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Abstract
While closed-source Large Language Mod-001
els (LLMs) demonstrate strong mathematical002
problem-solving abilities, open-source mod-003
els still face challenges with such tasks. To004
bridge this gap, we propose a data augmenta-005
tion approach and introduce PersonaMathQA,006
a dataset derived from MATH and GSM8K, on007
which we train the PersonaMath models. Our008
approach consists of two stages: the first stage009
focuses on learning from Persona Diversifica-010
tion, and the second stage emphasizes learning011
from Reflection. In the first stage, we regener-012
ate detailed chain-of-thought (CoT) solutions013
as instructions using a closed-source LLM and014
introduce a persona-driven data augmentation015
technique. This technique innovatively clas-016
sifies personas based on occupations, signif-017
icantly enhancing the dataset’s diversity and018
quality. In the second stage, we incorporate019
reflection to fully leverage more challenging020
and valuable questions. Evaluation of our Per-021
sonaMath models on MATH and GSM8K re-022
veals that the PersonaMath-7B model (based on023
Qwen2.5-7B) achieves an accuracy of 61.2%024
on MATH and 87.8% on GSM8K, surpassing025
all baseline methods and achieving state-of-the-026
art performance. Notably, our dataset contains027
only 128.9K data points—merely 32.6% of028
MetaMathQA and 49.5% of MathInstruct—yet029
our model outperforms these baselines, demon-030
strating the high quality and diversity of our031
dataset, which enables more efficient model032
training.033

1 Introduction034

“There are a thousand Hamlets in a thousand people’s eyes”

Shakespeare

Large language models (LLMs) have rapidly035

advanced in recent years, showcasing impressive036

abilities across various Natural Language Process-037

ing (NLP) tasks, including open-domain conver-038

sation (Brown et al., 2020; Ouyang et al., 2022),039

coding (Chen et al., 2021; Rozière et al., 2024; 040

Li et al., 2023a), and math (Luo et al., 2023; Yu 041

et al., 2024; Imani et al., 2023). Among these 042

tasks, solving math problems stands out as partic- 043

ularly challenging due to its complexity and the 044

need for multi-step reasoning to reach a solution. 045

While some closed-source models, such as GPT- 046

4o (OpenAI, 2024a), Claude 3.5 Sonnet (Anthropic, 047

2024), and Gemini 1.5 Pro (Reid et al., 2024), have 048

demonstrated strong math-solving capabilities, cur- 049

rent open-source models (e.g., LLaMA (Touvron 050

et al., 2023; Dubey et al., 2024)) continue to strug- 051

gle in this domain. Therefore, enhancing the math 052

problem-solving abilities of open-source models 053

remains a prominent desiderata. 054

A widely adopted and effective approach for 055

improving the math-solving capabilities of open- 056

source models is fine-tuning, thanks to the accessi- 057

bility of their weights (Yuan et al., 2023; Yue et al., 058

2023; Luo et al., 2023; Yu et al., 2024). However, 059

directly fine-tuning on the original dataset yields 060

only minimal improvements (Touvron et al., 2023), 061

as solving complex math problems requires multi- 062

ple reasoning steps, which the original dataset fails 063

to adequately capture. Furthermore, the limited 064

number of samples in the original dataset is often 065

insufficient for models to fully learn how to solve 066

mathematical problems. To address this, recent 067

studies have demonstrated promising results by 068

bootstrapping the original dataset (Yu et al., 2024), 069

generating more detailed Chain of Thought (CoT) 070

solutions (Wei et al., 2023), and training models 071

on the enhanced dataset. However, directly boot- 072

strapping from the original problems can reduce 073

the diversity of the enhanced dataset, requiring a 074

large amount of data for effective training, which 075

is both resource-intensive and inefficient. 076

In this paper, we propose a data augmentation 077

method aimed at enabling models to learn more 078

efficiently and effectively from enhanced datasets. 079

The key to our approach lies in improving both the 080
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Figure 1: The framework of our data augmentation method. The method consists of two stages: Stage 1 (top) and
Stage 2 (bottom). Stage 1 focuses on using closed-source LLMs to automatically generate detailed CoT solutions
and apply our persona-driven rewriting method to rephrase the questions. Stage 2 focuses on reflection. The data
from both stages are then combined to form our PersonaMathQA dataset.

LLaMA-2-7B LLaMA-2-13B LLaMA-3.1-8B
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y 
(%

)

14.6

28.7

57.254.9

63.966.5
72.371.9

78.8 78.3

Base
WizardMath

MetaMath
PersonaMath

GSM8K

LLaMA-2-7B LLaMA-2-13B LLaMA-3-8B
0

10

20

30

40

50

Te
st

 A
cc

ur
ac

y 
(%

)

2.5 3.9

20.3

10.7
14.0

19.8
22.4

27.9

33.2

40.0

Base
WizardMath

MetaMath
PersonaMath

MATH

Figure 2: The superior performance of our PersonaMath models in comparison to other models. Among all models
of the same size, our model achieves the highest test accuracy, demonstrating state-of-the-art performance.

quality and diversity of the data. To achieve this,081

we introduce a persona-driven approach and create082

PersonaMathQA, a dataset characterized by high083

efficiency and diversity. Recently, Role-Playing084

LLMs that incorporate personas have gained sig-085

nificant attention, as leveraging personas allows086

LLMs to adapt to persona-specific scenarios and087

generate unique, diverse answers from various per-088

spectives. Moreover, recent research has further089

highlighted the potential of Role-Playing LLMs.090

For instance, Chan et al. (2024) automatically cre-091

ated Persona Hub, a collection of 1 billion diverse092

personas, with 200,000 personas released publicly.093

Building on this resource, the authors generated nu-094

merous persona-specific queries to enhance model095

training. However, their methodology did not fully 096

exploit the rich informational potential inherent 097

in individual personas. To address this limitation 098

and further enhance the diversity of generated data, 099

we propose a novel approach that identifies the 100

occupational characteristics of different roles and 101

categorizes them into 11 distinct groups based on 102

the International Standard Classification of Occu- 103

pations (ISCO-08). Leveraging this classification, 104

our persona-driven data rewriting method produces 105

more nuanced and diverse data, significantly im- 106

proving training effectiveness and efficiency. 107

Specifically, our method is divided into two 108

stages. In the first stage, we focus on empowering 109

open-source models to Learn from Persona Diver- 110
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sification by proposing a persona-driven method.111

