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ABSTRACT

Generative modeling of discrete data underlies important applications spanning
text-based agents like ChatGPT to the design of the very building blocks of life
in protein sequences. However, application domains need to exert control over the
generated data by steering the generative process—typically via RLHF—to satisfy
a specified property, reward, or affinity metric. In this paper, we study the problem
of steering Masked Diffusion Models (MDMs), a recent class of discrete diffusion
models that offer a compelling alternative to traditional autoregressive models.
We introduce DISCRETE DENOISING POSTERIOR PREDICTION (DDPP), a novel
framework that casts the task of steering pre-trained MDMs as a problem of proba-
bilistic inference by learning to sample from a target Bayesian posterior. Our DDPP
framework leads to a family of three novel objectives that are all simulation-free,
and thus scalable while applying to general non-differentiable reward functions.
Empirically, we instantiate DDPP by steering MDMs to perform class-conditional
pixel-level image modeling, RLHF-based alignment of MDMs using text-based re-
wards, and finetuning protein language models to generate more diverse secondary
structures and shorter proteins. We substantiate our designs via wet-lab validation,
where we observe transient expression of reward-optimized protein sequences.

1 INTRODUCTION

The success of diffusion models in continuous spaces, leading to state-of-the-art foundation models
for image (Stability Al, 2023; Midjourney, 2023) and video synthesis (Villegas et al., 2022; Brooks
et al., 2024), has spurned several attempts to translate these approaches for the generative modeling
of discrete structures. The most performant approaches squarely fall under the scalable framework
of absorbing state discrete diffusion (Austin et al., 2021), with new simplified training recipes that
result in Masked Diffusion Models (MDMs) (Sahoo et al., 2024; Shi et al., 2024; Gat et al., 2024,
Zhao et al., 2024a). Indeed, recent MDMs now rival autoregressive models of a similar scale to
GPT-2 (Radford et al., 2019) for language modeling, with the potential for further progress through
scaling. Furthermore, MDM style models are not constrained to generating data sequentially—unlike
autoregressive models—which invites a more straightforward application to domains without
a natural causal ordering, e.g. molecule generation (Vignac et al., 2022), discrete modeling of
images (Salimans et al., 2017), and modeling protein sequences (Lin et al., 2022; Wang et al., 2024).

Critical to the successful deployment of discrete generative models in practical applications—beyond
simply producing high-quality samples—is the ability to steer the generated samples to optimize
a pre-specified downstream metric. For instance, in Language Modeling (LM) it is desirable to bias
the model’s generations to be sanitized from harmful responses (Zou et al., 2023; Perez et al., 2022),
or aiming to generate protein sequences that are highly likely to be successfully synthesized and
expressed in real wet lab settings (Verkuil et al., 2022; Dauparas et al., 2022). Put succinctly, highly
performant discrete generative models are required to be aligned in a manner that fine-tuning against
downstream reward models has the intended effect of controllable generation, wherein the model
post fine-tuning selects high-scoring samples from the universe of possible high-fidelity generations.
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The standard approach for incorporating steerability into discrete generative models, which are
autoregressive, using pre-defined reward models is often framed as a fine-tuning task using reinforce-
ment learning from human feedback (RLHF) (Christiano et al., 2017; Rafailov et al., 2024). However,
applying RLHF frameworks to diffusion models is far more challenging. Unlike autoregressive
models, diffusion models do not allow for straightforward computation of a sample’s exact likelihood
without costly simulations. Although fine-tuning diffusion models that bypass exact likelihood
computation can yield simulation-free algorithms that resemble RLHF (Wallace et al., 2024; Uehara
et al., 2024a), these methods effectively optimize a loose lower bound to the true RLHF objective,
leading to unstable training and suboptimal fine-tuning performance. Consequently, steering diffusion
models in continuous spaces is primarily done through inference techniques that leverage the gradient
of a conditional model in the form of guidance (Dhariwal and Nichol, 2021; Ho and Salimans, 2022).
Unfortunately, discrete settings do not allow for principled definitions of guidance due to the lack
of a conventional gradient operator. As a result, at present, there exists no scalable and rigorous
method to steer and align Masked Diffusion Models to optimize desired reward models.

Main contributions. In this paper, we cast the problem of steering a Masked Diffusion Model as a task
of probabilistic inference in sampling from a target Bayesian posterior. More precisely, we construct
the target Bayesian posterior as being proportional to the product distribution of a base pre-trained
MDM model modulated by a pre-specified reward model. Importantly, this sampling viewpoint is fully
compatible with classical RLHF for autoregressive models (Uehara et al., 2024a; Zhao et al., 2024b),
but enjoys broader applicability as for the first time it can be applied to discrete diffusion models.
Under this sampling perspective, our key insight is that the challenging sampling problem can be
solved by learning an amortized sampler, which when taken as an MDM, can be viewed as finetuning
the pre-trained MDM model by learning to approximate the (reward-induced) Bayesian posterior.

We introduce DISCRETE DENOISING POSTERIOR PREDICTION (DDPP), a novel framework that
exploits the denoising posterior parametrization inherent to current MDMs to define a series of simpler
matching problems across varying corruption (masking) levels of the target Bayesian posterior. In
particular, DDPP designs a forward process that corrupts the Bayesian posterior through a forward
masking process and frames the finetuning task as learning another MDM to approximate the
corresponding reverse process. As a result, each matching problem in the reverse process requires
the construction of a “denoising” Bayesian posterior that is conditioned on a partially masked sample
which we demonstrate is simply proportional to the pre-trained model’s own denoising posterior and
the (terminal) reward of the fully unmasked sample. Crucially, each matching problem in DDPP
can be defined on a particular noise level without running the entire forward (corruption) process.
Consequently, this makes DDPP a simulation-free method which is a key ingredient needed to
finetune large pre-trained MDMs. We test the empirical caliber of DDPP by steering MDMs across
a multitude of domains ranging from images to protein sequences and steering MDM-based language
models. We observe DDPP fine-tuned MDMs lead to competitive performance on images, transient
expression of reward-optimized protein sequences (with high secondary structure diversity and -sheet
composition) in a wet-lab setting, and natural textual responses that are steered to human sentiments.

2 BACKGROUND AND PRELIMINARIES
Notation and convention. A discrete data sample X is identified by its realization over a vocabulary

diffusion models that include an additional d-th category of a masked token m to the vocabulary X
which serves as an absorbing state for the diffusion process. A discrete token is represented by the
one-hot vector e’ 2 < in the d-dimensional probability simplex and corresponds to placing a 1 on the
i-th index and 0 on all the otherd 1 indices. In this paper, by convention, we set e™ = e? as the one
hot vector associated with the masked state m. A‘categorical distributiqf) over d-categories, Cat(X; p),
is constructed by placing a Dirac ~ with weight p*, with the constraint  , p* = 1 and the density of a

discrete sample is written as p(X = X) = ;1:0 p? (x e?), where X is the discrete random variable.
A sequence X = (X!;:::;X™) of n tokens is defined over the product spaée " =1f1;:::;mg", and
its corresponding probability mass function is given by p(X = x) = ~ ;l:O p/ (x!  e%). To
reduce notational clutter, we make use of the shorthand (y) to denote a Dirac measure on a discrete
sample y and interchangeably write p(X = X) = p(X) to denote the probability mass function. A

dataset of sequences is designated as samples from the data distribution pg,t, to be learned by a
discrete diffusion model gy, with parameters . Discrete diffusion models, like their continuous
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counterparts, are stochastic processes that evolve with time t 2 [0; 1] such that t = 0 corresponds to
Pdata := Po and t = 1 corresponds to the terminal distribution, p; of the process. As a discretization
of time, we divide [0; 1] into T intervals, and let t(i) = i=T. For brevity, we drop i and simply write t
to denote the corresponding discrete timestep t(i). The notation O : t designates a collection of objects,
e.g. densities p(Xg.;), starting from time t to and including time t = 0. A trajectory of sequences is
denoted as (Xg.1) =x; X P, ¥ x,_1 1 ¥ X,. Finally, we use subscripts to denote the
time index—i.e. p,—and reserve superscripts to designate indices over a set such as a specific sample
x* among a collection of samples or dimensions within a vector, e.g. dimension X’ in a sequence.

