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ABSTRACT

Learning robust multimodal predictors under distributional uncertainty remains
challenging, as empirical risk minimization (ERM) is brittle to modality-specific
perturbations and standard distributionally robust optimization (DRO), by minimiz-
ing worst-case risk, may yield overly conservative solutions under heterogeneous
noise. We introduce Wasserstein Distributionally Robust Minimax Regret
Optimization (WDRO-MRO), a framework that unifies Wasserstein DRO with
minimax regret. By minimizing worst-case regret relative to the oracle predictor,
WDRO-MRO provides a decision-centric robustness notion that directly bounds
performance degradation under heterogeneous shifts. A modality-weighted Wasser-
stein cost further enables selective protection of vulnerable modalities. Theoreti-
cally, WDRO-MRO establishes a solid foundation: existence and uniqueness of
minimax regret solutions under convex losses, convexity and strong duality of
the formulation, and sensitivity characterizations of optimal regret with respect
to ambiguity radii and modality weights. We also provide statistical guarantees
including consistency, finite-sample generalization bounds, O(N−1/2) conver-
gence rates, and explicit sample complexity. Algorithmically, WDRO-MRO admits
tractable convex reformulations (LP, SOCP, SDP, and power-cone programs) and
introduces a dual-game algorithm that couples strong-dual reformulations with an
exponentiated-weights adversary update, yielding an oracle-free no-regret proce-
dure. Empirically, on the HANCOCK multimodal healthcare dataset, WDRO-MRO
maintains competitive average accuracy and improves robustness and fairness com-
pared to ERM and standard DRO, without incurring excessive conservatism.

1 INTRODUCTION

Multimodal machine learning (MML) has achieved strong progress by integrating data from multiple
modalities (e.g., images, text, audio, video), distribution shift is a core robustness challenge (Qiu et al.,
2022). Since empirical risk minimization (ERM) assumes training and test distributions coincide
and thus fails under distribution shift, several studies address robustness by introducing auxiliary
losses to reduce spurious correlations among signals (Yang et al., 2023), by de-bias training via a
group distributionally robust optimization (DRO) objective (Kim et al., 2024), and by pre-training
with DRO to optimize worst-case performance (Shuai et al., 2025). These approaches based on DRO
improve empirical robustness but lack theoretical analysis.

DRO focuses on absolute risk (Kuhn et al., 2025), which may yield conservative solutions and
overlook oracle performance (Agarwal & Zhang, 2022). DRO mitigates ERM’s limitations by
minimizing worst-case risk over an ambiguity set Uρ(P̂N ) centered at the empirical distribution:

min
f∈F

sup
Q∈Uρ(P̂N )

EQ[ℓ(z, f(z))],

where ℓ is a convex loss. To solve the conservativity issue, recent studies minimize regret instead of
risk, either in the form of ex-post regret (Al Taha et al., 2023; Hajar et al., 2023; Kargin et al., 2024;
Bitar, 2024) or ex-ante regret (Agarwal & Zhang, 2022; Cho & Yang, 2024; Poursoltani et al., 2024;
Fiechtner & Blanchet, 2025). However, these approaches define ambiguity sets in a single-modal
space, which fails to capture modality-specific distribution shifts common in multimodal applications.
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Different modalities often show distinct noise structures and varying importance, and treating all
modalities uniformly ignores this heterogeneity and may either over-regularize stable modalities or
under-protect vulnerable ones.

We therefore introduce Wasserstein Distributionally Robust Minimax Regret Optimization
(WDRO-MRO) for the multimodal setting, a framework that redefines robustness by minimizing
worst-case regret:

min
f∈F

sup
Q∈Uρ(P̂N )

(
EQ[ℓ(z, f(z))]− inf

f ′∈F
EQ[ℓ(z, f

′(z))]

)
.

This approach bounds the performance gap relative to the oracle predictor, providing a decision-
centric robustness measure. WDRO-MRO employs a modality-weighted Wasserstein cost, c(z, z′) =∑K

k=1 αkdk(zk, z
′
k), with nonnegative weights αk and modality-specific metrics dk to prioritize

robustness for critical modalities (e.g., noisy histological images in oncology). By leveraging
convexity and strong duality, WDRO-MRO reformulates into tractable convex programs, including
linear programs (LP), second-order cone programs (SOCP), and semidefinite programs (SDP),
ensuring computational efficiency and scalability.

This paper has four main contributions:

• Framework: WDRO-MRO, the first regret-based multimodal learning framework, unifying
modality-weighted Wasserstein ambiguity sets with minimax regret optimization.

• Theory: Proofs of existence and uniqueness of minimax regret solutions under convex losses,
convexity and strong duality, and statistical guarantees, including consistency, finite-sample
bounds, and O(N−1/2) convergence rates.

• Algorithms: Tractable convex reformulations (e.g., linear programs (LP), second-order cone
programs (SOCP), semidefinite programs (SDP), power-cone programs) across different loss
functions and p-Wasserstein norms, together with a dual-game solver (Alg. 1) that couples
strong-dual reformulations with an exponentiated-weights adversary update, yielding an
oracle-free no-regret procedure balancing robustness and generalization.

• Empirics: Validation on the real-world HANCOCK dataset shows that WDRO-MRO
achieves competitive accuracy, robustness and fairness.

2 PROBLEM FORMULATION AND PRELIMINARIES

In multimodal machine learning, data is represented as z ∈ Z = Z1× · · · ×ZK (e.g., Z1 for images,
Z2 for text). The function class F consists of cross-modal predictors f : Z → R (e.g., multimodal
fusion networks that integrate features across modalities). The nominal distribution P0 is unknown,
but we observe N i.i.d. samples {zi = (zi1, . . . , ziK)}Ni=1 ∼ P0, forming the empirical distribution
P̂N = 1

N

∑N
i=1 δzi .

Definition 2.1 (Multimodal Ambiguity Set). To capture distribution shifts, we define the Wasserstein
ambiguity set as Uρ(P̂N ) = {Q ∈ P(Z) : Wp(P̂N , Q) ≤ ρ}, with transportation cost c(z, z′) =∑K

k=1 αkdk(zk, z
′
k), where αk ≥ 0 weights the importance of modality k, and dk is a modality-

specific metric (e.g., pixel distance for images). This weighted cost allows for heterogeneous
robustness across modalities.
Definition 2.2 (Risk, Regret, and Core Problem). The risk under Q is RQ(f) =
EQ[ℓ(z, f(z))], and the regret is RegretQ(f) = RQ(f) − inff ′∈F RQ(f

′). The multimodal
WDRO-MRO problem minimizes the worst-case regret: inff∈F supQ∈Uρ(P̂N ) RegretQ(f) =

inff∈F supQ∈Uρ(P̂N ) [EQ[ℓ(z, f(z))]− inff ′∈F EQ[ℓ(z, f
′(z))]] , where the loss ℓ(z, v) is convex

in v = f(z) (e.g., cross-modal squared loss). This formulation captures multimodal shifts, such as
inter-modal inconsistencies (e.g., image noise vs. text misalignment).

We have the standard assumptions of the multimodal setting:
Assumption 2.1 (Space & transport). Z is a Polish (separable metric) space with its Borel σ-algebra.
The transport cost c : Z×Z → [0,∞] is lower semicontinuous and modality-additive (e.g. c(z, z′) =∑K

k=1 αkdk(zk, z
′
k) with αk ≥ 0).
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Assumption 2.2 (Loss). For every z, the map v 7→ ℓ(z, v) is convex and bounded; moreover it is
L-Lipschitz on the prediction range.
Assumption 2.3 (Model class). F is a closed convex class. One of the following (sufficient) regularity
conditions holds:

(a) (Curvature) ℓ(z, ·) is strictly/strongly convex⇒ uniqueness/stability, or

(b) (Level-boundedness) the outer objective has bounded lower level sets (e.g. via explicit
regularization).

Proposition 2.1 (Interchangeability / Strong Duality for Wasserstein DRO). Under Assumptions 2.1–
2.3, for any empirical reference P̂N we have supQ:Wp(Q,P̂N )≤ρ EQ[ℓ(z, f(z))] = infλ≥0

{
λρ +

EP̂N

[
supz′∈Z{ℓ(z′, f(z′))− λc(ẑ, z′)}

]}
.

This is a standard strong duality result for Wasserstein distributionally robust optimization; see, e.g.,
Mohajerin Esfahani & Kuhn (2018) and Kuhn et al. (2025, Lemma 4.16) for general statements.

3 THEORETICAL ANALYSIS

This section develops the theoretical foundation of WDRO-MRO. Section 3.1 presents the core opti-
mization properties: the existence of inner worst-case distributions, convexity of the outer objective,
existence and uniqueness of solutions, and a strong dual formulation which supports the tractable
reformulations in Sec. 3.2. Section 3.2 builds on these properties to obtain finite-dimensional convex
programs and provides convergence and sensitivity analysis. Section 3.3 establishes statistical guar-
antees, including consistency, finite-sample bounds, and convergence and sensitivity analysis. Finally,
Section 3.4 links WDRO-MRO to implicit regularization and robustness, and shows its continuous
limit to ERM as the ambiguity radius vanishes. Detailed proofs can be found in Appendices F to I.

3.1 BASIC OPTIMIZATION PROPERTIES

Before deriving tractable convex programs in Sec. 3.2.1, we must ensure that the WDRO-MRO
problem is well-defined and solvable, in the sense that worst-case distributions exist, the objective is
convex, solutions exist and are unique, and the formulation admits a strong dual representation.
Proposition 3.1 (Existence of Worst-Case Distribution). Under Assumption 2.2 and 2.3 and Propo-
sition 2.1, for any fixed f ∈ F , there exists a worst-case distribution Q⋆ ∈ Uρ(P̂N ) that attains
supQ∈Uρ(P̂N ) RegretQ(f). Moreover, Q⋆ is characterized by an optimal transport plan π⋆ respect-
ing the weighted modality costs αkdk(zk, z

′
k), where π⋆ solves the Kantorovich problem with cost

c(z, z′) =
∑

k αkdk(zk, z
′
k).

Proposition 3.2 (Convexity of the Problem). Under Assumption 2.2 and 2.3 and Proposition 2.1,
the WDRO-MRO objective ϕ(f) is convex in f ∈ F . Furthermore, if ℓ(z, v) is strongly convex in
v with modulus κ > 0, and the modality-specific assumptions hold (e.g., additive convexity across
modalities), then ϕ(f) is strongly convex in f .
Proposition 3.3 (Existence and Uniqueness of Solutions). Under Assumption 2.2 and 2.3 and Propo-
sition 2.1, the infimum in the WDRO-MRO problem is attained. Furthermore, if the loss function
ℓ(z, v) is strictly convex in v, then the solution is unique.
Proposition 3.4 (Strong Duality). Under Assumption 2.2 and 2.3 and Proposition 2.1, the
WDRO-MRO problem admits a strong dual formulation with zero duality gap. Specifically,
for any fixed f ∈ F , the inner maximization supQ∈Uρ(P̂N ) RegretQ(f) equals infλ≥0 λρ +

EP̂N [supz′∈Z (ℓ(z, f(z′))− λc(ẑ, z′))− inff ′∈F supz′′∈Z (ℓ(z, f ′(z′′))− λc(ẑ, z′′))] , where the
overall problem reformulates as a finite-dimensional convex optimization problem over dual variables.

3.2 COMPUTATIONAL PROPERTIES

By strong duality, WDRO-MRO reduces to finite-dimensional convex programs whose type is
determined by the loss and the Wasserstein norm: LP, SOCP, SDP, or power/exponential-cone
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(Sec. 3.2.1). These programs are handled by standard solvers. Beyond these direct solves, Sec. 3.2.2
presents an oracle-free dual-game solver that operates on the same tractable envelopes and alternates
adversarial exponentiated-weights updates with learner/oracle best responses and a projected update
for the radius dual variable. Sec. 3.2.3 states the convergence guarantees, and Sec. 3.2.4 characterizes
how the ambiguity radius and modality weights influence the optimum and informs tuning.

3.2.1 TRACTABLE REFORMULATIONS FOR GENERAL p

Throughout this subsection, we assume f is affine, i.e., f(z′) =
∑

m Fmz′m + g, standard in
multimodal machine learning, ensuring finite suprema. The transportation cost is c(z, z′) =∑K

m=1 αm∥zm − z′m∥pp, with weights αm ≥ 0 modulating robustness across modalities, priori-
tizing those with higher αm. Assumptions 2.2–2.1 hold, ensuring convexity and measurability,
with Proposition 2.1 guaranteeing interchange; see (Zhang et al., 2025). All reformulations are
finite-dimensional convex programs with zero duality gap (Section 3.2). We organize the results by
loss type (piecewise linear, quadratic, general convex) and Wasserstein norm p. These reformulations
provide tractable solutions for WDRO-MRO across different p-norms and loss types, leveraging LP
for polyhedral constraints, SOCP/SDP for quadratic terms, and power/exponential cones for general
p. The reformulations are summarized in Table 1. For brevity, the main results for general convex
loss, piecewise linear and quadratic cases are given in Appendix B.

Table 1: Tractable reformulations for WDRO-MRO under different losses and Wasserstein norms.

Loss Type p-norm Constraints Cone / Program Type
Piecewise p = 1 Linear constraints with aux. vars. LP
Linear p = 2 Rotated quadratic constraints SOCP

2 < p <∞ Power cone constraints Convex (Power Cone)
p =∞ Vertex-enumeration constraints LP

Quadratic p = 1 Matrix inequality (block PSD) SDP (SOCP if diag.Q)
p = 2 Matrix inequality (block PSD) SDP (SOCP if diag.Q)
2 < p <∞ Conjugate representation SDP / Exp. Cone
p =∞ Vertex-PSD constraints SDP

General p = 1 Convex conjugate constraints SDP / LP (Lipschitz case)
Convex p = 2 S-lemma based constraints SDP

2 < p <∞ Conjugate + power cone Convex (Power/Exp. Cone)
p =∞ Polyhedral or dual vertex constraints LP / SDP

Canonical Objective. All tractable reformulations in Lemmas B.1 to B.12 share the following
canonical objective: minf∈F, λ,λ′≥0, si,s′i

λρ + 1
N

∑N
i=1 si −

(
λ′ρ + 1

N

∑N
i=1 s

′
i

)
, where {si}

correspond to the regret constraints for the candidate predictor f , and {s′i} are defined analogously
for the oracle predictor in the infimum term.

3.2.2 ORACLE-FREE DUAL-GAME HYBRID SOLVER

The WDRO–MRO problem can be cast as a two-player zero-sum game between the learner and an
adversarial nature. Leveraging the strong-dual reformulations in Section 3.2.1, we construct an oracle-
free iterative scheme in Algorithm 1: dual envelopes are computed via tractable convex programs,
nature updates its distribution using exponentiated weights, and the learner/oracle predictors are
updated accordingly.

Remark 3.1 (Non-convex deep models). Our tractability and convergence results rely on convexity of
the learner and oracle objectives. For non-convex deep architectures, Algorithm 1 can be instantiated
as a first-order min–max procedure: in each iteration, the “Learner / Oracle updates” are implemented
by one or a few stochastic gradient steps on mini-batches, while the adversary distribution is updated
via the same exponentiated-weights rule. This corresponds to replacing exact best responses with

4
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Algorithm 1 WDRO–MRO: Oracle-Free Dual-Game Solver with Exponentiated Weights

Require: samples {ẑi}Ni=1, radius ρ, cost c, loss ℓ, steps η, ηλ
1: Initialize w1(i)← 1/N , λ1 ← 0, pick f1, g1 ∈ F
2: for t = 1, 2, . . . , T do
3: Dual envelopes: for each i, compute si(ft, λt) and si(gt, λt) from the canonical objective

(Section 3.2.1).
4: Nature update: let ∆i ← si(ft, λt)−si(gt, λt) and update wt+1(i)← wt(i) exp(η∆i)∑N

j=1 wt(j) exp(η∆j)
.

5: Learner / Oracle updates: ft+1 ∈ argminf∈F

{
λtρ+

∑N
i=1 wt+1(i) si(f, λt)

}
, gt+1 ∈

argming∈F

{
λtρ+

∑N
i=1 wt+1(i) si(g, λt)

}
.

6: Radius dual: update λt+1 ← Π[0,λmax]

(
λt + ηλ(ρ− ρ̂t)

)
, where ρ̂t is the empirical dual

subgradient.
7: end for
8: Output: averaged predictor f̄ ← 1

T

∑T
t=1 ft

approximate SGD-based updates, in line with standard practice in non-convex DRO and adversarial
training.

3.2.3 ALGORITHMIC CONVERGENCE GUARANTEES

We next establish convergence guarantees for the convex subproblems introduced in Section 3.2.
These include LP, SOCP, SDP, and power or exponential cone programs. Under standard assumptions,
interior-point or first-order methods achieve either linear or sublinear rates. The modality weights
αm ≥ 0 in the transportation cost c(z, z′) =

∑K
m=1 αm∥zm − z′m∥pp affect the associated Lipschitz

constants and thereby influence convergence rates. All subproblems are convex with zero duality gap
(Proposition 3.4), and attain their optima by Proposition 3.1.
Proposition 3.5 (Global convergence of the Dual-Game Hybrid Solver). Suppose Assumption 2.2
and 2.3 and Proposition 2.1 hold and the tractable reformulations in Section 3.2.1 admit zero duality
gap with attained optima. Let the nature weights wt ∈ ∆([N ]) be updated by exponentiated weights
with step size η = Θ(

√
lnN/T ). Assume learner and oracle best-responses are computed to

accuracy εt ≥ 0, and that the dual variable λt ∈ [0, λmax] is updated by projected subgradient
ascent with steps ηλ,t = Θ(1/

√
T ) and bounded subgradients ∥gt∥ ≤ G.

Define the saddle objective Φ(f, g, w, λ) = λρ+
∑N

i=1 w(i) si(f, λ)−
(
λρ+

∑N
i=1 w(i) s

′
i(g, λ)

)
,

and the averaged iterates f̄ = 1
T

∑T
t=1 ft, ḡ = 1

T

∑T
t=1 gt, w̄ = 1

T

∑T
t=1 wt, λ̄ = 1

T

∑T
t=1 λt.

Then maxw∈∆([N ]), λ∈[0,λmax] Φ(f̄ , ḡ, w, λ) − minf,g∈F Φ(f, g, w̄, λ̄) = O
(√

lnN
T

)
+ O

(
1√
T

)
+

1
T

∑T
t=1 εt. In particular, if all best-responses are solved exactly (εt = 0), the averaged iterate

(f̄ , ḡ, w̄, λ̄) constitutes an Õ(1/
√
T ) saddle point of the hybrid dual game.

Proposition 3.6 (Global convergence with continuousW). Assume the setting of Proposition 3.5, but
let nature’s strategy set be the continuous density-ratio classWB = {w : 0 ≤ w(z) ≤ B, EP0

[w] =
1}. Suppose at each iteration the adversary’s update is implemented by the exact closed form
w⋆

t ∈ argmaxw∈WB
Φ(ft, gt, w, λt). Then with the same learner/oracle updates and dual steps as

in Proposition 3.5, the averaged iterate (f̄ , ḡ, w̄, λ̄) satisfies maxw∈WB , λ∈[0,λmax] Φ(f̄ , ḡ, w, λ)−
minf,g∈F Φ(f, g, w̄, λ̄) = Õ

(
1√
T

)
.

