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Abstract
Reinforcement learning (RL) agents can exploit
unintended strategies to achieve high rewards
without fulfilling the desired objectives, a phe-
nomenon known as reward hacking. In this work,
we examine reward hacking through the lens of
General Utility RL, which generalizes RL by
considering utility functions over entire trajec-
tories rather than state-based rewards. From this
perspective, many instances of reward hacking
can be seen as inconsistencies between current
and updated utility functions, where the behav-
ior optimized for an updated utility function is
poorly evaluated by the current one. Our main
contribution is Modification-Considering Value
Learning (MCVL), a novel algorithm designed to
avoid this inconsistency during learning. Starting
with a coarse, yet aligned initial utility function,
the MCVL agent iteratively refines this function
while considering the potential consequences of
updates. We implement MCVL agents based on
DDQN and TD3 and demonstrate their effective-
ness in preventing reward hacking in diverse en-
vironments, including those from AI Safety Grid-
worlds and the MuJoCo gym.

1. Introduction
Reinforcement learning (RL) agents have solved a wide
range of tasks by learning to maximize cumulative re-
wards (Mnih et al., 2015; Levine et al., 2016). However,
this reward-maximization paradigm has a significant flaw:
agents may exploit poorly defined or incomplete reward
functions, leading to a behavior known as reward hack-
ing (Skalse et al., 2022), where the agent maximizes the
reward signal but fails to meet the designer’s true objectives.

For instance, an RL agent tasked with stacking blocks may
end up flipping them when the reward is based on the height
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of the bottom face of a block (Popov et al., 2017). As RL
systems scale to more complex, safety-critical applications
such as autonomous driving (Kiran et al., 2021) and medical
diagnostics (Ghesu et al., 2017), ensuring reliable and safe
agent behavior becomes increasingly important. Pan et al.
(2022) showed that reward hacking becomes more common
as models grow in complexity. Similar problems have been
observed in large language models trained with RL (Denison
et al., 2024; OpenAI, 2024).

Addressing reward hacking in practice has proven challeng-
ing. Skalse et al. (2022) demonstrated that mitigating it
requires either restricting the agent’s policy space or care-
fully managing the optimization process. The former has
been approached by regularizing a policy to remain close
to a known safe policy (Laidlaw et al., 2023), though this
type of regularization may compromise optimality. Regard-
ing the latter, prior work has suggested that certain reward
hacking behaviors could be mitigated using current utility
optimization (Orseau & Ring, 2011; Hibbard, 2012; Everitt
et al., 2016; 2021). In this paradigm, agents optimize a
utility function at each step and evaluate changes to their
policy or utility function based on the utility function of the
current step. However, these approaches remain largely con-
ceptual. With the exception of Dewey (2011), they assume
the utility function is task-specific and predefined, whereas
Dewey (2011) proposed that it could be inferred from past
interactions but did not provide further details. Additionally,
these approaches lack a rigorous formalization of utility
optimization and do not propose concrete implementable
algorithms.

In this paper, we address this research gap by framing re-
ward hacking within the General Utility RL (GU-RL) for-
malism (Zahavy et al., 2021; Geist et al., 2022), a general-
ization of classical RL. Intuitively, GU-RL considers utility
functions that evaluate entire trajectories rather than individ-
ual transitions. We propose learning such utility functions
from past observed rewards. To enable this, we introduce
trajectory value functions and generalize value-based RL
to general utilities. Moreover, we introduce the concept of
inconsistent updates, where utility updates during training
produce policies that perform poorly under the pre-update
utility function. Our key insight is that many reward hacking
scenarios in classical RL can be understood as inconsistent
updates to the learned utility function, including manipulat-
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ing reward signals (Everitt et al., 2021) or tampering with
sensors (Ring & Orseau, 2011).

Based on this insight, we introduce Modification-
Considering Value Learning (MCVL). In MCVL, the agent
updates its utility function based on observed rewards, simi-
lar to value-based RL. Additionally, it predicts the long-term
consequences of potential updates and rejects those found
to be inconsistent. Avoiding inconsistent utility updates is
an optimal behavior in our formulation. We provide an al-
gorithm for learning utility functions, estimating future poli-
cies, and comparing them using the current utility function.
Furthermore, we introduce a learning setup where the initial
utility function is trained in a Safe sandbox environment
before transitioning to the Full version. We evaluate our
approach in diverse environments, including benchmarks
adapted from the AI Safety Gridworlds (Leike et al., 2017)
and MuJoCo gym (Towers et al., 2024). To our knowledge,
this work is the first to demonstrate successful learning of
non-reward hacking behaviors in these environments. Our
results offer insights into key factors influencing MCVL
performance, providing a foundation for future research on
mitigating reward hacking in RL.

2. Background
We consider the usual Reinforcement Learning (RL) setup,
where an agent learns to make decisions by interacting with
an environment and receiving feedback in the form of re-
wards (Sutton & Barto, 2018). This interaction is modeled
as a Markov Decision Process (MDP) (Puterman, 2014)
defined by the tuple (S,A, P,R, ρ, γ), where S is the set
of states, A is the set of actions, P : S × A × S → R is
the transition kernel, R : S × A → R is the reward func-
tion, ρ is the initial state distribution, and γ is the discount
factor. The objective in a standard RL is to learn a policy
π : S → A that maximizes the expected return, defined as
the cumulative discounted reward Eπ

ρ [
∑∞

t=0 γ
tR(st, at)].

The expected return from taking action a in state s and
subsequently following policy π is called state-action value
function and denoted as Qπ(s, a).

