
Under review as a conference paper at ICLR 2023

D2MATCH: LEVERAGING DEEP LEARNING AND DE-
GENERACY FOR SUBGRAPH MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Subgraph matching is a fundamental building block for many graph-based appli-
cations and is challenging due to its high-order combinatorial nature. However,
previous methods usually tackle it by combinatorial optimization or representa-
tion learning and suffer from exponential computational cost or matching without
theoretical guarantees. In this paper, we develop D2Match by leveraging the ef-
ficiency of Deep learning and Degeneracy for subgraph matching. More specifi-
cally, we prove that subgraph matching can degenerate to subtree matching, and
subsequently is equivalent to finding a perfect matching on a bipartite graph. This
matching procedure can be implemented by the built-in tree-structured aggrega-
tion mechanism on graph neural networks, which yields linear time complexity.
Moreover, circle structures, abstracted as supernodes, and node attributes can be
easily incorporated in D2Match to boost the matching. Finally, we conduct exten-
sive experiments to show the superior performance of our D2Match and confirm
that our D2Match indeed tries to exploit the subtrees and differs from existing
learning-based subgraph matching methods that depend on memorizing the data
distribution divergence.

1 INTRODUCTION

Graphs serve as a common language for modeling a wide range of applications (Georgousis et al.,
2021) because of their superior performance in abstracting representations for complex structures.
Notably, subgraph isomorphism is a critical yet particularly challenging graph-related task, a.k.a.,
subgraph matching at the node level (McCreesh et al., 2018). Subgraph matching aims to deter-
mine whether a query graph is isomorphic to a subgraph of a large target graph. It is an essential
building block for many applications, as it can be used for alignment (Chen et al., 2020), canonical-
ization (Zhou & Torre, 2009), motif matching (Milo et al., 2002; Peng et al., 2020), etc.

Previous work tries to resolve subgraph matching in two main streams, i.e., combinatorial opti-
mization (CO)-based and learning-based methods (Vesselinova et al., 2020). Early algorithms often
formulate subgraph matching as a CO problem that aims to find all exact matches in a target graph.
Unfortunately, this yields an NP-complete issue (Ullmann, 1976; Cordella et al., 2004) and suffers
from exponential time cost. To alleviate the computational cost, researchers have employed approx-
imate techniques to seek inexact solutions (Mongiovì et al., 2010; Yan et al., 2005; Shang et al.,
2008). An alternative solution is to frame subgraph matching as a machine learning problem (Bai
et al., 2019; Rex et al., 2020; Bai et al., 2020) by computing the similarity of the learned represen-
tations at the node or graph levels from two graphs. Though learning-based models can attain a
solution in polynomial time, they provide little theoretical guarantee, making the results suboptimal
and lacking interpretability. If not worse, the learning-based methods often cannot obtain the exact
match subgraphs.

Ideally, we hope to develop a subgraph matching algorithm that can leverage the efficiency of learn-
ing methods while still maintaining theoretical guarantees. We approach this by building the connec-
tion between subgraph matching and perfect matching on a bipartite graph. We prove that finding the
corresponding nodes between the query graph and the target one is equivalent to checking whether
there is a perfect matching on the bipartite graphs generated by the nodes from the query graph
and the target one recursely, yielding a much more efficient subgraph matching algorithm solved in
polynomial time.

1

Under review as a conference paper at ICLR 2023

𝑏′ 𝑐′ 𝑑′ 𝑟′

𝑏 1 0 0 0

𝑐 1 1 0 0

𝑑 0 0 1 0

𝑟 0 0 0 1

𝑻
𝒂′
𝒍+𝟏 𝑎′

𝑟′

𝑎′ 𝑎′ 𝑎′ 𝑎′

𝑏′

𝑏′ 𝑏′𝑐′

𝑐′

𝑐′

𝑑′

𝑎′

𝑟′

𝑎′ 𝑎′ 𝑎′ 𝑎′

𝑏′

𝑏′ 𝑏′𝑐′

𝑐′

𝑐′

𝑑′

𝑻
𝒓′
𝒍

𝑻
𝒅′
𝒍

𝑻
𝒄′
𝒍𝑻

𝒃′
(𝒍)

𝑻𝒂
𝒍+𝟏

𝑎

𝑏 𝑐 𝑑 𝑟

𝑎 𝑐 𝑔 𝑓 𝑎 𝑏 𝑏𝑒 𝑎 𝑎 𝑐

𝑻𝒃
𝒍

𝑻𝒄
𝒍

𝑻𝒅
𝒍 𝑻𝒓

𝒍

𝑎

𝑏 𝑐 𝑑 𝑟

𝑎 𝑐 𝑔 𝑓 𝑎 𝑏 𝑏𝑒 𝑎 𝑎 𝑐

𝑑

𝑐

𝑏

𝑟

𝑐′

𝑑′

𝑟′
𝑎′

𝑏′

𝑎

𝑒

𝑓

𝑔

𝑁
(𝑎
)

𝑁(𝑎′)

Query

Target

Theorem 4.2 (condition 1&2)

Theorem 4.2 (condition 2&3)

Theorem 4.1

P
erfect m

atch
in

g

𝑻
𝒃′
(𝒍)

𝑻
𝒄′
(𝒍)

𝑻
𝒅′
(𝒍)

𝑻
𝒓′
(𝒍)

𝑻𝒃
(𝒍)

𝑻𝒄
(𝒍)

𝑻𝒅
(𝒍)

𝑻𝒓
(𝒍)

B
ip

artite g
rap

h

(1) (2) (3) (4)

Figure 1: An illustration of the proposed degeneracy procedure for subgraph matching. Step (1) & (2) are
to determine the isomorphism of a pair (a, a′) by examining whether their corresponding subtrees, i.e., T (l+1)

a

and T
(l+1)

a′ , are subtree isomorphic based on Theorem 1. Step (2) & (3) are to simplify the determination of
T

(l+1

a′ ⊂ T
(l+1
a by checking whether a subtree-isomorphism holds for every l-depth rooted subtree in N(a′) to

a unique l-depth subtree in N(a) based on Theorem 2. Step (3) & (4) are to transform the subtree-isomorphism
relation between N(a′) and N(a) to edges in a bipartite graph and interpret the problem as a perfect matching
on a bipartite graph.

This degeneracy allows us to harness the power of Graph Neural Networks (GNNs) to fulfill the
matching by deploying a built-in tree-structured aggregation mechanism in GNNs. Operating on
node-level correspondences offers a node matching matrix, which allows us to locate the matched
subgraph directly. To incorporate more information, we augment the bipartite graph with supern-
odes, which wraps the circles, into the perfect matching procedure; see Fig. 1 for an illustration of
the basic idea. Moreover, node attributes can be easily included accordingly.

Our primary contribution is three-fold: (1) D2Match proposes a novel learning-based subgraph
matching method, which frames the subgraph matching problem as perfect matching on a bipartite
graph. (2) We theoretically prove that this matching procedure can be implemented by the built-
in tree structured aggregation mechanism on GNNs and yields linear time complexity. Moreover,
we can easily incorporate circle structures, abstracted as supernodes, and node attributes into our
D2Match to boost the performance. (3) Extensive empirical evaluations show that D2Match outper-
forms state-of-the-art subgraph matching methods by a substantial margin and uncover that learning-
based methods tend to capture the data distribution divergence rather than performing matching.

2 RELATED WORK

Subgraph matching is to check whether a query graph is subgraph isomorphic to the target one (Mc-
Creesh et al., 2018). Here, we highlight three main lines of related work:

Combinatorial optimization (CO)-based methods first tackle subgraph matching by only model-
ing graph structure (Ullmann, 1976). Recent work starts to facilitate both graph structure and node
attributes (Han et al., 2013; Shang et al., 2008). These combinatorial optimization methods often
rely on backtracking (Priestley & Ward, 1994), i.e., heuristically performing matching on each pair
of nodes from the query and the target graphs. Such methods suffer from exponential computing
costs. A mitigated solution is to employ an inexact matching strategy. Early methods first define
metrics to measure the similarity between the query graph and the target graph. Successive algo-
rithms follow this strategy and propose more complex metrics. For example, Mongiovì et al. (2010)
convert the graph matching problem into a set-cover problem to attain a polynomial complexity solu-
tion. Yan et al. (2005) introduce a thresholding method to filter out mismatched graphs. Khan et al.
(2011) define a metric based on neighborhood similarity and employ an information propagation
model to find similar graphs. Kosinov & Caelli (2002) and Caelli & Kosinov (2004) align the nodes’
eigenspace and project them to the eigenspace via clustering for matching. However, most of these
algorithms cannot scale to large graphs due to the high computational cost, and their hand-crafted
features make them hard to generalize to complex tasks.

