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ABSTRACT

Generative modeling of discrete data underlies important applications spanning
text-based agents like ChatGPT to the design of the very building blocks of life
in protein sequences. However, application domains need to exert control over the
generated data by steering the generative process—typically via RLHF—to satisfy
a specified property, reward, or affinity metric. In this paper, we study the problem
of steering Masked Diffusion Models (MDMs), a recent class of discrete diffusion
models that offer a compelling alternative to traditional autoregressive models.
We introduce DISCRETE DENOISING POSTERIOR PREDICTION (DDPP), a novel
framework that casts the task of steering pre-trained MDMs as a problem of proba-
bilistic inference by learning to sample from a target Bayesian posterior. Our DDPP
framework leads to a family of three novel objectives that are all simulation-free,
and thus scalable while applying to general non-differentiable reward functions.
Empirically, we instantiate DDPP by steering MDMs to perform class-conditional
pixel-level image modeling, RLHF-based alignment of MDMs using text-based re-
wards, and finetuning protein language models to generate more diverse secondary
structures and shorter proteins. We substantiate our designs via wet-lab validation,
where we observe transient expression of reward-optimized protein sequences.

1 INTRODUCTION

The success of diffusion models in continuous spaces, leading to state-of-the-art foundation models
for image (Stability AI, 2023; Midjourney, 2023) and video synthesis (Villegas et al., 2022; Brooks
et al., 2024), has spurned several attempts to translate these approaches for the generative modeling
of discrete structures. The most performant approaches squarely fall under the scalable framework
of absorbing state discrete diffusion (Austin et al., 2021), with new simplified training recipes that
result in Masked Diffusion Models (MDMs) (Sahoo et al., 2024; Shi et al., 2024; Gat et al., 2024;
Zhao et al., 2024a). Indeed, recent MDMs now rival autoregressive models of a similar scale to
GPT-2 (Radford et al., 2019) for language modeling, with the potential for further progress through
scaling. Furthermore, MDM style models are not constrained to generating data sequentially—unlike
autoregressive models—which invites a more straightforward application to domains without
a natural causal ordering, e.g. molecule generation (Vignac et al., 2022), discrete modeling of
images (Salimans et al., 2017), and modeling protein sequences (Lin et al., 2022; Wang et al., 2024).
Critical to the successful deployment of discrete generative models in practical applications—beyond
simply producing high-quality samples—is the ability to steer the generated samples to optimize
a pre-specified downstream metric. For instance, in Language Modeling (LM) it is desirable to bias
the model’s generations to be sanitized from harmful responses (Zou et al., 2023; Perez et al., 2022),
or aiming to generate protein sequences that are highly likely to be successfully synthesized and
expressed in real wet lab settings (Verkuil et al., 2022; Dauparas et al., 2022). Put succinctly, highly
performant discrete generative models are required to be aligned in a manner that fine-tuning against
downstream reward models has the intended effect of controllable generation, wherein the model
post fine-tuning selects high-scoring samples from the universe of possible high-fidelity generations.
The standard approach for incorporating steerability into discrete generative models, which are
autoregressive, using pre-defined reward models is often framed as a fine-tuning task using reinforce-
ment learning from human feedback (RLHF) (Christiano et al., 2017; Rafailov et al., 2024). However,
applying RLHF frameworks to diffusion models is far more challenging. Unlike autoregressive
models, diffusion models do not allow for straightforward computation of a sample’s exact likelihood
without costly simulations. Although fine-tuning diffusion models that bypass exact likelihood
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computation can yield simulation-free algorithms that resemble RLHF (Wallace et al., 2024; Uehara
et al., 2024a), these methods effectively optimize a loose lower bound to the true RLHF objective,
leading to unstable training and suboptimal fine-tuning performance. Consequently, steering diffusion
models in continuous spaces is primarily done through inference techniques that leverage the gradient
of a conditional model in the form of guidance (Dhariwal and Nichol, 2021; Ho and Salimans, 2022).
Unfortunately, discrete settings do not allow for principled definitions of guidance due to the lack
of a conventional gradient operator. As a result, at present, there exists no scalable and rigorous
method to steer and align Masked Diffusion Models to optimize desired reward models.
Main contributions. In this paper, we cast the problem of steering a Masked Diffusion Model as a task
of probabilistic inference in sampling from a target Bayesian posterior. More precisely, we construct
the target Bayesian posterior as being proportional to the product distribution of a base pre-trained
MDM model modulated by a pre-specified reward model. Importantly, this sampling viewpoint is fully
compatible with classical RLHF for autoregressive models (Uehara et al., 2024a; Zhao et al., 2024b),
but enjoys broader applicability as for the first time it can be applied to discrete diffusion models.
Under this sampling perspective, our key insight is that the challenging sampling problem can be
solved by learning an amortized sampler, which when taken as an MDM, can be viewed as finetuning
the pre-trained MDM model by learning to approximate the (reward-induced) Bayesian posterior.
We introduce DISCRETE DENOISING POSTERIOR PREDICTION (DDPP), a novel framework that
exploits the denoising posterior parametrization inherent to current MDMs to define a series of simpler
matching problems across varying corruption (masking) levels of the target Bayesian posterior. In
particular, DDPP designs a forward process that corrupts the Bayesian posterior through a forward
masking process and frames the finetuning task as learning another MDM to approximate the
corresponding reverse process. As a result, each matching problem in the reverse process requires
the construction of a “denoising" Bayesian posterior that is conditioned on a partially masked sample
which we demonstrate is simply proportional to the pre-trained model’s own denoising posterior and
the (terminal) reward of the fully unmasked sample. Crucially, each matching problem in DDPP
can be defined on a particular noise level without running the entire forward (corruption) process.
Consequently, this makes DDPP a simulation-free method which is a key ingredient needed to
finetune large pre-trained MDMs. We test the empirical caliber of DDPP by steering MDMs across
a multitude of domains ranging from images to protein sequences and steering MDM-based language
models. We observe DDPP fine-tuned MDMs lead to competitive performance on images, transient
expression of reward-optimized protein sequences (with high secondary structure diversity and β-sheet
composition) in a wet-lab setting, and natural textual responses that are steered to human sentiments.

2 BACKGROUND AND PRELIMINARIES

Notation and convention. A discrete data sample x is identified by its realization over a vocabulary
set X = {1, . . . , d− 1}, over d− 1 possible categories. Of particular interest is the setting of masked
diffusion models that include an additional d-th category of a masked token m to the vocabulary X
which serves as an absorbing state for the diffusion process. A discrete token is represented by the
one-hot vector ei ∈ ∆d in the d-dimensional probability simplex and corresponds to placing a 1 on the
i-th index and 0 on all the other d−1 indices. In this paper, by convention, we set em = ed as the one
hot vector associated with the masked state m. A categorical distribution over d-categories, Cat(x; p),
is constructed by placing a Dirac δ with weight pi, with the constraint

∑
i p

i = 1 and the density of a
discrete sample is written as p(X = x) =

∑d
i=0 p

iδ(x−ei), where X is the discrete random variable.

A sequence x = (x1, . . . , xn) of n tokens is defined over the product space Xn = {1, . . . ,m}n, and
its corresponding probability mass function is given by p(X = x) =

∏n
i

∑d
j=0 p

jδ(xi − ej). To
reduce notational clutter, we make use of the shorthand δ(y) to denote a Dirac measure on a discrete
sample y and interchangeably write p(X = x) = p(x) to denote the probability mass function. A
dataset of sequences is designated as samples from the data distribution pdata to be learned by a
discrete diffusion model qθ, with parameters θ. Discrete diffusion models, like their continuous
counterparts, are stochastic processes that evolve with time t ∈ [0, 1] such that t = 0 corresponds to
pdata := p0 and t = 1 corresponds to the terminal distribution, p1 of the process. As a discretization
of time, we divide [0, 1] into T intervals, and let t(i) = i/T . For brevity, we drop i and simply write t
to denote the corresponding discrete timestep t(i). The notation 0 : t designates a collection of objects,
e.g. densities p(x0:t), starting from time t to and including time t = 0. A trajectory of sequences is
denoted as τ(x0:1) = x1 → · · · → xt → xt−1 → · · · → x0. Finally, we use subscripts to denote the
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time index—i.e. pt—and reserve superscripts to designate indices over a set such as a specific sample
xi among a collection of samples or dimensions within a vector, e.g. dimension xi in a sequence.
Problem Setting. We are interested in the task of probabilistic inference of sampling from an
unnormalized target distribution π0(x0) defined over a discrete space consisting of n tokens x ∈ Xn,

π0(x0) =
ppre
0 (x0)R(x0)

Zπ0

, R(x0) =
exp(−E(x0))

ZR
. (1)

A key aspect of the considered setting is that π0(x0) is defined as the product distribution of a
pre-trained masked discrete diffusion model ppre

0 (x0) and a distribution induced by a (potentially
differentiable) reward model R : Xn → R. The problem definition in Eq. 1 is an instance of Bayesian
posterior sampling where the pre-trained MDM is the prior and reward acts as the likelihood or
observation model which modulates samples with a high score. For instance, in scientific domains, the
reward model can be provided as a Boltzmann distribution with a known energy function E(x0), or a
human preference model as in RLHF (Ouyang et al., 2022; Rafailov et al., 2024). Importantly, this set-
ting does not afford us any ground truth samples from π0(x0) in the form of a dataset which prevents
classically training another generative model. Instead, we are able to evaluate the reward model—and
in special cases its gradient ∇R—but not the normalizing constant, i.e. the partition function Zπ0

.
Samples from the posterior π0 thus lie in the intersection of the modes of both the pretrained MDM and
the reward model. As a result, learning an amortized sampler, qθ(x0), for π(x0) is rationally equiv-
alent to finetuning the pretrained MDM ppre

0 (x0) using the reward R(x0) in an analogous manner to
RLHF (Uehara et al., 2024a) and is the main focus and contribution of this paper and outlined in §3.2.

2.1 SIMPLIFIED MASKED DISCRETE DIFFUSION

We are interested in developing a discrete diffusion model directly on discrete data—i.e. without
embeddings or continuous reparameterizations—whose approach mirrors the construction of
diffusion models for continuous spaces. Consequently, we require the specification of a forward
process that converts discrete data x0 ∼ p0 at time t = 0 to an unstructured prior, p1 at the terminal
time t = 1. The specification of a forward process via the transition kernel pt(xt|x0) implies a
unique time reversal of this forward process, termed the “reverse process”, such that simulating from
this reverse process results in samples from the desired target data distribution p0(x0).
We restrict our attention to the recent performant “simplified masked” forward process (Sahoo et al.,
2024; Shi et al., 2024; Gat et al., 2024; Zhao et al., 2024a) which hits a terminal distribution of
all mask tokens in a sequence p1 = [δ(m)]n. Given a non-masked token in a sequence, xi

0 ∈ x
the simplified masked forward process increases the likelihood of transition to the mask state as
time increases. Moreover, the masked forward process is simplified by design since the transition
probabilities of a token unmasking (xi

t+1 ̸= m when xi
t = m) is set to zero—i.e. the token remains a

masked token for the remainder of the trajectory. The design of the simplified forward process is also
independent across each dimension of the sequence, conditioned on x0, which allows us to model
the transitions of each discrete token in a sequence separately. In totality, the forward process for
a sequence x0 can be summarized using the following expression for the transition kernel pt(xi

t|xi
0):

pt(xt|x0) =

n∏
i=1

pt(x
i
t|xi

0) =

n∏
i=1

Cat(xi
t;αtδ(x

i
0) + (1− αt)δ(m)), (2)

where αt is an invertible reparameterization of time such that α0 = 1 and α1 = 0. Effectively, αt

corresponds to the noise schedule which corrupts the discrete data to p1. The corresponding marginal
density induced by the forward process at time t can written as pt(xt) =

∑
x0

pt(xt|x0)p0(x0).
The reverse process which denoises a sample from t → t−1, and is the time reversal of the simplified
masked forward process, also factorizes over each dimension of a sequence x. The probability
pt(x

i
t−1|xi

t, x
i
0) of a reverse transition is given by the following posterior conditioned on xi

0,

pt(x
i
t−1|xi

t, x
i
0) =

{
Cat(xi

t−1; δ(x
i
t)) xi

t ̸= m

Cat
(
xi
t−1;

(1−αt−1)δ(m)+(αt−1−αt)δ(x
i
0)

1−αt

)
xi
t = m.

