
Published as a conference paper at ICLR 2025

STEERING MASKED DISCRETE DIFFUSION MODELS
VIA DISCRETE DENOISING POSTERIOR PREDICTION

Jarrid Rector-Brooks1,2, Mohsin Hasan1,2, Zhangzhi Peng3, Zachary Quinn3,
Chenghao Liu2,4, Sarthak Mittal1,2, Nouha Dziri5, Michael Bronstein6,7,
Yoshua Bengio1,2, Pranam Chatterjee3, Alexander Tong1,2∗, Avishek Joey Bose2,6∗
1Université de Montréal, 2Mila, 3Duke University, 4McGill University,
5Allen Institute for AI, 6Oxford University, 7Aithyra

ABSTRACT

Generative modeling of discrete data underlies important applications spanning
text-based agents like ChatGPT to the design of the very building blocks of life
in protein sequences. However, application domains need to exert control over the
generated data by steering the generative process—typically via RLHF—to satisfy
a specified property, reward, or affinity metric. In this paper, we study the problem
of steering Masked Diffusion Models (MDMs), a recent class of discrete diffusion
models that offer a compelling alternative to traditional autoregressive models.
We introduce DISCRETE DENOISING POSTERIOR PREDICTION (DDPP), a novel
framework that casts the task of steering pre-trained MDMs as a problem of proba-
bilistic inference by learning to sample from a target Bayesian posterior. Our DDPP
framework leads to a family of three novel objectives that are all simulation-free,
and thus scalable while applying to general non-differentiable reward functions.
Empirically, we instantiate DDPP by steering MDMs to perform class-conditional
pixel-level image modeling, RLHF-based alignment of MDMs using text-based re-
wards, and finetuning protein language models to generate more diverse secondary
structures and shorter proteins. We substantiate our designs via wet-lab validation,
where we observe transient expression of reward-optimized protein sequences.

1 INTRODUCTION

The success of diffusion models in continuous spaces, leading to state-of-the-art foundation models
for image (Stability AI, 2023; Midjourney, 2023) and video synthesis (Villegas et al., 2022; Brooks
et al., 2024), has spurned several attempts to translate these approaches for the generative modeling
of discrete structures. The most performant approaches squarely fall under the scalable framework
of absorbing state discrete diffusion (Austin et al., 2021), with new simplified training recipes that
result in Masked Diffusion Models (MDMs) (Sahoo et al., 2024; Shi et al., 2024; Gat et al., 2024;
Zhao et al., 2024a). Indeed, recent MDMs now rival autoregressive models of a similar scale to
GPT-2 (Radford et al., 2019) for language modeling, with the potential for further progress through
scaling. Furthermore, MDM style models are not constrained to generating data sequentially—unlike
autoregressive models—which invites a more straightforward application to domains without
a natural causal ordering, e.g. molecule generation (Vignac et al., 2022), discrete modeling of
images (Salimans et al., 2017), and modeling protein sequences (Lin et al., 2022; Wang et al., 2024).
Critical to the successful deployment of discrete generative models in practical applications—beyond
simply producing high-quality samples—is the ability to steer the generated samples to optimize
a pre-specified downstream metric. For instance, in Language Modeling (LM) it is desirable to bias
the model’s generations to be sanitized from harmful responses (Zou et al., 2023; Perez et al., 2022),
or aiming to generate protein sequences that are highly likely to be successfully synthesized and
expressed in real wet lab settings (Verkuil et al., 2022; Dauparas et al., 2022). Put succinctly, highly
performant discrete generative models are required to be aligned in a manner that fine-tuning against
downstream reward models has the intended effect of controllable generation, wherein the model
post fine-tuning selects high-scoring samples from the universe of possible high-fidelity generations.
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The standard approach for incorporating steerability into discrete generative models, which are
autoregressive, using pre-defined reward models is often framed as a fine-tuning task using reinforce-
ment learning from human feedback (RLHF) (Christiano et al., 2017; Rafailov et al., 2024). However,
applying RLHF frameworks to diffusion models is far more challenging. Unlike autoregressive
models, diffusion models do not allow for straightforward computation of a sample’s exact likelihood
without costly simulations. Although fine-tuning diffusion models that bypass exact likelihood
computation can yield simulation-free algorithms that resemble RLHF (Wallace et al., 2024; Uehara
et al., 2024a), these methods effectively optimize a loose lower bound to the true RLHF objective,
leading to unstable training and suboptimal fine-tuning performance. Consequently, steering diffusion
models in continuous spaces is primarily done through inference techniques that leverage the gradient
of a conditional model in the form of guidance (Dhariwal and Nichol, 2021; Ho and Salimans, 2022).
Unfortunately, discrete settings do not allow for principled definitions of guidance due to the lack
of a conventional gradient operator. As a result, at present, there exists no scalable and rigorous
method to steer and align Masked Diffusion Models to optimize desired reward models.
Main contributions. In this paper, we cast the problem of steering a Masked Diffusion Model as a task
of probabilistic inference in sampling from a target Bayesian posterior. More precisely, we construct
the target Bayesian posterior as being proportional to the product distribution of a base pre-trained
MDM model modulated by a pre-specified reward model. Importantly, this sampling viewpoint is fully
compatible with classical RLHF for autoregressive models (Uehara et al., 2024a; Zhao et al., 2024b),
but enjoys broader applicability as for the first time it can be applied to discrete diffusion models.
Under this sampling perspective, our key insight is that the challenging sampling problem can be
solved by learning an amortized sampler, which when taken as an MDM, can be viewed as finetuning
the pre-trained MDM model by learning to approximate the (reward-induced) Bayesian posterior.
We introduce DISCRETE DENOISING POSTERIOR PREDICTION (DDPP), a novel framework that
exploits the denoising posterior parametrization inherent to current MDMs to define a series of simpler
matching problems across varying corruption (masking) levels of the target Bayesian posterior. In
particular, DDPP designs a forward process that corrupts the Bayesian posterior through a forward
masking process and frames the finetuning task as learning another MDM to approximate the
corresponding reverse process. As a result, each matching problem in the reverse process requires
the construction of a “denoising" Bayesian posterior that is conditioned on a partially masked sample
which we demonstrate is simply proportional to the pre-trained model’s own denoising posterior and
the (terminal) reward of the fully unmasked sample. Crucially, each matching problem in DDPP
can be defined on a particular noise level without running the entire forward (corruption) process.
Consequently, this makes DDPP a simulation-free method which is a key ingredient needed to
finetune large pre-trained MDMs. We test the empirical caliber of DDPP by steering MDMs across
a multitude of domains ranging from images to protein sequences and steering MDM-based language
models. We observe DDPP fine-tuned MDMs lead to competitive performance on images, transient
expression of reward-optimized protein sequences (with high secondary structure diversity and �-sheet
composition) in a wet-lab setting, and natural textual responses that are steered to human sentiments.

2 BACKGROUND AND PRELIMINARIES

Notation and convention. A discrete data sample x is identified by its realization over a vocabulary
set X = f1; : : : ; d� 1g, over d� 1 possible categories. Of particular interest is the setting of masked
diffusion models that include an additional d-th category of a masked token m to the vocabulary X
which serves as an absorbing state for the diffusion process. A discrete token is represented by the
one-hot vector ei 2 �d in the d-dimensional probability simplex and corresponds to placing a 1 on the
i-th index and 0 on all the other d�1 indices. In this paper, by convention, we set em = ed as the one
hot vector associated with the masked state m. A categorical distribution over d-categories, Cat(x; p),
is constructed by placing a Dirac � with weight pi, with the constraint

P
i p

i = 1 and the density of a
discrete sample is written as p(X = x) =

Pd
i=0 p

i�(x�ei), whereX is the discrete random variable.

A sequence x = (x1; : : : ; xn) of n tokens is defined over the product space Xn = f1; : : : ;mgn, and
its corresponding probability mass function is given by p(X = x) =

Qn
i

Pd
j=0 p

j�(xi � ej). To
reduce notational clutter, we make use of the shorthand �(y) to denote a Dirac measure on a discrete
sample y and interchangeably write p(X = x) = p(x) to denote the probability mass function. A
dataset of sequences is designated as samples from the data distribution pdata to be learned by a
discrete diffusion model qθ, with parameters �. Discrete diffusion models, like their continuous
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counterparts, are stochastic processes that evolve with time t 2 [0; 1] such that t = 0 corresponds to
pdata := p0 and t = 1 corresponds to the terminal distribution, p1 of the process. As a discretization
of time, we divide [0; 1] into T intervals, and let t(i) = i=T . For brevity, we drop i and simply write t
to denote the corresponding discrete timestep t(i). The notation 0 : t designates a collection of objects,
e.g. densities p(x0:t), starting from time t to and including time t = 0. A trajectory of sequences is
denoted as �(x0:1) = x1 ! � � � ! xt ! xt−1 ! � � � ! x0. Finally, we use subscripts to denote the
time index—i.e. pt—and reserve superscripts to designate indices over a set such as a specific sample
xi among a collection of samples or dimensions within a vector, e.g. dimension xi in a sequence.
Problem Setting. We are interested in the task of probabilistic inference of sampling from an
unnormalized target distribution �0(x0) defined over a discrete space consisting of n tokens x 2 Xn,

�0(x0) =
ppre
0 (x0)R(x0)

Zπ0

; R(x0) =
exp(�E(x0))

ZR
: (1)

A key aspect of the considered setting is that �0(x0) is defined as the product distribution of a
pre-trained masked discrete diffusion model ppre

0 (x0) and a distribution induced by a (potentially
differentiable) reward modelR : Xn ! R. The problem definition in Eq. 1 is an instance of Bayesian
posterior sampling where the pre-trained MDM is the prior and reward acts as the likelihood or
observation model which modulates samples with a high score. For instance, in scientific domains, the
reward model can be provided as a Boltzmann distribution with a known energy function E(x0), or a
human preference model as in RLHF (Ouyang et al., 2022; Rafailov et al., 2024). Importantly, this set-
ting does not afford us any ground truth samples from �0(x0) in the form of a dataset which prevents
classically training another generative model. Instead, we are able to evaluate the reward model—and
in special cases its gradient rR—but not the normalizing constant, i.e. the partition function Zπ0

.
Samples from the posterior �0 thus lie in the intersection of the modes of both the pretrained MDM and
the reward model. As a result, learning an amortized sampler, qθ(x0), for �(x0) is rationally equiv-
alent to finetuning the pretrained MDM ppre

0 (x0) using the reward R(x0) in an analogous manner to
RLHF (Uehara et al., 2024a) and is the main focus and contribution of this paper and outlined in §3.2.