3.2.4 SENSITIVITY ANALYSIS

We analyze the sensitivity of the optimal regret R(ϵ) = inff∈F supQ:Wp(Q,P̂N )≤ϵ RegretQ(f) to the
ambiguity radius ϵ, critical for tuning robustness in multimodal settings with heterogeneous noise (e.g.,
images vs. text). We derive continuity and Lipschitz bounds, extended to high-dimensional regimes
via a reformulation equivalent to a low-dimensional optimization, avoiding costly cross-validation
(Aolaritei et al., 2022).
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Lemma 3.1 (Sensitivity of Optimal Regret). The optimal regret R(ρ) =
inff∈F supQ:Wp(Q,P̂N )≤ρ RegretQ(f) is continuous on ρ > 0. It is Lipschitz continuous
with constant L, the Lipschitz modulus of ℓ(z, v) in v. The subgradient satisfies ∂R(ρ) ⊆ [0, λ⋆],
where λ⋆ ≥ 0 is the optimal dual variable in the Kantorovich-Rubinstein dual from Proposition 3.4.
For multimodal costs c(z, z′) =

∑K
m=1 αm∥zm − z′m∥pp, the weights αm ≥ 0 modulate the

subgradient via the transportation cost gradient ∥∇c(z, z′)∥ ≤
∑

m αm∥zm − z′m∥
p−1
p−1.

Lemma 3.2 (High-Dimensional Error Equivalence). For high-dimensional multimodal data, the
WDRO estimation error ∥f̂DRE − f0∥2/d in the proportional regime (d, n → ∞, d/n → ρ)
is equivalent to the solution of a convex-concave optimization over four scalar variables:

min0≤α≤σf0
max β≥0

τ1,τ2>0

{
βτ1
2 + ρ0βτ2

2 − β2

2M + L
(
α, τ1

β

)
+

√
ρ0βρ(σ

2
f0

+α2)

2τ2
− αβ

√
ρ

√
ρρ0σ2

f0

τ2
2

+ 1

}
.

where L is the smoothed loss function, σ2
f0

is the oracle predictor’s variance scaled by modality
weights αm, and ρ = ρ0/n

p/2.

3.3 STATISTICAL PROPERTIES

This section develops statistical guarantees that show the estimator trained on finite data generalizes
to the underlying distribution. Specifically, we derive consistency, finite-sample bounds, convergence
rates, sample complexity requirements, and the asymptotic unbiasedness of WDRO-MRO estimator.

Theorem 3.1 (Statistical Consistency of WDRO-MRO). Let f̂DRE =

argminf∈F supQ∈Uρ(P̂N ) RegretQ(f) be the WDRO-MRO estimator, where Uρ(P̂N ) = {Q ∈
P(Z) : Wp(P̂N , Q) ≤ ρ} with ρ = ρ0/N

p/2, and P̂N = 1
N

∑N
i=1 δzi is the empirical distribution

from N i.i.d. samples zi ∼ P0. Let f0 = argminf∈F supQ∈Bρ(P0) RegretQ(f) be the population

minimax regret minimizer. Under Assumption 2.2 and 2.3 and Proposition 2.1, f̂DRE → f0 in
probability as N → ∞, i.e., for any ϵ > 0, P

(
∥f̂DRE − f0∥F > ϵ

)
→ 0, where ∥ · ∥F is the

sup-norm on the compact function class F .
Theorem 3.2 (Finite-Sample Guarantees for Out-of-Sample Regret). Let
f̂DRE = argminf∈F supQ∈Uρ(P̂N ) RegretQ(f) be the WDRO-MRO estimator.

supQ∈Bρ(P0) RegretQ(f̂DRE) ≤ inff∈F supQ∈Bρ(P0) RegretQ(f) + LWp(P̂N , P0) + 2RN (F) +√
2 log(2/δ)

N , where L is the effective Lipschitz modulus defined in Appendix H.2, RN (F) is the
Rademacher complexity of {ℓ(z, f(z)) : f ∈ F}, and the weights αk scale the bound through the
variance σ2 =

∑K
k=1 α

2
kσ

2
k in the multimodal cost.

Lemma 3.3 (Convergence Rates for Regret). Under Assumption 2.2 and 2.3 and Proposi-
tion 2.1, let f̂DRE = argminf∈F supQ∈Uρ(P̂N ) RegretQ(f) be the WDRO-MRO estimator. The

out-of-sample regret satisfies, with probability at least 1 − δ, supQ∈Bρ(P0) RegretQ(f̂DRE) −

inff∈F supQ∈Bρ(P0) RegretQ(f) = O

(√
log(1/δ)

N

)
, leveraging the Rademacher complexity

RN (F) = O(1/
√
N) of the multimodal function class F , scaled by modality weights αk through

the variance σ2 =
∑

k α
2
kσ

2
k.

Lemma 3.4 (Sample Complexity for ϵ-Optimal Regret). Let d =
∑K

k=1 dk be the total dimension and
vc(G) the VC dimension of G = {ℓ(z, f(z)) : f ∈ F}. Under Assumption 2.2 and 2.3 and Proposi-
tion 2.1, let f̂DRE = argminf∈F supQ∈Uρ(P̂N ) RegretQ(f). There exist constants C1, C2 > 0

such that if N ≥ C1
vc(G)+log(2/δ)

ϵ2 and N ≥ C2

(
L
ϵ

)max{2,d/p}
, where L = Lℓ

∑K
k=1 αk

is the Lipschitz constant scaled by modality weights αk, then with probability at least 1 − δ,
supQ∈Bρ(P0) RegretQ(f̂DRE)− inff∈F supQ∈Bρ(P0) RegretQ(f) ≤ ϵ.

Lemma 3.5 (Asymptotic Unbiasedness of Debiased WDRO-MRO). Let f̂DRE =
argminf∈F supQ∈Uρ(P̂N ) RegretQ(f) be the WDRO-MRO estimator. Define the debiased

estimator f̂deb = f̂DRE + bN , where bN = O(1/N) is a bias correction term scaled by modality
weights αk through the variance σ2 =

∑
k α

2
kσ

2
k. Under Assumption 2.2 and 2.3 and Proposition 2.1,

6
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as N → ∞, E[f̂deb] → f0, where f0 = argminf∈F supQ∈Bρ(P0) RegretQ(f) is the population
minimax regret minimizer.

3.4 REGULARIZATION AND ROBUSTNESS PROPERTIES

This subsection interprets WDRO-MRO as a regularization mechanism and quantifies its robustness in
multimodal settings. As the ambiguity radius increases, the solution becomes more conservative with
respect to modality-specific shifts, while as the radius vanishes WDRO-MRO converges continuously
to ERM.

In addition to Assumptions 2.1–2.3, we make the following standing assumptions for the regulariza-
tion equivalences.
Assumption 3.1 (Geometry and tails for regularization). Let Z = Z1 × · · · × ZK be a product Polish
space and let the multimodal cost be c(z, z′) =

∑K
k=1 αk∥zk − z′k∥pp, with αk ≥ 0 and p ∈ [1,∞).

(i) (Loss regularity) The loss ℓ(z, v) is convex in v and L-Lipschitz in v on the prediction range
(Assumption 2.2); for the p > 1 variants we additionally assume that ℓ(z, ·) is differentiable
with Lipschitz gradient in v on bounded sets.

(ii) (Multimodal separability) The model class is modality-separable in the sense that f(z) =∑K
k=1 fk(zk) for f ∈ F , and each component fk belongs to a convex class Fk.

(iii) (Finite variation / smoothness) For p = 1 we assume that each fk has bounded total variation
on Zk, so that TVk(fk) <∞. For p > 1 we assume that each fk lies in a Sobolev-type ball
with finite gradient (or higher-order) seminorm, ensuring that the corresponding conjugate
penalty is finite.

(iv) (Tail / moment condition) The data distribution has finite p-th moments in each modality:
E
[∑K

k=1 αk∥Zk∥pp
]
<∞, or, equivalently for our purposes, the empirical support lies in a

bounded set with respect to c(·, ·).

These conditions ensure that the Kantorovich dual representation is well defined, the inner suprema
in the dual problems are finite, and the Fenchel-conjugate-based regularizers (total variation or
Sobolev-type) are proper and lower semicontinuous.

Lemma 3.6 (Variational Regularization Equivalence). Under Assumptions 2.1–3.1, the WDRO-
MRO problem inff∈F supQ∈Uρ(P̂N ) RegretQ(f) is equivalent to the variation regularized problem

inff∈F EP̂N
[ℓ(z, f(z))] + γVar(f), where Var(f) =

∑K
k=1 αk TVk(fk) is the multimodal total

variation regularizer, TVk(fk) is the total variation norm for modality k, and γ > 0 depends on ρ
and the Lipschitz modulus of ℓ.

Proof sketch. Under Assumptions 2.1–3.1, the inner Wasserstein-robust risk admits the Kan-
torovich dual representation (Proposition 2.1): supQ:Wp(Q,P̂N )≤ρ EQ[ℓ(z, f(z))] = infλ≥0

{
λρ +

EP̂N

[
supz′{ℓ(z′, f(z′)) − λc(z, z′)}

]}
. For p = 1 and an L-Lipschitz loss, the inner supremum

can be rewritten via the Fenchel conjugate of ℓ evaluated at dual vectors whose norm is controlled by
the unit ball of the dual transport cost (e.g. Azizian et al., 2023; Gao et al., 2024). Because the cost is
additive across modalities, c(z, z′) =

∑
k αkdk(zk, z

′
k), the dual constraint decomposes by modality

and yields a sum of total-variation seminorms TVk(fk), each weighted by αk. The resulting objective
has the form EP̂N

[ℓ(z, f(z))]+γ
∑K

k=1 αkTVk(fk), with γ proportional to the optimal dual variable
λ⋆ and the radius ρ. Applying the same argument to the regret baseline term (the infimum over f ′)
gives the stated equivalence between the WDRO-MRO problem and a variation-regularized ERM
problem. A detailed derivation is provided in Appendix I.1.

Lemma 3.7 (Multimodal Lipschitz Regularization Equivalence). Under Assumption 3.1, con-
sider the WDRO-MRO problem for classification losses ℓ(y, w⊤x) (e.g., logistic: ℓ(y, v) =
log(1 + exp(−yv))) that are convex and L-Lipschitz in v, with multimodal linear fusion model

7
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f(z) = w⊤z =
∑K

k=1 w
⊤
k zk where z = (z1, . . . , zK) ∈ Z1 × · · · × ZK . The transporta-

tion cost is c(z, z′) =
∑K

k=1 αk∥zk − z′k∥pp with αk ≥ 0. Then, the WDRO-MRO problem
infw supQ∈Uρ(P̂N )

[
EQ[ℓ(y, w

⊤x)]− infw′ EQ[ℓ(y, (w
′)⊤x)]

]
is equivalent to the regularized em-

pirical risk minimization minw EP̂N
[ℓ(y, w⊤x)] + γ∥w∥∗, where γ > 0 depends on ρ and the

Lipschitz modulus of ℓ, and ∥w∥∗ = sup∥u∥p≤1 w
⊤u is the dual norm weighted by modalities:

specifically, ∥w∥∗ = infβk≥0,
∑

k βk=1

∑K
k=1

∥wk∥q

αkβk
with q = p/(p − 1) (Holder dual), ensuring

modality-specific robustness modulated by αk.
Lemma 3.8 (Convergence to Multimodal ERM). Under Assumption 2.2 and 2.3 and Proposition 2.1, as
the ambiguity radius ρ→ 0, the WDRO-MRO problem inff∈F supQ∈Uρ(P̂N ) RegretQ(f) converges
to the multimodal empirical risk minimization (ERM) inff∈F EP̂N

[ℓ(z, f(z))], ensuring graceful
degradation: the solution f̂ρ approaches the ERM solution f̂ERM continuously in the sup-norm on F ,
with the rate modulated by modality weights αk through the sensitivity ∂R/∂ρ ⊆ [0, λ⋆], where λ⋆

scales with
∑

k αk.

4 APPLICATIONS AND EXPERIMENTS

4.1 APPLICATION: WDRO–MRO FOR LOGISTIC REGRESSION

We illustrate the framework on logistic regression. Throughout, y ∈ {±1} and ℓ(y, v) = log(1 +
exp(−yv)), which is 1-Lipschitz in v and convex. Let x = (x1, . . . , xK) be multimodal features
and w = (w1, . . . , wK) the linear classifier so that f(x) = w⊤x. The transportation cost is
c(x, x′) =

∑K
k=1 αk∥xk − x′

k∥pp as in Definition 4.1.
Definition 4.1 (WDRO–MRO for logistic regression). The WDRO–MRO objective reads
minw∈Rd supQ∈Uρ(P̂N )

{
RQ(w)− infw′∈Rd RQ(w

′)
}
, RQ(w) = EQ

[
ℓ(y, w⊤x)

]
.

A. Strong-dual envelopes and tractable reformulations. Specializing Section 3.2.1 to the logistic
loss (ℓ convex, L=1-Lipschitz) and affine f(x′) = w⊤x′, we obtain the per-sample dual envelopes
si(w, λ) = supx′

{
ℓ(yi, w

⊤x′) − λ c(x̂i, x
′)
}
, s′i(w

′, λ) = supx′

{
ℓ(yi, w

′⊤x′) − λ c(x̂i, x
′)
}
,

which instantiate the canonical objective in Eq. (Section 3.2.1).
Proposition 4.1 (Envelopes for logistic; tractable per p). Under Assumptions 2.2–2.3 and f(x′) =
w⊤x′:

(i) p = 1 (LP via Lipschitz). Using the L=1 Lipschitz bound from Lemma B.1, the envelope
admits an LP representation with auxiliary variables tikj ≥ 0: si ≥ ℓ(yi, w

⊤x̂i) +

λ
∑K

k=1 αk

∑dk

j=1 tikj , |x′
k,j − x̂i,k,j | ≤ tikj .

(ii) p = 2 (SDP/SOCP via conjugate). By Lemma B.2, using the convex conjugate of ℓ and c∗(·)
for p=2, si ≥ infu∈R ℓ∗(yi, u) + λ

∑K
k=1

(
1

4αk
∥uwk∥22 + uw⊤

k x̂i,k

)
, which yields

an SDP; if blocks are diagonal it reduces to SOCP (rotated cones).

(iii) 2 < p <∞ (power/exp. cones). By Lemma B.3, the envelope is representable via a convex
program over power cones (rational p) or exponential cones (irrational p).

(iv) p = ∞ (LP/SDP via vertex dual). Using Lemma B.4, we obtain an LP/SDP through
polyhedral/vertex constraints of the box uncertainty region.

In all cases the WDRO–MRO objective with these envelopes is a finite-dimensional convex program
with zero duality gap.

B. Regularized ERM view (upper bound, implementable). For p=2 and logistic loss, the
envelope in 4.1(ii) implies a tight implementable upper bound that yields a group-norm penalty.
Corollary 4.1 (Group-norm regularization upper bound, p=2). Let y ∈ {±1} and ℓ(y, ·) be 1-
Lipschitz. For c(x, x′) =

∑
k αk∥xk−x′

k∥22, supQ∈Uρ(P̂N ) RQ(w) ≤ 1
N

∑N
i=1 ℓ

(
yi, w

⊤x̂i

)
+

8
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ρ
∑K

k=1
∥wk∥2√

αk
. Consequently, minw supQ∈Uρ(P̂N )RQ(w) ≤ minw

1
N

∑N
i=1 ℓ

(
yi, w

⊤x̂i

)
+

γ
∑K

k=1
∥wk∥2√

αk
, with γ proportional to ρ (the constant depends on the chosen conjugate calibration).

Thus WDRO induces a modality-weighted group-lasso penalty.
Remark 4.1. The bound in Corollary 4.1 is exact for several Lipschitz losses and serves as a tight
surrogate for logistic; it is useful for large-scale training and matches the intuition that larger αk

(more trusted modality) yields weaker shrinkage on wk.

C. Oracle-free dual-game solver (specialized to logistic regression) is provided in Appendix C.

4.2 EXPERIMENTAL EVALUATION

We next evaluate WDRO-MRO on the real world HANCOCK dataset (Dörrich et al., 2025), which
contains multimodal records from 763 head and neck cancer patients (2005–2019).

4.2.1 EXPERIMENTAL SETUP

Dataset and Preprocessing. This paper uses five modalities of HANCOCK in experiments, and the
details can be found in Appendix J.1. We simulate robustness stress tests by injecting noise into both
labels and features. Specifically, we consider noise rates ρ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, applied
as label noise, where a fraction ρ of labels is randomly flipped, and feature noise, where Gaussian
perturbations are injected at the group level, targeting one or more modalities. To address class
imbalance, we apply SMOTE oversampling after noise injection. Each experiment is repeated with 5
random seeds. Baselines. We compare WDRO-MRO against three baselines: ERM (Logistic/MLP)
- Empirical Risk Minimization with logistic regression or a multilayer perceptron, and WDRO -
Standard DRO with Wasserstein distance.

Evaluation Metrics. We group evaluation metrics into three categories: (A) Performance metrics,
which measure the overall predictive accuracy (e.g., Average AUC); (B) Robustness metrics (Sagawa
et al., 2020; Koh et al., 2021), such as Robust AUC (minρ AUC(ρ)), RR-AUC (Relative Robustness
AUC, Robust AUC

maxρ AUC(ρ) ), and Worst-Case Drop (maxρ AUC(ρ)− Robust AUC)); and (C) Fairness met-
rics, such as GNR (Group-Noise Robustness, ming,ρ{AUCg(ρ)}), GF Gap (Group-Fairness Gap,
maxg AUCg −ming AUCg). Detailed definitions of all metrics are provided in Table 4.

4.2.2 RESULTS

Table 2: WDRO-MRO shows strong performance, robustness and fairness on HANCOCK dataset.
Best values (per split, per column) are in bold, with detailed visualizations provided in Figures 4 to 7.

