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ABSTRACT

Learning robust multimodal predictors under distributional uncertainty remains
challenging, as empirical risk minimization (ERM) is brittle to modality-specific
perturbations and standard distributionally robust optimization (DRO), by minimiz-
ing worst-case risk, may yield overly conservative solutions under heterogeneous
noise. We introduce Wasserstein Distributionally Robust Minimax Regret
Optimization (WDRO-MRO), a framework that unifies Wasserstein DRO with
minimax regret. By minimizing worst-case regret relative to the oracle predictor,
WDRO-MRO provides a decision-centric robustness notion that directly bounds
performance degradation under heterogeneous shifts. A modality-weighted Wasser-
stein cost further enables selective protection of vulnerable modalities. Theoreti-
cally, WDRO-MRO establishes a solid foundation: existence and uniqueness of
minimax regret solutions under convex losses, convexity and strong duality of
the formulation, and sensitivity characterizations of optimal regret with respect
to ambiguity radii and modality weights. We also provide statistical guarantees
including consistency, finite-sample generalization bounds, O(N ~'/2) conver-
gence rates, and explicit sample complexity. Algorithmically, WDRO-MRO admits
tractable convex reformulations (LP, SOCP, SDP, and power-cone programs) and
introduces a dual-game algorithm that couples strong-dual reformulations with an
exponentiated-weights adversary update, yielding an oracle-free no-regret proce-
dure. Empirically, on the HANCOCK multimodal healthcare dataset, WDRO-MRO
maintains competitive average accuracy and improves robustness and fairness com-
pared to ERM and standard DRO, without incurring excessive conservatism.

1 INTRODUCTION

Multimodal machine learning (MML) has achieved strong progress by integrating data from multiple
modalities (e.g., images, text, audio, video), distribution shift is a core robustness challenge (Q1u et al.,
2022)). Since empirical risk minimization (ERM) assumes training and test distributions coincide
and thus fails under distribution shift, several studies address robustness by introducing auxiliary
losses to reduce spurious correlations among signals (Yang et al., |2023)), by de-bias training via a
group distributionally robust optimization (DRO) objective (Kim et al., | 2024), and by pre-training
with DRO to optimize worst-case performance (Shuai et al} [2025). These approaches based on DRO
improve empirical robustness but lack theoretical analysis.

DRO focuses on absolute risk (Kuhn et al., [2025), which may yield conservative solutions and
overlook oracle performance (Agarwal & Zhang, |2022). DRO mitigates ERM’s limitations by
minimizing worst-case risk over an ambiguity set U, (Px) centered at the empirical distribution:

min  sup Eg[l(z, f(2))],
fE}-QEZ/{,,(IE’N)

where / is a convex loss. To solve the conservativity issue, recent studies minimize regret instead of
risk, either in the form of ex-post regret (Al Taha et al.,2023; Hajar et al.,2023; Kargin et al., 2024}
Bitar, [2024)) or ex-ante regret (Agarwal & Zhang| [2022; (Cho & Yang} 2024} |Poursoltani et al., 2024
Fiechtner & Blanchet, 2025). However, these approaches define ambiguity sets in a single-modal
space, which fails to capture modality-specific distribution shifts common in multimodal applications.
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Different modalities often show distinct noise structures and varying importance, and treating all
modalities uniformly ignores this heterogeneity and may either over-regularize stable modalities or
under-protect vulnerable ones.

We therefore introduce Wasserstein Distributionally Robust Minimax Regret Optimization
(WDRO-MRO) for the multimodal setting, a framework that redefines robustness by minimizing
worst-case regret:

min  sup (EQ[K(z,f(z))] — inf Edﬁ(z,f’(z))]) .
feF QEZ/I,J(ISN) fleF

This approach bounds the performance gap relative to the oracle predictor, providing a decision-
centric robustness measure. WDRO-MRO employs a modality-weighted Wasserstein cost, ¢(z, 2’) =
Zszl ardy(2x, 2,), with nonnegative weights o, and modality-specific metrics dy to prioritize
robustness for critical modalities (e.g., noisy histological images in oncology). By leveraging
convexity and strong duality, WDRO-MRO reformulates into tractable convex programs, including
linear programs (LP), second-order cone programs (SOCP), and semidefinite programs (SDP),
ensuring computational efficiency and scalability.

This paper has four main contributions:

* Framework: WDRO-MRO, the first regret-based multimodal learning framework, unifying
modality-weighted Wasserstein ambiguity sets with minimax regret optimization.

* Theory: Proofs of existence and uniqueness of minimax regret solutions under convex losses,
convexity and strong duality, and statistical guarantees, including consistency, finite-sample
bounds, and O(N ~!/2) convergence rates.

* Algorithms: Tractable convex reformulations (e.g., linear programs (LP), second-order cone
programs (SOCP), semidefinite programs (SDP), power-cone programs) across different loss
functions and p-Wasserstein norms, together with a dual-game solver (Alg. [T) that couples
strong-dual reformulations with an exponentiated-weights adversary update, yielding an
oracle-free no-regret procedure balancing robustness and generalization.

¢ Empirics: Validation on the real-world HANCOCK dataset shows that WDRO-MRO
achieves competitive accuracy, robustness and fairness.

2 PROBLEM FORMULATION AND PRELIMINARIES

In multimodal machine learning, data is represented as z € Z = Z; X - -+ X Zk (e.g., Z; for images,
Z, for text). The function class F consists of cross-modal predictors f : Z — R (e.g., multimodal
fusion networks that integrate features across modalities). The nominal distribution Py is unknown,
but we observe N i.i.d. samples {z; = (21, ..., 2ir )}, ~ P, forming the empirical distribution
. L N

Definition 2.1 (Multimodal Ambiguity Set). To capture distribution shifts, we define the Wasserstein
ambiguity set as U,(Pn) = {Q € P(Z) : W,(Pn,Q) < p}, with transportation cost ¢(z, ') =
Zszl ardy(2x, 2,), where o, > 0 weights the importance of modality k, and dj, is a modality-
specific metric (e.g., pixel distance for images). This weighted cost allows for heterogeneous
robustness across modalities.

Definition 2.2 (Risk, Regret, and Core Problem). The risk under @ is Ro(f) =
Eq[l(z, f(2))], and the regret is Regreto(f) = Ro(f) — infper Ro(f’). The multimodal
WDRO-MRO problem minimizes the worst-case regret: infecx SUPG e, (P ) Regreto(f) =
inffer supg ey (py) [Eqll(z, f(2))] —infper Eq[l(z, f'(2))]], where the loss £(z,v) is convex
inv = f(z) (e.g., cross-modal squared loss). This formulation captures multimodal shifts, such as
inter-modal inconsistencies (e.g., image noise vs. text misalignment).

We have the standard assumptions of the multimodal setting:
Assumption 2.1 (Space & transport). Z is a Polish (separable metric) space with its Borel o-algebra.
The transport cost ¢ : Z x Z — [0, oo] is lower semicontinuous and modality-additive (e.g. ¢(z, z’) =

Zszl ardi (2, Z;c) with o, > 0).
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Assumption 2.2 (Loss). For every z, the map v — £(z,v) is convex and bounded; moreover it is
L-Lipschitz on the prediction range.

Assumption 2.3 (Model class). F is a closed convex class. One of the following (sufficient) regularity
conditions holds:

(a) (Curvature) {(z, ) is strictly/strongly convex = uniqueness/stability, or

(b) (Level-boundedness) the outer objective has bounded lower level sets (e.g. via explicit
regularization).

Proposition 2.1 (Interchangeability / Strong Duality for Wasserstein DRO). Under Assumptions 21}
for any empirical reference Px we have SUD G, (Q, Py )<p Eqll(z, f(2))] = infisoqAp +

B, [sp. ez {0, F() ~ he(z )]}

This is a standard strong duality result for Wasserstein distributionally robust optimization; see, e.g.,
Mohajerin Esfahani & Kuhn(2018)) and |[Kuhn et al.| (2025 Lemma 4.16) for general statements.

3 THEORETICAL ANALYSIS

This section develops the theoretical foundation of WDRO-MRO. Section 3] presents the core opti-
mization properties: the existence of inner worst-case distributions, convexity of the outer objective,
existence and uniqueness of solutions, and a strong dual formulation which supports the tractable
reformulations in Sec.[3.2} Section [3.2]builds on these properties to obtain finite-dimensional convex
programs and provides convergence and sensitivity analysis. Section [3.3]establishes statistical guar-
antees, including consistency, finite-sample bounds, and convergence and sensitivity analysis. Finally,
Section [3.4]links WDRO-MRO to implicit regularization and robustness, and shows its continuous
limit to ERM as the ambiguity radius vanishes. Detailed proofs can be found in[Appendices Fto[]]

3.1 BASIC OPTIMIZATION PROPERTIES

Before deriving tractable convex programs in Sec. [3.2.1] we must ensure that the WDRO-MRO
problem is well-defined and solvable, in the sense that worst-case distributions exist, the objective is
convex, solutions exist and are unique, and the formulation admits a strong dual representation.

Proposition 3.1 (Existence of Worst-Case Distribution). Under[Assumption 2.2)and[2.3|and
for any fixed f € F, there exists a worst-case distribution Q* € U,(Px) that attains
SUD Gy, (Bu) Regretq (f). Moreover, Q* is characterized by an optimal transport plan 7 respect-

ing the weighted modality costs oudi (2, 2,), where ©* solves the Kantorovich problem with cost
c(z,2") = >, andy (2, 23,).

Proposition 3.2 (Convexity of the Problem). Under[Assumption 2.2)and 2.3]and
the WDRO-MRO objective ¢(f) is convex in f € F. Furthermore, if £(z,v) is strongly convex in
v with modulus k > 0, and the modality-specific assumptions hold (e.g., additive convexity across
modalities), then ¢(f) is strongly convex in f.

Proposition 3.3 (Existence and Uniqueness of Solutions). Under[Assumption 2.2|and 2.3|and
the infimum in the WDRO-MRO problem is attained. Furthermore, if the loss function
0(z,v) is strictly convex in v, then the solution is unique.

Proposition 3.4 (Strong Duality). Under and [2.3] and the
WDRO-MRO problem admits a strong dual formulation with zero duality gap. Specifically,
for any fixed f € F, the inner maximization SUP ey, (Pu) Regretq (f) equals infy>o Ap +

EP~ [sup,cz (U(z, f(2')) — Ae(2,2")) —inf prersup,ncz (U(z, f/(27)) — Xe(2,2"))], where the
overall problem reformulates as a finite-dimensional convex optimization problem over dual variables.

3.2 COMPUTATIONAL PROPERTIES

By strong duality, WDRO-MRO reduces to finite-dimensional convex programs whose type is
determined by the loss and the Wasserstein norm: LP, SOCP, SDP, or power/exponential-cone
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(Sec.[3:2.1). These programs are handled by standard solvers. Beyond these direct solves, Sec.[3.2.2]
presents an oracle-free dual-game solver that operates on the same tractable envelopes and alternates
adversarial exponentiated-weights updates with learner/oracle best responses and a projected update
for the radius dual variable. Sec.[3.2.3]states the convergence guarantees, and Sec. [3.2.4] characterizes
how the ambiguity radius and modality weights influence the optimum and informs tuning.

3.2.1 TRACTABLE REFORMULATIONS FOR GENERAL p

Throughout this subsection, we assume f is affine, i.e., f(2') = >  Fz, + g, standard in
multimodal machine learning, ensuring finite suprema. The transportation cost is ¢(z,z') =

Zizl ml|zm — 2,5, with weights a;;, > 0 modulating robustness across modalities, priori-
tizing those with higher a,,,. Assumptions 2.2H2.1] hold, ensuring convexity and measurability,
with guaranteeing interchange; see (Zhang et al [2025). All reformulations are
finite-dimensional convex programs with zero duality gap (Section [3.2). We organize the results by
loss type (piecewise linear, quadratic, general convex) and Wasserstein norm p. These reformulations
provide tractable solutions for WDRO-MRO across different p-norms and loss types, leveraging LP
for polyhedral constraints, SOCP/SDP for quadratic terms, and power/exponential cones for general
p. The reformulations are summarized in Table[I} For brevity, the main results for general convex

loss, piecewise linear and quadratic cases are given in[Appendix B]

Table 1: Tractable reformulations for WDRO-MRO under different losses and Wasserstein norms.

Loss Type p-norm Constraints Cone / Program Type
Piecewise p=1 Linear constraints with aux. vars. LP
Linear p=2 Rotated quadratic constraints SOCP
2 <p< oo Power cone constraints Convex (Power Cone)
p=0o0 Vertex-enumeration constraints LP
Quadratic p=1 Matrix inequality (block PSD) SDP (SOCP if diag.QQ)
p=2 Matrix inequality (block PSD) SDP (SOCP if diag.))
2 < p < oo Conjugate representation SDP / Exp. Cone
p =00 Vertex-PSD constraints SDP
General p=1 Convex conjugate constraints SDP / LP (Lipschitz case)
Convex p=2 S-lemma based constraints SDP
2 <p<oo Conjugate + power cone Convex (Power/Exp. Cone)
p =00 Polyhedral or dual vertex constraints LP/SDP

Canonical Objective. All tractable reformulations in [Cemmas B.1| to [B.12] share the following
canonical objective: minger, A x>0,s,,s0 A+ ¥ SN s — (A’p + AN s;), where {s;}

correspond to the regret constraints for the candidate predictor f, and {s}} are defined analogously
for the oracle predictor in the infimum term.

3.2.2 ORACLE-FREE DUAL-GAME HYBRID SOLVER

The WDRO-MRO problem can be cast as a two-player zero-sum game between the learner and an
adversarial nature. Leveraging the strong-dual reformulations in Section[3.2.1] we construct an oracle-
free iterative scheme in dual envelopes are computed via tractable convex programs,
nature updates its distribution using exponentiated weights, and the learner/oracle predictors are
updated accordingly.

Remark 3.1 (Non-convex deep models). Our tractability and convergence results rely on convexity of
the learner and oracle objectives. For non-convex deep architectures, Algorithm [T]can be instantiated
as a first-order min—max procedure: in each iteration, the “Learner / Oracle updates” are implemented
by one or a few stochastic gradient steps on mini-batches, while the adversary distribution is updated
via the same exponentiated-weights rule. This corresponds to replacing exact best responses with
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Algorithm 1 WDRO-MRO: Oracle-Free Dual-Game Solver with Exponentiated Weights

Require: samples {2;} ,, radius p, cost c, loss £, steps 1,
1: Initialize w1 (¢) < 1/N, Ay « 0, pick f1,g91 € F
2: fort=1,2,...,T do
3: Dual envelopes: for each i, compute s;(f;, A;) and s;(g¢, A¢) from the canonical objective

(Section [3.21).

4: Nature update: let A; < s;(fi, \¢)—5:(g¢, \¢) and update w; 1 (7) < wi () exp(n A:)

Y wie(d) exp(n )’

5: Learner / Oracle updates: f;; € argmingcr {)\tp + Zilil w1 (2) si(f, )\t)}, i1 €
arg minge r {/\tp + Zf\il wiy1(4) si(g, )\t)}'
6: Radius dual: update A1 < Tljp ... ()\t +ma(p— ﬁt)), where p; is the empirical dual

subgradient.
7: end for ~
8: Output: averaged predictor f < % Zthl ft

approximate SGD-based updates, in line with standard practice in non-convex DRO and adversarial
training.

3.2.3 ALGORITHMIC CONVERGENCE GUARANTEES

We next establish convergence guarantees for the convex subproblems introduced in Section [3.2}
These include LP, SOCP, SDP, and power or exponential cone programs. Under standard assumptions,
interior-point or first-order methods achieve either linear or sublinear rates. The modality weights

am > 0 in the transportation cost ¢(z, z’) = 25:1 Qm | Zm — 25, ||b affect the associated Lipschitz
constants and thereby influence convergence rates. All subproblems are convex with zero duality gap
(Proposition [3.4), and attain their optima by Proposition 3.1}

Proposition 3.5 (Global convergence of the Dual-Game Hybrid Solver). Suppose

and2.3)and hold and the tractable reformulations in Section[3.2.1)admit zero duality
gap with attained optima. Let the nature weights w; € A([N]) be updated by exponentiated weights

with step size n = O(y/In N/T). Assume learner and oracle best-responses are computed to
accuracy €; > 0, and that the dual variable \; € [0, Amax] is updated by projected subgradient

ascent with steps 1y ; = O(1//T) and bounded subgradients ||g;|| < G.

Define the saddle objective ®(f, g, w,\) = A\p+ Zfil w(i) s;(f,\) — ()\p + Zi\; w(i) s4(g, )\)),
and the averaged iterates [ = - Zthl fod =% Zle g W = % 23:1 wy, A = 7 Zthl At
Then Max e A(IN]), A€[0Amae] (5 95w, N) — ming ge 7 ®(f, g, @, \) = O( IHTN) + 0(%) +
% Zthl e¢. In particular, if all best-responses are solved exactly (¢, = 0), the averaged iterate

(f,g,w, \) constitutes an O(1/\/T) saddle point of the hybrid dual game.

Proposition 3.6 (Global convergence with continuous W). Assume the seiting of Proposition[3.3] but

let nature’s strategy set be the continuous density-ratio class Wg = {w : 0 < w(z) < B, Ep,[w] =

1}. Suppose at each iteration the adversary’s update is implemented by the exact closed form

w; € arg maxB D(fi, g9t, w, A\r). Then with the same learner/oracle updates and dual steps as
3.

in Proposition the averaged iterate (f, g, w, \) satisfies max,, ey, AE[0Amax] PS5 G, w, A) —
minf,gEJ: (I)(fv g,w, 5‘) = O(%) .