(3)

Under the reverse process once a token transitions out of the masked state for a time t > 0 it remains
in this state for the remainder of the trajectory. The analytical form of the posterior suggests a natural
mean parametrization for a denoiser in a discrete diffusion model, µθ : Xn × R → (∆d)n, which
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predicts the clean sample at t = 0 by denoising a noisy xi
t,

qt,θ(x
i
t−1|xi

t, µθ(x
i
t, t)) =

{
Cat(xi

t−1; δ(x
i
t)) xi

t ̸= m

Cat
(
xi
t−1;

(1−αt−1)δ(m)+(αt−1−αt)µθ(x
i
t,t)

1−αt

)
xi
t = m.

(4)

Interestingly, the mean parametrization µθ used in the posterior is equivalent to predicting the concrete
score (Meng et al., 2022) which is the discrete equivalent of the Stein score found in conventional
continuous diffusion models (Zheng et al., 2024). As the number of steps t → ∞, training yields a
valid evidence lower bound (ELBO) to the marginal log-likelihood of the data distribution log p(x0),

log p(x0) ≥ −
∫ 1

0

dαt

dt
· 1

1− αt
Ext∼pt(xt|x0)

[
n∑

i=1

(xi
0)

T logµθ(x
i
t, t)

]
dt. (5)

Thus, when given access to samples x0 ∼ p0 training an MDM can be seen as optimizing a
weighted cross-entropy loss and is analogous to fitting a (mean-field) variational posterior distribution
qt,θ(x0|xt) = Cat(x0;µθ(xt, t)) that matches the first moments of pt(x0|xt) and also minimizes
the forward KL divergence DKL(pt(x0|xt)pt(xt)||qt,θ(x0|xt)pt(xt)) (Eijkelboom et al., 2024).

3 POSTERIOR SAMPLING VIA DISCRETE DENOISING POSTERIOR PREDICTION

Given access to a pretrained masked discrete diffusion model ppre
0 (x0) we wish to sample from the

reward-induced Bayesian posterior distribution π0(x0) ∝ ppre
0 (x0)R(x0). We solve this sampling

problem by first defining a time-dependent forward masking process that progressively adds noise
to π0 yielding the noisy reward-induced posterior πt(xt) =

∑
x0

πt(xt|x0)π0(x0), where we set
πt(xt|x0) = pt(xt|x0) as it is the same masking process for the pre-trained MDM. Unfortunately,
since ppre

0 (x0) is an MDM it does not easily provide an exact likelihood. Undeterred we seek to
approximate the reverse process πt(xt−1|xt) tied to the masking forward process by using another
parametrized model qt,θ(x0|xt) = Cat(x0;µθ(xt, t)) which we take to be another MDM.
Matching sub-trajectories. To approximate the reverse process using an MDM we require matching
the denoising trajectory τ(x0:t) of the reward-induced posterior πt(x0, . . . ,xt−1|xt) across all
masking levels. Assisted in this endeavor, we recall the fact that since ppre

0 (x0) is also an MDM, we
have direct access to the pre-trained model’s denoiser. Thus, we can compute any transition density
starting from ppre

t (xt−1|xt, µ
pre(xt, t)) to the posterior over the endpoint ppre

t (x0|xt), conditioned on
a partially masked sample xt. We form the sub-trajectory matching problem as an instantiation of a
detailed balance constraint starting from a partially masked sequence xt of a clean starting point x0:

qθ(x0, . . . ,xt−1|xt, x̂0)pt(xt) = πt(x0, . . . ,xt−1|xt)pt(xt). (6)
Setting x̂0 = µθ(xt, t) as the MDM’s denoised sample, then πt(x0, . . . ,xt−1|xt) is defined as,

πt(x0, . . . ,xt−1|xt) =
ppre
t (x0, . . . ,xt−1|xt)R(x0)

Zπt
(xt)

=

∏t
j=1 p

pre
t (xj−1|xj , x̂

pre
0 )R(x0)

Zπt
(xt)

.

The detailed balance constraint over sub-trajectories suggests a natural discrete denoising posterior
predictive (DDPP) objective that minimizes the mean squared error of a log-ratio between the
denoising sub-trajectories of the amortized MDM sampler and the reward-induced target posterior,

LPP
τ = Et,xt

[
Eτ(x0:t)[∥ log qθ(x0:t−1|xt, x̂0))− log ppre

t (x0:t−1|xt) + κ∥22]
]
, (7)

where reward and the log partition function are captured in the constant κ = logZπt(xt)− logR(x0).
Interestingly, we can form an equivalent expression for the sub-trajectory loss LPP

τ above by sampling
two intermediate points xs,xs−γ in the sub-trajectory τ(x0:t), such that 0 < s− γ < s < t:

LPP
τ = Et,xt,τ(x0:t)

[∥∥tEs,xs,xs−γ

[
log qθ(xs−γ |xs, x̂0)− log ppre

t (xs−γ , |xs, x̂
pre
0 ) + κ

]∥∥2
2

]
. (8)

The proof for this equivalence is presented in §C.3. Note that we sample s, s− γ ∼ U [0, t],U [0, s]
uniformly, and when γ = 1/T we sample xs−1 which is simple to do since the τ(x0:t) already
contains this information. Crucially, unlike Eq. 7 the reformulation of the sub-trajectory loss in Eq. 8
is effectively a simulation-free version of Relative Trajectory Balance (RTB) (Venkatraman et al.,
2024). If the approximation qt,θ matches the denoising reward-induced target posterior over all
sub-trajectories then the reverse process of qt,θ can be simulated to draw samples that follow π0(x0).
Consequently, we term the qt,θ that minimizes the DDPP objective in Eq. 8 as the finetuned MDM
which solves the probabilistic inference task of sampling from π0(x0).

4
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In contrast to learning MDMs in typical generative modeling setups, the DDPP objective requires
the computation of the intractable log partition function logZπt

(xt) evaluated at xt which is a
component of the term κ. This observation motivates the design of three concrete learning objectives
for posterior matching, which as a collection we term the DISCRETE DENOISING POSTERIOR
PREDICTION framework. Specifically, finetuning qt,θ under a DDPP framework can be done in the
following algorithms: 1.) DDPP-IS which uses a Monte Carlo based importance sampling estimate
to approximate logZπt in Eq. 8, 2.) DDPP-LB that constructs a lower bound to DDPP-IS that is
cheaper to evaluate by parameterizing logZπt , and 3.) DDPP-KL which uses a discrete gradient
estimator to bypass computing logZπt at the cost of requiring a differentiable reward—i.e. ∇R.

3.1 ESTIMATING THE LOG PARTITION FUNCTION

Inspecting the posterior predictive objective in Eq. 8 we remark that it is a simulation-free stochastic
regression objective which does not require a differentiable reward as the loss computes R(x0) and not
a gradient of the reward. Consequently, this makes the posterior predictive objective both a scalable
and efficient objective for fine-tuning large pre-trained MDMs as long the reward model is easy to eval-
uate. Moreover, the posterior predictive objective is also an off-policy objective as it can be evaluated
using any partially masked samples xt ∼ p(xt|x0). Practically, this means that fine-tuning can be per-
formed using a replay buffer of samples from a biased dataset, e.g. the original training set for ppre

0 , or
even partially masked sequences that arrive from a different model altogether. Despite its simple form
the posterior predictive objective requires the computation of the log partition function of a partially
masked sequence logZπt

which does not have a closed-form expression and must be estimated.
Monte Carlo Estimate of logZπt with DDPP-IS. A numerical estimate of the log normalization
constant can be obtained by utilizing the trick of using the pre-trained model’s denoising posterior
ppre(x0|xt). Specifically, given xt ∼ pt(xt) we obtain a Monte Carlo estimate of logZπt(xt) that
uses M additional samples from x0 ∼ ppre

t (x0|xt) to estimate the log partition function,

log Ẑπt(xt) = log

 ∑
x0,...xt−1

ppre
t (x0, . . . ,xt−1|xt)R(x0)

 ≈ log
(
Ex′

0∼ppre
t (x0|xt)[R(x′

0)]
)
.

Where in the second equality in the first line we used the fact that we can approximately jump to
the endpoint of the reverse process directly by using the pretrained model’s denoiser to sample x0.
Conveniently, this MC estimate solely requires obtaining a denoised sample from the pre-trained
MDM which can be efficiently done as each sample requires a single step as due to the denoising
posterior parametrization of an MDM (Eq. 4). We can further improve the estimation of this log
normalization constant by leveraging importance sampling (IS) with a proposal distribution w(x0):

log Ẑ IS
πt
(xt) = log

(
Ex′

0∼w(x0)

[
ppre
t (x0|xt)R(x′

0)

w(x′
0)

])
= log

 1

M

M∑
j=1

[
ppre
t (x0|xt)R(xj

0)

w(xj
0)

] .

For the IS estimator above it is easy to verify that the optimal proposal distribution for variance
reduction is proportional to the denoising reward-induced target posterior w∗(x0) ∝ πt(x0|xt). Fortu-
nately, this is precisely the distribution that is approximated by qt,θ using the posterior predictive objec-
tive which motivates the reuse of the finetuned model as a suitable proposal, i.e. w(x0) = qt,θ(x0|xt).
Learning logZπt

with DDPP-LB. An alternative to using an MC-based estimate for logZπt
is

to parameterize the log partition function itself log ẐLB
πt,θ

jointly with the qt,θ and optimize both
using the same posterior predictive objective as first defined in Eq. 11. Operationally, this amounts to
including another prediction head for the finetuned MDM model and is cheaper to compute than using
an MC-based estimate as we do not require M evaluations of the pre-trained model as in log Ẑ IS

πt
(xt).

At first glance, it remains unclear whether a parameterized log ẐLB
πt,θ

is a sensible strategy. However,
in the particular case where we choose the proposal distribution to be on-policy by using finetuned
MDM w(x0) = qt,θ(x0|xt), we can show that the learned log partition function estimate is a lower
bound to the importance sampling estimate. This is formalized in the following proposition below.

Proposition 1. Let log Ẑ IS
πt

and log ẐLB
πt,θ

be the M -sample importance sampling estimate using
the proposal qt,θ(x0|xt) and learned approximation to the log partition function respectively. Given
a partially masked sample xt ∼ pt(xt) the optimal learned approximation is a lower bound to the
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Algorithm 1 Single-step DDPP-IS and DDPP-LB
Input: Reward R(x0), base MDM ppre

0 (x0|xt), sampling policy r(x0), fine-tuning MDM qθ(x0|xt)

1: while Training do
2: t,x0 ∼ U [0, 1], r(x0) ▷ Sample time and clean data on or off-policy
3: xt ∼ pt(xt|x0) ▷ Construct partially masked sample given clean data
4: if Importance Sample logZ(xt) then ▷ Log Partition Function Estimation Strategy

5: log Ẑπt(xt) := log Ẑ IS
πt
(xt) = log

(
1
M

∑M
j=1

[
p

pre
t (x

j
0|xt)R(x

j
0)

w(x
j
0)

])
6: else
7: log Ẑπt(xt) := log ẐLB

πt,θ(xt)

8: LPP =
∣∣∣∣∣∣log qt,θ(x0|xt)− log ppre

t (x0|xt)− logR(x0) + log Ẑπt(xt)
∣∣∣∣∣∣2

2

9: θ ← Update(θ,∇θLPP)
10: Return qθ

importance sampling estimate with a fixed proposal qt,θ(x0|xt) and the following inequality holds:

log ẐLB
πt,θ(xt) ≤ log Ẑ IS

πt
(xt). (9)

The proof for Eq. 1 is provided in §C.1. We highlight that the lower bound becomes equality at the
optimal proposal qt,θ(x0|xt) ∝ πt(x0|xt). Learning log ẐLB

πt,θ
has the benefit of amortization as

the same network can be reused for all partially masked samples xt ∼ pt(xt), across all levels of
masking. In addition, over the course of training, the learned estimate log ẐLB

πt,θ
becomes a better

estimate for the true log partition function. In practice, it suffices to take a single gradient step to
optimize log ẐLB

πt,θ
rather than optimizing till convergence. As a result, no additional overhead needs

to be incurred, and the learned estimate is averaged over a batch of noisy samples B = {xi
t}Ni=1.