Model Split Performance Robustness Fairness Stability
Avg ↑ AUC ± Std ↓ Robust AUC ↑ RR-AUC ↑ W.C. Drop ↓ GNR ↑ GF Gap ↓ NS Drop ↓ |NS Slope| ↓

ERM
(Logistic)

ID 0.635 ±0.105 0.528 0.670 0.259 0.712 0.034 0.259 -0.526
OOD 0.613 ±0.095 0.477 0.654 0.253 0.662 0.047 0.253 -0.463
Oropharynx 0.586 ±0.080 0.470 0.707 0.195 0.620 0.016 0.195 -0.383

ERM
(MLP)

ID 0.602 ±0.090 0.509 0.687 0.232 0.674 0.030 0.232 -0.433
OOD 0.564 ±0.075 0.494 0.775 0.144 0.604 0.032 0.144 -0.296
Oropharynx 0.565 ±0.079 0.463 0.723 0.178 0.613 0.017 0.178 -0.341

GDRO
ID 0.633 ±0.062 0.537 0.776 0.155 0.675 0.004 0.155 -0.289
OOD 0.599 ±0.086 0.448 0.686 0.205 0.644 0.002 0.205 -0.376
Oropharynx 0.615 ±0.086 0.505 0.738 0.179 0.677 0.003 0.179 -0.371

WDRO
ID 0.578 ±0.063 0.515 0.780 0.145 0.593 0.055 0.145 -0.280
OOD 0.554 ±0.046 0.497 0.847 0.090 0.559 0.025 0.085 -0.173
Oropharynx 0.556 ±0.043 0.494 0.822 0.107 0.569 0.010 0.096 -0.187

WDRO-MRO
(ours)

ID 0.684 ±0.028 0.646 0.895 0.076 0.715 0.002 0.076 -0.141
OOD 0.661 ±0.032 0.621 0.907 0.064 0.671 0.007 0.060 -0.125
Oropharynx 0.681 ±0.023 0.655 0.929 0.050 0.697 0.002 0.050 -0.111

Takeaway. Across the aggregated evaluation results over random seeds and noise rates in Table 2,
WDRO-MRO outperforms ERM, standard WDRO and group DRO(Figure 1). It achieves the highest
average AUC with lower variance, improves robustness metrics (higher robust AUC and RR-AUC,
smaller worst-case drop), and yields near-zero group fairness gap. These results demonstrate that

9
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Figure 1: Boxplot of AUC across 3 data splits and 5 random seeds on the HANCOCK dataset.
While LR achieves the highest AUC at ρ = 0.0, its performance degrades under noise. In contrast,
WDRO MRO maintains higher and more stable AUC distributions across noisy settings.

WDRO-MRO improves in performance, robustness, and fairness, whereas WDRO trades accuracy
for conservativeness and ERM remains vulnerable to distribution shifts.

5 CONCLUSION AND FUTURE WORK

This paper introduces WDRO-MRO, a framework that unifies Wasserstein distributional robustness
with minimax regret minimization to address multimodal learning under heterogeneous distributional
shifts. By focusing on worst-case regret relative to the oracle predictor, WDRO-MRO provides
a decision-centric notion of robustness that naturally connects performance and fairness within a
tractable optimization framework. Theory. We establish a comprehensive foundation: worst-case
distributions exist, minimax regret solutions are unique under strictly convex losses, and the objective
is convex with strong duality. We further provide tractable reformulations (LP, SOCP, SDP, and
power-cone programs) across a range of loss functions and p-Wasserstein norms, and design a dual-
game solver (Alg. 1) that couples strong-dual reformulations with an exponentiated-weights adversary
update, yielding an oracle-free, no-regret saddle-point scheme. These are supported by convergence
guarantees, sensitivity analyses with respect to ambiguity radii and modality weights, and statistical
guarantees including consistency, finite-sample bounds, and O(N−1/2) convergence rates. Practice.
On the HANCOCK multimodal dataset, WDRO-MRO demonstrates the strongest robustness to label
noise with higher median AUC and lower variability across seeds and noise rates, and consistently
outperforms both baselines on the Oropharynx split. Outlook. Future research directions include: (i)
developing scalable stochastic and distributed solvers for large-scale multimodal data, (ii) extending
the framework to nonconvex deep fusion models with approximate regret guarantees, (iii) exploring
integration with generative and retrieval-augmented systems, and (iv) learning modality weights in a
bilevel fashion to better trade off robustness and utility. Together, these directions point toward more
reliable and interpretable multimodal AI systems built on minimax regret principles.
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6 ETHICS STATEMENT AND REPRODUCIBILITY STATEMENT

6.1 ETHICS STATEMENT

This study uses only de-identified, publicly released data from the HANCOCK dataset. The original
data collection was approved by the local ethics committee. The HANCOCK article reports that
informed consent was waived because the data are retrospective, and it details the de-identification
steps applied to clinical tables, blood measurements, pathology metadata, and surgery reports. We
did not access any identifiable information, and we did not attempt re-identification.

6.2 REPRODUCIBILITY STATEMENT

We provide code, data processing pipelines, experimental settings, and theoretical derivations to
ensure reproducibility: Code and configurations. All model training and evaluation scripts are sub-
mitted into supplementary materials together with environment files (env.yml). Scripts to regenerate
every table and figure in the manuscript from raw logs are included. Data access and randomness.
Our experiments are based on the publicly available HANCOCK dataset. All experiments are repeated
with five random seeds. Proofs. Full derivations of the objectives and convex reformulations are
provided in the Appendices E to I, together with convergence analysis of the dual-game solver. These
materials enable reproduction of our results and validation of the theoretical components.
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A NOTATION

Table 3: Summary of main notation used in the paper.

Symbol Description

N Number of training samples
z = (x, y) ∈ Z Multimodal data point (features x and label y)
P̂N = 1

N

∑N
i=1 δẑi Empirical distribution

P0 Ground-truth data distribution on Z
K Number of modalities
x = (x1, . . . , xK) Multimodal feature vector
Fm Linear map for modality m in affine model f(z) =

∑K
m=1 Fmzm + g

g Bias vector in the affine model f
y ∈ {±1} Binary label in the logistic example
dk(·, ·) Ground metric on modality k in the cost c(z, z′)
c(z, z′) =

∑K
k=1 αkdk(zk, z

′
k) Multimodal transport cost

Wp(P,Q) Order-p Wasserstein distance between P and Q

Uρ(P̂N ) Wasserstein ambiguity set centered at P̂N

ρ Radius of the Wasserstein ambiguity set
∆([N ]) Probability simplex {w ∈ RN

+ :
∑N

i=1 wi = 1}
wt ∈ ∆([N ]) Nature weights at iteration t in the dual game
λ Dual variable for the Wasserstein radius constraint
λmax Upper bound for λ in the projection Π[0,λmax]

σ2
k Variance proxy (second-moment bound) for modality k

σ2 =
∑K

k=1 α
2
kσ

2
k Aggregate variance proxy in the generalization bounds

Lℓ Lipschitz constant of the loss in its prediction argument
f ∈ F Predictor (e.g., multimodal fusion network)
ℓ(z, f(z)) Loss of predictor f at sample z
RQ(f) = EQ[ℓ(z, f(z))] Risk of f under distribution Q
RegretQ(f) Regret RQ(f)− inff ′∈F RQ(f

′)
ϕ(f) WDRO–MRO objective ϕ(f) = supQ∈Bρ(P̂N ) RegretQ(f)

si(f, λ) Dual envelope for sample ẑi: si(f, λ) = supz′ ℓ(ẑi, f(z
′))− λc(ẑi, z

′)
T Number of iterations in the dual-game solver
η, ηλ Step sizes for nature and radius-dual updates

B TRACTABLE REFORMULATIONS FOR GENERAL p

General Convex Loss: ℓ(z, v) proper, l.s.c., bounded in [0,M ], L-Lipschitz in v.
Lemma B.1 (p = 1). With c(z, z′) =

∑K
m=1 αm∥zm − z′m∥1, the canonical objective is subject

to SDP (or LP) constraints: si ≥ infu∈Rdim(v) ℓ∗(ẑi, u) + λc∗(ẑi,−u/λ). For L-Lipschitz ℓ, this
reduces to linear constraints si ≥ ℓ(ẑi, f(ẑi)) + Lλc(ẑi, z

′).

Lemma B.2 (p = 2). With c(z, z′) =
∑K

m=1 αm∥zm − z′m∥22, the canonical objective is subject to
SDP constraints: si ≥ infu∈Rdim(v) ℓ∗(ẑi, u) + λc∗(ẑi,−u/λ), where ℓ∗(z, u) is representable via
the S-lemma, and c∗(z, u) =

∑
m

1
4αm
∥um∥22 + u⊤

mzm.

Lemma B.3 (2 < p < ∞). With c(z, z′) =
∑K

m=1 αm∥zm − z′m∥pp, the canonical objective is
subject to convex program constraints: si ≥ infu∈Rdim(v) ℓ∗(ẑi, u) + λc∗(ẑi,−u/λ), where c∗(z, u)
is representable via power cones (rational p) or exponential cones (irrational p).

Lemma B.4 (p =∞). With c(z, z′) =
∑K

m=1 αm∥zm − z′m∥∞, the canonical objective is subject to
LP/SDP constraints: si ≥ infu∈Rdim(v) ℓ∗(ẑi, u) + λc∗(ẑi,−u/λ), where ℓ∗(z, u) is polyhedral for
polyhedral support, and c∗(z, u) =

∑
m u⊤

mzm under ℓ1 bounds.

Piecewise Linear Loss: ℓ(z, v) = maxk=1,...,J(a
⊤
k v + bk).
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Lemma B.5 (p = 1). With c(z, z′) =
∑K

m=1 αm∥zm − z′m∥1, the canonical objective is subject to
linear constraints: si ≥ a⊤k f(z

′)+bk−λ
∑K

m=1

∑dim(Zm)
j=1 αmti,k,m,j , ti,k,m,j ≥ |zi,m,j−z′m,j |,

for all i = 1, . . . , N , k = 1, . . . , J , m = 1, . . . ,K, j = 1, . . . ,dim(Zm). This yields a LP.

Lemma B.6 (p = 2). With c(z, z′) =
∑K

m=1 αm∥zm − z′m∥22, the canonical objective is subject to
SOCP constraints: si ≥ a⊤k g + bk − λ

∑K
m=1 αm∥ẑi,m∥22 +

∑K
m=1

1
4λαm

∥a⊤k Fm∥22 + a⊤k F ẑi, for
all i = 1, . . . , N , k = 1, . . . , J . This yields a SOCP.

Lemma B.7 (2 < p < ∞). With c(z, z′) =
∑K

m=1 αm∥zm − z′m∥pp, the canonical objective is
subject to power cone constraints: si ≥ a⊤k f(z

′) + bk − λ
∑K

m=1 αmti,k,m, ∥ẑi,m − z′m∥p ≤
ti,k,m, ti,k,m ≥ 0, for all i = 1, . . . , N , k = 1, . . . , J , m = 1, . . . ,K. This yields a convex
program over power cones.

Lemma B.8 (p = ∞). With c(z, z′) =
∑K

m=1 αm∥zm − z′m∥∞, the canonical objective is
subject to vertex-enumeration constraints: si ≥ maxz′∈V

[
a⊤k f(z

′) + bk
]
, V = {z′ ∈ Z :∑K

m=1 αm∥ẑi,m − z′m∥∞ ≤ ρ/λ}, for all i = 1, . . . , N , k = 1, . . . , J . This yields a LP.

Quadratic Loss: ℓ(z, v) = v⊤Qv + q⊤v + q0, Q ⪰ 0.

Lemma B.9 (p = 1). With c(z, z′) =
∑K

m=1 αm∥zm − z′m∥1, the canonical objective is subject to

SDP constraints:
(

Q 1
2 (f(z

′) + q)
1
2 (f(z

′) + q)⊤ si − q0 + λc(ẑi, z
′)

)
⪰ 0, for all i = 1, . . . , N . For diagonal

Q, this reduces to SOCP constraints.

Lemma B.10 (p = 2). With c(z, z′) =
∑K

m=1 αm∥zm −
z′m∥22, the canonical objective is subject to SDP constraints:(

λI 1
2

∑K
m=1 αm(Fmẑi,m − f(z′))

1
2

(∑K
m=1 αm(Fmẑi,m − f(z′))

)⊤
si − q0 − q⊤f(z′)− λ

∑K
m=1 αm∥ẑi,m∥22

)
⪰ 0, for

all i = 1, . . . , N . For diagonal Q, this reduces to SOCP constraints.

Lemma B.11 (2 < p < ∞). With c(z, z′) =
∑K

m=1 αm∥zm − z′m∥pp, the canonical objective
is subject to convex constraints: si ≥ infu∈Rdim(v) ℓ∗(ẑi, u) + λc∗(ẑi,−u/λ), where ℓ∗(z, u) is
representable via quadratic relaxation, and c∗(z, u) via power or exponential cones depending on p.

Lemma B.12 (p = ∞). With c(z, z′) =
∑K

m=1 αm∥zm −
z′m∥∞, the canonical objective is subject to SDP constraints:(

λI 1
2

∑K
m=1 αm(Fmẑi,m − f(z′))

1
2

(∑K
m=1 αm(Fmẑi,m − f(z′))

)⊤
si − q0 − q⊤f(z′)− λ

∑K
m=1 αm∥ẑi,m∥∞

)
⪰ 0, for

all z′ ∈ V , where V is the vertex set of the box uncertainty region.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C ORACLE-FREE DUAL-GAME SOLVER (SPECIALIZED TO LOGISTIC)

Algorithm 2 WDRO–MRO Dual-Game Solver for Logistic Regression

Require: samples {(x̂i, yi)}Ni=1, radius ρ, stepsizes η, ηλ, projection bound λmax

1: Initialize nature weights π1(i)← 1/N , dual radius λ1 ≥ 0, predictors w1, w
′
1 ∈ Rd

2: for t = 1, 2, . . . , T do
3: Dual envelopes (common λt): for each i, compute

sti = si(wt, λt), s′ti = si(w
′
t, λt),

via the tractable LP/SDP/SOCP reformulations in Prop. 4.1
4: Nature update (no-regret): let ∆i ← sti − s′ti (optionally mean-centered)

πt+1(i) ←
πt(i) exp(η∆i)∑N

j=1 πt(j) exp(η∆j)
.

5: Learner / Oracle best-responses (same λt):

wt+1 ∈ arg min
w∈Rd

λtρ +

N∑
i=1

πt+1(i) si(w, λt),

w′
t+1 ∈ arg min

w′∈Rd
λtρ +

N∑
i=1

πt+1(i) si(w
′, λt) .

6: Radius dual update:

λt+1 ← Π[0,λmax]

(
λt + ηλ

(
ρ− ρ̂t

))
,

where ρ̂t is the empirical dual subgradient (e.g., the average transport cost returned by the
dual-envelope subproblems at (wt+1, λt)).

7: end for
8: Output: averaged predictor w̄ = 1

T

∑T
t=1 wt

D RELATED WORK

D.1 MULTIMODAL MACHINE LEARNING AND ROBUSTNESS CONSIDERATION

Multimodal machine learning (MML) investigates methods for learning from data that are represented
in different modialities, such as images, text, audio (Yuan et al., 2025). Precision oncology is a
particularly suitable application domain for MML, as patient data include medical images, radiological
scans, multi-omics, and treatment histories (Zhou et al., 2024). Given that multimodal data are often
noisy, incomplete, and imbalanced (Zhang et al., 2024b), ERM is not sufficient to handle the
associated challenges.

Robust Multimodal Learning. Qiu et al. (2022) evaluates the robustness of multimodal image–text
models via 17 image perturbation and 16 text perturbation techniques. Among these, the character-
level perturbation is the most effective for text, while zoom blur is the most effective for images.
Yang et al. (2023) address robustness in multimodal finetuning by introducing four auxiliary losses-
contrastive image and language losses, together with spurious-aware image and language losses-that
use cross-moal signals to reduce reliance on spurious correlations. To mitigate bias in vision-
language models, such as classifying “ants” with a “flower” background as “bees”, Kim et al. (2024)
propose the Bias-to-Text (B2T) framework. B2T extracts keywords from captions of misclassified
images to interpret visual biases, and then assigns sample-wise bias labels. These inferred bias
are incorporated into debiased training using a group DRO objective. Shuai et al. (2025) propose
federated distributionally robust alignment framework to address client heterogeneity in medical data.
They build a distribution family over client datasets and apply a DRO min-max objective to optimize
the worst-case alignment risk.
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To jointly handle multimodal and decision-dependent uncertainty, Yu & Basciftci (2024) propose a
two-stage DRO framework in which the first stage chooses “here-and-now” decisions (e.g., which
facilities to open) that are allowed to shift both the mixture weights (mode probabilities) and the
per-mode distributions of future uncertainty. In the second stage, after the uncertain parameters (e.g.,
customer demand) are revealed, recourse actions are taken (e.g., determining how much demand to
serve from each open facility) to minimize the resulting cost. They introduce a decision-dependent
multimodal ambiguity set and use strong duality together with McCormick linearization to derive
MILP/MISOCP reformulations that can be solved by existing solvers. These challenges motivate
robust optimization frameworks like WDRO-MRO, which address modality-specific distributional
shifts to ensure reliable performance.

D.2 DISTRIBUTIONALLY ROBUST OPTIMIZATION

The pioneering work in distributionally robust optimization was introduced by Scarf (1958) in the
newsvendor problem with an unknown exact demand distribution. The proposed min-max decision
rule maximizes the expected profit under the worst-case distribution. For minimizing the worse-
case risk, Namkoong & Duchi (2016) proposed the stochastic gradient in f -divergence DRO to
improve efficiency. Based on the DRO idea, Shafieezadeh-Abadeh et al. (2019) proposed new
regularization techniques using the Wasserstein distance and provided probabilistic interpretations of
existing regularization methods. A tutorial on the theory and applications of Wasserstein-DRO in
machine learning can be found in Kuhn et al. (2019). Motivated by the limitations of ϕ-divergence
ball fails to contain the true data distribution, while Wasserstein balls scale poorly with dimension,
Staib & Jegelka (2019) introduced DRO based on the Maximum Mean Discrepancy (MMD). They
proved that MMD-DRO is equivalent, up to small constants, to regularizing the empirical risk by
the reproducing kernel Hilbert space norm of the loss function rather than the model itself. Since
ϕ-divergence measures only the relative probabilistic density ratio at identical support points, it
ignores the metric between outcomes in the underlying metric space; consequently, it may exclude
realistic distributions or include implausibly extreme ones, as illustrate in Example 1 (in Gao &
Kleywegt (2023)). To overcome this limitation, Gao & Kleywegt (2023) use the Wasserstein distance
to define the ambiguity set in distributionally robust stochastic optimization (DRSO) and derive
the strong duality. Wu et al. (2023) use DRO to understand contrastive learning is equivalent to
performing DRO over the negative-sample distribution, minizing the worst-case expected loss within
a KL-divergence ball around the empirical distribution. The temperature parameter is not a heuristic
constant but is the Lagrange multiplier that explicitly controls the radius of the uncertainty set.
While DRO minimizes worst-case risk, it could be too conservative (Agarwal & Zhang, 2022); this
motivates a shift to minimax regret optimization (MRO), which targets worst-case regret under the
distributional uncertainty. WDRO-MRO overcomes this by minimizing worst-case regret, offering a
less conservative, decision-centric approach for multimodal settings.

