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Abstract

Low-rank adaptation (LoRA) achieves parame-001
ter efficient fine-tuning for large language mod-002
els (LLMs) by decomposing the model weight003
update into a pair of low-rank projection ma-004
trices. Yet, the memory overhead restricts it to005
scale up when the model size increases. We006
propose Randomized LoRA (RLoRA) which007
adopts Randomized Walsh-Hadamard Trans-008
form to achieve significant reduction in the size009
of trainable parameters compared to LoRA. At010
the same time, it allows a PAC-Bayes regular-011
izer to be efficiently incorporated to improve012
generalization. We evaluate the effectiveness013
of RLoRA on LLMs RoBERTa and GPT-2014
using GLUE and E2E benchmarks. With a015
much lower memory requirement, RLoRA can016
give similar performance as the SOTA low-rank017
adaptation methods for GLUE and E2E, and018
significantly better performance under few-shot019
settings.020

1 Introduction021

Pre-trained Language Models (PLMs), typically022

consisting of millions or billions of parameters,023

have achieved the state-of-the-art performance on024

NLP tasks (Devlin et al., 2018). While PLMs can025

be fine-tuned for specific downstream tasks, their026

increasing scale makes the fine-tuning and model027

storage formidable.028

Parameter-efficient fine-tuning (PEFT) aims to029

fine-tune a pre-trained model efficiently by adapt-030

ing only a small set of parameters. Various ap-031

proaches for PEFT have been explored. i) The032

adapter-based approach (Houlsby et al., 2019;033

mahabadi et al., 2021; Pfeiffer et al., 2020; He034

et al., 2021) introduces trainable adapter modules035

to achieve fine-tuning with the PLM frozen. This036

approach however falls short of the inference la-037

tency introduced. ii) The masking-based approach038

updates only some selected subset of the PLM’s039

parameters (Guo et al., 2020; Zaken et al., 2021;040

Figure 1: Performance of PEFT methods on fine-tuning
Roberta-base using 200 training data points from the
GLUE datasets. PA: Parallel Adapter (He et al., 2021);
SA: Sequential Adapter (Houlsby et al., 2019); SAID:
Intrinsic Dimension Adaptation (Aghajanyan et al.,
2021); LoRA: Low-rank Adaptation (Hu et al., 2021),
RLoRA: Randomized LoRA (proposed).

Fu et al., 2022; Sung et al., 2021). As it requires 041

access to the PLM for updating, its application is 042

restricted. iii) Prefix-tuning (Li and Liang, 2021) 043

and prompt-tuning (Lester et al., 2021) prepend 044

additional tokens to the input embeddings and only 045

train these soft prompts where the contextual infor- 046

mation is wrapped to the inputs (or hidden states) 047

without modifying the PLM. This approach how- 048

ever converges much slower than the adapter-based 049

one (Ding et al., 2022; Hu et al., 2021). 050

Low-rank adaptation (LoRA) (Hu et al., 2021) 051

hypothesizes that the PLM’s weight update for the 052

fine-tuning possesses a low “intrinsic rank” dom- 053

inating the desirable optimization trajectory (Li 054

et al., 2018; Aghajanyan et al., 2021), and proposes 055

to decompose the update of the weight (e.g., Trans- 056

former’s self-attention weight metrics) into two 057

low-rank projection matrices. This reparametera- 058

tion trick has been shown particularly effective in 059

reducing the number of trainable parameters com- 060

pared to other PEFT approaches. Yet, the memory 061

overhead is still considerably large when the size 062

of the model increases. 063
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To this end, inspired by the work on random064