3.2.4 SENSITIVITY ANALYSIS

We analyze the sensitivity of the optimal regret R(e) =inffer SUP Q. (Q, Py ) <e Regretq (f) to the
ambiguity radius e, critical for tuning robustness in multimodal settings with heterogeneous noise (e.g.,
images vs. text). We derive continuity and Lipschitz bounds, extended to high-dimensional regimes

via a reformulation equivalent to a low-dimensional optimization, avoiding costly cross-validation
(Aolaritei et al., 2022)).
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Lemma 3.1 (Sensitivity of Optimal Regret). The optimal regret R(p) =
inf e r SuPg. (. Py )<p Regretq(f) is continuous on p > 0. It is Lipschitz continuous

with constant L, the Lipschitz modulus of ¢(z,v) in v. The subgradient satisfies dR(p) C [0, \*],
where A* > 0 is the optimal dual variable in the Kantorovich-Rubinstein dual from Proposition |3.4
For multimodal costs ¢(z,z') = Zﬁzl O l[Zm — 2,5, the weights a,,, > 0 modulate the
subgradient via the transportation cost gradient ||Ve(z, 2)|| < > am|lzm — 2, ||£j

Lemma 3.2 (High-Dimensional Error Equivalence). For high-dimensional multimodal data, the

WDRO estimation error ||fpre — fo|2/d in the proportional regime (d,n — oo, d/n — p)
is equivalent to the solution of a convex-concave optimization over four scalar variables:

_ 2 2 402 2
milg<a<oy, MAX 50 {ﬁzn + 2GR — g+ L (0" %) + PP ooy P + 1} :

27y T2
71,72>0 2

where L is the smoothed loss function, 01%0 is the oracle predictor’s variance scaled by modality
weights a,,,, and p = pg/nP/2.

3.3 STATISTICAL PROPERTIES

This section develops statistical guarantees that show the estimator trained on finite data generalizes
to the underlying distribution. Specifically, we derive consistency, finite-sample bounds, convergence
rates, sample complexity requirements, and the asymptotic unbiasedness of WDRO-MRO estimator.

Theorem 3.1  (Statistical Consistency of  WDRO-MRO). Let fD RE =
argminger SUPG ey, (py) Regretq (f) be the WDRO-MRO estimator, where U,(Pn) = {Q €

P(Z): Wy(Pn,Q) < p} with p = po/NP/?, and Py = ~ Zf\]:l 3., is the empirical distribution
Sfrom N ii.d. samples z; ~ Py. Let fo = argmingscr SUPQe B, (Py) RegretQ(f) be the population

minimax regret minimizer. Under and and fDRE = foin
probability as N — oo, i.e., for any € > 0, P (|| fore — foll7 > €) — 0, where || - || 7 is the
sup-norm on the compact function class F.

’{‘heorem 3.2  (Finite-Sample = Guarantees  for  Out-of-Sample = Regret). Let
fDRE = argminger SUPg ey (py) Regretg(f) be the WDRO-MRO  estimator.
SUPQeB, (Py) RegretQ(fDRE) < infreFsupgep, (p,) Regreto(f) + LWp(]:’N,PO) + 2RN(F) +

\/ 21%(2/5), where L is the effective Lipschitz modulus defined in Appendix RN (F) is the
Rademacher complexity of {{(z, f(2)) : f € F}, and the weights ay, scale the bound through the
variance o* = ZK a2o? in the multimodal cost

= 2ik=1 %% :

Lemma 3.3 (Convergence Rates for Regret). Under and 23] and
let fopre = argmingcr SUD e, () Regretq, (f) be the WDRO-MRO estimator. The

out-of-sample regret satisfies, with probability at least 1 — 4, supg, B, (Po) RegretQ( fDRE) —

infreFsupge B,( Po)RegretQ( f) = O< bg(]\l/ﬁ)> , leveraging the Rademacher complexity

R (F) = O(1/v/N) of the multimodal function class F, scaled by modality weights o, through
the variance 0% = Y, ajo}.

Lemma 3.4 (Sample Complexity for e-Optimal Regret). Letd = : dy, be the total dimension and
ve(G) the VC dimension of G = {{(z, f(z)) : f € F}. Under|Assumption 2.2|and [2.3|and
, let fpre = argminger SUPGey (P ) Regretq (f). There exist constants C1,Cy > 0
such that if N > Cy¥@H8C/  ang N > 0y (L)Y Ghere L = L, K o

€

is the Lipschitz constant scaled by modality weights «y, then with probability at least 1 — 4,
SUPQe B, (Py) Regretq (fprE) — infrer SUPQe B, (Py) Regretq (f) <e.

Lemma 3.5 (Asymptotic Unbiasedness of Debiased WDRO-MRO). Let fDRE =
argmingeF SUPg ey ( py) Regretg(f) be the WDRO-MRO estimator.  Define the debiased

estimator fqep = fprE + by, where by = O(1/N) is a bias correction term scaled by modalit
weights ay, through the variance 02 = Y, aio7. Under[Assumption 2.2/and [2.3|and [Proposition 2.1}
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as N — o0, E[faes] — fo, where fo = arg min e F SUPge g, (p,) Regreto(f) is the population
minimax regret minimizer.

3.4 REGULARIZATION AND ROBUSTNESS PROPERTIES

This subsection interprets WDRO-MRO as a regularization mechanism and quantifies its robustness in
multimodal settings. As the ambiguity radius increases, the solution becomes more conservative with
respect to modality-specific shifts, while as the radius vanishes WDRO-MRO converges continuously
to ERM.

In addition to Assumptions [2.TH2.3] we make the following standing assumptions for the regulariza-
tion equivalences.

Assumption 3.1 (Geometry and tails for regularization). Let Z = Z; x --- X Zx be a product Polish
space and let the multimodal cost be ¢(z, z") = Eszl agllzx — 2 ||b, with ap > 0and p € [1, 00).

(i) (Loss regularity) The loss ¢(z,v) is convex in v and L-Lipschitz in v on the prediction range
(Assumption; for the p > 1 variants we additionally assume that ¢(z, -) is differentiable
with Lipschitz gradient in v on bounded sets.

(il) (Multimodal separabilitry) The model class is modality-separable in the sense that f(z) =
25:1 fr(zx) for f € F, and each component f;, belongs to a convex class Fy.

(iii) (Finite variation / smoothness) For p = 1 we assume that each f; has bounded total variation
on Zy, so that TV (f) < co. For p > 1 we assume that each f, lies in a Sobolev-type ball
with finite gradient (or higher-order) seminorm, ensuring that the corresponding conjugate
penalty is finite.

(iv) (Tail / moment condition) The data distribution has finite p-th moments in each modality:
E| 25:1 agl| Z, Hg] < 00, or, equivalently for our purposes, the empirical support lies in a
bounded set with respect to c(-, -).

These conditions ensure that the Kantorovich dual representation is well defined, the inner suprema
in the dual problems are finite, and the Fenchel-conjugate-based regularizers (total variation or
Sobolev-type) are proper and lower semicontinuous.

Lemma 3.6 (Variational Regularization Equivalence). Under Assumptions 2.TH3.1} the WDRO-
MRO problem inf ;¢ 7 SUD ey, (Py) Regretq (f) is equivalent to the variation regularized problem
infrerEp [U(z, f(2))] + v Var(f), where Var(f) = Eszl oy, TV (fr) is the multimodal total

variation regularizer, TV(f%) is the total variation norm for modality k, and v > 0 depends on p
and the Lipschitz modulus of /.

Proof sketch. Under Assumptions [2.1H3.1} the inner Wasserstein-robust risk admits the Kan-
torovich dual representation (Proposition : SUD ., (@, Py ) <p EQ [l(z, f(2))] = infr>0 {)\p +

Ep, [sup,. {¢(z', () = Ac(z,2")}] } For p = 1 and an L-Lipschitz loss, the inner supremum
can be rewritten via the Fenchel conjugate of ¢ evaluated at dual vectors whose norm is controlled by
the unit ball of the dual transport cost (e.g.[Azizian et al] 2023} [Gao et al.| 2024). Because the cost is
additive across modalities, ¢(z, 2") = >, apdi (2, 2;,), the dual constraint decomposes by modality
and yields a sum of total-variation seminorms TV (f% ), each weighted by «vx.. The resulting objective
has the formE 5 [€(z, f(2))]+~ Zle ar TV (f), with v proportional to the optimal dual variable
A* and the radius p. Applying the same argument to the regret baseline term (the infimum over f)
gives the stated equivalence between the WDRO-MRO problem and a variation-regularized ERM
problem. A detailed derivation is provided in Appendix [T} O

Lemma 3.7 (Multimodal Lipschitz Regularization Equivalence). Under Assumption [3.I] con-
sider the WDRO-MRO problem for classification losses /(y,w'x) (e.g., logistic: £(y,v) =
log(1 + exp(—ywv))) that are convex and L-Lipschitz in v, with multimodal linear fusion model
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fz) = w'z = YK w2, where z = (21,...,2x) € Z1 X --- X Zg. The transporta-
tion cost is ¢(z,2") = Zszl akllzx — 2|5 with ag; > 0. Then, the WDRO-MRO problem
infy, upgey (py) [EQll(y, w' )] — inf, Eq[é(y, (w') "x)]] is equivalent to the regularized em-
pirical risk minimization min,, Ep_[¢(y, w'x)] + v|[w|«, where v > 0 depends on p and the
Lipschitz modulus of ¢, and [w|[. = supy,, <1 w ' u is the dual norm weighted by modalities:

specifically, ||w]|. = infg, 0,5, ge=1 Zszl lwella igh g = p/(p — 1) (Holder dual), ensuring

akf
modality-specific robustness modulated by c. o

Lemma 3.8 (Convergence to Multimodal ERM). Under[Assumption 2.2|and[2.3]and [Proposition 2.1] as
the ambiguity radius p — 0, the WDRO-MRO problem inf e 7 sup, cu, (Py) Regretq (f) converges

to the multimodal empirical risk minimization (ERM) inf e » E_[€(z, f(2))], ensuring graceful

degradation: the solution fp approaches the ERM solution fERM continuously in the sup-norm on F,
with the rate modulated by modality weights oy, through the sensitivity OR/9p C [0, \*], where \*
scales with ), a.

4  APPLICATIONS AND EXPERIMENTS

4.1 APPLICATION: WDRO-MRO FOR LOGISTIC REGRESSION

We illustrate the framework on logistic regression. Throughout, y € {£1} and ¢(y,v) = log(1 +
exp(—yv)), which is 1-Lipschitz in v and convex. Let x = (z1, ...,z ) be multimodal features
and w = (wy,...,wr) the linear classifier so that f(z) = w'z. The transportation cost is

c,a’) = 1, agl|zy — o} |2 as in Definition[4. 1]
Definition 4.1 (WDRO-MRO for logistic regression). The WDRO-MRO objective reads

min,,cga SUP ey, (Py) { RQ(w) —inf,cpa RQ(w’) }7 RQ(w) =Eq [E(y, ngc)]

A. Strong-dual envelopes and tractable reformulations. ~Specializing Section [3.2.T]to the logistic
loss (¢ convex, L=1-Lipschitz) and affine f(z’) = w2/, we obtain the per-sample dual envelopes

si(w,\) = sup, {é(yi,wTa:’) — /\c(a%i,ac’)},s;(w’,)\) = sup,. {é(yi,w’Ta:’) — /\c(i"i,x’)},
which instantiate the canonical objective in Eq. (Section [3.2.T).
Proposition 4.1 (Envelopes for logistic; tractable per p). Under Assumptions and f(2') =
T,/
w' '
(i) p = 1 (LP via Lipschitz). Using the L=1 Lipschitz bound from Lemma the envelope
admits an LP representation with auxiliary variables t;; > 0: s, > £(y,, wT:fci) +

Ay ok Y0 tingy @ = Bikgl < targ.

(i) p = 2 (SDP/SOCP via conjugate). By Lemma using the convex conjugate of £ and c* ()
forp=2, s; > infucr O*(yi,u) + A r, (ﬁ luwi||3 + uw,j:%i,k), which yields
an SDP; if blocks are diagonal it reduces to SOCP (rotated cones).

(ili) 2 < p < oo (power/exp. cones). By Lemma|B.3] the envelope is representable via a convex
program over power cones (rational p) or exponential cones (irrational p).

(iv) p = oo (LP/SDP via vertex dual). Using Lemma we obtain an LP/SDP through
polyhedral/vertex constraints of the box uncertainty region.

In all cases the WDRO-MRO objective with these envelopes is a finite-dimensional convex program
with zero duality gap.

B. Regularized ERM view (upper bound, implementable). For p=2 and logistic loss, the
envelope in[4.1[ii) implies a tight implementable upper bound that yields a group-norm penalty.

Corollary 4.1 (Group-norm regularization upper bound, p=2). Let y € {£1} and ¢(y,-) be 1-
Lipschitz. For c(z,2') = Y, ag|lzg—z} |3 SUPgey (py) l@(w) < LS (s, wTd) +
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P Zszl % Consequently, min,, suerup(pN)RQ(w) < min, &+ Zf\;l Oy, w'd;) +
vy Zle %, with ~ proportional to p (the constant depends on the chosen conjugate calibration).
Thus WDRO induces a modality-weighted group-lasso penalty.

Remark 4.1. The bound in Corollary [.1]is exact for several Lipschitz losses and serves as a tight

surrogate for logistic; it is useful for large-scale training and matches the intuition that larger oy
(more trusted modality) yields weaker shrinkage on wy.

C. Oracle-free dual-game solver (specialized to logistic regression) is provided in

4.2 EXPERIMENTAL EVALUATION

We next evaluate WDRO-MRO on the real world HANCOCK dataset (Dorrich et al.| [2025]), which
contains multimodal records from 763 head and neck cancer patients (2005-2019).

4.2.1 EXPERIMENTAL SETUP

Dataset and Preprocessing. This paper uses five modalities of HANCOCK in experiments, and the
details can be found in We simulate robustness stress tests by injecting noise into both
labels and features. Specifically, we consider noise rates p € {0.0,0.1,0.2,0.3,0.4,0.5}, applied
as label noise, where a fraction p of labels is randomly flipped, and feature noise, where Gaussian
perturbations are injected at the group level, targeting one or more modalities. To address class
imbalance, we apply SMOTE oversampling after noise injection. Each experiment is repeated with 5
random seeds. Baselines. We compare WDRO-MRO against three baselines: ERM (Logistic/MLP)
- Empirical Risk Minimization with logistic regression or a multilayer perceptron, and WDRO -
Standard DRO with Wasserstein distance.

Evaluation Metrics. We group evaluation metrics into three categories: (A) Performance metrics,
which measure the overall predictive accuracy (e.g., Average AUC); (B) Robustness metrics (Sagawa
et al.,2020; |[Koh et al., 2021), such as Robust AUC (min,, AUC(p)), RR-AUC (Relative Robustness

AUC, %%), and Worst-Case Drop (max, AUC(p) — Robust AUC)); and (C) Fairness met-
a Xp

rics, such as GNR (Group-Noise Robustness, ming ,{AUC(p)}), GF Gap (Group-Fairness Gap,
maxy AUC, — ming, AUC,). Detailed definitions of all metrics are provided in [Table 4

4.2.2 RESULTS

Table 2: WDRO-MRO shows strong performance, robustness and fairness on HANCOCK dataset.
Best values (per split, per column) are in bold, with detailed visualizations provided in [Figures 4to

Model Split Performance Robustness Fairness Stability
Avg T AUC £ Std | Robust AUCT RR-AUCT W.C.Dropl GNR?T GFGap| NSDrop| |NS Slopel/
ERM ID 0.635 +0.105 0.528 0.670 0.259 0.712 0.034 0.259 -0.526
(Logistic) 00D 0.613 +£0.095 0.477 0.654 0.253 0.662 0.047 0.253 -0.463
Oropharynx 0.586 +0.080 0.470 0.707 0.195 0.620 0.016 0.195 -0.383
ERM ID 0.602 +0.090 0.509 0.687 0.232 0.674 0.030 0.232 -0.433
(MLP) OOD 0.564 +0.075 0.494 0.775 0.144 0.604 0.032 0.144 -0.296
Oropharynx 0.565 +0.079 0.463 0.723 0.178 0.613 0.017 0.178 -0.341
1D 0.633 +0.062 0.537 0.776 0.155 0.675 0.004 0.155 -0.289
GDRO 00D 0.599 +0.086 0.448 0.686 0.205 0.644 0.002 0.205 -0.376
Oropharynx 0.615 +0.086 0.505 0.738 0.179 0.677 0.003 0.179 -0.371
ID 0.578 +0.063 0.515 0.780 0.145 0.593 0.055 0.145 -0.280
WDRO 00D 0.554 +0.046 0.497 0.847 0.090 0.559 0.025 0.085 -0.173
Oropharynx 0.556 +0.043 0.494 0.822 0.107 0.569 0.010 0.096 -0.187
wbowio [, gsiobE aee oms s o e ome
(outs) . . . . . X . . -0.
Oropharynx 0.681 +0.023 0.655 0.929 0.050 0.697 0.002 0.050 -0.111

Takeaway. Across the aggregated evaluation results over random seeds and noise rates in
WDRO-MRO outperforms ERM, standard WDRO and group DRO(Figure T)). It achieves the highest
average AUC with lower variance, improves robustness metrics (higher robust AUC and RR-AUC,
smaller worst-case drop), and yields near-zero group fairness gap. These results demonstrate that
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Figure 1: Boxplot of AUC across 3 data splits and 5 random seeds on the HANCOCK dataset.
While LR achieves the highest AUC at p = 0.0, its performance degrades under noise. In contrast,
WDRO_MRO maintains higher and more stable AUC distributions across noisy settings.