D.3 MINIMAX REGRET OPTIMIZATION

Given that the risk is sensitive to heterogeneous noise, Agarwal & Zhang (2022) propose minimax
regret optimization (MRO) using weight-based formulations to address distribution shift. This MRO
formulation is less conservative than standard DRO, since it avoids overweighting distributions
with intrinsically higher noise levels. However, a limitation of MRO is its computational demands:
the empirical objective requires repeatedly solving inner ERM problems, which is impractical in
large-scale settings. To address the computational bottleneck, Zhang et al. (2024a) present an
efficient stochastic approximation of MRO via stochastic mirror descent with biased but controlled
gradient estimates, which achieves near-optimal convergence rates. Beyond first-order methods, Gu
& Xu (2024) develop zeroth-order stochastic mirror descent algorithms that rely solely on function
evaluations. They prove O(1/

√
t) convergence rate as well as O(1/

√
t) optimization error. The

minimax regret principle has been applied to causal inference with heterogeneous treatment effects.
Zhang et al. (2024c) study the problem of aggregating conditional average treatment effect (CATE)
estimates across multiple sites. Under assumptions that target-population CATEs lie in the convex
hull of site-specific CATEs and that target covariate distributions are identifiable, the authors derive a
closed-form minimax regret estimator. This estimator corresponds to a weighted average of site-level
CATEs, with weights depending only on within-site estimates, thereby enabling robust generalization
to unseen target populations without requiring individual-level data sharing. To minimize ex-ante
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expected regret under distributional uncertainty, Fiechtner & Blanchet (2025) presents the Wasserstein
distributionally robust regret optimization (DRRO). They prove that under smoothness and regularity
conditions, the DRRO solution is consistent with ERM up to first-order terms, and exactly matches
ERM for convex quadratic losses. For the classical newsvendor problem, regret has a closed-form
characterization via maximizing two one-dimensional concave functions. For general max-affine
losses, they show that regret evaluation is NP-hard and propose a convex relaxation with a provably
tighter bound on the optimality gap.

E PROOFS OF SECTION 2

E.1 PROOF OF PROPOSITION 2.1

Proof sketch. By the Interchangeability Principle on Polish spaces, the supremum moves inside the
expectation even under mild semicontinuity; see Kuhn et al. (2025, Lemma 4.16).

F PROOFS OF SECTION 3.1(BASIC OPTIMIZATION PROPERTIES)

F.1 PROOF OF PROPOSITION 3.1(EXISTENCE OF WORST-CASE DISTRIBUTION)

Proof. We establish existence by leveraging the compactness of the ambiguity set and continuity
properties, then characterize via duality.

Existence. The ambiguity set Uρ(P̂N ) is compact in the weak topology σ(M(Z), Cb(Z)) (Villani
et al., 2008), as it is closed (by lower semicontinuity of c) and tight (finite support of P̂N implies
Prohorov’s theorem applies) (Billingsley, 2013).

For fixed f , RegretQ(f) = EQ[ℓ(z, f(z))] − inff ′∈F EQ[ℓ(z, f
′(z))]. Define ℓf (z) := ℓ(z, f(z))

and ℓ(z) := inff ′∈F ℓ(z, f ′(z)). By Assumption 2.2, ℓf (z) is continuous and bounded; by Assump-
tion 2.3 (compactness) and IP (Assumption 2.1), ℓ(z) is weakly continuous in Q (Mohajerin Esfahani
& Kuhn, 2018). Thus, RegretQ(f) is weakly continuous in Q.

By Berge’s maximum theorem (Berge, 1877), as Uρ(P̂N ) is compact and RegretQ(f) continuous,
the supremum is attained.

Characterization. By Kantorovich-Rubinstein duality for multimodal costs (extended via separabil-
ity: c(z, z′) =

∑
k αkdk(zk, z

′
k)) (Zhang et al., 2025; Mohajerin Esfahani & Kuhn, 2018), under

Assumption 2.1 (convexity, lsc of costs) and IP,

sup
Q∈Uρ(P̂N )

EQ[ℓf (z)] = inf
λ≥0

λρ+ EP̂N

[
sup
z′

ℓf (z
′)− λc(ẑ, z′)

]
.

The dual attains at λ⋆, yielding optimal transport plan π⋆ minimizing transport cost for mass from
P̂N to Q⋆, with π⋆(ẑ, z′) > 0 only if z′ maximizes ℓf (z′)− λ⋆c(ẑ, z′).

Similarly for the infimum term. The regret supremum is attained at Q⋆ induced by π⋆ respecting
weighted αkdk (modality-specific metrics) Kuhn et al. (2019). Then existence of Q⋆ follows from
compactness and continuity.

F.2 PROOF OF PROPOSITION 3.2(CONVEXITY OF THE PROBLEM)

Proof. We establish convexity and strong convexity leveraging the additive structure from modalities
and the convexity of the ambiguity set.

Convexity. For fixed Q ∈ Uρ(P̂N ), consider RQ(f) = EQ[ℓ(z, f(z))]. By Assumption 2.2, ℓ(z, v)
is convex in v, and additive across modalities: ℓ(z, v) =

∑
k ℓk(zk, v) with each ℓk convex. As f(z)

is affine in f (linear composition), and expectation preserves convexity Rahimian & Mehrotra (2022),
RQ(f) is convex in f .

The regret RegretQ(f) = RQ(f) − inff ′∈F RQ(f
′) is convex in f , since the infimum term is

constant for fixed Q.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

The ambiguity set Uρ(P̂N ) is convex Kuhn et al. (2019), as the Wasserstein ball is convex under
convex transportation cost c(z, z′) (Assumption 2.1). The pointwise supremum over a convex set
preserves convexity (Rockafellar, 1970), so ϕ(f) = supQ RegretQ(f) is convex in f .

Strong Convexity. Assume ℓ(z, v) is strongly convex in v with modulus κ > 0. Then, each
modality-specific ℓk(zk, v) is strongly convex, implying overall strong convexity of ℓ. Thus, RQ(f)
is strongly convex in f with modulus κ (strong convexity preserved under affine composition and
expectation) (Rahimian & Mehrotra, 2022).

RegretQ(f) inherits strong convexity, as the subtracted term is constant. The supremum over Q
preserves strong convexity (Zhang et al., 2025), yielding ϕ(f) strongly convex in f .

F.3 PROOF OF PROPOSITION 3.3(EXISTENCE AND UNIQUENESS OF SOLUTIONS)

Proof. We proceed in two main steps: first, establish existence by proving lower semicontinuity of
the objective on a compact domain; second, prove uniqueness via strict convexity.

Existence. By Assumption 2.3, F is convex and compact in the sup-norm topology (uniform
topology) on C(Z), the space of continuous functions on Z (Kuhn et al., 2019). It suffices to show ϕ
is lower semicontinuous on F ; then, by Weierstrass’ theorem (Rockafellar, 1970), the minimum is
attained.

By Proposition 3.1, for each f , supQ∈Uρ(P̂N ) RegretQ(f) is attained, ensuring ϕ(f) is well-defined
as a maximum (not just supremum).

By Proposition 3.2, ϕ(f) is convex, and thus continuous on the interior of F . Lower semicontinuity
on the boundary follows from the compactness of Uρ(P̂N ) and weak⋆ continuity of RegretQ(f) in Q
(as established in Proposition 3.1 proof), combined with joint continuity in (f,Q) under boundedness
(Assumption 2.2).

Uniqueness. Assume ℓ(z, v) strictly convex in v. Then, by Proposition 3.2, ϕ(f) is strictly convex
on F , yielding a unique minimizer (Gao et al., 2024).

F.4 PROOF OF PROPOSITION 3.4(STRONG DUALITY)

Proof. By Proposition 3.3, the primal WDRO-MRO attains its infimum, ensuring the problem is
well-posed for duality analysis.

We establish strong duality in the following steps: first, duality for the risk maximization under a fixed
predictor; second, duality for the inner minimization over predictors; third, minimax interchange to
form the dual regret formulation; and finally, finite-dimensionality and multimodal extension.

Duality for the risk term under fixed f . For fixed f ∈ F , the risk term is RQ(f) = EQ[ℓ(z, f(z))].
Define ℓf (z) := ℓ(z, f(z)), which is convex in z by Assumption 2.2 (as ℓ(z, v) is convex in v and
f(z) is affine in z under multimodal fusion). By the generalized Kantorovich-Rubinstein duality
for separable costs c(z, z′) =

∑
k αkdk(zk, z

′
k) (where dk are metrics on Zk), which holds under

Assumption 2.1 (convex, non-negative, lower semicontinuous, modality-additive) and Assumption 2.1
(ensuring measurability and interchange), we have

sup
Q∈Uρ(P̂N )

EQ[ℓf (z)] = inf
λ≥0

λρ+ EP̂N

[
sup
z′∈Z

(ℓf (z
′)− λc(ẑ, z′))

]
,

with zero duality gap (see (Zhang et al., 2025, Theorem 1) for general costs and IP ensuring strong
duality; the multimodal separability follows from additive convexity in Assumption 2.2 and cost
structure). By Proposition 3.1, this sup is attained at some Q⋆, ensuring the primal maximum equals
the dual minimum.

Duality for the oracle infimum term. The term inff ′∈F RQ(f
′) is inff ′∈F EQ[ℓ(z, f

′(z))].
By Assumption 2.3 (F convex, compact), and IP (Assumption 2.1), interchange holds:
inff ′ EQ[ℓ(z, f

′(z))] = EQ[inff ′ ℓ(z, f ′(z))]. Define ℓ(z) := inff ′∈F ℓ(z, f ′(z)), which is con-
cave in z (as infimum of convex functions in v). Applying duality similarly,

sup
Q∈Uρ(P̂N )

inf
f ′∈F

RQ(f
′) = sup

Q∈Uρ(P̂N )

EQ[ℓ(z)] = inf
λ′≥0

λ′ρ+ EP̂N

[
sup
z′′∈Z

(ℓ(z′′)− λ′c(ẑ, z′′))

]
.
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Minimax interchange for regret formulation. Thus, supQ RegretQ(f) = supQ RQ(f) −
supQ inff ′ RQ(f

′). By Sion’s minimax theorem (Sion, 1958) (under compactness of F , convexity in
f from Proposition 3.2, and quasiconcavity in Q from separability and convexity), interchange yields
zero gap: inff supQ RegretQ(f) = supQ inff RegretQ(f). For fixed f , the regret supremum is

inf
λ≥0

λρ+ EP̂N

[
sup
z′

ℓ(z, f(z′))− λc(ẑ, z′)

]
− inf

λ′≥0
λ′ρ+ EP̂N

[
sup
z′′

ℓ(z′′)− λ′c(ẑ, z′′)

]
.

Finite-dimensionality and multimodal extension. Finite-dimensionality follows from empirical
measure (discrete support) and dual variables λ, λ′. The multimodal extension holds as costs and
losses are additive across modalities, preserving separability in duality (see (Kuhn et al., 2019,
Theorem 1) for extensions to structured costs).

G PROOFS OF SECTION 3.2(COMPUTATIONAL PROPERTIES)

G.1 PROOF OF LEMMA B.5(p = 1 , PIECEWISE LINEAR LOSS)

Proof. By Proposition 3.4, for fixed f ∈ F , supQ∈Uρ(P̂N ) RegretQ(f) equals

inf
λ≥0

λρ+ EP̂N

[
sup
z′∈Z

(ℓ(z, f(z′))− λc(ẑ, z′))− inf
f ′∈F

sup
z′′∈Z

(ℓ(z, f ′(z′′))− λc(ẑ, z′′))

]
,

with zero duality gap. This incorporates Sion’s minimax interchange for the inf-sup in the regret term,
justified by compactness and convexity (Assumption 2.3 and Proposition 3.2).

We derive the LP reformulation in the following steps: first, introduction of epigraph variables for
the sup terms; second, exploitation of the piecewise linear structure and max-sup interchange; third,
analogous dualization of the inf term; fourth, linearization of the transportation cost using auxiliary
variables; and finally, assembly of the full LP and verification of its properties including convexity
and zero duality gap.

Introduction of epigraph variables for the sup terms. The sup terms attain by Proposition 3.1
(existence of worst-case Q⋆, implying attainment in dual variables).

For the first sup term, define ℓf (z′) := ℓ(ẑ, f(z′)) = maxk=1,...,J(a
⊤
k f(z

′)+bk). Introduce epigraph
variables si ≥ 0 (one per sample ẑi):

inf
λ≥0,si≥0

λρ+
1

N

N∑
i=1

si s.t. si ≥ sup
z′∈Z

ℓf (z
′)− λc(ẑi, z

′), ∀i.

This is equivalent by epigraph representation preserving convexity (Proposition 3.2; see (Boyd &
Vandenberghe, 2004), Section 4.2).

Exploitation of the piecewise linear structure and max-sup interchange. Substitute the piecewise
max:

si ≥ max
k=1,...,J

sup
z′∈Z

(
a⊤k f(z

′) + bk − λc(ẑi, z
′)
)
,

equivalent to
si ≥ sup

z′∈Z
a⊤k f(z

′) + bk − λc(ẑi, z
′), ∀k,

by max-sup interchange (continuity and finite J; (Rockafellar, 1970), Corollary 37.3.2).

Analogous dualization of the inf term. The inf term dualizes similarly, replacing f with f ′ and
using primed variables.

Linearization of the transportation cost using auxiliary variables. For each k, c(ẑi, z′) =∑K
m=1

∑dim(Zm)
j=1 αm|ẑi,m,j − z′m,j |. Introduce ti,k,m,j ≥ 0:

sup
z′

a⊤k f(z
′) + bk − λc(ẑi, z

′) = inf
ti,k,m,j≥0

a⊤k f(z
′) + bk − λ

∑
m,j

αmti,k,m,j
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s.t.
ti,k,m,j ≥ ẑi,m,j − z′m,j , ti,k,m,j ≥ z′m,j − ẑi,m,j , ∀m, j.

This linearizes the absolute values, equivalent by non-negativity and boundedness (compact Z; (Boyd
& Vandenberghe, 2004), Section 3.1.7).

Substitute: si ≥ a⊤k f(z
′) + bk − λ

∑
m,j αmti,k,m,j ,∀k, with t-constraints. The inf over t attains by

Slater (strict feasibility) and Proposition 3.3.

The full reformulation is the stated LP. Convexity follows from linear objective/constraints and
Proposition 3.2. Zero gap holds by Proposition 3.4, with optima attained per Proposition 3.3.

G.2 PROOF OF LEMMA B.6(p = 2 , PIECEWISE LINEAR LOSS)

Proof. By Proposition 3.4 (Section 3.1), the regret supremum equals

sup
Q∈Uρ(P̂N )

RegretQ(f) = inf
λ≥0

λρ+EP̂N

[
sup
z′∈Z

(
ℓ(z, f(z′))− λc(ẑ, z′)

)
− inf

f ′∈F
sup
z′′∈Z

(
ℓ(z, f ′(z′′))− λc(ẑ, z′′)

)]
,

with zero duality gap, justified by compactness and convexity (Assumption 2.3 and Proposition 3.2).
The sup terms attain by Proposition 3.1.

We derive the SOCP reformulation in the following steps: introduction of epigraph variables;
computation of closed-form sup for piecewise linear loss; and representation of quadratic terms as
SOCP constraints.

Introduction of epigraph variables. Define ℓf (z
′) := ℓ(ẑ, f(z′)) = maxk=1,...,J(a

⊤
k f(z

′) + bk).
Introduce epigraph variables si ∈ R, with dual variable λ ≥ 0:

inf
λ≥0,si

λρ+
1

N

N∑
i=1

si s.t. si ≥ sup
z′∈Z

ℓf (z
′)− λc(ẑi, z

′), ∀i.

This is equivalent by epigraph representation preserving convexity (Proposition 3.2; see (Boyd &
Vandenberghe, 2004), Section 4.2). The inf term is analogous with primed variables (λ′, s′i), replacing
f with f ′.

Computation of closed-form sup for piecewise linear loss. The compactness of Z (Assumption 2.3)
ensures the sup is attained. For the constraint si ≥ supz′ ℓf (z

′)− λc(ẑi, z
′), we have

si ≥ max
k=1,...,J

sup
z′∈Z

(
a⊤k f(z

′) + bk − λc(ẑi, z
′)
)
.

For affine f(z′) =
∑

m Fmz′m + g, the affine form ensures finite suprema. Define a⊤k f(z
′) =∑

m l⊤k,mz′m + ck, where lk,m = F⊤
mak, ck = a⊤k g, and c(ẑi, z

′) =
∑

m αm∥ẑi,m − z′m∥22. The
weights αm scale the quadratic terms, reflecting heterogeneous robustness. By max-sup interchange
(continuity and finite J ; (Rockafellar, 1970), Corollary 37.3.2), this becomes

si ≥ max
k=1,...,J

[
sup
z′∈Z

(
K∑

m=1

l⊤k,mz′m + ck − λ

K∑
m=1

αm∥ẑi,m − z′m∥22

)]
.

For each k, compute the inner sup over z′m:

sup
z′
m

l⊤k,mz′m − λαm∥ẑi,m − z′m∥22.

Complete the square: let x = z′m − ẑi,m, so

l⊤k,m(x+ ẑi,m)− λαm∥x∥22 = −λαm

∥∥∥∥x− lk,m
2λαm

∥∥∥∥2
2

+
∥lk,m∥22
4λαm

+ l⊤k,mẑi,m.

The supremum, attained at x =
lk,m

2λαm
, is

l⊤k,mẑi,m +
1

4λαm
∥lk,m∥22.
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Summing over modalities and including the constant term,

si ≥ max
k=1,...,J

[
ck +

K∑
m=1

(
l⊤k,mẑi,m +

1

4λαm
∥lk,m∥22

)]
.

The inf term reformulates similarly with primed variables (λ′, s′i), replacing f with f ′.

Representation of quadratic terms as SOCP constraints. Each quadratic term 1
4λαm

∥lk,m∥22 ≤ t
is SOCP-representable via the rotated quadratic cone (see (Boyd & Vandenberghe, 2004), Section
4.4.2). Let u = lk,m/

√
4λαm, so

∥u∥22 ≤ t ⇐⇒ ∥(t− 1, 2u)∥2 ≤ t+ 1.

The infimum over auxiliary variables attains due to Slater’s condition, satisfied by the compactness of
Z (Assumption 2.3). Thus, the full WDRO-MRO reformulates as the stated SOCP, which is convex
due to linear objectives and conic constraints (Proposition 3.2). Strong duality holds with zero gap by
Proposition 3.4, with optima attained per Proposition 3.3.

G.3 PROOF OF LEMMA B.7(2 < p <∞ , PIECEWISE LINEAR LOSS)

Proof. By Proposition 3.4 (Section 3.1), the regret supremum equals

sup
Q∈Uρ(P̂N )

RegretQ(f) = inf
λ≥0

λρ+EP̂N

[
sup
z′∈Z

(
ℓ(z, f(z′))− λc(ẑ, z′)

)
− inf

f ′∈F
sup
z′′∈Z

(
ℓ(z, f ′(z′′))− λc(ẑ, z′′)

)]
,

with zero duality gap, justified by compactness and convexity (Assumption 2.3 and Proposition 3.2).
The sup terms attain by Proposition 3.1. The compactness of Z (Assumption 2.3) ensures finite
suprema.

We derive the power cone reformulation in the following steps: introduction of epigraph variables;
reformulation of the epigraph constraint via Fenchel-Moreau theorem; conjugate computation for the
transportation cost; representation of constraints as power cones; analogous reformulation of the inf
term; and assembly of the full program and verification of its properties.

Introduction of epigraph variables. Define ℓf (z
′) := ℓ(ẑ, f(z′)) = maxk=1,...,J(a

⊤
k f(z

′) + bk).
Introduce epigraph variables si ∈ R, with dual variable λ ≥ 0:

inf
λ≥0,si

λρ+
1

N

N∑
i=1

si s.t. si ≥ sup
z′∈Z

ℓf (z
′)− λc(ẑi, z

′), ∀i.