General-Utility RL (GU-RL) In this work, we focus on
an agent that optimizes a learned utility function. This prob-
lem naturally falls within the framework of General-Utility
Reinforcement Learning (GU-RL) (Zhang et al., 2020; Za-
havy et al., 2021; Geist et al., 2022), a generalization of
standard RL. Instead of assigning rewards merely to indi-
vidual transitions, GU-RL uses a utility function F that as-
signes value to the distribution of state-action pairs induced
by a policy. This broader framework encompasses tasks
such as risk-sensitive RL (Mihatsch & Neuneier, 2002),
apprenticeship learning (Abbeel & Ng, 2004), and pure
exploration (Hazan et al., 2019).

Formally, the utility function F maps a state-action occu-
pancy measure to a real value. An occupancy measure de-
scribes the distribution over state-action pairs encountered
under a given policy. For a given policy π and an initial
state distribution ρ, the occupancy measure λπρ is defined as

λπρ (s, a)
def
=

+∞∑
t=0

γtPπ
ρ (st = s, at = a),

where Pπ
ρ (st = s, at = a) is the probability of observing

the state-action pair (s, a) at time step t under policy π
starting from ρ. The utility function F (λπρ ) assigns a scalar
value to the occupancy measure induced by the policy π.
The agent’s objective is to find π that maximizes F (λπρ ).

A trajectory τ = (s0, a0, . . . , sh, ah) induces the occupancy
measure λ(τ), defined as

λ(τ)
def
=

h∑
t=0

γtδst,at
,

where δs,a is an indicator function that is 1 only for the
state-action pair (s, a) (Barakat et al., 2023).

Standard RL is a special case of GU-RL, where the util-
ity function FRL is linear with respect to the occupancy
measure, and maximizing it corresponds to maximizing the
expected cumulative return:

FRL(λ
π
ρ ) = ⟨R, λπρ ⟩ = Eπ

ρ

[ ∞∑
t=0

γtR(st, at)

]
.

3. Method
We aim to address reward hacking in RL by introducing
Modification-Considering Value Learning (MCVL). The
MCVL agent continuously updates its utility function based
on observed rewards while avoiding inconsistent utility mod-
ifications that could lead to suboptimal behavior under the
current utility function. To achieve this, we generalize value-
based RL to GU-RL setting by introducing trajectory value
functions and value learning (VL) algorithm. Then we mod-
ify VL such that utility function is only updated if the policy
induced by the updated utility function is not worse than the
policy induced by the current utility function. The policies
are compared by the values of the trajectories they produce
according to the current utility function.

Trajectory Value Function We introduce trajectory value
functions to compute the values of the trajectories. A tra-
jectory value function Uπ(τ) evaluates the utility of an
occupancy measure induced by starting with a trajectory
τ = (s0, a0, . . . , sh, ah) and following a policy π after the
end of this trajectory:

Uπ(τ)
def
= F

(
λ(τ) + γhλπSh+1

)
, (1)
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Algorithm 1 Value-Learning (VL)
Input: Replay buffer D, policy π0, initial utility UVL0

1: for time step t = 0, while not converged do
2: at ← πt(st) {Select action}
3: st+1, rt ← act(at) {Perform action}
4: πt+1 ← ImprovePolicy(πt, U

πt

VLt
)

{Update utility:}
5: D ← D ∪ {Tt−1}
6: U

πt+1

VLt+1
← UpdateUtility(U

πt+1

VLt
, U

πt+1

RL , TD)

7: Tt ← (st, at, st+1, rt)
8: end for

Algorithm 2 Modification-Considering VL (MCVL)
Input: Replay buffer D, policy π0, initial utility UVL0

1: for time step t = 0, while not converged do
2: (at,modify)← πt(Tt−1) {Select action}
3: st+1, rt ← act(at) {Perform action}
4: πt+1 ← ImprovePolicy(πt, U

πt

VLt
)

5: if modify then
6: D ← D ∪ {Tt−1}
7: U

πt+1

VLt+1
← UpdateUtility(U

πt+1

VLt
, U

πt+1

RL , TD)
8: end if
9: Tt ← (st, at, st+1, rt)

10: end for

where Sh+1 is the distribution of the states following the
τ , and λπSh+1

represents the occupancy measure induced by
following π from Sh+1. In the standard RL setting, this
simplifies to the following:

Uπ
RL(τ) =

h−1∑
t=0

γtR(st, at) + γhQπ(sh, ah). (2)

Every trajectory value function has a corresponding utility
function F (λπρ ) = Eτ∼T π

ρ
Uπ(τ), where T π

ρ denotes a dis-
tribution of trajectories started from state distribution ρ and
continued by following a policy π. Thus, it is also referred
to as utility for brevity.

Value Learning (VL) The value-learning agent opti-
mizes a utility UVL, which is learned from observed transi-
tions (Dewey, 2011). Algorithm 1 provides a description of
a value learning agent that learns the utility from rewards.
In our framework, the policy at each step is updated towards
maximizing the current utility UVLt , while the utility is up-
dated towards RL-based utility URL using trajectories TD
formed from the set of previously observed transitions D:

TD = {(s0, a0, . . . , sh, ah) | ∀t ∈ {0, . . . , h− 1}
∃ r ∈ R : (st, at, st+1, r) ∈ D}.

Value-based RL algorithms such as DDQN (van Hasselt
et al., 2016) and TD3 (Fujimoto et al., 2018) can be seen
as special cases of the value-learning, where Uπt

VLt
only

considers the state-action value of the first state and action
in a trajectory: Uπt

VLt
(s0, a0, . . . , sh, ah) = Qπt(s0, a0).

Modification-Considering VL (MCVL) The distinction
between VL agents and standard RL agents becomes appar-
ent when the agent is modification-considering, meaning
it is aware of its learning process and evaluates the conse-
quences of modifying its utility function. For the agents
optimizing URL, it is always optimal to learn from all tran-
sitions, as they provide information about the utility being

optimized. However, for VL agents optimizing UVLt
at

time step t, it may be optimal to avoid learning from certain
transitions. Specifically, the agent may predict its future be-
havior after updating its utility to UVLt+1 and compare it to
the predicted behavior under its current utility UVLt

. If the
updated behavior has lower utility according to UVLt

, it is
optimal to avoid such an update since the agent is currently
optimizing UVLt .