2.1 SIMPLIFIED MASKED DISCRETE DIFFUSION

We are interested in developing a discrete diffusion model directly on discrete data—i.e. without
embeddings or continuous reparameterizations—whose approach mirrors the construction of
diffusion models for continuous spaces. Consequently, we require the specification of a forward
process that converts discrete data x0 � p0 at time t = 0 to an unstructured prior, p1 at the terminal
time t = 1. The specification of a forward process via the transition kernel pt(xtjx0) implies a
unique time reversal of this forward process, termed the “reverse process”, such that simulating from
this reverse process results in samples from the desired target data distribution p0(x0).
We restrict our attention to the recent performant “simplified masked” forward process (Sahoo et al.,
2024; Shi et al., 2024; Gat et al., 2024; Zhao et al., 2024a) which hits a terminal distribution of
all mask tokens in a sequence p1 = [�(m)]n. Given a non-masked token in a sequence, xi0 2 x
the simplified masked forward process increases the likelihood of transition to the mask state as
time increases. Moreover, the masked forward process is simplified by design since the transition
probabilities of a token unmasking (xit+1 6= m when xit = m) is set to zero—i.e. the token remains a
masked token for the remainder of the trajectory. The design of the simplified forward process is also
independent across each dimension of the sequence, conditioned on x0, which allows us to model
the transitions of each discrete token in a sequence separately. In totality, the forward process for
a sequence x0 can be summarized using the following expression for the transition kernel pt(xitjxi0):

pt(xtjx0) =

nY
i=1

pt(x
i
tjxi0) =

nY
i=1

Cat(xit;�t�(x
i
0) + (1� �t)�(m)); (2)

where �t is an invertible reparameterization of time such that �0 = 1 and �1 = 0. Effectively, �t

corresponds to the noise schedule which corrupts the discrete data to p1. The corresponding marginal
density induced by the forward process at time t can written as pt(xt) =

P
x0
pt(xtjx0)p0(x0).

The reverse process which denoises a sample from t! t�1, and is the time reversal of the simplified
masked forward process, also factorizes over each dimension of a sequence x. The probability
pt(x

i
t−1jxit; xi0) of a reverse transition is given by the following posterior conditioned on xi0,

pt(x
i
t−1jxit; xi0) =

(
Cat(xit−1; �(xit)) xit 6= m

Cat
�
xit−1;

(1−αt�1)δ(m)+(αt�1−αt)δ(x
i
0)

1−αt

�
xit = m:

(3)
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Under the reverse process once a token transitions out of the masked state for a time t > 0 it remains
in this state for the remainder of the trajectory. The analytical form of the posterior suggests a natural
mean parametrization for a denoiser in a discrete diffusion model, �θ : Xn � R ! (�d)n, which
predicts the clean sample at t = 0 by denoising a noisy xit,

qt,θ(xit−1jxit; �θ(xit; t)) =

(
Cat(xit−1; �(xit)) xit 6= m

Cat
�
xit−1;

(1−αt�1)δ(m)+(αt�1−αt)µ�(x
i
t,t)

1−αt

�
xit = m:

(4)

Interestingly, the mean parametrization �θ used in the posterior is equivalent to predicting the concrete
score (Meng et al., 2022) which is the discrete equivalent of the Stein score found in conventional
continuous diffusion models (Zheng et al., 2024). As the number of steps t!1, training yields a
valid evidence lower bound (ELBO) to the marginal log-likelihood of the data distribution log p(x0),

log p(x0) � �
Z 1

0

d�t

dt
� 1

1� �t
Ext∼pt(xt|x0)

"
nX

i=1

(xi0)T log�θ(xit; t)

#
dt: (5)

Thus, when given access to samples x0 � p0 training an MDM can be seen as optimizing a
weighted cross-entropy loss and is analogous to fitting a (mean-field) variational posterior distribution
qt,θ(x0jxt) = Cat(x0;�θ(xt; t)) that matches the first moments of pt(x0jxt) and also minimizes
the forward KL divergence DKL(pt(x0jxt)pt(xt)jjqt,θ(x0jxt)pt(xt)) (Eijkelboom et al., 2024).

3 POSTERIOR SAMPLING VIA DISCRETE DENOISING POSTERIOR PREDICTION

Given access to a pretrained masked discrete diffusion model ppre
0 (x0) we wish to sample from the

reward-induced Bayesian posterior distribution �0(x0) / ppre
0 (x0)R(x0). We solve this sampling

problem by first defining a time-dependent forward masking process that progressively adds noise
to �0 yielding the noisy reward-induced posterior �t(xt) =

P
x0
�t(xtjx0)�0(x0), where we set

�t(xtjx0) = pt(xtjx0) as it is the same masking process for the pre-trained MDM. Unfortunately,
since ppre

0 (x0) is an MDM it does not easily provide an exact likelihood. Undeterred we seek to
approximate the reverse process �t(xt−1jxt) tied to the masking forward process by using another
parametrized model qt,θ(x0jxt) = Cat(x0;�θ(xt; t)) which we take to be another MDM.
Matching sub-trajectories. To approximate the reverse process using an MDM we require matching
the denoising trajectory �(x0:t) of the reward-induced posterior �t(x0; : : : ;xt−1jxt) across all
masking levels. Assisted in this endeavor, we recall the fact that since ppre

0 (x0) is also an MDM, we
have direct access to the pre-trained model’s denoiser. Thus, we can compute any transition density
starting from ppre

t (xt−1jxt; �
pre(xt; t)) to the posterior over the endpoint ppre

t (x0jxt), conditioned on
a partially masked sample xt. We form the sub-trajectory matching problem as an instantiation of a
detailed balance constraint starting from a partially masked sequence xt of a clean starting point x0:

qθ(x0; : : : ;xt−1jxt; x̂0)pt(xt) = �t(x0; : : : ;xt−1jxt)pt(xt): (6)
Setting x̂0 = �θ(xt; t) as the MDM’s denoised sample, then �t(x0; : : : ;xt−1jxt) is defined as,

�t(x0; : : : ;xt−1jxt) =
ppre
t (x0; : : : ;xt−1jxt)R(x0)

Zπt(xt)
=

Qt
j=1 p

pre
t (xj−1jxj ; x̂

pre
0 )R(x0)

Zπt(xt)
:

The detailed balance constraint over sub-trajectories suggests a natural discrete denoising posterior
predictive (DDPP) objective that minimizes the mean squared error of a log-ratio between the
denoising sub-trajectories of the amortized MDM sampler and the reward-induced target posterior,

LPP
τ = Et,xt

h
Eτ(x0:t)[k log qθ(x0:t−1jxt; x̂0))� log ppre

t (x0:t−1jxt) + �k22]
i
; (7)

where reward and the log partition function are captured in the constant � = logZπt(xt)� logR(x0).
Interestingly, we can form an equivalent expression for the sub-trajectory loss LPP

τ above by sampling
two intermediate points xs;xs−γ in the sub-trajectory �(x0:t), such that 0 < s� 
 < s < t:

LPP
τ = Et,xt,τ(x0:t)

h

tEs,xs,xs�


�
log qθ(xs−γ jxs; x̂0)� log ppre

t (xs−γ ; jxs; x̂
pre
0 ) + �

�

2
2

i
: (8)

The proof for this equivalence is presented in §C.3. Note that we sample s; s� 
 � U [0; t];U [0; s]
uniformly, and when 
 = 1=T we sample xs−1 which is simple to do since the �(x0:t) already
contains this information. Crucially, unlike Eq. 7 the reformulation of the sub-trajectory loss in Eq. 8
is effectively a simulation-free version of Relative Trajectory Balance (RTB) (Venkatraman et al.,
2024). If the approximation qt,θ matches the denoising reward-induced target posterior over all
sub-trajectories then the reverse process of qt,θ can be simulated to draw samples that follow �0(x0).
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Consequently, we term theqt;� that minimizes theDDPPobjective in Eq. 8 as the�netuned MDM
which solves the probabilistic inference task of sampling from� 0(x0).