feature projection for kernel machines (Rahimi065

and Recht, 2007; Liu et al., 2021),we propose066

randomized low-rank adaptation (RLoRA) which067

adopts the random matrix approximation to con-068

struct the up-projection and down-projection ma-069

trices in LoRA. In particular, we adopt the Ran-070

domized Walsh-Hadamard Transform (WHT) and071

a learnable scaling vector to reparameterize the072

low-rank projections to reduce both the time and073

space requirements. Using random matrices to re-074

duce the memory requirement has also been ex-075

plored in some recent work like LoRA-FA (Zhang076

et al., 2023b), VERA (Kopiczko et al., 2024) and077

NOLA (Koohpayegani et al., 2023). To contrast,078

RLoRA adopts the Randomized WHT which is079

orthogonal and recursively defined, which can fur-080

ther reduce the resources needed for the gradient081

computation w.r.t. the hidden states.082

Also, the proposed RLoRA adopts PAC-Bayes083

regularization to enhance generalization perfor-084

mance, which is particularly important for adapting085

PLMs where only a small training set is available.086

Some related ideas have been explored in Lotfi et al.087

(2022, 2023), which empirically showed that the088

PAC-Bayesian theories provide a tighter bound and089

understanding for the role of model size and gener-090

alization ability. Achille et al. (2019); Wang et al.091

(2021) used the PAC-Bayesian framework to esti-092

mate the information in neural networks. The adop-093

tion of the Randomized WHT in RLoRA allows the094

regularization to be efficiently incorporated. To the095

best of our knowledge, work on incorporating the096

PAC-Bayes generalization bound for regularizing097

PEFT is still lacking in the literature.098

Our contribution can be summarized as:099

1. The number of trainable parameters in LoRA100

can be substantially reduced by incorporation101

of Randomized WHT.102

2. We show theoretically how the “intrinsic sub-103

space” of the PLM’s weight update is charac-104

terized by Randomized WHT.105

3. We show how a PAC-Bayes regularization106

term can be efficiently estimated and incor-107

porated for fine-tuning RLoRA to boost its108

generalization performance.109

4. We conduct comprehensive experiments to110

demonstrate the effectiveness of RLoRA for111

fine-tuning PLMs including Roberta-base,112

Roberta-large and GPT-2 medium based on113

the GLUE and E2E benchmarks.114

Our code will be made available for sharing via 115

gitHub. 116

2 Background 117

In this section, we provide background and related 118

work on low-rank adaptation, random matrix meth- 119

ods, and PAC-Bayes generalization bound. 120

2.1 Low-Rank Adaptation (LoRA) 121

LoRA (Hu et al., 2021) starts with the PLM W0 122

which is frozen and reparameterizes the PLM’s 123

weight update ∆W using two low-rank projection 124

matrices. The forward pass becomes: 125

h = W0x+∆Wx = W0x+WBWAx (1) 126

where WB ∈ Rdout×r and WA ∈ Rr×din are 127

the trainable parameters, and r ≪ min{din, dout}. 128

The memory overhead for LoRA is still an issue 129

because of: i) high memory consumption to store 130

the activation during the forward pass and to con- 131

struct the gradient; and ii) the minimum number of 132

trainable parameters lower-bounded by the rank-1 133

decomposition of the weight matrix which is con- 134

siderably large as the model size increases. 135

2.2 LoRA with Random Matrix Methods 136

Random matrix theory has been applied to achieve 137

PEFT. For instance, LoRA-FA (Zhang et al., 138

2023b) freezes the down-projection matrix WA 139

which is randomly initialized. VERA (Kopiczko 140

et al., 2024) replaces both WA and WB with ran- 141

dom matrices so that the weight update becomes: 142

∆WV ERA = dWBbWA where only two scaling 143

vectors d, b are learned. NOLA (Koohpayegani 144

et al., 2023) uses multiple random seeds to gener- 145

ate the random basis to form WA and WB , and 146

learn the combination vectors α and β to compute 147

∆WNOLA = (
∑k

i=1 αiWAi)×
∑l

j=1(βjWBj ). 148

In this paper, random projection methods (Li 149

et al., 2018; Liu et al., 2021) are further explored 150

to reduce the time and storage requirements while 151

maintaining the effectiveness. In particular, we 152

focus on the Randomized Walsh-Hadamard Trans- 153

form (WHT) as it can efficiently draw a random 154

matrix from a highly structured distribution (Tropp, 155

2011) (to detailed in the next section). 156

2.3 PAC-Bayes Generalization Bound 157

The PAC-Bayes bound is a theoretical framework 158

that provides a probabilistic guarantee on the gen- 159

eralization performance of a learning algorithm. 160
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It is based on the principles of probably approxi-161

mately correct (PAC) learning and Bayesian infer-162

ence. Given the true risk R and the empirical risk163

R̂S , the PAC-Bayes bound can be defined as:164

R− R̂S ≤ ES

{
Eh∼H

[
KL

(
P (h)