WDRO-MRO improves in performance, robustness, and fairness, whereas WDRO trades accuracy
for conservativeness and ERM remains vulnerable to distribution shifts.

5 CONCLUSION AND FUTURE WORK

This paper introduces WDRO-MRO, a framework that unifies Wasserstein distributional robustness
with minimax regret minimization to address multimodal learning under heterogeneous distributional
shifts. By focusing on worst-case regret relative to the oracle predictor, WDRO-MRO provides
a decision-centric notion of robustness that naturally connects performance and fairness within a
tractable optimization framework. Theory. We establish a comprehensive foundation: worst-case
distributions exist, minimax regret solutions are unique under strictly convex losses, and the objective
is convex with strong duality. We further provide tractable reformulations (LP, SOCP, SDP, and
power-cone programs) across a range of loss functions and p-Wasserstein norms, and design a dual-
game solver (Alg.[I) that couples strong-dual reformulations with an exponentiated-weights adversary
update, yielding an oracle-free, no-regret saddle-point scheme. These are supported by convergence
guarantees, sensitivity analyses with respect to ambiguity radii and modality weights, and statistical
guarantees including consistency, finite-sample bounds, and O(N -1/ 2) convergence rates. Practice.
On the HANCOCK multimodal dataset, WDRO-MRO demonstrates the strongest robustness to label
noise with higher median AUC and lower variability across seeds and noise rates, and consistently
outperforms both baselines on the Oropharynx split. Outlook. Future research directions include: (i)
developing scalable stochastic and distributed solvers for large-scale multimodal data, (ii) extending
the framework to nonconvex deep fusion models with approximate regret guarantees, (iii) exploring
integration with generative and retrieval-augmented systems, and (iv) learning modality weights in a
bilevel fashion to better trade off robustness and utility. Together, these directions point toward more
reliable and interpretable multimodal Al systems built on minimax regret principles.

10
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6 ETHICS STATEMENT AND REPRODUCIBILITY STATEMENT

6.1 ETHICS STATEMENT

This study uses only de-identified, publicly released data from the HANCOCK dataset. The original
data collection was approved by the local ethics committee. The HANCOCK article reports that
informed consent was waived because the data are retrospective, and it details the de-identification
steps applied to clinical tables, blood measurements, pathology metadata, and surgery reports. We
did not access any identifiable information, and we did not attempt re-identification.

6.2 REPRODUCIBILITY STATEMENT

We provide code, data processing pipelines, experimental settings, and theoretical derivations to
ensure reproducibility: Code and configurations. All model training and evaluation scripts are sub-
mitted into supplementary materials together with environment files (env.yml). Scripts to regenerate
every table and figure in the manuscript from raw logs are included. Data access and randomness.
Our experiments are based on the publicly available HANCOCK dataset. All experiments are repeated
with five random seeds. Proofs. Full derivations of the objectives and convex reformulations are
provided in the [Appendices E]to[l] together with convergence analysis of the dual-game solver. These
materials enable reproduction of our results and validation of the theoretical components.
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A NOTATION

Table 3: Summary of main notation used in the paper.

Symbol Description

N Number of training samples

z=(x,y) € Z Multimodal data point (features x and label )

Py = + vazl 0z, Empirical distribution

Py Ground-truth data distribution on Z

K Number of modalities

x=(21,...,TK) Multimodal feature vector

F,, Linear map for modality m in affine model f(z) = Zﬁzl Frozm+g
g Bias vector in the affine model f

y € {£1} Binary label in the logistic example

di(+, ) Ground metric on modality & in the cost ¢(z, 2”)

c(z,2') = Zszl ardi(zx, 2,)  Multimodal transport cost

W, (P, Q) Order-p Wasserstein distance between P and @)

U,(Py) Wasserstein ambiguity set centered at Py

P Radius of the Wasserstein ambiguity set

A([N]) Probability simplex {w € RY : Zi\il w; =1}

wy € A([N]) Nature weights at iteration ¢ in the dual game

A Dual variable for the Wasserstein radius constraint

Amax Upper bound for A in the projection Iljg y . ]

o} Variance proxy (second-moment bound) for modality &

0? = Zle aioi Aggregate variance proxy in the generalization bounds

L, Lipschitz constant of the loss in its prediction argument
feF Predictor (e.g., multimodal fusion network)

0z, f(2)) Loss of predictor f at sample z

Ro(f) =Eqll(z, f(2))] Risk of f under distribution @

Regretq (f) Regret Rg(f) —inf e Ro(f')

o(f) WDRO-MRO objective ¢(f) = SUPgep, (py) Regretg fH
si(f,\) Dual envelope for sample 2;: s;(f, \) = sup,, £(Z;, f(2')) — (34, 27)
T Number of iterations in the dual-game solver

7, M Step sizes for nature and radius-dual updates

B TRACTABLE REFORMULATIONS FOR GENERAL p

General Convex Loss: £(z,v) proper, Ls.c., bounded in [0, M], L-Lipschitz in v.

Lemma B.1 (p = 1). With ¢(z,2') = Zi:l am||Zm — 20, ]]1, the canonical objective is subject
to SDP (or LP) constraints: s; > inf, cpaim) £*(2;, u) + Ac*(2;, —u/\). For L-Lipschitz ¢, this
reduces to linear constraints s; > £(2;, f(2;)) + LAc(;, 7).

Lemma B.2 (p = 2). Withe(z,2') = 25:1 Q|| Zm — 25, ||3, the canonical objective is subject to
SDP constraints: s; > inf, cgaim) £*(Z;, u) + Ac*(Z;, —u/\), where £*(z,u) is representable via
the S-lemma, and ¢*(z,u) = 3=, o~ lumll3 + up2m.

Lemma B.3 (2 < p < 00). With ¢(z,2') = Zi:l Qml|Zm — 2,5, the canonical objective is

subject to convex program constraints: s; > inf, cpaim) €*(2;, u) + Ac*(2;, —u/\), where ¢*(z, u)
is representable via power cones (rational p) or exponential cones (irrational p).

Lemma B4 (p = 00). With ¢(z,2') = 31 _; @tml|2m — #py |, the canonical objective is subject to
LP/SDP constraints: s; > infueRd,mm 0 (21, u) + Ac*(Z;, —u/\), where £*(z, u) is polyhedral for
polyhedral support, and ¢*(z,u) = Y, u,}, 2, under 1 bounds.

Piecewise Linear Loss: /(z,v) = maxy—1,._s(a} v + b).
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LemmaB.5 (p = 1). With c(z,2") = Y | & ll2m — 2|1, the canonical objective is subject to
. . K dim(Z,
linear constraints: s; > a} f(2')+bx—A> . _; Zjlzni( ) Qmtikmgs  tikmg 2 |Zim.g—2m

foralli=1,...,N,k=1,...,J,m=1,...,K,j=1,...,dim(Z,,). This yields a LP.

Lemma B.6 (p = 2). With¢(z,2') = Zi:l Qml|zm — 25, ||3, the canonical objective is subject to
SOCP constraints: 5; > af g+ by — A Yy amllZiml3 + Xom_y o) Finll3 + af 2, for
alli=1,...,N,k=1,...,J. This yields a SOCP.

Lemma B.7 (2 < p < o0). With ¢(z,2') = 25:1 Qm||Zm — 2, |5, the canonical objective is

subject to power cone constraints: s; > aj f(2') + by — )\Zﬁzl amtikms  N2im — 2y <
tikom, tigm = 0,foralli=1,...,N,k=1,...,J,m =1,...,K. This yields a convex
program over power cones.

Lemma B.8 (p = o0). With ¢(z,2") = 25:1 am||Zm — 25, ||, the canonical objective is
subject to vertex-enumeration constraints: s; > max,/cy [a;f(z') erk}, Vv ={s ¢ Z:

S mllZim — 2 lleo < p/A}, foralli=1,...,N,k=1,...,J. This yields a LP.

Quadratic Loss: £(z,v) = v Qv+ q v + qo, Q = 0.

LemmaB.9 (p = 1). With c(z,2") = Y0 @ l2m — 2|1, the canonical objective is subject to

SDP constraints: | 1 @ %(f(zl) +a) > 0,forall? =1,..., N. For diagonal
s(f(2')+ Q)" si—qo+Ae(3,2)) T Y

Q, this reduces to SOCP constraints.

Lemma  B.10  (p = 2).  With  ¢(z,2) - S amllzm —
2! 1|3, the canonical objective is subject to SDP constraints:
K 5
K M T % Zme anL(FmZim[L(_ &) = 0, for
%(Zm:l am(Fméi,m - f(z/))) S; —qo — qTf(Z,) - A Zm:l O‘m”ZA'i,MHg

alli =1,..., N. For diagonal @, this reduces to SOCP constraints.

Lemma B.11 (2 < p < o0). With ¢(z,2') = Zﬁ:l @m||Zm — 2|, the canonical objective

is subject to convex constraints: s; > inf, cpaime) £*(2;, ) + Ac*(2;, —u/A), where £*(z,u) is
representable via quadratic relaxation, and ¢*(z, u) via power or exponential cones depending on p.

Lemma B.12  (p = o00).  With  ¢(z,2') = Zi:l am|zm  —
2l lsos the canonical objective is subject to SDP constraints:
A % ZK_l Oém(Fméi m f(zl))
1/ K . AT i K . = 0, for
§(Zm:1 am(FmZi,m_f(z ))) Si—dqo — ¢ f(z)_)‘zm:1 am”Zi,mHOO

all 2’ € V, where V is the vertex set of the box uncertainty region.
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C ORACLE-FREE DUAL-GAME SOLVER (SPECIALIZED TO LOGISTIC)

Algorithm 2 WDRO-MRO Dual-Game Solver for Logistic Regression

Require: samples {(%;, yi)}fil, radius p, stepsizes 7, 1), projection bound Ay, ,x
1: Initialize nature weights 71 (i) < 1/N, dual radius A\; > 0, predictors wy, w} € R?
2: fort=1,2,...,Tdo

3: Dual envelopes (common )\;): for each 7, compute
SZZ‘ = si(wtv)\t)a S{L't = Si(w1/§7>\t)7

via the tractable LP/SDP/SOCP reformulations in Prop. .|

4: Nature update (no-regret): let A; < s’ — s/' (optionally mean-centered)
: (1) exp(n Ay
(i) o mewa)
> j=1 me(j) exp(n A;)
5: Learner / Oracle best-responses (same \;):
N

Wiy € argfé%ld Ap + ;ﬂ-t-‘rl(i) si(w, Ar),
N
Wiy € argwffleilgd Aep + ;Ftﬂ(i) si(w', \r) -
6: Radius dual update: .

At41 H[O,)\max]<)\t +m(p— ﬁt))»

where p; is the empirical dual subgradient (e.g., the average transport cost returned by the
dual-envelope subproblems at (wyy1, A)).
7: end for
. _ 1 T
8: Output: averaged predictor w = £ >, _; wy

D RELATED WORK

D.1 MULTIMODAL MACHINE LEARNING AND ROBUSTNESS CONSIDERATION

Multimodal machine learning (MML) investigates methods for learning from data that are represented
in different modialities, such as images, text, audio (Yuan et al., [2025). Precision oncology is a
particularly suitable application domain for MML, as patient data include medical images, radiological
scans, multi-omics, and treatment histories (Zhou et al.,[2024). Given that multimodal data are often
noisy, incomplete, and imbalanced (Zhang et al., 2024b), ERM is not sufficient to handle the
associated challenges.

Robust Multimodal Learning. |Qiu et al.[(2022) evaluates the robustness of multimodal image—text
models via 17 image perturbation and 16 text perturbation techniques. Among these, the character-
level perturbation is the most effective for text, while zoom blur is the most effective for images.
Yang et al.[(2023) address robustness in multimodal finetuning by introducing four auxiliary losses-
contrastive image and language losses, together with spurious-aware image and language losses-that
use cross-moal signals to reduce reliance on spurious correlations. To mitigate bias in vision-
language models, such as classifying “ants” with a “flower” background as “bees”, |[Kim et al.| (2024)
propose the Bias-to-Text (B2T) framework. B2T extracts keywords from captions of misclassified
images to interpret visual biases, and then assigns sample-wise bias labels. These inferred bias
are incorporated into debiased training using a group DRO objective. [Shuai et al.| (2025) propose
federated distributionally robust alignment framework to address client heterogeneity in medical data.
They build a distribution family over client datasets and apply a DRO min-max objective to optimize
the worst-case alignment risk.
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To jointly handle multimodal and decision-dependent uncertainty, 'Yu & Basciftci| (2024) propose a
two-stage DRO framework in which the first stage chooses “here-and-now” decisions (e.g., which
facilities to open) that are allowed to shift both the mixture weights (mode probabilities) and the
per-mode distributions of future uncertainty. In the second stage, after the uncertain parameters (e.g.,
customer demand) are revealed, recourse actions are taken (e.g., determining how much demand to
serve from each open facility) to minimize the resulting cost. They introduce a decision-dependent
multimodal ambiguity set and use strong duality together with McCormick linearization to derive
MILP/MISOCP reformulations that can be solved by existing solvers. These challenges motivate
robust optimization frameworks like WDRO-MRO, which address modality-specific distributional
shifts to ensure reliable performance.

D.2 DISTRIBUTIONALLY ROBUST OPTIMIZATION

The pioneering work in distributionally robust optimization was introduced by |Scarf] (1958)) in the
newsvendor problem with an unknown exact demand distribution. The proposed min-max decision
rule maximizes the expected profit under the worst-case distribution. For minimizing the worse-
case risk, Namkoong & Duchi| (2016) proposed the stochastic gradient in f-divergence DRO to
improve efficiency. Based on the DRO idea, [Shafieezadeh-Abadeh et al.| (2019) proposed new
regularization techniques using the Wasserstein distance and provided probabilistic interpretations of
existing regularization methods. A tutorial on the theory and applications of Wasserstein-DRO in
machine learning can be found in |Kuhn et al.|(2019). Motivated by the limitations of ¢-divergence
ball fails to contain the true data distribution, while Wasserstein balls scale poorly with dimension,
Staib & Jegelkal (2019) introduced DRO based on the Maximum Mean Discrepancy (MMD). They
proved that MMD-DRO is equivalent, up to small constants, to regularizing the empirical risk by
the reproducing kernel Hilbert space norm of the loss function rather than the model itself. Since
¢-divergence measures only the relative probabilistic density ratio at identical support points, it
ignores the metric between outcomes in the underlying metric space; consequently, it may exclude
realistic distributions or include implausibly extreme ones, as illustrate in Example 1 (in |Gao &
Kleywegt| (2023))). To overcome this limitation, |Gao & Kleywegt| (2023) use the Wasserstein distance
to define the ambiguity set in distributionally robust stochastic optimization (DRSO) and derive
the strong duality. [Wu et al.| (2023) use DRO to understand contrastive learning is equivalent to
performing DRO over the negative-sample distribution, minizing the worst-case expected loss within
a KL-divergence ball around the empirical distribution. The temperature parameter is not a heuristic
constant but is the Lagrange multiplier that explicitly controls the radius of the uncertainty set.
While DRO minimizes worst-case risk, it could be too conservative (Agarwal & Zhang| 2022)); this
motivates a shift to minimax regret optimization (MRO), which targets worst-case regret under the
distributional uncertainty. WDRO-MRO overcomes this by minimizing worst-case regret, offering a
less conservative, decision-centric approach for multimodal settings.

D.3 MINIMAX REGRET OPTIMIZATION

Given that the risk is sensitive to heterogeneous noise, |Agarwal & Zhang| (2022) propose minimax
regret optimization (MRO) using weight-based formulations to address distribution shift. This MRO
formulation is less conservative than standard DRO, since it avoids overweighting distributions
with intrinsically higher noise levels. However, a limitation of MRO is its computational demands:
the empirical objective requires repeatedly solving inner ERM problems, which is impractical in
large-scale settings. To address the computational bottleneck, [Zhang et al.| (2024a) present an
efficient stochastic approximation of MRO via stochastic mirror descent with biased but controlled
gradient estimates, which achieves near-optimal convergence rates. Beyond first-order methods, |Gu
& Xu|(2024) develop zeroth-order stochastic mirror descent algorithms that rely solely on function
evaluations. They prove O(1/+/t) convergence rate as well as O(1/+/t) optimization error. The
minimax regret principle has been applied to causal inference with heterogeneous treatment effects.
Zhang et al.|(2024c) study the problem of aggregating conditional average treatment effect (CATE)
estimates across multiple sites. Under assumptions that target-population CATEs lie in the convex
hull of site-specific CATEs and that target covariate distributions are identifiable, the authors derive a
closed-form minimax regret estimator. This estimator corresponds to a weighted average of site-level
CATEs, with weights depending only on within-site estimates, thereby enabling robust generalization
to unseen target populations without requiring individual-level data sharing. To minimize ex-ante

17



Under review as a conference paper at ICLR 2026

expected regret under distributional uncertainty, [Fiechtner & Blanchet (2025) presents the Wasserstein
distributionally robust regret optimization (DRRO). They prove that under smoothness and regularity
conditions, the DRRO solution is consistent with ERM up to first-order terms, and exactly matches
ERM for convex quadratic losses. For the classical newsvendor problem, regret has a closed-form
characterization via maximizing two one-dimensional concave functions. For general max-affine
losses, they show that regret evaluation is NP-hard and propose a convex relaxation with a provably
tighter bound on the optimality gap.

E PROOFS OF SECTION[2]

E.1 PROOF OF PROPOSITION[2.]]