Learning-based methods typically compute the similarity between the query and target graphs,
e.g., comparing their embedding vectors. Bai et al. (2019) adopt GNNs to learn node represen-
tations of the query and target graphs, which employs a neural tensor network to match the graph
pairs. One immediate challenge is that a single graph embedding vector cannot capture the partial
order information for subgraph matching. Thus, Rex et al. (2020) train a GNN model to represent

2

Under review as a conference paper at ICLR 2023

graphs while incorporating order embeddings to learn the partial order. These methods can com-
pute graph-level representations, achieving high computational efficiency. However, they miss the
node-level information, which may lose critical details in subgraph matching. To perform node-level
matching, several methods (Bai et al., 2020; Li et al., 2019) introduce the graph-level representation
into the node-level matching problem. These methods often adopt different attention mechanisms
to generate pairwise relations. However, abusing the attention mechanism makes the model lack
interpretability and theoretical guarantee. Others transform the subgraph matching problem into
an edge matching problem and generate prediction results through the matching matrix obtained
by Sinkhorn’s algorithm (Roy et al., 2022), thereby providing interpretability for the model. The
process of turning node matching into edge matching, however, loses necessary information about
edges’ relation, such as edges’ common nodes, which hurts the expressibility of the model.

Graph Neural Networks (GNNs) are powerful techniques (Xu et al., 2019; Kipf & Welling, 2017)
yielding breakthroughs in many key applications (Hamilton et al., 2017b). Over the last years, there
has been considerable progress in proposing different ways of aggregating. For example, Graph-
SAGE (Hamilton et al., 2017b) aggregates nodes features with mean/max/LSTM pooled neighbor-
ing information. Graph Attention Network (GAT) (Velickovic et al., 2018) aggregates neighbor
information using learnable attention weights. Graph Isomorphism Network (GIN) (Xu et al., 2019)
converts aggregation as a learnable function based on the Weisfeiler-Lehman (WL) test instead of
prefixed ones as other GNNs, aiming to maximize the performance of GNNs. However, the WL
test (Xu et al., 2019) cannot address the subgraph matching problem because it hashes the tree
structure and loses the partial order information of subgraph matching.

3 PRELIMINARY

To make the notation consistent, we define them as follows: Let AQ and AT be the adjacency matrix
of the query graph GQ and the target graph GT , respectively. N(·) denotes the neighbor set of a
given node. | · | denotes the size of a set. T (l)

v defines the subtree whose root is v and expands up to
l-hop neighbors of v or l-layer of the subtree. In the paper, the concepts of the l-hop neighbors and
the l-layer subtrees are interchangeable.

Problem Definition: Suppose we are given a query graph, GQ(VQ, EQ), and a target graph,
GT (VT , ET). Here, (VQ, EQ) and (VT , ET) are the pairs of vertices and edges related to the
query graph and the target graph, respectively. Besides, the node attributes of the query graph and
the target graph are denoted as XQ ∈ R|VQ|×D and XT ∈ R|VT |×D, respectively, where D is the
size of the node attributes.

The problem of subgraph matching is to identify whether the query graph is subgraph isomorphic
to the target graph, i.e. if there exists an injective f : VQ → VT such that ∀u, v ∈ VQ, (u, v) ∈
EQ ⇔ (f(u), f(v)) ∈ ET . Without loss of generality, we hypothesize that GQ is the subgraph of
GT , i.e., GQ ⊂ GT with |VQ| < |VT |. In essence, the subgraph isomorphism test is to check a
matching matrix S ∈ {0, 1}|VT |×|VQ|, where Sij = 1 if and only if node pair(i, j) is matched. GQ
is isomorphic to GT is equivalent to checking whether the following conditions hold:

|VT |∑
i=1

Sij = 1,

|VQ|∑
j=1

Sij ≤ 1 (1)

In the following, we first define several key concepts in our work.

WL Subtree: The Weisfeiler-Lehman (WL) test is an approximate solution to the graph isomor-
phism problem with linear computational complexity (Shervashidze et al., 2011). The WL test per-
forms the aggregation on nodes’ labels and their neighborhoods recursively, followed by hashing the
aggregated results into unique new labels. As a result, this test produces an unordered tree for each
node, called the WL subtree, which is a balanced tree with the height of the number of iterations.
After repeating the algorithm k times, the obtained WL subtree for a node includes the structural
information of the k-hop subgraph from that node. Research shows that the expressiveness of the
WL subtree is the upper limit of message passing GNNs (Xu et al., 2019).

Subtree Generation: Considering a node v, we can obtain a subgraph Sub
(l)
v by taking the l-

hop neighbor of v. Given any tree generation method, e.g., the WL subtree, we always obtain a
corresponding subtree whose root is v:

T (l)
v = Ψ(Sub(l)v), (2)

3

Under review as a conference paper at ICLR 2023

where Ψ is a subtree generation function. Unless stated otherwise, we employ the WL subtree to
generate subtrees for a given node due to its uniqueness (Xu et al., 2018). Instead of explicitly con-
structing such trees, we can run GNNs in a graph, since building a k-order WL subtree is equivalent
to aggregating k times in GNNs (Xu et al., 2018). Notice that traditional methods such as Breadth-
First-Search (BFS) and Depth-First-Search (DFS) are not applicable at this work because they do
not satisfy the uniqueness property. In particular, the tree generated for the same node by BFS or
DFS will be different due to different search order.

Perfect Matching in Bipartite Graphs: A perfect matching (Gibbons, 1985) is a matching of a
graph in which every node of the graph is incident to exactly one edge. Performing perfect matching
on a bipartite graph can be solved according to Hall’s marriage theorem (Hall, 1935).

Theorem 3.1. (Hall’s marriage theorem) Given a bipartite graph, B(X,Y,E) that has two partitions:
X and Y and |Y | ≤ |X|, where E denotes the edges. The necessary and sufficient condition of the
existence of the perfect matching in B(X,Y,E) is : ∀W ⊆ Y, |W | ≤ |N(W)|, where N(W) is the
neighborhood of W defined by N(W) = {bj ∈ X : ∃ai ∈ W, (ai, bj) ∈ E}.

4 THE PROPOSED METHOD

This section describes the proposed D2Match. We first introduce the degeneracy of subgraph match-
ing and propose an aggregation-based operation to address the degenerated problem, an efficient so-
lution with linear time complexity. Following, we introduce two components designed to strengthen
the matching ability by incorporating the circle structure and node attributes.

4.1 ON THE DEGENERACY OF THE SUBGRAPH MATCHING PROBLEM

We approach the subgraph matching problem from a degeneracy perspective, framing this problem
as a subtree matching problem with linear complexity. A fundamental question to the subgraph
matching problem is on what conditions one subgraph is isomorphic to the other. Since the subgraph
matching problem is NP-complete, the exact answer to this question becomes impractical. Instead,
we can reduce the answer of finding both sufficient and necessary conditions to that of necessary
only. What follows is to construct a criterion that any isomorphic pairs can meet. We know that
the subtree matching problem yields polynomial time cost. Inspired by this, we attempt to construct
the criterion by taking advantage of the subtrees rooted at these nodes, which degenerate subgraph
matching to subtree matching and are guaranteed by the following theorem.

Theorem 4.1. Given a target graph GT (VT , ET) and a query graph GQ(VQ, EQ), if GQ ⊂ GT ,
and the subtree generation function Ψ as defined in Eq. (2) meets the following condition:

∀ graph pair (GS , G), if GS ⊂ G, then Ψ(GS) ⊂ Ψ(G), (3)

then there exists an injective function f :VQ → VT , ensuring the l-hop subtrees of the subgraph is
isomorphic to the subtrees of the corresponding subgraph:

∀l ≥ 1, q ∈ VQ, t = f(q) ∈ VT ⇒ T (l)
q ⊂ T

(l)
t , (4)

Please find the proof in Appendix A.1. This theorem provides a necessary condition for the potential
isomorphic pairs, i.e., those who pass the test. Given a query graph and a target graph, we can
construct an indicator matrix S ∈ R|VT |×|VQ| by setting Stq to 1 when Tq ⊂ Tt and 0 otherwise. The
isomorphic test becomes to check the validity of Eq. (1). Due to the favorite property of uniqueness,
we employ the WL subtree as the generation function. Thanks to the built-in connection between
the WL subtree and GNNs, we can convert the subtree matching problem to the problem of perfect
matching on a bipartite graph and derive a GNN-based solution. The following theorem guarantees
the conversion:

Theorem 4.2. Given a node q in the query graph and a node t in the target graph, the following
three conditions are equivalent:

1) T
(l+1)
q ⊂ T

(l+1)
t .

2) There exists an injective function on the neighborhood of these nodes as f :N(q) → N(t), s.t.
∀qi ∈ N(q), ti = f(qi), T

(l)
qi ⊂ T

(l)
ti .