∣∣∣∑h′∈H P (h′|S)
|H|

)]}
(2)165

where S represents the training data, H is the hy-166

pothesis space, P (h) is the prior distribution over167

hypotheses, and P (h′|S) is the posterior distribu-168

tion over hypotheses given the data. The risk dif-169

ference is upper bounded by the expected KL di-170

vergence between the prior and the data-dependent171

posterior distributions over hypotheses. This im-172

plies the PAC-Bayes framework rewards the model173

has strong prior on it parameters aligned with the174

data (Lotfi et al., 2022). The proposed RLoRA175

makes use of a PAC-Bayes bound to guide its fine-176

tuning process.177

3 Methodology178

In this section, we present the details about how179

the proposed RLoRA. In particular, Section 3.1180

presents the Randomized WHT and how it is in-181

tegrated into RLoRA to gain parameter-efficiency182

and reduction in computational cost during train-183

ing. In Section 3.2, we show theoretically how the184

posterior distribution of the PLM’s weight update185

based on the reparameterization is associated with186

a lower-dimensional “intrinsic subspace” charac-187

terized by the Randomized WHT. We derive the188

PAC-Bayes generalization bound in Section 3.3 and189

explain how the reparameterization by Random-190

ized WHT allows the bound to be efficiently incor-191

porated into RLoRA to regularize the fine-tuning.192

Fig. 2 shows an overall illustration of RLoRA.193

3.1 LoRA with Randomized WHT194

Incorporated195

RLoRA builds upon LoRA. It replaces WA and196

WB in LoRA with two WHTA and WHTB approx-197

imated by Random WHT as well as two trainable198

scaling vectors α and β, so that the low-rank de-199

composition of ∆W becomes:200

∆W = [diag(β)WHTB][diag(α)WHTA], (3)201

where diag(α)ii = αi.202

3.1.1 Efficient generation of projection203

matrices204

The projection matrices WHTA and WHTB can be205

efficiently generated by i) first setting a random206

seed and ii) applying the WHT without the need to 207

explicitly store the projection matrix. 208

Specifically, according to (Choromanski et al., 209

2017), a d× d Gaussian random matrix R ∈ Rd×d 210

can be approximated by a product of Randomized 211

Walsh-Hadamard matrice H and diagonal matrices 212

S and Bi, given as: 213

R =
1

σ
√
d
S

k∏
i=1

HBi. (4) 214

S is a random scaling and subsample matrix. Bi 215

has elements of independent random signs {−1, 1} 216

along its diagonal. The memory cost of S and Bi 217

is both O(d). The value of k determines how many 218

independent random signals Bi should be multi- 219

plied. Increasing the value of k can improve the 220

randomness and the orthogonality of the resulting 221

matrix R. Empirical findings suggest that setting 222

k = 2 or 3 is sufficient for practical applications. 223

For the matrix H ∈ Rd×d, it can be efficiently 224

generated due to its recursive definition: Hd = 225[
Hd/2 Hd/2

Hd/2 −Hd/2

]
with H2 =

[
1 1
1 −1

]
. The 226

generation iterates two simple steps: i) dividing the 227

data into two halves, and ii) performing a simple 228

± operation. Fig. 2(c) shows an example of an 229

8-dimensional WHT. This fast WHT allows Hx 230

to be computed in O(d log d) time and the transfor- 231

mation basis to be orthogonal. 232

3.1.2 Efficient matrix multiplication during 233

backpropagation 234

Assume that the hidden state is denoted as x ∈ 235

Rn×din and the weight as W ∈ Rdin×dout where 236

n is the batch size and din(dout) is the dimension 237

of the input(output) hidden state. The information 238

propagates between layer l and layer l + 1 as: 239

xl+1 = xlWl

g(W ) = g(xl+1)xl g(xl) = g(xl+1)Wl

(5) 240

where g(W ) is the gradient used to update the 241

trainable parameters and g(xl) is for propagating 242

the gradient to other layers. Given the Randomized 243

WHT adopted, Eq.5 becomes: 244

xl+1 = αlWHT l(xl)

g(αl) = g(xl+1)WHT l(xl)

g(xl) = WHT−1
l (g(xl+1))

(6) 245

where WHT l(xl) is the multiplication for layer 246

l which can be efficiently computed, WHT−1
l () 247

is the reverse projection to layer land αl is the 248

corresponding scaling vector. 249
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(a) LoRA (b) RLoRA (c) Walsh-Hadamard Transform

Figure 2: Illustration of LoRA, RLoRA and the Walsh-Hadamard Transform. In Fig.2(c), the green and red lines
indicate the “add” and “minus” operations respectively. The whole process iteratively divides the data into two
halves and applies simple ± operations. A simple WHT only needs O(d log d) to embed a single block.

3.2 Intrinsic Subspace and Posterior250

Distribution of Weight Update251

To better understand the intrinsic subspace of the252

PLM’s weight update, we first assume that the pos-253

terior distribution of the weight update ∆W fol-254

lows a matrix-variate Gaussian. Then, we show that255

the distribution after the reparameterization is asso-256

ciated with a low-dimensional “intrinsic subspace”257

characterized by the Randomized WHT matrices.258

With reference to the analysis in (Rossi et al.,259

2020), we assume that the posterior distribution of260

the weight update ∆W = WAWB ∈ Rdin×dout261

follows a matrix-variate Gaussian distribution,262

given as ∆W ∼ MN (M ,U ,V ) where M is263

the mean, and V ∈ Rdout×dout and U ∈ Rdin×din264

denote the covariance matrices among the rows265

and columns of ∆W respectively. The vectorized266

version of ∆W can be expressed equivalently as:267

vect(∆W ) ∼ N (vect(M),V ⊗U), (7)268

where ⊗ denotes the Kronecker product.269

3.2.1 Intrinsic subspace of ∆W270

We rewrite ∆W by replacing WA and WB using271

the Randomized WHT according to Eqs. 4 and 3.272

For the convenience of the analysis, we assume k =273

11 and drop the scalar factor 1
σ
√
d

. Also, we denote274

the matrix selecting the first r rows (columns) from275

WA (WB) as SWA
(SWB

). Then, it gives:276

∆W = diag(β)SWB
HBWB

STWA
diag(α)SWA

HBWA
.

(8)277

1Note that the result of this analysis can be easily gener-
alized to cases with other values of k. We leave that in the
Appendix.

By putting HBWA
= [v1,v2, . . . ,vd] where vi = 278

H(i,:)BWA (i,i), vect(∆W ) can be expressed as: 279

vect(∆W ) = Gα

=


diag(β)SWB

HBWB
STWA

SWA
diag(v1)

diag(β)SWB
HBWB

STWA
SWA

diag(v2)
...

diag(β)SWB
HBWB

STWA
SWA

diag(vd)

 α

(9)