Proof sketch. By the Interchangeability Principle on Polish spaces, the supremum moves inside the
expectation even under mild semicontinuity; see |Kuhn et al.[ (2025, Lemma 4.16). O

F PROOFS OF SECTION [3. T BASIC OPTIMIZATION PROPERTIES)

F.1 PROOF OF PROPOSITION mEXISTENCE OF WORST-CASE DISTRIBUTION)

Proof. We establish existence by leveraging the compactness of the ambiguity set and continuity
properties, then characterize via duality.

Existence. The ambiguity set U, (Py) is compact in the weak topology o (M (Z), Cy(Z)) (Villani

et al., 2008), as it is closed (by lower semicontinuity of c) and tight (finite support of Py implies
Prohorov’s theorem applies) (Billingsleyl 2013).

For fixed f, Regretq (f) = Eq[l(2, f(2))] — infpcr Eqll(z, f'(2))]. Define £;(2) := £(z, f(2))
and {(z) = inf e 7 €(z, f'(2)). By Assumption|2.2} £;(z) is continuous and bounded; by Assump-

tion [2.3|(compactness) and IP (Assumption , £(z) is weakly continuous in () (Mohajerin Esfahani
& Kuhn, 2018). Thus, Regret(f) is weakly continuous in Q.

By Berge’s maximum theorem (Bergel |1877), as Z/{p(PN) is compact and RegretQ( f) continuous,
the supremum is attained.

Characterization. By Kantorovich-Rubinstein duality for multimodal costs (extended via separabil-
ity: ¢(z,2") = >, ardi(zk, 2;,)) (Zhang et al., 2025; Mohajerin Esfahani & Kuhn, 2018), under
Assumption [2.1] (convexity, Isc of costs) and IP,

sup  Eglls(2)] = inf Ap+ EPY |sup Lp(2") — Ae(2,2))
QGZ/{p(pN) A>0 2

The dual attains at \*, yielding optimal transport plan 7* minimizing transport cost for mass from

Py to Q*, with 7*(2, 2’) > 0 only if 2’ maximizes £;(2') — A*¢(2, /).

Similarly for the infimum term. The regret supremum is attained at Q* induced by 7* respecting

weighted o dj (modality-specific metrics) [ Kuhn et al.|(2019). Then existence of @Q* follows from
compactness and continuity. O

F.2  PROOF OF PROPOSITION 3.2 CONVEXITY OF THE PROBLEM)

Proof. We establish convexity and strong convexity leveraging the additive structure from modalities
and the convexity of the ambiguity set.

Convexity. For fixed Q € U,(Py), consider Ro(f) = Egl¢(z, f(2))]. By Assumption , 0(z,v)
is convex in v, and additive across modalities: £(z,v) = ), i (2, v) with each ¢}, convex. As f(z)
is affine in f (linear composition), and expectation preserves convexity Rahimian & Mehrotral (2022)),
Rg(f)is convex in f.

The regret Regret (f) = Rq(f) — infpexr Ro(f’) is convex in f, since the infimum term is
constant for fixed Q.
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The ambiguity set UP(PN) is convex |[Kuhn et al.| (2019)), as the Wasserstein ball is convex under
convex transportation cost ¢(z, z') (Assumption . The pointwise supremum over a convex set
preserves convexity (Rockafellar,|1970), so ¢(f) = supg, Regretq (f) is convex in f.

Strong Convexity. Assume ¢(z,v) is strongly convex in v with modulus x > 0. Then, each
modality-specific £y (zx, v) is strongly convex, implying overall strong convexity of ¢. Thus, Rq(f)
is strongly convex in f with modulus x (strong convexity preserved under affine composition and
expectation) (Rahimian & Mehrotral 2022).

Regretq (f) inherits strong convexity, as the subtracted term is constant. The supremum over Q
preserves strong convexity (Zhang et al., 2025), yielding ¢(f) strongly convex in f. O

F.3 PROOF OF PROPOSITION [3.3(EXISTENCE AND UNIQUENESS OF SOLUTIONS)

Proof. We proceed in two main steps: first, establish existence by proving lower semicontinuity of
the objective on a compact domain; second, prove uniqueness via strict convexity.

Existence. By Assumption [2.3] F is convex and compact in the sup-norm topology (uniform
topology) on C(Z), the space of continuous functions on Z (Kuhn et al.,[2019). It suffices to show ¢
is lower semicontinuous on JF; then, by Weierstrass’ theorem (Rockafellar, |1970), the minimum is
attained.

By Proposition for each f, SUD G v, (Pr) Regret, (f) is attained, ensuring ¢( f) is well-defined
as a maximum (not just supremum).

By Proposition @(f) is convex, and thus continuous on the interior of F. Lower semicontinuity
on the boundary follows from the compactness of U, ( Py) and weak* continuity of Regrety(f)in Q
(as established in Propositionproof), combined with joint continuity in (f, @) under boundedness
(Assumption [2.2).

Uniqueness. Assume /(z, v) strictly convex in v. Then, by Proposition[3.2] ¢(f) is strictly convex
on F, yielding a unique minimizer (Gao et al.,[2024). O

F.4 PROOF OF PROPOSITION [3.4[ STRONG DUALITY)

Proof. By Proposition [3.3] the primal WDRO-MRO attains its infimum, ensuring the problem is
well-posed for duality analysis.

We establish strong duality in the following steps: first, duality for the risk maximization under a fixed
predictor; second, duality for the inner minimization over predictors; third, minimax interchange to
form the dual regret formulation; and finally, finite-dimensionality and multimodal extension.

Duality for the risk term under fixed f. For fixed f € F, the risk term is R (f) = Eq[l(z, f(2))].
Define /;(z) := £(z, f(z)), which is convex in z by Assumption [2.2|(as £(z,v) is convex in v and
f(2) is affine in z under multimodal fusion). By the generalized Kantorovich-Rubinstein duality
for separable costs c(z,2") = >, ardi(2k, 2;,) (Where dj, are metrics on Z;,), which holds under
Assumption 2.1](convex, non-negative, lower semicontinuous, modality-additive) and Assumption [2.1]
(ensuring measurability and interchange), we have

sup  Eglls(2)] = inf \p +EY | sup (¢4(2') — Ae(2,2)) ],
QeU, (P) 20 Zez

with zero duality gap (see (Zhang et al., [2025 Theorem 1) for general costs and IP ensuring strong

duality; the multimodal separability follows from additive convexity in Assumption and cost

structure). By Proposition [3.1] this sup is attained at some Q*, ensuring the primal maximum equals

the dual minimum.

Duality for the oracle infimum term. The term infcr Ro(f') is infper Egll(z, f/(2))].
By Assumption [2.3] (F convex, compact), and IP (Assumption [2.I)), interchange holds:
infp Eqgll(z, f'(2))] = Eglinfy £(z, f'(2))]. Define £(z) := infpecr €(z, f'(2)), which is con-
cave in z (as infimum of convex functions in v). Applying duality similarly,

sup  inf Ro(f')= sup Egq[l(z)] = inf Np +EF~ sup (£(z") — Ne(z,2'))
Qeup(pN)fE]: QEMp(PN) >0 2EZ
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Minimax interchange for regret formulation. Thus, supg Regretq(f) = supg Ro(f) —
supg inf ¢ Rg (f). By Sion’s minimax theorem (Sion, |1958) (under compactness of F, convexity in
f from Proposition[3.2] and quasiconcavity in ) from separability and convexity), interchange yields
zero gap: inf s supg Regretq (f) = supg, infy Regret ) (f). For fixed f, the regret supremum is

)i\I;fO)\p—FEPN supl(z, f(2')) — Ae(2,2))| — 1nf )\’ +EPY sup£(2") — Nc(2,2")

2

Finite-dimensionality and multimodal extension. Finite-dimensionality follows from empirical
measure (discrete support) and dual variables A, \'. The multimodal extension holds as costs and
losses are additive across modalities, preserving separability in duality (see (Kuhn et al., 2019}
Theorem 1) for extensions to structured costs). O

G PROOFS OF SECTION [3.2 COMPUTATIONAL PROPERTIES)

G.1 PROOF OF LEMMA[B.5[(p = 1, PIECEWISE LINEAR LOSS)

Proof. By Proposition for fixed f € F, SUPQ ey, (P ) Regret (f) equals

inf o+ B [sup (U=, () = Ae(2,2)) — inf. sup (E(z, f(=")) = Ae(2,2)) |,
2'EZ freF zrez

with zero duality gap. This incorporates Sion’s minimax interchange for the inf-sup in the regret term,

justified by compactness and convexity (Assumption [2.3|and Proposition [3.2)).

We derive the LP reformulation in the following steps: first, introduction of epigraph variables for
the sup terms; second, exploitation of the piecewise linear structure and max-sup interchange; third,
analogous dualization of the inf term; fourth, linearization of the transportation cost using auxiliary
variables; and finally, assembly of the full LP and verification of its properties including convexity
and zero duality gap.

Introduction of epigraph variables for the sup terms. The sup terms attain by Proposition
(existence of worst-case (*, implying attainment in dual variables).

For the first sup term, define £;(2') := £(2, f(2)) = maxy—1_._s(a] f(2')+bs). Introduce epigraph
variables s; > 0 (one per sample Z;):

,\>;) 5;>0 Aot Zsl st 8> Zs}élggf(zl) —Ae(%;,7), Vi

This is equivalent by epigraph representation preserving convexity (Proposition see (Boyd &
Vandenberghel [2004), Section 4.2).

Exploitation of the piecewise linear structure and max-sup interchange. Substitute the piecewise
max:

$; > max sup (azf(z') + b, — Ae(Z, z’)) ,
k=1,....J yrcz

equivalent to

si > sup ag f(2') +bp — Ae(2,2), V&,
z'eZ

by max-sup interchange (continuity and finite J; (Rockafellar, [1970), Corollary 37.3.2).

Analogous dualization of the inf term. The inf term dualizes similarly, replacing f with f’ and
using primed variables.

Linearization of the transportation cost using auxiliary variables. For each k, ¢(%;,2') =
dim(Z,,) ~
Zm 1 Z ( am\zi,m,j 2, ]\ Introduce t; j m,; > 0:

sup a;rf(z/) + by — /\C(éiv Z/) = inf ak f( ) +bp— A Z O‘mti,k,m,j

tik,m,i> ’
m,)
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S.t.
A~ ! A~ .
Likym,j 2 Ziym,j = Zmjr  Vikym,j = 2 = Zimg,  Ym, .

This linearizes the absolute values, equivalent by non- negat1v1ty and boundedness (compact Z; (Boyd
& Vandenberghe} 2004), Section 3.1.7).

Substitute: s; > a, TFE) 4 b — A > i @mtik.m.j, Vk, with t-constraints. The inf over t attains by

Slater (strict feasibility) and Proposition

The full reformulation is the stated LP. Convexity follows from linear objective/constraints and
Proposition[3.2] Zero gap holds by Proposition[3.4] with optima attained per Proposition[3.3] [

G.2 PROOF OF LEMMA [B.6(p = 2, PIECEWISE LINEAR LOSS)

Proof. By Proposition [3.4] (Section [3.1)), the regret supremum equals

sup  Regretg(f) = 1nf )\p—l—EPN sup (U(z, f(2')) — Ac(2,2")) — inf_sup (€(z, f'(2")) —

QeU,(Pn) ZEZ J'€F prez

with zero duality gap, justified by compactness and convexity (Assumption [2.3]and Proposition [3.2).

The sup terms attain by Proposition

We derive the SOCP reformulation in the following steps: introduction of epigraph variables;
computation of closed-form sup for piecewise linear loss; and representation of quadratic terms as
SOCP constraints.

Introduction of epigraph variables. Define (;(z) := £(2, f(2')) = maxj—1,.._s(a] f(2') + bg).
Introduce epigraph variables s; € R, with dual variable A > 0:

f)\— i s.t.os; > Ce(2) — A3, 2 .
LA F s g A,

This is equivalent by epigraph representation preserving convexity (Proposition 3.2} see (Boyd &
Vandenberghe, [2004), Section 4.2). The inf term is analogous with primed variables (X', s}), replacing
f with f’.

Computation of closed-form sup for piecewise linear loss. The compactness of Z (Assumption[2.3))
ensures the sup is attained. For the constraint s; > sup,, £;(z") — Ae(%;, 2'), we have

s; > max sup (ag f(2') +bp — Ae(2,2)).
k=1,...J yrez

For affine f (2") = >, Fmz, + g, the affine form ensures finite suprema. Define a; f(z/) =

> b+ C» Where b = FLak, ¢ = aj g, and ¢(2;,2") = 3 aml|Zim — 2, ]l5. The

weights «, scale the quadratlc terms, reflecting heterogeneous robustness. By max-sup interchange

(continuity and finite J; (Rockafellar} [1970), Corollary 37.3.2), this becomes

siz max [sup (ZlkaerCkAzamzva;nH%)]'
=1,..., ZGZ

For each k, compute the inner sup over z/,:

SUPlkm m MmHsz _Z;n”%

m

Complete the square: let © = 2], — Z; , SO

lk,m ||lk‘7m||%

L (24 2im) — Aam||lz||2 = —Aam ||z — + 0] %,
Lt ) = Mool = Ao o — oo | 4 ZemB 4]z, ,
The supremum, attained at x = 21/’\“’0[’” ,
l;:’méiﬂn + m“lk,m\\%-
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Summing over modalities and including the constant term,

K
. 1
RESDY (llm + mnzk,mn%)] .

m=1 m

Si>

> max
k=1,...

)

/

The inf term reformulates similarly with primed variables (X', s;), replacing f with f’.

Representation of quadratic terms as SOCP constraints. Each quadratic term ﬁam lkml3 <t

is SOCP-representable via the rotated quadratic cone (see (Boyd & Vandenberghe, |2004), Section
4.42). Let u =l ym /4t SO

lull3 <t <= [I(t =1, 2u)[2 <t + 1.

The infimum over auxiliary variables attains due to Slater’s condition, satisfied by the compactness of
Z (Assumption @]) Thus, the full WDRO-MRO reformulates as the stated SOCP, which is convex
due to linear objectives and conic constraints (Proposition[3.2). Strong duality holds with zero gap by
Proposition 3.4} with optima attained per Proposition 3.3] O

G.3 PROOF OF LEMMA[B.7[2 < p < 0o, PIECEWISE LINEAR LOSS)

Proof. By Proposition [3.4] (Section [3.1)), the regret supremum equals

sup  Regretg(f) = )1\r>1f0 Ap+EPY | sup (U(z, f(2") = Ac(2,2")) — inf_sup ({(z, f'(2")) —

QeUy(Py) €z T'erzrez

with zero duality gap, justified by compactness and convexity (Assumption [2.3]and Proposition [3.2).
The sup terms attain by Proposition [3.1] The compactness of Z (Assumption [2.3)) ensures finite
suprema.

We derive the power cone reformulation in the following steps: introduction of epigraph variables;
reformulation of the epigraph constraint via Fenchel-Moreau theorem; conjugate computation for the
transportation cost; representation of constraints as power cones; analogous reformulation of the inf
term; and assembly of the full program and verification of its properties.

Introduction of epigraph variables. Define (;(z) := ((2, f(2')) = maxj—1,.. s(a] f(z') + bg).
Introduce epigraph variables s; € R, with dual variable A > 0:

N
1
i —_ i t. i> N — Ai ! ).
Ag(l)ii)\p—i— E_lsl st s 7Zsllégff(z) Ac(Z,2"), Vi

This is equivalent by epigraph representation preserving convexity (Proposition 3.2} see (Boyd &

Vandenberghe, [2004), Section 4.2). The inf term is analogous with primed variables (X', s), replacing
T with [7.

2
Reformulation of the epigraph constraint via Fenchel-Moreau theorem. For affine f(z') =
> m Fmzl, + g, the affine form ensures finite suprema. The epigraph constraint is

s; > sup L(2;, (') — Ae(24, 7)),
z'eZ

with ¢(2;,2") = Zi:l @m ||2i,m— 2, ||b. By Fenchel-Moreau theorem (Rockafellar, 1970) (Theorem
12.2; applies to proper convex L.s.c. £ by Assumption[2.2)), rewrite as

suplf(2') — Ae(2:,2") = inf 02, u) + A" (Zi, —u/N),

weRdim(z)

by Fenchel inf-convolution duality (Rockafellar, [1970) (Theorem 16.4; strong duality under rel-
ative interior conditions from compactness and Assumption [2.2| boundedness), where £*(z,u) =
sup, u' v — £(z,v) and ¢*(z,u) = sup,, u' 2’ — c(z, 2').

Conjugate computation for the transportation cost. For the cost ¢(z, 2') = 25:1 amlZm— 2 |IE,
the conjugate is

K K
c*(z,u) = sup Z u;lz;n - Z m||2m — Z;an
2! m=1 m=1

22



Under review as a conference paper at ICLR 2026

For each modality m, compute

Slllpur—;zv/n — o lzm — Zv/an = sup “;(xm + 2m) — am|[@m |},

Zm T,

where x,,, = 2/, — z,,. By Holder’s inequality, the conjugate is

* . P 1 Huqu ! T
c*(z,u) = Z t1n>f0 th + + Uy 2,

p—1\a,th!

a generalized Holder conjugate ( (Rockafellar, 1970), Theorem 15.3), where ¢ = p/(p — 1). The
weights «,, scale the terms, reflecting heterogeneous robustness across modalities.