Problem Setting. We are interested in the task of probabilistic inference of sampling from an
unnormalized target distribution ((Xq) defined over a discrete space consisting of n tokens X 2 X™,

pre
J(xy) = PO (XZO)R(XO) . R(xo) = exp( ZE (%0)). 0
o R

A key aspect of the considered setting is that ¢(Xp) is defined as the product distribution of a
pre-trained masked discrete diffusion model ph“(Xo) and a distribution induced by a (potentially
differentiable) reward model R : X™ ¥ R. The problem definition in Eq. 1 is an instance of Bayesian
posterior sampling where the pre-trained MDM is the prior and reward acts as the likelihood or
observation model which modulates samples with a high score. For instance, in scientific domains, the
reward model can be provided as a Boltzmann distribution with a known energy function E (Xg), or a
human preference model as in RLHF (Ouyang et al., 2022; Rafailov et al., 2024). Importantly, this set-
ting does not afford us any ground truth samples from ((X) in the form of a dataset which prevents
classically training another generative model. Instead, we are able to evaluate the reward model—and
in special cases its gradient ¥R—but not the normalizing constant, i.e. the partition function Z .
Samples from the posterior ( thus lie in the intersection of the modes of both the pretrained MDM and
the reward model. As a result, learning an amortized sampler, qg(Xg), for (Xg) is rationally equiv-
alent to finetuning the pretrained MDM pf(Xo) using the reward R(X) in an analogous manner to
RLHF (Uehara et al., 2024a) and is the main focus and contribution of this paper and outlined in §3.2.

2.1 SIMPLIFIED MASKED DISCRETE DIFFUSION

We are interested in developing a discrete diffusion model directly on discrete data—i.e. without
embeddings or continuous reparameterizations—whose approach mirrors the construction of
diffusion models for continuous spaces. Consequently, we require the specification of a forward
process that converts discrete data X,  pg at time t = 0 to an unstructured prior, p; at the terminal
time t = 1. The specification of a forward process via the transition kernel p;(X;jXo) implies a
unique time reversal of this forward process, termed the “reverse process”, such that simulating from
this reverse process results in samples from the desired target data distribution pg(X).

We restrict our attention to the recent performant “simplified masked” forward process (Sahoo et al.,
2024; Shi et al., 2024; Gat et al., 2024; Zhao et al., 2024a) which hits a terminal distribution of
all mask tokens in a sequence p; = [ (m)]™. Given a non-masked token in a sequence, X}, 2 X
the simpliﬁed masked forward process increases the likelihood of transition to the mask state as
time increases. Moreover, the masked forward process is simplified by design since the transition
probabilities of a token unmasking (X}, ; & m when X; = m) is set to zero—i.e. the token remains a
masked token for the remainder of the trajectory. The design of the simplified forward process is also
independent across each dimension of the sequence, conditioned on X, which allows us to model
the transitions of each discrete token in a sequence separately. In totality, the forward process for
a sequence X, can be summarized using the following expression for the transition kernel p; (Xjx{):

. Y ie g Y ! 1
Pe(XejXo) = pe(Xpixp) = Cat(xy; ¢ (X5) + (1 ) (M)); 2
i=1 i=1
where  is an invertible reparameterization of time such that ¢ = 1and ; = 0. Effectively,
corresponds to the noise schedule which corrupts the discrete data to p;. Tls corresponding marginal
density induced by the forward process at time t can written as p:(X¢) =, P¢(XtjX0)Po(Xo)-

The reverse process which denoises a sample fromt ¥ t 1, and is the time reversal of the simplified
masked forward process, also factorizes over each dimension of a sequence X. The probability
p:(X}_1JX}; Xp) of a reverse transition is given by the following posterior conditioned on X,

Cat(Xi 1; (Xt)) Xé&m
Cat Xi_;; - (I—ar 1)6(M)+(oe 1—ar)d(zp)

l—at

pe(Xi_1jXE x4) = i = m: 3)
t - .
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Under the reverse process once a token transitions out of the masked state for a time t > 0 it remains
in this state for the remainder of the trajectory. The analytical form of the posterior suggests a natural
mean parametrization for a denoiser in a discrete diffusion model, 5 : X" R ¥ ( 4y which
predicts the clean sample at t = 0 by denoising a noisy Xj,
Cat(xj_y; (x})) , X; & m

i . (I—or 1)6(M)+(oe 1—an)p (z4,t)
Cat Xj g, —= T

“

G0 (X5_ 10X o(X(5 1)) =

— .
Xt =m:

Interestingly, the mean parametrization ¢ used in the posterior is equivalent to predicting the concrete
score (Meng et al., 2022) which is the discrete equivalent of the Stein score found in conventional
continuous diffusion models (Zheng et al., 2024). As the number of stepst ¥ 7, training yields a
valid evidence lower bound (ELBO) to the marginal log-likglihood of the data distri%ution log p(Xo),

Z,

d . 1 iVT | i dt:

Tt 1 ; EXt"‘pt(Xt|X0) . 1(XO) g 0(Xta t dt )
Thus, when given access to samples Xg po training an MDM can be seen as optimizing a
weighted cross-entropy loss and is analogous to fitting a (mean-field) variational posterior distribution
Oz,0(XojX¢) = Cat(Xp; ¢(X¢;t)) that matches the first moments of p;(XojX;) and also minimizes

the forward KL divergence Dxr, (p:(XojX:)P: (Xe)]idz,0 (XojX¢ )P (X+)) (Eijkelboom et al., 2024).

log p(xo)

3  POSTERIOR SAMPLING VIA DISCRETE DENOISING POSTERIOR PREDICTION

Given access to a pretrained masked discrete diffusion model p5©(Xo) we wish to sample from the
reward-induced Bayesian posterior distribution ¢(Xo) Z ph* (Xo)R(Xo). We solve this sampling
problem by first defining a time-dependent forward masking fpeocess that progressively adds noise
to o yielding the noisy reward-induced posterior ¢(X:) = = +(X¢JX0) 0(Xo), where we set
+(XeJX0) = pe(XejXo) as it is the same masking process for the pre-trained MDM. Unfortunately,
since pp*(Xo) is an MDM it does not easily provide an exact likelihood. Undeterred we seek to
approximate the reverse process (X;_1jX;) tied to the masking forward process by using another
parametrized model g; g(XojX:) = Cat(Xo; ¢(X¢;t)) which we take to be another MDM.

Matching sub-trajectories. To approximate the reverse process using an MDM we require matching
the denoising trajectory (Xg.;) of the reward-induced posterior ;(Xo;:::;X;—1jX;) across all
masking levels. Assisted in this endeavor, we recall the fact that since pf)* (Xo) is also an MDM, we
have direct access to the pre-trained model’s denoiser. Thus, we can compute any transition density
starting from p}™(X;_1jX;; P(X; t)) to the posterior over the endpoint p{™(XojX;), conditioned on
a partially masked sample X;. We form the sub-trajectory matching problem as an instantiation of a
detailed balance constraint starting from a partially masked sequence X; of a clean starting point Xg:

Qo (Xo; 1115 Xe—1JXe; Ro)Pe(Xe) = ¢(Xo5 1115 Xe—1)Xe)Pe(Xe): (6)
Setting g = 9(X; t) as the MDM’s denoised sample, then ;(Xo;:::; X¢—1jX¢) is defined as,
(Xoi:::: Xe_1jX;) = Py (Xo; 1115 Xe—1jXe)R(X0) _ ;:1 PEe (X5 1iX;: R R(Xo)
t(Xo; 200 Xe—1)X¢ Z..(%) Z..0%)

The detailed balance constraint over sub-trajectories suggests a natural discrete denoising posterior
predictive (DDPP) objective that minimizes the mean squared error of a log-ratio between the
denoising sub-trajectoriﬁs of the amortized MDM sampler and the reward-induced targlet posterior,

LY = Etxe Er(xon) (K100 0o (Xo:t—1jX¢i R0)) 109 pb"* (Xo.4—1j%:) + K3] ; @)

where reward and the log partition function are captured in the constant = log Z,,(X:) log R(Xo).
Interestingly, we can form an equivalent expression for the sub-trajectory loss LPP above by sampling
two intermediate poirﬁs Xgs; Xs—~ in the sub-trajectory (Xo.+), such that 0 <'s <s<t.

i

L = Etxer(xon) [Esxaxs  10g00(Xs—1Xs;Ro)  log P (Xs—yi jXs R0 ) + z )
The proof for this equivalence is presented in §C.3. Note that we sample S; S U[0; t]; U[0; s]
uniformly, and when = 1=T we sample X;_; which is simple to do since the (Xq.;) already
contains this information. Crucially, unlike Eq. 7 the reformulation of the sub-trajectory loss in Eq. 8
is effectively a simulation-free version of Relative Trajectory Balance (RTB) (Venkatraman et al.,
2024). If the approximation ;¢ matches the denoising reward-induced target posterior over all
sub-trajectories then the reverse process of (¢ ¢ can be simulated to draw samples that follow ¢ (Xo).
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Consequently, we term theg  that minimizes thd&DP P objective in Eq. 8 as theetuned MDM
which solves the probabilistic inference task of sampling fraitxo).