280

where G ∈ Rdindout×r, α ∈ Rr, β ∈ Rdout . The 281

factor STWA
SWA

is essentially randomly selecting 282

r basis vectors from G to construct the projection 283

from α to vect(∆W ). 284

3.2.2 Posterior distribution of ∆W 285

Assume that RLoRA’s trainable parameters α,β ∼ 286

N (µα,Σα),N (µβ,Σβ), it gives 287

vect(∆W ) ∼ N (µαG,G
TΣαG). (10) 288

This implies that the posterior distribution of ∆W 289

is in fact lying on the dα-dimensional subspace 290

of dindout-dimensional space embedded by the or- 291

thogonal projector G. The orientation of the space 292

∆W is controlled by the random directions BWB
293

BWA
and the learnable β, which could be regarded 294

as the learnable intrinsic subspace of the network 295

(Aghajanyan et al., 2021). 296

In addition, we can show that Eq. 10 is equiva- 297

lent to a matrix-variate Gaussian for ∆W with the 298

parameters M ,U ,V given as: 299

M = diag(µβ)SWB
HBWB

STWA
diag(µα)SWA

HBWA

U
1
2 = diag(β)SWB

HBWB
STWA

diag(Σ1/2
α )STWB

diag(β)

V
1
2 =

1√
tr(U)

BWA
HSTWA

diag(Σ1/2
α )

(11) 300
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which can be estimated based on the Randomized301

WHT. See Appendix B for detailed derivation.302

3.3 PAC-Bayes Regularization303

We derive an approximation of the PAC-Bayesian304

generalization bound to guide the learning process305

for better generation. According to Section 3.2,306

if α follows the Gaussian distribution, the weight307

update matrix ∆W will follow the matrix-variate308

Gaussian. For the clarity reason, we use w to de-309

note the trainable model parameters (i.e., α and β310

for our case) in the sequel.311

3.3.1 PAC-Bayes generalization bound312

Suppose the posterior of the model parameters w313

given the training data S of size N for a specific314

fine-tuning task is p(w|S) ∼ N (µS ,ΣS) and the315

oracle prior p(w) = Ep(S)[p(w |S)] ∼ N (µ,Σ) .316

The expectation of the KL divergence between the317

posterior and the prior of w over the task-specific318

data S becomes:319

I(w) = Ep(S) [KL (p(w|S), p(w))]

∝ Ep(S)
[
log

|ΣS |
|Σ|

+ tr
(

Σ

ΣS

)
+(µS − µ)TΣ−1(µS − µ)

] (12)320

where |A| and tr(A) are the determinant and321

trace of matrix A, respectively. By assuming322

the covariance of prior and posterior to be pro-323

portional, which is common for building PAC-324

Bayesian bound (Dziugaite and Roy, 2018), the325

log and trace terms become constant. We have326

I(w) ∝ Ep(S)
[
(µS − µ)TΣ−1(µS − µ)

]
= Ep(S)

[
µTSΣ

−1µS

]
− µTΣ−1µ.

(13)327

To achieve a small KL with the data-dependent328

posterior, the prior should essentially be a good329

predictor for the posterior, which will be hard with-330

out access to the data distribution p(S).331

3.3.2 Estimating prior covariance matrix332

As the pre-trained network has already converged333

to a stable solution, we assume that the weight up-334

date introduced by fine-tuning for the downstream335

task are small perturbations to refine this prior. So336

we first assume ∆W is 0 mean matrix-variate337

Gaussian. To achieve this, we initialize α,β as338

α ∼ N (0,Σα) and β = 0. Then, to obtain the339

bound, we only need to focus on estimating the340

prior covariance: 341

Σ = Ep(S)
[
(µS − µ)(µS − µ)T

]
(14) 342

As mentioned, the exact estimation of Σ in re- 343

quires knowledge of the distribution p(S). Inspired 344

by Wang et al. (2021), we can bootstrap (resample 345

with replacement) from the training data S for NS 346

times to construct the bootstrap datasets {Si}NS
i=1. 347

Σ ≈ 1

NS

NS∑
i=1

[
(µS − µSi)(µS − µSi)

T
]

(15) 348

However, to get µSi , we still need to optimize over 349

the bootstrap datasets {Si}NS
i=1, which is not practi- 350

cal in neural network training. Instead, we approx- 351

imate this using the group influence effect which 352

studies the change to the model if we remove a 353

group of data. 354

Lemma 3.1. Group Influence Function (Basu 355

et al., 2020) Assume that when all samples in a 356

group U are up-weighted by ϵ→ 0, the parameter 357

difference can be approximated as: 358

µS−U − µS
∆
= − 1

1− p

1

|S|
H−1
µS

∑
z∈U

∇l(hµS (z))

(16) 359

where S is the training sample set, ∇l(hµS (z)) and 360

Hµ = ∇2
µl(hµS (z)) are the gradient and Hessian 361

of the loss function l defined on the model hµS (), 362

and µS refers to the optimal parameters trained by 363

dataset S. By taking U as a subset resampled from 364

the training data S, we can show that the oracle 365

prior covariance in Eq. 15 can be estimated by 366

Σ ∝ H−1
µ

∑
z∈U

∇l(hµ)
∑
z∈U

∇l(hµ)T (H−1
µ )T

∝ H−1
µ Fµ,U (H

−1
µ )T ∝ F−1

µ,U

(17) 367

where Fµ,U is the Fisher information matrix es- 368

timated using the resampled dataset U . See Ap- 369

pendix B for detailed derivation. 370

3.3.3 Estimating the bound for regularization 371

Based on Eq. 17, the generalization bound in Eq. 13 372

can be estimated as: 373

I(w) = Ep(S) [KL(p(w|S), p(w))]

∝ Ep(S)
[
(µS − µ)TFµ(µS − µ)

]
≃ I(w;S) =

∑
t∈U

[
∆µT∇µlt(µS)