To make this decision-making process explicit, we intro-
duce an additional boolean action that determines whether
to modify the utility function after an interaction with the en-
vironment. The modified action space is Am = A× {0, 1},
where each action ami = (ai,modifyi) includes a decision
to modify or to keep the current utility. The policy is ad-
justed to take the full transition as input, rather than just the
environment state because the decision whether to modify
the utility may also depend on the observed reward and next
state. After each interaction, the agent explicitly decides
whether to update its utility function based on the new expe-
rience. The MCVL algorithm is presented in Algorithm 2,
with the modifications highlighted in red. We refer to the
transitions where the optimal choice is modify = false as
utility-inconsistent, and to the process of selecting modify
as utility inconsistency detection.

Implementation We implement an MCVL agent for dis-
crete action spaces using DDQN and for continuous action
spaces using TD3. These implementations are referred to
as MC-DDQN and MC-TD3, respectively. Here, we focus
on describing MC-DDQN; the implementation of MC-TD3,
which is highly similar, is detailed in Appendix B. In MC-
DDQN, UVL(τ ; θ, ψ) is parameterized as

h−1∑
t=0

γtṘ(st, at;ψ) + γhQ̇(sh, ah; θ), (3)

where Ṙ(s, a;ψ) is a learned reward model, and Q̇(s, a; θ)
is the state-action value function. The policy π(T ) out-
puts an environment action a and a boolean modify , which

3
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Figure 1. (a) Safe version of Box Moving environment: the optimal policy is to repeatedly press the up arrow by moving up and down.
(b) In Full version, maximum returns are achieved by pressing the down arrows, receiving +5 observed reward for each press of the
bottom-most arrow, but this also moves the box down, which is inconsistent with utility learned in the Safe version. There is also a policy
that moves the box up twice as fast by alternating between up arrows. (c) In No Inconsistency version, collecting +5 reward does not
conflict with moving the box up, so the agent trained in Safe should not encounter utility inconsistency in this version of the environment.

indicates whether to update the utility function. The envi-
ronment action a is chosen as argmaxa Q̇(s, a; θ), while
decision modify is determined by comparing expected fu-
ture utilities. Specifically, the agent compares the expected
utility of future policies: a modified πm, assuming T was
added to the replay buffer D, and unmodified πu, assuming
it was not. It then computes

modify = E
τ∈T πm

ρ

[UVLt
(τ)] ≥ E

τ∈T πu
ρ

[UVLt
(τ)], (4)

where the expectations are computed by averaging over k
trajectories of length h. The future policies πm and πu are
computed by applying l DDQN updates to the current action-
value function Q̇(s, a; θ) using replay buffers D ∪ {T} and
D, respectively. To speed up learning from the replay buffer
D ∪ {T}, we include transition T in each sampled mini-
batch. The reward model parameters ψ are updated using L2

loss on batches sampled from the replay bufferD, the action-
value function parameters θ are updated through DDQN
updates on the same batches. The full implementation of
MC-DDQN is presented in Appendix A.

Initial Utility Function An MCVL agent described in
Algorithm 2 requires some initial utility function as input.
In this work, we propose to learn this initial utility function
in a Safe sandbox version of the environment, where unin-
tended behaviors cannot be discovered by the exploratory
policy. Examples of Safe environments include simula-
tions or closely monitored lab settings where the experiment
can be stopped and restarted without consequences if un-
desired behaviors are detected. To differentiate from the
Safe version, we refer to the broader environment as the
Full environment. This Full environment may include the
Safe one, for example, if the agent’s operational scope is
expanded beyond a restricted lab setting. Alternatively, the
Safe and Full environments may be distinct, such as when
transitioning from simulation to real-world deployment. For
the proposed approach to perform effectively, however, the

Safe and Full environments must be sufficiently similar to
allow for successful generalization of the learned utility
function. We do not require a separate Safe environment if
the reward hacking behavior is sufficiently hard to discover,
as demonstrated in our Reacher experiment.

4. Experiments
To empirically validate our approach, we introduce environ-
ments that can be switched between Safe and Full variants.
Following Leike et al. (2017), each environment includes
a performance metric in addition to the observed reward.
This metric tracks how well the agent follows the intended
behavior. A high observed reward combined with a low
performance metric indicates reward hacking. In the Safe
versions of the environments, the performance metric is
identical to the reward.

4.1. Environments

To illustrate a scenario where utility inconsistency might
arise, we introduce the Box Moving environment, shown in
Figure 1. Additionally, we adopt several established environ-
ments to evaluate our method’s performance on known chal-
lenges. These include the Absent Supervisor and Tomato
Watering environments from AI Safety Gridworlds (Leike
et al., 2017), as well as the Rocks and Diamonds environ-
ment from Everitt et al. (2021), all depicted in Figure 2.
To test our algorithm in continuous action spaces, we in-
troduce the possibility of reward hacking into the Reacher
environment from Gymnasium (Towers et al., 2024).

Box Moving Environment The environment consists of
two parts: the left part represents an external world with a
box that can be moved up and down, while the right part is a
room where the agent can move. When the box reaches the
top-most or bottom-most cell, the agent receives a reward
of +1 or -1, respectively, and the box teleports back to the
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Figure 2. Gridworld environments. Each environment has Safe and Full versions. In Safe version, the Absent Supervisor guarantees the
presence of supervisors, Tomato Watering does not have the bucket, and Rocks and Diamonds does not have the switch. We provide
additional customization options for testing different scenarios.

central cell. The agent can move up and down, and stepping
on arrows on the floor moves the box in the corresponding
direction. Staying on the arrows does not influence the box.

