSNR
of 27.27 and preserving both high-frequency and
low-frequency information.

&
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4.9 Ablation: CT Reconstruction
with Varying Number of Projections Figure 11: The CT reconstruction with 50, 75 and 100

projections.
To test the robustness of TRIDENT in solving inverse

problems, we do an experiment on CT Reconstruc-

tion with a decreasing number of measurements with the same experiment setting and the same data of 4.6.
The CT reconstruction results separately from 100 projections, 75 projections, and 50 projections are visualized
in figure 11. In all projections, we hold a leading gap over WIRE, especially in lower projections (SSIM:
0.61 (WIRE) vs 0.78 (TRIDENT)). TRIDENT is more robust and the leading gap is larger with the dimension
decreasing, which enables patients to reduce radiation exposure.

5 Conclusion

In this work, we have introduced TRIDENT, a new formula for Implicit Neural Representation, which benefits
from the nonlinear trilogy: Order, Frequency, and Spatial Compactness. Strong theoretical principles are
provided to show TRIDENT’s high representativeness and robustness. Various experiments are conducted
to show TRIDENT’s versatility and high capacity for solving inverse problems, including CT, audio, 3D
occupancy reconstruction, denoising, and super-resolution tasks. The performance of TRIDENTis underpinned
by three foundational components: order compactness, frequency compactness, and spatial compactness.
Together, these elements enable the model to capture variations across different orders of derivatives with
high fidelity, ensuring an unparalleled ability to represent both broad features and intricate details. Moreover,
TRIDENT demonstrates a remarkable capacity to accurately localise and render detailed information within
specific spatial regions, showcasing its comprehensive approach to data representation. TRIDENT achieves the
best among all the inverse problems that we tested on and hence gives the best solution for nonlinear INRs.
While there remain unexplored inverse problems that push the boundaries of Implicit Neural Representations
(INR), our solution stands at the forefront of the tasks already developed using INR. Exploring these uncharted
areas represents a promising next step for the community.
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