]2 (18) 374
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where I(w) is further approximated by I(w;S) in375

the third step as the U is resampled from S. The376

overall objective function is:377

min
w

L(w;S) + λI(w;S) (19)378

where L(w;S) = −
∑N

i=1 log(p(yi|xi,w) is the379

likelihood with yi the output labels in S. To utilize380

this regularization in practice, we can estimate the381

information every few steps (e.g. at the end of each382

epoch) and use this as the regularization term until383

the next estimation of I(w;S).384

4 Experiment385

We evaluate the performance of RLoRA using386

RoBERTa-base/RoBERTa-large (Liu et al., 2019)387

and GPT-2-medium (Radford et al., 2019). Our388

experiments encompass a diverse range of tasks,389

including natural language understanding (NLU)390

and natural language generation (NLG). Specif-391

ically, we evaluate the models on the GLUE392

benchmark (Wang et al., 2018) for RoBERTa-393

base/RoBERTa-large. For evaluation on GPT-2394

medium, to facilitate direct comparison, we adopt395

the experimental setup outlined in the original work396

of LoRA (Hu et al., 2021). Additional details397

regarding the datasets used can be found in Ap-398

pendix C. All the experiments were conducted us-399

ing the NVIDIA Tesla V100.400

4.1 Baselines401

• Full Fine-tuning (FT): The model is initialized402

with pre-trained weights and all the parame-403

ters are trained.404

• Adapter (Adpt) (Houlsby et al., 2019): It in-405

serts adapter layers (two-layer fully connected406

with bias) between the self-attention and the407

MLP modules.408

• BitFit (Zaken et al., 2021): It freezes the pre-409

trained weight matrix and trains the biases.410

• Low-Rank Adaptation (LoRA) (Hu et al.,411

2021): It represents the weight update using a412

low-rank decomposition.413

• Vector-based Random Adaptation (VeRA)414

(Kopiczko et al., 2024): It replaces the low-415

rank matrices in LoRA with random matrices416

and learn only scaling vectors.417

4.2 Natural Language Understanding418

We first evaluate our approach on the General Lan-419

guage Understanding Evaluation (GLUE) bench-420

mark which consists of multiple tasks including421

paraphrase detection (MRPC), sentiment classifi- 422

cation (SST-2), natural language inference (RTE, 423

QNLI) and linguistic acceptability (CoLA). Since 424

the original test sets are not publicly available, we 425

use the original validation set as the test set. For 426

estimating the information term in Eq. 18, we ran- 427

domly resample 100 training data at the end of each 428

epoch for analysis. 429

Table 1 shows the fine-tuning results on 430

RoBERTa-base and RoBERTa-large using the 431

GLUE benchmark. For RoBERTa-base model, due 432

to the budget limitation, we did not use the MNLI 433

trick2 to fine-tune the MRPC, RTE and STSB. Ac- 434

cording to the results on RoBERTa-large, RLoRA 435

can achieve the best results on 6 datasets just like 436

LoRA and VeRA. At the same time, similar to 437

VeRA, RLoRA has the number of trainable param- 438

eters subtantially reduced by ∼ 13 times compare 439

to LoRA due to the use of the random WHT for the 440

low-rank projection. Additionally, it is worth not- 441

ing that while RLoRA can achieve comparable per- 442

formance as LoRA and VeRA on different datasets, 443

its standard deviation is the smallest among them. 444

This indicates that the PAC-Bayes regularization 445

allows RLoRA to be more robust against the effect 446

due to the random seeds and improve the stabil- 447

ity of training results under different random seed 448

settings. 449

4.2.1 Effectiveness of PAC-Bayes 450

Regularization 451

To further evaluate the effectiveness of incorporat- 452

ing the PAC-Bayes term for enhancing the gener- 453

alization performance, we compare the few-shot 454

performance among LoRA, VeRA and RLoRA. We 455

need to re-train LoRA and VeRA to evaluate their 456

performance on the few-shot settings. We also in- 457

clude a version of RLoRA without the PAC-Bayes 458

regularization term for the ablation study to under- 459

score the impact of the regularization. We select 460

five tasks from the GLUE benchmark for this few- 461

shot evaluation and train the models with only 100 462

and 200 data samples. The performance is evalu- 463

ated on the original evaluation set. As shown in 464

Table 2, we can observe that only utilizing the Ran- 465

domized WHT can reduce the number of trainable 466

parameters to 0.02% of the original model (1/35 of 467

LoRA) while achieving comparable performance. 468

Furthermore, incorporating the PAC-Bayes regu- 469

2Hu et al. (2021) used the checkpoint fine-tuned with
MNLI task instead of the pre-trained checkpoint to initial-
ize the model for MRPC, RTE and STSB.
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Table 1: Results of different PEFT methods on the GLUE benchmark. We report Matthew’s correlation for CoLA,
Pearson correlation for STS-B, and accuracy for the remaining tasks. In all cases, higher values indicate better
performance. Results of the baselines are sourced from prior work (Kopiczko et al., 2024). Bold font and the
Underline font indicate the best and the second-best performance for each dataset.

Method # Trainable
Parameters

SST-2 MRPC CoLA QNLI RTE STS-B Avg.