In the Safe version, the top and bottom of the room are
empty, and the optimal strategy is to repeatedly press the
up arrow. This setting allows the agent to learn an initial
utility function that favors moving the box upward. In the
Full version, the agent has more interaction opportunities.
The top cell is replaced by an up arrow, allowing the agent
to move the box up twice as fast by alternating between
two up arrows. This setup shows that the Full environment
can offer more efficient ways to achieve outcomes that were
learned to be good in the Safe version. The bottom empty
cell is replaced by a down arrow. However, by stepping into
this cell, the agent can trick the reward system to give itself
a +5 reward. While this results in higher observed rewards,
it also moves the box downward, which was learned to be
undesirable in the Safe version.

The No Inconsistency version modifies the top cell to pro-
vide +5 reward instead. The agent can collect this reward
without disrupting upward box movement, demonstrating
that not all changes in reward structure result in utility in-
consistency.

Absent Supervisor This environment tests whether the
agent will alter its behavior based on the presence of a super-
visor. The goal is to reach a target cell for +50 reward, but a
punishment cell along the shortest path gives -30 reward if
stepped on while a supervisor is present. Each movement
costs -1 reward, encouraging the agent to take the shortest
path. In the Safe version, the supervisor is always present,
leading the initial utility function to learn that going through
the punishment cell is undesirable. In the Full version, the
supervisor is present only half the time. The performance
metric penalizes the agent for stepping on the punishment
cell, even in the supervisor’s absence. We expect that when
the agent steps on the punishment cell without supervision,
it will experience utility inconsistency, as learning from this
transition leads to the policy that visits the punishment cell,

which contradicts the low utility assigned to this behavior
previously.

Tomato Watering This environment models tampering
with observations. The agent is rewarded based on the num-
ber of watered tomatoes, which dry out randomly. After
stepping on the bucket, all empty cells appear to the agent
as watered tomatoes, representing a delusion. In the Safe
version, the bucket is removed from the environment. The
performance metric tracks the true number of watered toma-
toes. In the Full version, we expect utility inconsistency
when the agent tries to delude itself using the bucket if it
compares policies by sampling trajectories from the true
environment transition model where stepping on the bucket
does not affect the tomatoes. In this case, its new behav-
ior, standing on the bucket, should have lower utility than
watering the tomatoes. However, if a delusional transition
model is used, a room full of watered tomatoes should still
appear to have high utility. Without access to the labels
we assigned to cells, the agent cannot distinguish between
deluding itself by putting a bucket on its head and the real
change, i.e. efficient watering of all tomatoes at once.

Rocks and Diamonds This environment allows the agent
to change its reward function by visiting a switch. Initially,
diamonds in the goal area provide +1 reward at every step,
and rocks in the goal area yield -1. Activating the switch
alters the observed reward for rocks to +10, while the per-
formance metric remains the same. In the Safe version, the
switch is removed. Both diamonds and rocks can be pushed.
We expect utility inconsistency when the agent encounters a
situation where the switch is active and there is a rock in a
goal area since updating from this transition would lead to
a policy that puts rocks in the goal area and this action had
low utility in the past.

Reacher This environment is based on the Reacher-v5
environment from the MuJoCo subset of the Gymnasium
benchmark (Towers et al., 2024). It involves a robotic arm
tasked with reaching a randomly placed target, starting from
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Figure 3. Episode performance (top) and returns (bottom) of MC-DDQN and MC-TD3 in comparison to DDQN and TD3. Performance
tracks the intended behavior, while returns are discounted sum of the observed reward. After switching to Full version, the returns of
baselines grow while performance drops, indicating that they engage in reward hacking. The performance of our algorithms does not drop
and improves in environments with better policies available in Full version. Bold lines represent the mean over 10 seeds, and shaded
regions indicate a bootstrapped 95% confidence interval.

randomized joint rotations and velocities. We modified the
environment by adding an invisible button that provides a
one-time reward of +50 when held for 15 consecutive steps,
simulating reward tampering. The performance metric does
not include this reward. Since reward hacking is difficult
to discover in this environment, we train the initial utility
function from random policy rollouts without using the Safe
environment. Further details are provided in Appendix D.

4.2. Experimental Setup

Unless specified otherwise, we train the initial utility func-
tion in the Safe versions of environments for a fixed number
of steps. We use ϵ-greedy exploration (Watkins, 1989) and
linearly decay ϵ. We compare our MC-DDQN approach
with the standard DDQN, both initialized with weights and
the replay buffer obtained in the Safe version and trained
with the same hyperparameters. In the Reacher environment,
we compare our MC-TD3 to TD3. The only difference of
MC-DDQN and MC-TD3 compared to the baselines is the
utility inconsistency detection. To accelerate training, we
check for utility inconsistency only when observed rewards
deviate from predicted rewards by more than a fixed thresh-
old δ = 0.05. Section 4.4 confirms that using the threshold
does not change the empirical performance, while ignor-
ing all such transitions prevents learning the optimal non-
hacking policy. The complete hyperparameters are provided
in Appendix G.

4.3. Results

Our findings show that incorporating utility inconsistency
detection can prevent reward hacking and learned behavior
aligns with the intended tasks. Our algorithm continues to
improve the performance in the Full version after learning
the initial utility in the Safe version of each environment.
DDQN and TD3 baselines learn unintended behaviors lead-
ing to a drop in the performance metric. The key results are
shown in Figure 3.

Our approach relies on the generalization of the initial utility
function from Safe to Full version of the environment. For
the results in Figure 3b, we set the number of supervisors to
one to minimize the distribution shift. We examine perfor-
mance under greater distribution shift in Appendix C. Fore-
casting modified future policies from a single transition was
particularly challenging and required careful hyperparame-
ter tuning. In one out of 10 runs in the Rocks and Diamonds
environment, utility inconsistency went undetected due to
incorrect policy forecasting. Further qualitative analysis of
failure modes is presented in Appendix E.