We begin by using a powerful closed-source LLM112

to generate detailed CoT solutions for the math113

problems within the original dataset. After identi-114

fying the correctly answered questions, we apply115

the persona-driven method to prompt the closed-116

source LLM to rewrite these questions using spe-117

cific and diverse personas. We then regenerate the118

CoT solutions and incorporate both the correctly119

answered questions and their original questions in120

our dataset. In the second stage, we shift our fo-121

cus to enabling open-source models to Learn from122

Reflection. For questions that the closed-source123

LLM answered incorrectly in the first stage, we al-124

low the LLM to reflect on its mistakes and attempt125

to regenerate the correct answers. For those ques-126

tions answered correctly after reflection, which are127

inherently more challenging than those answered128

correctly in the first stage, we aim to increase their129

weight in the final dataset. This strategy facilitates130

more effective learning of these difficult questions131

by open-source LLMs during training.132

Our main contributions are summarized as fol-133

lows:134

• We propose a novel persona-driven data augmen-135

tation method, resulting in the creation of a high-136

quality and efficient dataset, PersonaMathQA.137

• Using our PersonaMathQA dataset, we trained138

LLaMA and Qwen2.5, resulting in the Per-139

sonaMath models. We evaluate the math140

problem-solving capabilities of PersonaMath141

models, trained on our PersonaMathQA dataset,142

on two in-domain and two out-of-domain math143

benchmarks. Despite PersonaMathQA being the144

smallest in size compared to previous state-of-145

the-art (SOTA) datasets, the PersonaMath-7B146

model surpasses them on both benchmarks, set-147

ting a new SOTA performance.148

• We introduce a method to classify personas based149

on their occupations. By Leveraging this classi-150

fication, we generate more diverse and nuanced151

data, providing valuable insights for future re-152

search to further explore and utilize the rich in-153

formation embedded within personas.154

2 Related Work155

Large Language Models for Mathematical Rea-156

soning. Among various NLP tasks, solving math157

problems has consistently been regarded as one158

of the most challenging. Current cutting-edge159

closed-source LLMs, such as o1 (OpenAI, 2024b),160

GPT-4o (OpenAI, 2024a), Claude 3.5 Sonnet (An- 161

thropic, 2024), and Gemini 1.5 Pro (Reid et al., 162

2024), exhibit strong math problem-solving ca- 163

pabilities. Nonetheless, there remains substantial 164

work to further enhance these capabilities through 165

various strategies, including preprocessing math 166

questions (An et al., 2023), utilizing more advanced 167

prompts (Ling et al., 2017; Yao et al., 2023), em- 168

ploying external tools (Yamauchi et al., 2023; He- 169

Yueya et al., 2023; Chen et al., 2022), and enhanc- 170

ing overall interactions (Wu et al., 2024). In con- 171

trast, open-source models with fewer parameters 172

still struggle with solving math problems. Conse- 173

quently, numerous studies, including our own, aim 174

to bridge this gap, enabling open-source models to 175

achieve robust math problem-solving capabilities 176

after fine-tuning. Past approaches to enhance fine- 177

tuning have primarily focused on generating inter- 178

mediate steps for answers (Nye et al., 2021; Zhang 179

et al., 2023; Yang et al., 2023; Lewkowycz et al., 180

2022), fine-tuning across multiple datasets (Mishra 181

et al., 2022; Yue et al., 2023), employing teacher- 182

student knowledge distillation (Imani et al., 2023), 183

and learning from enhanced datasets (Imani et al., 184

2023; Raiyan et al., 2023; Yu et al., 2024), as ex- 185

plored in our paper. 186

Role-Playing Large Language Models. Re- 187

cently, Role-Playing LLMs that integrate personas 188

have gained significant attention. Specifically, 189

Role-Playing LLMs involve directly incorporating 190

personas into the prompts of LLMs, enabling them 191

to generate unique, role-specific content within a 192

designated context. Although simple to imple- 193

ment by modifying prompts, this approach has 194

yielded impressive results. For instance, Dong et al. 195

(2024) employed multiple LLM agents, assigning 196

each to a specialized expert role, which enabled 197

them to collaboratively tackle complex code gener- 198

ation tasks. Similarly, ChatDev (Qian et al., 2024) 199

segmented the software development process into 200

four stages—designing, coding, testing, and doc- 201

umenting—and proposed a Chat Chain to facili- 202

tate communication among agents responsible for 203

each stage, ultimately enabling cooperative pro- 204

gram development. Role-Playing LLMs are also 205

frequently used in gaming contexts. For instance, 206

Wang et al. (2023) employed an LLM to assume 207

the role of a general assistant, which continuously 208

explored the Minecraft game world to acquire skills 209

and survive longer. In the medical domain, Tang 210

et al. (2024a) simulates real-life scenarios by di- 211
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viding the diagnostic reasoning process into five212