B
A

S
E

FT 125M 94.8 90.2 63.6 92.8 78.7 91.2 85.2
BitFit 0.1M 93.7 92.7 62.0 91.8 81.5 90.8 85.4
AdptD 0.3M 94.2±0.1 88.5±1.1 60.8±0.4 93.1±0.1 71.5±2.7 89.7±0.3 83.0
AdptD 0.9M 94.7±0.3 88.4±0.1 62.6±0.9 93.0±0.2 75.9±2.2 90.3±0.1 84.2
LoRA 0.3M 95.1±0.2 89.7±0.7 63.4±1.2 93.3±0.3 86.6±0.7 91.5±0.2 86.6
VeRA 0.031M 94.5±0.3 89.7±0.8 64.1±1.7 91.9±0.2 75.8±1.8 90.3±0.2 84.4
RLoRA 0.031M 94.6±0.16 90.2±0.28 61.±0.45 91.8±0.04 77.8±0.18 90.9±0.14 84.5

L
A

R
G

E

AdptP 3M 96.1±0.3 90.2±0.7 68.3±1.0 94.8±0.2 83.8±2.9 92.1±0.7 87.6
AdptP 0.8M 96.6±0.2 89.7±1.2 67.8±2.5 94.8±0.3 80.1±2.9 91.9±0.4 86.8
AdptH 6M 96.2±0.3 88.7±2.9 66.5±4.4 94.7±0.2 83.4±1.1 91.0±1.7 86.8
AdptH 0.8M 96.3±0.5 87.7±1.7 66.3±2.0 94.7±0.2 72.9±2.9 91.5±0.5 84.9
LoRA 0.8M 96.2±0.5 90.2±1.0 68.2±1.9 94.8±0.3 85.2±1.1 92.3±0.5 87.8
VeRA 0.061M 96.1±0.1 90.9±0.7 68.0±0.8 94.4±0.2 85.9±0.7 91.7±0.8 87.8
RLoRA 0.061M 96.4±0.1 90.8±0.4 67.5±0.2 94.1±0.2 85.7±0.5 92.1±0.2 87.8

Table 2: Training on GLUE datasets using only 100 and 200 training data samples. The percentage of trainable
parameters with reference to the full model is indicated in the bracket next to each method.

# of train data Method RTE MRPC STS-B SST-2 QNLI Avg

B
A

S
E

100

LoRA (0.71%) 54.87±1.28 76.66±0.16 7.61±3.89 86.62±0.38 57.05±0.09 56.56
VeRA (0.02%) 57.16±2.07 76.62±0.09 21.23±1.79 76.38±2.42 53.93±0.22 57.06

RLoRA (0.02%) 57.25±1.12 76.63±0.17 24.07±0.96 84.06±2.11 54.64±0.94 59.36
w/o PAC-Reg 57.16±2.25 76.72±0.25 22.39±1.40 82.30±2.74 54.61±0.69 58.64

200

LoRA (0.71%) 54.87±0.56 79.25±0.94 66.74±5.23 88.49±0.66 75.02±1.73 72.88
VeRA (0.02%) 54.39±0.90 80.78±1.32 72.88±1.41 89.14±0.14 77.69±0.62 74.98

RLoRA (0.02%) 56.08±0.68 80.34±0.98 79.05±1.29 89.33±1.29 76.08±2.64 76.18
w/o PAC-Reg 53.79±0.88 79.95±1.32 61.86±1.29 89.18±0.66 76.38±1.35 72.23

larization can further improve the generalization470

performance indicating that the model manages to471

capture the task-related information from the input472

data. Fig.1 shows an overall performance com-473

parison between RLoRA and other baselines for474

fine-tuning large models given a small training set.475

The advantage of RLoRA with PAC regularization476

can be clearly observed.477

To illustrate the importance of using the general-478

ization bound as the information measure for reg-479

ularizing the fine-tuning process instead of using480

it only for sub-network selection (like the mask-481

based approach), we perform experiments to mon-482

itor the information change based on Eq. 18 in483

each layer of Roberta-base during the fine-tuning484

on RTE and MRPC datasets for 10 epochs. We485

estimate the layer-wise information at the end of486

each epoch. Fig. 3 show the temporal dynamics487

of the information flow during the fine-tuning pro-488

cess. We can observe that at different stages of489

training, the information “flows” through the lay-490

ers. This implies that identifying and fixing some491

sparse masks on the network could be a too restric- 492

tive approach for regularizing the entire training 493

process. In particular, a wrongly estimated mask 494

might steer the whole optimatization process astray. 495

(a) RTE (b) MRPC

Figure 3: Dynamics of the layer-wise information in net-
work during the fine-tuning process. The x-axis shows
the training progress from the initial epoch on the left
to the final epoch on the right. The y-axis is the index
of the layer from the input layer on the top to the output
layer at the bottom. The degree of redness indicates the
density of information.

496
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Table 3: Results of different PEFT methods on the E2E benchmark using the GPT-2 medium. Results for methods
with asterisk (*) are taken from prior work (Hu et al., 2021). For all metrics, the higher the better. Bold fonts and
the Underline fonts indicate the best and the second-best performance for each dataset.