In contrast to learning MDMs in typical generative modeling setups, theDDPPobjective requires
the computation of the intractable log partition functionlogZ � t (x t ) evaluated atx t which is a
component of the term� . This observation motivates the design of three concrete learning objectives
for posterior matching, which as a collection we term theDISCRETE DENOISING POSTERIOR
PREDICTION framework. Speci�cally, �netuningqt;� under aDDPPframework can be done in the
following algorithms: 1.)DDPP-IS which uses a Monte Carlo based importance sampling estimate
to approximatelogZ � t in Eq. 8, 2.)DDPP-LB that constructs a lower bound toDDPP-IS that is
cheaper to evaluate by parameterizinglogZ � t , and 3.)DDPP-KL which uses a discrete gradient
estimator to bypass computinglogZ � t at the cost of requiring a differentiable reward—i.e.r R.

3.1 ESTIMATING THE LOG PARTITION FUNCTION

Inspecting the posterior predictive objective in Eq. 8 we remark that it is a simulation-free stochastic
regression objective which does not require a differentiable reward as the loss computesR(x0) and not
a gradient of the reward. Consequently, this makes the posterior predictive objective both a scalable
and ef�cient objective for �ne-tuning large pre-trained MDMs as long the reward model is easy to eval-
uate. Moreover, the posterior predictive objective is also anoff-policyobjective as it can be evaluated
using any partially masked samplesx t � p(x t jx0). Practically, this means that �ne-tuning can be per-
formed using a replay buffer of samples from a biased dataset, e.g. the original training set forppre

0 , or
even partially masked sequences that arrive from a different model altogether. Despite its simple form
the posterior predictive objective requires the computation of the log partition function of a partially
masked sequencelogZ � t which does not have a closed-form expression and must be estimated.

Monte Carlo Estimate of logZ � t with DDPP-IS. A numerical estimate of the log normalization
constant can be obtained by utilizing the trick of using the pre-trained model's denoising posterior
ppre(x0jx t ). Speci�cally, givenx t � pt (x t ) we obtain a Monte Carlo estimate oflogZ � t (x t ) that
usesM additional samples fromx0 � ppre

t (x0jx t ) to estimate the log partition function,

log Ẑ � t (x t ) = log

0

@
X

x 0 ;::: x t � 1

ppre
t (x0; : : : ; x t � 1jx t )R(x0)

1

A � log
�

Ex 0
0 � ppre

t (x 0 j x t ) [R(x0
0)]

�
:

Where in the second equality in the �rst line we used the fact that we can approximately jump to
the endpoint of the reverse process directly by using the pretrained model's denoiser to samplex0.
Conveniently, this MC estimate solely requires obtaining a denoised sample from the pre-trained
MDM which can be ef�ciently done as each sample requires a single step as due to the denoising
posterior parametrization of an MDM (Eq. 4). We can further improve the estimation of this log
normalization constant by leveraging importance sampling (IS) with a proposal distributionw(x0):

log Ẑ IS
� t

(x t ) = log
�

Ex 0
0 � w (x 0 )

�
ppre

t (x0jx t )R(x0
0)

w(x0
0)

��
= log

0

@ 1
M

MX

j =1

"
ppre

t (x0jx t )R(x j
0)

w(x j
0)

#1

A :

For the IS estimator above it is easy to verify that the optimal proposal distribution for variance
reduction is proportional to the denoising reward-induced target posteriorw� (x0) / � t (x0jx t ). Fortu-
nately, this is precisely the distribution that is approximated byqt;� using the posterior predictive objec-
tive which motivates the reuse of the �netuned model as a suitable proposal, i.e.w(x0) = qt;� (x0jx t ).

Learning logZ � t with DDPP-LB. An alternative to using an MC-based estimate forlogZ � t is
to parameterize the log partition function itselflog Ẑ LB

� t ;� jointly with the qt;� and optimize both
using the same posterior predictive objective as �rst de�ned in Eq. 11. Operationally, this amounts to
including another prediction head for the �netuned MDM model and is cheaper to compute than using
an MC-based estimate as we do not requireM evaluations of the pre-trained model as inlog Ẑ IS

� t
(x t ).

At �rst glance, it remains unclear whether a parameterizedlog Ẑ LB
� t ;� is a sensible strategy. However,

in the particular case where we choose the proposal distribution to be on-policy by using �netuned
MDM w(x0) = qt;� (x0jx t ), we can show that the learned log partition function estimate is a lower
bound to the importance sampling estimate. This is formalized in the following proposition below.

Proposition 1. Let log Ẑ IS
� t

and log Ẑ LB
� t ;� be theM -sample importance sampling estimate using

the proposalqt;� (x0jx t ) and learned approximation to the log partition function respectively. Given
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Algorithm 1 Single-step DDPP-IS and DDPP-LB
Input : RewardR(x 0), base MDMppre

0 (x 0 jx t ), sampling policyr (x 0), �ne-tuning MDM q� (x 0 jx t )
1: while Trainingdo
2: t; x 0 � U [0; 1]; r (x 0) . Sample time and clean data on or off-policy
3: x t � pt (x t jx 0) . Construct partially masked sample given clean data
4: if Importance Samplelog Z (x t ) then . Log Partition Function Estimation Strategy

5: log Ẑ � t (x t ) := log Ẑ IS
� t (x t ) = log

�
1

M

P M
j =1

�
ppre

t ( x j
0 j x t ) R ( x j

0 )

w ( x j
0 )

��

6: else
7: log Ẑ � t (x t ) := log Ẑ LB

� t ;� (x t )

8: L PP =
�
�
�
�
�
� log qt;� (x 0 jx t ) � log ppre

t (x 0 jx t ) � log R(x 0) + log Ẑ � t (x t )
�
�
�
�
�
�
2

2

9: �  Update(�; r � L PP)
10: Return q�

a partially masked samplex t � pt (x t ) the optimal learned approximation is a lower bound to the
importance sampling estimate with a �xed proposalqt;� (x0jx t ) and the following inequality holds:

log Ẑ LB
� t ;� (x t ) � log Ẑ IS

� t
(x t ): (9)

The proof for Eq. 1 is provided in §C.1. We highlight that the lower bound becomes equality at the
optimal proposalqt;� (x0jx t ) / � t (x0jx t ). Learninglog Ẑ LB

� t ;� has the bene�t of amortization as
the same network can be reused for all partially masked samplesx t � pt (x t ), across all levels of
masking. In addition, over the course of training, the learned estimatelog Ẑ LB

� t ;� becomes a better
estimate for the true log partition function. In practice, it suf�ces to take a single gradient step to
optimizelog Ẑ LB

� t ;� rather than optimizing till convergence. As a result, no additional overhead needs
to be incurred, and the learned estimate is averaged over a batch of noisy samplesB = f x i

t g
N
i =1 .

3.2 SINGLE-STEP POSTERIOR SAMPLING WITH ENDPOINT PREDICTION

The sub-trajectory matching objective used byDDPP-IS andDDPP-LB can be simpli�ed to a
faster single-step objective at the cost of paying a discretization error by not using �ner-grained
trajectory information. Speci�cally, we note that for MDMs the denoising posterior over end-
pointsqt;� (x0jx t ) � Cat(x0; � � (x t ; t)) can be approximately computedwithout unrolling the sub-
trajectory. This fact also holds for the pre-trained MDM as the model parametrization implies
ppre

t (x0jx t ) � Cat(x0; � (x t ; t)) . For the single-step objective we assume the parameterized denois-
ers exactly match the posteriors. Leveraging this enables us to express the denoising reward-induced
target posterior using a simple expression that directly uses the pre-trained model's denoising posterior
ppre

t (x0jx t ) as follows:

� t (x0jx t ) =
pt (x t )
pt (x t )

�
pt (x t jx0)ppre(x0)R(x0)

P
x 0

0
pt (x t jx0

0)ppre(x0
0)R(x0

0)
=

ppre
t (x0jx t )R(x0)

Z � t (x t )
: (10)

The choice of parameterizingqt;� (x0jx t ) as another MDM offers a prescriptive strategy for sampling
from the desired target� 0 by learning to match the denoising reward-induced posterior at the pre-
dicted endpoint� t (x0jx t ). This simpli�es the expression ofDDPPde�ned over trajectories in Eq. 8
to a single point, namely the predicted endpointx0 of each MDM. This objective is presented below:

L PP = Et; x 0 ;x t

2

6
4

�
�
�
�
�
�
�

�
�
�
�
�
�
�
logqt;� (x0jx t ) � logppre

t (x0jx t ) � logR(x0) + log Z � t (x t )| {z }
log � t (x 0 j x t )

�
�
�
�
�
�
�

�
�
�
�
�
�
�

2

2

3

7
5 : (11)

As done previously, we can employ any estimation strategy to compute the log partition func-
tion Eq. 11. We note in many cases, such as when the sequence length of the trajectory is small to
moderate, the single-step objective may be an attractive alternative to the sub-trajectory variants
of DDPP. Algorithm 1 provides a detailed description of the single-step version of DDPP.