In contrast to learning MDMs in typical generative modeling setupsDtb@ P objective requires

the computation of the intractable log partition functiogZ | (x:) evaluated ak:; which is a
component of the term. This observation motivates the design of three concrete learning objectives
for posterior matching, which as a collection we term ENsCRETE DENOISING POSTERIOR
PREDICTION framework. Speci cally, netuningg. under aDDPPframework can be done in the
following algorithms: 1.)DDPPIS which uses a Monte Carlo based importance sampling estimate
to approximatdogZ , in Eq. 8, 2.)DDPRLB that constructs a lower bound RDPP-IS that is
cheaper to evaluate by parameterizingZ |, and 3.)DDPP-KL which uses a discrete gradient
estimator to bypass computihgg Z , at the cost of requiring a differentiable reward—r.eR.

3.1 ESTIMATING THE LOG PARTITION FUNCTION

Inspecting the posterior predictive objective in Eq. 8 we remark that it is a simulation-free stochastic
regression objective which does not require a differentiable reward as the loss coRpuigand not

a gradient of the reward. Consequently, this makes the posterior predictive objective both a scalable
and ef cient objective for ne-tuning large pre-trained MDMs as long the reward model is easy to eval-
uate. Moreover, the posterior predictive objective is alsoféipolicy objective as it can be evaluated
using any partially masked sampbes  p(x:jxo). Practically, this means that ne-tuning can be per-
formed using a replay buffer of samples from a biased dataset, e.g. the original training@@t for

even partially masked sequences that arrive from a different model altogether. Despite its simple form
the posterior predictive objective requires the computation of the log partition function of a partially
masked sequendegZ , which does not have a closed-form expression and must be estimated.

Monte Carlo Estimate oflogZ , with DDPP-IS. A numerical estimate of the log normalization
constant can be obtained by utilizing the trick of using the pre-trained model's denoising posterior
pP"é(XojXt). Speci cally, givenx pt(xt) we obtain a Monte Carlo estimatelofZ | (x;) that

usesM additional s%mples fromo  p (XojXt) to estlma&e the log partition funct|0n

X
logZ"  (x;) =log @ P01 xe aiX)R(X0)A 109 Exg pprepyqin) [R(X0)]
X0 Xt 1
Where in the second equality in the rst line we used the fact that we can approximately jump to
the endpoint of the reverse process directly by using the pretrained model's denoiser toxsample
Conveniently, this MC estimate solely requires obtaining a denoised sample from the pre-trained
MDM which can be ef ciently done as each sample requires a single step as due to the denoising
posterior parametrization of an MDM (Eq. 4). We can further improve the estimation of this log
normalization constant by leveraging importance sampllngo(IS) Wlth a proposal dIStrlbwfm)

PP ORCD) @t X A aXOR(XD)

W(Xg) M j=1 W(XO)
For the IS estimator above it is easy to verify that the optimal proposal distribution for variance
reduction is proportional to the denoising reward-induced target poster{er) /  (XojX¢). Fortu-
nately, this is precisely the distribution that is approximatedbyusing the posterior predictive objec-
tive which motivates the reuse of the netuned model as a suitable proposal(kg) = o (xojxt).
Learning logZ , with DDPP-LB. An alternative to using an MC-based estimatelégyyZ |

to parameterize the log partition function its&if Z\LB jointly with the ¢. and optimize both
using the same posterior predictive objective as rst de ned in Eq. 11. Operationally, this amounts to
including another prediction head for the netuned MDM model and is cheaper to compute than using
an MC-based estimate as we do not reqMreevaluations of the pre-trained model addag Z\'S(xt)

IogZ\'?(xt) = lOg Ex8 w(Xo)

At rst glance, it remains unclear whether a parameterllngZ\LB is a sensible strategy. However,

in the particular case where we choose the proposal distribution to be on- policy by using netuned
MDM w(Xp) = & (XojXt), we can show that the learned log partition function estimate is a lower
bound to the importance sampling estimate. This is formalized in the following proposition below.

Proposition 1. LetlogZ'® andlogZ'® be theM -sample importance sampling estimate using
the proposaby. (XojXt) and learned apprOX|mat|on to the log partition function respectively. Given
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Algorithm 1 Single-step DDPP-IS and DDPP-LB
Input: RewardR(Xo), base MDMpp (X ojXt), sampling policyr (Xo), ne-tuning MDM q (XojXt)
1: while Trainingdo

2: t;Xo U [0; 1]; r(Xo) . Sample time and clean data on or off-policy
: Xt pe(XtjXo) . Construct partially masked sample given clean data
if Importance Samplig Z (x;) then . Log Partition Function Estimation Strategy
P pre,
— IS — M pPe(xhix )R (xh)
logZ (x¢):=log 2’5 (x;)=log # % RS N

~logZ' | (xt) :=log Z*B (xy)

pre,

2
LPP="logq; (xojx:) logpf“(xojxt) logR(x0)+log Z' (x:) ,

Updaté ; r L"P)

3

4

5

6: else
7

8

9

10: Return g

a partially masked sampbe,  p;(x;) the optimal learned approximation is a lower bound to the
importance sampling estimate with a xed proposgal (XojXt) and the following inequality holds:

logZ*? () logZ'$(x.): (9)

The proof for Eq. 1 is provided in 8C.1. We highlight that the lower bound becomes equality at the
optimal proposaty. (XojXt) /  ¢(XojX¢). Learninglog Z‘LB has the bene t of amortization as
the same network can be reused for all partially masked samplesp;(X¢), across all levels of

masking. In addition, over the course of training, the learned estﬂm@é‘-B becomes a better
estimate for the true log partition function. In practice, it suf ces to take a single gradient step to

optimizelog Z"—E rather than optimizing till convergence. As a result, no additional overhead needs
to be incurred, and the learned estimate is averaged over a batch of noisy sBrmpfes g\

3.2 S9NGLE-STEP POSTERIOR SAMPLING WITH ENDPOINT PREDICTION

The sub-trajectory matching objective usedPPP-IS andDDPP-LB can be simplied to a
faster single-step objective at the cost of paying a discretization error by not using ner-grained
trajectory information. Speci cally, we note that for MDMs the denoising posterior over end-
pointsg. (XojXt) Calxp; (X¢;t)) can be approximately computedthout unrolling the sub-
trajectory. This fact also holds for the pre-trained MDM as the model parametrization implies
pP(xojxt)  Calxo; (Xt;t)). For the single-step objective we assume the parameterized denois-
ers exactly match the posteriors. Leveraging this enables us to express the denoising reward-induced
target posterior using a simple expression that directly uses the pre-trained model's denoising posterior
pP™(xojx1) as follows:
Pt(Xt) o Pt(XtjXo)PP"(X0)R(X0) pr e (XojXt)R(Xo) .
Px) o POXOPRXOR(K))  Z (x0)
The choice of parameterizirgg (XojXt) as another MDM offers a prescriptive strategy for sampling
from the desired targety by learning to match the denoising reward-induced posterior at the pre-
dicted endpoint { (Xojxt). This simpli es the expression dDPPde ned over trajectories in Eq. 8

to a single point, nazmely the predicted endpoigitof each MDM. This objective is pregsented below:
2

t(XojXt) = (10)

LPP= Eyxgm, 3 109G (XoiX:) jogpf"“(xaix) _IogR(xo) +log Z , (x) £ ay
log t(xojxt) 2
As done previously, we can employ any estimation strategy to compute the log partition func-
tion Eg. 11. We note in many cases, such as when the sequence length of the trajectory is small to

moderate, the single-step objective may be an attractive alternative to the sub-trajectory variants
of DDPP. Algorithm 1 provides a detailed description of the single-step version of DDPP.

3.3 DDPP-KL: RSTERIOR PREDICTION VIA REVERSEKL MINIMIZATION

The single-step posterior prediction objective as de ned using the loss functioim Eq. 11 requires
the estimation ofogZ Lﬁ which introduces a source of variance in loss estimates that may sub-
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optimally in uence learning dynamics of the ne-tuned model. In settings where the reward model
is differentiable, we can bypass computing Z Lf‘. altogether by learning to match the denoising
reward-induced posterior under theverseKL divergence. Note that thierward KL divergence

is inapplicable here as we do not have samples frgm-i.e. a dataset. To see this, we de ne a
variational posterior matching problem using the reverse KL divergence that takes the following form:

L := Dre (o (Xolx)Pe(X0)ii «(Xojxe)pr(x0)): (12)

Unlike conventional generative modeling using the reverse KL divergence which solely matches
distributions at = 0 the problem de nition in Eq. 12 de nes a series of reverse KL minimization
problems through time. In this manner, the reverse KL matches distributions annealed through time
and can be used to derive a stochastic regression objective for ne-tuning,

LK = Egxom, loga (Xojxi) logpf(xojx:) logR(xo) + C: (13)
The expectation in Eq. 13, likDPP-IS andDDPP-LB is taken uniformly with respect to time
t U [0;1]. However, unlike the previous estimators, clean data needed to coiffute drawn
purely on-policy by simulating the ne-tuning modeb . (Xo), which then also allows us to
craft a noisy sample using the masking forward proagss p; (X¢jXo). Additionally, in Eqg. 13 the
constanC = E:x,x,[l0gZ ,(Xt)] does not depend on the—and as a result is also independent
of the samplexy o (Xo). This results in the constaft being zero when computing the gradient
of the lossr LX! and as a result we can safely disregard computig@ , entirely.