stages: expert gathering, analysis proposition, re-213

port summarization, collaborative consultation, and214

decision-making. Multiple LLM agents are then215

assigned different roles to collaborate on the diag-216

nostic process.217

3 Method218

In this section, we provide a detailed description of219

how we constructed PersonaMathQA. An overview220

of our approach is illustrated in Figure refframe-221

work. Our method, which enhances data through222

a persona-driven approach, is divided into two223

stages. Using this approach, we created the Per-224

sonaMathQA dataset by augmenting the MATH225

and GSM8K datasets and subsequently fine-tuned226

the PersonaMath models on the enhanced dataset.227

3.1 Stage 1: Learning from Persona228

Diversification229

Limitations of the Original Dataset. Fine-230

tuning open-source models can significantly en-231

hance their performance across various tasks, but232

improving their math problem-solving capabilities233

through fine-tuning alone presents unique chal-234

lenges. One reason is that math problems are235

inherently complex and often require intricate236

multi-step reasoning to arrive at the correct an-237

swer (Ahn et al., 2024), with errors at any step238

potentially leading to incorrect results. Another239

challenge stems from the limitations of current240

training datasets. Effective math problem-solving241

requires detailed, step-by-step reasoning; however242

existing datasets often lack such comprehensive243

solutions, providing only final answers or insuffi-244

ciently detailed explanations. Consequently, mod-245

els trained on these datasets struggle to develop246

necessary reasoning skills, eading to only mini-247

mal improvements from fine-tuning (Touvron et al.,248

2023). While manually labeling detailed solutions249

is time-consuming and labor-intensive, we address250

this issue by leveraging a closed-source LLM with251

advanced mathematical problem-solving capabil-252

ities to automatically generate detailed CoT solu-253

tions. This process enhances the training dataset254

with comprehensive, step-by-step reasoning. The255

prompt we used can be found in Appendix B.1.256

Persona-Driven Data Augmentation Method.257

After obtaining the CoT solutions automatically258

generated by the LLM, we first filter out the cor-259

rect answers and add them to our PersonaMathQA260

dataset. However, this initial training data is in- 261

sufficient for effective model improvement. To 262

create a high-quality, enhanced dataset without ex- 263

cessive time and resource expenditure, we employ 264

a data augmentation method in which the LLM au- 265

tomatically rewrites questions to generate new ones. 266

Previous studies have shown that directly rewriting 267

questions can be inefficient (Yu et al., 2024), as it re- 268

quires a large volume of data to significantly boost 269

model performance. This inefficiency stems from 270

the homogeneous nature of the rewritten questions, 271

which often lack diversity. To address this chal- 272

lenge and enhance the dataset more effectively, we 273

propose a novel persona-driven method. Inspired 274

by the observation that introducing persona-related 275

scenarios to the LLM can prompt it to generate 276

unique and persona-specific content, we hypothe- 277

size that with a sufficiently diverse set of personas, 278

we can generate a large quantity of varied content 279

that enhances both the quality and diversity of the 280

dataset. 281

A recent study (Chan et al., 2024) that released 282

200,000 diverse personas created from extensive 283

web data provides a solid foundation for our ap- 284

proach. These personas encompass various nation- 285

alities, races, religions, occupations, age groups, 286

and more, and were used to generate a wide vari- 287

ety of questions. However, they did not segment 288

the personas during the generation process, which 289

led to a lack of diversity in the generated output. 290

This limitation arises because data generated using 291

similar personas tend to exhibit high similarity. To 292

overcome this challenge, we propose a Persona- 293

Driven Data Augmentation Method, which first 294

segments the personas into distinct groups and then 295

selects different persona types for data generation 296

in each iteration. This approach significantly en- 297

hances the diversity of the generated data. 298

Specifically, we observed that the personas in 299

Persona Hub often include occupational charac- 300

teristics, such as "A Political Analyst specialized 301

in El Salvador’s political landscape". This obser- 302

vation led us to the conclusion that personas can 303

be systematically classified based on their occupa- 304

tions. Consequently, we categorized the personas 305

into 11 distinct groups using the International Stan- 306

dard Classification of Occupations (ISCO-08). To 307

automate this classification process, we employed 308

closed-source LLM, and the prompt used for this 309

task can be found in Appendix B.2. ISCO-08 di- 310

vides occupations into 10 major groups, includ- 311

ing Managers, Professionals, Technicians and As- 312
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sociate Professionals, among others. To accom-313