3.3 DDPP-KL: POSTERIOR PREDICTION VIA REVERSEKL MINIMIZATION

The single-step posterior prediction objective as de�ned using the loss functionL PP in Eq. 11 requires
the estimation oflogZ LB

� t ;� which introduces a source of variance in loss estimates that may sub-
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optimally in�uence learning dynamics of the �ne-tuned model. In settings where the reward model
is differentiable, we can bypass computinglogZ LB

� t ;� altogether by learning to match the denoising
reward-induced posterior under thereverseKL divergence. Note that theforward KL divergence
is inapplicable here as we do not have samples from� 0—i.e. a dataset. To see this, we de�ne a
variational posterior matching problem using the reverse KL divergence that takes the following form:

L KL
t := DKL (qt;� (x0jx t )pt (x t )jj � t (x0jx t )pt (x t )) : (12)

Unlike conventional generative modeling using the reverse KL divergence which solely matches
distributions att = 0 the problem de�nition in Eq. 12 de�nes a series of reverse KL minimization
problems through time. In this manner, the reverse KL matches distributions annealed through time
and can be used to derive a stochastic regression objective for �ne-tuning,

L KL = Et; x 0 ;x t

�
logqt;� (x0jx t ) � logppre

t (x0jx t ) � logR(x0)
�

+ C: (13)
The expectation in Eq. 13, likeDDPP-IS andDDPP-LB is taken uniformly with respect to time
t � U [0; 1]. However, unlike the previous estimators, clean data needed to computeL KL is drawn
purely on-policy by simulating the �ne-tuning modelx0 � qt;� (x0), which then also allows us to
craft a noisy sample using the masking forward processx t � pt (x t jx0). Additionally, in Eq. 13 the
constantC = Et; x 0 ;x t [logZ � t (x t )] does not depend on the� —and as a result is also independent
of the samplex0 � qt;� (x0). This results in the constantC being zero when computing the gradient
of the lossr � L KL and as a result we can safely disregard computinglogZ � t entirely.

As samplesx0 are procured on-policy to compute the gradient of the lossr � L KL we require
backpropagating through the stochastic sampling ofx0 which comes from simulating the �ne-tuning
MDM qt;� (x0). Fortunately, we can make use of modern discrete gradient estimators which provide
a biased but low variance gradient estimate enabling us to computeL KL . Speci�cally, we opt to use
the scalable 2nd orderREINMAX estimator (Liu et al., 2024) which estimates the discrete gradient up
to second-order terms in a Taylor approximation of the actual gradient. We note that unlikeDDPP-IS
andDDPP-LB this new loss that minimizes the reverse KL divergenceL KL requires the reward
modelR to be differentiable and as a result is less broadly applicable than computingL PP. However,
in practice, learning can be faster as we make use of the information afforded to us by the gradient
r R as well as the fact that the objective does not need to estimate the log partition function.

In appendix §C.2 we provide the exact algorithm Alg. 2 to compute the reverse KL objective. We
further show how using a gradient estimator likeREINMAX can be used to derive ef�cient gradient
estimation for a more general class of problems of sampling from� 0(x0) = R(x0)=Z � 0 , as well as
the main �ne-tuning setting for matching the denoising reward-induced posterior as de�ned in Eq. 10.

4 EXPERIMENTS
Table 1:Overview of posterior sampling methods

Method Model calls / inf. step Model calls / train step Sim. Free

SVDD N — 3
Discrete guidance 1 — 3
RTB 1 T 7
DDPP-KL 1 1 3
DDPP-IS 1 M 3
DDPP-LB 1 1 3

We investigate the application ofDDPP to a
variety of discrete generative modeling settings.
We provide the full experimental details in §D
and present our main experimental results next.

Baselines. Throughout our experiments, we rely on four principal baselines in: sampling from the
pre-trained MDM model, Best-of-N sampling (Stiennon et al., 2020), Relative Trajectory Balance
(RTB) (Venkatraman et al., 2024), and SVDD (Li et al., 2024) which is a concurrent inference time
technique for steering diffusion models. Best-of-N represents a computationally expensive baseline
but is guaranteed to produce samples from� 0, as such we use this as an upper bound on performance in
terms of reward obtained asN ! 1 (Beirami et al., 2024). RTB is a GFlowNet (Bengio et al., 2023;
Madan et al., 2022; Lahlou et al., 2023) that requires simulating the entire diffusion trajectory. For
image settings with differentiable reward, we also include discrete guidance as a baseline (Nisonoff
et al., 2024). In Table 1 we illustrate the computational differences between DDPP and baselines.

4.1 SYNTHETIC EXPERIMENTS

We consider a synthetic task of learning to sample from a target distribution on a 2D discrete grid and
�netuning an MDM on binarized MNIST. This synthetic setting tests all DDPP variations with chosen
baselines, presenting qualitative results in Figure 6, Figure 4 and quantitative results in Table 2.

Grid Experiment . We de�ne a prior densityppre
0 over the discrete 2-dimensional,128� 128grid, as

showcased in Figure 6(a) where the probability mass corresponding to each pointx0 is on if the color is
yellow. The goal is to sample from the product distribution as outlined in Equation 1, which in this case
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(a) Prior Density (b) Target Density (c) DDPP-IS (d) DDPP-LB (e) DDPP-KL

Figure 1:Samples generated by �ne-tuning a masked diffusion model to sample from the lower half of its prior
distribution. Samplesx 0 in this setting are 2-dimensional, with a vocabulary size of128.
is de�ned to drop the modes inppre

0 which are at the top half of the grid, as visualized in Figure 6(b).
These results show that all three variants of DDPP effectively learn to sample from this target.

MNIST . We �netune MDMs to generate even MNIST digits. As observed in Table 2 we �nd that all
three variants ofDDPPmatch or outperform the base pre-trained model and RTB in all metrics, with
DDPP-KL being the best. In comparison to the concurrent work of SVDD, we �nd that it outperforms
DDPPin averagelogR but is worse in sample-based metrics such as class conditional FLD (Jiraler-
spong et al., 2023) which measures the overall quality, diversity and generalizability of generated
samples and class conditional BPD. We further report generated samples in Figure 4 located in §D.3.

4.2 PIXEL -LEVEL IMAGE MODELLING Table 2: Fine-tuning to produce only even digits on
binarized MNIST. We report the mean performance over
3 runs for thelog R, FLD, and BPD metrics.

Algorithm # Metric ! logR(x0) " FLD # BPD#

Base Model -26.90� — 33.89� — 0.130� —
SVDD -0.03� 0.01 34.19� 0.95 —
Guidance (scale1) -25.24� 0.26 34.67� 0.67 0.171� 0.001
Guidance (scale5) -23.21� 0.21 37.33� 0.87 0.174� 0.001
Guidance (scale100) -9.32� 0.24 72.19� 0.43 0.147� 0.001

RTB -18.66� 2.45 45.97� 0.89 0.128� 0.000
DDPP-IS (ours) -5.14� 1.24 33.11� 0.71 0.130� 0.000
DDPP-LB (ours) -5.68� 0.34 33.76� 0.90 0.128� 0.000
DDPP-KL (ours) -3.13� 0.06 31.75� 0.51 0.129� 0.000

We �ne-tune MDMs on order-agnostic image
data, discretizing pixels in 64× 64 downsam-
pled CelebA images (Liu et al., 2018) to a
vocabulary of256 tokens. As there are no
publicly available pre-trained MDM models we
train our own MDM by modeling the raw pixel
space and achieve1:85 bits-per-dim (BPD) on
CelebA. Our full experimental setup is outlined
in §D.3. For �ne-tuning, we consider steering
a pre-trained MDM usingDDPP-LB as it is the
most computationally cheap method with a class-conditional reward based on an auxiliary classi�er.
Speci�cally, we steer the generative model to generate human faces with blond hair. For quantitative
metrics, we report the mean log reward obtained, and BPD in Figure 3 as well as selected generated
samples. Our quantitative results show that our proposed variantDDPP-LB signi�cantly outperforms
all other baselines in obtaining the highest reward. We also observeDDPPobtains BPD values that
are within the range of the base model while being worse than RTB. We further �nd visual samples
produced byDDPPto have the highest �delity faces with blond hair, matching our �ne-tuning goal.

4.3 PROTEIN SEQUENCE MODELLING

Table 3: In-silico results for protein generation tasks. We report the mean result for a metric with standard
deviation across three seeds. DDPP-LB performs well across designability metrics (pLDDT and pTM) while
simultaneously performing best on task speci�c metrics (� -sheet % and TM-Score).

High � -sheet-content protein generation Protein shrinking

� -sheet %" pLDDT " pTM " logR(x0) " SS-KL# TM-Score" pLDDT " pTM " logR(x0) "

Base Model 0.111� 0.121 0.724� 0.144 0.584� 0.226 2.070� 0.749 3.040� 3.043 0.245� 0.058 0.724� 0.144 0.584� 0.226 0.490� 0.116
Best-of-10 0.280� 0.093 0.812� 0.033 0.786� 0.035 3.212� 0.371 1.621� 2.804 0.345� 0.049 0.786� 0.023 0.737� 0.097 0.690� 0.098
SVDD 0.114� 0.148 0.484� 0.134 0.349� 0.174 1.669� 0.907 3.353� 2.913 0.337� 0.042 0.492� 0.131 0.368� 0.171 0.673� 0.083

RTB 0.319� 0.218 0.806� 0.059 0.767� 0.101 3.386� 1.061 2.193� 2.724 0.290� 0.056 0.797� 0.056 0.747� 0.093 0.581� 0.112
DDPP-LB 0.436� 0.037 0.897� 0.027 0.806� 0.029 3.703� 0.186 0.640� 1.793 0.361� 0.047 0.768� 0.048 0.747� 0.063 0.722� 0.094

Task description. We next applyDDPPto generate high-quality protein sequences by �ne-tuning
discrete diffusion protein language models (DPLM) (Wang et al., 2024). Speci�cally, we address two
experimentally relevant tasks where vanilla DPLMs underperform. We outline exact reward functions
and experimental setup in §D.2. First, we �ne-tune DPLM to generate soluble protein sequences with
high � -sheet content. The second task, protein shrinking, involves miniaturizing known proteins by
generating shorter sequences that preserve key structural features, using the TM-align score as the
reward metric (Devkota et al., 2024). We evaluate performance by measuring designability metrics
(ESMFold pLDDT and pTM) as well as task-speci�c metrics (� -sheet percent and TM-Score). We
also provide wet-lab validation for our best designs in the designable� -sheet task. We provide a
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Figure 2: Left: SDS-PAGE of elution fractions from histidine tag puri�cation of DDPP-designed protein
constructs and positive controls following Coomassie blue staining. All DDPP-designed constructs are between
7.8-8.3 kDa. Predicted molecular weights of positive controls 5KPH, 1QYS, 1UBQ, and 1BTB are 10 kDa,
12 kDa, 8.5 kDa, and 10 kDa, respectively. Recombinant protein bands for MDM-designed sequences are
indicated with red arrows and relevant ladder references are labeled with their molecular weight.Middle: Folded
structures generated byDDPP� -sheet �ne-tuning.Right: Distribution of� -sheets generated by each method.

deeper description of evaluation metrics and experimental setup in §D.2. Finally, as ESMFold is itself
expensive to query and, in particular, non-differentiable we test our fastest method—DDPP-LB.