In the Tomato Watering experiment, we provided MC-
DDQN with a non-delusional transition model for policy
comparisons. This model did not include rewards, and the
agent still encountered delusional transitions in the envi-
ronment. This scenario simulates a situation where the
agent can change its observations while retaining an accu-
rate world model, akin to a human using a VR headset. In
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Figure 4. Additional experiments in Box Moving environment. (a) Comparison of the different training schemes: Check all corresponds
to checking all transitions for utility inconsistency; Check by reward checks only transitions for which predicted reward differs from the
observed by at least δ; Discard by reward discards all transitions where predicted reward sufficiently differs from the observed; Each step
evaluates policies before and after each gradient step without forecasting the future policies; Punishment replaces utility-inconsistent
transitions’ rewards with a punishment reward. (b) Effect of different amounts of initial utility function training in Safe environment.

this setting our algorithm correctly identifies the inconsis-
tent transitions. However, as expected, when the delusional
model was used to roll out trajectories for comparisons, no
utility inconsistencies were detected and the behavior of
MC-DDQN was identical to DDQN.

4.4. Ablations and sensitivity analysis

We tested several alternative schemes for utility inconsis-
tency detection and mitigation. As shown in Figure 4a,
checking all transitions for utility inconsistency yields simi-
lar results to checking only those where the predicted reward
significantly differs from the observed reward. However,
discarding all such transitions prevents the algorithm from
learning an optimal non-hacking policy. Comparing poli-
cies before and after each gradient step without forecasting
future policies also fails to prevent reward hacking. Sur-
prisingly, replacing the reward of inconsistent transitions
with large negative values is less effective at preventing re-
ward hacking than removing them from the replay buffer.
Having such transitions in the replay buffer prevents the
algorithm from forecasting the correct future policy when
checking for inconsistency, and over time the replay buffer
gets populated with both transitions with positive and nega-
tive rewards, destabilizing training.

Figure 4b illustrates the performance with varying amounts
of initial utility function training in the Safe version. Re-
markably, one run avoided reward hacking after just 100
steps of such training. After 300 steps, all seeds converged
to the optimal non-hacking policy, even though most had
not discovered the optimal policy within the Safe version by
that point. This result suggests that future systems might
avoid reward hacking with only moderate training in a Safe
environment. Additionally, this experiment shows that with-
out any training in Safe environment (0 steps) our algorithm
behaves identical to the baseline. Additional experiments
are reported in Appendix C.

5. Limitations
While our method effectively mitigates reward hacking in
several environments, it comes with computational costs,
which are detailed in Appendix F. Checking for utility
inconsistency requires forecasting two future policies by
training the corresponding action-value functions until con-
vergence. In the worst case, where each transition is checked
for potential utility inconsistency, this process can lead to a
runtime slowdown proportional to the number of iterations
used to update the action-value functions. Checking only
transitions where the predicted reward deviates from the
observed reward by more than δ can significantly reduce the
computational burden. However, this approach introduces
an additional hyperparameter. Balancing computational effi-
ciency with effectiveness is a key area for future research.
Promising avenues include leveraging Meta-RL (Schmidhu-
ber, 1987) to accelerate policy forecasting. A particularly
promising direction is in-context RL (Laskin et al., 2022)
which can learn new behaviors in-context during inference,
quickly and without costly training (Bauer et al., 2023).

Another limitation is that our approach addresses only a sub-
set of reward hacking scenarios. Specifically, it depends on
the reward model and value function generalizing correctly
to novel trajectories. This approach may not address reward
hacking issues caused by incorrect reward shaping, like in
the CoastRunners problem (OpenAI, 2023). In this case, if
the agent already learned about a small positive reward (e.g.,
knocking over a target), the agent’s current utility function
may assign a high utility to behaviors that exploit this re-
ward, even if they fail to achieve the final goal (completing
the loop). Alternative methods, such as potential-based re-
ward shaping (Ng et al., 1999), may be more appropriate to
address such issues.

Finally, our current implementation assumes access to roll-
outs from the true environment transition model, while only

7
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the reward model is learned. Extending our approach to
work with learned latent transition models represents a
promising direction for future research. Furthermore, us-
ing a learned world model to predict utility-inconsistent
transitions before they occur could further enhance the ap-
plicability and efficiency of the method. Improvements to
computational efficiency and the integration of learned tran-
sition models would also enable testing our method in more
complex environments, which is an important direction for
future work.

6. Related Work
The problem of agents learning unintended behaviors by
exploiting misspecified training signals has been extensively
discussed in the literature as reward hacking (Skalse et al.,
2022), reward gaming (Leike et al., 2018), or specification
gaming (Krakovna et al., 2020). Krakovna et al. (2020)
provide a comprehensive overview of these behaviors across
RL and other domains. The theoretical foundations for
understanding reward hacking are explored by Skalse et al.
(2022).

Laidlaw et al. (2023) propose addressing reward hacking
by regularizing the divergence between the occupancy mea-
sures of the learned policy and a known safe policy. Unlike
their approach, which may overly restrict the agent’s ability
to learn effective policies, our method does not require the
final policy to remain close to any predefined policy. Eisen-
stein et al. (2024) investigate whether ensembles of reward
models trained from human feedback can mitigate reward
hacking, showing that while ensembles reduce the problem,
they do not completely eliminate it. To avoid additional
computational overhead, we do not use ensembles in this
work, but they could complement our method by improving
the robustness of the learned utility function.