This is equivalent by epigraph representation preserving convexity (Proposition 3.2; see (Boyd &
Vandenberghe, 2004), Section 4.2). The inf term is analogous with primed variables (λ′, s′i), replacing
f with f ′.

Reformulation of the epigraph constraint via Fenchel-Moreau theorem. For affine f(z′) =∑
m Fmz′m + g, the affine form ensures finite suprema. The epigraph constraint is

si ≥ sup
z′∈Z

ℓ(ẑi, f(z
′))− λc(ẑi, z

′),

with c(ẑi, z′) =
∑K

m=1 αm∥ẑi,m−z′m∥pp. By Fenchel-Moreau theorem (Rockafellar, 1970) (Theorem
12.2; applies to proper convex l.s.c. ℓ by Assumption 2.2), rewrite as

sup
z′

ℓf (z
′)− λc(ẑi, z

′) = inf
u∈Rdim(z)

ℓ∗(ẑi, u) + λc∗(ẑi,−u/λ),

by Fenchel inf-convolution duality (Rockafellar, 1970) (Theorem 16.4; strong duality under rel-
ative interior conditions from compactness and Assumption 2.2 boundedness), where ℓ∗(z, u) =
supv u

⊤v − ℓ(z, v) and c∗(z, u) = supz′ u⊤z′ − c(z, z′).

Conjugate computation for the transportation cost. For the cost c(z, z′) =
∑K

m=1 αm∥zm−z′m∥pp,
the conjugate is

c∗(z, u) = sup
z′

K∑
m=1

u⊤
mz′m −

K∑
m=1

αm∥zm − z′m∥pp.
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For each modality m, compute

sup
z′
m

u⊤
mz′m − αm∥zm − z′m∥pp = sup

xm

u⊤
m(xm + zm)− αm∥xm∥pp,

where xm = z′m − zm. By Holder’s inequality, the conjugate is

c∗(z, u) =

K∑
m=1

inf
tm≥0

[
tpm +

1

p− 1

(
∥um∥q
αmtp−1

m

)q]
+ u⊤

mzm,

a generalized Holder conjugate ( (Rockafellar, 1970), Theorem 15.3), where q = p/(p − 1). The
weights αm scale the terms, reflecting heterogeneous robustness across modalities.

Representation of constraints as power cones. For the piecewise linear loss ℓf (z
′) =

maxk=1,...,J(a
⊤
k f(z

′) + bk), the conjugate ℓ∗(z, u) = supv u
⊤v − maxk(a

⊤
k v + bk) is polyhe-

dral, representable as linear Dirac deltas. Substituting into the epigraph constraint:

si ≥ max
k=1,...,J

sup
z′∈Z

[
a⊤k f(z

′) + bk − λ

K∑
m=1

αm∥ẑi,m − z′m∥pp

]
.

Introduce auxiliary variables ti,k,m ≥ 0:

si ≥ max
k=1,...,J

inf
ti,k,m≥0

a⊤k f(z
′) + bk − λ

K∑
m=1

αmtpi,k,m,

subject to
∥ẑi,m − z′m∥p ≤ ti,k,m, ∀m.

This constraint is reformulated as a power cone {(u, t) : ∥u∥q ≤ t} via the Holder conjugate,
representable as ∥(ẑi,m − z′m, ti,k,m)∥q ≤ ti,k,m ( (Ben-Tal & Nemirovski, 2001), Section 4.3). The
infimum over ti,k,m attains due to Slater’s condition, satisfied by the compactness of Z (Assump-
tion 2.3).

Analogous reformulation of the inf term. The inf term reformulates similarly: replace f with f ′ in
the power cone constraints, using primed variables (λ′, s′i), and optimize over f ′ ∈ F .

The full WDRO-MRO is the stated convex program over power cones, convex due to conic constraints
(Proposition 3.2). Strong duality holds with zero gap by Proposition 3.4, with optima attained per
Proposition 3.3 (Section 3.2).

G.4 PROOF OF LEMMA B.8(p =∞ , PIECEWISE LINEAR LOSS)

Proof. By Proposition 3.4 (Section 3.1), the regret supremum equals

sup
Q∈Uρ(P̂N )

RegretQ(f) = inf
λ≥0

λρ+EP̂N

[
sup
z′∈Z

(
ℓ(z, f(z′))− λc(ẑ, z′)

)
− inf

f ′∈F
sup
z′′∈Z

(
ℓ(z, f ′(z′′))− λc(ẑ, z′′)

)]
,

with zero duality gap, justified by compactness and convexity (Assumption 2.3 and Proposition 3.2).
The sup terms attain by Proposition 3.1. The compactness of Z (Assumption 2.3) ensures finite
suprema.

We derive the LP reformulation in the following steps: introduction of epigraph variables; refor-
mulation of the epigraph constraint via Fenchel-Moreau theorem; conjugate computation for the
transportation cost; vertex enumeration for box uncertainty set; analogous reformulation of the inf
term; and assembly of the full program and verification of its properties.

Introduction of epigraph variables. Define ℓf (z
′) := ℓ(ẑ, f(z′)) = maxk=1,...,J(a

⊤
k f(z

′) + bk).
Introduce epigraph variables si ∈ R, with dual variable λ ≥ 0:

inf
λ≥0,si

λρ+
1

N

N∑
i=1

si s.t. si ≥ sup
z′∈Z

ℓf (z
′)− λc(ẑi, z

′), ∀i.
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This is equivalent by epigraph representation preserving convexity (Proposition 3.2; see (Boyd &
Vandenberghe, 2004), Section 4.2). The inf term is analogous with primed variables (λ′, s′i), replacing
f with f ′.

Reformulation of the epigraph constraint via Fenchel-Moreau theorem. For affine f(z′) =∑
m Fmz′m + g, the affine form ensures finite suprema. The epigraph constraint is

si ≥ sup
z′∈Z

ℓ(ẑi, f(z
′))− λc(ẑi, z

′),

with c(ẑi, z
′) =

∑K
m=1 αm∥ẑi,m − z′m∥∞. By Fenchel-Moreau theorem (Rockafellar, 1970) (Theo-

rem 12.2; applies to proper convex l.s.c. ℓ by Assumption 2.2), rewrite as

sup
z′

ℓf (z
′)− λc(ẑi, z

′) = inf
u∈Rdim(z)

ℓ∗(ẑi, u) + λc∗(ẑi,−u/λ),

by Fenchel inf-convolution duality (Rockafellar, 1970) (Theorem 16.4; strong duality under rel-
ative interior conditions from compactness and Assumption 2.2 boundedness), where ℓ∗(z, u) =
supv u

⊤v − ℓ(z, v) and c∗(z, u) = supz′ u⊤z′ − c(z, z′).

Conjugate computation for the transportation cost. For the cost c(z, z′) =
∑K

m=1 αm∥zm −
z′m∥∞, the conjugate is

c∗(z, u) = sup
z′

K∑
m=1

u⊤
mz′m −

K∑
m=1

αm∥zm − z′m∥∞.

Since ∥zm − z′m∥∞ = maxj |zm,j − z′m,j |, the conjugate is finite only if
∑

m ∥um∥1 ≤
∑

m αm,
yielding

c∗(z, u) =

{∑K
m=1 u

⊤
mzm if

∑K
m=1 ∥um∥1 ≤

∑K
m=1 αm,

∞ otherwise,

a polyhedral conjugate ( (Rockafellar, 1970), Example 11.4). The weights αm scale the terms,
reflecting heterogeneous robustness across modalities.

Vertex enumeration for box uncertainty set. For the piecewise linear loss ℓf (z
′) =

maxk=1,...,J(a
⊤
k f(z

′) + bk), the conjugate ℓ∗(z, u) = supv u
⊤v − maxk(a

⊤
k v + bk) is polyhe-

dral. Substituting into the epigraph constraint:

si ≥ sup
z′∈Z

[
max

k=1,...,J
(a⊤k f(z

′) + bk)− λ

K∑
m=1

αm∥ẑi,m − z′m∥∞

]
.

The W∞ uncertainty set is a box: V = {z′ ∈ Z :
∑K

m=1 αm∥ẑi,m − z′m∥∞ ≤ ρ/λ}. Since ℓf (z′) is
piecewise linear and V is polyhedral, the supremum is attained at the vertices of V ( (Ben-Tal et al.,
2009), Theorem 3.1). Thus,

si ≥ max
z′∈V

max
k=1,...,J

[
a⊤k f(z

′) + bk
]
,

yielding a finite-dimensional LP by enumerating the vertices of V . The infimum over auxiliary
variables attains due to Slater’s condition, satisfied by the compactness of Z (Assumption 2.3).

Analogous reformulation of the inf term. The inf term reformulates similarly: replace f with f ′ in
the LP constraints, using primed variables (λ′, s′i), and optimize over f ′ ∈ F .

The full WDRO-MRO is the stated LP, convex due to linear constraints (Proposition 3.2). Strong
duality holds with zero gap by Proposition 3.4, with optima attained per Proposition 3.1 (Section 3.2).

G.5 PROOF OF LEMMA B.9(p = 1 , QUADRATIC LOSS)

Proof. By Proposition 3.4, for fixed f ∈ F , supQ∈Uρ(P̂N ) RegretQ(f) equals

inf
λ≥0

λρ+ EP̂N

[
sup
z′∈Z

(ℓ(z, f(z′))− λc(ẑ, z′))− inf
f ′∈F

sup
z′′∈Z

(ℓ(z, f ′(z′′))− λc(ẑ, z′′))

]
,
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with zero duality gap. This incorporates Sion’s minimax interchange for the inf-sup in the regret term,
justified by compactness and convexity (Assumption 2.3 and Proposition 3.2).

We derive the SDP (or SOCP) reformulation in the following steps: first, introduction of epigraph
variables for the sup terms; second, reformulation of the epigraph constraint via completing the
square; third, equivalence to PSD condition via Schur complement; fourth, reduction to SOCP
for diagonal cases; fifth, linearization of the transportation cost using auxiliary variables; sixth,
analogous reformulation of the inf term; and finally, assembly of the full program and verification of
its properties including convexity and zero duality gap.

Introduction of epigraph variables for the sup terms. The sup terms attain by Proposition 3.1
(existence of worst-case Q⋆, implying attainment in dual variables).

For the first sup term, define ℓf (z
′) := ℓ(ẑ, f(z′)) = f(z′)⊤Qf(z′) + q⊤f(z′) + q0. Introduce

epigraph variables si ∈ R (one per sample ẑi):

inf
λ≥0,si∈R

λρ+
1

N

N∑
i=1

si s.t. si ≥ sup
z′∈Z

ℓf (z
′)− λc(ẑi, z

′), ∀i.

This is equivalent by epigraph representation preserving convexity (Proposition 3.2; see (Boyd &
Vandenberghe, 2004), Section 4.2).

The inf term epigraph reformulates similarly, replacing f with f ′ and using primed variables.

Reformulation of the epigraph constraint via completing the square. The epigraph constraint is

si ≥ sup
z′∈Z

f(z′)⊤Qf(z′) + q⊤f(z′) + q0 − λc(ẑi, z
′).

By compactness ofZ and continuity, the sup attains. Complete the square: f(z′)⊤Qf(z′)+q⊤f(z′)+
q0 = (f(z′)+Q−1q/2)⊤Q(f(z′)+Q−1q/2)−(q⊤Q−1q)/4+q0 (assuming Q ≻ 0; for semidefinite,
use pseudoinverse and range conditions; (Rockafellar, 1970), Theorem 28.3).

Equivalence to PSD condition via Schur complement. The inequality v⊤Qv + q⊤v + q0 ≤ si +
λc(ẑi, z

′) (with v = f(z′)) is equivalent to the PSD condition via Schur complement lemma (Boyd
& Vandenberghe, 2004) (Appendix A.5.5):(

Q 1
2 (f(z

′) + q)
1
2 (f(z

′) + q)⊤ si − q0 + λc(ẑi, z
′)

)
⪰ 0,

since Q ⪰ 0 ensures convexity (Assumption 2.2). This holds under the affine assumption on f , as
f(z′) appears linearly in the off-diagonals.

Reduction to SOCP for diagonal cases. For diagonal Q = diag(Qll), the PSD reduces to SOCP:

si − q0 + λc(ẑi, z
′) ≥ ∥diag(

√
Q)(f(z′) + q/2)∥2,

by separating quadratic terms into second-order cones {(x, t) : ∥x∥2 ≤ t} ( (Boyd & Vandenberghe,
2004), Section 4.4.2).

Linearization of the transportation cost using auxiliary variables. The ℓ1-norm in c can be
linearized by introducing auxiliary variables ti,m,j ≥ 0 (as in Lemma B.5), yielding SDP with
additional linear constraints:

c(ẑi, z
′) = inf

ti,m,j≥0

∑
m,j

αmti,m,j s.t. ti,m,j ≥ ẑi,m,j − z′m,j , ti,m,j ≥ z′m,j − ẑi,m,j .

Substitute into the Schur off-diagonal or SOCP right-hand side.

Analogous reformulation of the inf term. The inf term reformulates similarly: replace f with f ′ in
the SDP/SOCP constraints, using primed variables λ′, s′i, and optimize over f ′ ∈ F .

The full WDRO-MRO is the stated SDP (or SOCP for diagonal Q). Convexity follows from
semidefinite constraints preserving convexity and Proposition 3.2. Zero gap holds by Proposition 3.4,
with optima attained per Proposition 3.3.
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G.6 PROOF OF LEMMA B.10(p = 2 , QUADRATIC LOSS)

Proof. By Proposition 3.4 (Section 3.1), the regret supremum equals

sup
Q∈Uρ(P̂N )

RegretQ(f) = inf
λ≥0

λρ+EP̂N

[
sup
z′∈Z

(
ℓ(z, f(z′))− λc(ẑ, z′)

)
− inf

f ′∈F
sup
z′′∈Z

(
ℓ(z, f ′(z′′))− λc(ẑ, z′′)

)]
,

with zero duality gap, justified by compactness and convexity (Assumption 2.3 and Proposition 3.2).
The sup terms attain by Proposition 3.1.

We derive the SDP reformulation in the following steps: introduction of epigraph variables; com-
putation of closed-form sup via Fenchel conjugate; and representation of constraints as SDP or
SOCP.

Introduction of epigraph variables. Define ℓf (z′) := ℓ(ẑ, f(z′)) = f(z′)⊤Qf(z′)+ q⊤f(z′)+ q0.
Introduce epigraph variables si ∈ R, with dual variable λ ≥ 0:

inf
λ≥0,si

λρ+
1

N

N∑
i=1

si s.t. si ≥ sup
z′∈Z

ℓf (z
′)− λc(ẑi, z

′), ∀i.

This is equivalent by epigraph representation preserving convexity (Proposition 3.2; see (Boyd &
Vandenberghe, 2004), Section 4.2). The inf term is analogous with primed variables (λ′, s′i), replacing
f with f ′.

Computation of closed-form sup via Fenchel conjugate. The compactness of Z (Assumption 2.3)
ensures the sup is attained. For the constraint si ≥ supz′ ℓf (z

′) − λc(ẑi, z
′), with c(ẑi, z

′) =∑K
m=1 αm∥ẑi,m − z′m∥22, we have

si ≥ sup
z′∈Z

[
f(z′)⊤Qf(z′) + q⊤f(z′) + q0 − λ

K∑
m=1

αm∥ẑi,m − z′m∥22

]
.

For affine f(z′) =
∑

m Fmz′m + g, the affine form ensures finite suprema. By Fenchel-Moreau
theorem (Rockafellar, 1970) (Theorem 12.2), rewrite the sup using Fenchel conjugates:

sup
z′

ℓf (z
′)− λc(ẑi, z

′) = inf
u∈Rdim(z)

ℓ∗(ẑi, u) + λc∗(ẑi,−u/λ),

where ℓ∗(z, u) = supv u
⊤v − ℓ(z, v) and c∗(z, u) = supz′ u⊤z′ − c(z, z′). For the quadratic loss

ℓ(z, v) = v⊤Qv + q⊤v + q0, assuming Q ⪰ 0, the conjugate is

ℓ∗(z, u) = sup
v

[
u⊤v − (v⊤Qv + q⊤v + q0)

]
=

1

4
(u− q)⊤Q−1(u− q)− q0,

where Q−1 is the pseudoinverse if Q is singular ( (Rockafellar, 1970), Theorem 23.5). For the cost
c(z, z′) =

∑
m αm∥zm − z′m∥22, the conjugate is

c∗(z, u) = sup
z′

∑
m

u⊤
mz′m −

∑
m

αm∥zm − z′m∥22 =
∑
m

1

4αm
∥um∥22 + u⊤

mzm.

Thus, the epigraph constraint becomes

si ≥ inf
u

[
1

4
(u− q)⊤Q−1(u− q)− q0 + λ

∑
m

1

4λαm
∥ − um/λ∥22 −

∑
m

u⊤
mẑi,m
λ

]
.

The inf term reformulates similarly with primed variables.

Representation of constraints as SDP or SOCP. Complete the square for the quadratic expression
in u, and apply the Schur complement lemma (Boyd & Vandenberghe, 2004) (Appendix A.5.5) to
obtain the SDP constraint: λI 1

2

∑K
m=1 αm(Fmẑi,m − f(z′))

1
2

(∑K
m=1 αm(Fmẑi,m − f(z′))

)⊤
si − q0 − q⊤f(z′)− λ

∑K
m=1 αm∥ẑi,m∥22

 ⪰ 0.
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For diagonal Q = diag(Qll), the constraint reduces to an SOCP:

si − q0 − q⊤f(z′)− λ

K∑
m=1

αm∥ẑi,m∥22 ≥ ∥diag(
√
Q)(f(z′) + q/2)∥2,

representable via the Lorentz cone {(x, t) : ∥x∥2 ≤ t} ( (Boyd & Vandenberghe, 2004), Section 4.4.2).
The infimum over auxiliary variables attains due to Slater’s condition, satisfied by the compactness of
Z (Assumption 2.3). The weights αm scale the quadratic terms, reflecting heterogeneous robustness.
Thus, the full WDRO-MRO reformulates as the stated SDP (or SOCP for diagonal Q), which is
convex due to semidefinite or conic constraints (Proposition 3.2). Strong duality holds with zero gap
by Proposition 3.4, with optima attained per Proposition 3.3.

G.7 PROOF OF LEMMA B.11(2 < p <∞ , QUADRATIC LOSS)

Proof. By Proposition 3.4 (Section 3.1), the regret supremum equals

sup
Q∈Uρ(P̂N )

RegretQ(f) = inf
λ≥0

λρ+EP̂N

[
sup
z′∈Z

(
ℓ(z, f(z′))− λc(ẑ, z′)

)
− inf

f ′∈F
sup
z′′∈Z

(
ℓ(z, f ′(z′′))− λc(ẑ, z′′)

)]
,

with zero duality gap, justified by compactness and convexity (Assumption 2.3 and Proposition 3.2).
The sup terms attain by Proposition 3.1. The compactness of Z (Assumption 2.3) ensures finite
suprema.