Main results. In-silico validation shows that DDPP-LB outperforms all baselines for the designable
� -sheet task, generating better sequences across all metrics. In particular DDPP achieves a
signi�cantly higher� -sheet percentage than baseline methods while maintaining high designability
as measured by ESMFold (namely, high pLDDT and pTM). We further observe that for the
miniaturization task, DDPP-LB outperforms all baselines in shrinking ribonuclease proteins,
removing 34 residues while maintaining high structural similarity (lowest SS-KL of 0.64 and highest
TM-Score of 0.361), and high structural quality with high pTM and competitive pLDDT. This
demonstrates DDPP-LB's effectiveness in generating compact yet structurally faithful proteins.

Experimental validation. We selected 6 designs fromDDPP-�netuned DPLM for wet-lab
validation, based on AlphaFold2 pLDDT/pTM scores. Sequences and structures were clustered using
MMseqs and Foldseek (van Kempen et al., 2022; Steinegger and Söding, 2017), with two represen-
tative sequences selected from each cluster. 4 positive controls consisting of two previously validated
de novo designed proteins (PDB: 5KPH, 1QYS) and two other stable proteins, ubiquitin and Barstar
(PDB: 1UBQ, 1BTB) were included as a comparison. We expressed the designed proteins, including
the controls in E. coli, and puri�ed them using histidine-tag puri�cation, after which we assessed
expression level and purity via SDS-PAGE, followed by Coomassie staining. Our results demonstrate
strong overexpression and ef�cient puri�cation of the two previously validated de novo controls
and moderate overexpression of ubiquitin and barstar controls (Figure 2). Puri�ed protein can also
be observed for four out of the six DDPP-derived constructs, though with comparatively lower yields
than the positive controls (Figure 2). One potential cause of these relatively low yields may be the
sizeable accumulation of DDPP-derived proteins in the insoluble fraction of the cell lysate. As such,
it is likely that further optimization of the expression and puri�cation methods (e.g., longer induction
time or lower induction temperatures) may lead to signi�cant improvements to overall soluble yields.

4.4 TEXT

Task description. We consider two text tasks: (i) toxic story generation using the Tinystories dataset
(Eldan and Li, 2023), and (ii) product review generation using Amazon data (Hou et al., 2024). For
both tasks, we start by �ne-tuning a pre-trained MDM model (Sahoo et al., 2024) in a supervised
�ne-tuning manner on both datasets before running online �ne-tuning. As reward models, we use
RoBERTa (Liu, 2019) �ne-tuned for toxicity classi�cation, and BERT (Devlin, 2018), �ne-tuned
for Amazon review sentiment analysis, respectively. Our experiments aim to demonstrate our
method's ability to induce behaviors that are uncommon in the base pre-trained model, speci�cally in
generating toxic content in product reviews. Full experimental details are provided in Appendix §D.4.

Main results. In Table 4 we report the average log reward as well as perplexity (Gen PPL) of the
generated samples as measured by GPT-2 (Radford et al., 2019). We �nd thatDDPP-LB is the most
effective variant ofDDPPand achieves signi�cantly higher log reward compared to SVDD and
RTB for both tasks. We further observe that all methods achieve comparable Gen PPL suggesting
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Algorithm # Metric ! logR(x0) " BPD #

Base -57.31� — 2.67� —
SVDD -13.27� 12.38 —
Guidance (scale1) -91.10� 1.63 3.20� 0.01
Guidance (scale5) -62.75� 0.25 5.39� 0.01
Guidance (scale100) -41.51� 0.02 5.15� 0.00

RTB -60.28� 1.74 2.04� 0.00
DDPP-LB (ours) -6.94� 1.39 2.62� 0.15

Figure 3:Left: Results for discrete image modeling over raw pixel values on CelebA (64 � 64). We report the
mean performance ofDDPPand baselines separated into inference-based (top) and amortized (bottom) over3
runs for thelog R and class-BPD metrics.Right: Generated samples from Base, SVDD, RTB, andDDPP-LB.

that generated responses are �uent; however, samples fromDDPP-LB adheres better to the task
speci�cation. We refer to §D.4.1 and §D.4.2 for generated samples from DDPP.

Table 4:Text experiments with log reward and Gen PPL results averaged over3. As Best of 10 draws samples
directly fromppre

0 (x 0) we instead bold the �ne-tuning method whose Gen PPL is lowest.

Dataset! Tinystories Amazon reviews
Algorithm # Metric ! log R(x 0) " Gen PPL# log R(x 0) " Gen PPL#

Best of10� 93.25� 0.17 15.94� 0.03 -103.05� 0.25 124.45� 1.02
SVDD 146.95� 1.08 20.35� 0.03 -27.48� 10.91 165.86� 1.22

RTB 107.83� 3.08 18.53� 0.55 -35.22� 16.03 160.54� 12.19
DDPP-IS (ours) 163.45� 7.06 20.15� 0.30 105.16� 2.41 152.85� 1.64
DDPP-LB (ours) 205.76� 3.88 19.60� 0.69 152.08� 34.01 167.25� 27.33

5 RELATED WORKS

Discrete diffusion. The prevailing paradigms for diffusion over discrete spaces can be broadly
categorized into 1.) continuous diffusion in a latent or reparametrized space by �rst transforming
the initial discrete data (Li et al., 2022; Chen et al., 2022; Davis et al., 2024; Cheng et al., 2024), and
2.) de�ning diffusion using discrete analogs of score approximation (Meng et al., 2022; Lou et al.,
2023). The latter approach can also be described using the theoretical framework of Continuous-time
Markov Chains (CTMC) (Austin et al., 2021; Campbell et al., 2022; 2024). Closest to our setting we
consider a speci�c instantiation of discrete diffusion that simpli�es the CTMC framework by using
a masked forward process (Sahoo et al., 2024; Shi et al., 2024; Zhao et al., 2024a; Gat et al., 2024).

Finetuning as sampling. The task of �ne-tuning generative models under reward models can be
viewed as a sampling problem and encompasses conventional RLHF (Uehara et al., 2024a; Black et al.,
2023; Fan et al., 2024; Dong et al., 2023). A simple but expensive method to sample from the reward-
induced Bayesian posterior distribution is best ofN sampling (Stiennon et al., 2020), which provably
samples from the correct distribution as the number of samples from the base pre-trained model grows,
N ! 1 (Beirami et al., 2024; Gao et al., 2023; Ferbach et al., 2024). Alternatively, the sampling
perspective has been explored in the discrete setting to �ne-tune autoregressive models (Zhao et al.,
2024a; Hu et al., 2023), and diffusion models (Uehara et al., 2024b; Venkatraman et al., 2024; Zhao
et al., 2024a). Finally, inference time techniques represent the most prominent approach to conditional
sampling (Ho and Salimans, 2022; Dhariwal and Nichol, 2021; Li et al., 2024; Nisonoff et al., 2024).

6 CONCLUSION

In this paper, we presentDISCRETEDENOISINGPOSTERIORPREDICTION a novel framework to steer
Masked Discrete Diffusion Models by viewing it as a problem of sampling from a Bayesian posterior.
We introduced three concrete training strategies to instantiate our framework inDDPP-IS, DDPP-LB,
andDDPP-KL and apply them to modeling synthetic data, pixel-level image modeling, �ne-tuning
protein MDMs to increase secondary structure diversity, and steering MDMs on language to match
human sentiment. We �nd thatDDPPnot only is able to optimize an amortized sampler to closely
match the reward-induced Bayesian posterior but it has a good agreement in other sample quality
metrics—without severely compromising generated sample quality. An interesting direction for
future work is to understand how to balance optimization ofDDPP-LB and strategies to selecting
 .
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A BROADER IMPACT

Our proposedDISCRETEDENOISING POSTERIORPREDICTION is a tailored approach to steering
and �ne-tuning Masked Diffusion Models. At present, MDMs are an emergent category of discrete
generative models that have general-purpose modeling capabilities in a variety of domains including
language modeling, sequence-based drug design, and discrete modeling of graphs. Consequently, we
believeDDPPhas potential use in various practical use cases. For instance, like current RLHF tech-
niques applied to modern autoregressive LLMs, future scaled MDMs on text datasets might be tuned to
promote harmful behavior and toxic content. Moreover, applyingDISCRETEDENOISINGPOSTERIOR
PREDICTION in drug design use cases has the potential to create in-silico sample of protein sequences
that may have biologically potent negative externalities. We do, however, make the distinction that
such a risk is speculative at this stage given the large complexities of translating in-silico designs to
actual synthesized biomolecules. As a result, we encourage practitioners who seek to �ne-tune MDMs
using DDPP to exercise due caution when applying our proposed techniques to actual use cases.