Representation of constraints as power cones. For the piecewise linear loss ¢;(z') =
maxg—1,. s(al f(2') + bx), the conjugate ¢*(z,u) = sup, u'v — maxy(a, v + by) is polyhe-
dral, representable as linear Dirac deltas. Substituting into the epigraph constraint:

K
$; > max _sup agf(z') + by — A Z U Zim — Z;n”; :
k=1,...,J yrcz m=1

Introduce auxiliary variables ¢; 1, > 0:

K
s; > ma inf  a f(2' b—)\za P
‘e k:l,..}thi k,m >0 k f( ) T Ok mYi,k,m’
w m=1
subject to
12im — Zillp < tigym, Vm.

This constraint is reformulated as a power cone {(u,t) : ||ul|, < t} via the Holder conjugate,
representable as ||(Z;,m — 20, ti km) |lg < tik,m ((Ben-Tal & Nemirovski, [2001), Section 4.3). The
infimum over ¢; i, ,, attains due to Slater’s condition, satisfied by the compactness of Z (Assump-

tion[2.3)).

Analogous reformulation of the inf term. The inf term reformulates similarly: replace f with f’ in

the power cone constraints, using primed variables (X', s}), and optimize over f' € F.
The full WDRO-MRO is the stated convex program over power cones, convex due to conic constraints
(Proposition [3.2)). Strong duality holds with zero gap by Proposition [3.4] with optima attained per

Proposition [3.3| (Section [3.2). O

G.4 PROOF OF LEMMA [B.8|(p = oo, PIECEWISE LINEAR LOSS)

Proof. By Proposition [3.4] (Section [3.1)), the regret supremum equals

sup Regret — inf \p+E | su Uz, f(2)) = Xe(2,2) = inf sup (U(z, f'(Z") = Xe(2,2") ],
o, Reg o(f) = inf A sup (£(z f() = Ac(z,2) = inf sup (U=, ['(=")) = Ae(z,2"))

with zero duality gap, justified by compactness and convexity (Assumption [2.3]and Proposition [3.2).
The sup terms attain by Proposition [3.1] The compactness of Z (Assumption [2.3)) ensures finite
suprema.

We derive the LP reformulation in the following steps: introduction of epigraph variables; refor-
mulation of the epigraph constraint via Fenchel-Moreau theorem; conjugate computation for the
transportation cost; vertex enumeration for box uncertainty set; analogous reformulation of the inf
term; and assembly of the full program and verification of its properties.

Introduction of epigraph variables. Define (;(z) := ((2, f(2')) = maxj—1,.. s(a] f(2') + bg).
Introduce epigraph variables s; € R, with dual variable A > 0:

N
1
i — ; L. i> n— AZ' ! ).
Ag(l)ii)\p—i— E_lsi st. s 7:/1;1;8}«(2) Az, 7)), Vi
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This is equivalent by epigraph representation preserving convexity (Proposition 3.2} see (Boyd &
Vandenberghe, [2004), Section 4.2). The inf term is analogous with primed variables (), s}), replacing
f with f7.

Reformulation of the epigraph constraint via Fenchel-Moreau theorem. For affine f(z') =
> m Fmzl, + g, the affine form ensures finite suprema. The epigraph constraint is

s; > sup 02, f(2) — Ae(Z4,2'),
zeZ

with ¢(2;,2') = 25:1 &ml|Zim — 70, |lco- By Fenchel-Moreau theorem (Rockafellar, [1970) (Theo-
rem 12.2; applies to proper convex Ls.c. £ by Assumption [2.2)), rewrite as

suplf(2') — Ae(2:,2") = inf 072, u) + A" (Zi, —u/N),
o ueRdim(z)

by Fenchel inf-convolution duality (Rockafellar, |1970) (Theorem 16.4; strong duality under rel-
ative interior conditions from compactness and Assumption [2.2| boundedness), where £*(z,u) =
sup, u' v — £(z,v) and ¢*(z,u) = sup,, u' 2’ — c(z, 2').

Conjugate computation for the transportation cost. For the cost ¢(z,2') = Zﬁ:l || 2m —
21 |0 the conjugate is

() = sup Zum o= anllm 2l

m=1

Since ||z — 23, [l = max; |zm,; — 27, ;
yielding

m ||Um||1 < Zm Qm,,

00 otherwise,

K . K K
c* (z,u) = {Zm:l U;;Zm if Zm:l ”um”l < Zm:l Ay

a polyhedral conjugate ( (Rockafellar, |1970), Example 11.4). The weights «,, scale the terms,
reflecting heterogeneous robustness across modalities.

Vertex enumeration for box uncertainty set. For the piecewise linear loss (¢(z') =
maxy_1,. s(al f(2') + bx), the conjugate £*(z,u) = sup, u'v — maxy(a, v + by) is polyhe-
dral. Substltutmg into the epigraph constraint:

8; > sup [ max I(ak f) +br) — A Z | 2im — 2l oo
2ez | k=

......

The W uncertainty set is a box: ¥V = {2’ € Z: Zm:l A ||Zim — 2 |loe < p/A}. Since £4(2') is
piecewise linear and V is polyhedral, the supremum is attained at the vertices of VV ( (Ben-Tal et al.,
2009), Theorem 3.1). Thus,

> T / b
Si 2 Iax max lag f(2') + k] ,

=1,...,.

yielding a finite-dimensional LP by enumerating the vertices of V. The infimum over auxiliary
variables attains due to Slater’s condition, satisfied by the compactness of Z (Assumption [2.3).

Analogous reformulation of the inf term. The inf term reformulates similarly: replace f with f in
the LP constraints, using primed variables (', s}), and optimize over f' € F.

The full WDRO-MRO is the stated LP, convex due to linear constraints (Proposition [3.2)). Strong
duality holds with zero gap by Proposition[3.4] with optima attained per Proposition [3.1](Section [3.2).
O

G.5 PROOF OF LEMMA [B.9(p = 1, QUADRATIC LOSS)

Proof. By Proposition for fixed f € F, SUPQ e, (P ) Regret (f) equals

1nf )\p—i— EPN {Sup (U(z, f(2") = Xe(2,2')) — inf sup (U(z, f'(Z")) — Ae(2,27) |,
ZE€Z f'eF ez
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with zero duality gap. This incorporates Sion’s minimax interchange for the inf-sup in the regret term,
justified by compactness and convexity (Assumption and Proposition [3.2)).

We derive the SDP (or SOCP) reformulation in the following steps: first, introduction of epigraph
variables for the sup terms; second, reformulation of the epigraph constraint via completing the
square; third, equivalence to PSD condition via Schur complement; fourth, reduction to SOCP
for diagonal cases; fifth, linearization of the transportation cost using auxiliary variables; sixth,
analogous reformulation of the inf term; and finally, assembly of the full program and verification of
its properties including convexity and zero duality gap.

Introduction of epigraph variables for the sup terms. The sup terms attain by Proposition [3.1]
(existence of worst-case Q*, implying attainment in dual variables).

For the first sup term, define £;(2') := £(2, f(')) = f(z')TQf(2') + q¢" f(2') + qo. Introduce
epigraph variables s; € R (one per sample 2;):

N

1
AZ(i)ngGR Ap+ N ; si stos; > zslté% Cp(2") — Ae(2:, 7)), Vi

This is equivalent by epigraph representation preserving convexity (Proposition see (Boyd &
Vandenberghel [2004), Section 4.2).

The inf term epigraph reformulates similarly, replacing f with f’ and using primed variables.
Reformulation of the epigraph constraint via completing the square. The epigraph constraint is
si > sup f(2')TQF(Z') + 4" f(2') + g0 — Ac(Zi, 2).

z'eZ

By compactness of Z and continuity, the sup attains. Complete the square: f(2') T Qf(z')+q" f(2')+

a0 = (f(2)+Q1q¢/2)TQ(f()+Q1q/2)—(q" Q™ 1q)/4+qo (assuming Q = 0; for semidefinite,
use pseudoinverse and range conditions; (Rockafellar, [1970), Theorem 28.3).

Equivalence to PSD condition via Schur complement. The inequality v ' Qv + ¢ v + qo < s; +
Ae(2;,2') (with v = f(2)) is equivalent to the PSD condition via Schur complement lemma (Boyd
& Vandenberghe, [2004) (Appendix A.5.5):

L0 UE D Yo
() +a)" si—qo+Ac(2i,2)) =7

since @ > 0 ensures convexity (Assumption[2.2). This holds under the affine assumption on f, as

f(2') appears linearly in the off-diagonals.

Reduction to SOCP for diagonal cases. For diagonal Q = diag(Qy;), the PSD reduces to SOCP:

si— o + Ac(2i,2') = || diag(VQ)(£(=') +4/2)ll2,

by separating quadratic terms into second-order cones {(x,t) : ||z||2 <t} ( (Boyd & Vandenberghe,
2004)), Section 4.4.2).

Linearization of the transportation cost using auxiliary variables. The ¢;-norm in ¢ can be
linearized by introducing auxiliary variables t; ,, ; > 0 (as in Lemma [B.5), yielding SDP with
additional linear constraints:

N / . ~ ’ ’ ~
c(2,2) = inf_ > mtimg St timg > Zimg — 2wy timg Z 2 — i
t'i,7n,j20 ]
,

Substitute into the Schur off-diagonal or SOCP right-hand side.

Analogous reformulation of the inf term. The inf term reformulates similarly: replace f with f” in

the SDP/SOCP constraints, using primed variables X', s, and optimize over f’ € F.

The full WDRO-MRO is the stated SDP (or SOCP for diagonal @)). Convexity follows from
semidefinite constraints preserving convexity and Proposition [3.2] Zero gap holds by Proposition[3.4}
with optima attained per Proposition O
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G.6  PROOF OF LEMMA [B.I0[p = 2, QUADRATIC LOSS)

Proof. By Proposition [3.4] (Section [3.1)), the regret supremum equals

sup  Regretg(f) = mf /\p—i—E PN | sup (U(z, f(2") = Ac(2,2")) — inf_sup (£(z, f'(2")) — Ac(2,27)) |
QEU,(Pn) ZEZ ['eF ez

with zero duality gap, justified by compactness and convexity (Assumption [2.3]and Proposition [3.2).
The sup terms attain by Proposition [3.1]

We derive the SDP reformulation in the following steps: introduction of epigraph variables; com-
putation of closed-form sup via Fenchel conjugate; and representation of constraints as SDP or
SOCP.

Introduction of epigraph variables. Define £;(2') := (2, f(2')) = f(2')TQf(2) +q" f(2') + qo.
Introduce epigraph variables s; € R, with dual variable A > 0:

N
f i L i> S " — Ai ! .
A;%ézAp—l- N;Sl st s > ;ggﬂf(z) Ae(%,2)), Vi

This is equivalent by epigraph representation preserving convexity (Proposition see (Boyd &
Vandenberghe, [2004), Section 4.2). The inf term is analogous with primed variables (X, s;), replacing
f with f’.

Computation of closed-form sup via Fenchel conjugate. The compactness of Z (Assumption
ensures the sup is attained. For the constraint s; > sup,, £7(2') — Ac(2;,2), with ¢(2;,2') =

ZTanl ml|Zim — 20, ||3, we have

K
si>sup | f(Z)TQFE) + 4" F() + a0 = A D amllZim — 213
z'ez m=1

For affine f(2') = > Fp.z, + g, the affine form ensures finite suprema. By Fenchel-Moreau
theorem (Rockafellar, [1970) (Theorem 12.2), rewrite the sup using Fenchel conjugates:

sup ls(2") — (2, 2") = i{}f( )E*(éi,u) + A" (Zi, —u/N),
2 wERdim (=

where £*(z,u) = sup, u'v — £(z,v) and ¢*(z,u) = sup,, u' 2’ — ¢(z, 2'). For the quadratic loss

{(z,v) =v"Qu + q"v + qo, assuming Q = 0, the conjugate is

C*(zu) =sup [u'v— (v Qutqv+q)| = i(u—q)TQ_l(u—Q) — o,

where Q1! is the pseudoinverse if @ is singular ( (Rockafellar,|1970), Theorem 23.5). For the cost
c(z,2") =3, mlzm — 25|13, the conjugate is

1
¢ () =sup D> 2y = > amllzm — 23 =Y llumll3 + wzm.
2 m m m am

Thus, the epigraph constraint becomes

. 1 U zlm
Sizlgfl4(u_q)TQ (u—4q) _QO+)\Z H U /A3 — Z

The inf term reformulates similarly with primed variables.

Representation of constraints as SDP or SOCP. Complete the square for the quadratic expression
in u, and apply the Schur complement lemma (Boyd & Vandenberghel 2004) (Appendix A.5.5) to
obtain the SDP constraint:

AL T % Z7Kn:1 O‘m(Fméi,m - f(zl)) .
L (Sho am(Fuzim — FG) si—a0—a  F() = AT amlziml3)
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For diagonal (Q = diag(Qy;), the constraint reduces to an SOCP:

K

= g0 — ¢ f(Z) =AY amllZiml3 = | diag(VQ)(f(Z) +a/2)]2,

m=1

representable via the Lorentz cone {(z, ) : ||z||2 < t} ((Boyd & Vandenberghe||[2004), Section 4.4.2).
The infimum over auxiliary variables attains due to Slater’s condition, satisfied by the compactness of
Z (Assumption [2.3). The weights o, scale the quadratic terms, reflecting heterogeneous robustness.
Thus, the full WDRO-MRO reformulates as the stated SDP (or SOCP for diagonal (Q), which is
convex due to semidefinite or conic constraints (Proposition [3.2). Strong duality holds with zero gap
by Proposition[3.4] with optima attained per Proposition [3.3] O

G.7 PROOF OF LEMMA[B.TT|2 < p < 0o, QUADRATIC LOSS)

Proof. By Proposition [3.4] (Section [3.1)), the regret supremum equals

sup  Regretq(f) = mf /\p+E v | sup (U(z, f(2") = Ac(2,2")) — inf_sup (U(z, f'(2")) —

QeU,(Py) ZEZ f'eF ez

with zero duality gap, justified by compactness and convexity (Assumption [2.3]and Proposition [3.2).
The sup terms attain by Proposition [3.1] The compactness of Z (Assumption [2.3)) ensures finite
suprema.

We derive the reformulation in the following steps: introduction of epigraph variables; reformulation
of the epigraph constraint via Fenchel-Moreau theorem; conjugate computation for the transportation
cost; SDP approximation for quadratic and power terms via S-lemma; exponential cone representation
for log-Holder approximation; analogous reformulation of the inf term; and assembly of the full
program and verification of its properties.

Introduction of epigraph variables. Define £;(2') := (2, f(2')) = f(2')TQf(2)) +q" f(2') + qo.
A

Introduce epigraph variables s; € R, with dual variable A > 0:
f A i Stos; > C(2) = Ae(Zi, 2 Vi.
;I(IJSl p+ = ZS s _Slé% 7(2) = Ae(2i,2"), Wi

This is equivalent by epigraph representation preserving convexity (Proposition 3.2} see (Boyd &
Vandenberghe, [2004), Section 4.2). The inf term is analogous with primed variables (X', s}), replacing
f with f’.

Reformulation of the epigraph constraint via Fenchel-Moreau theorem. For affine f(2') =
> Fmzl, + g, the affine form ensures finite suprema. The epigraph constraint is

s; > sup £(2;, f(2)) — Ae(24,2'),
z'eZ

with ¢(2;,2') = 25:1 @m || 2i,m— 2, ||b. By Fenchel-Moreau theorem (Rockafellar, 1970) (Theorem
12.2; applies to proper convex l.s.c. £ by Assumption [2.2)), rewrite as

suply(2') — Ae(2,2') = inf  0°(Z,u) + ¥ (2, —u/N),

weRdim(2)

by Fenchel inf-convolution duality (Rockafellar] [1970) (Theorem 16.4; strong duality under rel-

ative 1nter10r conditions from compactness and Assumptlon n 2.2 boundedness), where (*(z,u) =

sup, u' v — £(z,v) and ¢*(z,u) = sup,, u' 2’ — c(z, 2').

Conjugate computation for the transportation cost. For the cost ¢(z, ') = Zizl A || 2m — 21,15,
the conjugate is

1 U a
(z,u) = sup Z u,) 2 Z | Zm =2 |15 = Z 1n>f0 {tfn + 1 <0|[|7;;”ql> ]+U;Zma
mvm

tm 2>
m=1 m=1

a generalized Holder conjugate ( (Rockafellar, |1970), Theorem 15.3), where ¢ = p/(p — 1). The
weights «,,, scale the terms, reflecting heterogeneous robustness across modalities.
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SDP approximation for quadratic and power terms via S-lemma. For the quadratic loss {(z,v) =
v Qu + ¢ v + qo, the conjugate is

* 1 —
0 (z,u) =sup [u'v— (0TQu+q v+ q)] = 7= 9)" Q@ (u—q) — qo,
where Q! is the pseudoinverse if @ is singular ( (Rockafellar, [1970), Theorem 23.5). The con-
straint s; > inf, £*(2;,u) + Ac*(2;, —u/A) is semi-infinite in u. Outer-approximate as SDP via
S-lemma (Boyd & Vandenberghe, 2004) (Appendix B; assuming quadratic upper bounds on /,
yielding SDP relaxation via moments or bounded dual variables; (Ben-Tal et al., 2009)), Section 3.5).

Exponential cone representation for log-Holder approximation. For irrational p, approximate log-
Holder terms in the Holder conjugate using the exponential cone {u, v, w : vet/v < w}, representable
in modern solvers ( (Ben-Tal & Nemirovskil [2001)), Section 4.3). The infimum over auxiliary variables
attains due to Slater’s condition, satisfied by the compactness of Z (Assumption [2.3).