We derive the reformulation in the following steps: introduction of epigraph variables; reformulation
of the epigraph constraint via Fenchel-Moreau theorem; conjugate computation for the transportation
cost; SDP approximation for quadratic and power terms via S-lemma; exponential cone representation
for log-Holder approximation; analogous reformulation of the inf term; and assembly of the full
program and verification of its properties.

Introduction of epigraph variables. Define ℓf (z′) := ℓ(ẑ, f(z′)) = f(z′)⊤Qf(z′)+ q⊤f(z′)+ q0.
Introduce epigraph variables si ∈ R, with dual variable λ ≥ 0:

inf
λ≥0,si

λρ+
1

N

N∑
i=1

si s.t. si ≥ sup
z′∈Z

ℓf (z
′)− λc(ẑi, z

′), ∀i.

This is equivalent by epigraph representation preserving convexity (Proposition 3.2; see (Boyd &
Vandenberghe, 2004), Section 4.2). The inf term is analogous with primed variables (λ′, s′i), replacing
f with f ′.

Reformulation of the epigraph constraint via Fenchel-Moreau theorem. For affine f(z′) =∑
m Fmz′m + g, the affine form ensures finite suprema. The epigraph constraint is

si ≥ sup
z′∈Z

ℓ(ẑi, f(z
′))− λc(ẑi, z

′),

with c(ẑi, z′) =
∑K

m=1 αm∥ẑi,m−z′m∥pp. By Fenchel-Moreau theorem (Rockafellar, 1970) (Theorem
12.2; applies to proper convex l.s.c. ℓ by Assumption 2.2), rewrite as

sup
z′

ℓf (z
′)− λc(ẑi, z

′) = inf
u∈Rdim(z)

ℓ∗(ẑi, u) + λc∗(ẑi,−u/λ),

by Fenchel inf-convolution duality (Rockafellar, 1970) (Theorem 16.4; strong duality under rel-
ative interior conditions from compactness and Assumption 2.2 boundedness), where ℓ∗(z, u) =
supv u

⊤v − ℓ(z, v) and c∗(z, u) = supz′ u⊤z′ − c(z, z′).

Conjugate computation for the transportation cost. For the cost c(z, z′) =
∑K

m=1 αm∥zm−z′m∥pp,
the conjugate is

c∗(z, u) = sup
z′

K∑
m=1

u⊤
mz′m−

K∑
m=1

αm∥zm−z′m∥pp =

K∑
m=1

inf
tm≥0

[
tpm +

1

p− 1

(
∥um∥q
αmtp−1

m

)q]
+u⊤

mzm,

a generalized Holder conjugate ( (Rockafellar, 1970), Theorem 15.3), where q = p/(p − 1). The
weights αm scale the terms, reflecting heterogeneous robustness across modalities.
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SDP approximation for quadratic and power terms via S-lemma. For the quadratic loss ℓ(z, v) =
v⊤Qv + q⊤v + q0, the conjugate is

ℓ∗(z, u) = sup
v

[
u⊤v − (v⊤Qv + q⊤v + q0)

]
=

1

4
(u− q)⊤Q−1(u− q)− q0,

where Q−1 is the pseudoinverse if Q is singular ( (Rockafellar, 1970), Theorem 23.5). The con-
straint si ≥ infu ℓ

∗(ẑi, u) + λc∗(ẑi,−u/λ) is semi-infinite in u. Outer-approximate as SDP via
S-lemma (Boyd & Vandenberghe, 2004) (Appendix B; assuming quadratic upper bounds on ℓ,
yielding SDP relaxation via moments or bounded dual variables; (Ben-Tal et al., 2009), Section 3.5).

Exponential cone representation for log-Holder approximation. For irrational p, approximate log-
Holder terms in the Holder conjugate using the exponential cone {u, v, w : veu/v ≤ w}, representable
in modern solvers ( (Ben-Tal & Nemirovski, 2001), Section 4.3). The infimum over auxiliary variables
attains due to Slater’s condition, satisfied by the compactness of Z (Assumption 2.3).

Analogous reformulation of the inf term. The inf term reformulates similarly: replace f with
f ′ in the SDP or exponential cone constraints, using primed variables (λ′, s′i), and optimize over
f ′ ∈ F . The full WDRO-MRO is the stated convex program (SDP approximation or exponential
cone), convex due to conic constraints (Proposition 3.2). Strong duality holds with zero gap by
Proposition 3.4, with optima attained per Proposition 3.3 (Section 3.2).

G.8 PROOF OF LEMMA B.12(p =∞ , QUADRATIC LOSS)

Proof. By Proposition 3.4 (Section 3.1), the regret supremum equals

sup
Q∈Uρ(P̂N )

RegretQ(f) = inf
λ≥0

λρ+EP̂N

[
sup
z′∈Z

(
ℓ(z, f(z′))− λc(ẑ, z′)

)
− inf

f ′∈F
sup
z′′∈Z

(
ℓ(z, f ′(z′′))− λc(ẑ, z′′)

)]
,

with zero duality gap, justified by compactness and convexity (Assumption 2.3 and Proposition 3.2).
The sup terms attain by Proposition 3.1. The compactness of Z (Assumption 2.3) ensures finite
suprema.

We derive the SDP reformulation in the following steps: introduction of epigraph variables; refor-
mulation of the epigraph constraint via Fenchel-Moreau theorem; conjugate computation for the
transportation cost; SDP representation via Schur complement; analogous reformulation of the inf
term; and assembly of the full program and verification of its properties.

Introduction of epigraph variables. Define ℓf (z′) := ℓ(ẑ, f(z′)) = f(z′)⊤Qf(z′)+ q⊤f(z′)+ q0.
Introduce epigraph variables si ∈ R, with dual variable λ ≥ 0:

inf
λ≥0,si

λρ+
1

N

N∑
i=1

si s.t. si ≥ sup
z′∈Z

ℓf (z
′)− λc(ẑi, z

′), ∀i.

This is equivalent by epigraph representation preserving convexity (Proposition 3.2; see (Boyd &
Vandenberghe, 2004), Section 4.2). The inf term is analogous with primed variables (λ′, s′i), replacing
f with f ′.

Reformulation of the epigraph constraint via Fenchel-Moreau theorem. For affine f(z′) =∑
m Fmz′m + g, the affine form ensures finite suprema. The epigraph constraint is

si ≥ sup
z′∈Z

ℓ(ẑi, f(z
′))− λc(ẑi, z

′),

with c(ẑi, z
′) =

∑K
m=1 αm∥ẑi,m − z′m∥∞. By Fenchel-Moreau theorem (Rockafellar, 1970) (Theo-

rem 12.2; applies to proper convex l.s.c. ℓ by Assumption 2.2), rewrite as

sup
z′

ℓf (z
′)− λc(ẑi, z

′) = inf
u∈Rdim(z)

ℓ∗(ẑi, u) + λc∗(ẑi,−u/λ),

by Fenchel inf-convolution duality (Rockafellar, 1970) (Theorem 16.4; strong duality under rel-
ative interior conditions from compactness and Assumption 2.2 boundedness), where ℓ∗(z, u) =
supv u

⊤v − ℓ(z, v) and c∗(z, u) = supz′ u⊤z′ − c(z, z′).

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Conjugate computation for the transportation cost. For the cost c(z, z′) =
∑K

m=1 αm∥ẑi,m −
z′m∥∞, the conjugate is

c∗(z, u) = sup
z′

K∑
m=1

u⊤
mz′m −

K∑
m=1

αm∥zm − z′m∥∞.

Since ∥zm − z′m∥∞ = maxj |zm,j − z′m,j |, the conjugate is finite only if
∑

m ∥um∥1 ≤
∑

m αm,
yielding

c∗(z, u) =

{∑K
m=1 u

⊤
mzm if

∑K
m=1 ∥um∥1 ≤

∑K
m=1 αm,

∞ otherwise,

a polyhedral conjugate ( (Rockafellar, 1970), Example 11.4). The weights αm scale the terms,
reflecting heterogeneous robustness across modalities.

SDP representation via Schur complement. For the quadratic loss ℓ(z, v) = v⊤Qv + q⊤v + q0,
the conjugate is

ℓ∗(z, u) = sup
v

[
u⊤v − (v⊤Qv + q⊤v + q0)

]
=

1

4
(u− q)⊤Q−1(u− q)− q0,

where Q−1 is the pseudoinverse if Q is singular ( (Rockafellar, 1970), Theorem 23.5). Substituting
into the epigraph constraint:

si ≥ inf
u:
∑

m ∥um∥1≤
∑

m αm

[
1

4
(u− q)⊤Q−1(u− q)− q0 + λ

K∑
m=1

u⊤
mẑi,m/λ

]
.

The W∞ uncertainty set is a box: V = {z′ ∈ Z :
∑K

m=1 αm∥ẑi,m − z′m∥∞ ≤ ρ/λ}. By Schur
complement lemma (Boyd & Vandenberghe, 2004) (Appendix A.5.5), the constraint is reformulated
as an SDP over the box vertices: λI 1

2

∑K
m=1 αm(Fmẑi,m − f(z′))

1
2

(∑K
m=1 αm(Fmẑi,m − f(z′))

)⊤
si − q0 − q⊤f(z′)− λ

∑K
m=1 αm∥ẑi,m∥∞

 ⪰ 0,

for all z′ ∈ V , tight for the∞-norm ( (Ben-Tal et al., 2009), Theorem 3.2). The infimum over auxiliary
variables attains due to Slater’s condition, satisfied by the compactness of Z (Assumption 2.3).

Analogous reformulation of the inf term. The inf term reformulates similarly: replace f with f ′ in
the SDP constraints, using primed variables (λ′, s′i), and optimize over f ′ ∈ F .

The full WDRO-MRO is the stated SDP, convex due to semidefinite constraints (Proposition 3.2).
Strong duality holds with zero gap by Proposition 3.4, with optima attained per Proposition 3.1
(Section 3.2).

G.9 PROOF OF LEMMA B.1(p = 1 , GENERAL CONVEX LOSS)

Proof. By Proposition 3.4, for fixed f ∈ F , supQ∈Uρ(P̂N ) RegretQ(f) equals

inf
λ≥0

λρ+ EP̂N

[
sup
z′∈Z

(ℓ(z, f(z′))− λc(ẑ, z′))− inf
f ′∈F

sup
z′′∈Z

(ℓ(z, f ′(z′′))− λc(ẑ, z′′))

]
,

with zero duality gap. This incorporates Sion’s minimax interchange for the inf-sup in the regret term,
justified by compactness and convexity (Assumption 2.3 and Proposition 3.2).

We derive the SDP (or LP) reformulation in the following steps: first, introduction of epigraph
variables for the sup terms; second, reformulation of the epigraph constraint via Fenchel-Moreau
theorem; third, conjugate computation for the transportation cost; fourth, SDP outer approximation
for general convex losses; fifth, exact LP bound for Lipschitz losses; sixth, analogous reformulation
of the inf term; and finally, assembly of the full program and verification of its properties including
convexity and zero duality gap.

Introduction of epigraph variables for the sup terms. The sup terms attain by Proposition 3.1
(existence of worst-case Q⋆, implying attainment in dual variables).
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For the first sup term, define ℓf (z
′) := ℓ(ẑ, f(z′)). Introduce epigraph variables si ∈ R (one per

sample ẑi):

inf
λ≥0,si∈R

λρ+
1

N

N∑
i=1

si s.t. si ≥ sup
z′∈Z

ℓf (z
′)− λc(ẑi, z

′), ∀i.

This is equivalent by epigraph representation preserving convexity (Proposition 3.2; see (Boyd &
Vandenberghe, 2004), Section 4.2).

The inf term epigraph reformulates similarly, replacing f with f ′ and using primed variables.

Reformulation of the epigraph constraint via Fenchel-Moreau theorem. Assuming f(z′) is affine
in z′ (e.g., linear fusion models), the epigraph constraint is

si ≥ sup
z′∈Z

ℓ(ẑi, f(z
′))− λc(ẑi, z

′).

By Fenchel-Moreau theorem (Rockafellar, 1970) (Theorem 12.2; applies to proper convex l.s.c. ℓ by
Assumption 2.2), rewrite as

sup
z′

ℓf (z
′)− λc(ẑi, z

′) = inf
u∈Rdim(v)

ℓ∗(ẑi, u) + λc∗(ẑi,−u/λ),

by Fenchel inf-convolution duality (Rockafellar, 1970) (Theorem 16.4; strong duality under rel-
ative interior conditions from compactness and Assumption 2.2 boundedness), where ℓ∗(z, u) =
supv u

⊤v − ℓ(z, v) and c∗(z, u) = supz′ u⊤z′ − c(z, z′).

Conjugate computation for the transportation cost. For ℓ1-norm c, c∗(u) = 0 if ∥u∥∞ ≤ 1,∞
otherwise (indicator; (Rockafellar, 1970), Example 11.4), scaled by αm per modality coordinate
(polyhedral LP representable).

SDP outer approximation for general convex losses. The constraint si ≥ infu ℓ
∗(ẑi, u) +

λc∗(ẑi,−u/λ) is semi-infinite in u, but outer-approximated as SDP if ℓ has quadratic upper bounds
(S-lemma (Boyd & Vandenberghe, 2004), Appendix B; e.g., assume ℓ ≤ quadratic envelope, yielding
SDP relaxation via moments or bounded dual variables).

Exact LP bound for Lipschitz losses. For Lipschitz ℓ (modulus L), exact bound: supz′ ℓf (z
′)−λc ≤

ℓf (ẑi) + Lλc(ẑi, z
′) (Lipschitz inequality; Assumption 2.2), tight for p=1 by KR theorem restricted

to Lip functions (Mohajerin Esfahani & Kuhn, 2018) (Theorem 5; exact sup = Lip bound under
bounded domain). Linearize to LP as in Lemma B.5.

Analogous reformulation of the inf term. The inf term reformulates similarly: replace f with f ′ in
the dual constraints, using primed variables λ′, s′i, and optimize over f ′ ∈ F .

The full WDRO-MRO is the stated SDP (outer for general; LP exact for Lipschitz). Convexity follows
from SDP/LP constraints preserving convexity and Proposition 3.2. Zero gap holds by Proposition 3.4
(exact for Lipschitz; outer approximation otherwise), with optima attained per Proposition 3.3.

G.10 PROOF OF LEMMA B.2(p = 2 , GENERAL CONVEX LOSS)

Proof. By Proposition 3.4 (Section 3.1), the regret supremum equals

sup
Q∈Uρ(P̂N )

RegretQ(f) = inf
λ≥0

λρ+EP̂N

[
sup
z′∈Z

(
ℓ(z, f(z′))− λc(ẑ, z′)

)
− inf

f ′∈F
sup
z′′∈Z

(
ℓ(z, f ′(z′′))− λc(ẑ, z′′)

)]
,

with zero duality gap, justified by compactness and convexity (Assumption 2.3 and Proposition 3.2).
The sup terms attain by Proposition 3.1. The compactness of Z (Assumption 2.3) ensures finite
suprema.

We derive the SDP reformulation in the following steps: introduction of epigraph variables; refor-
mulation of the epigraph constraint via Fenchel-Moreau theorem; conjugate computation for the
transportation cost; SDP outer approximation for general convex losses; SDP representation for
indefinite quadratic losses; analogous reformulation of the inf term; and assembly of the full program
and verification of its properties.
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Introduction of epigraph variables. Define ℓf (z
′) := ℓ(ẑ, f(z′)). Introduce epigraph variables

si ∈ R, with dual variable λ ≥ 0:

inf
λ≥0,si

λρ+
1

N

N∑
i=1

si s.t. si ≥ sup
z′∈Z

ℓf (z
′)− λc(ẑi, z

′), ∀i.

This is equivalent by epigraph representation preserving convexity (Proposition 3.2; see (Boyd &
Vandenberghe, 2004), Section 4.2). The inf term is analogous with primed variables (λ′, s′i), replacing
f with f ′.

Reformulation of the epigraph constraint via Fenchel-Moreau theorem. For affine f(z′) =∑
m Fmz′m + g, the affine form ensures finite suprema. The epigraph constraint is

si ≥ sup
z′∈Z

ℓ(ẑi, f(z
′))− λc(ẑi, z

′),

with c(ẑi, z′) =
∑K

m=1 αm∥ẑi,m−z′m∥22. By Fenchel-Moreau theorem (Rockafellar, 1970) (Theorem
12.2; applies to proper convex l.s.c. ℓ by Assumption 2.2), rewrite as

sup
z′

ℓf (z
′)− λc(ẑi, z

′) = inf
u∈Rdim(z)

ℓ∗(ẑi, u) + λc∗(ẑi,−u/λ),

by Fenchel inf-convolution duality (Rockafellar, 1970) (Theorem 16.4; strong duality under rel-
ative interior conditions from compactness and Assumption 2.2 boundedness), where ℓ∗(z, u) =
supv u

⊤v − ℓ(z, v) and c∗(z, u) = supz′ u⊤z′ − c(z, z′).

Conjugate computation for the transportation cost. For the cost c(z, z′) =
∑

m αm∥zm − z′m∥22,
the conjugate is

c∗(z, u) = sup
z′

∑
m

u⊤
mz′m −

∑
m

αm∥zm − z′m∥22 =
∑
m

1

4αm
∥um∥22 + u⊤

mzm,

a quadratic conjugate ( (Rockafellar, 1970), Theorem 23.5). The weights αm scale the quadratic
terms, reflecting heterogeneous robustness.

SDP outer approximation for general convex losses. The constraint si ≥ infu ℓ
∗(ẑi, u) +

λc∗(ẑi,−u/λ) is semi-infinite in u. For general convex losses, outer-approximate as SDP via
S-lemma (Boyd & Vandenberghe, 2004) (Appendix B), assuming ℓ has quadratic upper bounds (e.g.,
ℓ(z, v) ≤ v⊤Qv + q⊤v + q0 for some Q ⪰ 0), yielding SDP relaxation via moments or bounded
dual variables ( (Kuhn et al., 2019), Theorem 12). The approximation is tight for elliptical nominal
distributions (Gelbrich bound; (Villani et al., 2008), Theorem 4).

SDP representation for indefinite quadratic losses. For indefinite quadratic losses ℓ(z, v) =
v⊤Qv + q⊤v + q0 (indefinite Q), the conjugate ℓ∗(z, u) = supv u

⊤v − (v⊤Qv + q⊤v + q0)
is computed, and the constraint is directly SDP-representable via Schur complement ( (Boyd &
Vandenberghe, 2004), Appendix A.5.5; (Kuhn et al., 2019), Theorem 12): λI 1

2

∑K
m=1 αm(Fmẑi,m − f(z′))

1
2

(∑K
m=1 αm(Fmẑi,m − f(z′))

)⊤
si − q0 − q⊤f(z′)− λ

∑K
m=1 αm∥ẑi,m∥22

 ⪰ 0.

The infimum over u attains due to Slater’s condition, satisfied by the compactness of Z (Assump-
tion 2.3).

Analogous reformulation of the inf term. The inf term reformulates similarly: replace f with f ′ in
the SDP constraints, using primed variables (λ′, s′i), and optimize over f ′ ∈ F .