4

Under review as a conference paper at ICLR 2023

3) There exists a perfect matching on the bipartite graph B(l)(N(t), N(q), E), where ∀tj ∈
N(t), qi ∈ N(q), (tj , qi) ∈ E if and only if T (l)

qi ⊂ T
(l)
tj .

The proof is provided in Appendix A.2. The equivalence of the first two conditions implies that
matching subtrees of a pair of nodes is equivalent to matching all subtrees from their child nodes.
As a result, the indicator matrix needs to be updated recursively. That is, the indicator matrix at
the (l + 1)-th layer, i.e., S(l+1), should rely on S(l). Meanwhile, the equivalence of the last two
conditions means that matching the subtrees from these child nodes is equivalent to solving the
perfect matching on the corresponding bipartite graph whose nodes represent the subtrees of the
child nodes. In summary, Theorem 4.2 tells us that subgraph matching is equivalent to delivering
perfect matching on a bipartite graph. A visualization of this procedure is shown in Fig. 1.

Motivated by Hall’s marriage Theorem 3.1, we develop an efficient algorithm to address the per-
fect matching procedure. A straightforward solution is to randomly select a subset W from the
given set of neighbors, N(q) in GQ, and count whether the corresponding neighbors of W in
B(l)(N(t), N(q), E), i.e. N(W), have more elements than this subset. After repeating this pro-
cess multiple times for all node pairs, we obtain a perfect matching when no instance violates the
criterion.

Is it possible to execute all pairs in parallel? Luckily, we can borrow GNNs to accomplish the
perfect matching. Specifically, when computing a perfect matching between node q ∈ GQ and node
t ∈ GT , one needs to find W such that it satisfies W ⊆ Y = N(q) according to Theorem 3.1. In
practice, we can obtain this by sampling the neighbors of node q, equating to sampling the edges, or
the Drop Edge operation (Hamilton et al., 2017a). In this way, we obtain a sampled graph G′Q from
the query graph GQ, along with its adjacency matrix ÃQ. Following Theorem 3.1, we conclude
that W = N ′(q) with N ′(q) ⊂ N(q) since node q’s neighbors in G′Q are a subset of the original
graph. At each iteration, we will perform the counting w.r.t. W and its neighbor set N(W) for
each node pair (t, q), and check whether |N(W)| ≥ |W | holds. To be efficient, we define a binary
matrix, Φ ∈ R|VT |×|VQ|, where its element at (t, q) corresponds to the result of the node pair (t, q).

Based on Theorem 4.1, we need to update the indicator matrix S recursively, making the update of
Φ executed in recursion accordingly. We next show that computing Φ is equivalent to performing
the GNN-based aggregation on the related graphs for any given S(l).
Theorem 4.3. Given the sampled query graph and the target graph, we can construct their adjacency
matrices , ÃQ and AT , and the degree matrix of the sampled query graph D̃Q = diag(

∑
s((ÃQ):s)).

Here, we denote the indicator matrix at the l-th hop as S(l). To check the validity of |N(W)| ≥ |W |
for each node pair, we can check whether each element of Φ is true or not, where Φ := ZN(W) ≥ 1,
ZN(W) = aggregatesum(AT , Z

T
W) and ZW = aggregatemax(D̃

−1
Q · ÃQ, (S(l))T).

The proof is provided in Appendix A.5. Recalling Theorem 3.1, we need to check |N(W)| ≥ |W |
for each node pair (t, q), i.e., to check whether each element of Φ is true for each sampled Ã

(k)
Q . The

condition is valid only when Φ is true for all iterations. Hence we can check the criterion by the
following element-wise product:

S
(l+1)
subtree =

K⊙
k=0

Φ(l+1)(Ã
(k)
Q , AT), (5)

where
⊙

denotes the element-wise multiplication between matrices. In practice, Φ(l+1)(Ã
(k)
Q , AT)

considers three cases:
aggregatesum(AT , aggregatemax(D

−1
Q ·AQ, (S(l)))T) ≥ 1 if k = 0

aggregatesum(AT , aggregatemax(D̃
−1
Q · Ã(k)

Q , (S(l)))T) ≥ 1 if k ∈ [1,K − 1]
aggregatemin(AQ, aggregatemax(AT , (S

(l))T) ≥ 1 if k = K

, (6)

The above three cases allow us to balance the computation cost and accuracy. Initially, when k = 0,
we deliver a full-size sampling for all nodes to avoid induction bias. When k = K, we perform the
single-node sampling such that no node is omitted. The cases of k ∈ [1,K − 1] are computed via
downsampling.

We want to highlight the difference between ours and other learning-based methods regarding GNNs.
Here we employ a GNN model to accomplish the procedure of subtree matching, along with theo-

5

Under review as a conference paper at ICLR 2023

retical equivalence. With the subtree representation learning, GNNs let other learning-based models
capture the variance of data distribution for similarity inference since deep learning models learn
distributional information to distinguish samples from different classes.

4.2 BOOSTING THE MATCHING

The last section introduced a new method to address the subgraph matching problem based on the
proposed necessary condition, which we call the base model. Without sufficient conditions, it cannot
guarantee that all positive isomorphism pairs to be selected precisely. To mitigate this issue, we
further incorporate information such as circle structure and node attributes to filter out more non-
isomorphism pairs.

4.2.1 DEALING WITH CIRCLES

Prior methods often leave the circle structure aside, however, such a structure is often unavoidable
and critical in graphs. In particular, learning-based methods rely on the expressibility of GNNs,
which cannot model circles due to their subtree-structured aggregation. The underlying idea of our
D2Match is to construct the circle structures as supernodes, which allow us to formulate the circle
matching as a standard subtree matching problem. Before detailing our strategy, we first present two
desired properties of the set of circles in a graph.

Atomic: Let r = (v1, ..., vl(r), v1) ∈ C define a circle and v(r) be the set of nodes of circle r, a
circle is an atomic circle if it does not contain a smaller circle. That is, there is no circle r′ such that
v(r′) ⊂ v(r). Here, C is the circle set.

Consistency: Each query circle must correspond to one circle in the target graph, i.e., ∃ f, ∀r ∈
CQ, f(r) ∈ CT . CQ and CT are the circle sets of the query graph and the target graph, respectively.

The atomic property aims to ensure the compactness of circles, and the consistency attempts to
ensure that the relation between a query and a target set of circles is injective. These two prop-
erties ensure a well-qualified set for matching. In practice, we can take advantage of chordless
cycles (West, 2000), to serve our goal of matching circles. We now state our theorem below to show
that these cycles satisfy the above consistency and atomic property.

Theorem 4.4. Every chordless cycle is atomic. Every chordless cycle CQ in an induced subgraph
of the original query graph GQ must correspond to a chordless cycle CT in the origin graph GT .

Please find the proof in Appendix, A.6. This theorem suggests that chordless cycles satisfy the
above two properties, making them suitable for representing circles in a graph. To match circles, we
introduce an augmented graph by inserting supernodes that embody these circles. Given a length L,
we can acquire corresponding chordless cycles for the query and target graphs as : CT = {l(r) ≤
L, r ∈ CC(GT)}, CQ = {l(r) ≤ L, r ∈ CC(GQ)}. By setting vr as the supernode of any
chordless circle r, we connect nodes from the circle r to this supernode, resulting in an augmented
graph. Note that supernodes can only match other supernodes to keep the matching of non-circles
untainted. To this end, we transform the circle matching as the subtree matching problem such that
we can employ the proposed method on the augmented graph directly. Unless otherwise stated, we
keep all notations the same in the augmented graph to avoid abusing the notations.

4.2.2 DEALING WITH NODES’ ATTRIBUTES

Apart from the above structure information, subgraph matching also involves node attributes. Within
the context of subgraph matching, learning with node attributes alone may be misled because these
cannot catch structural isomorphism. As a result, we employ the obtained subtree indicator matrix
to supervise the learning process, aiming to filter out pairs that do not pass the test in the subtree
matching. We are thus motivated to enhance the node attributes by concatenating the subtree match-
ing indicator, resulting in the node representation for the query and target graphs as follows:{

H
(l+1)
T = GNN

(l)
T (AT , concat(H(l)

T ,MLP (S(l))))

H
(l+1)
Q = GNN

(l)
Q (AQ, concat(H(l)

Q ,MLP (S(l))T)))
(7)

Here, we employ an MLP model to reduce the effect of the difference between the node attributes
and the indicator matrix, where the latter behaves like a one-hot feature. We concatenate each pair

6

Under review as a conference paper at ICLR 2023

of representations and then pass it to the MLP to obtain their similarity. For the node pair (i, j), we
have the similarity computed as

[S(l+1)
gnn]ij = MLP (concat([H(l)

T]i, [H
(l)
Q]j)). (8)

Now we arrive at a generalized indicator matrix that considers both the structure and node attribute
information S(l+1) = S

(l+1)
gnn ⊙ S

(l+1)
subtree.