3.2 SINGLE-STEP POSTERIOR SAMPLING WITH ENDPOINT PREDICTION

The sub-trajectory matching objective used by DDPP-IS and DDPP-LB can be simplified to a
faster single-step objective at the cost of paying a discretization error by not using finer-grained
trajectory information. Specifically, we note that for MDMs the denoising posterior over end-
points qt,θ(x0|xt) ≈ Cat(x0;µθ(xt, t)) can be approximately computed without unrolling the sub-
trajectory. This fact also holds for the pre-trained MDM as the model parametrization implies
ppre
t (x0|xt) ≈ Cat(x0;µ(xt, t)). For the single-step objective we assume the parameterized denois-

ers exactly match the posteriors. Leveraging this enables us to express the denoising reward-induced
target posterior using a simple expression that directly uses the pre-trained model’s denoising posterior
ppre
t (x0|xt) as follows:

πt(x0|xt) =
pt(xt)

pt(xt)
· pt(xt|x0)p

pre(x0)R(x0)∑
x′
0
pt(xt|x′

0)p
pre(x′

0)R(x′
0)

=
ppre
t (x0|xt)R(x0)

Zπt(xt)
. (10)

The choice of parameterizing qt,θ(x0|xt) as another MDM offers a prescriptive strategy for sampling
from the desired target π0 by learning to match the denoising reward-induced posterior at the pre-
dicted endpoint πt(x0|xt). This simplifies the expression of DDPP defined over trajectories in Eq. 8
to a single point, namely the predicted endpoint x0 of each MDM. This objective is presented below:

LPP = Et,x0,xt


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣log qt,θ(x0|xt)− log ppre

t (x0|xt)− logR(x0) + logZπt(xt)︸ ︷︷ ︸
log πt(x0|xt)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

 . (11)

As done previously, we can employ any estimation strategy to compute the log partition func-
tion Eq. 11. We note in many cases, such as when the sequence length of the trajectory is small to
moderate, the single-step objective may be an attractive alternative to the sub-trajectory variants
of DDPP. Algorithm 1 provides a detailed description of the single-step version of DDPP.

3.3 DDPP-KL: POSTERIOR PREDICTION VIA REVERSE KL MINIMIZATION

The single-step posterior prediction objective as defined using the loss function LPP in Eq. 11 requires
the estimation of logZLB

πt,θ
which introduces a source of variance in loss estimates that may sub-
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optimally influence learning dynamics of the fine-tuned model. In settings where the reward model
is differentiable, we can bypass computing logZLB

πt,θ
altogether by learning to match the denoising

reward-induced posterior under the reverse KL divergence. Note that the forward KL divergence
is inapplicable here as we do not have samples from π0—i.e. a dataset. To see this, we define a
variational posterior matching problem using the reverse KL divergence that takes the following form:

LKL
t := DKL(qt,θ(x0|xt)pt(xt)||πt(x0|xt)pt(xt)). (12)

Unlike conventional generative modeling using the reverse KL divergence which solely matches
distributions at t = 0 the problem definition in Eq. 12 defines a series of reverse KL minimization
problems through time. In this manner, the reverse KL matches distributions annealed through time
and can be used to derive a stochastic regression objective for fine-tuning,

LKL = Et,x0,xt

[
log qt,θ(x0|xt)− log ppre

t (x0|xt)− logR(x0)
]
+ C. (13)

The expectation in Eq. 13, like DDPP-IS and DDPP-LB is taken uniformly with respect to time
t ∼ U [0, 1]. However, unlike the previous estimators, clean data needed to compute LKL is drawn
purely on-policy by simulating the fine-tuning model x0 ∼ qt,θ(x0), which then also allows us to
craft a noisy sample using the masking forward process xt ∼ pt(xt|x0). Additionally, in Eq. 13 the
constant C = Et,x0,xt

[logZπt
(xt)] does not depend on the θ—and as a result is also independent

of the sample x0 ∼ qt,θ(x0). This results in the constant C being zero when computing the gradient
of the loss ∇θLKL and as a result we can safely disregard computing logZπt

entirely.
As samples x0 are procured on-policy to compute the gradient of the loss ∇θLKL we require
backpropagating through the stochastic sampling of x0 which comes from simulating the fine-tuning
MDM qt,θ(x0). Fortunately, we can make use of modern discrete gradient estimators which provide
a biased but low variance gradient estimate enabling us to compute LKL. Specifically, we opt to use
the scalable 2nd order REINMAX estimator (Liu et al., 2024) which estimates the discrete gradient up
to second-order terms in a Taylor approximation of the actual gradient. We note that unlike DDPP-IS
and DDPP-LB this new loss that minimizes the reverse KL divergence LKL requires the reward
model R to be differentiable and as a result is less broadly applicable than computing LPP. However,
in practice, learning can be faster as we make use of the information afforded to us by the gradient
∇R as well as the fact that the objective does not need to estimate the log partition function.
In appendix §C.2 we provide the exact algorithm Alg. 2 to compute the reverse KL objective. We
further show how using a gradient estimator like REINMAX can be used to derive efficient gradient
estimation for a more general class of problems of sampling from π0(x0) = R(x0)/Zπ0

, as well as
the main fine-tuning setting for matching the denoising reward-induced posterior as defined in Eq. 10.

4 EXPERIMENTS
Table 1: Overview of posterior sampling methods

Method Model calls / inf. step Model calls / train step Sim. Free

SVDD N — ✓
Discrete guidance 1 — ✓
RTB 1 T ✗
DDPP-KL 1 1 ✓
DDPP-IS 1 M ✓
DDPP-LB 1 1 ✓

We investigate the application of DDPP to a
variety of discrete generative modeling settings.
We provide the full experimental details in §D
and present our main experimental results next.
Baselines. Throughout our experiments, we rely on four principal baselines in: sampling from the
pre-trained MDM model, Best-of-N sampling (Stiennon et al., 2020), Relative Trajectory Balance
(RTB) (Venkatraman et al., 2024), and SVDD (Li et al., 2024) which is a concurrent inference time
technique for steering diffusion models. Best-of-N represents a computationally expensive baseline
but is guaranteed to produce samples from π0, as such we use this as an upper bound on performance in
terms of reward obtained as N → ∞ (Beirami et al., 2024). RTB is a GFlowNet (Bengio et al., 2023;
Madan et al., 2022; Lahlou et al., 2023) that requires simulating the entire diffusion trajectory. For
image settings with differentiable reward, we also include discrete guidance as a baseline (Nisonoff
et al., 2024). In Table 1 we illustrate the computational differences between DDPP and baselines.

4.1 SYNTHETIC EXPERIMENTS

We consider a synthetic task of learning to sample from a target distribution on a 2D discrete grid and
finetuning an MDM on binarized MNIST. This synthetic setting tests all DDPP variations with chosen
baselines, presenting qualitative results in Figure 6, Figure 4 and quantitative results in Table 2.
Grid Experiment. We define a prior density ppre

0 over the discrete 2-dimensional, 128× 128 grid, as
showcased in Figure 6(a) where the probability mass corresponding to each point x0 is on if the color is
yellow. The goal is to sample from the product distribution as outlined in Equation 1, which in this case
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(a) Prior Density (b) Target Density (c) DDPP-IS (d) DDPP-LB (e) DDPP-KL

Figure 1: Samples generated by fine-tuning a masked diffusion model to sample from the lower half of its prior
distribution. Samples x0 in this setting are 2-dimensional, with a vocabulary size of 128.
is defined to drop the modes in ppre

0 which are at the top half of the grid, as visualized in Figure 6(b).
These results show that all three variants of DDPP effectively learn to sample from this target.
MNIST. We finetune MDMs to generate even MNIST digits. As observed in Table 2 we find that all
three variants of DDPP match or outperform the base pre-trained model and RTB in all metrics, with
DDPP-KL being the best. In comparison to the concurrent work of SVDD, we find that it outperforms
DDPP in average logR but is worse in sample-based metrics such as class conditional FLD (Jiraler-
spong et al., 2023) which measures the overall quality, diversity and generalizability of generated
samples and class conditional BPD. We further report generated samples in Figure 4 located in §D.3.

4.2 PIXEL-LEVEL IMAGE MODELLING Table 2: Fine-tuning to produce only even digits on
binarized MNIST. We report the mean performance over
3 runs for the logR, FLD, and BPD metrics.

Algorithm ↓ Metric → logR(x0) ↑ FLD ↓ BPD ↓
Base Model -26.90 ± — 33.89 ± — 0.130 ± —
SVDD -0.03 ± 0.01 34.19 ± 0.95 —
Guidance (scale 1) -25.24 ± 0.26 34.67 ± 0.67 0.171 ± 0.001
Guidance (scale 5) -23.21 ± 0.21 37.33 ± 0.87 0.174 ± 0.001
Guidance (scale 100) -9.32 ± 0.24 72.19 ± 0.43 0.147 ± 0.001

RTB -18.66 ± 2.45 45.97 ± 0.89 0.128 ± 0.000
DDPP-IS (ours) -5.14 ± 1.24 33.11 ± 0.71 0.130 ± 0.000
DDPP-LB (ours) -5.68 ± 0.34 33.76 ± 0.90 0.128 ± 0.000
DDPP-KL (ours) -3.13 ± 0.06 31.75 ± 0.51 0.129 ± 0.000

We fine-tune MDMs on order-agnostic image
data, discretizing pixels in 64 × 64 downsam-
pled CelebA images (Liu et al., 2018) to a
vocabulary of 256 tokens. As there are no
publicly available pre-trained MDM models we
train our own MDM by modeling the raw pixel
space and achieve 1.85 bits-per-dim (BPD) on
CelebA. Our full experimental setup is outlined
in §D.3. For fine-tuning, we consider steering
a pre-trained MDM using DDPP-LB as it is the
most computationally cheap method with a class-conditional reward based on an auxiliary classifier.
Specifically, we steer the generative model to generate human faces with blond hair. For quantitative
metrics, we report the mean log reward obtained, and BPD in Figure 3 as well as selected generated
samples. Our quantitative results show that our proposed variant DDPP-LB significantly outperforms
all other baselines in obtaining the highest reward. We also observe DDPP obtains BPD values that
are within the range of the base model while being worse than RTB. We further find visual samples
produced by DDPP to have the highest fidelity faces with blond hair, matching our fine-tuning goal.

4.3 PROTEIN SEQUENCE MODELLING

Table 3: In-silico results for protein generation tasks. We report the mean result for a metric with standard
deviation across three seeds. DDPP-LB performs well across designability metrics (pLDDT and pTM) while
simultaneously performing best on task specific metrics (β-sheet % and TM-Score).