modate personas whose occupations could not be314

clearly identified by the LLM, we introduced an315

additional group labeled Others, ensuring compre-316

hensive coverage of all personas in the dataset.317

We then leverage these classified personas to318

guide the LLM in rewriting each question. In each319

round, we select one persona from each of the320

11 occupational categories and instruct the LLM321

to rewrite the question based on the selected per-322

sona, resulting in 11 distinct rewrites per question.323

The prompt we used can be found in Appendix324

B.3. In Stage 1, we perform K1 rounds of rewrit-325

ing. Afterward, the LLM reasons through these326

rewritten questions and generates detailed CoT so-327

lutions. We select the correct solutions, along with328

their corresponding questions, to include in our Per-329

sonaMathQA dataset. Questions that are answered330

incorrectly after rewriting are discarded.331

3.2 Stage 2: Learning from Reflection332

Shifting Focus to Incorrectly Answered Ques-333

tions. In Stage 1, we first have the LLM reason334

through the original dataset and identify questions335

with correct answers. Questions answered incor-336

rectly are set aside for further analysis. For this337

analysis, we use the MATH dataset, where each338

problem is classified into difficulty levels ranging339

from ‘1’ to ‘5’. We calculated the average diffi-340

culty levels of correctly and incorrectly answered341

questions during the reasoning stage. The results342

indicate that the average difficulty level of correctly343

answered questions is 3.22, while incorrectly an-344

swered questions have an average level of 4.28.345

This suggests that the incorrectly answered ques-346

tions are inherently more challenging, making them347

harder for the LLM to solve. However, this also348

makes them more valuable, as learning to solve349

these complex problems can significantly enhance350

the model’s step-by-step reasoning ability.351

Reflecting on Errors and Regenerating Solu-352

tions. To harness the potential value of the in-353

correctly answered questions, we prompt the LLM354

to reflect on its errors and attempt to provide correct355

answers. This approach draws inspiration from pre-356

vious research demonstrating that LLMs can self-357

reflect and self-correct (Shinn et al., 2023; Li et al.,358

2023b). Specifically, for the questions that the359

LLM answered incorrectly in Stage 1, we present360

the incorrect solution to the LLM, inform it of the361

error, and prompt it to reflect on its reasoning pro-362

cess before generating a corrected, detailed CoT 363

solution. The prompt we used can be found in Ap- 364

pendix B.4, where the explanation is updated with 365

the incorrect solution. 366

In this step, the LLM’s response is divided into 367

two parts: “Review of Incorrect Explanation” and 368

“Corrected Explanation”. We use only the “Cor- 369

rected Explanation” as the regenerated solution 370

from the LLM. However, it is important to note 371

that while the “Review of Incorrect Explanation" is 372

not used directly, it plays an indispensable role in 373

the reflection process. This part allows the LLM to 374

summarize its mistakes, which is essential for gen- 375

erating the subsequent "Corrected Explanation". 376

Correctly answered questions are then added to 377

our PersonaMathQA dataset, while questions that 378

remain unanswered correctly by the LLM are dis- 379

carded. It is worth noting that previous studies 380

have also explored generating the correct solution 381

process by directly providing the LLM with the 382

correct answer (Zhang et al., 2024). However, this 383

approach carries risks due to LLM hallucinations, 384

where the LLM may generate an incorrect solu- 385

tion process while providing the correct final an- 386

swer. Such data can be misleading and detrimental. 387

Therefore, we discard questions that cannot be an- 388

swered correctly. 389

For the questions answered correctly in Stage 2, 390

we apply the same persona-driven rewriting method 391

as in Stage 1. The key difference in Stage 2 is that 392

we perform K2 rounds of rewriting, where K2 is 393

greater than K1, the number of rewriting rounds 394

in Stage 1. As discussed earlier, Stage 2 problems 395

are more challenging, and the performance gains 396

from training on these difficult problems are more 397

substantial. Therefore, increasing the number of 398

rewrites in Stage 2 helps enhance model perfor- 399

mance more effectively after training. We then 400

apply our reflection framework to regenerate the 401

solutions, selecting only those with correct answers. 402

For computational efficiency, we use the incorrect 403

solution from the original question as the incorrect 404

solution for the rewritten questions. 405

4 Experiments 406

4.1 Training and Evaluation Setup 407

We fine-tune open-source models using the 408

PersonaMathQA dataset to develop the Per- 409

sonaMath models.The training process follows 410

prompt provided in (Taori et al., 2023), where 411

we maximize the log-likelihood of the rea- 412
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Model Params Base
In-Domain Out-of-Domain

GSM8K MATH College DM
closed-source models

GPT-4 (OpenAI et al., 2024) - - 92.0 42.5 - -
o1 (OpenAI, 2024b) - - - 94.8 - -
Claude 3.5 Sonnet (Anthropic, 2024) - - 96.4 71.1 - -
Gemini 1.5 Pro (Reid et al., 2024) - - 90.8 67.7 - -

open-source models (6-9B)
LLaMA-2-7B (Touvron et al., 2023) 7B - 14.6 2.5 2.3 -
LLaMA-3-8B (Dubey et al., 2024) 8B - 57.2 20.3 - -
GLM-4-9B (GLM et al., 2024) 9B - 84.0 30.4 - -
Qwen2.5-7B (Team, 2024) 7B - 85.4 49.8 - -
DeepSeek-V2 (DeepSeek-AI et al., 2024) 16B - 41.1 17.1 - -
SFT (Touvron et al., 2023) 7B LLaMA-2-7B 41.6 - - -
RFT (Yuan et al., 2023) 7B LLaMA-2-7B 50.3 - - -
WizardMath (Luo et al., 2023) 7B LLaMA-2-7B 54.9 10.7 6.8 -
MAmmoTH(CoT) (Yue et al., 2023) 7B LLaMA-2-7B 50.5 10.4 6.2 -
MetaMath (Yu et al., 2024) 7B LLaMA-2-7B 66.5 19.8 9.4 -
Xwin-Math (Li et al., 2024) 7B LLaMA-2-7B 84.9 45.5 27.6 43.0
DART-Math (Tong et al., 2024) 8B LLaMA-3-8B 81.1 46.6 28.8 48.0
PersonaMath 7B LLaMA-2-7B 71.9 28.4 15.5 27.9
PersonaMath 8B LLaMA-3-8B 78.3 40.7 23.3 40.0
PersonaMath 7B Qwen2.5-7B 87.8 61.2 44.6 71.5

open-source models (more than 10B)
LLaMA-2-13B (Touvron et al., 2023) 13B - 28.7 3.9 1.2 -
LLaMA-2-70B (Touvron et al., 2023) 70B - 56.8 13.5 - -
LLaMA-3-70B (Dubey et al., 2024) 70B - 83.7 41.4 - -
Qwen2.5-72B (Team, 2024) 72B - 91.5 62.1 - -
DeepSeek-V2 (DeepSeek-AI et al., 2024) 236B - 79.2 43.6 - -
SFT (Touvron et al., 2023) 13B LLaMA-2-13B 50.0 - - -
RFT (Yuan et al., 2023) 13B LLaMA-2-13B 55.4 - - -
WizardMath (Luo et al., 2023) 13B LLaMA-2-13B 63.9 14.0 7.8 -
MAmmoTH(CoT) (Yue et al., 2023) 13B LLaMA-2-13B 56.3 12.9 6.5 -
MetaMath (Yu et al., 2024) 13B LLaMA-2-13B 72.3 22.4 10.1 -
PersonaMath 13B LLaMA-2-13B 78.8 33.4 18.0 33.2