Analogous reformulation of the inf term. The inf term reformulates similarly: replace f with
f' in the SDP or exponential cone constraints, using primed variables (', s}), and optimize over
f' € F. The full WDRO-MRO is the stated convex program (SDP approximation or exponential
cone), convex due to conic constraints (Proposition [3.2). Strong duality holds with zero gap by
Proposition with optima attained per Proposition [3.3|(Section [3.2). O

G.8 PROOF OF LEMMA [B.T2{(p = co , QUADRATIC LOSS)

Proof. By Proposition [3.4](Section[3.T)), the regret supremum equals

sup  Regretg(f) = /{I;% ApHEPY | sup (0(z, f(2") = Ac(2,2")) — inf_sup ({(z, f'(2")) —

Qeu,(Py) Z'€Z J'eF ez

with zero duality gap, justified by compactness and convexity (Assumption [2.3]and Proposition [3.2).
The sup terms attain by Proposition [3.1] The compactness of Z (Assumption [2.3)) ensures finite
suprema.

We derive the SDP reformulation in the following steps: introduction of epigraph variables; refor-
mulation of the epigraph constraint via Fenchel-Moreau theorem; conjugate computation for the
transportation cost; SDP representation via Schur complement; analogous reformulation of the inf
term; and assembly of the full program and verification of its properties.

Introduction of epigraph variables. Define ¢ (2") := ((2, f(2')) = f(z/) TQf(2') +q" f(2') + qo.
Introduce epigraph variables s; € R, with dual variable A > 0:

N
1
i —_— i t. i> N — Ai / ).
)\g(l)f’;i)\p-i- E_lsl st s 725/1.;%@(2) Ac(Z,2"), Vi

This is equivalent by epigraph representation preserving convexity (Proposition 3.2} see (Boyd &
Vandenberghe, [2004), Section 4.2). The inf term is analogous with primed variables (), s}), replacing
f with f7.

Reformulation of the epigraph constraint via Fenchel-Moreau theorem. For affine f(z') =
> m Fmzl, + g, the affine form ensures finite suprema. The epigraph constraint is

Si 2 sup 6(2“ f(Z/)) - )\c(’é’h ZI>7
2'eZ

with ¢(2;,2') = Zi:l aml|Zim — %0, |lco- By Fenchel-Moreau theorem (Rockafellar, {1970) (Theo-
rem 12.2; applies to proper convex Ls.c. £ by Assumption [2.2)), rewrite as
sup ls(2") — Ae(2,2') = ird1f ( )E*(éi,u) + A" (Zi, —u/N),
2 weRdim(z
by Fenchel inf-convolution duality (Rockafellar, [1970) (Theorem 16.4; strong duality under rel-
ative interior conditions from compactness and Assumption boundedness), where £*(z,u) =

sup, u' v — £(z,v) and ¢*(z,u) = sup,, u' 2’ — c(z, 2').
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Conjugate computation for the transportation cost. For the cost ¢(z,2') = Zi: 1Ol 2im —
2! |lso, the conjugate is

K
Z u = Sup Z um m Z amHZm - Z;n”OO
m=1

Since ||z, — 27, [loc = max; |2, ; — 2y, ;|, the conjugate is finite only if 37 [[um|l1 < 37, am,
yielding

K . K K
c* (Z,’U,) = {Zm 1 ujﬂzm if Zm:] ”um”l S Zm:l Ay

%) otherwise,

a polyhedral conjugate ( (Rockafellar, |1970), Example 11.4). The weights «,, scale the terms,
reflecting heterogeneous robustness across modalities.

SDP representation via Schur complement. For the quadratic loss £(z,v) = v Qu + ¢ v + qo,
the conjugate is

* 1 —
¢ (z,u) = sup [ulv - (0T Qu+q v +qo)] = 7= 9)" Q™" (u—q) — qo,
where Q! is the pseudoinverse if Q is singular ( (Rockafellar, 1970), Theorem 23.5). Substituting
into the epigraph constraint:

K
1
S > inf “(u—¢)"Q N u—q)—qo+ A W Zim /A
iz ot L( OTQ T u— ) —qo+ XY upZim/

m=1

The W, uncertainty set is a box: V = {2/ € Z : Zi:l am||Zim — 2 llee < p/A}. By Schur
complement lemma (Boyd & Vandenberghe, |2004) (Appendix A.5.5), the constraint is reformulated
as an SDP over the box vertices:

AL T % Zfri:l am(FnZim — f(2))

=0,
L (SR am P = F()) 8= a0 — a7 f(z) = ALy amllZim

forall 2" € V, tight for the co-norm ( (Ben-Tal et al., 2009), Theorem 3.2). The infimum over auxiliary
variables attains due to Slater’s condition, satisfied by the compactness of Z (Assumption [2.3).

Analogous reformulation of the inf term. The inf term reformulates similarly: replace f with f in
the SDP constraints, using primed variables (X, s;), and optimize over f’ € F.

The full WDRO-MRO is the stated SDP, convex due to semidefinite constraints (Proposition [3.2).
Strong duahty holds with zero gap by Proposition [3.4] with optima attained per Proposition @]
(Section[3.

G.9 PROOF OF LEMMA [B.T[(p = 1, GENERAL CONVEX LOSS)

Proof. By Proposition for fixed f € F, supgey (py) Regretq (f) equals

1nf /\p—|— EPN [sup (U(z, f(2") = Xe(2,2")) — inf_ sup (U(z, f'(Z")) — Ae(2,27) |,
2'EZ freF zrez

with zero duality gap. This incorporates Sion’s minimax interchange for the inf-sup in the regret term,

justified by compactness and convexity (Assumption [2.3|and Proposition [3.2)).

We derive the SDP (or LP) reformulation in the following steps: first, introduction of epigraph
variables for the sup terms; second, reformulation of the epigraph constraint via Fenchel-Moreau
theorem; third, conjugate computation for the transportation cost; fourth, SDP outer approximation
for general convex losses; fifth, exact LP bound for Lipschitz losses; sixth, analogous reformulation
of the inf term; and finally, assembly of the full program and verification of its properties including
convexity and zero duality gap.

Introduction of epigraph variables for the sup terms. The sup terms attain by Proposition
(existence of worst-case (*, implying attainment in dual variables).
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For the first sup term, define £¢(2") := £(Z, f(2’)). Introduce epigraph variables s; € R (one per
sample Z;):

N

: 1 . :

Azé{lslieﬂ%. Ap + N E 1 si st > zs’lé% Cp(2") — Ae(2:, 7)), Vi
im

This is equivalent by epigraph representation preserving convexity (Proposition see (Boyd &
Vandenberghel [2004), Section 4.2).

The inf term epigraph reformulates similarly, replacing f with f’ and using primed variables.

Reformulation of the epigraph constraint via Fenchel-Moreau theorem. Assuming f(z’) is affine
in 2’ (e.g., linear fusion models), the epigraph constraint is

s; > sup £(Z, f(2)) — Ae(Z, 7).
z'eZ

By Fenchel-Moreau theorem (Rockafellar, [1970) (Theorem 12.2; applies to proper convex l.s.c. £ by
Assumption[2.2)), rewrite as
sup £f(2") — Ae(2,2") = igl_f( )E*(éi, u) + Ac* (2, —u/N),
2 wecRdim(v
by Fenchel inf-convolution duality (Rockafellar, |{1970) (Theorem 16.4; strong duality under rel-

ative interior conditions from compactness and Assumption boundedness), where £*(z,u) =
sup, u' v — £(z,v) and ¢*(z,u) = sup,, u' 2’ — c(z, 2').

Conjugate computation for the transportation cost. For ¢1-norm ¢, ¢*(u) = 0 if |Jul|oc < 1, 00
otherwise (indicator; (Rockafellar, [1970), Example 11.4), scaled by «.,, per modality coordinate
(polyhedral LP representable).

SDP outer approximation for general convex losses. The constraint s; > inf, ¢*(Z;,u) +
Ac*(2;, —u/)) is semi-infinite in u, but outer-approximated as SDP if ¢ has quadratic upper bounds
(S-lemma (Boyd & Vandenberghe, 2004), Appendix B; e.g., assume ¢ < quadratic envelope, yielding
SDP relaxation via moments or bounded dual variables).

Exact LP bound for Lipschitz losses. For Lipschitz ¢ (modulus L), exact bound: sup,, £¢(z")—Ac <
Cs(2;) + LAc(%;, 2') (Lipschitz inequality; Assumption , tight for p=1 by KR theorem restricted
to Lip functions (Mohajerin Esfahani & Kuhn, 2018) (Theorem 5; exact sup = Lip bound under
bounded domain). Linearize to LP as in Lemma|B.5]

Analogous reformulation of the inf term. The inf term reformulates similarly: replace f with f in
the dual constraints, using primed variables X, s, and optimize over f’ € F.

The full WDRO-MRO is the stated SDP (outer for general; LP exact for Lipschitz). Convexity follows
from SDP/LP constraints preserving convexity and Proposition[3.2] Zero gap holds by Proposition [3.4]

(exact for Lipschitz; outer approximation otherwise), with optima attained per Proposition[3.3] [

G.10 PROOF OF LEMMA B.2[p = 2, GENERAL CONVEX LOSS)

Proof. By Proposition [3.4] (Section [3.1)), the regret supremum equals

sup  Regretg(f) = iI;f(‘J Ap+EY | sup (U(z, f(2") = Ac(2,2")) — inf_sup (U(z, f'(2")) —

QEZ/I/J(IE’N) Z/'EZ freF yrez

with zero duality gap, justified by compactness and convexity (Assumption [2.3]and Proposition [3.2).
The sup terms attain by Proposition The compactness of Z (Assumption [2.3)) ensures finite
suprema.

We derive the SDP reformulation in the following steps: introduction of epigraph variables; refor-
mulation of the epigraph constraint via Fenchel-Moreau theorem; conjugate computation for the
transportation cost; SDP outer approximation for general convex losses; SDP representation for
indefinite quadratic losses; analogous reformulation of the inf term; and assembly of the full program
and verification of its properties.
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Introduction of epigraph variables. Define ¢;(2’) := ¢(Z, f(2')). Introduce epigraph variables
s; € R, with dual variable A > 0:

N
1
i —E ;> "= Ae(z, 2 3
Aé%fs,-)\p—i_N,lSz s.t sl_zsllégﬂf(z) Ae(2:,2)), Vi
=

This is equivalent by epigraph representation preserving convexity (Proposition see (Boyd &

Vandenberghe, [2004), Section 4.2). The inf term is analogous with primed variables (), s}), replacing
f with f’.

Reformulation of the epigraph constraint via Fenchel-Moreau theorem. For affine f(z') =
> Fmzl, + g, the affine form ensures finite suprema. The epigraph constraint is

Si > sup £(2i7 f(Z/)) - )\c(é’h Z/)7
z'eZ

with ¢(2;,2") = 25:1 Qml|2i.m— 25, ||3. By Fenchel-Moreau theorem (Rockafellar,|1970) (Theorem
12.2; applies to proper convex l.s.c. £ by Assumption[2.2), rewrite as
sup ly(2") — (2, 2") = i(r}f( )6*(2¢,u) + A (2, —u/N),
2 weRdim(z

by Fenchel inf-convolution duality (Rockafellar, |{1970) (Theorem 16.4; strong duality under rel-
ative interior conditions from compactness and Assumption boundedness), where £*(z,u) =
sup, u' v — £(z,v) and ¢*(z,u) = sup,, u' 2’ — c(z, 2').

Conjugate computation for the transportation cost. For the cost ¢(z,2') = Y, am||lzm — 25, |13,
the conjugate is

1
c*(z,u) = sup § u;’z;n - § aml|2m — Zinllg = § 1 ”UmHg + %Tnzm»
2! o Qm,

m m

a quadratic conjugate ( (Rockafellar, |1970), Theorem 23.5). The weights o, scale the quadratic
terms, reflecting heterogeneous robustness.

SDP outer approximation for general convex losses. The constraint s; > inf, £*(Z;,u) +
Ac*(2;,—u/)) is semi-infinite in u. For general convex losses, outer-approximate as SDP via
S-lemma (Boyd & Vandenberghel |2004) (Appendix B), assuming ¢ has quadratic upper bounds (e.g.,
(z,v) <v' Qv+ q'v+ qo for some Q = 0), yielding SDP relaxation via moments or bounded
dual variables ( (Kuhn et al.,2019), Theorem 12). The approximation is tight for elliptical nominal
distributions (Gelbrich bound; (Villani et al.| 2008), Theorem 4).

SDP representation for indefinite quadratic losses. For indefinite quadratic losses £(z,v) =
v Qv + q"v + qo (indefinite Q), the conjugate £*(z,u) = sup,u'v — (v Qv + q'v + qo)
is computed, and the constraint is directly SDP-representable via Schur complement ( (Boyd &
Vandenberghel [2004), Appendix A.5.5; (Kuhn et al.| 2019), Theorem 12):

A 5 s On(FnZim — f(2)
1 K 2 / T T ’ K N 2 i
2 (Zm:l am(FmZi,m - f(Z ))) Si —dqo — ¢ f(Z ) - )\Zm,zl amHzi,mHQ
The infimum over w attains due to Slater’s condition, satisfied by the compactness of Z (Assump-
tion[2.3).

Analogous reformulation of the inf term. The inf term reformulates similarly: replace f with f” in

the SDP constraints, using primed variables (), s}), and optimize over f’ € F.

K3

The full WDRO-MRO is the stated SDP, convex due to semidefinite constraints (Proposition [3.2).
Strong duality holds with zero gap by Proposition with optima attained per Proposition
O

(Section[3.2).

G.11 PROOF OF LEMMA[B.3|2 < p < oo , GENERAL CONVEX LOSS)

Proof. By Proposition [3.4] (Section [3.1)), the regret supremum equals

sup  Regretqg(f) = inf /\p—l-EpN sup (U(z, f(2')) — Ac(2,2")) — inf_sup (€(z, f'(2")) — Ae(2,27)) | |
QeU,(PN) A20 ZEZ JeF snez
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with zero duality gap, justified by compactness and convexity (Assumption [2.3]and Proposition [3.2).
The sup terms attain by Proposition The compactness of Z (Assumption ensures finite
suprema.

We derive the reformulation in the following steps: introduction of epigraph variables; reformulation
of the epigraph constraint via Fenchel-Moreau theorem; conjugate computation for the transportation
cost; power cone representation for general p; exponential cone representation for log-Holder
approximation; SDP approximation for rational p via S-lemma; analogous reformulation of the inf
term; and assembly of the full program and verification of its properties.

Introduction of epigraph variables. Define ¢;(2’) := ¢(Z, f(2’)). Introduce epigraph variables
s; € R, with dual variable \ > 0:

N
1
i — 1 L. i> (2" — A,L' ! ).
)\g(l)l;i)\er Eﬁlsi s.t s_jlégff(z) Az, 7)), Vi

This is equivalent by epigraph representation preserving convexity (Proposition 3.2} see (Boyd &
Vandenberghe, [2004), Section 4.2). The inf term is analogous with primed variables (', s}), replacing

T with 1.

Reformulation of the epigraph constraint via Fenchel-Moreau theorem. For affine f(z') =
> m Fmzl, + g, the affine form ensures finite suprema. The epigraph constraint is

Si > sup e(é’ia f(zl)) - )\C(’%h Z/)a
z2'eZ

with ¢(2;,2") = 25:1 | Zi m—2p, ||b. By Fenchel-Moreau theorem (Rockafellar,|1970) (Theorem
12.2; applies to proper convex Ls.c. £ by Assumption[2.2)), rewrite as

suply(2') — Ae(2;,2') = inf  0°(Z,u) + ¥ (2, —u/N),

2 ueRdim(z)

by Fenchel inf-convolution duality (Rockafellar, |1970) (Theorem 16.4; strong duality under rel-
ative interior conditions from compactness and Assumption boundedness), where £*(z,u) =
sup, u' v — £(z,v) and ¢*(z,u) = sup,, u' 2’ — c(z, 2').
Conjugate computation for the transportation cost. For the cost ¢(z, z’) = Z§=1 | 2m =27,
the conjugate is

K K K q
SCTIEE DU DR A D D T [ a3 B RO
z m—1 m =

p—1
m=1 m=1 Cthn%

p
p°

a generalized Holder conjugate ( (Rockafellar, 1970), Theorem 15.3), where ¢ = p/(p — 1). The
weights «,,, scale the terms, reflecting heterogeneous robustness across modalities.

Power cone representation for general p. The constraint s; > inf,, £*(2;, u) + Ac*(Z;, —u/A) is
semi-infinite in u. For general convex losses, the conjugate £*(z, u) is representable via power cones
{(u,t) : ||Jull; <t} for general p, as the Holder conjugate terms are conic-representable ( (Ben-Tal
& Nemirovski, 2001), Section 4.3). The infimum over auxiliary variables attains due to Slater’s
condition, satisfied by the compactness of Z (Assumption 2.3).

Exponential cone representation for log-Holder approximation. For irrational p, approximate log-
Holder terms in the Holder conjugate using the exponential cone {u, v, w : vet/v < w}, representable
in modern solvers ( (Ben-Tal & Nemirovskil 2001), Section 4.3).

SDP approximation for rational p via S-lemma. For rational p, outer-approximate the constraint as
SDP via S-lemma (Boyd & Vandenberghe, |2004) (Appendix B; assuming quadratic upper bounds
ont,eg., l(z,v) <v'Qu+q'v+ qofor some Q = 0, yielding SDP relaxation via moments or
bounded dual variables; (Ben-Tal et al., 2009), Section 3.5).

Analogous reformulation of the inf term. The inf term reformulates similarly: replace f with f’ in
the power cone, exponential cone, or SDP constraints, using primed variables (X', s}), and optimize
over [/ € F.