High β-sheet-content protein generation Protein shrinking

β-sheet % ↑ pLDDT ↑ pTM ↑ logR(x0) ↑ SS-KL ↓ TM-Score ↑ pLDDT ↑ pTM ↑ logR(x0) ↑
Base Model 0.111 ± 0.121 0.724 ± 0.144 0.584 ± 0.226 2.070 ± 0.749 3.040 ± 3.043 0.245 ± 0.058 0.724 ± 0.144 0.584 ± 0.226 0.490 ± 0.116
Best-of-10 0.280 ± 0.093 0.812 ± 0.033 0.786 ± 0.035 3.212 ± 0.371 1.621 ± 2.804 0.345 ± 0.049 0.786 ± 0.023 0.737 ± 0.097 0.690 ± 0.098
SVDD 0.114 ± 0.148 0.484 ± 0.134 0.349 ± 0.174 1.669 ± 0.907 3.353 ± 2.913 0.337 ± 0.042 0.492 ± 0.131 0.368 ± 0.171 0.673 ± 0.083

RTB 0.319 ± 0.218 0.806 ± 0.059 0.767 ± 0.101 3.386 ± 1.061 2.193 ± 2.724 0.290 ± 0.056 0.797 ± 0.056 0.747 ± 0.093 0.581 ± 0.112
DDPP-LB 0.436 ± 0.037 0.897 ± 0.027 0.806 ± 0.029 3.703 ± 0.186 0.640 ± 1.793 0.361 ± 0.047 0.768 ± 0.048 0.747 ± 0.063 0.722 ± 0.094

Task description. We next apply DDPP to generate high-quality protein sequences by fine-tuning
discrete diffusion protein language models (DPLM) (Wang et al., 2024). Specifically, we address two
experimentally relevant tasks where vanilla DPLMs underperform. We outline exact reward functions
and experimental setup in §D.2. First, we fine-tune DPLM to generate soluble protein sequences with
high β-sheet content. The second task, protein shrinking, involves miniaturizing known proteins by
generating shorter sequences that preserve key structural features, using the TM-align score as the
reward metric (Devkota et al., 2024). We evaluate performance by measuring designability metrics
(ESMFold pLDDT and pTM) as well as task-specific metrics (β-sheet percent and TM-Score). We
also provide wet-lab validation for our best designs in the designable β-sheet task. We provide a
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Figure 2: Left: SDS-PAGE of elution fractions from histidine tag purification of DDPP-designed protein
constructs and positive controls following Coomassie blue staining. All DDPP-designed constructs are between
7.8-8.3 kDa. Predicted molecular weights of positive controls 5KPH, 1QYS, 1UBQ, and 1BTB are 10 kDa,
12 kDa, 8.5 kDa, and 10 kDa, respectively. Recombinant protein bands for MDM-designed sequences are
indicated with red arrows and relevant ladder references are labeled with their molecular weight. Middle: Folded
structures generated by DDPP β-sheet fine-tuning. Right: Distribution of β-sheets generated by each method.

deeper description of evaluation metrics and experimental setup in §D.2. Finally, as ESMFold is itself
expensive to query and, in particular, non-differentiable we test our fastest method—DDPP-LB.
Main results. In-silico validation shows that DDPP-LB outperforms all baselines for the designable
β-sheet task, generating better sequences across all metrics. In particular DDPP achieves a
significantly higher β-sheet percentage than baseline methods while maintaining high designability
as measured by ESMFold (namely, high pLDDT and pTM). We further observe that for the
miniaturization task, DDPP-LB outperforms all baselines in shrinking ribonuclease proteins,
removing 34 residues while maintaining high structural similarity (lowest SS-KL of 0.64 and highest
TM-Score of 0.361), and high structural quality with high pTM and competitive pLDDT. This
demonstrates DDPP-LB’s effectiveness in generating compact yet structurally faithful proteins.
Experimental validation. We selected 6 designs from DDPP-finetuned DPLM for wet-lab
validation, based on AlphaFold2 pLDDT/pTM scores. Sequences and structures were clustered using
MMseqs and Foldseek (van Kempen et al., 2022; Steinegger and Söding, 2017), with two represen-
tative sequences selected from each cluster. 4 positive controls consisting of two previously validated
de novo designed proteins (PDB: 5KPH, 1QYS) and two other stable proteins, ubiquitin and Barstar
(PDB: 1UBQ, 1BTB) were included as a comparison. We expressed the designed proteins, including
the controls in E. coli, and purified them using histidine-tag purification, after which we assessed
expression level and purity via SDS-PAGE, followed by Coomassie staining. Our results demonstrate
strong overexpression and efficient purification of the two previously validated de novo controls
and moderate overexpression of ubiquitin and barstar controls (Figure 2). Purified protein can also
be observed for four out of the six DDPP-derived constructs, though with comparatively lower yields
than the positive controls (Figure 2). One potential cause of these relatively low yields may be the
sizeable accumulation of DDPP-derived proteins in the insoluble fraction of the cell lysate. As such,
it is likely that further optimization of the expression and purification methods (e.g., longer induction
time or lower induction temperatures) may lead to significant improvements to overall soluble yields.

4.4 TEXT

Task description. We consider two text tasks: (i) toxic story generation using the Tinystories dataset
(Eldan and Li, 2023), and (ii) product review generation using Amazon data (Hou et al., 2024). For
both tasks, we start by fine-tuning a pre-trained MDM model (Sahoo et al., 2024) in a supervised
fine-tuning manner on both datasets before running online fine-tuning. As reward models, we use
RoBERTa (Liu, 2019) fine-tuned for toxicity classification, and BERT (Devlin, 2018), fine-tuned
for Amazon review sentiment analysis, respectively. Our experiments aim to demonstrate our
method’s ability to induce behaviors that are uncommon in the base pre-trained model, specifically in
generating toxic content in product reviews. Full experimental details are provided in Appendix §D.4.
Main results. In Table 4 we report the average log reward as well as perplexity (Gen PPL) of the
generated samples as measured by GPT-2 (Radford et al., 2019). We find that DDPP-LB is the most
effective variant of DDPP and achieves significantly higher log reward compared to SVDD and
RTB for both tasks. We further observe that all methods achieve comparable Gen PPL suggesting
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Algorithm ↓ Metric → logR(x0) ↑ BPD ↓
Base -57.31 ± — 2.67 ± —
SVDD -13.27 ± 12.38 —
Guidance (scale 1) -91.10 ± 1.63 3.20 ± 0.01
Guidance (scale 5) -62.75 ± 0.25 5.39 ± 0.01
Guidance (scale 100) -41.51 ± 0.02 5.15 ± 0.00

RTB -60.28 ± 1.74 2.04 ± 0.00
DDPP-LB (ours) -6.94 ± 1.39 2.62 ± 0.15

Figure 3: Left: Results for discrete image modeling over raw pixel values on CelebA (64× 64). We report the
mean performance of DDPP and baselines separated into inference-based (top) and amortized (bottom) over 3
runs for the logR and class-BPD metrics. Right: Generated samples from Base, SVDD, RTB, and DDPP-LB.

that generated responses are fluent; however, samples from DDPP-LB adheres better to the task
specification. We refer to §D.4.1 and §D.4.2 for generated samples from DDPP.

Table 4: Text experiments with log reward and Gen PPL results averaged over 3. As Best of 10 draws samples
directly from ppre

0 (x0) we instead bold the fine-tuning method whose Gen PPL is lowest.

Dataset→ Tinystories Amazon reviews
Algorithm ↓Metric→ logR(x0) ↑ Gen PPL ↓ logR(x0) ↑ Gen PPL ↓
Best of 10∗ 93.25 ± 0.17 15.94 ± 0.03 -103.05 ± 0.25 124.45 ± 1.02
SVDD 146.95 ± 1.08 20.35 ± 0.03 -27.48 ± 10.91 165.86 ± 1.22

RTB 107.83 ± 3.08 18.53 ± 0.55 -35.22 ± 16.03 160.54 ± 12.19
DDPP-IS (ours) 163.45 ± 7.06 20.15 ± 0.30 105.16 ± 2.41 152.85 ± 1.64
DDPP-LB (ours) 205.76 ± 3.88 19.60 ± 0.69 152.08 ± 34.01 167.25 ± 27.33

5 RELATED WORKS

Discrete diffusion. The prevailing paradigms for diffusion over discrete spaces can be broadly
categorized into 1.) continuous diffusion in a latent or reparametrized space by first transforming
the initial discrete data (Li et al., 2022; Chen et al., 2022; Davis et al., 2024; Cheng et al., 2024), and
2.) defining diffusion using discrete analogs of score approximation (Meng et al., 2022; Lou et al.,
2023). The latter approach can also be described using the theoretical framework of Continuous-time
Markov Chains (CTMC) (Austin et al., 2021; Campbell et al., 2022; 2024). Closest to our setting we
consider a specific instantiation of discrete diffusion that simplifies the CTMC framework by using
a masked forward process (Sahoo et al., 2024; Shi et al., 2024; Zhao et al., 2024a; Gat et al., 2024).
Finetuning as sampling. The task of fine-tuning generative models under reward models can be
viewed as a sampling problem and encompasses conventional RLHF (Uehara et al., 2024a; Black et al.,
2023; Fan et al., 2024; Dong et al., 2023). A simple but expensive method to sample from the reward-
induced Bayesian posterior distribution is best of N sampling (Stiennon et al., 2020), which provably
samples from the correct distribution as the number of samples from the base pre-trained model grows,
N → ∞ (Beirami et al., 2024; Gao et al., 2023; Ferbach et al., 2024). Alternatively, the sampling
perspective has been explored in the discrete setting to fine-tune autoregressive models (Zhao et al.,
2024a; Hu et al., 2023), and diffusion models (Uehara et al., 2024b; Venkatraman et al., 2024; Zhao
et al., 2024a). Finally, inference time techniques represent the most prominent approach to conditional
sampling (Ho and Salimans, 2022; Dhariwal and Nichol, 2021; Li et al., 2024; Nisonoff et al., 2024).

6 CONCLUSION

In this paper, we present DISCRETE DENOISING POSTERIOR PREDICTION a novel framework to steer
Masked Discrete Diffusion Models by viewing it as a problem of sampling from a Bayesian posterior.
We introduced three concrete training strategies to instantiate our framework in DDPP-IS, DDPP-LB,
and DDPP-KL and apply them to modeling synthetic data, pixel-level image modeling, fine-tuning
protein MDMs to increase secondary structure diversity, and steering MDMs on language to match
human sentiment. We find that DDPP not only is able to optimize an amortized sampler to closely
match the reward-induced Bayesian posterior but it has a good agreement in other sample quality
metrics—without severely compromising generated sample quality. An interesting direction for
future work is to understand how to balance optimization of DDPP-LB and strategies to selecting γ.
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7 REPRODUCIBILITY STATEMENT

We take the following steps to enhance the reproducibility of our work. In particular, all of our
theoretical results include full proofs which are presented in §C. To assist in the reproducibility of
our empirical findings we provide precise experimental details such as algorithmic descriptions of
all variants of DDPP in Algorithm 1 and Algorithm 2. We further provide architectural choices,
training details, and hyperparameters for all datasets and tasks in §D.
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A BROADER IMPACT

Our proposed DISCRETE DENOISING POSTERIOR PREDICTION is a tailored approach to steering
and fine-tuning Masked Diffusion Models. At present, MDMs are an emergent category of discrete
generative models that have general-purpose modeling capabilities in a variety of domains including
language modeling, sequence-based drug design, and discrete modeling of graphs. Consequently, we
believe DDPP has potential use in various practical use cases. For instance, like current RLHF tech-
niques applied to modern autoregressive LLMs, future scaled MDMs on text datasets might be tuned to
promote harmful behavior and toxic content. Moreover, applying DISCRETE DENOISING POSTERIOR
PREDICTION in drug design use cases has the potential to create in-silico sample of protein sequences
that may have biologically potent negative externalities. We do, however, make the distinction that
such a risk is speculative at this stage given the large complexities of translating in-silico designs to
actual synthesized biomolecules. As a result, we encourage practitioners who seek to fine-tune MDMs
using DDPP to exercise due caution when applying our proposed techniques to actual use cases.
Ethical statement. As part of qualitatively evaluating DDPP, this paper includes generated samples
of text. We highlight that the set of examples may contain potentially disturbing, harmful, or upsetting
examples, covering a variety of sensitive topics like discriminatory language, descriptions of harm, and
misinformation, among other high-risk categories. Its primary purpose is to advance research in under-
standing the impact of DDPP from a more interpretable lens. It is not advised to train future MDMs on
such generated samples in order to prevent further propagation of undesirable content and behaviors.

B ADDITIONAL RELATED WORK

Sampling proportional to energy. Our approach can be closely linked to learning to sample
proportional to a target probability, as in our setup we aim to approximate sampling proportional
to the energy ppre

t (·|xt)R(·) for any point xt at any time t. This has been an avenue of research
for a number of works in continuous time (Bengio et al., 2021; 2023; Malkin et al., 2022; Lahlou
et al., 2023; Akhound-Sadegh et al., 2024; Sendera et al., 2024; De Bortoli et al., 2024), in Bayesian
posterior inference where the energy is defined by the product of likelihood and prior (Mittal et al.,
2023), as well as posterior inference in settings where we even do not have access to energy function
but only to a simulator (Radev et al., 2020; Wildberger et al., 2024; Geffner et al., 2023).

C THEORETICAL RESULTS

C.1 PROOF OF PROPOSITION 1

Before proving proposition 1 we first prove a useful Lemma that states the optimal log partition
function log Ẑπt

(xt) which is the learning goal for a parameterized approach log Ẑπt,θ(xt).