Algorithm 1 The D2Match algorithm
Require: A query graph GQ(VQ, EQ) with node attributes XQ, a target graph GT (VT , ET) with node attributes XT , iteration number:

L, sample number: K.
Ensure: Is GQ isomorphic to GT

1: GQ(VQ, EQ)← ChordlessCycleAugment(GQ); GT (VT , ET)← ChordlessCycleAugment(GT);
2: H

(0)
Q = XQ; H(0)

T = XT ;

3: S
(0)
subtree = InitialAssignMatrix(XT , XQ) ▷ Initialize assignment matrix;

4: for l = 0, 1..., L− 1 do
5: for k = 0, 1, ..., K do
6: Ã

(k)
Q = DropEdge(AQ); ▷ Sample adjacency matrix

7: Calculate Φ(l+1)(Ã
(k)
Q , AT) according to Eq.6

8: end for
9: S

(l+1)
subtree =

⊙K
k=0 Φ(l+1)(Ã

(k)
Q , AT); ▷ Final subtree assignment matrix

10: H
(l+1)
T = GNN

(l)
T (AT , concat[H

(l)
T ,MLP (S(l))]);

11: H
(l+1)
Q = GNN

(l)
Q (AQ, concat[H

(l)
Q ,MLP ((S(l))T)]); ▷ GNN update

12: Compute S(l+1)
gnn according to Eq.8 ▷ Final GNN assignment matrix

13: S(l+1) = S(l+1)
gnn ⊙ S

(l+1)
subtree; ▷ Final assignment matrix

14: end for
15: result = CheckAssign(S(L))

4.3 IMPLEMENTATION DETAILS AND COMPLEXITY ANALYSIS

We summarize the overall procedures in Algorithm. 1. The computation of D2Match has two major
parts: the subtree and GNN modules. Given L layers and K times of sampling, the complexity of
the subtree and GNN modules are O(L∗K∗|VT |∗|EQ|+L∗|VQ|∗|ET |) and O(L∗|ET |+L∗|EQ|+
|VT | ∗ |VQ|), respectively. Since the query graph is often very small, we can treat |VQ| and |EQ| as
constants. A detailed runtime comparison is in Appendix A.5. Therefore, the overall complexity is
reduced to O(|VT |+ |ET |), attaining linear time complexity. Please refer to Appendix A.1 for more
details about the implementation.

5 EXPERIMENTS

Here, we conduct extensive experiments to answer the following questions: (1) How does our
proposed D2Match compare to SOTA methods? (2) Why GNNs in ours and others yield different
results? (3) How robust does D2Match perform? Sec. 5.2-Sec. 5.5 answer the above questions
accordingly.

5.1 EXPERIMENTAL SETTINGS

Datasets and Experimental Setup. We implement our experiments on both synthetic and real-
world datasets, which are collected from a large variety of applications. We aim to obtain pairs of
query and target graphs, along with labels indicating whether a query is isomorphic to the target.
We first generate synthetic data by utilizing ER-random graphs and WS-random graphs (Rex et al.,
2020). We keep edge densities the same in both positive and negative samples to ensure consistency
in the distribution. This balance avoids potential biases during learning. For the real-world data, we
follow the setting in (Rex et al., 2020), including Cox2, Enzymes, Proteins, IMDB-Binary, MUTAG,
Aids, and FirstMMDB. We also conduct additional experiments on the Open Graph Benchmark
datasets(Hu et al., 2020) and three datasets with continuous features in Appendix A.7. We employ
these raw graphs as target graphs and generate the positive query graphs by randomly sampling from
the target graphs. The negative query graphs are randomly generated. Similar to the synthetic data,
we require the edge density in both positive and negative samples to be as close as possible. We split
each dataset into training and testing at a ratio of 4 : 1 and report the average classification accuracy
under the five-fold cross-validation.

7

Under review as a conference paper at ICLR 2023

Table 1: Overall performance comparison in terms of accuracy.

Synthetic Proteins Mutag Enzymes Aids IMDB-Binary Cox2 FirstMMDB

SimGNN 70.5±2.72 96.2±0.97 98.7±0.60 98.6±1.08 96.5±0.68 85.0±19.58 99.9±0.22 82.40±0.17
NeuroMatch 65.7±8.98 94.5±1.73 99.2±0.22 97.9±1.08 97.4±0.96 86.5±6.51 100.0±0.00 80.80±0.39

IsoNet 50.0±0.00 60.0±10.02 94.1±2.54 91.0±7.78 61.5±8.51 83.1±3.69 95.8±3.89 /
GMN-embed 56.6±8.61 93.8±2.41 90.8±6.16 89.4±16.44 78.3±6.92 69.3±15.18 69.7±18.20 69.1±30.29

GraphSim 50.0±0.00 82.5±0.31 89.5±2.59 88.2±1.79 75.6±6.53 88.9±2.81 95.5±0.94 86.6±9.71
GOT-Sim 53.0±2.74 57.2±8.52 86.8±6.92 68.7±14.15 70.6±3.08 81.3±14.60 94.8±1.04 /

D2Match 74.3±0.22 100.0±0.00 100.0±0.00 99.9±0.22 99.5±0.27 93.3±1.03 100.00±0.00 100.00±0.00

Baselines. To get a fair comparison, we select the following SOTA competitors: SimGNN (Bai
et al., 2019), NeuralMatch (Rex et al., 2020), IsoNet (Roy et al., 2022), GMN-embed (Li et al., 2019)
GraphSim (Bai et al., 2020), and GOT-Sim (Doan et al., 2021). These all incorporate graph neural
networks into subgraph matching. We present the comparison with exact methods in Appendix A.8.

5.2 MAIN RESULTS

Table 1 reports the overall performance of all compared models, where each model achieves the
best results in all possible settings up to 500 epochs. The accuracy of GOT-Sim and IsoNet on
FirstMMDB is omitted due to exceeding time and memories. We observe that

- For the synthetic dataset, the overall performance is much lower than that in the real-world datasets.
A reason is that the synthetic dataset is more complicated, e.g., with a higher edge density, than
real-world datasets, which makes the matching more challenging. By examining more details,
IsoNet, GMN-embed, GraphSim, and GOT-Sim attempt to employ a node-level assignment ma-
trix to capture matching between graphs, which underestimate the importance of global structure.
They can only yield around 50% accuracy. SimGNN and NeuroMatch try to learn the global
representation and attain the accuracy of 70.5% and 65.7%, respectively.

- For the real-world datasets, D2Match attains superior performance and beats all baselines. Among
seven real-world datasets, D2Match attains 100% accuracy in four datasets, i.e., Protein, Mutag,
Cox2, and FirstMMDB, while at least 99.5% in Enzymes and Aids, and 93.3% in IMDB-Binary.

- Overall, D2Match has explicitly modeled subtress and consistently attained the best performance
among all compared methods. The promising results confirm our theoretical analysis.

5.3 BENEFIT OF OUR CORE DESIGN: THE SUBTREE MATCHING

Though GNNs deployed in D2Match and existing learning-based subgraph matching methods, they
function differently. D2Match utilizes GNNs to explicitly models subtrees while learning-based
methods learn the graph representations via memorizing the data distribution divergence. To validate
this, we construct new datasets and denote them with ∗ by excluding the data distribution effect. We
first follow the same way as generating positive samples, then continue to perform edge dropping
and insertion on the clipped graphs together to obtain the final negative samples. This strategy aims
to make sure the generated samples, both positive and negative, following the same distribution
in terms of edges. We also build an new synthetic dataset without following this property, called
Synthetic+, for a better comparison. Since SimGNN and NeuoMatch are the best-performing GNN-
based methods in Table 1, we select them in the comparison.

Results in Table 2 show that D2Match outperforms SimGNN and NeuoMatch by a much larger
margin, achieving 2.5% − 33.2% improvement. This phenomenon aligns with our hypothesis that
the gain of other learning-based methods is distribution-dependent, which results in a significant
performance drop on evenly-distributed data. Moreover, the overall performance on Synthetic+ is
much better than that on Synthetic. This implies that data following non-even distribution will make
the matching much easier. This is in line with the results in Table 1, i.e., the learning-based methods
tend to capture the distribution divergence rather than performing matching.
5.4 ABLATION STUDIES

Effect of L, the depth of a subtree. We test the effect of the depth of a subtree, i.e., the number
of the hidden layers, and change it from 1 to 7. Results in Fig. 2(a) shows that D2Match reaches

8

Under review as a conference paper at ICLR 2023

Table 2: Results of experimenting the uniformly distributed data in terms of accuracy.