Method # Trainable
Parameters

BLEU NIST METEOR ROUGE-L CIDEr

FT* 354.92M 68.2 8.62 46.2 71.0 2.47
AdptL* 0.37M 66.3 8.41 45.0 69.8 2.40
LoRA 0.35M 67.48 8.61 46.2 69.2 2.35
VeRA 0.098M 67.22 8.55 44.92 67.35 2.27
RLoRA 0.098M 68.16 8.66 46.2 68.97 2.37
w/o PAC-Reg 0.098M 67.19 8.60 45.69 67.63 2.34

4.3 NLG Benchmark497

For the performance of RLoRA on Natural Lan-498

guage Generation (NLG) models, we make use of499

GPT-2 medium (Radford et al., 2019). To make a500

direct comparison, we keep our experiment setup501

as close as possible to the approach in (Hu et al.,502

2021). Due to the space limit, we will only present503

our results on the E2E NLG Challenge.504

For fine-tuning LoRA and VeRA, we use505

the values of the hyperparameters provided in506

their papers and tune the learning rate from507 {
5× 10−1, 1× 10−1, 5× 10−2, ..., 5× 10−5

}
.508

We further search for the best regularization509

strength λ from 10−4 ∼ 10−6. Detailed hyperpa-510

rameter settings can be found in Appendix C.511

As shown in Table 3, for generating text us-512

ing GPT-2 medium fine-tuned with E2E datasets,513

RLoRA as compared to LoRA, VeRA, and Adpt514

achieves the best or second-best results across most515

of the metrics and is competitive with full fine-516

tuning. Furthermore, by referring to the last rows517

in Table 3, we can clearly observe the improvement518

brought by the PAC-Bayes regularization.519

4.4 Comparison: RLoRA vs VeRA520

In comparison with the contemporaneous work521

VeRA which also generates a random projection522

matrix as well, RLoRA implements the structured523

Randomized WHT which can make the weight mul-524

tiplication more efficient (O(d log d)). Based on525

our current implementation (not yet optimized), it526

can enhance the training from processing 14.7 sam-527

ples per sec. for VeRA to 15.3 samples per sec.528

for RLoRA 3. Also, the use of Randomized WHT529

can effectively scale the PAC-Bayes regularization530

3We train the RoBERTa-base on RTE datasets for 1 epoch
to get this result.

to large models, leading to improved performance 531

evidenced by our experiment results. 532

5 Limitations and Future Work 533

In this paper, we proposed Randomized Walsh- 534

Hadamard low-rank adaptation to reduce the fine- 535

tuning resource consumption and scale the PAC- 536

Bayesian regularization to larger model. The cur- 537

rent estimation of the PAC-Bayes generation bound 538

requires additional gradient computation on the re- 539

sampled data. Better ways to integrate the estima- 540

tion of the information into the training process is 541

worth pursuing. In addition, how to select a proper 542

rank for low-rank adaptation is another research 543

issue where methods like AdaLoRA (Zhang et al., 544

2023c) and IncreLoRA (Zhang et al., 2023a) pro- 545

pose different parameter importance scores for the 546

rank selection. This issue is not yet considered in 547

this paper. 548

6 Conclusion 549

We propose the randomized low-rank adapta- 550

tion RLoRA which integrates LoRA with the 551

Randomized Walsh-Hadamard Transform to gain 552

parameter-efficiency for fine-tuning and PAC- 553

Bayes regularization to further boost generaliza- 554

tion capability. Via comprehensive experiments, 555

we demonstrates that RLoRA can achieve compa- 556

rable performance as LoRA where the number of 557

trainable parameters required is only 0.02% of the 558

original model (and 1/35 of LoRA). Also, under 559

few-shot settings, the PAC-Bayes regularization 560

makes RLoRA outperforms LoRA and other SOTA 561

low-rank adaptation methods. For future work, 562

more effective and efficient ways for estimating the 563

information-based regularization is worth pursuing. 564

In addition, how to selecting the optimal rank is 565

another open research issue. 566
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A Matrix-variate Posterior Distribution Approximated by WHT 725

The matrix W̃ = diag(β)S1HB1S
T
2 diag(α)S2HB2 = WBHB1S

T
2 diag(α)S2HB2 in Eq. 8, where 726

WB = diag(β)S1. The covariance matrices are: 727

U =
1

tr(V )
E
[
(W −M)(W −M)T

]
V =

1

tr(U)
E
[
(W −M)T (W −M)

] (20) 728

As the covariance matrix is non-identifiable (Glanz and Carvalho, 2018) which means that for any scale 729

factor 730

MNm×n(W | M ,U ,V ) = MNm×n(W | M , sU , 1sV ), (21) 731

we can constrain tr(V ) = 1, and M = S1HB1S
T
2 diag(µβ)S2HB2 732

U = E
[
HB1S

T
2 diag(Σ1/2

α ϵ)S2HB2B2HST
2 diag(Σ1/2

α ϵ)S2B1H
]

= E
[
HB1S

T
2 diag(Σ1/2

α ϵ)S2S
T
2 diag(Σ1/2

α ϵ)S2B1H
]

= HB1S
T
2 E [diag(Σα)]S2B1H

V =
1

tr(U)
E
[
B2HST

2 diag(Σ1/2
α ϵ)S2B1HHB1S

T
2 diag(Σ1/2

α ϵ)S2HB2

]
=

1

tr(U)
B2HST

2 E [diag(Σα)]S2HB2

(22) 733

Then, the root of U ,V can be found 734

U1/2 = HB1S
T
2 diag(Σ

1/2
α )

V 1/2 =
1√
tr(U)