Lemma 1. Given a sample xt ∼ pt(xt|x0) and the denoising posterior distribution qt,θ(x0|xt),
a local minimizer for estimate for the log partition function log Ẑπt

using N samples from
xi
0 ∼ qt,θ(x0|xt) is given by:

logZ∗
πt

=
1

N

N∑
i=1

log

(
pt(x

i
0|xt)R(xi

0)

qt,θ(xi
0|xt)

)
. (14)

Proof. By definition the log partition function is a constant, let that constant be logZπt
(xt) = C.

Then the loss in Eq. 11 is a quadratic in C,
L = Ex0∼r(x0)

[
|| log qt,θ(x0|xt) + C − log pt(x0|xt)− logR(x0)||22

]
(15)
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For a batch of N samples of xi
0 ∼ qt,θ(x0|xt), we find a locally optimal constant C (local minima)

by taking the gradient of Eq. 15 and setting it 0. In more detail we have,

0 = ∇C
1

N

N∑
i

(log qt,θ(x0|xt) + C − log pt(x0|xt)− logR(x0))
2 (16)

0 =
2

N

N∑
i

(
log qt,θ(x

i
0|xt) + C − log pt(x

i
0|xt)− logR(xi

0)
)

(17)

0 = 2C +
2

N

N∑
i

log qt,θ(x
i
0|xt)− log pt(x

i
0|xt)− logR(xi

0) (18)

0 = C +
1

N

N∑
i

log

(
qt,θ(x

i
0|xt)

pt(xi
0|xt)R(xi

0)

)
(19)

C =
1

N

N∑
i

log

(
pt(x

i
0|xt)R(xi

0)

qt,θ(xi
0|xt)

)
. (20)

Using Lemma 1 we now prove Proposition 1, stated again below for convenience.

Proposition 1. Let log Ẑ IS
πt

and log ẐLB
πt,θ

be the M -sample importance sampling estimate using
the proposal qt,θ(x0|xt) and learned approximation to the log partition function respectively. Given
a partially masked sample xt ∼ pt(xt) the optimal learned approximation is a lower bound to the
importance sampling estimate with a fixed proposal qt,θ(x0|xt) and the following inequality holds:

log ẐLB
πt,θ(xt) ≤ log Ẑ IS

πt
(xt). (9)

Proof. We optimize log ẐLB
πt,θ

(xt) using the loss defined in Eq. 11. Using Lemma 1 we know the
analytic expression for the locally optimal estimate is given by logZ∗

πt
(xt). Plugging this into the

definition of the log partition function we get,

log ẐLB
πt,θ(xt) = Ex0∼qt,θ(x0|xt)

[
log

(
pt(x0|xt)R(x0)

qt,θ(x0|xt)

)]
(21)

≤ logEqt,θ(x0|xt)

[
pt(x0|xt)R(x0)

qt,θ(x0|xt)

]
(22)

= log Ẑ IS
πt
(xt) (23)

The lower bound turns into equality at the optimal proposal qt,θ(x0|xt) ∝ pt(x0|xt)R(x0).

C.2 ESTIMATING DDPP-KL WITH REINMAX

We first provide an algorithmic description below of training using DDPP-KL. We first highlight
how the reverse KL objective can be applied to a more general setting beyond just fine-tuning before
turning to the exact setting of the main paper.

Algorithm 2 DDPP-KL
Input: Differentiable reward R(x0), base MDM ppre

0 (x0|xt), fine-tuning MDM qθ(x0|xt), Num samples K
1: while Training do
2: t,x0 ∼ U [0, 1], q(x0) ▷ Sample time and clean data on-policy from the fine-tuning MDM
3: xt ∼ pt(xt|x0) ▷ Construct a partially masked sample given clean data
4: {x̂i

0}Ki=0 ∼ qt,θ(·|xt) ▷ Reparametrized Sampling of clean data
5: LKL = 1

K

∑K
i=1

(
log qt,θ(x̂

i
0|xt)− log ppre

0 (x̂i
0|xt)− logR(x̂i

0)
)

6: ∇θLKL := ∇Reinmax
θ

(
LKL) ▷ Use the Reinmax discrete gradient estimator

7: θ ← Update(θ,∇θLKL)
8: Return qθ
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Non-finetuning Case. In this appendix, we study the REINMAX gradient estimator for the general
problem of sampling from the following distribution:

π0(x0) ∝
R(x0)

Z
. (24)

Gradient of LKL. We can decompose the gradient into the following terms due to the linearity of
expectations:

LKL
t = Et,x0,xt

[log qt,θ(x0|xt)]− Et,x0,xt
[log πt(x0|xt)]

= L1
t + L2

t . (25)
We again highlight the fact that the expectation is taken using the following distributions
t,x0,xt ∼ U [0, 1], q(x0), pt(xt|x0). As a result, x0 is drawn on-policy and is a stochastic variable
that needs gradient estimation since qθ is the parameterized distribution. Furthermore, all terms that
use this sample x0 inside the expectation are affected by this gradient computation.
Taking the gradient of each term respectively. The gradient of of L1

t is:
∇θL1

t = ∇θ (Et,x0,xt [log qt,θ(x0|xt)])

≈ Et,x0∼qθ(x0),xt∼pt(xt|x0)

[
∇Rein-Max ◦ (log qt,θ(x0|xt))

]
. (26)

The gradient of of L2
t is:

∇θL2
t = ∇θ (Et,x0,xt [log πt(x0|xt)])

= ∇θ (Et,x0,xt
[− log pt(xt|x0)− log π0(x0) + log πt(xt)])

= ∇θ

Et,x0,xt

− log pt(xt|x0)− logR(x0) + log

∑
x′
0

πt(xt|x′
0)R(x′

0)

 . (27)

To use the Reinmax gradient estimator we must compute ∂f(z)/∂z, where f is the function inside
the expectation Ez[f(z)]. We now make use of the following facts:
(F1) Analytic expression of ∇x0

log pt(xt|x0). For simplicity of presentation, we focus on a single
token xi

0 in a sequence but the result remains true for the entire sequence x0. Recall in the
discrete setting of masked diffusion models pt = Cat(x0; Q̄txt), which allows us to write:

∇xi
0
log pt(x

i
t|xi

0) =
∇xi

0
pt(x

i
t|xi

0)

pt(xi
t|xi

0)
(28)

=
∇xi

0
Cat(xi

0; Q̄tx
i
t)

Cat(xi
0; Q̄txi

t)
(29)

=
∇xi

0
(xi,T

0 Q̄tx
i
t)

xi,T
0 Q̄txi

t

(30)

=
∇xi

0
(αt⟨xi

t, x
i
0⟩+ (1− αt)⟨xi

t, em⟩)
αt⟨xi

t, x
i
0⟩+ (1− αt)⟨xi

t, em⟩
(31)

=
αtx

i
t

αt⟨xi
t, x

i
0⟩+ (1− αt)⟨xi

t, em⟩
. (32)

(F2) Differentiability of the reward ∇x0
R(x0). If we assume the reward is differentiable we can

exploit the same trick to write:

∇x0
logR(x0) =

∇x0R(x0)

R(x0)
. (33)

Note that the final term in Eq. 27 does not depend on the realization of the sample x0 ∼ q(x0|xt)
and thus its gradient in Rein-max is 0. This enables us to write the approximate gradient as:

∇θL2
t ≈ Et,x0,xt

[∇Reinmax ◦ (− log pt(xt|x0)− logR(x0))]

= Et,x0,xt

[(
−

N∑
i

αtx
i
t

αt⟨xi
t, x

i
0⟩+ (1− αt)⟨xi

t, em⟩
−

∇Reinmax
x0

R(x0)

R(x0)

)]
. (34)
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The first term in the equation has a closed-form expression for the gradient but is still a stochastic
gradient since it depends on x0 ∼ qθ(x0).
Finetuning Case. In the fine-tuning setting we aim to sample from the following Bayesian posterior:

π0(x0) ∝
ppre
0 (x0)R(x0)

Z
(35)

For MDMs the likelihood under the model ppre
0 (x0) is intractable to evaluate and leads to a modified

objective for gradient estimation with REINMAX in LKL
t in Eq. 25:

∇θL2
t = ∇θ (Et,x0,xt [log πt(x0|xt)])

= ∇θ

(
Et,x0,xt

[
− log ppre

t (x0|xt)− logR(x0) + logZπt(xt)
])

= ∇θ

(
Et,x0,xt

[
− log ppre

t (x0|xt)− logR(x0) + log
(
Ex′

0∼ppre
t (x0|xt)[R(x′

0)]
)])

. (36)

Note that in the equation above we can evaluate the log partition function using samples drawn from
the denoising posterior of the pre-trained model x′

0 ∼ ppre
t (x0|xt) and not the on-policy samples

x0 ∼ qθ(x0). Thus this term is a constant when we compute the gradient. Thus we have,

∇θL2
t ≈ ∇Reinmax ◦

(
Et,x0,xt

[
− log ppre

t (x0|xt)− logR(x0)
])

. (37)

C.3 EQUIVALENCE OF SUB-TRAJECTORY OBJECTIVES

In this appendix, we detail how to compute an efficient approximation of the loss function that is
inspired by the KL divergence between sub-trajectories as found in the GFlowNet literature but
adapted for MDMs.
Consider the trajectory of a sequence: τ(x0:1) := x1 → · · · → xt → xt−1 → . . .x0. We seek to
minimize the joint distribution over the (sub)-trajectories conditioned on a partially masked sample xt:

qθ(x0, . . . ,xt−1|xt, µθ(xt, t))pt(xt) = πt(x0, . . . ,xt−1|xt)p(xt). (38)
Here πt(x1, . . . ,xt−1|xt,x0) is defined as,

πt(x0, . . . ,xt−1|xt, µθ(xt, t)) =
ppre
t (x0, . . . ,xt−1|xt)R(x0)

Zπt(xt)
(39)

=

∏t
j=1 p

pre
t (xj−1|xj , x̂

pre
0 )R(x0)

Zπt
(xt)

(40)

We minimize the following KL divergence,
DKL(qθ(x0, . . . ,xt−1|xt, x̂0)pt(xt)||πt(x0, . . . ,xt−1|xt)p(xt)). (41)

Here we used the convention that x̂0 = µθ(xt, t) and x̂pre
0 = µpre(xt, t). The KL between path

measures along the sub-trajectory shares the same optimum as the following loss objective:

Lτ = Et,xt

[
Eτ(x0:t)[∥ log qθ(x0, . . . ,xt−1|xt, x̂0))− log ppre

t (x0, . . . ,xt−1|xt) + κ∥22]
]

= Et,xt

[
Eτ(x0:t)

[∥∥∥ t∑
j=1

log qθ(xj−1|xj , x̂0)− log ppre
t (xj−1, |xj , x̂

pre
0 ) + κ

∥∥∥2
2

]]
(42)

= Et,xt,τ(x0:t)

[∥∥∥ t∑
s=1

log qθ(xs−γ |xs, x̂0)− log ppre
t (xs−γ , |xs, x̂

pre
0 ) + κ

∥∥∥2
2

]
= Et,xt,τ(x0:t)

[∥∥tEs,xs,xs−γ

[
log qθ(xs−γ |xs, x̂0)− log ppre

t (xs−γ , |xs, x̂
pre
0 ) + κ

]∥∥2
2

]
. (43)

In the last equation we define the constant κ = (− logR(x0) + logZπt
(xt))/t and use the fact

that our notation convention uses p(X = x) = p(x) for discrete random variables. Now we make
the observation that for any s < t we have effectively picked an endpoint over the trajectory. More
precisely, s ∼ U [0, t], which also allows us to sample xs ∼ pt(xs|x0), in an analogous manner to
how xt is constructed.
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D ADDITIONAL EXPERIMENTAL DETAILS

All experiments were performed on a shared heterogenous high-performance computing cluster.
This cluster is primarily composed of GPU nodes with RTX8000, V100, A100, L40S, and H100
NVIDIA GPUs. We briefly note a trick used across a number of our experiments for DDPP-LB
described as warming up logZt(xt). We found that early iterations of training DDPP-LB could
be somewhat unstable as the parameterized normalizing constant was not calibrated to a proper range
given the pre-trained model and reward function. As such, we found that warming up logZt(xt)
for some number of steps at the beginning of training by only allowing gradient flow through the
logZt(xt) term helped stabilize training and improve overall performance. For the runs on which
warming up logZt(xt) was utilized, we resume normal training (i.e., allowing gradient flow through
the fine-tuned denoiser and logZt(xt)) after the warmup period has concluded. For all experiments
with DDPP-LB we used another separate, small DiT to parameterize the logZt(xt) prediction.