Synthetic+ Synthetic Proteins∗ Mutag∗ Enzymes∗ Aids∗ IMDB-Binary∗ Cox2∗ FirstMMDB∗

SimGNN 84.1±3.40 70.5±2.72 64.6±3.36 80.3±6.18 76.0±2.12 73.2±6.06 72.0±2.45 88.2±2.05 53.2±6.61
NeuroMatch 74.5±2.57 65.7±8.98 52.8±4.76 90.4±2.88 86.6±3.64 75.6±17.78 60.4±10.11 91.0±5.70 50.0±0.00

D2Match 86.6±1.44 74.3±0.22 83.4±2.97 99.2±0.84 96.0±2.16 95.0±1.41 90.2±1.79 99.8±0.45 86.4±7.44

its best performance when the number of layers is 6. D2Match only needs a few layers to achieve a
decent performance, suggesting it can scale up to large size graphs.

Effect of K, the times of samples. Intuitively, sampling more data to train the model will yield
better performance. We vary K from 1 to 7 and show the results in Fig. 2(b). Surprisingly, the
results show that by sampling five times, we can obtain the best performance on all datasets. This
demonstrates that D2Match can attain decent performance in a low computation cost.

We also ablate D2Match with circles and node attributes at different settings, and all experiments
show results consistent with our theoretical analysis. Please refer to Appendix A.3 for more details.

2 4 6
Layer number

70

80

90

Ac
cu

ra
cy

 (%
)

Synthetic
Proteins *

Enzymes *

(a) # layers vs. accuracy

2 4 6
Sample number

80

90

Ac
cu

ra
cy

 (%
)

Synthetic
Proteins *

Enzymes *

(b) # sampling vs. accuracy

0 150 300 450
Epoch

1.0

1.2

1.4

1.6

Lo
ss

 (n
or

m
al

ize
d)

D2Match
NeuroMatch
SimGNN
GOTSim
GraphSim

(c) The convergence comparison

Figure 2: We conduct sensitivity analysis on our D2Match by varying the number of layers and sampling. In
Fig. 2(c), we present the convergence curve on our D2Match and four strong baselines.

5.5 CONVERGENCE ANALYSIS

Figure 2(c) provides the training loss of D2Match and four baselines on Synthetic, where we only
select baselines with the same loss functions as ours, such as MSE or CE, for a fair comparison. The
results show that (1) D2Match converges the fastest due to its power of explicitly modeling the sub-
trees. (2) NeuroMatch and SimGNN perform matching through learning graph-level representations,
which need more epochs to converge for capturing the local structure. (3) GOTSim and GraphSim
attain the lowest loss in the beginning but show the weakest convergence ability compared to others
because they can only capture the node-level representations and fail to learn meaningful subgraph
matching. Consequently, they yield the worst performance as reported in Table 1.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose D2Match for subgraph matching, which degenerates the subgraph match-
ing problem into perfect matching in a bipartite graph and prove that the matching procedure can
be implemented via the built-in tree-structure aggregation on GNNs, which yields polynomial time
complexity. We also incorporate circle structures and node attributes to boost the matching. Finally,
we conduct extensive experiments to show that D2Match achieves significant improvement over
competitive baselines and indeed exploits subtrees for the matching, which is different from existing
learning-based methods for memorizing the data distribution divergence.

D2Match can be further explored in several promising directions. First, we can investigate more
degeneracy mechanisms to tackle more complicated graphs. Second, we can extend our D2Match
to more real-world applications, e.g., document matching, to know its capacity.

9

Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

The supplemental material includes the code for our experiments. An detailed description of the
datasets used in the experiments is provided in Appendix A.6.

REFERENCES

Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. Simgnn: A neural
network approach to fast graph similarity computation. WSDM ’19, pp. 384392, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN 9781450359405.

Yunsheng Bai, Hao Ding, Ken Gu, Yizhou Sun, and Wei Wang. Learning-based efficient graph
similarity computation via multi-scale convolutional set matching. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 34:3219–3226, 04 2020.

T. Caelli and S. Kosinov. An eigenspace projection clustering method for inexact graph matching.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(4):515–519, 2004.

Liqun Chen, Zhe Gan, Yu Cheng, Linjie Li, Lawrence Carin, and Jingjing Liu. Graph optimal
transport for cross-domain alignment. 2020.

L.P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomorphism algorithm for match-
ing large graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(10):1367–
1372, 2004.

Khoa D. Doan, Saurav Manchanda, Suchismit Mahapatra, and Chandan K. Reddy. Interpretable
graph similarity computation via differentiable optimal alignment of node embeddings. In Pro-
ceedings of the 44th International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’21, pp. 665674, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450380379.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. CoRR, abs/2003.00982, 2020. URL https://arxiv.
org/abs/2003.00982.

Stavros Georgousis, Michael P. Kenning, and Xianghua Xie. Graph deep learning: State of the art
and challenges. IEEE Access, 9:22106–22140, 2021.

Alan Gibbons. Algorithmic graph theory. Cambridge university press, 1985.

Peter Hall. On representatives of subsets. Journal of The London Mathematical Society-second
Series, pp. 26–30, 1935.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. CoRR, abs/1706.02216, 2017a. URL http://arxiv.org/abs/1706.02216.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017b.

Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. Turboiso: towards ultrafast and robust subgraph
isomorphism search in large graph databases. In SIGMOD ’13, 2013.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Arijit Khan, Nan Li, Xifeng Yan, Ziyu Guan, Supriyo Chakraborty, and Shu Tao. Neighborhood
based fast graph search in large networks. In Proceedings of the 2011 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’11, pp. 901912, New York, NY, USA,
2011. Association for Computing Machinery. ISBN 9781450306614.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

10

https://arxiv.org/abs/2003.00982
https://arxiv.org/abs/2003.00982
http://arxiv.org/abs/1706.02216

Under review as a conference paper at ICLR 2023

Serhiy Kosinov and Terry Caelli. Inexact multisubgraph matching using graph eigenspace and clus-
tering models. pp. 133–142, 08 2002. ISBN 978-3-540-44011-6.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching net-
works for learning the similarity of graph structured objects. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 3835–3845. PMLR, 09–15 Jun
2019. URL https://proceedings.mlr.press/v97/li19d.html.

Ciaran McCreesh, Patrick Prosser, Christine Solnon, and James Trimble. When subgraph isomor-
phism is really hard, and why this matters for graph databases. J. Artif. Int. Res., 61(1):723759,
jan 2018. ISSN 1076-9757.

Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon. Net-
work motifs: Simple building blocks of complex networks. Science (New York, N.Y.), 298:824–7,
11 2002.

Misael Mongiovì, Raffaele Di Natale, Rosalba Giugno, Alfredo Pulvirenti, Alfredo Ferro, and
Roded Sharan. Sigma: a set-cover-based inexact graph matching algorithm. Journal of bioin-
formatics and computational biology, 8 2:199–218, 2010.

Hao Peng, Jianxin Li, Qiran Gong, Yuanxing Ning, Senzhang Wang, and Lifang He. Motif-matching
based subgraph-level attentional convolutional network for graph classification. In AAAI, 2020.

Hilary A. Priestley and Martin P. Ward. A multipurpose backtracking algorithm. J. Symb. Comput.,
18(1):1–40, 1994. URL http://dblp.uni-trier.de/db/journals/jsc/jsc18.
html#PriestleyW94.

Rex, Ying, Zhaoyu Lou, Jiaxuan You, Chengtao Wen, Arquimedes Canedo, and Jure Leskovec.
Neural subgraph matching, 2020.

Indradyumna Roy, Venkata Sai Baba Reddy Velugoti, Soumen Chakrabarti, and Abir De. Inter-
pretable neural subgraph matching for graph retrieval. Proceedings of the AAAI Conference on
Artificial Intelligence, 36(7):8115–8123, Jun. 2022.

Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. Taming verification hardness: An
efficient algorithm for testing subgraph isomorphism. 1(1):364375, aug 2008. ISSN 2150-8097.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):3142, jan 1976. ISSN
0004-5411.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Natalia Vesselinova, Rebecca Steinert, Daniel F. Perez-Ramirez, and Magnus Boman. Learning
combinatorial optimization on graphs: A survey with applications to networking. IEEE Access,
8:120388–120416, 2020.

Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2 edition, September 2000. ISBN
0130144002.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? CoRR, abs/1810.00826, 2018. URL http://arxiv.org/abs/1810.00826.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICML, 2019.

Xifeng Yan, Philip S. Yu, and Jiawei Han. Substructure similarity search in graph databases. In
Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’05, pp. 766777, New York, NY, USA, 2005. Association for Computing Machinery. ISBN
1595930604.

11

https://proceedings.mlr.press/v97/li19d.html
http://dblp.uni-trier.de/db/journals/jsc/jsc18.html#PriestleyW94
http://dblp.uni-trier.de/db/journals/jsc/jsc18.html#PriestleyW94
http://arxiv.org/abs/1810.00826

Under review as a conference paper at ICLR 2023

Feng Zhou and Fernando Torre. Canonical time warping for alignment of human behavior. Advances
in neural information processing systems, 22, 2009.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. CoRR, abs/1707.04638, 2017. URL http://arxiv.org/abs/1707.04638.