As samplesxg are procured on-policy to compute the gradient of the los& K- we require
backpropagating through the stochastic samplinggofvhich comes from simulating the ne-tuning

MDM q. (Xo). Fortunately, we can make use of modern discrete gradient estimators which provide
a biased but low variance gradient estimate enabling us to corhffiteSpeci cally, we opt to use

the scalable 2nd ord®EINMAX estimator (Liu et al., 2024) which estimates the discrete gradient up

to second-order terms in a Taylor approximation of the actual gradient. We note thatDBIRE-IS

and DDPP-LB this new loss that minimizes the reverse KL divergeh& requires the reward
modelR to be differentiable and as a result is less broadly applicable than compufifné¢towever,

in practice, learning can be faster as we make use of the information afforded to us by the gradient
r R as well as the fact that the objective does not need to estimate the log partition function.

In appendix 8C.2 we provide the exact algorithm Alg. 2 to compute the reverse KL objective. We
further show how using a gradient estimator IREINMAX can be used to derive ef cient gradient
estimation for a more general class of problems of sampling frgfro) = R(xo)=Z ,, as well as

the main ne-tuning setting for matching the denoising reward-induced posterior as de ned in Eg. 10.

Table 1:Overview of posterior sampling methods
4 EXPERIMENTS

Method | Model calls /inf. step  Model calls / train step ~ Sim. Free

We investigate the application @DPP10 @  5iaee guidanc

variety of discrete generative modeling settingsTe |
We provide the full experimental details in §D popp-is

. . DPP-LB
and present our main experimental results next.

Baselines Throughout our experiments, we rely on four principal baselines in: sampling from the
pre-trained MDM model, Best-of-N sampling (Stiennon et al., 2020), Relative Trajectory Balance
(RTB) (Venkatraman et al., 2024), and SVDD (Li et al., 2024) which is a concurrent inference time
technique for steering diffusion models. Best-of-N represents a computationally expensive baseline
but is guaranteed to produce samples frggnas such we use this as an upper bound on performance in
terms of reward obtained & ! 1  (Beirami et al., 2024). RTB is a GFlowNet (Bengio et al., 2023;
Madan et al., 2022; Lahlou et al., 2023) that requires simulating the entire diffusion trajectory. For
image settings with differentiable reward, we also include discrete guidance as a baseline (Nisonoff
et al., 2024). In Table 1 we illustrate the computational differences between DDPP and baselines.

RPRRRRZ
e
WWwWwww

4.1 SYNTHETIC EXPERIMENTS

We consider a synthetic task of learning to sample from a target distribution on a 2D discrete grid and
netuning an MDM on binarized MNIST. This synthetic setting tests all DDPP variations with chosen
baselines, presenting qualitative results in Figure 6, Figure 4 and quantitative results in Table 2.

Grid Experiment. We de ne a prior density} © over the discrete 2-dimensiona8 128grid, as

showcased in Figure 6(a) where the probability mass corresponding to eackgision if the color is
yellow. The goal is to sample from the product distribution as outlined in Equation 1, which in this case
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(a) Prior Density  (b) Target Density (c) DDPP-IS (d) DDPP-LB (e) DDPP-KL

Figure 1:Samples generated by ne-tuning a masked diffusion model to sample from the lower half of its prior
distribution. Sampleg, in this setting are 2-dimensional, with a vocabulary siz&28.

is de ned to drop the modes igf © which are at the top half of the grid, as visualized in Figure 6(b).
These results show that all three variants of DDPP effectively learn to sample from this target.

MNIST . We netune MDMs to generate even MNIST digits. As observed in Table 2 we nd that all
three variants oD DPPmatch or outperform the base pre-trained model and RTB in all metrics, with
DDPPKL being the best. In comparison to the concurrent work of SVDD, we nd that it outperforms
DDPPin averagdogR but is worse in sample-based metrics such as class conditional FLD (Jiraler-
spong et al., 2023) which measures the overall quality, diversity and generalizability of generated
samples and class conditional BPD. We further report generated samples in Figure 4 located in 8D.3.

4.2 BXEL-LEVEL IMAGE MODELLING Table 2: Fine-tuning to produce only even digits on
binarized MNIST. We report the mean performance over

We ne-tune MDMSs on order-agnostic image3 runs for thelog R, FLD, and BPD metrics.

data, discretizing pixels in 64 64 downsam- —crericr  TogR()* FLD# Y
pled CelebA images (Liu et al., 2018) t0 &gase model 2690 — 3389 — 0130 —
vocabulary of256 tokens. As there are no SvbD -003 001 3419 095 —

. . . Guidance (scalé) -25.24 0.26 34.67 0.67 0.171 0.001
publicly available pre-trained MDM models We Guidance (scals) ~ -23.21 021 37.33 0.87 0174 0.001
tra|n our own MDM by mode“ng the raw p|Xe| Guidance (scal&00) -9.32 0.24 7219 043 0.147 0.001

i ite-nar-di RTB -18.66 2.45 4597 0.89 0.128 0.000
space and achievess _b'ts per-dim (_BPD) ON  Dppps pury 514 124 3311 071 0.130 0.000
CelebA. Our full experimental setup is outlined borp-LB eurs -5.68 0.34 3376 0.90 0.128 0.000

in §D3 For ne—tuning, we consider Steering DDPP-KL (ours) -3.13 0.06 3175 0.51 0.129 0.000

a pre-trained MDM usinddDPP-LB as it is the

most computationally cheap method with a class-conditional reward based on an auxiliary classi er.
Speci cally, we steer the generative model to generate human faces with blond hair. For quantitative
metrics, we report the mean log reward obtained, and BPD in Figure 3 as well as selected generated
samples. Our quantitative results show that our proposed v@RP-LB signi cantly outperforms

all other baselines in obtaining the highest reward. We also ob8HDRP obtains BPD values that

are within the range of the base model while being worse than RTB. We further nd visual samples
produced byDDPPto have the highest delity faces with blond hair, matching our ne-tuning goal.

4.3 PROTEIN SEQUENCE MODELLING

Table 3:In-silico results for protein generation tasks. We report the mean result for a metric with standard
deviation across three seeds. DDPP-LB performs well across designability metrics (pLDDT and pTM) while
simultaneously performing best on task speci ¢ metricssheet % and TM-Score).

High -sheet-content protein generation Protein shrinking
-sheet %' pLDDT " pTM ™" logR(xo) " | SS-KL# TM-Score" pLDDT" pT™M ™" logR(Xo) "
Base Model 0.111 0.121 0.724 0.144 0.584 0.226 2.070 0.749| 3.040 3.043 0.245 0.058 0.724 0.144 0.584 0.226 0.490 0.116

Best-of-10  0.280 0.093 0.812 0.033 0.786 0.035 3.212 0.371| 1.621 2.804 0.345 0.049 0.786 0.023 0.737 0.097 0.690 0.098
SVDD 0.114 0.148 0.484 0.134 0.349 0.174 1.669 0.907| 3.353 2.913 0.337 0.042 0.492 0.131 0.368 0.171 0.673 0.083

RTB 0.319 0.218 0.806 0.059 0.767 0.101 3.386 1.061| 2.193 2.724 0.290 0.056 0.797 0.056 0.747 0.093 0.581 0.112
DDPP-LB  0.436 0.037 0.897 0.027 0.806 0.029 3.703 0.186| 0.640 1.793 0.361 0.047 0.768 0.048 0.747 0.063 0.722 0.094

Task description. We next applyDDPPto generate high-quality protein sequences by ne-tuning
discrete diffusion protein language models (DPLM) (Wang et al., 2024). Speci cally, we address two
experimentally relevant tasks where vanilla DPLMs underperform. We outline exact reward functions
and experimental setup in 8D.2. First, we ne-tune DPLM to generate soluble protein sequences with
high -sheet content. The second task, protein shrinking, involves miniaturizing known proteins by
generating shorter sequences that preserve key structural features, using the TM-align score as the
reward metric (Devkota et al., 2024). We evaluate performance by measuring designability metrics
(ESMFold pLDDT and pTM) as well as task-speci ¢ metricsgheet percent and TM-Score). We

also provide wet-lab validation for our best designs in the designakleeet task. We provide a
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Figure 2: Left: SDS-PAGE of elution fractions from histidine tag puri cation of DDPP-designed protein
constructs and positive controls following Coomassie blue staining. All DDPP-designed constructs are between
7.8-8.3 kDa. Predicted molecular weights of positive controls 5KPH, 1QYS, 1UBQ, and 1BTB are 10 kDa,
12 kDa, 8.5 kDa, and 10 kDa, respectively. Recombinant protein bands for MDM-designed sequences are
indicated with red arrows and relevant ladder references are labeled with their molecular Wiigle: Folded
structures generated BDPP -sheet ne-tuningRight: Distribution of -sheets generated by each method.

deeper description of evaluation metrics and experimental setup in 8D.2. Finally, as ESMFold is itself
expensive to query and, in particular, non-differentiable we test our fastest method—DDPP-LB.