D.1 SYNTHETIC EXPERIMENTS

Two synthetic tasks were performed: (1) sampling from a posterior over a 2 dimensional grid, and (2)
fine-tuning on binarized MNIST. In both cases a 90 million parameter MDM model was trained on
samples from the prior distribution, with the same DiT architecture as in Sahoo et al. (2024).

D.1.1 GRID EXPERIMENT

The space consists of discrete tokens x0 ∈ {0, . . . , 127}2. A prior density ppre
0 is defined over this

space which assigns a uniform probability for tokens falling inside one of the 16 evenly spaced
squares, and a near-zero probability outside this. This prior distribution is depicted in Figure 6(a).
Pre-training was done using the Adam optimizer, with β1, β2 = {0.9, 0.999}, and a learning rate of
3e−4.
The reward function R(x0) = 0 for x1

0 < 64, and R(x0) = 1 for x1
0 ≥ 64. This results in a

fine-tuning target ∝ R(x0)p
pre(x0) which selects out only the squares in the lower half of the grid.

This product distribution is visualized in Figure 6(b).
For fine-tuning we train the model using our loss-functions with the Adam optimizer, using a learning
rate of 4e− 3, β1, β2 = {0.9, 0.999}, and a weight decay of 0 across all methods. DDPP-IS used
16 samples to estimate the partition function. Training is done using a replay buffer populated with
points x0 sampled on policy from the model, as well as off-policy points from the prior distribution,
added to the buffer every 100 training steps. A batch of 64 is used.

D.1.2 MNIST

This task consisted of generating binarized MNIST digits x0 ∈ {0, 1}28×28. The prior ppre(x0) in
this case is the MNIST data distribution. For pre-training, the Adam optimizer is used with a learning
rate of 4e− 3, β1, β2 = {0.9, 0.999} and a weight decay of 0.
This MDM is fine-tuned to produce even digits. More precisely, the reward function is R(x0) =

p(Even | x0)
β =

(∑
i=0,2,4,6,8 p(y = i | x0)

)β
, with p(y = i | x0) being obtained from a

pretrained MNIST classifier (LeNet 5 in this case). The inverse-temperature β is set to 5 for all
experiments.
For fine-tuning with our methods, we use Adam with a learning rate of 1e − 5 and β1, β2 =
{0.9, 0.999}. Training is done with a batch-size of 64. Samples are drawn from a replay-buffer
populated with only on-policy samples. Method specific hyperparameters include:

• DDPP-IS: the importance sampling estimate is done with 16 samples
• DDPP-LB: a learning rate of 1e− 3 is used for network layers estimating logZπt

• DDPP-KL: The KL objective per xt is computed using 8 samples

RTB is trained with a learning rate of 5e− 5, with weight decay 0.01, on trajectories of length 32
with a batch size of 8. For training, 30% of the steps are detached. The smaller batch-size is chosen
to fit the training on 80GB of GPU memory.
SVDD uses 10 particles in each inference step.
For all methods (including baselines), inference is done with 128 steps.
Additional information on computation of metrics is included in D.3.1.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D.1.3 MNIST SAMPLES

Samples from our methods, as well as the pretrained model, are shown in Figure 4.

D.2 PROTEIN SEQUENCES

Protein design involves the creation of novel protein sequences that adopt specific structures and
perform desired functions. This is a critical field in synthetic biology and biotechnology, as it enables
the rational engineering of proteins with enhanced stability, novel functionalities, or improved
therapeutic properties. Advances in machine learning-based models, such as protein language
models (pLMs), have enabled rapid exploration of protein sequence space, making de novo protein
design more feasible and versatile. However, current pLMs struggle in generating realistic sequences
which satisfy certain criteria, and we study using DDPP to finetune DPLM to generate high-scoring
proteins given a reward function.

D.2.1 IN-SILICO TASKS

In task 1, we fine-tune the DPLM model to generate designable protein sequences that optimize
for several critical features, including high predicted template modeling (pTM) and predicted local
distance difference test (pLDDT) scores from ESMFold, reduced exposed hydrophobic residues,
high sequence entropy, and an increased proportion of β-sheet content (Hie et al., 2022). These
optimizations are captured in the reward function R, given by:

logR = wpTM · pTM + wpLDDT · pLDDT + wSheet · Sheet%
+ wEntropy ·H(s)− wHpho · Exposed_Hpho%

Where the terms represent:

• pTM and pLDDT: Structural confidence scores from ESMFold, measuring global and local
accuracy, respectively.

• Sheet%: The proportion of residues predicted to form β-sheets, determined by DSSP (Kab-
sch and Sander, 1983).

• H(s): Sequence entropy, defined as:

H(s) = −
L∑

i=1

∑
a

pi(a) log pi(a),

where L is the length of the sequence and pi(a) is the probability of amino acid a at position
i.

• Exposed_Hpho%: Percentage of hydrophobic residues exposed on the surface, calculated
based on solvent-accessible surface area.

The weights for these features are set as follows:

wpTM = 1, wpLDDT = 1, wSheet = 4.5, wEntropy = 0.8, wHpho = 0.25.

As the scale of the various reward terms are non-uniform we selected the reward weights to weight
all rewards similarly besides the sheet percent reward which is weighted higher. For the β-sheet task
we found that both RTB and DDPP faced issues with mode collapse. After investigating the protein
structures generated by base DPLM we found that the base model is only capable of generating a
small number of motifs (in particular, over 2k samples from the base model we found only two motifs
with logR(x0) ≥ 3.5), implying that the targeted product distribution indeed collapses around these
structural motifs as we observe in the case of RTB and DDPP. As such, we conclude that DDPP (and
RTB) achieve the goal of fine-tuning as they sample from the product distribution and reproduces
samples with β-sheets at a much higher proportion than the base model.
In task 2, we focus on generating shorter sequences of known proteins that preserve essential structural
characteristics, using the TM-align score as the reward function (Devkota et al., 2024). This task
allows the exploration of mutational effects. Ribonuclease proteins (PDB IDs: 9RAT-A, 11BA-A)
are selected for this task due to their well-characterized structure, function, and folding mechanisms.
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(a) Pretrained model

(b) DDPP-IS

(c) DDPP-LB

(d) DDPP-KL

Figure 4: Uncurated samples from the pretrained model, and after fine-tuning with our methods:
DDPP-IS, DDPP-LB, DDPP-KL
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The reward function R is defined as:

R = wtm_score · TM-align(s, t).

Where:

• wtm_score: The weight of the TM-Score reward, set to 2.

• s: Predicted structure from ESMFold of the generated sequence.

• t: Target protein structure.

• TM-align: A measure of structural similarity between s and t, defined as:

TM-align = max

 1

Lt

Lali∑
i=1

1

1 +
(

di

d0

)2
 .

where Lt is the length of the target protein, Lali is the length of the aligned region, di is
the distance between the i-th pair of aligned residues, and d0 is the distance scale based on
Lt (Zhang and Skolnick, 2005).

While not used in the reward function for either experimental setting, we also measure the KL
divergence, reported as KL-SS in Table 3 between the secondary structure distribution given by DSSP
for both the target and miniaturized protein.
Note that in these experiments, the number of recycles in ESMFold is set to 0 to reduce computational
overhead. For both tasks we generate amino acid sequences of length 90. Evaluation is performed
by sampling 200 proteins for each method across three seeds and reporting the mean and standard
deviation of each metric accordingly. All methods ran 500 inference steps during evaluation. All
protein experiments used a 150 million parameter DPLM base model1 to begin fine-tuning from.
All models used a log-linear noise schedule with σmin = 1e−4 and σmax = 20 and used a linear
learning rate warmup period of 2500 training steps.
DDPP was trained with no warmup period for logZt(xt), a learning rate of 1e−5, a batch size of 16,
a replay buffer of max length 10,000, and inserting new batches to the buffer sampled on-policy from
the current model every 250 training steps. RTB was trained similarly, but with a smaller batch size to
account for its greater memory requirements. RTB matches the setting of DDPP but with a batch size
of 8 while doing 90 inference steps during training (a new batch of trajectories is simulated on-policy
every training step). To allow RTB to fit in memory we detached 65% of trajectory timesteps when
computing a backward pass on the RTB objective. SVDD was run on the base DPLM model with
n = 10 particles. To control the concentration of our designated target distributions, we set the
reward temperature β = 0.125 for the β-sheet task and β = 0.001 for the protein miniaturization
task.
We report an extended version of Table 3 where we include results for both ribonuclease targets in
Table 5. We observe that DDPP consistently achieves the highest TM-Score across the two templates
while maintaining high structural quality with an average pLDDT of around 0.8.

D.2.2 EXPERIMENTAL VALIDATION

Genes encoding for de novo protein sequences were obtained from Integrated DNA Technologies
(IDT) and cloned into pET-24a(+) (Novagen) expression vectors with a C-terminal 6xHis tag using
Gibson Assembly (New England Biolabs, NEB). Assembled plasmids were verified via Sanger
sequencing, then transformed into chemically competent Escherichia coli BL21(DE3) cells (NEB).
Starter cultures (3 mL Luria Bertani media, 50 µg/mL kanamycin) were inoculated from freshly
prepared agar plates and grown at 37°C and shaken at 225 RPM overnight. Starter cultures were
then diluted 1:100 into 50 mL LB medium supplemented with antibiotic. Cultures were then grown
at 37°C and 225 RPM until an optical density (OD600) of 0.5-0.7 was reached. Protein expression
was then induced with 1 mM isopropyl β-D-thiogalactopyranoside (IPTG) for 4 hours at 37°C. Cells
were then collected by centrifugation (4,500xg) at 4°C and resuspended in lysis buffer (Tris-buffered
saline (TBS), 25 mM imidazole). Cell suspensions were then lysed via sonication (10s pulses,
40% amplitude). The corresponding lysate was centrifuged at 12,000xg for 30 minutes, and the

1https://huggingface.co/airkingbd/dplm_150m
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Table 5: Miniaturizing ribonuclease proteins 9RAT-A and 11BA-A (124 AAs) to 90 AAs while
preserving structural fidelity (high TM-Score) and quality (high pLDDT and PTM).

Template SS-KL ↓ logR(x0) ↑ TM-Score ↑ pLDDT ↑ pTM ↑

9RAT-A

Base Model 2.944 ± 2.936 0.502 ± 0.128 0.251 ± 0.064 0.724 ± 0.144 0.584 ± 0.226
Best-of-10 0.640 ± 1.872 0.725 ± 0.098 0.363 ± 0.049 0.789 ± 0.018 0.754 ± 0.086
DDPP 1.086 ± 2.242 0.735 ± 0.122 0.368 ± 0.061 0.793 ± 0.044 0.768 ± 0.066
RTB 1.808 ± 2.597 0.597 ± 0.109 0.299 ± 0.055 0.796 ± 0.054 0.750 ± 0.084
SVDD 3.465 ± 2.835 0.699 ± 0.079 0.350 ± 0.039 0.499 ± 0.137 0.383 ± 0.178

11BA-A

Base Model 3.136 ± 3.150 0.478 ± 0.101 0.239 ± 0.051 0.724 ± 0.144 0.584 ± 0.226
Best-of-10 2.602 ± 3.309 0.654 ± 0.089 0.327 ± 0.045 0.782 ± 0.027 0.720 ± 0.109
DDPP 0.194 ± 1.009 0.709 ± 0.048 0.354 ± 0.024 0.743 ± 0.036 0.727 ± 0.054
RTB 2.579 ± 2.799 0.564 ± 0.111 0.282 ± 0.056 0.797 ± 0.058 0.744 ± 0.101
SVDD 3.240 ± 2.992 0.647 ± 0.079 0.324 ± 0.040 0.486 ± 0.124 0.354 ± 0.162

supernatant was loaded into a HisPur Ni-NTA His-spin column (ThermoScientific) and purified as
recommended. Expression of purified proteins in both the soluble and insoluble fraction, as well as
his-tag purification fractions, was assessed using SDS-polyacrylamide gel electrophoresis.