12

http://arxiv.org/abs/1707.04638

Under review as a conference paper at ICLR 2023

A APPENDIX

Theorem A.1. Given a target graph GT (VT , ET) and a query graph GQ(VQ, EQ), if GQ ⊂ GT ,
and the subtree generation function Ψ as defined in Eq. (2) meets the following condition:

∀ graph pair (GS , G), if GS ⊂ G, then Ψ(GS) ⊂ Ψ(G), (9)

then there exists an injective function f :VQ → VT , ensuring the l-hop subtrees of the subgraph is
isomorphic to the subtrees of the corresponding subgraph:

∀l ≥ 1, q ∈ VQ, t = f(q) ∈ VT ⇒ T (l)
q ⊂ T

(l)
t , (10)

Proof. According to the definition of subgraph matching (McCreesh et al., 2018), when GQ is
a subgraph of GT , there must exists an injective function f : VQ → VT , such that ∀qi, qj ∈
VQ, (qi, qj) ∈ EQ ⇒ (f(qi), f(qj)) ∈ ET . For any subgraph in the query graph, e.g., S(VS , ES) ∈
GQ, we always have a subgraph in the original graph GT , denoted as GS(VG, EG), that corresponds
to the set of the query node as VG = f(VS). This tells us that S ⊂ GS . According to this,
consider any given node from VQ: q ∈ VQ, S(l)

q is a subgraph of GQ and its image G
S

(l)
q

in

GT , i.e. S
(l)
q ⊂ G

S
(l)
q

. By definition, the node in S
(l)
q or G

S
(l)
q

is at most l-hop from node q or

t = f(q), we know that G
S

(l)
q

must be a subgraph of S(l)
t , i.e.,G

S
(l)
q

⊂ S
(l)
t . Put all together, we

have S
(l)
q ⊂ G

S
(l)
q

⊂ S
(l)
t . Based on the listed constrain, we then have T

(l)
q ⊂ T

(l)
t .

Theorem A.2. Given a node q in the query graph and a node t in the target graph, the following
three conditions are equivalent:

1) T
(l+1)
q ⊂ T

(l+1)
t .

2) There exists an injective function on the neighborhood of these nodes as f :N(q) → N(t), s.t.
∀qi ∈ N(q), ti = f(qi), T

(l)
qi ⊂ T

(l)
ti .

3) There exists a perfect matching on the bipartite graph B(l)(N(t), N(q), E), where ∀tj ∈
N(t), qi ∈ N(q), (tj , qi) ∈ E if and only if T (l)

qi ⊂ T
(l)
tj .

We prove this theorem by introducing the following two theorem. Theorem A.3 shows that con-
dition 1) is equivalent to condition 2), i.e. the WL subtree isomorphism test can be accomplished
in a recursive manner then prove Theorem. A.4 that the condition 2) equals to condition 3) which
means every iteration in the recursive process equals to examine the existence of a perfect matching,
respectively.
Theorem A.3. Given a node q in the query graph and a node t in the target graph, the following two
conditions are equal:
1) T (l+1)

q ⊂ T
(l+1)
t , where l is an integer and l ≥ 1.

2) There exists an injective function on the neighboring set of these nodes as f : N(q) →
N(t), s.t.∀qi ∈ N(q), ti = f(qi), T

(l)
qi ⊂ T

(l)
ti .

Proof. We assume fq is a subtree isomorphism injective function in the condition 1), that ∀ node
u, v ∈ T

(l+1)
q , (u, v) is an edge of T (l+1)

q ⇒ ((fq(u), fq(v)) is an edge of T (l+1)
t . Similarly We also

assume fqi is subtree isomorphism injective in the condition 2).
On the one hand, if condition 1) is true then fq exists. Using the property of WL tree, we have
∀qi ∈ N(q), T (l)

qi ⊂ T
(l+1)
q , which means the l-order WL tree of any node qi in q’s neighbourhood

belongs to the l+ 1-order WL tree originate from the node q. This suggests that fq maps T (l)
qi into a

tree T
(l)
f(qi)

= T
(l)
ti , which is a subtree of T (l+1)

t ,. Then the condition 2) is true.

On the other hand, if condition 2) holds, then we define the mapping as fq(v) =

{
fqi(v), v ∈ T

(l)
qi

q, v = q
.

13

Under review as a conference paper at ICLR 2023

Here, the function fb(v) is a standard injective function T
(l)
bi

This implies this is a subtree isomorphic
mapping, so 1) holds.

The above theorem provides a recursive solution to the WL subtree isomorphism algorithm. Intu-

itively, we can maintain an indicator matrix S(l) ∈ R|VT |×|VQ|, where S
(l)
tq =

{
1, T

(l)
q ⊂ T

(l)
t

0, else
.

This matrix captures the relation between all pairs of nodes and thus can be used for recursion up-
date. Next, we will show that the update process can be implemented as a perfect matching problem,
i.e., what makes condition 2) true is equivalent to finding a perfect matching on a bipartite graph, as
shown in the following theorem:

Theorem A.4. Assume the neighboring set of node t and q as X = N(t) and Y = N(q), re-
spectively. Accordingly, we form a bipartite graph as B(l)

t,q (X,Y,E). Here, we define the edges as

E = {(ti, qj) : T
(l)
qi ⊂ T

(l)
tj }, where ti and qj represent the ith and jth neighbour of node t and

q, respectively. Under this setting, the injective function f from the condition 2) in Theorem. A.3
induces a perfect matching.

Proof. The injective function f of condition 2) in Theorem A.3 maps every node qi in N(q) to ti =
f(qi) ∈ N(t) and T

(l)
qi ⊂ T

(l)
ti holds. While T (l)

qi ⊂ T
(l)
ti means (qi, ti) ∈ E, the injective f naturally

corresponds every node qi to an edge (qi, tj). Since f is an injective function, qi1
̸= qi2 ⇒ ti1 ̸= ti2 ,

indicating that all these edges (qi, ti), i = 1, ..., |N(q)| are different, which actually forms a perfect
matching.

Theorem A.5. Given the sampled query graph and the target graph, we can construct their adjacency
matrices , ÃQ and AT , and the degree matrix of the sampled query graph D̃Q = diag(

∑
s((ÃQ):s)).

Here, we denote the indicator matrix at the l-th hop as S(l). To check the validity of |N(W)| ≥ |W |,
we can check whether each element of Φ is true or not, where Φ := ZN(W) ≥ 1, ZN(W) =

aggregatesum(AT , Z
T
W) and ZW = aggregatemax(D̃

−1
Q · ÃQ, (S(l))T).

Proof. For each node pair t, q and their corresponding W = N ′(q) in the sampled query graph, We
first transform the neighboring set of W , i.e., N(W), as following:

N(W) = {ti ∈ N(t)|∃qj ∈ W = N ′(q), s.t.T (l)
qj

⊂ T
(l)
ti }

= {ti ∈ N(t)|∃qj ∈ W = N ′(q), s.t.Sti,qj = 1}

= {ti ∈ N(t)| max
q′∈N ′(q)

S
(l)
ti,q′ = 1}

= N(t) ∩ {ti| max
q′∈N ′(q)

S
(l)
ti,q′ = 1}

= N(t) ∩M(q)

(11)

Let M(q) = {ti|maxq′∈N ′(q) S
(l)
ti,q′ = 1}, we can compute M(q) via a standard maximizing

aggregation process on the sampled adjacency matrix ÃQ, in which treats the indicator matrix
(S(l))T ∈ R|VQ|×|VT | as node attributes. This process will output the representation of node q
as follows,

zq,: = max{(S(l))Tj,:, ∀j ∈ N ′(q)}, (12)

The obtained vector zq,: is to represent M(q) where zqi =

{
1, i ∈ M(q)
0, else

. We rewrite this into a

matrix format as
ZW = aggregatemax(ÃQ, (S

(l))T) (13)

where ZW ∈ R|VQ|×|VT | and its q-th row vector is zq:.