Main results. In-silico validation shows that DDPP-LB outperforms all baselines for the designable
-sheet task, generating better sequences across all metrics. In particular DDPP achieves a

signi cantly higher -sheet percentage than baseline methods while maintaining high designability
as measured by ESMFold (namely, high pLDDT and pTM). We further observe that for the
miniaturization task, DDPP-LB outperforms all baselines in shrinking ribonuclease proteins,
removing 34 residues while maintaining high structural similarity (lowest SS-KL of 0.64 and highest
TM-Score of 0.361), and high structural quality with high pTM and competitive pLDDT. This
demonstrates DDPP-LB's effectiveness in generating compact yet structurally faithful proteins.

Experimental validation. We selected 6 designs fromMmDPP netuned DPLM for wet-lab
validation, based on AlphaFold2 pLDDT/pTM scores. Sequences and structures were clustered using
MMseqs and Foldseek (van Kempen et al., 2022; Steinegger and S6ding, 2017), with two represen-
tative sequences selected from each cluster. 4 positive controls consisting of two previously validated
de novo designed proteins (PDB: 5KPH, 1QYS) and two other stable proteins, ubiquitin and Barstar
(PDB: 1UBQ, 1BTB) were included as a comparison. We expressed the designed proteins, including
the controls in E. coli, and puri ed them using histidine-tag puri cation, after which we assessed
expression level and purity via SDS-PAGE, followed by Coomassie staining. Our results demonstrate
strong overexpression and ef cient puri cation of the two previously validated de novo controls
and moderate overexpression of ubiquitin and barstar controls (Figure 2). Puri ed protein can also
be observed for four out of the six DDPP-derived constructs, though with comparatively lower yields
than the positive controls (Figure 2). One potential cause of these relatively low yields may be the
sizeable accumulation of DDPP-derived proteins in the insoluble fraction of the cell lysate. As such,
it is likely that further optimization of the expression and puri cation methods (e.g., longer induction
time or lower induction temperatures) may lead to signi cant improvements to overall soluble yields.

4.4 TEXT

Task description. We consider two text tasks: (i) toxic story generation using the Tinystories dataset
(Eldan and Li, 2023), and (ii) product review generation using Amazon data (Hou et al., 2024). For
both tasks, we start by ne-tuning a pre-trained MDM model (Sahoo et al., 2024) in a supervised
ne-tuning manner on both datasets before running online ne-tuning. As reward models, we use
RoBERTa (Liu, 2019) ne-tuned for toxicity classi cation, and BERT (Devlin, 2018), ne-tuned

for Amazon review sentiment analysis, respectively. Our experiments aim to demonstrate our
method's ability to induce behaviors that are uncommon in the base pre-trained model, speci cally in
generating toxic content in product reviews. Full experimental details are provided in Appendix §D.4.

Main results. In Table 4 we report the average log reward as well as perplexity (Gen PPL) of the
generated samples as measured by GPT-2 (Radford et al., 2019). We DfER-LB is the most
effective variant oDDPP and achieves signi cantly higher log reward compared to SVDD and
RTB for both tasks. We further observe that all methods achieve comparable Gen PPL suggesting
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Algorithm # Metric ! logR(xp) " BPD#

Base -57.31 — 267 —
SvDD -13.27 12.38 —

Guidance (scalé) -91.10 1.63 3.20 0.01
Guidance (scalb) -62.75 0.25 5.39 0.01
Guidance (scal@00) -41.51 0.02 5.15 0.00
RTB -60.28 1.74 2.04 0.00
DDPP-LB (ourg -6.94 139 262 0.15

Figure 3:Left: Results for discrete image modeling over raw pixel values on Cel6A (64). We report the
mean performance @DPPand baselines separated into inference-based (top) and amortized (botto®) over
runs for thelog R and class-BPD metricRight: Generated samples from Base, SVDD, RTB, &aPP-LB.

that generated responses are uent; however, samples@DRAP-LB adheres better to the task
speci cation. We refer to 8D.4.1 and 8D.4.2 for generated samples from DDPP.

Table 4:Text experiments with log reward and Gen PPL results averagedoyer Best of 10 draws samples
pre

directly frompg (Xo) we instead bold the ne-tuning method whose Gen PPL is lowest.

Dataset Tinystories Amazon reviews
Algorithm # Metric ! logR(x0) " Gen PPL# logR(xo) " Gen PPL#
Best 0of10 93.25 0.17 15.94 0.03 -103.05 0.25 124.45 1.02
SVDD 146.95 1.08 20.35 0.03 -27.48 1091 165.86 1.22
RTB 107.83 3.08 18.53 0.55 -35.22 16.03 160.54 12.19
DDPP-IS purs) 16345 7.06 20.15 0.30 105.16 2.41 152.85 1.64
DDPP-LB (ourg 205.76 3.88 19.60 0.69 152.08 34.01 167.25 27.33

5 RELATED WORKS

Discrete diffusion. The prevailing paradigms for diffusion over discrete spaces can be broadly
categorized into 1.) continuous diffusion in a latent or reparametrized space by rst transforming
the initial discrete data (Li et al., 2022; Chen et al., 2022; Davis et al., 2024; Cheng et al., 2024), and
2.) de ning diffusion using discrete analogs of score approximation (Meng et al., 2022; Lou et al.,
2023). The latter approach can also be described using the theoretical framework of Continuous-time
Markov Chains (CTMC) (Austin et al., 2021; Campbell et al., 2022; 2024). Closest to our setting we
consider a speci ¢ instantiation of discrete diffusion that simpli es the CTMC framework by using

a masked forward process (Sahoo et al., 2024; Shi et al., 2024; Zhao et al., 2024a; Gat et al., 2024).

Finetuning as sampling The task of ne-tuning generative models under reward models can be
viewed as a sampling problem and encompasses conventional RLHF (Uehara et al., 2024a; Black et al.,
2023; Fan et al., 2024; Dong et al., 2023). A simple but expensive method to sample from the reward-
induced Bayesian posterior distribution is besNosampling (Stiennon et al., 2020), which provably
samples from the correct distribution as the number of samples from the base pre-trained model grows,
N 'l (Beiramietal., 2024; Gao et al., 2023; Ferbach et al., 2024). Alternatively, the sampling
perspective has been explored in the discrete setting to ne-tune autoregressive models (Zhao et al.,
2024a; Hu et al., 2023), and diffusion models (Uehara et al., 2024b; Venkatraman et al., 2024; Zhao
etal., 2024a). Finally, inference time techniques represent the most prominent approach to conditional
sampling (Ho and Salimans, 2022; Dhariwal and Nichol, 2021; Li et al., 2024; Nisonoff et al., 2024).

6 CONCLUSION

In this paper, we preseBtiISCRETEDENOISING POSTERIORPREDICTION a novel framework to steer
Masked Discrete Diffusion Models by viewing it as a problem of sampling from a Bayesian posterior.
We introduced three concrete training strategies to instantiate our framewDEx#i1S, DDPP-LB,
andDDPPRKL and apply them to modeling synthetic data, pixel-level image modeling, ne-tuning
protein MDMs to increase secondary structure diversity, and steering MDMSs on language to match
human sentiment. We nd th&DPPnot only is able to optimize an amortized sampler to closely
match the reward-induced Bayesian posterior but it has a good agreement in other sample quality
metrics—without severely compromising generated sample quality. An interesting direction for
future work is to understand how to balance optimizatioD&fP P-LB and strategies to selecting

10
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A BROADERIMPACT

Our proposedISCRETEDENOISING POSTERIORPREDICTION is a tailored approach to steering

and ne-tuning Masked Diffusion Models. At present, MDMs are an emergent category of discrete
generative models that have general-purpose modeling capabilities in a variety of domains including
language modeling, sequence-based drug design, and discrete modeling of graphs. Consequently, we
believeDDPPhas potential use in various practical use cases. For instance, like current RLHF tech-
niques applied to modern autoregressive LLMs, future scaled MDMs on text datasets might be tuned to
promote harmful behavior and toxic content. Moreover, appAngCRETEDENOISING POSTERIOR
PREDICTIONin drug design use cases has the potential to create in-silico sample of protein sequences
that may have biologically potent negative externalities. We do, however, make the distinction that
such arisk is speculative at this stage given the large complexities of translating in-silico designs to
actual synthesized biomolecules. As a result, we encourage practitioners who seek to ne-tune MDMs
using DDPP to exercise due caution when applying our proposed techniques to actual use cases.