Table 1: Test accuracy on GSM8K and MATH datasets. “PersonaMath" refers to our model. The primary baselines
compared include WizardMath, MAmmoTH, and MetaMath. Our models demonstrate higher accuracy compared to
the baselines when trained on the same underlying model

soning path given the question. Specifically,413

the loss function is expressed as L(θ) =414

Σ(q,r)∈PersonaMathQA logP (r|q; θ). Here, θ repre-415

sents the parameters of the open-source model, q416

represents the question, and r denotes the correct417

solution generated by the closed-source LLM. This418

formulation ensures that our method is easily adapt-419

able for fine-tuning any open-source model. The420

training prompt, which replaces the “instruction"421

which replaces the “instruction" with questions422

from the PersonaMathQA dataset and follows the423

corresponding solutions after “Response: ", is pro-424

vided in Appendix B.5. The CoT prompt used for425

evaluating the trained model is sourced from (Taori426

et al., 2023), as provided in Appendix B.6. The 427

“instruction" is replaced with questions from the 428

test set. 429

4.2 Experimental Setup 430

Datasets. We apply our data-enhancement 431

method to two well-known math problem 432

datasets, MATH (Hendrycks et al., 2021) and 433

GSM8K (Cobbe et al., 2021), to create our Per- 434

sonaMathQA dataset. GSM8K consists of prob- 435

lems designed by human writers, requiring between 436

2 and 8 steps to solve. Solutions involve a sequence 437

of basic arithmetic operations (+, -, *, /) to arrive 438

at the final answer. The GSM8K dataset includes 439
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approximately 7,500 training problems and about440