14

Under review as a conference paper at ICLR 2023

Recall that we demand N(W) = N(t)∩M(q). After acquiring M(q), we can compute the |N(W)|
as follows, {

|M(q)| =
∑

i zq,i

|N(W)| =
∑

i zq,i, i ∈ N(t)
(14)

In essence, this is to implement a summation aggregation on the target graph using the node repre-
sentation ZW , i.e.,

ZN(W) = aggregatesum(AT , Z
T
W) (15)

where ZN(W) ∈ R|VT |×|VQ| is an integer matrix and its element (t, q) shows the score of |N(W)|
between node t and q. This transformation converts the counting operation as aggregation such that
we can check the aggregated values to determine whether there is a perfect matching. Given a node
pair (t, q), we have |N(W)| = [ZN(W)]tq and |W | = |N ′(q)| =

∑
s[ÃQ]qs. Therefore, the question

becomes to check whether [ZN(W)]tq ≥
∑

s[ÃQ]qs holds. We can then derive the perfect matching
as follows:

[ZN(W)]tq ≥
∑
s

[ÃQ]qs

⇔[ZN(W)]tq/
∑
s

[ÃQ]qs ≥ 1

⇔[aggregatesum(AT , Z
T
W)]tq/d̃q ≥ 1

⇔[aggregatesum(AT , Z
T
W) · D̃−1Q]tq ≥ 1

⇔[aggregatesum(AT , Z
T
W · D̃−1Q)]tq ≥ 1

(16)

where d̃q is the degree of node q in the sampled graph. The degree matrix of the sample graph is
defined as D̃Q = diag[

∑
s((ÃQ):s)]. Now recall that Φ is the matrix whose (t, q) element is the

comparison result of |N(W)| and |W | of (t, q), according to eq 16, we have:

Φ(l+1)(ÃQ, AT) = aggregatesum(AT , Z
T
W · D̃−1Q) ≥ 1, (17)

where
ZT
W · D̃−1Q = [aggregatemax(ÃQ, (S

(l)))]T · D̃−1Q
= [D̃−1Q · aggregatemax(ÃQ, (S

(l)))]T

= [aggregatemax(D̃
−1
Q · ÃQ, (S(l)))]T

(18)

Theorem A.6. Every chordless cycle is atomic. Every chordless cycle CQ in an induced subgraph
GQ must correspond to a chordless cycle CT in the origin graph GT .

Proof. Chordless cycle does not have any chord, thus there is no smaller cycle in the chordless cycle,
which means chordless cycle is atomic. Assuming GQ is a subgraph of GT , every node of CQ must
correspond to a node in GT , and these nodes form a circle CT in GT . Since GQ is an induced
subgraph of GT , if CT has a chord, then CQ must have a chord, which contradicts the condition that
CQ is a chordless graph.

A.1 IMPLEMENTATION DETAILS

The python implementation of D2Match is available at:

https://www.dropbox.com/sh/8pvj8drvj0l2zou/AAB5j7e7frVwMiun1QcCNbMFa?
dl=0

At the beginning of subtree isomorphism test, the model needs an initial indicator matrix S
(0)
subtree

as the input of the first iteration. According to the definition of the indicator matrix, S(0)
subtree shows

the isomorphism relation between the subtree of 0-hop neighbors, which are the nodes themselves
in this case. Since all nodes will be isomorphic to each other if not considering the node attributes,
the indicator matrix S

(0)
subtree is actually a similarity matrix w.r.t node attributes. To get a similarity

matrix of attributes, we can either directly calculate the similarity between nodes or employ neural

15

https://www.dropbox.com/sh/8pvj8drvj0l2zou/AAB5j7e7frVwMiun1QcCNbMFa?dl=0
https://www.dropbox.com/sh/8pvj8drvj0l2zou/AAB5j7e7frVwMiun1QcCNbMFa?dl=0

Under review as a conference paper at ICLR 2023

networks on these attributes to learn the matrix. In our model, we implement both methods to
initialize the matrix, called the initialization of the raw and the learnable:

Raw : S
(0)
subtree = CosineSimilarity(XT , XQ) = Norm(XT) ·Norm(XT

Q)

Learnable : S
(0)
subtree = MLP(XT) ·MLP(XQ)

T
(19)

where the raw initialization is to calculate the cosine similarity between the nodes’ attributes, and
the learnable initialization employs a MLP to generate hidden representations of nodes and compute
their dot similarities.

In practice, we find the raw initialization performs better. This is because the node attributes of
datasets are usually binary categorical vectors, which induces clear identification information of the
nodes and can be easily captured by cosine similarity.

Our implementation of the GNN block in the model is slightly different from the description. Specif-
ically, we use compute the similarity of each pair of nodes as:

[S(l+1)
gnn]ij = MLP (concat([H

(l)
T]i, [H

(l)
Q]j)). (20)

The main difference is that we do not output a |VT |×|VQ| matrix, but a |VT |×|VQ|×|D(l+1)| tensor,
where D(l+1) denotes the hidden dim of l + 1 layer. The intuition is that a tensor that represents
the node pairs’ similarity with vectors can retain more information than a similarity matrix with
scalar elements. In this setting, the final indicator matrix S(l+1) can not be generated as S(l+1) =

S
(l+1)
gnn ⊙ S

(l+1)
subtree, because S

(l+1)
subtree ∈ R|VT |×|VQ| but S(l+1)

gnn ∈ R|VT |×|VQ|×|D(l+1)|. Thus we
broadcast S(l+1)

subtree to S̃
(l+1)
subtree where ∀k ∈ [0, D(l+1)), [S̃

(l+1)
subtree]ijk = [S

(l+1)
subtree]ij and the final

indicator matrix S(l+1) = S
(l+1)
gnn ⊙ S̃

(l+1)
subtree

At the end of our models, we get the subtree indicator matrix S
(L)
subtree and the GNN indicator matrix

S
(L)
gnn. The model will output the final score from S

(L)
subtree and S

(L)
gnn, respectively. For the subtree

module, we check whether the indicator matrix is feasible to induce the subgraph isomorphism.
Note that for a node i in the target graph and a node j in the query graph, i is possible to match j

unless [S(L)
subtree]ij = 1. So we check whether the subtree indicator matrix meets the following two

conditions:

1) Every node in a query graph should match at least one node in the target graph:

∀j,max
i

(S
(L)
subtree)ij = 1

⇔
∑
j

max
i

(S
(L)
subtree)ij = |VQ|

⇔
∑
j

max
i

(S
(L)
subtree)ij/|VQ| = 1

(21)

2) The number of nodes in the target graph that match at least one node in the query graph is more
than the number of nodes of query graph:∑

i

max
j

(S
(L)
subtree)ij ≥ |VQ| ⇔

∑
i

max
j

(S
(L)
subtree)ij/|VQ| ≥ 1 (22)

To make the subtree model differentiable, we use a learnable sigmoid to replace all the logical
judgment in the model:

LSigmoid(x) = σ(ax+ b) (23)
where a, b are learnable parameters; σ is the sigmoid function. The result of subtree module can be
fomulated as:

rsubtree = LSigmoid(
∑
i

max
j

(S
(L)
subtree)ij/|VQ|) · LSigmoid(

∑
j

max
i

(S
(L)
subtree)ij/|VQ|) (24)

For the GNN module, we employ the neural tensor network(NTN) (Bai et al., 2019) and generate a
score according to the output of NTN and the aggregated indicator tensor:

rgnn = σ(MLP (concat[NTN(H
(L)
T ,H

(L)
Q),

∑
i

∑
j

S
(L)
subtree])) (25)

16

Under review as a conference paper at ICLR 2023

Where H
(L)
T ,H

(L)
Q are the node representations generated by the GNNs. NTN is the NTN layer.

The final prediction is:
r = rgnn · rsubtree (26)

Although the model’s prediction is obtained by integrating the two modules, we can not directly train
the model through the final score r because it will bring difficulties in the training process. When
fitting a negative sample, the resulting subtree module tends to be zero, forcing the overall gradient
to be zero which hinders the training of the GNN module.

Therefore, we train the two blocks with different objectives. For the subtree module which aims to
learn the isomorphism relation, the result should be either 0 for not matching or 1 for matching. So
we employ MAE loss to enforce the results to be either 0 or 1. For the GNN module, we use MSE
to encourage the output of GNNs to capture the similarity. Suppose the ground-truth label is y, and
our loss function is

L = MSE(rgnn, y) +MAE(rsubtree, y) (27)

Both our model and all baselines use the Adam as optimizer and set the learning rate to 3e − 4. To
ensure fairness, we set all models with adjustable number of layers to 5 layers, and set the hidden
dimension to 10.

target graph
query graph

(a)

target graph
query graph

(b)

target graph
query graph

(c)

Figure 3: The detected subgraphs by D2Match

A.2 D2MATCH AT WORK

Recall that D2Match learns an indicator matrix to capture pairwise similarities. It plays the role of
permutation matrix in matching, allowing us to pinpoint the matched subgraph. This is particularly
useful since the exact position is required for some downstream applications such as web search. In
comparison, other learning-based methods are unable to pinpoint local correspondences, but only
establish the existence of a matching. We provide a visualization of the matched subgraph to better
understand the problem difficulty and the effectiveness of our method, as shown in the Fig. 3.

A.3 ABLATION STUDIES

We perform ablation studies for the GNN module, subtree module, and chordless cycle.