Ethical statement. As part of qualitatively evaluatingDDPP, this paper includes generated samples
of text. We highlight that the set of examples may contain potentially disturbing, harmful, or upsetting
examples, covering a variety of sensitive topics like discriminatory language, descriptions of harm, and
misinformation, among other high-risk categories. Its primary purpose is to advance research in under-
standing the impact ofDDPPfrom a more interpretable lens. It is not advised to train future MDMs on
such generated samples in order to prevent further propagation of undesirable content and behaviors.

B ADDITIONAL RELATED WORK

Sampling proportional to energy. Our approach can be closely linked to learning to sample
proportional to a target probability, as in our setup we aim to approximate sampling proportional
to the energyppre

t (�jx t )R(�) for any pointx t at any timet. This has been an avenue of research
for a number of works in continuous time (Bengio et al., 2021; 2023; Malkin et al., 2022; Lahlou
et al., 2023; Akhound-Sadegh et al., 2024; Sendera et al., 2024; De Bortoli et al., 2024), in Bayesian
posterior inference where the energy is de�ned by the product of likelihood and prior (Mittal et al.,
2023), as well as posterior inference in settings where we even do not have access to energy function
but only to a simulator (Radev et al., 2020; Wildberger et al., 2024; Geffner et al., 2023).

C THEORETICAL RESULTS

C.1 PROOF OFPROPOSITION1

Before proving proposition 1 we �rst prove a useful Lemma that states the optimal log partition
functionlog Ẑ � t (x t ) which is the learning goal for a parameterized approachlog Ẑ � t ;� (x t ).

Lemma 1. Given a samplex t � pt (x t jx0) and the denoising posterior distributionqt;� (x0jx t ),
a local minimizer for estimate for the log partition functionlog Ẑ � t using N samples from
x i

0 � qt;� (x0jx t ) is given by:

logZ �
� t

=
1
N

NX

i =1

log
�

pt (x i
0jx t )R(x i

0)
qt;� (x i

0jx t )

�
: (14)

Proof. By de�nition the log partition function is a constant, let that constant belogZ � t (x t ) = C.
Then the loss in Eq. 11 is a quadratic inC,

L = Ex 0 � r (x 0 )
�
jj logqt;� (x0jx t ) + C � logpt (x0jx t ) � logR(x0)jj2

2

�
(15)
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For a batch ofN samples ofx i
0 � qt;� (x0jx t ), we �nd a locally optimal constantC (local minima)

by taking the gradient of Eq. 15 and setting it0. In more detail we have,

0 = r C
1
N

NX

i

(log qt;� (x0jx t ) + C � logpt (x0jx t ) � logR(x0))2 (16)

0 =
2
N

NX

i

�
logqt;� (x i

0jx t ) + C � logpt (x i
0jx t ) � logR(x i

0)
�

(17)

0 = 2C +
2
N

NX

i

logqt;� (x i
0jx t ) � logpt (x i

0jx t ) � logR(x i
0) (18)

0 = C +
1
N

NX

i

log
�

qt;� (x i
0jx t )

pt (x i
0jx t )R(x i

0)

�
(19)

C =
1
N

NX

i

log
�

pt (x i
0jx t )R(x i

0)
qt;� (x i

0jx t )

�
: (20)

Using Lemma 1 we now prove Proposition 1, stated again below for convenience.

Proposition 1. Let log Ẑ IS
� t

and log Ẑ LB
� t ;� be theM -sample importance sampling estimate using

the proposalqt;� (x0jx t ) and learned approximation to the log partition function respectively. Given
a partially masked samplex t � pt (x t ) the optimal learned approximation is a lower bound to the
importance sampling estimate with a �xed proposalqt;� (x0jx t ) and the following inequality holds:

log Ẑ LB
� t ;� (x t ) � log Ẑ IS

� t
(x t ): (9)

Proof. We optimizelog Ẑ LB
� t ;� (x t ) using the loss de�ned in Eq. 11. Using Lemma 1 we know the

analytic expression for the locally optimal estimate is given bylogZ �
� t

(x t ). Plugging this into the
de�nition of the log partition function we get,

log Ẑ LB
� t ;� (x t ) = Ex 0 � qt;� (x 0 j x t )

�
log

�
pt (x0jx t )R(x0)

qt;� (x0jx t )

��
(21)

� logEqt;� (x 0 j x t )

�
pt (x0jx t )R(x0)

qt;� (x0jx t )

�
(22)

= log Ẑ IS
� t

(x t ) (23)

The lower bound turns into equality at the optimal proposalqt;� (x0jx t ) / pt (x0jx t )R(x0).

C.2 ESTIMATING DDPP-KL WITH REINMAX

We �rst provide an algorithmic description below of training usingDDPP-KL. We �rst highlight
how the reverse KL objective can be applied to a more general setting beyond just �ne-tuning before
turning to the exact setting of the main paper.

Algorithm 2 DDPP-KL
Input : Differentiable rewardR(x 0), base MDMppre

0 (x 0 jx t ), �ne-tuning MDM q� (x 0 jx t ), Num samplesK
1: while Trainingdo
2: t; x 0 � U [0; 1]; q(x 0) . Sample time and clean data on-policy from the �ne-tuning MDM
3: x t � pt (x t jx 0) . Construct a partially masked sample given clean data
4: f x̂ i

0gK
i =0 � qt;� (�jx t ) . Reparametrized Sampling of clean data

5: L KL = 1
K

P K
i =1

�
log qt;� (x̂ i

0 jx t ) � log ppre
0 (x̂ i

0 jx t ) � log R(x̂ i
0)

�

6: r � L KL := r Reinmax
�

�
L KL �

. Use the Reinmax discrete gradient estimator
7: �  Update(�; r � L KL )
8: Return q�
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Non-�netuning Case. In this appendix, we study theREINMAX gradient estimator for the general
problem of sampling from the following distribution:

� 0(x0) /
R(x0)

Z
: (24)

Gradient of L KL . We can decompose the gradient into the following terms due to the linearity of
expectations:

L KL
t = Et; x 0 ;x t [logqt;� (x0jx t )] � Et; x 0 ;x t [log � t (x0jx t )]

= L 1
t + L 2

t : (25)
We again highlight the fact that the expectation is taken using the following distributions
t; x0; x t � U [0; 1]; q(x0); pt (x t jx0). As a result,x0 is drawn on-policy and is a stochastic variable
that needs gradient estimation sinceq� is the parameterized distribution. Furthermore, all terms that
usethis samplex0 inside the expectation are affected by this gradient computation.

Taking the gradient of each term respectively. The gradient of ofL 1
t is:

r � L 1
t = r � (Et; x 0 ;x t [logqt;� (x0jx t )])

� Et; x 0 � q� (x 0 ) ;x t � pt (x t j x 0 )
�
r Rein-Max � (log qt;� (x0jx t ))

�
: (26)

The gradient of ofL 2
t is:

r � L 2
t = r � (Et; x 0 ;x t [log � t (x0jx t )])

= r � (Et; x 0 ;x t [� logpt (x t jx0) � log � 0(x0) + log � t (x t )])

= r �

0

@Et; x 0 ;x t

2

4� logpt (x t jx0) � logR(x0) + log

0

@
X

x 0
0

� t (x t jx0
0)R(x0

0)

1

A

3

5

1

A : (27)

To use the Reinmax gradient estimator we must compute@f(z)=@z, wheref is the function inside
the expectationEz [f (z)]. We now make use of the following facts:

(F1) Analytic expression ofr x 0 logpt (x t jx0). For simplicity of presentation, we focus on a single
tokenx i

0 in a sequence but the result remains true for the entire sequencex0. Recall in the
discrete setting of masked diffusion modelspt = Cat(x0; �Qt x t ), which allows us to write:

r x i
0

logpt (x i
t jx

i
0) =

r x i
0
pt (x i

t jx
i
0)

pt (x i
t jx

i
0)

(28)

=
r x i

0
Cat(x i

0; �Qt x i
t )

Cat(x i
0; �Qt x i

t )
(29)

=
r x i

0
(x i;T

0
�Qt x i

t )

x i;T
0

�Qt x i
t

(30)

=
r x i

0
(� t hx i

t ; x i
0i + (1 � � t )hx i

t ; em i )

� t hx i
t ; x i

0i + (1 � � t )hx i
t ; em i

(31)

=
� t x i

t

� t hx i
t ; x i

0i + (1 � � t )hx i
t ; em i

: (32)

(F2) Differentiability of the reward r x 0 R(x0). If we assume the reward is differentiable we can
exploit the same trick to write:

r x 0 logR(x0) =
r x 0 R(x0)

R(x0)
: (33)

Note that the �nal term in Eq. 27 does not depend on the realization of the samplex0 � q(x0jx t )
and thus its gradient in Rein-max is0. This enables us to write the approximate gradient as:

r � L 2
t � Et; x 0 ;x t [r

Reinmax� (� logpt (x t jx0) � logR(x0))]

= Et; x 0 ;x t

" 

�
NX

i

� t x i
t

� t hx i
t ; x i

0i + (1 � � t )hx i
t ; em i

�
r Reinmax

x 0
R(x0)

R(x0)

!#

: (34)
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The �rst term in the equation has a closed-form expression for the gradient but is still a stochastic
gradient since it depends onx0 � q� (x0).