1,000 test problems. In contrast, MATH is a more441

challenging dataset composed of problems from442

mathematics competitions, such as AMC 10, AMC443

12, and AIME, covering a wide range of subjects444

and difficulty levels. The problems span seven sub-445

jects: Prealgebra, Algebra, Number Theory, Count-446

ing and Probability, Geometry, Intermediate Alge-447

bra, and Precalculus, and are classified into five448

difficulty levels, with higher numbers indicating449

greater complexity. MATH consists of 7,500 train-450

ing problems and 5,000 test problems.451

To evaluate our model comprehensively, we con-452

ducted both in-domain and out-of-domain evalua-453

tions. For in-domain evaluation, we used the test454

sets from MATH and GSM8K. For out-of-domain455

evaluation, we followed the approach of DART-456

Math (Tong et al., 2024) and included the following457

two additional test sets:458

• CollegeMath (Tang et al., 2024b): This test set459

contains 2,818 test samples sourced from 9 col-460

lege mathematics textbooks. It covers seven criti-461

cal mathematical disciplines, providing a robust462

evaluation of advanced mathematical reasoning.463

• DeepMind-Mathematics (Saxton et al., 2019):464

This test set consists of 1,000 test examples based465

on a national school mathematics curriculum (up466

to age 16). It spans 8 different topics, offering a467

comprehensive range of mathematical concepts468

aligned with educational progression.469

Models. For classification, inference, rewriting,470

and reflection, we utilized the closed-source LLM471

GPT-4o-mini-2024-07-18 (OpenAI, 2024c) with472

a temperature setting of 0.7. During the rewrit-473

ing phase, we configured the number of rewriting474

rounds as K1 = 1 and K2 = 2. To evaluate our475

approach, we fine-tuned the open-source models476

LLaMA-2-7B and LLaMA-2-13B (Touvron et al.,477

2023) on our dataset. Additionally, to facilitate478

future comparisons, we also fine-tuned the current479

SOTA open-source model LLaMA-3-8B (Dubey480

et al., 2024) and Qwen2.5-7B (Team, 2024). For481

more training details, please refer to Appendix A.482

Baselines. To evaluate our proposed method com-483

prehensively, we establish a baseline that includes484

a range of closed-source models, open-source mod-485

els, and SOTA methods for training open-source486

models to solve mathematical problems. The487

closed-source models include o1-preview (Ope-488

nAI, 2024b), GPT-4o (OpenAI, 2024a), Claude 3.5489

Sonnet (Anthropic, 2024), and others. The open-490

source models encompass LLaMA-2, LLaMA-3, 491

Qwen2.5, and others. Additionally, we compared 492

our method against several prominent techniques, 493

including WizardMath (Luo et al., 2023), MAm- 494

moTH (Yue et al., 2023), MetaMath (Yu et al., 495

2024), Xwin-Math (Li et al., 2024), and DART- 496

Math (Tong et al., 2024). For these methods, we 497

directly adopted the results reported in their respec- 498

tive papers. Furthermore, we compared our method 499

with several basic fine-tuning approaches: 500

• Supervised Fine-Tuning (SFT): This method 501

involves fine-tuning the models using the train- 502

ing sets from the original GSM8K or MATH 503

datasets. 504

• Rejection Sampling Fine-Tuning (RFT) (Yuan 505

et al., 2023): This approach generates and col- 506

lects correct reasoning paths as augmented data 507

for fine-tuning. 508

4.3 Main Results 509

Our PersonaMathQA dataset consists of 128.9K 510

samples, with 74.7K generated based on GSM8K 511

and 54.2K generated based on MATH. Additional 512

details regarding the dataset composition can be 513

found in Appendix C. Table 1 presents the test ac- 514

curacy of our method compared to a range of base- 515

lines. The results demonstrate that, compared to 516

the pre-trained models, our trained model’s mathe- 517

matical problem-solving abilities have significantly 518

improved, surpassing all open-source models of 519

comparable size. Additionally, our method outper- 520

forms most baseline approaches, particularly our 521

PersonaMath model based on Qwen2.5-7B, which 522

achieves state-of-the-art results and outperforms 523

all other models. Notably, among the baselines 524

that also employ data enhancement techniques, the 525

MathInstruct dataset used in MAmmoTH contains 526

260K samples, and the MetaMathQA dataset in- 527

cludes 395K samples. Despite our PersonaMathQA 528

dataset having only 128.9K samples—49.5% of 529

MathInstruct and 32.6% of MetaMathQA—our 530

approach yields superior results. This indicates 531

that our dataset is of higher quality, enabling 532

the model to acquire more robust mathematical 533

problem-solving skills with fewer samples. How- 534

ever, when trained on the same base model, our 535

method still trails DART-Math. DART-Math em- 536

ploys a Rejection-Based Data Synthesis method 537

and utilizes a dataset of 591K samples, whereas our 538

dataset is only 21.8% of its size. This indicates that 539

expanding the PersonaMathQA dataset using our 540

method could further enhance model performance, 541
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Figure 3: Comparison of Word Types and TTR between
our PersonaMathQA dataset and MetaMathQA. Per-
sonaMathQA significantly surpasses MetaMathQA in
both metrics, demonstrating its superior diversity and
quality.

potentially closing the gap with DART-Math and542

achieving even greater improvements.543

4.4 Discussion on Dataset Diversity544

One notable aspect of our main results is that our545

method not only surpasses the baseline method546

MetaMath but also achieves this with a signifi-547

cantly smaller dataset, containing only 32.6% of548

their samples. To illustrate this, we conducted two549

experiments to assess the diversity of questions in550

our dataset compared to the baseline datasets. In551

the first experiment, we split the questions into indi-552

vidual words, counted the Word Types (the number553

of unique, non-repeating words), and calculated554

the Type Token Ratio (TTR), which is the ratio of555

Word Types to the total number of words, for both556

our dataset and the MetaMathQA dataset. Higher557

values for Word Types and TTR indicate greater di-558

versity. Our experimental results, shown in Figure559

3, reveal that the PersonaMathQA dataset signif-560

icantly outperforms MetaMathQA in both Word561

Types and TTR.562

In the second experiment, we calculated the dis-563

tribution of question lengths across three datasets.564

The results, shown in Figure 4, where “Origi-565

nal" refers to the sum of MATH and GSM8K566

datasets, and “Normalized Frequency" refers to567

the frequency normalized so that the area under the568

histogram integrates to 1. As depicted in this fig-569

ure, the question length distributions in the original570

dataset and MetaMathQA overlap significantly and571

are concentrated in the range of shorter questions,572

indicating a lack of uniformity in the distribution.573
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Figure 4: Comparison of the distribution of ques-
tion lengths between our dataset and the two baseline
datasets, where “Original" refers to the sum of the
MATH and GSM8K datasets. The result shows that the
distribution of question lengths in our dataset is more
uniform and broader than in the two baseline datasets,
indicating superior diversity.

In contrast, our dataset demonstrates a more uni- 574

form and broader distribution, featuring a higher 575

proportion of longer questions and covering a wider 576

variety of question lengths. Both experiments 577

demonstrate that our dataset possesses markedly 578

higher diversity. Consequently, our dataset is of 579

superior quality and can achieve better results with 580

fewer samples. This enhanced diversity stems from 581

the persona-driven method employed, particularly 582

the innovative classification of personas based on 583

occupation. As illustrated by the example in Ap- 584

pendix D, even when starting from the same ques- 585

tion, incorporating different personas introduces 586

varied contexts for the LLM, leading to diverse and 587

unique rewritten questions. 588

5 Conclusion 589

In this paper, we enhance the mathematical 590

problem-solving capabilities of open-source LLMs 591

by introducing a two-stage dataset augmentation 592

method. The first stage, Learning from Persona 593

Diversification, involves generating detailed CoT 594

solutions and applying a novel persona-driven ap- 595

proach for rewriting questions. The second stage, 596

Learning from Reflection, leverages reflection to 597

maximize more challenging and valuable questions. 598

By applying this method to the MATH and GSM8K 599

datasets, we developed PersonaMathQA, a high- 600

quality, diverse dataset with 128.9K samples. De- 601

spite its smaller size than baseline methods, the Per- 602

sonaMath models trained on PersonaMathQA have 603

achieved SOTA performance across multiple test 604

datasets. Our approach demonstrates the significant 605

potential of persona-driven methods for dataset en- 606

hancement and provides valuable insights for future 607

research in mathematical problem-solving. 608
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Limitations609

When evaluating model performance, we are cur-610

rently limited to assessing only whether the final611

answers derived through step-by-step reasoning are612

correct. This approach, however, fails to capture613

the nuanced quality of the model’s reasoning ca-614

pabilities. For instance, consider two reasoning615

paths with incorrect results: one where the error616

occurs at the final step, and another where the error617

arises at the beginning. From a results-oriented per-618

spective, both are incorrect; however, the former619

is less erroneous than the latter. To address this620

limitation, future work could integrate a Process621

Reward Model (PRM) to systematically distinguish622

between error origins, enabling a more granular and623

robust evaluation of reasoning processes.624
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Appendix 1061

A Experimental Details 1062

Training Details. For the entire training process, we use the AdamW optimizer with 3 epochs, leveraging 1063

8 NVIDIA A800 80GB GPUs. The learning rate is set to 2e-5 with a 3% learning rate warmup. We 1064

employed DeepSpeed for training, applying the ZeRO-2 stage. We set gradient accumulation steps to 1065

2 with a per-device training batch size of 2. The max model lengths are set to 4096 for LLaMA-2-7B, 1066

LLaMA-3-8B and LLaMA-2-13B, while for Qwen2.5-7B, the max model length is also set to 2048 due 1067

to its maximum supported length. For more details, please refer to our released code. 1068

Answer Extraction. It’s worth noting that when we prompt the closed-source LLM to generate the 1069