The full WDRO-MRO is the stated convex program (power cone, exponential cone, or SDP), convex
due to conic constraints (Proposition[3.2). Strong duality holds with zero gap by Proposition [3.4]
with optima attained per Proposition [3.1](Section [3.2). O

32



Under review as a conference paper at ICLR 2026

G.12 PROOF OF LEMMA B.4|(p = 0o , GENERAL CONVEX LOSS)

Proof. By Proposition [3.4] (Section [3.1)), the regret supremum equals

sup  Regretg(f) = >1\r>1f0 Ap+EPY | sup (U(z, f(2") = Ac(2,2")) — inf_sup ({(2, f'(2")) —

Qe (Py) = f'eF ez

with zero duality gap, justified by compactness and convexity (Assumption [2.3]and Proposition [3.2).
The sup terms attain by Proposition [3.1] The compactness of Z (Assumption [2.3)) ensures finite
suprema.

We derive the reformulation in the following steps: introduction of epigraph variables; reformulation
of the epigraph constraint via Fenchel-Moreau theorem; conjugate computation for the transportation
cost; vertex dual approximation for polyhedral support; analogous reformulation of the inf term; and
assembly of the full program and verification of its properties.

Introduction of epigraph variables. Define {;(2') := £(Z, f(2')). Introduce epigraph variables
s; € R, with dual variable A > 0:

N
: 1 . .
/\érét;i Ap+ N ;—1 si stos; > sup (') = Ae(2:,2"), Vi

This is equivalent by epigraph representation preserving convexity (Proposition 3.2} see (Boyd &
Vandenberghe, [2004), Section 4.2). The inf term is analogous with primed variables (X', s}), replacing
S with f’.

Reformulation of the epigraph constraint via Fenchel-Moreau theorem. For affine f(2') =
> Fmzl, + g, the affine form ensures finite suprema. The epigraph constraint is

s; > sup £(Z;, f(2)) = Ae(Z, 2),
zZ'eZ

with ¢(2;,2) = 22:1 &ml|Zim — %0, |lco- By Fenchel-Moreau theorem (Rockafellar, {1970) (Theo-
rem 12.2; applies to proper convex Ls.c. £ by Assumption [2.2)), rewrite as
sup ls(2") — (2, 2") = ird1f ( )E*(éi,u) + A (Zi, —u/N),
2 weRdim(z
by Fenchel inf-convolution duality (Rockafellar, |1970) (Theorem 16.4; strong duality under rel-
ative interior conditions from compactness and Assumption boundedness), where £*(z,u) =
sup, u' v — £(z,v) and ¢*(z,u) = sup,, u' 2’ — c(z, 2').

Conjugate computation for the transportation cost. For the cost ¢(z, 2') = Zfizl || Zm —
2! |loo, the conjugate is

K K K
¢(zu) =sup D gz = D amllzm = Zlle = D Uizms
2 m=1 m=1 m=1

if Zﬁzl lem |l < 25:1 Qi (00 otherwise), a polyhedral conjugate ( (Rockafellar,|1970), Example
11.4). The weights a.,, scale the terms, reflecting heterogeneous robustness across modalities.

Vertex dual approximation for polyhedral support. The constraint s; > inf, £*(Z;,u) +
Ac*(Z;, —u/)) is semi-infinite in w. For general convex losses with polyhedral support, the
conjugate ¢*(z,u) is polyhedral, and the W, uncertainty set is a box: V = {z/ € Z :
S @mllZim — 2]l < p/A}. The supremum is attained at the vertices of V, yielding an
LP or SDP approximation via vertex dual (polyhedral LP; (Ben-Tal et al., 2009), Theorem 3.1;
enumerate vertices for polyhedral ¢). The infimum over auxiliary variables attains due to Slater’s
condition, satisfied by the compactness of Z (Assumption [2.3).

Analogous reformulation of the inf term. The inf term reformulates similarly: replace f with f’ in

the LP/SDP constraints, using primed variables (\', s}), and optimize over f' € F.
The full WDRO-MRO is the stated convex program (semi-infinite in general, approximated as LP
or SDP via vertex dual for polyhedral support), convex due to linear or semidefinite constraints

(Proposition [3.2)). Strong duality holds with zero gap by Proposition [3.4] with optima attained per
Proposition [3.1] (Section [3.2). O
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G.13  PROOF OF PROPOSITION[3.5(GLOBAL CONVERGENCE OF THE DUAL-GAME HYBRID
SOLVER)

Proof. By (Agarwal & Zhang} 2022| Prop. 11), the objective admits a bilinear saddle-point reformu-
lation over P € A(F) and p € A(W), which is equivalent to a weighted ERM for the learner.

Updating the nature’s distribution by exponentiated gradient yields a no-regret bound of order
O(y/In [W[/T) for the average iterate, as stated in Proposition 12 and detailed in Appendix E.
(Agarwal & Zhang, [2022, Prop. 12 & App. E) Thus the maximization player contributes an 6(1 JNVT)
gap.

Viewing the WDRO side as a zero-sum game, the saddle-point interpretation and associated strong

duality are standard; see the Nash-equilibrium discussion in the DRO monograph. (Kuhn et al.|
2025, §7.5) Combining the no-regret guarantee for the nature player with best responses from the

learner/oracle (ERM oracle in the MRO setting), the averaged iterate achieves an O(1/v/T) saddle-
point gap, which matches the stated rate when per-iteration best responses are solved exactly. O

G.14 PROOF OF PROPOSITION[3.6( GLOBAL CONVERGENCE WITH CONTINUOUS W)

Proof sketch. By Proposition [3.6] the adversary’s best response in each round admits a closed form
via convex duality (Agarwal & Zhang|, 2022, Eq. (8)). Substituting this into the hybrid solver
eliminates the need for exponentiated-weights updates, while retaining the convex—concave game
structure. Standard online convex optimization analysis (Agarwal & Zhang| [2022, Prop. 12) ensures

an O (1/v/T) gap for the adversary’s sequence. Combining with exact learner/oracle best responses
and projected subgradient ascent for \, the averaged iterates converge to an approximate saddle point
at the same rate, as in Proposition 3.5 O

G.15 PROOF OF LEMMA [3.T|(SENSITIVITY OF OPTIMAL REGRET)

Proof. We prove continuity, Lipschitz continuity, and the subgradient bound for R(p).

Continuity: The ambiguity set U,(Py) = {Q € P(Z) : W,(Pn,Q) < p} is compact in the
weak topology o(M(Z), Cy(Z)) by lower semicontinuity of ¢ (Assumptlon and tightness of
Py (Prohorov’s theorem; Billingsley, [2013). For fixed f, RegretQ( f) is weakly continuous under
convexity and boundedness (Assumption[2.2) and the interchangeability principle (Assumption
Mohajerin Esfahani & Kuhnl 2018)). Berge’s maximum theorem (Bergel [1877) ensures continuity of
the supremum.

Lipschitz  Continuity: From Proposition [3.4  R(p) = infasoAp  +

EF~ [sup, (L(z, f(2)) — Ac(2,2")) — inf g/ sup.., (L(z, f'(2")) — Ae(2,2"))], convex in
(Proposmonn Since /£ is L-Lipschitz in v (Assumption [2.2)), the Fenchel-Moreau theorem and
subdifferential calculus (see (Rockafellar, [1970), Theorem 23.5) bound OR(p): for p1,p2 > 0,

|R(p1) — R(p2)| < L|p1 — p2|, as the dual inf-convolution preserves Lipschitz continuity. The
multimodal cost scales gradients by a.,, with [|Ve(z, 2')|| < 32, amllzm — 25,1151

Subgradient Bound: The subgradient JR(p) includes A\* from the optimal transport plan

(Kantorovich-Rubinstein duality; |[Villani et al., [2008). Monotonicity of MP(PN) (as a monotone
operator in p) ensures OR(p) > 0, with A* as the upper envelope bound, scaled by «,, Ve. O

G.16 PROOF OF LEMMA [3.2( HIGH-DIMENSIONAL ERROR EQUIVALENCE)

Proof. We prove the asymptotic equivalence of the WDRO estimation error || fpre — fol|?/d to the
stated convex-concave optimization, adapted for multimodal costs.

Consider the WDRO-MRO problem in the high-dimensional regime where d, n — oo with d/n —
€ (0,00). The WDRO estimator fprg solves

fone —argmin sup Eolf(z. £(2))]
QeU,(Pn)
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where U,(Py) = {Q € P(Z) : W,(Px,Q) < p} is the type-1 or type-2 Wasserstein ball with
radius p = pg /np/ 2 and Py % Z?:l 0., is the empirical distribution over n i.i.d. samples
z; = (x4, y;). The multimodal transportation cost is

K
C(Z, Z/) = Z amHZm - Z;an’
m=1

for modalities m = 1, ..., K, weights «,,, > 0, and norm parameter p € {1,2}. The loss ¢(z,v)
is convex in v, bounded in [0, M], and L-Lipschitz (Assumption , with the oracle predictor
fo € F minimizing the population risk. We assume isotropic Gaussian features X; ~ N (0,d~11,),
sub-Gaussian noise Z, and a compact function class F (Assumptions [2.3] [2.1] 2.T).

Primal Optimization and Error Normalization: The estimation error of interest is the normalized

squared norm || fpre — fol|2/d, where fp g is the WDRO solution. By Proposition the primal
WDRO problem can be reformulated using Kantorovich-Rubinstein duality as

o Bolf ()= o} Dot Bp, [sup 6, 16) et 0]},

so the WDRO estimator minimizes

n K
. 1
fprE = arg %12 )1\1211; {)\p + - Zsup (E(zl’-, fizh) - )\mzzjl A || 2im — z§m||g> } )

i—1 %
The error || fpre — fol|?/d is a high-dimensional random variable due to the Gaussian features X;.

Convex Gaussian Minmax Theorem (CGMT): To analyze the error, we apply the CGMT (Deng
et al.| 2022)), which states that for a convex-concave saddle-point problem of the form

®(X) = minmax £(u,v, X),
ueU veVY

where X € R"*? is a Gaussian matrix with i.i.d. entries X;; ~ A(0,1/d), the asymptotic value
of ®(X) in the limit d/n — p is equivalent to an auxiliary optimization (AO) over scalar variables.
Here, the WDRO problem is cast as
1 n
‘I)(X) = min sup — é(yl - f(xl + 51), f(xl + (51)),
T€F |5l <pr/e ™ ;

where 0; represents perturbations constrained by the Wasserstein ball, and f(z; + §;) =
> m Cm fm (Tim + 0im) for modality-specific predictors f,,,. The CGMT requires convexity in
[ (satisfied by Assumption[2.3) and concavity in d;, ensured by the loss structure.

Gordon’s Lemma and Primary Optimization (PO): By Gordon’s lemma (Gordon| 2006), the
high-dimensional min-max problem is reduced to a primary optimization (PO) over expected values
under Gaussian noise. For the WDRO estimator, the PO form is
1
1512113 Ecno,1) [i{}fg(aG, v) + m”” — | + por(e),
K 2 2

plos +a) | . .
—Jo—= % is the proximal parameter, and 0, = > o207,

where k(a) = argmin,sg {m +
is the oracle variance scaled by modality weights «,,. The Moreau envelope L(a,s) =
Eveno,)linfy £(a + v/sU,v) + 2 ||v — «f?] smooths the loss ¢, with s = 71/8 in the final
optimization.

Reduction to Four-Scalar Optimization: Applying Fenchel duality and subdifferential calcu-
lus(see (Rockafellar, [ 1970), Theorem 23.5), the PO is equivalent to the stated four-scalar convex-
concave optimization. The objective terms are derived as follows: - % + %: Proximal regular-
ization from the Moreau envelope and ambiguity radius. - —%: Quadratic penalty, with M > 0 a
problem-dependent constant (bounded by Assumption . - L(«, 71 /8): Expected Moreau enve-

. . VpoBp(oF, +a?) ppoc? )
lope, convex in «, concave in 7y /f3. - + — aﬁ\/f) Tz‘f“ + 1: Variance terms scaled
2

by p and O'J%U, derived from Gaussian concentration.
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The optimization is convex in « (due to £’s convexity) and concave in (3, 71, 72 (from quadratic and
proximal structure), with asymptotic equivalence at rate O(1/4/n) under sub-Gaussian universality
(Aolaritei et al., 2022)).

Multimodal Adaptation: For the multimodal cost ¢(z, 2’) = Zi:l m|2m — 2, ||, the trans-
portation cost gradient is ||[Ve(z,2)|| < >0 ampllzm — zjnﬂzj,
0%, = Y., Qn0p, in the optimization. Higher a,, increases the modality-specific contribution

to 0]200, modulating robustness (e.g., prioritizing image modalities).

Regret Bound for WDRO-MRO: For WDRO-MRO, the regret is supg Regrety(f) =

supg[Eq[l(z, f(2))] —infp Eq[l(z, f'(2))]]. The WDRO error | forE — fol|?/d bounds the regret
as

which scales the variance

S%pRegretQ(fDRE) < \fore — fol*/d+ O(1/V/n),

since the oracle term inf ;s Eg[¢(z, f'(2))] is subtracted in the regret definition, and the Lipschitz
continuity of ¢ (Assumption [2.2)) ensures the residual term is O(1/y/n). O

H PROOFS OF SECTION [3.3|(STATISTICAL PROPERTIES)

H.1 PROOF OF THEOREM [3.T( STATISTICAL CONSISTENCY OF WDRO-MRO)

Proof. We prove the theorem using Wasserstein concentration and empirical process theory, under the
assumptions that Py has finite p-th moments and F is compact with bounded Rademacher complexity.

Wasserstein Convergence of PN to Py: By (Fournier & Guillin, 2015), Theorem 2, for P on
Z C R? with finite p-th moments,
E[W,(Py, Py)] < CN~P/max{2.d}
for a constant C' > 0 depending on p, d. By Markov’s inequality, for any § > 0,
O NP/ max{2,d}

P(W,(Py, Py) > 8) < — 0.

Thus, Py — Py in W, implying U,(Px) — B,(P,) in the Hausdorff metric under the weak
topology, as W), metrizes weak convergence (Villani et al., 2008).

Continuity of the Regret Functional: Define R(p; P) = inf e 7 supge g, (p) Regretq(f), where
Regretq (f) = Eqll(z, f(2))] — infs Eq[l(z, f'(2))]. By Lemma3.1} R(p; P) is L-Lipschitz in p.
For any P, P,

[R(p; P) = R(p; P')| < LWy (P, P'),

since Regret, (f) is L-Lipschitz in () under the Wasserstein metric (Assumption . Hence,

R(p; Py) — R(p; Py) in probability as Py — Fy.

Uniform Convergence via Empirical Processes: The estimator f pRrE Ssatisfies f DRE =
argminye r R(p; Pn). The function class {¢(z, f(z)) : f € F} has finite Rademacher complexity

R(F) < C/+/N for some C' > 0, since F is compact and / is bounded and convex (Shalev-Shwartz
& Ben-David, 2014)). By uniform convergence for empirical processes (Mohajerin Esfahani & Kuhn|

2018)), for any € > 0, with probability at least 1 — 6,
log(1/4) 1
< 2R(F)+0O = =0 —
(%) ( N VN

As R(p; Py) — R(p; Py), the compactness of F and uniqueness of f, under strict convexity
(Assumption imply fpre — fo in the sup-norm || - || # with probability 1.

sup| sup Regretg(f) — sup Regretg(f)
feF |Qeu,(Py) QEB,(Po)

Multimodal Cost Adaptation: For multimodal costs c(z,2') = S°h | aumllzm — 20|, the

weights «,,, scale the variance O’J%O = >, a2 Ep,[o2], affecting the convergence rate through the

transportation cost gradient ||Ve|| < Y ampl||2m — z;n||§j. Higher «,,, for noisy modalities (e.g.,

images) tightens the regret bound, as the Lipschitz constant L is modulated by av,,. [
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H.2 PROOF OF THEOREM [3.2) FINITE-SAMPLE GUARANTEES FOR OUT-OF-SAMPLE REGRET)
Proof. We derive the high-probability bound on the out-of-sample regret using Wasserstein concen-
tration and empirical process theory.

Wasserstein concentration bound. For Py with finite p-th moments, by [Fournier & Guillin| (2015,
Theorem 2),

E[W,(Py, Py)] < CN—P/max{2.d}

for some C' > 0. By Talagrand’s concentration inequality for empirical measures (Blanchet et al.,
2022)), with probability at least 1 — §/2,

W,(Py, Py) < ON~—P/max{2.d} 4 ”LJS?/@

Regret continuity in distributions. The regret functional satisfies
[Regretq (f) — Regretg (f)| < LW,(Q,Q"),

where the effective Lipschitz modulus L arises from the multimodal cost structure. Since ¢(z, v) is
Ly-Lipschitz in v and the infimum over f’ preserves Lipschitz continuity (Rockafellar, [1970), and for

c(z,2) = 22{:1 ak||zx — 23| the transportation cost gradient satisfies

K

Vel <> anpllan — 24857,
k=1

the chain rule in the dual formulation (Proposition [3.4) yields

K
L= Lg Zak.
k=1

Thus, with probability at least 1 — 6/2,

sup Regret,, (fprE) —  sup Regret,/ (forE)
Q Q'eB,(Po)

< LW,(Py,Py) < L (ONP/max{Q»d} + 210gN(2/5)> : 1)

Uniform PAC bound. Let G = {{(z, f(2)) : f € F}. Under Assumption[2.3|that F is compact and
£ bounded, Shalev-Shwartz & Ben-David| (2014, Theorem 26.5) gives

C/

VN’

By McDiarmid’s inequality and Rademacher bounds (Mohajerin Esfahani & Kuhnl 2018)), with
probability at least 1 — §/2,

Rn(G) <

sup |R(p; Px, f) — R(p; Po, f)| < 2RN(G) + 21%(2/5).
feF

Multimodal adaptation. For ¢(z,2’) = Zfﬂ ak|lzx — 2|5, the weights oy, scale the effective
variance 02 = >, a?Ep, [07], thereby affecting both L and R y.