Finetuning Case. In the �ne-tuning setting we aim to sample from the following Bayesian posterior:

� 0(x0) /
ppre

0 (x0)R(x0)
Z

(35)

For MDMs the likelihood under the modelppre
0 (x0) is intractable to evaluate and leads to a modi�ed

objective for gradient estimation with REINMAX in L KL
t in Eq. 25:

r � L 2
t = r � (Et; x 0 ;x t [log � t (x0jx t )])

= r �
�
Et; x 0 ;x t

�
� logppre

t (x0jx t ) � logR(x0) + log Z � t (x t )
��

= r �

�
Et; x 0 ;x t

h
� logppre

t (x0jx t ) � logR(x0) + log
�

Ex 0
0 � ppre

t (x 0 j x t ) [R(x0
0)]

�i�
: (36)

Note that in the equation above we can evaluate the log partition function using samples drawn from
the denoising posterior of the pre-trained modelx0

0 � ppre
t (x0jx t ) andnot the on-policy samples

x0 � q� (x0). Thus this term is a constant when we compute the gradient. Thus we have,

r � L 2
t � r Reinmax�

�
Et; x 0 ;x t

�
� logppre

t (x0jx t ) � logR(x0)
��

: (37)

C.3 EQUIVALENCE OF SUB-TRAJECTORY OBJECTIVES

In this appendix, we detail how to compute an ef�cient approximation of the loss function that is
inspired by the KL divergence between sub-trajectories as found in the GFlowNet literature but
adapted for MDMs.

Consider the trajectory of a sequence:� (x0:1 ) := x1 ! � � � ! x t ! x t � 1 ! : : : x0. We seek to
minimize the joint distribution over the (sub)-trajectories conditioned on a partially masked samplex t :

q� (x0; : : : ; x t � 1jx t ; � � (x t ; t))pt (x t ) = � t (x0; : : : ; x t � 1jx t )p(x t ): (38)
Here� t (x1; : : : ; x t � 1jx t ; x0) is de�ned as,

� t (x0; : : : ; x t � 1jx t ; � � (x t ; t)) =
ppre

t (x0; : : : ; x t � 1jx t )R(x0)
Z � t (x t )

(39)

=

Q t
j =1 ppre

t (x j � 1jx j ; x̂pre
0 )R(x0)

Z � t (x t )
(40)

We minimize the following KL divergence,
DKL (q� (x0; : : : ; x t � 1jx t ; x̂0)pt (x t )jj � t (x0; : : : ; x t � 1jx t )p(x t )) : (41)

Here we used the convention thatx̂0 = � � (x t ; t) andx̂pre
0 = � pre(x t ; t). The KL between path

measures along the sub-trajectory shares the same optimum as the following loss objective:

L � = Et; x t

h
E� (x 0: t ) [k logq� (x0; : : : ; x t � 1jx t ; x̂0)) � logppre

t (x0; : : : ; x t � 1jx t ) + � k2
2]

i

= Et; x t

h
E� (x 0: t )

h






tX

j =1

logq� (x j � 1jx j ; x̂0) � logppre
t (x j � 1; jx j ; x̂pre

0 ) + �
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 jx s; x̂0) � logppre
t (x s� 
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2
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�
logq� (x s� 
 jx s; x̂0) � logppre

t (x s� 
 ; jx s; x̂pre
0 ) + �

� 

 2
2

i
: (43)

In the last equation we de�ne the constant� = ( � logR(x0) + log Z � t (x t ))=t and use the fact
that our notation convention usesp(X = x) = p(x) for discrete random variables. Now we make
the observation that for anys < t we have effectively picked an endpoint over the trajectory. More
precisely,s � U [0; t], which also allows us to samplex s � pt (x s jx0), in an analogous manner to
howx t is constructed.
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D ADDITIONAL EXPERIMENTAL DETAILS

All experiments were performed on a shared heterogenous high-performance computing cluster.
This cluster is primarily composed of GPU nodes with RTX8000, V100, A100, L40S, and H100
NVIDIA GPUs. We brie�y note a trick used across a number of our experiments forDDPP-LB
described as warming uplogZ t (x t ). We found that early iterations of trainingDDPP-LB could
be somewhat unstable as the parameterized normalizing constant was not calibrated to a proper range
given the pre-trained model and reward function. As such, we found that warming uplogZ t (x t )
for some number of steps at the beginning of training by only allowing gradient �ow through the
logZ t (x t ) term helped stabilize training and improve overall performance. For the runs on which
warming uplogZ t (x t ) was utilized, we resume normal training (i.e., allowing gradient �ow through
the �ne-tuned denoiserandlogZ t (x t )) after the warmup period has concluded. For all experiments
with DDPP-LB we used another separate, small DiT to parameterize thelogZ t (x t ) prediction.

D.1 SYNTHETIC EXPERIMENTS

Two synthetic tasks were performed: (1) sampling from a posterior over a 2 dimensional grid, and (2)
�ne-tuning on binarized MNIST. In both cases a 90 million parameter MDM model was trained on
samples from the prior distribution, with the same DiT architecture as in Sahoo et al. (2024).

D.1.1 GRID EXPERIMENT

The space consists of discrete tokensx0 2 f 0; : : : ; 127g2. A prior densityppre
0 is de�ned over this

space which assigns a uniform probability for tokens falling inside one of the 16 evenly spaced
squares, and a near-zero probability outside this. This prior distribution is depicted in Figure 6(a).
Pre-training was done using the Adam optimizer, with� 1; � 2 = f 0:9; 0:999g, and a learning rate of
3e� 4.

The reward functionR(x0) = 0 for x1
0 < 64, andR(x0) = 1 for x1

0 � 64. This results in a
�ne-tuning target/ R(x0)ppre(x0) which selects out only the squares in the lower half of the grid.
This product distribution is visualized in Figure 6(b).

For �ne-tuning we train the model using our loss-functions with the Adam optimizer, using a learning
rate of4e � 3, � 1; � 2 = f 0:9; 0:999g, and a weight decay of0 across all methods.DDPP-IS used
16 samples to estimate the partition function. Training is done using a replay buffer populated with
pointsx0 sampled on policy from the model, as well as off-policy points from the prior distribution,
added to the buffer every100training steps. A batch of64 is used.

D.1.2 MNIST

This task consisted of generating binarized MNIST digitsx0 2 f 0; 1g28� 28. The priorppre(x0) in
this case is the MNIST data distribution. For pre-training, the Adam optimizer is used with a learning
rate of4e � 3, � 1; � 2 = f 0:9; 0:999g and a weight decay of0.

This MDM is �ne-tuned to produce even digits. More precisely, the reward function isR(x0) =
p(Even j x0) � =

� P
i =0 ;2;4;6;8 p(y = i j x0)

� �
, with p(y = i j x0) being obtained from a

pretrained MNIST classi�er (LeNet 5 in this case). The inverse-temperature� is set to5 for all
experiments.

For �ne-tuning with our methods, we use Adam with a learning rate of1e � 5 and � 1; � 2 =
f 0:9; 0:999g. Training is done with a batch-size of64. Samples are drawn from a replay-buffer
populated with only on-policy samples. Method speci�c hyperparameters include:

• DDPP-IS: the importance sampling estimate is done with16samples
• DDPP-LB: a learning rate of1e � 3 is used for network layers estimatinglogZ � t

• DDPP-KL: The KL objective perx t is computed using8 samples

RTB is trained with a learning rate of5e � 5, with weight decay0:01, on trajectories of length32
with a batch size of8. For training,30%of the steps are detached. The smaller batch-size is chosen
to �t the training on 80GB of GPU memory.

SVDD uses10particles in each inference step.

For all methods (including baselines), inference is done with128steps.

Additional information on computation of metrics is included in D.3.1.
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D.1.3 MNIST SAMPLES

Samples from our methods, as well as the pretrained model, are shown in Figure 4.

D.2 PROTEIN SEQUENCES

Protein design involves the creation of novel protein sequences that adopt speci�c structures and
perform desired functions. This is a critical �eld in synthetic biology and biotechnology, as it enables
the rational engineering of proteins with enhanced stability, novel functionalities, or improved
therapeutic properties. Advances in machine learning-based models, such as protein language
models (pLMs), have enabled rapid exploration of protein sequence space, making de novo protein
design more feasible and versatile. However, current pLMs struggle in generating realistic sequences
which satisfy certain criteria, and we study usingDDPPto �netune DPLM to generate high-scoring
proteins given a reward function.

D.2.1 IN-SILICO TASKS

In task 1, we �ne-tune the DPLM model to generate designable protein sequences that optimize
for several critical features, including high predicted template modeling (pTM) and predicted local
distance difference test (pLDDT) scores from ESMFold, reduced exposed hydrophobic residues,
high sequence entropy, and an increased proportion of� -sheet content (Hie et al., 2022). These
optimizations are captured in the reward functionR, given by:

logR = wpTM � pTM + wpLDDT � pLDDT + wSheet� Sheet%
+ wEntropy � H (s) � wHpho � Exposed_Hpho%

Where the terms represent:

• pTM andpLDDT: Structural con�dence scores from ESMFold, measuring global and local
accuracy, respectively.

• Sheet%: The proportion of residues predicted to form� -sheets, determined by DSSP (Kab-
sch and Sander, 1983).

• H (s): Sequence entropy, de�ned as:

H (s) = �
LX

i =1

X

a

pi (a) log pi (a);

whereL is the length of the sequence andpi (a) is the probability of amino acida at position
i .

• Exposed_Hpho%: Percentage of hydrophobic residues exposed on the surface, calculated
based on solvent-accessible surface area.