A specific form of reward hacking, where an agent ma-
nipulates the mechanism by which it receives rewards, is
known as wireheading (Amodei et al., 2016; Taylor et al.,
2016; Everitt & Hutter, 2016; Majha et al., 2019) or re-
ward tampering (Kumar et al., 2020; Everitt et al., 2021).
Related phenomena, where an agent manipulates its sen-
sory inputs to deceive the reward system, are discussed
as delusion-boxing (Ring & Orseau, 2011), measurement
tampering (Roger et al., 2023), and reward-input tamper-
ing (Everitt et al., 2021). Several studies have hypothesized
that current utility optimization could mitigate reward or
sensor tampering (Yudkowsky, 2011; Hibbard, 2012; Yam-
polskiy, 2014). One of the earliest discussions of this issue
is in by Schmidhuber (2003), who developed the concept
of Gödel-machine agents, capable of modifying their own
source code, including the utility function. They suggested
that such modifications should only occur if the new values
are provably better according to the old ones. However,

none of these works addressed learning the utility function
or described the optimization process in full detail.

Everitt & Hutter (2016) considered a setting where the agent
learns a posterior given a prior over manually specified
utility functions, proposing an agent that is not incentivized
to tamper with its reward signal by selecting actions that
do not alter its beliefs about the posterior. More recently,
Everitt et al. (2021) formalized conditions under which an
agent optimizing its current reward function would lack
the incentive to tamper with the reward signal. Our work
suggests an implementation of value learning in standard
RL environments, where the utility function is learned from
the past rewards. Additionally, our method is applicable to
other instances of reward hacking beyond reward tampering.
Moreover, it aims to prevent reward hacking, rather than
simply removing the incentive for it.

7. Conclusion
In this work, we introduced Modification-Considering Value
Learning, an algorithm that allows an agent to optimize its
current utility function, learned from observed transitions,
while considering the future consequences of utility updates.
Using the General Utility RL framework, we formalized the
concept of current utility optimization. Our implementa-
tions, MC-DDQN and MC-TD3, demonstrated the ability
to avoid reward hacking in several previously unsolved en-
vironments. Furthermore, we experimentally showed that
our algorithm can improve the policy performance while
remaining aligned with the initial objectives.

To the best of our knowledge, this is the first implemen-
tation of an agent that optimizes its utility function while
considering the potential consequences of modifying it. We
believe that studying such agents is an important direction
for future research in AI safety, especially as AI systems
become more general and aware of their environments and
training processes (Berglund et al., 2023; Denison et al.,
2024; Greenblatt et al., 2024). One of the key contributions
of this work is providing tools to model such agents using
contemporary RL algorithms.

Our empirical results also identify best practices for mod-
eling these agents, including the importance of forecasting
future policies and excluding utility-inconsistent transitions
from the training process. Additionally, we introduced a
set of modified environments designed for evaluating re-
ward hacking, where agents first learn what to value in
Safe environments before continuing their training in Full
environments. We believe this evaluation protocol offers a
valuable framework for studying reward hacking and scaling
solutions to real-world applications.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Implementation Details of MC-DDQN

Algorithm 3 Policy Forecasting
Input: Set of transitions T , replay buffer D, current Q-network parameters θ, training steps l
Output: Forecasted policy πf

1: θf ← COPY(θ) {Copy current Q-network parameters}
2: for training step t = 1 to l do
3: Sample random mini-batch B of transitions from D
4: θf ← TRAINDDQN(θf , B ∪ T )
5: end for

return πf (s) = argmaxa Q̇(s, a; θf ) {Return forecasted policy}

Algorithm 4 Utility Estimation
Input: Policy π, environment transition model P , utility parameters θ and ψ, initial states ρ, rollout steps h, number of
rollouts k
Output: Estimated utility of the policy π

1: for rollout r = 1 to k do
2: ur ← 0 {Initialize utility for this rollout}
3: s0 ∼ ρ {Sample an initial state}
4: a0 ← π(s0) {Get action from policy}
5: for step t = 0 to h− 1 do
6: ur ← Ṙ(st, at;ψ) + γur {Accumulate predicted reward}
7: st+1 ∼ P (st, at) {Sample next state from transition model}
8: at+1 ← π(st+1) {Get action from policy}
9: end for

10: ur ← ur + γhQ̇(sh, ah; θ) {Add final Q-value}
11: end for
return 1

k

∑k
r=1 ur {Return average utility over rollouts}

Algorithm 5 Modification-Considering Double Deep Q-learning (MC-DDQN)
Input: Initial utility parameters θ and ψ, replay buffer D, environment transition model P , initial states ρ, rollout horizon h,
number of rollouts k, forecasting trainig steps l, number of time steps n.
Output: Trained Q-network and reward model

1: for time step t = 1 to n do
2: at ← ϵ-GREEDY(argmaxa Q̇(st, a; θ))
3: πm ← POLICYFORECASTING({Tt−1}, D, θ, l) {Forecast a policy for modified utility}
4: πu ← POLICYFORECASTING({}, D, θ, l) {Forecast a policy for an unmodified utility}
5: Fm ← UTILITYESTIMATION(πm, P, θ, ψ, ρ, h, k) {Utility of modified policy}
6: Fu ← UTILITYESTIMATION(πu, P, θ, ψ, ρ, h, k) {Utility of unmodified policy}
7: modify ← (Fm ≥ Fu) {Check that modified policy isn’t worse according to current utility}
8: if modify then
9: Store transition Tt−1 in D

10: Sample random mini-batch B of transitions from D
11: θ ← TRAINDDQN(θ,B) {Update Q-network}
12: ψ ← TRAIN(ψ,B) {Update reward model using L2 loss}
13: end if
14: Execute action at, observe reward rt, and transition to state st+1

15: Tt ← (st, at, st+1, rt)
16: end for
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Figure 5. (a) Sensitivity to inconsistency check training step in Box Moving environment. (b) Results in the No Inconsistency version of
the Box Moving environment. (c) Varying the number of supervisors in Absent Supervisor environment. (d) Results in a variant of Absent
Supervisor where a shorter path becomes available in the Full version of the environment.