Ethical statement As part of qualitatively evaluatin DPP, this paper includes generated samples

of text. We highlight that the set of examples may contain potentially disturbing, harmful, or upsetting
examples, covering a variety of sensitive topics like discriminatory language, descriptions of harm, and
misinformation, among other high-risk categories. Its primary purpose is to advance research in under-
standing the impact ddDPPfrom a more interpretable lens. It is not advised to train future MDMs on

such generated samples in order to prevent further propagation of undesirable content and behaviors.

B ADDITIONAL RELATED WORK

Sampling proportional to energy. Our approach can be closely linked to learning to sample
proportional to a target probability, as in our setup we aim to approximate sampling proportional
to the energy} (jx¢)R() for any pointx; at any timet. This has been an avenue of research

for a number of works in continuous time (Bengio et al., 2021; 2023; Malkin et al., 2022; Lahlou

et al., 2023; Akhound-Sadegh et al., 2024; Sendera et al., 2024; De Bortoli et al., 2024), in Bayesian
posterior inference where the energy is de ned by the product of likelihood and prior (Mittal et al.,
2023), as well as posterior inference in settings where we even do not have access to energy function
but only to a simulator (Radev et al., 2020; Wildberger et al., 2024; Geffner et al., 2023).

C THEORETICAL RESULTS

C.1 PRoOOF OFPrROPOSITION1

Before proving proposition 1 we rst prove a useful Lemma that states the optimal log partition
functionlogZ | (x.) which is the learning goal for a parameterized apprdagf’ ,. (x.).

Lemma 1. Given a sample;  pi(X¢jXo) and the denoising posterior distributiap (Xojxt),

a local minimizer for estimate for the log partition functidog 2! . using N samples from
Xo G (Xojxt) is given by:

X i i

2 14
N & (xbixo) ()

Proof. By de nition the log partition function is a constant, let that constanidgeZ |, (x;) = C.
Then the loss in Eq. 11 is a quadratioGn

L = Ex, r(xo) 109G (Xojx:)+ C logpi(xojx:) logR(xo)ii3 (15)
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For a batch oN samples ok, . (Xojxt), we nd a locally optimal constan€ (local minima)
by taking the gradient of Eq. 15 and settin@.tin more detail we have,

1 X . .
O=rcy (logq; (Xojxi)+ C  logp(xojxt) log R(X0))? (16)
o W - N .
0=3 loga;, (Xpjx¢)+ C  logp(Xpixt) logR(xgp) (17)
i
o N N Ny .
0=2C+ & logg; (xpixt) logpt(xpjxt) logR(xp) (18)
1 X o (xhix:)
0=C+ — log ——+ 20%) 19
N9 i Oix)R0E) 19
1 X P (Xbixt)R(xb)
C= - log PRZ0lZ/T%0) 20
N & (xbixo) €0
O

Using Lemma 1 we now prove Proposition 1, stated again below for convenience.

Proposition 1. Letlog Z"? andlog Z\LE be theM -sample importance sampling estimate using

the proposaly. (XojXt) and learned approximation to the log partition function respectively. Given
a partially masked sampbe,  p;(X{) the optimal learned approximation is a lower bound to the
importance sampling estimate with a xed proposgal (XojX¢) and the following inequality holds:

10gZ"® (x1) logZ'S(x): ©)

Proof. We optimizelog Z"—E (x¢) using the loss de ned in Eq. 11. Using Lemma 1 we know the
analytic expression for the locally optimal estimate is giveridgyZ  (x). Plugging this into the
de nition of the log partition function we get,

Pt (Xo0jXt)R(Xo)

IOgZ\LtB; (Xt): EXO G (XojXt) |Og q; (XOle) (21)
~ pr(Xojxt)R(Xo)
IOgEQt; (Xojxt) Q. (XOth) (22)
=log 2"'3(xy) (23)
The lower bound turns into equality at the optimal propagalxojx:) / Pt (XojXt)R(Xo).
O

C.2 EBEsTIMATING DDPP-KLWITH REINMAX

We rst provide an algorithmic description below of training usibp PP-KL. We rst highlight
how the reverse KL objective can be applied to a more general setting beyond just ne-tuning before
turning to the exact setting of the main paper.

Algorithm 2 DDPP-KL
Input: Differentiable rewardR (xo), base MDMp§®(xojx¢), ne-tuning MDM g (Xojxt), Num sample&
1: while Trainingdo

2: t; xo U [0; 1]; a(Xo) . Sample time and clean data on-policy from the ne-tuning MDM
3: Xt Pt(XtjXo) . Construct a partially masked sample given clean data
4 fRHg%, p% (jxt) . Reparametrized Sampling of clean data
5 L= &0 K, loga (Rojx:) logpi(Roix:) logR(Rp)

6:| r LK = p Reinmax KL . Use the Reinmax discrete gradient estimator
7 Updaté ; r L%\)

8: Return g
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Non- netuning Case. In this appendix, we study tHREINMAX gradient estimator for the general
problem of sampling from the following distribution:

otxo) 1 )

Gradient of LK. We can decompose the gradient into the following terms due to the linearity of
expectations:

: (24)

L{" = Egxon, 1090 (Xoixt)]  Egxom, [10g t(Xoix)]

= Li+ L2 (25)
We again highlight the fact that the expectation is taken using the following distributions
t; Xo; Xt U [0; 1], q(Xo); pt (XtjXo). As a resultxg is drawn on-policy and is a stochastic variable
that needs gradient estimation sirpes the parameterized distribution. Furthermore, all terms that
usethis samplex inside the expectation are affected by this gradient computation.

Taking the gradient of each term respectively. The gradient bf'dé:
r Li=r (Egxox [109G; (XojX0)])

Rein-Max

Etxo a (xo)ixe pe(xiixo) T (logq; (Xojxt)) : (26)

The gradient of of. 2 is:
r Lt2 r (Et;xo;x( [IOg t(XOth)])
r gEt;xO;x([zbgpt(thXo) log o(xo) +log rO(Xt)])

131
X
=1 @Egun 4 logp(xijxo) ogR(xo)+log @ ((xijxYR(XQYASA : (27)

x3
To use the Reinmax gradient estimator we must com@ie)=@ zwheref is the function inside
the expectatioft, [f (z)]. We now make use of the following facts:

(F1) Analytic expression ofr y, logp:(XtjXo). For simplicity of presentation, we focus on a single
tokenxg in a sequence but the result remains true for the entire sequgndeecall in the
discrete setting of masked diffusion modpls= Cat(xo; Q:Xt), which allows us to write:

i)

r o Ca(xh; Qixt)
= 0 h - 29
Cal(xg; QtXt) (29)
M, (<G Qext)
=0 - - - 30
Xg' Quxi %0
ol s xbhi + (1 )KL emi)
- thhxhi +(1 ) eni 5D
- Xt (32)

Xl + (1 e’
(F2) Differentiability of the reward r «,R(Xp). If we assume the reward is differentiable we can
exploit the same trick to write:
I xo R(XO) .
R(Xo)

Note that the nal term in Eq. 27 does not depend on the realization of the sampleq(xojx;)
and thus its gradient in Rein-max@s This enables us to write the approximate gradient as:

I L? Eexon[r *™™ ( logpi(xiixo) logR(x0))] "
. r FER (Xo)
X xhi+ (1 ) eni R(Xo)

r xo l0gR(X0) = (33)

(34)

= Etxoix

18



Published as a conference paper at ICLR 2025

The rst term in the equation has a closed-form expression for the gradient but is still a stochastic
gradient since it depends ey g (Xo).