Combining the above bounds via a union bound yields the stated result. Since WP(PN, Py) — 0and
RN (F) — 0as N — oo, the bound implies

fDRE B

where f* is the population minimax regret solution, establishing statistical consistency. O
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H.3 PROOF OF LEMMA [3.3 CONVERGENCE RATES FOR REGRET)

Proof. We derive the O(1/+v/N) convergence rate for the regret using Rademacher complexity and
empirical process theory.

Rademacher Complexity of F: Define the class G = {{(z, f(z)) : f € F}. Since F is compact
(Assumption and ¢ is bounded and convex (Assumption[2.2)), the Rademacher complexity satisfies

RN(g) - a’

C
sup — > 0ig(z)| < —=
geg N Z ] \/N

for some C' > 0 (Shalev-Shwartz & Ben-David, 2014, Theorem 26.5), where o; ~ {—1,1} are
i.i.d. Rademacher variables. For multimodal costs ¢(z, z’) = 1|7, the weights oy,

scale the variance 02 = >, a?Ep, [07], modulating R x (G) through the weighted norm in the loss
composition.

Uniform Convergence of Regret: The regret functional Regret,, (f) is L-Lipschitz in @) under W,
(Lemma[3:T)), with L scaled by «. By empirical process bounds (%or Lipschitz classes (Mohajerin Es{
fahani & Kuhn, |2018)), with probability at least 1 — §/2,

< 2R (G)+ 210%\[(2/5)_0<\/1N+ lgg/é))

The bound holds under the interchangeability principle (Assumption [2.1)), ensuring the supremum
over (Q commutes with the expectation.

sup | sup Regretg(f) — sup Regrety(f)
feF 1Qeu, (Pn) QEB,(Py)

Regret Rate for fDRE: The estimator fDRE satisfies fDRE = argminyscr R(p; PN), where
R(p; P) = supgep, (p) Regret (f). From Step 2, with probability at least 1 — 6/2,

log(1/5)>

R(p; Py, fore) < R(p; P, fore) + O ( N

Since R(p; Py, fore) < R(p; Px, f) for all f, and by continuity of R(p; P) in P (Lemma,

log(1/9)
sup Regret,(fpre) < inf  sup Regret,(f) + O ——— .
QEB,(Po) “ F€F QeB, (o) © N
The rate is scaled by «, through the multimodal variance in Ry (F). O

H.4 PROOF OF LEMMA [3.4(SAMPLE COMPLEXITY)

Proof. We derive the sample complexity using Theorem [3.2] which states that with probability at
least 1 — 6,

A 2log(2/6
sup Regret@(fDRE) < inf sup Regrety(f)+LW,(Pn, Po)+2Rn(G)+ M.
QEB,(Po) €T QeB,(Py) N

Bounding the Rademacher Term. The Rademacher complexity of G = {{(z, f(z)) : f € F}
satisfies

RN(G) < Cr chifg),

for constant C'x > 0 depending on the bound of ¢ (Shalev-Shwartz & Ben-David, 2014}, Theo-
rem 26.5). To ensure 2R 5 (G) + +/21og(2/8) /N < €/2, we require

ve(G) + log(2/9)

€2

N>Cy

for some C7 > 0.
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Bounding the Wasserstein Term. By |Fournier & Guillin| (2015, Theorem 2), for Py with finite p-th
moments,

CN-1/2 if d < 2p,
E[W,(Py, Py)] < { CN~Y2log(1 + N), ifd=2p,
CN—»/d, ifd > 2p,

for constant C' > 0. With probability at least 1 — /2, Talagrand’s inequality (Blanchet et al., 2024)
gives W,(Py, Py) < ¢/(2L) if

)

L max{2,d/p}
e ()
€
where L = L, Zszl ay, follows from the multimodal cost ¢(z, 2') = Zszl akl|zx — 2|5, with

gradient | Ve|l < 32, awpllzr — 24,151 N

H.5 PROOF OF LEMMA [3.5(AsYMPTOTIC UNBIASEDNESS OF DEBIASED WDRO-MRO)

Proof. We prove asymptotic unbiasedness of the debiased WDRO-MRO estimator using empirical
proq’acess theory and bias correction, adapted for multimodal finite-sample biases.

Bias Decomposition: The bias of fD RE 1S
E[fDRE — fo] =E |arg mfin R(p;fDN) — argmfin R(p; PU)] ,

where R(p; P) = supge g, (p) Regret(f). By Lemma3.1} R(p; P) is convex and L-Lipschitz in
P under W), with L = Ly ), . The finite-sample bias arises from the empirical approximation
Py, scaled by the multimodal variance 0% = Y, a2Ep, [07].

Finite-Sample Bias Bound: From Theorem [3.2] with probability 1 — 4,

. - 2log(2/d
R(p; Po, fore) — R(p; Po, fo) < LW, (PN, Py) +2Rn(G) + #,
where Ry (G) = O(y/ve(G)/N). Taking expectations, the bias is

E[fpre — fo] < E[LW,(Py, Py)] + O(1/VN),

with E[W,(Py, Py)] < CN—P/max{2d} (Fournier & Guillin, 2015). For multimodal costs, a,
scales L, tightening the bias term as «, prioritizes high-variance modalities.

Debiasing Correction: Define the debias term by = E| fD RE — f0|13N] ~ L]E[WP(PN, Py)] +
o1/ VN ), estimated via bootstrap or double robustness methods (Blanchet et al.| 2022). The
debiased estimator fy., = fprp + by satisfies

E(faes] = Elfpre] + Eby] = fo +o(1),

as N — oo, since the bias term by = O(1/N) vanishes asymptotically. For multimodal settings, by
is corrected by weighting the variance 0 = > & aioi, ensuring unbiasedness across heterogeneous
modalities.

Asymptotic Unbiasedness: By the law of large numbers for empirical processes and the continuity
of the regret functional (Lemma[3.1)), the bias correction by — 0, yielding

E[faey — fo] = 0.
The rate is O(1/N) under strict convexity, with vy, modulating the variance in the correction term. [

I PROOFS OF SECTION [3.4(REGULARIZATION AND ROBUSTNESS
PROPERTIES)

I.1 PROOF OF LEMMA [3.6] VARIATIONAL REGULARIZATION EQUIVALENCE)

Proof. We prove the equivalence using duality and Fenchel conjugates, adapted for multimodal costs.
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Primal Formulation. The WDRO-MRO problem is

oL s Eolte /()] - juf Bolt(z S ()]

where U, (Px) = {Q € P(Z) : W,(Px, Q) < p}, with multimodal cost ¢(z, 2') = Zszl agllzr —
5
Dual Reformulation. By Proposition [3.4] we have
sup  Egl[l(z, f(2))] = inf {)\p +Ep, [supf(z,f(zf)) - )\c(é,z/)] } :
QEU, (Py) A20 Z
and similarly for the regret baseline term. Hence, the WDRO-MRO becomes

. . N / _ 2 !/
;relg_)gfo Ap+Ep {sgp[(z,f(z ) — Ae(z, 2 )]

_ . ! R ! " _ !/ 2 "
fl/lé%_)\llnzfo {)\ p+Ep, [szl}lpé(z,f (") = Ne(z, 2 )] }

Fenchel Conjugate Interpretation. For p = 1 and convex £(z,v), the supremum over z’ can
be interpreted via the Fenchel conjugate ¢* evaluated at AV .c(2,2') (Gao et al 2024). Since
c(z,2") = > cadi (2, 2;,), the regularization term decomposes accordingly. By (Azizian et al.|
2023)), this induces a weighted total variation regularization:

TV(f) =Y arTVi(fr), with TVi(fi) =sup Y |fil(zkj+1) — filze)l-
- -

J
Special Case for Linear f. For linear f(z) = >, fr(2x), the problem reduces to ERM plus a total
variation penalty with coefficient v = \p, as shown in (Gao et al.,[2024).

Generalization to p > 1. For p > 1, the penalty generalizes to higher-order smoothness norms (e.g.,
Sobolev or gradient norms), and the convergence rate scales pwith p'/? (Azizian et al, 2023). O

1.2 PROOF OF|[LEMMA 3.7(MULTIMODAL LIPSCHITZ REGULARIZATION EQUIVALENCE)

Proof. We prove the equivalence by reformulating the WDRO-MRO dual and specializing to linear
multimodal models.

Dual Reformulation of WDRO Risk Term. By strong duality (Proposition [3.4)),
sup  Eqll(y,w'z)] = inf \p+Ep [supl(y,w’a’) — Az, z')
Qe (Px) A>0 2

For linear models and losses like logistic (1-Lipschitz in v), the inner sup is bounded by the Lipschitz
property:

sup L(y,w' z') — Xe(z, ') < Uy, w'z) + Asup|w' (2’ — )| — c(z, 2').
x/

x/

Lipschitz Dual Emergence. The term sup,/..(; ,/)<,/x |wT (2’ — z)| is the effective Lipschitz
extension. Since c(z,z’) = >, axl|z — x}. ||}, by Holder inequality,

> wp (a), — 1)
k

where ¢ = p/(p —1). The constraint ), a||z — 2} [[5 < p/A implies a weighted ball. Maximizing
over perturbations yields

< Z lwllgllzk — zllps

k

" (@'~ 2)] =

sup [w' (= )| = (p/N)?|[w]l.
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where the dual norm [|w||. = sups~ o, jju,z<1 2k wj uy. By inf-convolution duality for additive
costs (separability from Assumption ,

: 1wk llq
wlly = inf _—
ol ﬁkzo,zﬁkzlzk: o B

Thus, the risk term becomes E[¢] 4 v||w||«, with v = Ap!/?.

Regret Term Handling. The regret baseline inf, Eg[¢(y, (w’) " x)] dualizes similarly, subtracting
an identical reg term (since inf over w’ yields the same dual form, constant in w). By Sion’s minimax
theorem (convex-concave), the overall is equivalent to reg-ERM with weighted Lipschitz penalty.

Modality-Specific Robustness. Higher oy, reduces the penalty for modality k& in ||w]|., allowing
larger wy, (less regularization) for stable modalities, while low «y, tightens constraint for noisy
ones. O

1.3 PROOF OF[PROPOSITION 4. 1(ENVELOPES FOR LOGISTIC; TRACTABLE PER P)

Proof. By the DRO duality for optimal transport ambiguity sets, the worst-case expectation admits
the envelope form with zero duality gap under mild regularity (upper semicontinuity, IP), hence
the strong-dual “canonical objective” with epigraph variables s; is valid; see [Kuhn et al.| (2025
Theorem 4.18 & Lemma 4.16).

For p = 1, when ¢ is L-Lipschitz in v = w z, the envelope equals E py €] + ApL (specializing
Proposition 6.17), which yields an LP via standard absolute-value auxiliaries; cf. | Kuhn et al.| (2025,
Prop. 6.17).

For p = 2, using the convex conjugate of the logistic loss together with the quadratic cost conjugate
c*, the envelope reduces to a conic program representable as an SDP, and to an SOCP under
diagonal/rotated-quadratic structure; this is the standard Fenchel-Moreau route in our WDRO-MRO
derivations, see Lemma therein.

For 2 < p < oo, the cost conjugate ¢* admits a Holder-type form with ¢ = p/(p — 1), which is
power-cone representable for rational p (and exponential-cone for irrational p). Hence the envelope
is a convex conic program; see Lemma[B.4]

For p = oo, the {,-ball uncertainty reduces the envelope to vertex (box) constraints, which are
LP/SDP-representable; see the tractability table and corresponding Lemmas in[3.2.1]

Collecting these cases gives the claimed tractable envelopes per p, all as finite-dimensional convex
conic programs with zero duality gap and attained optima under our standing assumptions. O

1.4 EMPIRICAL OBSERVATIONS OF[REMARK 4.1l IN EXPERIMENTS

To show the relation that larger o, (more trusted modality) yields weaker shrinkage on wy, we vary
one modality weight over [0.25, 0.5, 1.0, 2.0, 4.0, 8.0] while keeping all other modality weights fixed

at 1.0, shown in[Figure 2]
J ADDITIONAL EXPERIMENTAL DETAILS

J.1 PREPROCESSING PIPELINE

Figure [3]in illustrates the preprocessing and splitting pipeline. Following [Dérrich
et al.[(2025)), we preprocess and integrate five modalities: Demographics (age, gender, and related

variables), Blood parameters (routine test values, z-score normalized), Pathological features (tumor
grading, stage, and lymph node status), ICD codes (categorical disease codes, bag-of-words encoded),
and TMA cell density (CD3/CD8 immune cell infiltration counts). Data is separated into training
(80%, 612 patients) and test (20%, 151 patients) sets, with 5-fold cross-validation for hyperparameter
tuning. We consider three evaluation splits: in-distribution (ID), out-of-distribution (OOD), and an
Oropharynx-specific split.
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Figure 3: Preprocessing and splitting pipeline for the HANCOCK dataset (Dérrich et al., [2025)).
Multiple modalities (Demographics, Pathology, Blood, ICD, TMA) are integrated into multimodal
patient vectors, visualized with UMAP, and split into training/testing sets using a genetic algorithm.

J.2  METRICS

Table 4: Definitions of evaluation metrics. 1 indicates higher is better, | indicates lower is better.

Abbreyv. Full Name Definition / Formula

Performance

Avg AUC 1 Average AUC Mean ROC-AUC across all noise rates and trials.
Std AUC | Standard Deviation of AUC  Variability of ROC-AUC across repeated trials.
Robustness

Robust AUC 1T Robust AUC Worst-case (minimum over noise rates) mean AUC.
RR-AUC 1 Relative Robustness AUC ~ Robust AUC/ max,{AUC(p)}.

W.C. Drop | Worst-Case Drop max,{AUC(p)} — Robust AUC.

Stability

NS Drop | Noise Sensitivity Drop AUC(p = 0) — Robust AUC.

NS Slope | Noise Sensitivity Slope Slope of regression of AUC vs. noise rate p.
Fairness

GNR 1 Group-Noise Robustness ming ,{AUC,(p)}.

GF Gap | Group-Fairness Gap maxg AUC, — ming, AUC,,.

J.3  GROUP DISTRIBUTIONALLY ROBUST OPTIMIZATION (GROUP DRO)

In addition to the instance-level Wasserstein ambiguity sets considered in the main text, we include
Group DRO (Sagawa et al, [2020)) as a baseline method. Group DRO assumes that data points are

partitioned into G predefined groups (e.g., tumor sites or clinical subpopulations), and seeks a model
whose loss is uniformly controlled across all groups.
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Formulation. Let {S g}le denote the index sets corresponding to each group. For a model f with
parameters 6 and loss ¢(z, f(z)), define each group loss as

L,(0) = |Sl S €z folz2)).

i€S,
Group DRO solves the minimax problem

i L,(6), 2
In(flngefnlf?(,G} g( ) @

which guarantees that performance is optimized for the worst group.

Convex Logistic Regression Case. In our experiments, fj is a linear classifier fy(z) = w'z + b
with logistic loss £(y, v) = log(1 + exp(—yv)). Problem equation 2] admits the convex reformulation
min ¢
w,b,t

1

|54

s.t. Zlog(1+exp(—yi(w—r:ci+b))) < t, g=1,...,G, )
i€S,

which can be solved using standard convex programming tools (e.g., MOSEK). This formulation is
structurally aligned with the LP/SOCP/SDP reformulations used in WDRO and WDRO-MRO, en-
abling fair comparison. Group DRO provides robustness against protected groups and subpopulation
shifts, complementing the instance-level perturbation robustness captured by Wassserstein DRO and
the regret-based robustness in WDRO-MRO. It serves as a strong baseline that ensures:

Group-level fairness <= max Ly(0) is small,
g

which is distinct from (i) distributional shifts modeled via Wasserstein balls, and (ii) model-based
adversarial perturbations arising in the minimax regret objective.

J.4 ADDITIONAL RESULTS
J.4.1 ADDITIONAL RESULTS FOR UNIFORM MODALITY WEIGHTS, aj = 1.0

The results presented in and[d]to[7) were generated using uniform modality weights, with
ap = 1.0 for all k.
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Figure 4: WDRO-MRO shows the strongest robustness to label noise on the HANCOCK dataset:
although LR achieves the best AUC on clean data splits (p = 0.0, in distribution, out of distribution), its
performance degrades with increasing noise, while WDRO-MRO maintains consistently higher AUC
at moderate and high noise levels, and dominates across all noise rates on the Oropharynx data split.
Heatmaps report mean AUC for each model (rows) under different noise rates p € {0.0,0.1, ...,0.5}
(columns), with color intensity indicating performance.

K USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used to improve grammar and readability of the text.
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Figure 5: In-distribution split: Boxplots show the distribution of AUC across 5 random seeds under
increasing noise rates (p € {0.0,0.1,0.2,0.3,0.4,0.5}).
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Figure 6: Out-of-distribution split: AUC distributions across seeds for LR, MLP, GDRO, WDRO,
and WDRO-MRO.
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Figure 7: Oropharynx split: Boxplots highlight that WDRO-MRO dominates across all noise
levels, achieving both higher AUC and smaller variance compared to LR, MLP, GDRO and WDRO,
demonstrating strong robustness in this data split.
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