B. Implementation Details of MC-TD3
Our implementation is based on the implementation provided by Huang et al. (2022). The overall structure of the algorithm is
consistent with MC-DDQN, described in Appendix A, with key differences outlined below. TD3 is an actor-critic algorithm,
meaning that the parameters θ define both a policy (actor) and a Q-function (critic). In Algorithm 3 and Algorithm 5, calls to
TRAINDDQN are replaced with TRAINTD3, which updates the actor and critic parameters θ as specified by Fujimoto et al.
(2018). Additionally, in Algorithm 3, the returned policy πf (s) corresponds to the actor rather than argmaxa Q̇(s, a; θf )
and in Algorithm 5 the action executed in the environment is also selected by the actor.

C. Additional Experiments
In Figure 5a, we investigated the necessary number of inconsistency check training steps l to effectively avoid undesired
behavior in the Box Moving environment. We observed that with an insufficient number of training steps, certain undesired
transitions are not recognized as utility inconsistent, yet our algorithm still slows down the learning of reward hacking
behavior.

In Figure 5b, we examine the behavior of MC-DDQN in the No Inconsistency version of the Box Moving environment. In
this version, the agent receives a +5 reward on the top cell, allowing it to move the box upward while collecting this reward.
As anticipated, in this scenario, our agent does not detect utility inconsistency for any transitions and successfully learns the
optimal policy.

We also conducted experiments in the Absent Supervisor environment, varying the number of supervisors. In Figure 5c, it
can be observed that increasing the number of supervisors from 1 to 10 leads to unstable utility inconsistency detection,
despite the change being purely visual. Qualitative analysis revealed that our neural networks struggled to adapt to this
distribution shift, resulting in predicted rewards deviating significantly from the ground truth.
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Furthermore, we explored the impact of removing two walls from the Absent Supervisor environment after training in the
Safe version. Without these two walls, a shorter path to the goal is available that bypasses the Punishment cell, although
going through the Punishment cell remains faster. In Figure 5d, it is evident that while our algorithm can learn a better policy
that avoids the Punishment cell, the inconsistency detection becomes unreliable. This decline in reliability is attributed to
the increased distribution shift between the Safe and Full versions of the environment.

D. Details of the Experiment in the Reacher Environment
The rewards in the original Reacher-v5 environment are calculated as the sum of the negative distance to the target and the
negative joint actuation strength. This reward structure encourages the robotic arm to reach the target while minimizing large,
energy-intensive actions. The target’s position is randomized at the start of each episode, and random noise is added to the
joint rotations and velocities. Observations include the angles and angular velocities of each joint, the target’s coordinates,
and the difference between the target’s coordinates and the coordinates of the arm’s end. Actions consist of torques applied
to the joints, and each episode is truncated after 50 steps.

We modified the environment by introducing a +50 reward when the arm’s end remains within a small, fixed region for 15
consecutive steps. This region remains unchanged across episodes, simulating a scenario where the robot can tamper with
its reward function, but such behavior is difficult to discover. In our setup, a reward-tampering policy is highly unlikely to
emerge through random actions and is typically discovered only when the target happens to be inside the reward-tampering
region.

In accordance with standard practice, each training run begins with exploration using random policy. For this experiment,
we do not need a separate Safe environment; instead, the initial utility function is trained using transitions collected during
random exploration. This demonstrates that our algorithm can function effectively even when a Safe environment is
unavailable, provided that the initial utility function is learned from transitions that do not include reward hacking.

E. Qualitative Observations
During our preliminary experiments, we encountered several instances where our algorithm failed to detect utility inconsis-
tencies, leading to reward hacking behaviors. Here, we describe these occurrences and how they can be addressed.

Utility Inconsistency Check Rollout Steps When using smaller inconsistency check rollout steps h, we noticed that
during the evaluation of future trajectories, the non-hacking policy sometimes needed to traverse several states with low
rewards to reach a high reward region. In such cases, the reward hacking policy, which remained stationary, had a higher
estimated utility. Increasing h resolved this issue.

Forecasting Future Policy for Current Utility Initially, we forecasted only one future policy by training with the checked
transition added to each mini-batch, and compared the resulting policy to the current one. We didn’t train a second policy
without adding anything to mini-batches. However, in some cases, this led to situations where the copy learned better
non-hacking behaviors than the current policy because it was trained for longer, and thus performed better in evaluations on
average even if in some cases it expressed the reward-hacking behavior. The solution was to forecast two policies, one with
the checked transition added to each mini-batch and one without.

Sensitivity to Stochasticity Evaluations in stochastic environments were found to be noisy. To mitigate this noise, we
compared the two policies starting from the same set of states and using the same random seeds of the environment transition
model. We also ensured consistency of the updates by keeping the random seeds the same while sampling mini-batches.

Handling Inconsistent Transitions We observed that if a utility-inconsistent transition was removed from the replay
buffer and another utility-inconsistent transition occurred in the same episode, the algorithm sometimes failed to detect
the inconsistency the second time because there was no set of transitions in the replay buffer connecting this second
utility-inconsistent transition to the starting state. To resolve this issue, we reset the environment every time the agent
detected utility inconsistency. In practical applications, it would be reasonable to assume that after detecting potential reward
hacking, the agent would be returned to a safe state instead of continuing exploration.
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Irreversible Changes In the Rocks and Diamonds environment, when comparing policies starting from the current state
after the rock was pushed into the goal area, the comparison results were always the same, as it was impossible to move the
rock out of the goal area. We addressed this by evaluating not only from the current state but also from the initial state of the
environment. This underscores the importance of future research into detecting utility inconsistency before it occurs or
avoiding irreversible changes in general.