CoT solutions, we always include “present the final answer enclosed in \\boxed{}" at the end of the 1070

prompt. As a result, the answer will always be enclosed in a “\\boxed{}", allowing us to simply extract 1071

the content within the “\\boxed{}" as the answer. To further enhance the accuracy of answer extraction 1072

and comparison, we adopted the method used in DART-Math. For implementation details, please refer to 1073

their open-source code. 1074

B Prompts 1075

B.1 Prompt for Inference 1076

Prompt for Inference

Please provide a detailed, step-by-step explanation for the following math problem. At the end of
the explanation, present the final answer enclosed in \\boxed{} \n Math problem:

1077

B.2 Prompts for Classification 1078

Prompts for Classification

You are an expert in job classification according to the International Standard Classification of
Occupations (ISCO-08). Given a description of a persona, classify their occupation into the closest
ISCO-08 major group (e.g., \"1 - Managers\"). If the occupation cannot be identified, classify it as
\"Others.\" \n\nPersona: \n{persona}

1079

B.3 Prompt for Rewriting 1080

Prompt for Rewriting

Math problem: {problem} \nPlease rephrase the above math problem with the following per-
sona:\n{persona}

1081

B.4 Prompt for Reflection 1082

Prompt for Reflection

The following input consists of a math problem and a corresponding explanation. However, this
explanation is incorrect, please reflect on its errors and then generate a corrected, detailed, step-by-
step explanation for the following math problem. Divide your response into two parts: Review of
Incorrect Explanation and Corrected Explanation. At the end of the explanation, present the final
answer enclosed in \\boxed{}.\nMath Problem: {problem}\nIncorrect Explanation: {explanation}

1083
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B.5 Prompt for Training1084

Training Prompt

Below is an instruction that describes a task. Write a response that appropriately completes the
request.\n\n### Instruction:\n{instruction}\n\n### Response:

1085

B.6 Prompt for Evaluation1086

Evaluation Prompt

Below is an instruction that describes a task. Write a response that appropriately completes the
request.\n\n### Instruction:\n{instruction}\n\n### Response: Let’s think step by step.

1087

C Detailed Composition of PersonaMathQA1088

Dataset
Stage 1 Stage 2

Overall
Inference Rewrite Reflection Rewrite

PersonaMathQA-GSM8K 6.6K 66.6K 0.1K 1.2K 74.7K
PersonaMathQA-MATH 5.4K 46.4K 0.2K 2.0K 54.2K

PersonaMathQA 12.1K 113.1K 0.3K 3.2K 128.9K

Table 2: The detailed composition of each component of the PersonaMathQA dataset. This table shows the number
of questions with correct answers that were added to PersonaMathQA during the final step of each phase.
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D Additional Case Studies 1089

Examples of complete responses from our LLM reflection framework

Example from MATH:

Problem: If a and b are positive integers for which ab − 3a + 4b = 137, what is the minimal
possible value of |a− b|?

Incorrect Response: We begin with the equation given in the problem: ab− 3a+ 4b = 137. To
analyze this equation, we can rearrange it to facilitate factoring: ab− 3a+4b− 137 = 0. Next, we
can rewrite the equation in a more manageable form, isolating ab:ab = 3a− 4b+137. Rearranging
presents: ab− 4b = 3a+ 137, b(a− 4) = 3a+ 137. From this, we can solve for b: b = 3a+137

a−4 .
To ensure b is an integer, the term 3a+ 137 must be divisible by a− 4. We set up the condition for
divisibility. To do this, we first simplify with polynomial long division (or by applying the remainder
theorem). We can divide 3a+137 by a−4: 1. The leading term calculates as 3. 2. Multiply 3(a−4):
3a − 12. 3. Subtract from the original expression: (3a + 137) − (3a − 12) = 137 + 12 = 149.
Thus, we can express this division as: 3a + 137 = 3(a − 4) + 149. This indicates that
the remainder, when dividing by a − 4, is 149. Therefore, for b to be an integer, 149 must
be divisible by a − 4. This leads us to find the positive divisors of 149. The divisors of
149 (which is a prime number) are: 1 and 149. Now we analyze each case:### Case 1:
a − 4 = 1a = 5. Substituting into our equation for b:b = 3(5)+137

5−4 = 15+137
1 = 152. Here,

a = 5 and b = 152. We compute |a − b|:|5 − 152| = 147. ### Case 2: a − 4 = 149a = 153.
Substituting into the equation for b:b = 3(153)+137

153−4 = 459+137
149 = 596

149 = 4. In this case,
a = 153 and b = 4. Now compute |a − b|: |153 − 4| = 149. Among the computed values
of |a − b|, we have: - From case 1: 147. - From case 2: 149. The minimal value of |a − b|
is therefore: min(147, 149) = 147. Finally, we write our answer in the required boxed format: 147

Complete Response:### Review of Incorrect Explanation: The incorrect explanation makes several
errors in the calculations and assumptions: 1. **Divisor Calculation**: It correctly identifies that
3a+137 must be divisible by a+4 but fails to correctly analyze how to handle the conditions when
a+ 4 equals the divisors of 125. The calculations for certain cases are also incorrect. 2. **Case
Evaluations**: In Case 3 and Case 4, the evaluations of b based on the respective values of a are
incorrect. The values of b derived from these calculations do not satisfy the original equation. 3.
**Final Comparison**: The final step incorrectly states the minimum without correctly evaluating
all possible valid cases. ### Corrected Explanation: To solve the equation ab− 3a+ 4b = 137 for
positive integers a and b, we will follow these steps: 1. **Rearranging the Equation**: Start with
the equation: ab−3a+4b = 137. Rearranging it gives: ab+4b−3a = 137. 2. **Isolating b**: We
can express b in terms of a:b(a+4) = 3a+137 Thus: b = 3a+137

a+4 For b to be an integer, 3a+137
must be divisible by a+ 4. 3. **Finding Conditions for Divisibility**: We perform polynomial
long division of 3a + 137 by a + 4: - The leading term is 3. - Multiply 3(a + 4) = 3a + 12. -
Subtract: (3a+137)− (3a+12) = 125Hence: 3a+137 = 3(a+4)+125 This shows a+4 must
be a divisor of 125. 4. **Finding Divisors of 125**: The positive divisors of 125 are 1, 5, 25, 125.
We will set a+ 4 equal to each divisor and solve for a and b: - **Case 1**: a+ 4 = 1 ⇒ a = −3