The weights for these features are set as follows:

wpTM = 1 ; wpLDDT = 1 ; wSheet= 4 :5; wEntropy = 0 :8; wHpho = 0 :25:

As the scale of the various reward terms are non-uniform we selected the reward weights to weight
all rewards similarly besides the sheet percent reward which is weighted higher. For the� -sheet task
we found that both RTB and DDPP faced issues with mode collapse. After investigating the protein
structures generated by base DPLM we found that the base model is only capable of generating a
small number of motifs (in particular, over 2k samples from the base model we found only two motifs
with logR(x0) � 3:5), implying that the targeted product distribution indeed collapses around these
structural motifs as we observe in the case of RTB and DDPP. As such, we conclude that DDPP (and
RTB) achieve the goal of �ne-tuning as they sample from the product distribution and reproduces
samples with� -sheets at a much higher proportion than the base model.

In task 2, we focus on generating shorter sequences of known proteins that preserve essential structural
characteristics, using the TM-align score as the reward function (Devkota et al., 2024). This task
allows the exploration of mutational effects. Ribonuclease proteins (PDB IDs: 9RAT-A, 11BA-A)
are selected for this task due to their well-characterized structure, function, and folding mechanisms.
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(a) Pretrained model

(b) DDPP-IS

(c) DDPP-LB

(d) DDPP-KL

Figure 4: Uncurated samples from the pretrained model, and after �ne-tuning with our methods:
DDPP-IS, DDPP-LB, DDPP-KL
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The reward functionR is de�ned as:

R = wtm_score� TM-align(s; t ):

Where:

• wtm_score: The weight of the TM-Score reward, set to 2.

• s: Predicted structure from ESMFold of the generated sequence.

• t : Target protein structure.

• TM-align: A measure of structural similarity betweens andt , de�ned as:

TM-align = max

0

B
@

1
L t

L aliX

i =1

1

1 +
�

di
d0

� 2

1

C
A :

whereL t is the length of the target protein,L ali is the length of the aligned region,di is
the distance between thei -th pair of aligned residues, andd0 is the distance scale based on
L t (Zhang and Skolnick, 2005).

While not used in the reward function for either experimental setting, we also measure the KL
divergence, reported as KL-SS in Table 3 between the secondary structure distribution given by DSSP
for both the target and miniaturized protein.

Note that in these experiments, the number of recycles in ESMFold is set to 0 to reduce computational
overhead. For both tasks we generate amino acid sequences of length 90. Evaluation is performed
by sampling 200 proteins for each method across three seeds and reporting the mean and standard
deviation of each metric accordingly. All methods ran 500 inference steps during evaluation. All
protein experiments used a 150 million parameter DPLM base model1 to begin �ne-tuning from.
All models used a log-linear noise schedule with� min = 1e� 4 and� max = 20 and used a linear
learning rate warmup period of 2500 training steps.

DDPP was trained with no warmup period forlogZ t (x t ), a learning rate of1e� 5, a batch size of 16,
a replay buffer of max length 10,000, and inserting new batches to the buffer sampled on-policy from
the current model every 250 training steps. RTB was trained similarly, but with a smaller batch size to
account for its greater memory requirements. RTB matches the setting of DDPP but with a batch size
of 8 while doing 90 inference steps during training (a new batch of trajectories is simulated on-policy
every training step). To allow RTB to �t in memory we detached65%of trajectory timesteps when
computing a backward pass on the RTB objective. SVDD was run on the base DPLM model with
n = 10 particles. To control the concentration of our designated target distributions, we set the
reward temperature� = 0 :125for the� -sheet task and� = 0 :001for the protein miniaturization
task.

We report an extended version of Table 3 where we include results for both ribonuclease targets in
Table 5. We observe that DDPP consistently achieves the highest TM-Score across the two templates
while maintaining high structural quality with an average pLDDT of around 0.8.

D.2.2 EXPERIMENTAL VALIDATION

Genes encoding for de novo protein sequences were obtained from Integrated DNA Technologies
(IDT) and cloned into pET-24a(+) (Novagen) expression vectors with a C-terminal 6xHis tag using
Gibson Assembly (New England Biolabs, NEB). Assembled plasmids were veri�ed via Sanger
sequencing, then transformed into chemically competentEscherichia coliBL21(DE3) cells (NEB).
Starter cultures (3 mL Luria Bertani media, 50µg/mL kanamycin) were inoculated from freshly
prepared agar plates and grown at 37°C and shaken at 225 RPM overnight. Starter cultures were
then diluted 1:100 into 50 mL LB medium supplemented with antibiotic. Cultures were then grown
at 37°C and 225 RPM until an optical density (OD600) of 0.5-0.7 was reached. Protein expression
was then induced with 1 mM isopropyl� -D-thiogalactopyranoside (IPTG) for 4 hours at 37°C. Cells
were then collected by centrifugation (4,500xg) at 4°C and resuspended in lysis buffer (Tris-buffered
saline (TBS), 25 mM imidazole). Cell suspensions were then lysed via sonication (10s pulses,
40% amplitude). The corresponding lysate was centrifuged at 12,000xg for 30 minutes, and the

1https://huggingface.co/airkingbd/dplm_150m
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Table 5: Miniaturizing ribonuclease proteins 9RAT-A and 11BA-A (124 AAs) to 90 AAs while
preserving structural �delity (high TM-Score) and quality (high pLDDT and PTM).

Template SS-KL# log R(x 0) " TM-Score" pLDDT " pTM "

9RAT-A

Base Model 2.944� 2.936 0.502� 0.128 0.251� 0.064 0.724� 0.144 0.584� 0.226
Best-of-10 0.640� 1.872 0.725� 0.098 0.363� 0.049 0.789� 0.018 0.754� 0.086
DDPP 1.086� 2.242 0.735� 0.122 0.368� 0.061 0.793� 0.044 0.768� 0.066
RTB 1.808� 2.597 0.597� 0.109 0.299� 0.055 0.796� 0.054 0.750� 0.084
SVDD 3.465� 2.835 0.699� 0.079 0.350� 0.039 0.499� 0.137 0.383� 0.178

11BA-A

Base Model 3.136� 3.150 0.478� 0.101 0.239� 0.051 0.724� 0.144 0.584� 0.226
Best-of-10 2.602� 3.309 0.654� 0.089 0.327� 0.045 0.782� 0.027 0.720� 0.109
DDPP 0.194� 1.009 0.709� 0.048 0.354� 0.024 0.743� 0.036 0.727� 0.054
RTB 2.579� 2.799 0.564� 0.111 0.282� 0.056 0.797� 0.058 0.744� 0.101
SVDD 3.240� 2.992 0.647� 0.079 0.324� 0.040 0.486� 0.124 0.354� 0.162

supernatant was loaded into a HisPur Ni-NTA His-spin column (ThermoScienti�c) and puri�ed as
recommended. Expression of puri�ed proteins in both the soluble and insoluble fraction, as well as
his-tag puri�cation fractions, was assessed using SDS-polyacrylamide gel electrophoresis.

D.3 DISCRETE IMAGE MODELLING

To setup the �netuning task we �rst pre-train large masked diffusion models on the original dataset.
This uses a standard masked diffusion loss as explored in previous work (Shi et al., 2024; Sahoo
et al., 2024).

CelebA Pretraining. We train a 241 million parameter model based on the variational diffusion
model (VDM) architecture (Kingma et al., 2023) and the setup of Shi et al. (2024). We adapted
the U-Net plus self-attention architectures from Kingma et al. (2023) as used in CIFAR-10 in their
experiments, with a few notable additions. We replace the Fourier feature inputs with an input
embedding layer which embeds 257 (256 pixel values + <MASK>) tokens into the embedding
dimension. We double the number of residual blocks from 32 to 64 per encoder / decoder, and double
the embedding dimension from 128 to 256. We use an Adam optimizer with learning rate1e � 3,
� 1=0.9 and� 2=0.999. We train our model for 450k steps with batch size 128 on a cluster of 16
NVIDIA L40S GPUs. We resize all CelebA images to 64x64 with bilinear interpolation. Samples
from this model can be seen in Figure 5.

Separately, we train a 7M parameter classi�er to classify hair color on CelebA. We use this as our
energy function with a temperature setting of0:1 for all �netuning experiments.

CelebA Finetuning. With the problem setup, we next �netune our pretrained model to sample images
with blond hair. We train each model for up to 12 A100 hours. We use an early stopping criteria
based on a validation set using an approximate bits-per-dimension calculation using the ELBO. We
�nd that the original needs at least1 000inference steps for good performance therefore we evaluate
all models in this setting. For our model we use1 000warmup steps forlogZ , a learning rate of
1e � 4, we resample two batches every 500 gradient steps of the model and add them to the replay
buffer.

In contrast to our model, RTB requires a full trajectory for each gradient step. For CelebA, this means
a rollout of1 000inference steps taking approximately 2 minutes for a batch size of 2 on an A100
with this model. Because of memory constraints we detach 99% of inference steps and use a batch
size of 2 to �t in 80GB of GPU memory with a global batch size of 8 trajectories per gradient step.

D.3.1 METRICS

The metrics used to evaluate image �ne-tuning include mean log reward, feature-likelihood divergence
(FLD), and bits per dimension (BPD).

FLD. For FLD, we drawK samples from the model, andK samples from the test set restricted to
the target class. The FLD is computed using the DINOV2 feature space (from the ViT-B14 model)
between these two sets of samples (Oquab et al., 2024). For MNIST,K = 5k.
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