Small Inconsistent Rewards In the Rocks and Diamonds environment, the agent sometimes failed to detect the utility
inconsistency if the switch changed the reward of the stone to +1. Qualitative analysis revealed that during inconsistency
checks, our agent didn’t always learn the optimal policy of pushing both the diamond and the rock into the goal area since
the reward model didn’t learn to add together those rewards. With just a rock in a goal area, and switch on, the reward was
not higher than just pushing the diamond in, so the agent didn’t learn to do that either. Thus, both the policy learned with
inconsistent transition and the policy learned without it behaved identically and the inconsistency was not detected. After
updating from such a transition, the agent’s current utility no longer assigned negative utility to trajectories pushing the rock
when the lever was pressed. We sidestepped this issue by changing the reward for the rock to +10. This issue would also be
resolved if the reward model generalized better to add the rewards from different sources.

F. Computational Requirements
All experiments were conducted on workstations equipped with Intel® Core™i9-13900K processors and NVIDIA® GeForce
RTX™4090 GPUs. The experiments in the Absent Supervisor, Tomato Watering, and Reacher environments each required 2
GPU-days, running 10 seeds in parallel. In the Rocks and Diamonds environment, experiments took 3 GPU-days, while
in the Box Moving environment, they required 2 hours each. In total, all the experiments described in this paper took
approximately 12 GPU-days, including around 1 GPU-day for training the baselines.

G. Hyperparameters
All hyperparameters are listed in Table 3. Our algorithm introduces several additional hyperparameters beyond those
typically used by standard RL algorithms:

Reward Model Architecture and Learning Rate Hyperparameters specify the architecture and learning rate of the
reward model Ṙ. Since learning a reward model is a supervised learning task, these hyperparameters can be tuned on a
dataset of transitions collected by any policy. The reward model architecture may be chosen to match the Q-function Q̇.

Inconsistency check training steps l This parameter describes the number of updates to the Q-function needed to predict
the future policy based on a new transition. As shown in Figure 5a, this value must be sufficiently large to update the learned
values and corresponding policy. It can be selected by artificially adding a transition that alters the optimal policy and
observing the number of training steps required to learn the new policy.

Inconsistency check rollout steps h This parameter controls the length of the trajectories used to compare two predicted
policies. The trajectory length must be adequate to reveal behavioral differences between the policies. In this paper, we used
a fixed, sufficiently large number. In episodic tasks, a safe choice is the maximum episode length; in continuing tasks, a
truncation horizon typically used in training may be suitable. Computational costs can be reduced by choosing a smaller
value based on domain knowledge.

Number of inconsistency check rollouts k This parameter specifies the number of trajectories obtained by rolling out
each predicted policy for comparison. The required number depends on the stochasticity of the environment and policies. If
both the policy and environment are deterministic, k can be set to 1. Otherwise, k can be selected using domain knowledge
or replaced by employing a statistical significance test.

Predicted reward difference threshold This threshold defines the minimum difference between the predicted and
observed rewards for a transition to trigger an inconsistency check. As discussed in Section 4.4, this parameter does not
impact the algorithm’s performance and can be set to 0. However, it can be adjusted based on domain knowledge to speed
up training by minimizing unnecessary checks. The key requirement is that any reward hacking behavior must increase the
reward by more than this threshold relative to the reward predicted by the reward model.
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Table 1. Hyperparameters used for the experiments.

Hyperparameter Name Value
Q̇ and Ṙ hidden layers 2
Q̇ and Ṙ hidden layer size 128
Q̇ and Ṙ activation function ReLu
Q̇ and Ṙ optimizer Adam
Q̇ learning rate 0.0001
Ṙ learning rate 0.01
Q̇ loss SmoothL1
Ṙ loss L2

Batch Size 32
Discount factor γ 0.95
Training steps on Safe 10000
Training steps on Full 10000
Replay buffer size 10000
Exploration steps 1000
Exploration ϵstart 1.0
Exploration ϵend 0.05
Target network EMA coefficient 0.005
Inconsistency check training steps l 5000
Inconsistency check rollout steps h 30
Number of inconsistency check rollouts k 20
Predicted reward difference threshold δ 0.05
Add transitions from transition model False

G.1. Environment-specific Parameters

Table 2. Environment-specific hyperparameters overrides.

Hyperparameter Name Value

Box Moving

Training steps on Safe 1000
Training steps on Full 1000
Replay buffer size 1000
Exploration steps 100
Inconsistency check training steps l 500

Absent Supervisor

Number of supervisors 1
Remove walls False

Tomato Watering

Number of inconsistency check rollouts k 100

Rocks and Diamonds

Training steps on Safe 15000
Training steps on Full 15000
Inconsistency check training steps l 7500
Add transitions from transition model True
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The training steps in the Box Moving environment were reduced to speed up the training process. Tomato Watering has many
stochastic transitions because each tomato has a chance of drying out at each step. To increase the robustness of evaluations,
we increased the number of inconsistency check rollouts k. Rocks and Diamonds required more steps to converge to the
optimal policy. Additionally, using the transition model to collect fresh data while checking for utility inconsistency in
Rocks and Diamonds makes inconsistency detection much more reliable. Each environment’s rewards were scaled to be in
the range [-1, 1].

G.2. Hyperparameters of MC-TD3

Table 3. Hyperparameters used for the MC-TD3 experiment.

Hyperparameter Name Value
Actor, critic, and reward model hidden layers 2
Actor, critic, and reward model hidden layer size 256
Actor, critic, and reward model activation function ReLu
Actor, critic, and reward model optimizer Adam
Actor and critic learning rate 0.0003
Ṙ learning rate 0.003
Batch Size 256
Discount factor γ 0.99
Training steps 200000
Replay buffer size 200000
Exploration steps 30000
Target networks EMA coefficient 0.005
Policy noise 0.01
Exploration noise 0.1
Policy update frequency 2
Inconsistency check training steps l 10000
Inconsistency check rollout steps h 50
Number of inconsistency check rollouts k 100
Predicted reward difference threshold 0.05

We didn’t perform extensive hyperparameter tuning, most hyperparameters are inherited from the implementation provided
by Huang et al. (2022).
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