Finetuning Case In the ne-tuning setting we aim to sample from the following Bayesian posterior:

pre
olxo) /P xORE)

For MDMs the likelihood under the modg§ (xo) is intractable to evaluate and leads to a modi ed
objective for gradient estimation witheRuMAX in LK- in Eq. 25:

r L{=r1 (Etxox [109 t(XojX1)])
=1 Euxox o 10gp"(Xoixt)  logR(xo) +log Z  (x1) i
=1 Egxoxe  logpi™(xojxt) logR(xo) + log Exg p{”e(xojx[)[R(Xg)] : (36)
Note that in the equation above we can evaluate the log partition function using samples drawn from
the denoising posterior of the pre-trained moxi@l pf“(xojx;) andnot the on-policy samples

Xo g (Xp). Thus this term is a constant when we compute the gradient. Thus we have,

(35)

ro L2 r Renmax g logpM(xejx¢) logR(xo) : (37)

C.3 EQUIVALENCE OF SUB-TRAJECTORY OBJECTIVES

In this appendix, we detail how to compute an ef cient approximation of the loss function that is
inspired by the KL divergence between sub-trajectories as found in the GFlowNet literature but
adapted for MDMs.

Consider the trajectory of a sequencéxg.;) = X1 ! ! Xt ! Xt 1! :i:Xg. We seek to
minimize the joint distribution over the (sub)-trajectories conditioned on a partially masked sample
a (XojiiniXe X, (X )pe(Xe) = 1(Xo; it Xe X)) p(X¢): (38)
Here (X1;:::;X¢ 1jXt;Xo) is de ned as,
ree, ... H
e e () = PO ORG) (39
L B0 ;i AE9R () .
Z (xt)
We minimize the following KL divergence,
DL (9 (Xo; 115 Xe aiXe; Ro)Pe(Xe)i] ¢(Xos 5 Xe 1Xe)P(Xt)): (41)
Here we used the convention thg = (x¢;t) and®b® = P®(x;t). The KL between path

measures aIRng the sub-trajectory shares the same optimum as the following loss iobjective:

L = Etxe E (xo[kl0gq (Xo; 115Xt 1iXtiR0))  logpf (Xo;::15Xe 1jX) + K]

h h x i
= Etxe E (x00) logg (Xj 1jXjiRo) logp{(X; 1;ixj;RE%)+ , (42)
j=1
h xt )i
= Et;xt; (Xo:t) |qu (Xs sz;ko) Ing{)re(Xs §J'Xs§*8re)+
h st i

. . 2
= Btx; (o) tEsxaxs 1090 (Xs  jXs;Ro) log (X ;st;kgre)"' , 1 (43)

In the last equation we de ne the constant ( logR(Xg) +log Z |, (Xt))=t and use the fact
that our notation convention uspéX = x) = p(x) for discrete random variables. Now we make
the observation that for arg/< t we have effectively picked an endpoint over the trajectory. More
preciselys U [0;t], which also allows us to sampie  p:(XsjXo), in an analogous manner to
howXx; is constructed.
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D ADDITIONAL EXPERIMENTAL DETAILS

All experiments were performed on a shared heterogenous high-performance computing cluster.
This cluster is primarily composed of GPU nodes with RTX8000, V100, A100, L40S, and H100
NVIDIA GPUs. We brie y note a trick used across a number of our experiment®foPP-LB
described as warming UpgZ(x;). We found that early iterations of traininrgDPP-LB could

be somewhat unstable as the parameterized normalizing constant was not calibrated to a proper range
given the pre-trained model and reward function. As such, we found that warmitog dp(x;)

for some number of steps at the beginning of training by only allowing gradient ow through the
logZ;(x;) term helped stabilize training and improve overall performance. For the runs on which
warming uplog Z(x;) was utilized, we resume normal training (i.e., allowing gradient ow through

the ne-tuned denoisesindlog Z; (x:)) after the warmup period has concluded. For all experiments
with DDPP-LB we used another separate, small DiT to parameteridedizg (x;) prediction.

D.1 SYNTHETIC EXPERIMENTS

Two synthetic tasks were performed: (1) sampling from a posterior over a 2 dimensional grid, and (2)
ne-tuning on binarized MNIST. In both cases a 90 million parameter MDM model was trained on
samples from the prior distribution, with the same DiT architecture as in Sahoo et al. (2024).

D.1.1 GRID EXPERIMENT

space which assigns a uniform probability for tokens falling inside one of the 16 evenly spaced
squares, and a near-zero probability outside this. This prior distribution is depicted in Figure 6(a).
Pre-training was done using the Adam optimizer, with , = f0:9;0:999, and a learning rate of

3e 4.

The reward functiorR(x) = 0 for x3 < 64, andR(xo) = 1 for x}  64. This results in a
ne-tuning target/' R(Xq)p°*®(xo) which selects out only the squares in the lower half of the grid.
This product distribution is visualized in Figure 6(b).

For ne-tuning we train the model using our loss-functions with the Adam optimizer, using a learning
rate ofde 3, 1; 2 = f0:9;0:999, and a weight decay dfacross all methodODPPIS used

16 samples to estimate the partition function. Training is done using a replay buffer populated with
pointsxo sampled on policy from the model, as well as off-policy points from the prior distribution,
added to the buffer everd00training steps. A batch @4 is used.

D.1.2 MNIST

This task consisted of generating binarized MNIST digg<2 f 0; 19?8 28. The priorp°"é(xg) in
this case is the MNIST data distribution. For pre-training, the Adam optimizer is used with a learning
rate ofde 3, 1; 2= f0:9;0:999 and a weight decay df.

This MDM is ne—tulq)ed to produce even digits. More precisely, the reward functid(ig) =
p(Evenj xo) = iz0:2:4:6:8P(Y = 1] Xo) , withp(y = i j Xo) being obtained from a
pretrained MNIST classi er (LeNet 5 in this case). The inverse-temperatuseset to5 for all
experiments.

For ne-tuning with our methods, we use Adam with a learning ratdef 5and ;; , =
f0:9;0:999. Training is done with a batch-size 66. Samples are drawn from a replay-buffer
populated with only on-policy samples. Method speci ¢ hyperparameters include:

» DDPP-IS: the importance sampling estimate is done Witkamples
* DDPP-LB: alearning rate dfe  3is used for network layers estimatifgg Z ,
» DDPP-KL: The KL objective pek; is computed using samples

RTB is trained with a learning rate 68 5, with weight decay:01, on trajectories of lengtB2
with a batch size 08. For training,30% of the steps are detached. The smaller batch-size is chosen
to tthe training on 80GB of GPU memory.

SVDD usesl0 particles in each inference step.
For all methods (including baselines), inference is done t2Bsteps.
Additional information on computation of metrics is included in D.3.1.
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D.1.3 MNIST SAMPLES

Samples from our methods, as well as the pretrained model, are shown in Figure 4.

D.2 PROTEIN SEQUENCES

Protein design involves the creation of novel protein sequences that adopt speci ¢ structures and
perform desired functions. This is a critical eld in synthetic biology and biotechnology, as it enables
the rational engineering of proteins with enhanced stability, novel functionalities, or improved
therapeutic properties. Advances in machine learning-based models, such as protein language
models (pLMs), have enabled rapid exploration of protein sequence space, making de novo protein
design more feasible and versatile. However, current pLMs struggle in generating realistic sequences
which satisfy certain criteria, and we study usb®PPto netune DPLM to generate high-scoring
proteins given a reward function.

D.2.1 IN-SILICO TASKS

In task 1, we ne-tune the DPLM model to generate designable protein sequences that optimize
for several critical features, including high predicted template modeling (pTM) and predicted local
distance difference test (pLDDT) scores from ESMFold, reduced exposed hydrophobic residues,
high sequence entropy, and an increased proportiongifeet content (Hie et al., 2022). These
optimizations are captured in the reward functi®ongiven by:

logR = Wytm PTM + Wpippt PLDDT + Wgheet Sheet%
Where the terms represent:
e pTM andpLDDT: Structural con dence scores from ESMFold, measuring global and local
accuracy, respectively.

Sheet% The proportion of residues predicted to forrsheets, determined by DSSP (Kab-
sch and Sander, 1983).

H (s): Sequence entropy, de ned as:

X X
H(s) = pi(a) log pi (a);
i=1 a
wherelL is the length of the sequence gnda) is the probability of amino acid at position
i.

» Exposed_Hpho%Percentage of hydrophobic residues exposed on the surface, calculated
based on solvent-accessible surface area.

The weights for these features are set as follows:

Wpotm =1, WpippT = 1;  Wsheet= 45,  Wentropy = 0:8;  Whpho = 0:25:

As the scale of the various reward terms are non-uniform we selected the reward weights to weight
all rewards similarly besides the sheet percent reward which is weighted higher. Fosltieet task

we found that both RTB and DDPP faced issues with mode collapse. After investigating the protein
structures generated by base DPLM we found that the base model is only capable of generating a
small number of motifs (in particular, over 2k samples from the base model we found only two motifs
with logR(xp)  3:5), implying that the targeted product distribution indeed collapses around these
structural motifs as we observe in the case of RTB and DDPP. As such, we conclude that DDPP (and
RTB) achieve the goal of ne-tuning as they sample from the product distribution and reproduces
samples with -sheets at a much higher proportion than the base model.