The full WDRO-MRO is the stated SDP, convex due to semidefinite constraints (Proposition 3.2).
Strong duality holds with zero gap by Proposition 3.4, with optima attained per Proposition 3.3
(Section 3.2).

G.11 PROOF OF LEMMA B.3(2 < p <∞ , GENERAL CONVEX LOSS)

Proof. By Proposition 3.4 (Section 3.1), the regret supremum equals

sup
Q∈Uρ(P̂N )

RegretQ(f) = inf
λ≥0

λρ+EP̂N

[
sup
z′∈Z

(
ℓ(z, f(z′))− λc(ẑ, z′)

)
− inf

f ′∈F
sup
z′′∈Z

(
ℓ(z, f ′(z′′))− λc(ẑ, z′′)

)]
,
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with zero duality gap, justified by compactness and convexity (Assumption 2.3 and Proposition 3.2).
The sup terms attain by Proposition 3.1. The compactness of Z (Assumption 2.3) ensures finite
suprema.

We derive the reformulation in the following steps: introduction of epigraph variables; reformulation
of the epigraph constraint via Fenchel-Moreau theorem; conjugate computation for the transportation
cost; power cone representation for general p; exponential cone representation for log-Holder
approximation; SDP approximation for rational p via S-lemma; analogous reformulation of the inf
term; and assembly of the full program and verification of its properties.

Introduction of epigraph variables. Define ℓf (z
′) := ℓ(ẑ, f(z′)). Introduce epigraph variables

si ∈ R, with dual variable λ ≥ 0:

inf
λ≥0,si

λρ+
1

N

N∑
i=1

si s.t. si ≥ sup
z′∈Z

ℓf (z
′)− λc(ẑi, z

′), ∀i.

This is equivalent by epigraph representation preserving convexity (Proposition 3.2; see (Boyd &
Vandenberghe, 2004), Section 4.2). The inf term is analogous with primed variables (λ′, s′i), replacing
f with f ′.

Reformulation of the epigraph constraint via Fenchel-Moreau theorem. For affine f(z′) =∑
m Fmz′m + g, the affine form ensures finite suprema. The epigraph constraint is

si ≥ sup
z′∈Z

ℓ(ẑi, f(z
′))− λc(ẑi, z

′),

with c(ẑi, z′) =
∑K

m=1 αm∥ẑi,m−z′m∥pp. By Fenchel-Moreau theorem (Rockafellar, 1970) (Theorem
12.2; applies to proper convex l.s.c. ℓ by Assumption 2.2), rewrite as

sup
z′

ℓf (z
′)− λc(ẑi, z

′) = inf
u∈Rdim(z)

ℓ∗(ẑi, u) + λc∗(ẑi,−u/λ),

by Fenchel inf-convolution duality (Rockafellar, 1970) (Theorem 16.4; strong duality under rel-
ative interior conditions from compactness and Assumption 2.2 boundedness), where ℓ∗(z, u) =
supv u

⊤v − ℓ(z, v) and c∗(z, u) = supz′ u⊤z′ − c(z, z′).

Conjugate computation for the transportation cost. For the cost c(z, z′) =
∑K

m=1 αm∥zm−z′m∥pp,
the conjugate is

c∗(z, u) = sup
z′

K∑
m=1

u⊤
mz′m−

K∑
m=1

αm∥zm−z′m∥pp =

K∑
m=1

inf
tm≥0

[
tpm +

1

p− 1

(
∥um∥q
αmtp−1

m

)q]
+u⊤

mzm,

a generalized Holder conjugate ( (Rockafellar, 1970), Theorem 15.3), where q = p/(p − 1). The
weights αm scale the terms, reflecting heterogeneous robustness across modalities.

Power cone representation for general p. The constraint si ≥ infu ℓ
∗(ẑi, u) + λc∗(ẑi,−u/λ) is

semi-infinite in u. For general convex losses, the conjugate ℓ∗(z, u) is representable via power cones
{(u, t) : ∥u∥q ≤ t} for general p, as the Holder conjugate terms are conic-representable ( (Ben-Tal
& Nemirovski, 2001), Section 4.3). The infimum over auxiliary variables attains due to Slater’s
condition, satisfied by the compactness of Z (Assumption 2.3).

Exponential cone representation for log-Holder approximation. For irrational p, approximate log-
Holder terms in the Holder conjugate using the exponential cone {u, v, w : veu/v ≤ w}, representable
in modern solvers ( (Ben-Tal & Nemirovski, 2001), Section 4.3).

SDP approximation for rational p via S-lemma. For rational p, outer-approximate the constraint as
SDP via S-lemma (Boyd & Vandenberghe, 2004) (Appendix B; assuming quadratic upper bounds
on ℓ, e.g., ℓ(z, v) ≤ v⊤Qv + q⊤v + q0 for some Q ⪰ 0, yielding SDP relaxation via moments or
bounded dual variables; (Ben-Tal et al., 2009), Section 3.5).

Analogous reformulation of the inf term. The inf term reformulates similarly: replace f with f ′ in
the power cone, exponential cone, or SDP constraints, using primed variables (λ′, s′i), and optimize
over f ′ ∈ F .

The full WDRO-MRO is the stated convex program (power cone, exponential cone, or SDP), convex
due to conic constraints (Proposition 3.2). Strong duality holds with zero gap by Proposition 3.4,
with optima attained per Proposition 3.1 (Section 3.2).
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G.12 PROOF OF LEMMA B.4(p =∞ , GENERAL CONVEX LOSS)

Proof. By Proposition 3.4 (Section 3.1), the regret supremum equals

sup
Q∈Uρ(P̂N )

RegretQ(f) = inf
λ≥0

λρ+EP̂N

[
sup
z′∈Z

(
ℓ(z, f(z′))− λc(ẑ, z′)

)
− inf

f ′∈F
sup
z′′∈Z

(
ℓ(z, f ′(z′′))− λc(ẑ, z′′)

)]
,

with zero duality gap, justified by compactness and convexity (Assumption 2.3 and Proposition 3.2).
The sup terms attain by Proposition 3.1. The compactness of Z (Assumption 2.3) ensures finite
suprema.

We derive the reformulation in the following steps: introduction of epigraph variables; reformulation
of the epigraph constraint via Fenchel-Moreau theorem; conjugate computation for the transportation
cost; vertex dual approximation for polyhedral support; analogous reformulation of the inf term; and
assembly of the full program and verification of its properties.

Introduction of epigraph variables. Define ℓf (z
′) := ℓ(ẑ, f(z′)). Introduce epigraph variables

si ∈ R, with dual variable λ ≥ 0:

inf
λ≥0,si

λρ+
1

N

N∑
i=1

si s.t. si ≥ sup
z′∈Z

ℓf (z
′)− λc(ẑi, z

′), ∀i.

This is equivalent by epigraph representation preserving convexity (Proposition 3.2; see (Boyd &
Vandenberghe, 2004), Section 4.2). The inf term is analogous with primed variables (λ′, s′i), replacing
f with f ′.

Reformulation of the epigraph constraint via Fenchel-Moreau theorem. For affine f(z′) =∑
m Fmz′m + g, the affine form ensures finite suprema. The epigraph constraint is

si ≥ sup
z′∈Z

ℓ(ẑi, f(z
′))− λc(ẑi, z

′),

with c(ẑi, z
′) =

∑K
m=1 αm∥ẑi,m − z′m∥∞. By Fenchel-Moreau theorem (Rockafellar, 1970) (Theo-

rem 12.2; applies to proper convex l.s.c. ℓ by Assumption 2.2), rewrite as

sup
z′

ℓf (z
′)− λc(ẑi, z

′) = inf
u∈Rdim(z)

ℓ∗(ẑi, u) + λc∗(ẑi,−u/λ),

by Fenchel inf-convolution duality (Rockafellar, 1970) (Theorem 16.4; strong duality under rel-
ative interior conditions from compactness and Assumption 2.2 boundedness), where ℓ∗(z, u) =
supv u

⊤v − ℓ(z, v) and c∗(z, u) = supz′ u⊤z′ − c(z, z′).

Conjugate computation for the transportation cost. For the cost c(z, z′) =
∑K

m=1 αm∥zm −
z′m∥∞, the conjugate is

c∗(z, u) = sup
z′

K∑
m=1

u⊤
mz′m −

K∑
m=1

αm∥zm − z′m∥∞ =

K∑
m=1

u⊤
mzm,

if
∑K

m=1 ∥um∥1 ≤
∑K

m=1 αm (∞ otherwise), a polyhedral conjugate ( (Rockafellar, 1970), Example
11.4). The weights αm scale the terms, reflecting heterogeneous robustness across modalities.

Vertex dual approximation for polyhedral support. The constraint si ≥ infu ℓ
∗(ẑi, u) +

λc∗(ẑi,−u/λ) is semi-infinite in u. For general convex losses with polyhedral support, the
conjugate ℓ∗(z, u) is polyhedral, and the W∞ uncertainty set is a box: V = {z′ ∈ Z :∑K

m=1 αm∥ẑi,m − z′m∥∞ ≤ ρ/λ}. The supremum is attained at the vertices of V , yielding an
LP or SDP approximation via vertex dual (polyhedral LP; (Ben-Tal et al., 2009), Theorem 3.1;
enumerate vertices for polyhedral ℓ). The infimum over auxiliary variables attains due to Slater’s
condition, satisfied by the compactness of Z (Assumption 2.3).

Analogous reformulation of the inf term. The inf term reformulates similarly: replace f with f ′ in
the LP/SDP constraints, using primed variables (λ′, s′i), and optimize over f ′ ∈ F .

The full WDRO-MRO is the stated convex program (semi-infinite in general, approximated as LP
or SDP via vertex dual for polyhedral support), convex due to linear or semidefinite constraints
(Proposition 3.2). Strong duality holds with zero gap by Proposition 3.4, with optima attained per
Proposition 3.1 (Section 3.2).
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G.13 PROOF OF PROPOSITION 3.5(GLOBAL CONVERGENCE OF THE DUAL-GAME HYBRID
SOLVER)

Proof. By (Agarwal & Zhang, 2022, Prop. 11), the objective admits a bilinear saddle-point reformu-
lation over P ∈ ∆(F) and ρ ∈ ∆(W), which is equivalent to a weighted ERM for the learner.

Updating the nature’s distribution by exponentiated gradient yields a no-regret bound of order
Õ(
√
ln |W |/T ) for the average iterate, as stated in Proposition 12 and detailed in Appendix E.

(Agarwal & Zhang, 2022, Prop. 12 & App. E) Thus the maximization player contributes an Õ(1/
√
T )

gap.

Viewing the WDRO side as a zero-sum game, the saddle-point interpretation and associated strong
duality are standard; see the Nash-equilibrium discussion in the DRO monograph. (Kuhn et al.,
2025, §7.5) Combining the no-regret guarantee for the nature player with best responses from the
learner/oracle (ERM oracle in the MRO setting), the averaged iterate achieves an Õ(1/

√
T ) saddle-

point gap, which matches the stated rate when per-iteration best responses are solved exactly.

G.14 PROOF OF PROPOSITION 3.6(GLOBAL CONVERGENCE WITH CONTINUOUSW )

Proof sketch. By Proposition 3.6, the adversary’s best response in each round admits a closed form
via convex duality (Agarwal & Zhang, 2022, Eq. (8)). Substituting this into the hybrid solver
eliminates the need for exponentiated-weights updates, while retaining the convex–concave game
structure. Standard online convex optimization analysis (Agarwal & Zhang, 2022, Prop. 12) ensures
an Õ(1/

√
T ) gap for the adversary’s sequence. Combining with exact learner/oracle best responses

and projected subgradient ascent for λ, the averaged iterates converge to an approximate saddle point
at the same rate, as in Proposition 3.5.

G.15 PROOF OF LEMMA 3.1(SENSITIVITY OF OPTIMAL REGRET)

Proof. We prove continuity, Lipschitz continuity, and the subgradient bound for R(ρ).

Continuity: The ambiguity set Uρ(P̂N ) = {Q ∈ P(Z) : Wp(P̂N , Q) ≤ ρ} is compact in the
weak topology σ(M(Z), Cb(Z)) by lower semicontinuity of c (Assumption 2.1) and tightness of
P̂N (Prohorov’s theorem; Billingsley, 2013). For fixed f , RegretQ(f) is weakly continuous under
convexity and boundedness (Assumption 2.2) and the interchangeability principle (Assumption 2.1;
Mohajerin Esfahani & Kuhn, 2018). Berge’s maximum theorem (Berge, 1877) ensures continuity of
the supremum.

Lipschitz Continuity: From Proposition 3.4, R(ρ) = infλ≥0 λρ +

EP̂N [supz′(ℓ(z, f(z′))− λc(ẑ, z′))− inff ′ supz′′(ℓ(z, f ′(z′′))− λc(ẑ, z′′))], convex in ρ
(Proposition 3.2). Since ℓ is L-Lipschitz in v (Assumption 2.2), the Fenchel-Moreau theorem and
subdifferential calculus (see (Rockafellar, 1970), Theorem 23.5) bound ∂R(ρ): for ρ1, ρ2 > 0,
|R(ρ1) − R(ρ2)| ≤ L|ρ1 − ρ2|, as the dual inf-convolution preserves Lipschitz continuity. The
multimodal cost scales gradients by αm, with ∥∇c(z, z′)∥ ≤

∑
m αm∥zm − z′m∥

p−1
p−1.

Subgradient Bound: The subgradient ∂R(ρ) includes λ⋆ from the optimal transport plan
(Kantorovich-Rubinstein duality; Villani et al., 2008). Monotonicity of Uρ(P̂N ) (as a monotone
operator in ρ) ensures ∂R(ρ) ≥ 0, with λ⋆ as the upper envelope bound, scaled by αm∇c.

G.16 PROOF OF LEMMA 3.2(HIGH-DIMENSIONAL ERROR EQUIVALENCE)

Proof. We prove the asymptotic equivalence of the WDRO estimation error ∥f̂DRE − f0∥2/d to the
stated convex-concave optimization, adapted for multimodal costs.

Consider the WDRO-MRO problem in the high-dimensional regime where d, n→∞ with d/n→
ρ ∈ (0,∞). The WDRO estimator f̂DRE solves

f̂DRE = argmin
f∈F

sup
Q∈Uρ(P̂N )

EQ[ℓ(z, f(z))],
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where Uρ(P̂N ) = {Q ∈ P(Z) : Wp(P̂N , Q) ≤ ρ} is the type-1 or type-2 Wasserstein ball with
radius ρ = ρ0/n

p/2, and P̂N = 1
n

∑n
i=1 δzi is the empirical distribution over n i.i.d. samples

zi = (xi, yi). The multimodal transportation cost is

c(z, z′) =

K∑
m=1

αm∥zm − z′m∥pp,

for modalities m = 1, . . . ,K, weights αm ≥ 0, and norm parameter p ∈ {1, 2}. The loss ℓ(z, v)
is convex in v, bounded in [0,M ], and L-Lipschitz (Assumption 2.2), with the oracle predictor
f0 ∈ F minimizing the population risk. We assume isotropic Gaussian features Xi ∼ N (0, d−1Id),
sub-Gaussian noise Z, and a compact function class F (Assumptions 2.3, 2.1, 2.1).

Primal Optimization and Error Normalization: The estimation error of interest is the normalized
squared norm ∥f̂DRE − f0∥2/d, where f̂DRE is the WDRO solution. By Proposition 3.4, the primal
WDRO problem can be reformulated using Kantorovich-Rubinstein duality as

sup
Q∈Uρ(P̂N )

EQ[ℓ(z, f(z))] = inf
λ≥0

{
λρ+ EP̂N

[
sup
z′

(ℓ(z′, f(z′))− λc(z, z′))

]}
,

so the WDRO estimator minimizes

f̂DRE = argmin
f∈F

inf
λ≥0

{
λρ+

1

n

n∑
i=1

sup
z′
i

(
ℓ(z′i, f(z

′
i))− λ

K∑
m=1

αm∥zim − z′im∥pp

)}
.

The error ∥f̂DRE − f0∥2/d is a high-dimensional random variable due to the Gaussian features Xi.

Convex Gaussian Minmax Theorem (CGMT): To analyze the error, we apply the CGMT (Deng
et al., 2022), which states that for a convex-concave saddle-point problem of the form

Φ(X) = min
u∈U

max
v∈V

ℓ(u, v,X),

where X ∈ Rn×d is a Gaussian matrix with i.i.d. entries Xij ∼ N (0, 1/d), the asymptotic value
of Φ(X) in the limit d/n→ ρ is equivalent to an auxiliary optimization (AO) over scalar variables.
Here, the WDRO problem is cast as

Φ(X) = min
f∈F

sup
∥δi∥p≤ρ1/p

1

n

n∑
i=1

ℓ(yi − f(xi + δi), f(xi + δi)),

where δi represents perturbations constrained by the Wasserstein ball, and f(xi + δi) =∑
m αmfm(xim + δim) for modality-specific predictors fm. The CGMT requires convexity in

f (satisfied by Assumption 2.3) and concavity in δi, ensured by the loss structure.

Gordon’s Lemma and Primary Optimization (PO): By Gordon’s lemma (Gordon, 2006), the
high-dimensional min-max problem is reduced to a primary optimization (PO) over expected values
under Gaussian noise. For the WDRO estimator, the PO form is

min
α≥0

EG∼N (0,1)

[
inf
v
ℓ(αG, v) +

1

2κ(α)
∥v − α∥2

]
+ ρ0κ(α),

where κ(α) = argminκ>0

{
κ+

ρ(σ2
f0

+α2)

κ

}
is the proximal parameter, and σ2

f0
=
∑K

m=1 α
2
mσ2

m

is the oracle variance scaled by modality weights αm. The Moreau envelope L(α, s) =
EU∼N (0,1)[infv ℓ(α +

√
sU, v) + 1

2s∥v − α∥2] smooths the loss ℓ, with s = τ1/β in the final
optimization.

Reduction to Four-Scalar Optimization: Applying Fenchel duality and subdifferential calcu-
lus(see (Rockafellar, 1970), Theorem 23.5), the PO is equivalent to the stated four-scalar convex-
concave optimization. The objective terms are derived as follows: - βτ1

2 + ρ0βτ2
2 : Proximal regular-

ization from the Moreau envelope and ambiguity radius. - − β2

2M : Quadratic penalty, with M > 0 a
problem-dependent constant (bounded by Assumption 2.2). - L(α, τ1/β): Expected Moreau enve-

lope, convex in α, concave in τ1/β. -
√
ρ0βρ(σ

2
f0

+α2)

2τ2
− αβ

√
ρ

√
ρρ0σ2

f0

τ2
2

+ 1: Variance terms scaled

by ρ and σ2
f0

, derived from Gaussian concentration.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

The optimization is convex in α (due to L’s convexity) and concave in β, τ1, τ2 (from quadratic and
proximal structure), with asymptotic equivalence at rate O(1/

√
n) under sub-Gaussian universality

(Aolaritei et al., 2022).