The GNN module in our analysis will capture the distributional features on the graph, such as the
edge density difference between classes. The GNN module is thus essential for datasets with mul-
tiple distributions, also called biased data. We run experiments on both the biased and unbiased
synthetic datasets to show the performance of our method and its variation that without the GNN
module, as shown in Table 3. D2Match outperforms D2Match without the GNN module as our
theory predicts. But our GNN module shares the same weaknesses as the other GNN models when
dealing with evenly distributed data. We observe that the performance of the GNN module drops
significantly on hard datasets similar to other GNN models. The subtree module can significantly
improve the performance because it harnesses the property of subgraph-matched data, making it
robust to data’s distribution. Our subtree module outperformed the GNN module on all datasets in
our ablation study, demonstrating its effectiveness.

17

Under review as a conference paper at ICLR 2023

Table 3: The ablation study of D2Match module

Synthetic Synthetic+ Proteins Proteins∗ IMDB-Binary IMDB-Binary∗ FirstMMDB FirstMMDB∗

D2Match (gnn only) 61.1±13.31 70.2±18.58 95.2±1.04 77.2±8.11 50.0±0.00 64.4±19.73 69.7±26.98 67.8±24.38

D2Match (subtree only) 70.0±2.09 74.8±2.56 100.0±0.00 82.0±2.92 92.9±1.04 82.8±4.02 100.0±0.0 72.0±6.20

D2Match 72.7±4.45 86.6±1.44 100.0±0.00 83.4±2.97 93.3±1.03 90.2±1.79 100.0±0.0 86.4±7.44

Table 7: The hard dataset details

Synthetic+ Proteins∗ Mutag∗ Enzymes∗ Aids∗ IMDB-Binary∗ Cox2∗ FirstMMDB∗

Average nodes (target) 40.0 38.8 18.2 31.5 14.7 19.0 41.3 1376.7
Average nodes (query) 15.0 11.4 9.1 15.4 4.4 14.2 15.0 15.0

Average edges (target) 259.5 146.7 40.2 120.6 30.0 177.1 87.0 6141.6
Average edges (query) 67.3 35.5 17.6 52.6 7.1 102.6 29.9 45.6

We also perform the ablation study on the Synthetic dataset to test the effect of chordless cycles,as
shown in Table 4. Results show the chordless cycles boost the performance with limited extra time
consumption.

Synthetic RunTime

D2Match 74.3±1.60 19.7s/epoch
D2Match (w/o cc) 72.7±4.45 10.3s/epoch

Table 4: The ablation study of cc
proteins mutag

Seed(0) 100.0±0.00 100.0±0.00
Seed(1) 100.0±0.00 100.0±0.00
Seed(2) 100.0±0.00 100.0±0.00

Fixed 100.0±0.00 100.0±0.00

Table 5: Random seed comparison

Training(s/epoch) Inference(s/epoch)

SimGNN 1.732 0.385
NeuroMatch 2.234 0.311
GMN-embed 1.850 0.290

GraphSim 3.223 0.433
IsoNet 10.553 1.939

D2Match-Subtree(S=2) 2.940 0.456
D2Match-Subtree(S=3) 3.889 0.581
D2Match-Subtree(S=4) 4.410 0.673
D2Match-Subtree(S=5) 5.143 0.750

D2Match-GNN 2.678 0.495
D2Match 8.163 1.114

Table 6: Runtime analysis

A.4 RANDOM EFFECT

Although our experiments do not rely on random seeds, a random split may affect the results. To
test this, we set up several random seeds and permute the raw data order before getting the five-fold.
We experiment on the Protein and Mutag datasets with trivial random seed 0,1,2 and obtain nearly
identical performance. See Table 5.

While other methods based on GNNs tend to capture the divergence of distributions in the training
set and hence are easily affected by randomness, our subtree module performs the matching explic-
itly by the degeneracy property, as opposed to modeling the data distribution in others, hence ours
is insensitive to data partitioning.

A.5 RUNTIME ANALYSIS

We add the runtime analysis experiment as follows. We compare our method with baselines on the
synthetic dataset and record the training and inference time (second) per epoch. The results are
shown in Table 6.

Our model is slower than some strong baselines like SimGNN and NeuroMatch in the experiment
because they deal with the graph-level representations. Our model is faster than IsoNet, which
performs edge-level matching.

We conduct an additional ablation study to explore the time consumption of each module in our
model. The results show that the time consumption of our model mainly comes from the sampling
in the subtree module whose running time is linearly related to the sampling number. When we set

18

Under review as a conference paper at ICLR 2023

Table 8: The dataset details

Synthetic Proteins Mutag Enzymes Aids IMDB-Binary Cox2 FirstMMDB

Average nodes (target) 40.0 39.1 17.9 33.0 15.7 19.8 41.3 1376.5
Average nodes (query) 15.0 14.4 9.0 14.8 7.9 14.6 14.4 15.0

Average edges (target) 241.7 146.5 39.5 125.6 32.4 193.1 87.0 6144.3
Average edges (query) 50.6 68.9 25.1 75.3 17.1 141.0 42.8 68.1

the sampling number as 2, the running time is on par with the others. Furthermore, the running time
for the GNN module is the same as for the other baselines. In sum, we observe that our model’s
scalability is acceptable as both complexity analysis and empirical running time show ours is slower
than others only by a constant factor.

A.6 DATASET DETAILS

We describe the average node number and average edge number of the target graph and query graph
in the Table 8 and Table 7. Except the hard datasets, we generate 1000 graph pairs for Synthetic,
Proteins, Mutag, Enzymes, Cox2 and FirstMMDB and 2000 graph pairs for Aids and IMDB-Binary
which have smaller graph size. For the hard dataset, we uniformly generate 500 graph pairs.

A.7 RESULTS ON MORE DATASETS

We conduct experiments on the OGB benchmark dataset (Hu et al., 2020), including Ogbg-molhiv
and Ogbg-molpcb. We follow the same strategy in the paper to construct normal and hard versions
for these datasets and choose the best-performing baselines for comparison, including SimGNN and
NeuroMatch. We present new results in Table 9.

We find that our model performs slightly better than others on normal datasets while gaining a
significant advantage over baselines on hard datasets. These results are consistent with our previous
experiments, demonstrating that our model exploits the subgraph matching property, rather than
simply modeling the divergence of the data distribution as other GNNs.

We experiment on continuous features from the MNIST, CIFAR10 and PPI datasets, as these are
constructed from vision data(Dwivedi et al., 2020) or biological information data(Zitnik & Leskovec,
2017). We As expected, our model achieves consistent performance as well. See Table 10.

ogb-molhiv ogb-molhiv∗ ogb-molpcba ogb-molpcba∗

SimGNN 99.4±0.65 81.6±2.70 99.8±0.27 86.2±2.28
NeuroMatch 98.3±1.68 86.0±3.54 99.8±0.27 90.6±3.51

D2Match 99.8±0.27 99.6±0.54 100.0±0.00 100.0±0.00

Table 9: Obg dataset performance comparison

Cifar10 MNIST PPI

SimGNN 89.0±21.82 98.5±0.93 77.0±24.67
NeuroMatch 98.1±1.14 95.9±1.34 50.0±0.00

D2Match 99.3±0.27 98.8±1.15 98.8±1.06

Table 10: Continues dataset perfor-
mance

A.8 COMPARISON WITH EXACT METHOD

we compare exact matching solutions, including VF2[1] and ISMAGS[2]. By nature, we know that
exact matching methods obtain 100 % accuracy.

As a trade-off between accuracy and execution time, we make the comparison inspired by the setup
in NeuroMatch (Rex et al., 2020). We say an execution succeeds when its run time is less than 60s.
We compare the success rate of the exact methods by varying the query graph size from 10 to 50 on
the synthetic data, as shown in Figure.4.

We show in our experiment that the failure of exact matching methods increases significantly when
the target graph has more than 30 nodes, compared to our stable performance, indicating the incom-
petence of these methods on large-scale datasets.

19

Under review as a conference paper at ICLR 2023

10 15 20 25 30 35 40 45 50
Query size

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

D2Match
0

20

40

60

80

100

Su
cc

es
s r

at
e

(%
)

VF2
ISMAGS
D2Match

Figure 4: Comparison with exact method

20

	Introduction
	Related work
	Preliminary
	The Proposed Method
	On the Degeneracy of the Subgraph Matching Problem
	Boosting the Matching
	Dealing with Circles
	Dealing with Nodes' Attributes

	Implementation Details and Complexity Analysis

	Experiments
	Experimental Settings
	Main Results
	Benefit of Our Core Design: The Subtree Matching
	Ablation Studies
	Convergence Analysis

	Conclusion and Future work
	Appendix
	Implementation Details
	D2Match at Work
	Ablation Studies
	Random Effect
	Runtime Analysis
	Dataset Details
	Results on More Datasets
	Comparison with Exact Method