In task 2, we focus on generating shorter sequences of known proteins that preserve essential structural
characteristics, using the TM-align score as the reward function (Devkota et al., 2024). This task
allows the exploration of mutational effects. Ribonuclease proteins (PDB IDs: 9RAT-A, 11BA-A)
are selected for this task due to their well-characterized structure, function, and folding mechanisms.
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(a) Pretrained model

(b) DDPP-IS

(c) DDPP-LB

(d) DDPP-KL

Figure 4: Uncurated samples from the pretrained model, and after ne-tuning with our methods:
DDPP-IS, DDPP-LB, DDPP-KL
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The reward functiorR is de ned as:

R = Wim score TM-align(s;t):
Where:

* Wim_score The weight of the TM-Score reward, set to 2.

s: Predicted structure from ESMFold of the generated sequence.

t: Target protein structure.

» TM-align: A measure of structural simibarity betwesiandt, (1e ned as:

. 1 Kaii 1
TM-align = max %)f 722 :

t_ di
i=1 1+ do

whereL; is the length of the target proteihg is the length of the aligned regiod, is

the distance between tlgh pair of aligned residues, af is the distance scale based on
L: (Zhang and Skolnick, 2005).

While not used in the reward function for either experimental setting, we also measure the KL
divergence, reported as KL-SS in Table 3 between the secondary structure distribution given by DSSP
for both the target and miniaturized protein.

Note that in these experiments, the number of recycles in ESMFold is set to 0 to reduce computational
overhead. For both tasks we generate amino acid sequences of length 90. Evaluation is performed
by sampling 200 proteins for each method across three seeds and reporting the mean and standard
deviation of each metric accordingly. All methods ran 500 inference steps during evaluation. All
protein experiments used a 150 million parameter DPLM base rhewékegin ne-tuning from.

All models used a log-linear noise schedule with, =1e 4and max = 20 and used a linear
learning rate warmup period of 2500 training steps.

DDPP was trained with no warmup period fog Z;(x), a learning rate ote 5, a batch size of 16,

a replay buffer of max length 10,000, and inserting new batches to the buffer sampled on-policy from
the current model every 250 training steps. RTB was trained similarly, but with a smaller batch size to
account for its greater memory requirements. RTB matches the setting of DDPP but with a batch size
of 8 while doing 90 inference steps during training (a new batch of trajectories is simulated on-policy
every training step). To allow RTB to tin memory we detach#Pb of trajectory timesteps when
computing a backward pass on the RTB objective. SVDD was run on the base DPLM model with
n = 10 particles. To control the concentration of our designated target distributions, we set the
reward temperature = 0:125for the -sheet task and = 0:001for the protein miniaturization

task.

We report an extended version of Table 3 where we include results for both ribonuclease targets in
Table 5. We observe that DDPP consistently achieves the highest TM-Score across the two templates
while maintaining high structural quality with an average pLDDT of around 0.8.

D.2.2 EXPERIMENTAL VALIDATION

Genes encoding for de novo protein sequences were obtained from Integrated DNA Technologies
(IDT) and cloned into pET-24a(+) (Novagen) expression vectors with a C-terminal 6xHis tag using
Gibson Assembly (New England Biolabs, NEB). Assembled plasmids were veri ed via Sanger
sequencing, then transformed into chemically compedisnherichia colBL21(DES3) cells (NEB).
Starter cultures (3 mL Luria Bertani media, B§/mL kanamycin) were inoculated from freshly
prepared agar plates and grown at@Gand shaken at 225 RPM overnight. Starter cultures were
then diluted 1:100 into 50 mL LB medium supplemented with antibiotic. Cultures were then grown
at 37°C and 225 RPM until an optical density (OD600) of 0.5-0.7 was reached. Protein expression
was then induced with 1 mM isopropytD-thiogalactopyranoside (IPTG) for 4 hours af@7 Cells

were then collected by centrifugation (4,500xg) & 4nd resuspended in lysis buffer (Tris-buffered
saline (TBS), 25 mM imidazole). Cell suspensions were then lysed via sonication (10s pulses,
40% amplitude). The corresponding lysate was centrifuged at 12,000xg for 30 minutes, and the

https://huggingface.co/airkingbd/dplm_150m
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Table 5: Miniaturizing ribonuclease proteins 9RAT-A and 11BA-A (124 AAs) to 90 AAs while
preserving structural delity (high TM-Score) and quality (high pLDDT and PTM).

Template SS-Kl# logR(xo)"  TM-Score"  pLDDT" pT™M "

Base Model 2.944 2,936 0.502 0.128 0.251 0.064 0.724 0.144 0.584 0.226
Best-of-10 0.640 1.872 0.725 0.098 0.363 0.049 0.789 0.018 0.754 0.086

9RAT-A DDPP 1.086 2.242 0.735 0.122 0.368 0.061 0.793 0.044 0.768 0.066
RTB 1.808 2.597 0.597 0.109 0.299 0.055 0.796 0.054 0.750 0.084
SVvDD 3.465 2.835 0.699 0.079 0.350 0.039 0.499 0.137 0.383 0.178

Base Model 3.136 3.150 0.478 0.101 0.239 0.051 0.724 0.144 0.584 0.226
Best-of-10 2.602 3.309 0.654 0.089 0.327 0.045 0.782 0.027 0.720 0.109

11BA-A DDPP 0.194 1.009 0.709 0.048 0.354 0.024 0.743 0.036 0.727 0.054
RTB 2579 2.799 0.564 0.111 0.282 0.056 0.797 0.058 0.744 0.101
SVvDD 3.240 2.992 0.647 0.079 0.324 0.040 0.486 0.124 0.354 0.162

supernatant was loaded into a HisPur Ni-NTA His-spin column (ThermoScienti ¢) and puri ed as
recommended. Expression of puri ed proteins in both the soluble and insoluble fraction, as well as
his-tag puri cation fractions, was assessed using SDS-polyacrylamide gel electrophoresis.

D.3 DISCRETE IMAGE MODELLING

To setup the netuning task we rst pre-train large masked diffusion models on the original dataset.
This uses a standard masked diffusion loss as explored in previous work (Shi et al., 2024; Sahoo
etal., 2024).

CelebA Pretraining. We train a 241 million parameter model based on the variational diffusion
model (VDM) architecture (Kingma et al., 2023) and the setup of Shi et al. (2024). We adapted
the U-Net plus self-attention architectures from Kingma et al. (2023) as used in CIFAR-10 in their
experiments, with a few notable additions. We replace the Fourier feature inputs with an input
embedding layer which embeds 257 (256 pixel values + <MASK>) tokens into the embedding
dimension. We double the number of residual blocks from 32 to 64 per encoder / decoder, and double
the embedding dimension from 128 to 256. We use an Adam optimizer with learninterata,

1=0.9 and ,=0.999. We train our model for 450k steps with batch size 128 on a cluster of 16
NVIDIA L40S GPUs. We resize all CelebA images to 64x64 with bilinear interpolation. Samples
from this model can be seen in Figure 5.

Separately, we train a 7M parameter classi er to classify hair color on CelebA. We use this as our
energy function with a temperature settingddf for all netuning experiments.

CelebA Finetuning. With the problem setup, we next netune our pretrained model to sample images
with blond hair. We train each model for up to 12 A100 hours. We use an early stopping criteria
based on a validation set using an approximate bits-per-dimension calculation using the ELBO. We
nd that the original needs at lea$t000inference steps for good performance therefore we evaluate

all models in this setting. For our model we us@00warmup steps fologZ, a learning rate of

le 4, we resample two batches every 500 gradient steps of the model and add them to the replay
buffer.

In contrast to our model, RTB requires a full trajectory for each gradient step. For CelebA, this means
a rollout of 1 000inference steps taking approximately 2 minutes for a batch size of 2 on an A100
with this model. Because of memory constraints we detach 99% of inference steps and use a batch
size of 2to tin 80GB of GPU memory with a global batch size of 8 trajectories per gradient step.

D.3.1 METRICS

The metrics used to evaluate image ne-tuning include mean log reward, feature-likelihood divergence
(FLD), and bits per dimension (BPD).

FLD. For FLD, we drank samples from the model, aid samples from the test set restricted to
the target class. The FLD is computed using the DINOV2 feature space (from the ViT-B14 model)
between these two sets of samples (Oquab et al., 2024). For MKISTS k.
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