B2HST
2 diag(Σ1/2

α )
(23) 735

Lemma A.1. Suppose W ∼ MNm×n(M
T ,V ,U). Let D ∈ Rr×m r ≤ m and C ∈ Rn×p, p ≤ n 736

are both full rank matrices. Then a linear transform of the W , i.e., DWC also follows matrix-variate 737

Gaussian distribution. 738

DWC ∼ MN r×s(DMC,DUDT ,CTV C). (24) 739

So, U
W̃

= diag(β)S1UST1 diag(β) and V
W̃

= V . 740

B PAC-Bayesian Estimation 741

When Uψ is bootstrapping from S and Ψ is the selection matrix and ψi = 1 means sample point i will be 742

removed. Ψ is the resampled data index and we use g ∈ Rd×n to denotes the gradient matrix. 743

µS−U − µS
∆
= − 1

1− p

1

|S|
H−1
µS

∑
z∈U

∇l(hµS (z))

=
1

1− p

1

|S|
H−1
µS

n∑
i=1

ψi∇l(hµS (zi))

so µU − µS
∆
=

1

1− p

1

|S|
H−1
µS

n∑
i=1

(1− ψi)∇l(hµS (zi))

≃ H−1
µS

g(1−Ψ).

(25) 744
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Then we have745

E
[
(µU − µS)(µU − µS)

T
]

= E
[
H−1
µS

g(1−Ψ)(H−1
µS

g(1−Ψ))T
]

= H−1
µS

gE
[
(1−Ψ)(1−Ψ)T

]
gT (H−1

µS
)T

(26)746

while Ψ ∼ Poisson(k, 1n , ...,
1
n),747

E
[
(1−Ψ)(1−Ψ)T

]
ij

=

{
1− 2 kn + k(1−n)

n + ( kn)
2 i = j

1− 2 kn + k2

n2 i ̸= j

(27)748

In practice as n increases, (E
[
(1−Ψ)(1−Ψ)T

]
ii
) → 2 and (E

[
(1−Ψ)(1−Ψ)T

]
ij
) → 1. So749

E
[
(1−Ψ)(1−Ψ)T

]
≃ (I + 11T ) (28)750

and Eq. 26 can be rewritten as:751

H−1
µS

gE
[
(1−Ψ)(1−Ψ)T

]
gT (H−1

µS
)T

= H−1
µS

g(I + 11T )gT (H−1
µS

)T

= H−1
µS

gIgT (H−1
µS

)T

∝ H−1
µ Fµ,U (H

−1
µ )T

(29)752

C Experiment Details753

C.1 GLUE full datasets754

The detailed hyperparameter settings of our proposed RLoRA can be found in Table 4.755

Table 4: Hyperparameter settings for RLoRA

Hyperparameter SST2 MRPC CoLA QNLI RTE STS-B

B
A

S
E

Max sequence length 128
Rank r 512

Batch size 64 32 32 64 32 32
Epoch 10 30 30 10 30 30

RLoRA lr 5E-2 5E-2 1E-3 1E-2 5E-2 1E-2
Classifier lr 5E-4 1E-3 1E-3 5E-4 1E-3 1E-3

λ 1E-4 1E-4 1E-4 5E-5 5E-5 1E-4

L
A

R
G

E

Max sequence length 128
Rank r 256

Batch size 128 64 64 128 64 64
Epoch 60 80 80 25 160 80

RLoRA lr 5E-2 1E-2 1E-2 5E-2 1E-2 5E-2
Classifier lr 1E-4 5E-5 1E-4 1E-4 5E-5 1E-4

λ 1E-3 1E-3 1E-4 5E-5 5E-3 1E-4

C.2 GLUE datasets for few-shot experiments756

For our few-shot experiments, we make of GLUE and train the model for 20 epoch with batch size = 32 in757

all experiments. Detailed hyperparameter settings for our proposed RLoRA can be found in Table 5.758

C.3 E2E benchmark759

The hyperparameter to reproduce the results for the E2E benchmark is shown in Table 6.760
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Table 5: Hyperparameter settings for RLoRA in few-shot experiments

# of train data Method RTE MRPC STS-B SST-2 QNLI

B
A

S
E

100

RLoRA lr 5E-4 1E-3 5E-3 1E-2 1E-2
Classifier lr 5E-4 1E-2 1E-2 1E-3 1E-2
RLoRA λ 1E-4 1E-4 5E-3 1E-4 1E-2

Classifier λ 1E-4 1E-4 1E-2 1E-4 1E-2

200

RLoRA lr 1E-4 5E-2 5E-2 5E-2 5E-2
Classifier lr 5E-2 5E-4 5E-3 5E-3 1E-4
RLoRA λ 5E-3 1E-3 5E-4 5E-3 1E-2

Classifier λ 0 5E-3 5E-4 1E-4 5E-4

Table 6: Hyperparameter configurations for RLoRA, VeRA and LoRA on the E2E benchmark.

Hyperparameter RLoRA VeRA LoRA

# GPUs 1
Optimizer AdamW
Learning Rate Schedule Linear
Batch Size 8
Epochs 5
Warmup Steps 500
Label Smooth 0.1
LoRA α 32
regularization λ 1E-6 0 0
Rank 1024 1024 8
Learning Rate 1E-1 1E-1 5E-4
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