(not valid) - **Case 2**: a+ 4 = 5 ⇒ a = 1 b = 3(1)+137
1+4 = 3+137

5 = 140
5 = 28 |1− 28| = 27

- **Case 3**: a + 4 = 25 ⇒ a = 21 b = 3(21)+137
21+4 = 63+137

25 = 200
25 = 8 |21 − 8| = 13 -

**Case 4**: a+ 4 = 125 ⇒ a = 121 b = 3(121)+137
121+4 = 363+137

125 = 500
125 = 4 |121− 4| = 117. 5.

**Finding the Minimum**: Now we have the values of |a− b| from the valid cases: - From Case 2:
27 - From Case 3: 13 - From Case 4: 117 The minimum value of |a− b| is: min(27, 13, 117) = 13.
Thus, the minimal possible value of |a− b| is 13 .
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Examples of complete responses from our LLM reflection framework

Example from GSM8K:

Problem: James creates a media empire. He creates a movie for 2000.EachDV Dcost6 to make.
He sells it for 2.5 times that much. He sells 500 movies a day for 5 days a week. How much profit
does he make in 20 weeks?

Incorrect Response: To solve the problem step-by-step, let’s break down the costs, rev-
enues, and profits associated with James’s media empire. ### Step 1: Calculate the cost
of producing one DVD. The cost to create one DVD is given as $6. ### Step 2: Calculate
the selling price of one DVD. James sells each DVD for 2.5 times the cost to make it.
We calculate this as follows: Selling Price = 2.5 × Cost, Selling Price = 2.5 × 6 = 15.
### Step 3: Calculate the profit for one DVD. To find the profit for each DVD sold,
we subtract the cost from the selling price: Profit per DVD = Selling Price − Cost,
Profit per DVD = 15 − 6 = 9. ### Step 4: Calculate the total number of DVDs sold in
one week. James sells 500 DVDs a day for 5 days a week. Thus, the total number of
DVDs sold in one week is:Total DVDs sold in a week = DVDs sold per day × Number of days,
Total DVDs sold in a week = 500 × 5 = 2500. ### Step 5: Calculate the total profit
in one week. Now, we can calculate the total profit for one week by multiplying the
profit per DVD by the total number of DVDs sold in a week: Total Profit per week =
Profit per DVD × Total DVDs sold in a week, Total Profit per week = 9 × 2500 = 22500.
### Step 6: Calculate the total profit in 20 weeks. To find the total profit in 20 weeks,
we multiply the weekly profit by 20:Total Profit in 20 weeks = Total Profit per week × 20,
Total Profit in 20 weeks = 22500× 20 = 450000. ### Final AnswerThe total profit James makes
in 20 weeks is: 450000

Complete Response:### Review of Incorrect Explanation: 1. **Initial Setup**: The explanation
begins correctly by identifying the cost of producing one DVD as $6, but it misses the initial
cost of creating the movie, which is $2000. This cost should be considered in the overall profit
calculation.2. **Profit Calculation**: The profit per DVD calculation is accurate, yielding a
profit of $9 per DVD. However, the explanation neglects to take into account the one-time cost of
creating the movie when calculating total profit over 20 weeks.3. **Weekly Sales Calculations**:
The calculations for the total number of DVDs sold in one week are accurate, resulting in 2500
DVDs sold. However, the total profit calculation for a week does not account for the initial movie
production cost, leading to an inflated total profit over the 20 weeks.4. **Final Calculation**: The
final profit calculation incorrectly suggests that the profit over 20 weeks is simply 22500 multiplied
by 20, without factoring in the $2000 initial cost of the movie. ### Corrected Explanation: To
solve the problem correctly, we must account for all costs and revenues, including the initial cost
associated with creating the movie. #### Step 1: Calculate the cost of producing one DVD. The
cost to create one DVD is given as: Cost per DVD = 6 dollars. #### Step 2: Calculate the selling
price of one DVD. James sells each DVD for 2.5 times its cost:Selling Price = 2.5 × Cost =
2.5 × 6 = 15 dollars. #### Step 3: Calculate the profit for one DVD. The profit for each DVD
sold is calculated as: Profit per DVD = Selling Price − Cost = 15 − 6 = 9 dollars. #### Step
4: Calculate the total number of DVDs sold in one week. James sells 500 DVDs a day for 5
days a week: Total DVDs sold in a week = 500 × 5 = 2500. #### Step 5: Calculate the total
profit in one week. The total profit for one week can be calculated as: Total Profit per week =
Profit per DVD×Total DVDs sold in a week = 9×2500 = 22500 dollars. #### Step 6: Calculate
the total profit in 20 weeks. To find the total profit over 20 weeks without considering the initial
movie cost: Total Profit in 20 weeks = Total Profit per week×20 = 22500×20 = 450000 dollars.
#### Step 7: Account for the initial cost of creating the movie. Since the initial cost to create
the movie is $2000, we need to subtract this from the total profit over 20 weeks: Net Profit =
Total Profit in 20 weeks − Initial Cost = 450000 − 2000 = 448000 dollars. ### Final Answer:
The total profit James makes in 20 weeks, after accounting for the initial cost of creating the movie,
is: 448000
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