D.3 DISCRETE IMAGE MODELLING

To setup the finetuning task we first pre-train large masked diffusion models on the original dataset.
This uses a standard masked diffusion loss as explored in previous work (Shi et al., 2024; Sahoo
et al., 2024).
CelebA Pretraining. We train a 241 million parameter model based on the variational diffusion
model (VDM) architecture (Kingma et al., 2023) and the setup of Shi et al. (2024). We adapted
the U-Net plus self-attention architectures from Kingma et al. (2023) as used in CIFAR-10 in their
experiments, with a few notable additions. We replace the Fourier feature inputs with an input
embedding layer which embeds 257 (256 pixel values + <MASK>) tokens into the embedding
dimension. We double the number of residual blocks from 32 to 64 per encoder / decoder, and double
the embedding dimension from 128 to 256. We use an Adam optimizer with learning rate 1e− 3,
β1=0.9 and β2=0.999. We train our model for 450k steps with batch size 128 on a cluster of 16
NVIDIA L40S GPUs. We resize all CelebA images to 64x64 with bilinear interpolation. Samples
from this model can be seen in Figure 5.
Separately, we train a 7M parameter classifier to classify hair color on CelebA. We use this as our
energy function with a temperature setting of 0.1 for all finetuning experiments.
CelebA Finetuning. With the problem setup, we next finetune our pretrained model to sample images
with blond hair. We train each model for up to 12 A100 hours. We use an early stopping criteria
based on a validation set using an approximate bits-per-dimension calculation using the ELBO. We
find that the original needs at least 1 000 inference steps for good performance therefore we evaluate
all models in this setting. For our model we use 1 000 warmup steps for logZ, a learning rate of
1e− 4, we resample two batches every 500 gradient steps of the model and add them to the replay
buffer.
In contrast to our model, RTB requires a full trajectory for each gradient step. For CelebA, this means
a rollout of 1 000 inference steps taking approximately 2 minutes for a batch size of 2 on an A100
with this model. Because of memory constraints we detach 99% of inference steps and use a batch
size of 2 to fit in 80GB of GPU memory with a global batch size of 8 trajectories per gradient step.

D.3.1 METRICS

The metrics used to evaluate image fine-tuning include mean log reward, feature-likelihood divergence
(FLD), and bits per dimension (BPD).
FLD. For FLD, we draw K samples from the model, and K samples from the test set restricted to
the target class. The FLD is computed using the DINOV2 feature space (from the ViT-B14 model)
between these two sets of samples (Oquab et al., 2024). For MNIST, K = 5k.
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Figure 5: Uncurated pre-trained CelebA model samples using a discrete generative model.
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BPD. An upper bound on the log-likelihood is computed using the MDM ELBO loss (on the fine-
tuned model), and this is normalized (by the number of pixels and log 2) to obtain the reported BPD
metric. For baselines other than discrete guidance, this metric is computed on the test set restricted to
the target-class. For discrete guidance, BPD is computed by evaluating the MDM ELBO of the base
model on samples generated using guidance (due to lacking an analogous ELBO for guidance-based
sampling).

D.4 TEXT EXPERIMENTS

All text experiments begin by starting from the pretrained MDLM2 consisting of 170 million pa-
rameters. We then do supervised fine-tuning to produce a model capable of producing output of the
desired format before proceeding with online fine-tuning. For all text experiments we train using
the Adam optimizer with β1, β2 = {0.9, 0.999} and weight decay of 0. For both tasks SVDD was
run with n = 10 particles. Evaluation was done by training each method for one day across three
seeds and generating 1000 samples from the best checkpoint according to the mean reward generated
during training. We report both the mean reward of the 1000 samples across three seeds and their
standard deviations, as well as the generative perplexity according to a GPT2-Large model with 812
million parameters 3.

D.4.1 TINYSTORIES

To obtain a base model we performed supervised fine-tuning from the base MDLM model on the
Tinystories dataset. As all methods were prompted with the text “Once upon a time” during training,
we restricted the SFT dataset to only datapoints whose stories started with the text “Once upon a
time,”, resulting in a corpus of 977,921 examples. SFT was done using Adam, β1, β2 = {0.9, 0.999},
and a learning rate of 4e−3 over 60,000 training steps using 4 NVIDIA A100 GPUs. All models
were trained for up to 24 GPU hours on NVIDIA L40S GPUs. Fine-tuning checkpoints were selected
based upon the iteration with best average reward when sampling a new training batch from the
model. All methods employ a learning rate schedule with a linear warmup for the first 2,500 training
steps and keep the noise schedule provided by the pre-trained MDLM model – a log-linear schedule
with σmin = 1e−4 and σmax = 20. All evaluations were performed by taking 1000 samples for
each method across three seeds. We provide a set of curated samples in Table 6.
The reward function for this task was selected to be a pre-trained classifier4 (Kluge Corrêa, 2024).
The classifier is a RoBERTa model with 125 million parameters which was fine-tuned on a curated
subset of various toxicity/harmlessness datasets. The reward R(x0) is then set to the likelihood of a
sequence being toxic under the pre-trained classifier so that R(x0) = p(a = 1|x0) where p(a = 1|x0)
denotes the likelihood of the sequence x0 possessing a toxic sentiment. We select this task as it allows
a demonstration of how our method can recover rare behavior under the pre-trained model while still
maintaining sample quality. We consider as our target distribution the tempered reward distribution
π0(x0) ∝ ppre

0 (x0)R(x0)
1/β with β = 0.25.

For DDPP-LB we used 1,500 warmup steps for logZπt
(xt), a learning rate of 1e−4 and a batch size

of 16. We employ a replay buffer with a max length of 10,000 and sample training batches uniformly
from the buffer. The buffer is filled every 50 training steps with a batch sampled on-policy from the
current fine-tuned model, while every 250 steps a batch from the SFT training dataset is added to
the buffer. We use EMA with a decay rate of ϵ = 0.9999, a learning rate of 1e−4, and train without
LoRA. DDPP-LB was trained using 64 inference steps for simulation. DDPP-IS employed the same
hyperparameter settings as DDPP-LB except that it dispelled with learning logZπt

(xt) and instead
estimated it with K = 16 Monte Carlo samples from the one-step pre-trained posterior ppre

t (x0|xt).
As RTB cannot fit all timesteps of a trajectory into memory during the backwards pass, we detached
55% of timesteps where each trajectory consisted of 32 timesteps. RTB was trained with LoRA
enabled, a LoRA rank of 16, and a learning rate of 5e−5. Due to memory constraints the batch size
was set to 4. SVDD was run by using n = 10 particles per inference timestep. best of N (with
N = 10) sampling was performed by taking 10 samples from the SFT model and selecting the sample
with highest likelihood under the reward model.

2https://huggingface.co/kuleshov-group/mdlm-owt
3https://huggingface.co/openai-community/gpt2-large
4https://huggingface.co/nicholasKluge/ToxicityModel
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Table 6: Curated samples from DDPP-LB on Tinystories.

Generated Text

Once upon a time, there was a little girl named Lily. One day, Lily went to
the park with her mom. She loved to run fast and laugh. Lily saw a funny
butterfly and ran it too. She fell fast and hurt a tree. Lily’s knee hurt and she
cried. But her mommy kissed her cheeks and said, “Be careful when you
run, Lily.”

Once upon a time, there was an elderly wolf. He lived in a big den against
the woods. One day, the wolf felt very tired and wanted a place where there
was a big tree to eat on. So, he went to sleep all day. But, while he was
waking up, he saw a big, icy creature. The quickly jumped up, but his legs
were too weak. The creature took the elderly wolf away. And that is how
winter ended.

Once upon a time, there was a little bird. His wings were weak and he fell
down. The bird wanted his wing to restore him. So, he flapped his wings
with his weak heart.

Once upon a time, there was a little boy named Timmy. He loved going to
the woods with his family. One day, Timmy’s friend Johnny came to the
woods to play. Johnny was excited to go outside and play.

They found a big tree with words said "I reverse," and Timmy would play
on its branches. He said, "reverse!" and pushed the tree. Then, they ran and
laughed.

But then, they heard a loud noise coming from the bushes and scared them.
It was a big, mean bear! Timmy tried to reverse and run away, but he wasn’t
fast enough. The bear chased him and caught him up with its sharp hands.

Timmy was very scared and never went back to the woods again.

Once upon a time, on a calm blue sea, there was a small boat. The boat had
sailors. They lived happily in the day water. One day, the water was very
hot. So, they all decided to soak up and have a picnic.

But, by the time, the sailors started to play a game. They swam around and
counted, ", two, three soon!" and all the sailors kept playing. They water
flowers and trees, and everyone laughed.

But then, a clumsy heavy sailor hurt his head on a rock. "Ouch!" he cried.
His friends helped him up and said, "Be careful next time!" The sailor felt
better and they all laughed. They knew they could play again and have fun
on a calm day soon.
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D.4.2 AMAZON REVIEWS

Table 7: Curated samples from DDPP-LB on Amazon review generation task.

Generated Text

Cheap. Poor fit. The pants return immediately and the fabric was like a
burlap sack bag-Wanted it for a gift-It’s crap. Broke in one day. Customer
service never responded.<br />Very cheap!

Everything was horrible.

It’s the worst one I’ve ever bought.. you have to keep it in your bag for
my daughter and they, seriously feel embarrassed if you ever got it it falls
out and it ripped.. returning this. That said hated this bag till I see it!!!!!!
(Cnaven at the neckline and it is super too short. Color is off white. Maybe
I have to fix if I want ironing<br />What a waste of valu money

Such poor material!!! It was like a plastic. Way too small so I returned.It
was smaller than the size listed

I don’t feel this product has any quality. My sunglasses was delivered
broken.

Cheap piece of garbage. Got it for my niece for Halloween and it broke inó
one time

We again begin by first performing supervised fine-tuning from the base MDLM model, but this
time on the fashion split of the Amazon Reviews dataset (Hou et al., 2024) restricted to reviews
consisting of at most 512 tokens, resulting in an SFT dataset of size. We perform SFT using Adam
with β1, β2 = {0.9, 0.999} and a learning rate of 4e−3 and EMA with decay parameter 0.99. The
SFT model was trained for 85,000 training steps on 4 NVIDIA A100 GPUs. As for the tinystories
task fine-tuning checkpoints were selected based upon the iteration with best average reward when
sampling a new training batch from the model. All methods employ a learning rate schedule with a
linear warmup for the first 2,500 training steps and keep the noise schedule provided by the pre-trained
MDLM model – a log-linear schedule with σmin = 1e−4 and σmax = 20. All evaluations were
performed by taking 1000 samples for each method across three seeds.
The reward function for this task was a BERT model consisting of 167 million parameters fine-
tuned on Amazon customer reviews5 to predict a review’s star-rating. We then set the reward
R(x0) = p(a = 1|x0), the likelihood under the pre-trained classifier that the generated sample is a
one-star review. We consider as our target distribution the tempered reward distribution π0(x0) ∝
ppre
0 (x0)R(x0)

1/β with β = 0.5.
For DDPP-LB we used 1,500 warmup steps for logZπt

(xt), a learning rate of 1e−4 and a batch size
of 16. We employ a replay buffer with a max length of 10,000 and sample training batches uniformly
from the buffer. The buffer is filled every 5 training steps with a batch sampled on-policy from the
current fine-tuned model, while every 250 steps a batch from the SFT training dataset is added to
the buffer. We use EMA with a decay rate of ϵ = 0.9999, a learning rate of 1e−4, and train without
LoRA. DDPP-LB was trained using 64 inference steps for simulation. DDPP-IS employed the same
hyperparameter settings as DDPP-LB besides not learning logZπt(xt) and instead estimating it with
K = 16 Monte Carlo samples from the one-step pre-trained posterior ppre

t (x0|xt).
As RTB cannot fit all timesteps of a trajectory into memory during the backwards pass, we detached
78.5% of timesteps where each trajectory consisted of 64 timesteps. RTB was trained with LoRA
enabled, a LoRA rank of 16, and a learning rate of 5e−5. Due to memory constraints the batch size
was set to 4. SVDD was run by using n = 10 particles per inference timestep. best of N (with
N = 10) sampling was performed by taking 10 samples from the SFT model and selecting the sample
with highest likelihood under the reward model.
We provide a set of curated samples for the Amazon task in Table 7.

5https://huggingface.co/LiYuan/amazon-review-sentiment-analysis
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E ADDITIONAL EXPERIMENTAL RESULTS

E.1 AUTOREGRESSIVE BASELINE

Table 8: Results for Tinystories with Twisted SMC autoregressive baseline. Because DDPP and Twisted SMC
use different architectures and number of parameters, we report the reward and generative perplexity before and
after fine-tuning and bold the method which provides the best percent change from the base model.

logR(x0) pre logR(x0) post % change in logR(x0) ↑ Gen PPL pre Gen PPL post % change in Gen PPL ↓
Twisted SMC 40.52 ± 0.10 94.56 ± 0.85 133.4 ± 1.60 8.52 ± 0.05 10.25 ± 0.51 20.31 ± 5.96
DDPP-LB 54.94 ± 0.76 205.76 ± 3.88 278.0 ± 15.2 16.66 ± 0.20 19.6 ± 0.69 18.38 ± 4.05

In order to compare the performance of DDPP against autoregressive methods, we evaluated Twisted
SMC (Zhao et al., 2024b) on the Tinystories task and compared its performance to DDPP. Unfor-
tunately, the base model used by Twisted SMC was of a different architecture and model size than
we used. In particular, as the base autoregressive model, we used the GPT-Neo architectured model
trained in the original Tinystories paper (Eldan and Li, 2023) which uses 68 million parameters while
our base model used a diffusion transformer (Peebles and Xie, 2023) with 170 million parameters. To
ensure the fairest possible comparison, despite the difference in model parameters of the pre-trained
models, we compare Twisted SMC and DDPP fine-tuning in terms of the percent change in the
average reward and generative perplexity of the finetuned samples. Results are presented in Table 8.
We observe that DDPP improves reward more than the autoregressive baseline while incurring a
comparable but minor performance drop in generative perplexity to Twisted SMC. Our results here
contextualize that DDPP can better negotiate the tradeoff between optimizing reward and sample
quality than twisted SMC on autoregressive models. Finally, we note that Twisted SMC cannot be
easily performed for MDM’s and as such DDPP remains a compelling choice for fine-tuning.

E.2 COMPARING OVERALL COMPUTATION TIME OF DDPP VS INFERENCE BASED METHODS

10
0

10
1

10
2

10
3

10
4

Number of Generated Samples

10
2

10
1

10
0

10
1

10
2

H
ou

rs

Method
SVDD
Best of 10
DDPP

(a) Sample generation time

0 10 20 30 40 50 60
Batch Size

0

10

20

30

40

50

S
ec

on
ds

Sequence Length
90
150
200
250

(b) ESMFold query times

Figure 6: (a) We plot the number of hours required to generate a particular number of samples for each method
(including DDPP training time) on the 90 sequence length designable β-sheet protein task. We see that although
inference time methods may be preferable if generating only a few samples, DDPP quickly offers faster sampling
as the number of samples grows. (b) We demonstrate how the ESMFold based reward function cannot be
parallelized on a single GPU and that the computational overhead becomes even more pronounced as sequence
length increases.

To further analyze the computation time tradeoff of inference time methods compared to DDPP
we examine their computational overhead on the task of generating designable β-sheet protein of
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(a) MNIST (b) Amazon Reviews (c) Tinystories

Figure 7: Iterations and Time required to reach a threshold value of logR(x0) for varying number of MC
samples M in DDPP-IS. Threshold values are computed using training curves smoothed with a rolling average,
to better capture training trends.

sequence length 90. We expect that the computational tradeoff of inference time method vs fine-
tuning method to favor fine-tuning based methods as the number of generated samples scales and
as the computation required to evaluate the reward function increases. We examine the designable
β-sheet task as its reward function is especially onerous to compute as it involves folding a protein
with ESMFold. This process does not parallelize well on even on an A100 80 GB GPU as show in
Figure 6b where we see that reward computation time scales linearly with batch size. Moreover, the
reward function computation becomes even more expensive if scale sequence length as one might do
in many real world tasks due to an O(N3) (where N denotes sequence length) operation involving
pairwise residue interactions.
To evaluate computational efficiency we compare the overall computation time on a single A100 80
GB GPU required to generate different numbers of sequence length 90 samples from a given method,
as shown in Figure 6a. To compute the time for DDPP to generate samples, we first measure the
training time to convergence and add this to the inference time required to sample from the fine-tuned
model. For best of 10 and SVDD we simply generate the specified number of samples and record
elapsed computation time. We observe in Figure 6a that while SVDD and best of 10 are fast if
one needs to generate only a few samples, they quickly become significantly more expensive as the
number of samples needed increases. In particular, to generate only 1000 samples DDPP, combining
both its training and inference time, requires only 1.99 hours while best of 10 and SVDD require
6.15 and 37.5 hours, respectively. This means that for generating even this relatively small set of
1000 samples, amortized sampling using DDPP is up to 18x faster than comparable inference time
methods while generating higher quality samples. Moreover, this inference time gap only increases
as the number of generated samples increases and would also become more severe were sequence
length to increase, as evidenced by Figure 6b.
Of course, the utility of amortized sampling methods for reducing overall computation time is
dependent on the number of samples required and the computational overhead of the reward function.
If only a few samples are needed and the reward function is cheap, it is advisable to use an inference
time method such as best of N or SVDD to generate samples. However, if a large number of samples
must be generated or the reward is expensive amortized sampling approaches like DDPP are preferred.
Indeed, this is one of the ultimate motivations of using RLHF algorithms in autoregressive models
instead of methods like best of N – the overall computation required to fine-tune a pre-trained model
and subsequently sample from the fine-tuned model is much cheaper than generating N samples and
selecting the best one many times over.

E.3 ANALYSIS OF IMPACT OF THE NUMBER OF MC SAMPLES M IN DDPP-IS

We include an ablation comparing the impact of the number of MC samples M used in DDPP-IS,
on the datasets: MNIST, Amazon reviews, and Tinystories. The training steps and process times at
which the model achieves a certain reward threshold, for different M , are plotted in Figure 7.
We observe that a larger number of samples generally improves the reward at a faster rate per iteration
(gradient step), while each iteration generally takes more time, based on how expensive the reward
function is to evaluate. Each gradient step involves a single call to the denoising model, and M calls

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

to the reward function. Therefore, when increasing the number of samples M , it results in a trade-off
with fewer calls to the denoiser, while having more calls to the reward function, to achieve the same
reward. In addition, when using more samples, it results in a loss with lower variance, which can
benefit training.
For the MNIST task in Figure 7a we see that a larger number of samples achieves the reward threshold
in fewer iterations, and in less time. In this task the reward function is simple (a small classifier), so a
larger number of samples doesn’t add too much of a time cost per iteration, and a larger number of
samples is preferred. On the other hand, for the Amazon reviews task in Figure 7b this manifests
in the trend that as M increases, the number of iterations to reach the reward threshold generally
decreases while the overall time increases. For this task, the reward model is expensive to evaluate,
so a smaller number of samples is more time-efficient. Finally, for tasks such as Tinystories, shown
in Figure 7c, where the reward function is more expensive than MNIST but less so than Amazon
reviews the interplay is more complicated. Increasing the number of Monte Carlo samples to M = 8
improves the variance properties of the loss curve, which leads to an improvement in both iterations
and overall time. As M increases beyond this, the number of iterations to convergence decreases
slightly at the cost of more overall computation time. A suggestion informed by these experiments is
that, for a given time budget, M should be treated as a hyperparameter for tuning, with ranges over
lower values for tasks with more expensive reward functions.

E.4 ABLATION ON PROTEIN EXPERIMENTS SEQUENCE LENGTH

Table 9: Ablation on different protein lengths using DDPP-LB. DDPP-LB still generates high quality proteins
as sequence length increases.

Sequence length β-sheet % ↑ pLDDT ↑ pTM ↑ logR(x0) ↑
90 0.44 ± 0.04 0.90 ± 0.03 0.81 ± 0.03 3.70 ± 0.19
150 0.71 ± 0.04 0.74 ± 0.01 0.66 ± 0.04 4.56 ± 0.28
200 0.56 ± 0.09 0.77 ± 0.13 0.75 ± 0.11 4.36 ± 0.32
250 0.64 ± 0.01 0.91 ± 0.05 0.89 ± 0.02 4.78 ± 0.09

We investigate further the performance of DDPP on the designable β-sheet task as the sequence length
scales. To this end, we repeat our β-sheet experiment for DDPP-LB over additional protein sequence
lengths of 150, 200, and 250 (we note that the length 90 we used in our original experiments was
selected due to constraints regarding wet lab experimental protocol). We maintain all experimental
settings, but for each of the different sequence lengths we perform a grid search over the reward
temperature parameter β and the learning rate. We selected a learning rate of 1e-6 for each additional
sequence length, while for reward temperature we selected a setting of β = 0.0625 for sequence
lengths 150 and 250 and maintained the original reward temperature of β = 0.125 for the sequence
length 200 task. We report our results in Table 9, where we see that DDPP-LB can still generate
proteins according to the target distribution even as protein sequence length increases. In fact, DDPP-
LB seems to generate sequences with higher reward as we increased sequence length, an observation
which follows our intuition that the DPLM base model should is better at generating slightly longer
protein sequences as miniproteins of short lengths like 90 are relatively rare in the base model’s
training set compared to slightly longer proteins.

E.5 DISCRETE GUIDANCE EXPERIMENTS

To help compare DDPP’s performance to inference-based methods we compare against discrete
guidance as proposed in Nisonoff et al. (2024). Discrete guidance requires both a differentiable
reward as well as a reward which may be evaluated for partially masked (noisy) states. Unfortunately,
our text tasks require a retokenization step as the reward models use a different tokenization than does
the pre-trained MDLM model we employ. As tokenization is a non-differentiable operation we are
unable to evaluate discrete guidance on our text tasks. Further, since discrete guidance requires the
reward function be evaluated on noisy states we are also prevented from evaluating it on our protein
task. This is because our protein reward function uses ESMFold, a complicated protein folding model,
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Figure 8: Discrete guidance samples for MNIST (left) and CelebA (right). As guidance scale increases sample
quality decreases, especially for CelebA, while reward increases (see Table 2 and Figure 3). We view the
generation of these high reward, low quality samples as ω increases as a form of reward hacking.

which is only defined on full protein sequences. However, our image tasks fulfill both criteria and as
such we evaluate discrete guidance on the MNIST and CelebA tasks.
As our initial image classifiers (used as reward functions) are not defined on partially masked states
we trained noisy versions of them for use in discrete guidance. To train the noisy reward functions
we follow the recommendations of Nisonoff et al. (2024) by training on the same dataset as the
original classifiers and noising the sampled datapoints according to the same forward process as the
fine-tuned diffusion model. The noisy classifiers performed nearly as well as the original, non-noisy
classifiers with a test set accuracy for MNIST degrading from 99% for the non-noisy classifier to 98%
for the noisy classifier and from 96% for the non-noisy to 95% for the noisy classifier on CelebA.
Final reward evaluations are performed by evaluating samples generated using discrete guidance
on the noisy reward models with the original, non-noisy rewards. BPD values for this baseline are
computed by evaluating the base model’s ELBO on images sampled using guidance (due to lacking
an analogous ELBO formula for guidance-based sampling). Evaluation protocol follows that used for
DDPP and other baselines, described in more detail in Appendix D.1.2 for MNIST and Appendix
D.3 for CelebA. Results are computed across three seeds for each guidance scale.
Guidance results are shown in Table 2 and Figure 3. We evaluate on rewards with the same temperature
β as the other baselines (β = 5 for MNIST and β = 10 for CelebA). We have an additional multiplier
in the guidance scale ω. For settings corresponding to those of DDPP (ω = 1 for MNIST and ω = 1
for CelebA) and other baselines we observe that discrete guidance either improves mean reward by a
small amount (or decreases it) compared to the base model and does not approach the performance of
DDPP. We scale the guidance scale by 5x and 100x over the original guidance scale and, as expected,
observe an increase in mean reward as the guidance scale increases, even becoming competitive
with the mean reward of DDPP on MNIST. However, this improvement in reward coincides with
a crippling decrease in sample quality as indicated by the increase in BPD values. In Figure 8 we
show guided samples for both MNIST and CelebA with increasing guidance strengths, where we see
that as guidance strength increases an instance of reward hacking occurs, with the guided samples
achieving high reward under the classifier while being of low sample quality.
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