Multimodal Adaptation: For the multimodal cost c(z, z′) =
∑K

m=1 αm∥zm − z′m∥pp, the trans-
portation cost gradient is ∥∇c(z, z′)∥ ≤

∑
m αmp∥zm − z′m∥

p−1
p−1, which scales the variance

σ2
f0

=
∑

m α2
mσ2

m in the optimization. Higher αm increases the modality-specific contribution
to σ2

f0
, modulating robustness (e.g., prioritizing image modalities).

Regret Bound for WDRO-MRO: For WDRO-MRO, the regret is supQ RegretQ(f) =

supQ[EQ[ℓ(z, f(z))]− inff ′ EQ[ℓ(z, f
′(z))]]. The WDRO error ∥f̂DRE − f0∥2/d bounds the regret

as
sup
Q

RegretQ(f̂DRE) ≤ ∥f̂DRE − f0∥2/d+O(1/
√
n),

since the oracle term inff ′ EQ[ℓ(z, f
′(z))] is subtracted in the regret definition, and the Lipschitz

continuity of ℓ (Assumption 2.2) ensures the residual term is O(1/
√
n).

H PROOFS OF SECTION 3.3(STATISTICAL PROPERTIES)

H.1 PROOF OF THEOREM 3.1(STATISTICAL CONSISTENCY OF WDRO-MRO)

Proof. We prove the theorem using Wasserstein concentration and empirical process theory, under the
assumptions that P0 has finite p-th moments and F is compact with bounded Rademacher complexity.

Wasserstein Convergence of P̂N to P0: By (Fournier & Guillin, 2015), Theorem 2, for P0 on
Z ⊂ Rd with finite p-th moments,

E[Wp(P̂N , P0)] ≤ CN−p/max{2,d},

for a constant C > 0 depending on p, d. By Markov’s inequality, for any δ > 0,

P(Wp(P̂N , P0) > δ) ≤ CN−p/max{2,d}

δ
→ 0.

Thus, P̂N → P0 in Wp, implying Uρ(P̂N ) → Bρ(P0) in the Hausdorff metric under the weak
topology, as Wp metrizes weak convergence (Villani et al., 2008).

Continuity of the Regret Functional: Define R(ρ;P ) = inff∈F supQ∈Bρ(P ) RegretQ(f), where
RegretQ(f) = EQ[ℓ(z, f(z))]− inff ′ EQ[ℓ(z, f

′(z))]. By Lemma 3.1, R(ρ;P ) is L-Lipschitz in ρ.
For any P, P ′,

|R(ρ;P )−R(ρ;P ′)| ≤ LWp(P, P
′),

since RegretQ(f) is L-Lipschitz in Q under the Wasserstein metric (Assumption 2.2). Hence,
R(ρ; P̂N )→ R(ρ;P0) in probability as P̂N → P0.

Uniform Convergence via Empirical Processes: The estimator f̂DRE satisfies f̂DRE =

argminf∈F R(ρ; P̂N ). The function class {ℓ(z, f(z)) : f ∈ F} has finite Rademacher complexity
R(F) ≤ C/

√
N for some C > 0, since F is compact and ℓ is bounded and convex (Shalev-Shwartz

& Ben-David, 2014). By uniform convergence for empirical processes (Mohajerin Esfahani & Kuhn,
2018), for any ϵ > 0, with probability at least 1− δ,

sup
f∈F

∣∣∣∣∣ sup
Q∈Uρ(P̂N )

RegretQ(f)− sup
Q∈Bρ(P0)

RegretQ(f)

∣∣∣∣∣ ≤ 2R(F)+O

(√
log(1/δ)

N

)
= O

(
1√
N

+

√
log(1/δ)

N

)
.

As R(ρ; P̂N ) → R(ρ;P0), the compactness of F and uniqueness of f0 under strict convexity
(Assumption 2.2) imply f̂DRE → f0 in the sup-norm ∥ · ∥F with probability 1.

Multimodal Cost Adaptation: For multimodal costs c(z, z′) =
∑K

m=1 αm∥zm − z′m∥pp, the
weights αm scale the variance σ2

f0
=
∑

m α2
mEP0

[σ2
m], affecting the convergence rate through the

transportation cost gradient ∥∇c∥ ≤
∑

m αmp∥zm − z′m∥
p−1
p−1. Higher αm for noisy modalities (e.g.,

images) tightens the regret bound, as the Lipschitz constant L is modulated by αm.
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H.2 PROOF OF THEOREM 3.2(FINITE-SAMPLE GUARANTEES FOR OUT-OF-SAMPLE REGRET)

Proof. We derive the high-probability bound on the out-of-sample regret using Wasserstein concen-
tration and empirical process theory.

Wasserstein concentration bound. For P0 with finite p-th moments, by Fournier & Guillin (2015,
Theorem 2),

E[Wp(P̂N , P0)] ≤ CN−p/max{2,d},

for some C > 0. By Talagrand’s concentration inequality for empirical measures (Blanchet et al.,
2022), with probability at least 1− δ/2,

Wp(P̂N , P0) ≤ CN−p/max{2,d} +

√
2 log(2/δ)

N
.

Regret continuity in distributions. The regret functional satisfies∣∣RegretQ(f)− RegretQ′(f)
∣∣ ≤ LWp(Q,Q′),

where the effective Lipschitz modulus L arises from the multimodal cost structure. Since ℓ(z, v) is
Lℓ-Lipschitz in v and the infimum over f ′ preserves Lipschitz continuity (Rockafellar, 1970), and for
c(z, z′) =

∑K
k=1 αk∥zk − z′k∥pp the transportation cost gradient satisfies

∥∇c∥ ≤
K∑

k=1

αk p ∥zk − z′k∥
(p−1)
p−1 ,

the chain rule in the dual formulation (Proposition 3.4) yields

L = Lℓ

K∑
k=1

αk.

Thus, with probability at least 1− δ/2,

sup
Q

RegretQ(f̂DRE)− sup
Q′∈Bρ(P0)

RegretQ′(f̂DRE)

≤ LWp(P̂N , P0) ≤ L

(
CN−p/max{2,d} +

√
2 log(2/δ)

N

)
. (1)

Uniform PAC bound. Let G = {ℓ(z, f(z)) : f ∈ F}. Under Assumption 2.3 that F is compact and
ℓ bounded, Shalev-Shwartz & Ben-David (2014, Theorem 26.5) gives

RN (G) ≤ C ′
√
N

.

By McDiarmid’s inequality and Rademacher bounds (Mohajerin Esfahani & Kuhn, 2018), with
probability at least 1− δ/2,

sup
f∈F

∣∣R(ρ; P̂N , f)−R(ρ;P0, f)
∣∣ ≤ 2RN (G) +

√
2 log(2/δ)

N
.

Multimodal adaptation. For c(z, z′) =
∑K

k=1 αk∥zk − z′k∥pp, the weights αk scale the effective
variance σ2 =

∑
k α

2
kEP0

[σ2
k], thereby affecting both L andRN .

Combining the above bounds via a union bound yields the stated result. Since Wp(P̂N , P0)→ 0 and
RN (F)→ 0 as N →∞, the bound implies

f̂DRE
p−→ f⋆,

where f⋆ is the population minimax regret solution, establishing statistical consistency.
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H.3 PROOF OF LEMMA 3.3(CONVERGENCE RATES FOR REGRET)

Proof. We derive the O(1/
√
N) convergence rate for the regret using Rademacher complexity and

empirical process theory.

Rademacher Complexity of F : Define the class G = {ℓ(z, f(z)) : f ∈ F}. Since F is compact
(Assumption 2.3) and ℓ is bounded and convex (Assumption 2.2), the Rademacher complexity satisfies

RN (G) = Eσ

[
sup
g∈G

1

N

N∑
i=1

σig(zi)

]
≤ C√

N
,

for some C > 0 (Shalev-Shwartz & Ben-David, 2014, Theorem 26.5), where σi ∼ {−1, 1} are
i.i.d. Rademacher variables. For multimodal costs c(z, z′) =

∑K
k=1 αk∥zk − z′k∥pp, the weights αk

scale the variance σ2 =
∑

k α
2
kEP0 [σ

2
k], modulatingRN (G) through the weighted norm in the loss

composition.

Uniform Convergence of Regret: The regret functional RegretQ(f) is L-Lipschitz in Q under Wp

(Lemma 3.1), with L scaled by αk. By empirical process bounds for Lipschitz classes (Mohajerin Es-
fahani & Kuhn, 2018), with probability at least 1− δ/2,

sup
f∈F

∣∣∣∣∣ sup
Q∈Uρ(P̂N )

RegretQ(f)− sup
Q∈Bρ(P0)

RegretQ(f)

∣∣∣∣∣ ≤ 2RN (G)+
√

2 log(2/δ)

N
= O

(
1√
N

+

√
log(1/δ)

N

)
.

The bound holds under the interchangeability principle (Assumption 2.1), ensuring the supremum
over Q commutes with the expectation.

Regret Rate for f̂DRE : The estimator f̂DRE satisfies f̂DRE = argminf∈F R(ρ; P̂N ), where
R(ρ;P ) = supQ∈Bρ(P ) RegretQ(f). From Step 2, with probability at least 1− δ/2,

R(ρ;P0, f̂DRE) ≤ R(ρ; P̂N , f̂DRE) +O

(√
log(1/δ)

N

)
.

Since R(ρ; P̂N , f̂DRE) ≤ R(ρ; P̂N , f) for all f , and by continuity of R(ρ;P ) in P (Lemma 3.1),

sup
Q∈Bρ(P0)

RegretQ(f̂DRE) ≤ inf
f∈F

sup
Q∈Bρ(P0)

RegretQ(f) +O

(√
log(1/δ)

N

)
.

The rate is scaled by αk through the multimodal variance inRN (F).

H.4 PROOF OF LEMMA 3.4(SAMPLE COMPLEXITY)

Proof. We derive the sample complexity using Theorem 3.2, which states that with probability at
least 1− δ,

sup
Q∈Bρ(P0)

RegretQ(f̂DRE) ≤ inf
f∈F

sup
Q∈Bρ(P0)

RegretQ(f)+LWp(P̂N , P0)+2RN (G)+
√

2 log(2/δ)

N
.

Bounding the Rademacher Term. The Rademacher complexity of G = {ℓ(z, f(z)) : f ∈ F}
satisfies

RN (G) ≤ CF

√
vc(G)
N

,

for constant CF > 0 depending on the bound of ℓ (Shalev-Shwartz & Ben-David, 2014, Theo-
rem 26.5). To ensure 2RN (G) +

√
2 log(2/δ)/N ≤ ϵ/2, we require

N ≥ C1
vc(G) + log(2/δ)

ϵ2
,

for some C1 > 0.
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Bounding the Wasserstein Term. By Fournier & Guillin (2015, Theorem 2), for P0 with finite p-th
moments,

E[Wp(P̂N , P0)] ≤


CN−1/2, if d < 2p,

CN−1/2 log(1 +N), if d = 2p,

CN−p/d, if d > 2p,

for constant C > 0. With probability at least 1− δ/2, Talagrand’s inequality (Blanchet et al., 2024)
gives Wp(P̂N , P0) ≤ ϵ/(2L) if

N ≥ C2

(
L

ϵ

)max{2,d/p}

,

where L = Lℓ

∑K
k=1 αk follows from the multimodal cost c(z, z′) =

∑K
k=1 αk∥zk − z′k∥pp, with

gradient ∥∇c∥ ≤
∑

k αkp∥zk − z′k∥
p−1
p−1.

H.5 PROOF OF LEMMA 3.5(ASYMPTOTIC UNBIASEDNESS OF DEBIASED WDRO-MRO)

Proof. We prove asymptotic unbiasedness of the debiased WDRO-MRO estimator using empirical
proq’acess theory and bias correction, adapted for multimodal finite-sample biases.

Bias Decomposition: The bias of f̂DRE is

E[f̂DRE − f0] = E
[
argmin

f
R(ρ; P̂N )− argmin

f
R(ρ;P0)

]
,

where R(ρ;P ) = supQ∈Bρ(P ) RegretQ(f). By Lemma 3.1, R(ρ;P ) is convex and L-Lipschitz in
P under Wp, with L = Lℓ

∑
k αk. The finite-sample bias arises from the empirical approximation

P̂N , scaled by the multimodal variance σ2 =
∑

k α
2
kEP0

[σ2
k].

Finite-Sample Bias Bound: From Theorem 3.2, with probability 1− δ,

R(ρ;P0, f̂DRE)−R(ρ;P0, f0) ≤ LWp(P̂N , P0) + 2RN (G) +
√

2 log(2/δ)

N
,

whereRN (G) = O(
√

vc(G)/N). Taking expectations, the bias is

E[f̂DRE − f0] ≤ E[LWp(P̂N , P0)] +O(1/
√
N),

with E[Wp(P̂N , P0)] ≤ CN−p/max{2,d} (Fournier & Guillin, 2015). For multimodal costs, αk

scales L, tightening the bias term as αk prioritizes high-variance modalities.

Debiasing Correction: Define the debias term bN = E[f̂DRE − f0|P̂N ] ≈ LE[Wp(P̂N , P0)] +

O(1/
√
N), estimated via bootstrap or double robustness methods (Blanchet et al., 2022). The

debiased estimator f̂deb = f̂DRE + bN satisfies

E[f̂deb] = E[f̂DRE ] + E[bN ] = f0 + o(1),

as N →∞, since the bias term bN = O(1/N) vanishes asymptotically. For multimodal settings, bN
is corrected by weighting the variance σ2 =

∑
k α

2
kσ

2
k, ensuring unbiasedness across heterogeneous

modalities.

Asymptotic Unbiasedness: By the law of large numbers for empirical processes and the continuity
of the regret functional (Lemma 3.1), the bias correction bN → 0, yielding

E[f̂deb − f0]→ 0.

The rate is O(1/N) under strict convexity, with αk modulating the variance in the correction term.

I PROOFS OF SECTION 3.4(REGULARIZATION AND ROBUSTNESS
PROPERTIES)

I.1 PROOF OF LEMMA 3.6(VARIATIONAL REGULARIZATION EQUIVALENCE)

Proof. We prove the equivalence using duality and Fenchel conjugates, adapted for multimodal costs.
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Primal Formulation. The WDRO-MRO problem is

inf
f∈F

sup
Q∈Uρ(P̂N )

EQ[ℓ(z, f(z))]− inf
f ′∈F

EQ[ℓ(z, f
′(z))],

where Uρ(P̂N ) = {Q ∈ P(Z) : Wp(P̂N , Q) ≤ ρ}, with multimodal cost c(z, z′) =
∑K

k=1 αk∥zk −
z′k∥pp.

Dual Reformulation. By Proposition 3.4, we have

sup
Q∈Uρ(P̂N )

EQ[ℓ(z, f(z))] = inf
λ≥0

{
λρ+ EP̂N

[
sup
z′

ℓ(z, f(z′))− λc(ẑ, z′)

]}
,

and similarly for the regret baseline term. Hence, the WDRO-MRO becomes

inf
f∈F

inf
λ≥0

λρ+ EP̂N

[
sup
z′

ℓ(z, f(z′))− λc(ẑ, z′)

]
− inf

f ′∈F
inf
λ′≥0

{
λ′ρ+ EP̂N

[
sup
z′′

ℓ(z, f ′(z′′))− λ′c(ẑ, z′′)

]}
.

Fenchel Conjugate Interpretation. For p = 1 and convex ℓ(z, v), the supremum over z′ can
be interpreted via the Fenchel conjugate ℓ∗ evaluated at λ∇zc(ẑ, z

′) (Gao et al., 2024). Since
c(z, z′) =

∑
k αkdk(zk, z

′
k), the regularization term decomposes accordingly. By (Azizian et al.,

2023), this induces a weighted total variation regularization:

TV(f) =
∑
k

αk TVk(fk), with TVk(fk) = sup
∑
j

|fk(zk,j+1)− fk(zk,j)|.

Special Case for Linear f . For linear f(z) =
∑

k fk(zk), the problem reduces to ERM plus a total
variation penalty with coefficient γ = λρ, as shown in (Gao et al., 2024).

Generalization to p > 1. For p > 1, the penalty generalizes to higher-order smoothness norms (e.g.,
Sobolev or gradient norms), and the convergence rate scales pwith ρ1/p (Azizian et al., 2023).

I.2 PROOF OF LEMMA 3.7(MULTIMODAL LIPSCHITZ REGULARIZATION EQUIVALENCE)

Proof. We prove the equivalence by reformulating the WDRO-MRO dual and specializing to linear
multimodal models.

Dual Reformulation of WDRO Risk Term. By strong duality (Proposition 3.4),

sup
Q∈Uρ(P̂N )

EQ[ℓ(y, w
⊤x)] = inf

λ≥0
λρ+ EP̂N

[
sup
x′

ℓ(y, w⊤x′)− λc(x, x′)

]
.

For linear models and losses like logistic (1-Lipschitz in v), the inner sup is bounded by the Lipschitz
property:

sup
x′

ℓ(y, w⊤x′)− λc(x, x′) ≤ ℓ(y, w⊤x) + λ sup
x′
|w⊤(x′ − x)| − c(x, x′).

Lipschitz Dual Emergence. The term supx′:c(x,x′)≤ρ/λ |w⊤(x′ − x)| is the effective Lipschitz
extension. Since c(x, x′) =

∑
k αk∥xk − x′

k∥pp, by Hölder inequality,

|w⊤(x′ − x)| =

∣∣∣∣∣∑
k

w⊤
k (x

′
k − xk)

∣∣∣∣∣ ≤∑
k

∥wk∥q∥x′
k − xk∥p,

where q = p/(p−1). The constraint
∑

k αk∥xk−x′
k∥pp ≤ ρ/λ implies a weighted ball. Maximizing

over perturbations yields
sup |w⊤(x′ − x)| = (ρ/λ)1/p∥w∥∗,
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where the dual norm ∥w∥∗ = sup∑
k αk∥uk∥p

p≤1

∑
k w

⊤
k uk. By inf-convolution duality for additive

costs (separability from Assumption 2.1),

∥w∥∗ = inf
βk≥0,

∑
βk=1

∑
k

∥wk∥q
αkβk

.

Thus, the risk term becomes E[ℓ] + γ∥w∥∗, with γ = λρ1/p.

Regret Term Handling. The regret baseline infw′ EQ[ℓ(y, (w
′)⊤x)] dualizes similarly, subtracting

an identical reg term (since inf over w′ yields the same dual form, constant in w). By Sion’s minimax
theorem (convex-concave), the overall is equivalent to reg-ERM with weighted Lipschitz penalty.

Modality-Specific Robustness. Higher αk reduces the penalty for modality k in ∥w∥∗, allowing
larger wk (less regularization) for stable modalities, while low αk tightens constraint for noisy
ones.

I.3 PROOF OF PROPOSITION 4.1(ENVELOPES FOR LOGISTIC; TRACTABLE PER P)

Proof. By the DRO duality for optimal transport ambiguity sets, the worst-case expectation admits
the envelope form with zero duality gap under mild regularity (upper semicontinuity, IP), hence
the strong-dual “canonical objective” with epigraph variables si is valid; see Kuhn et al. (2025,
Theorem 4.18 & Lemma 4.16).

For p = 1, when ℓ is L-Lipschitz in v = w⊤x, the envelope equals EP̂N
[ℓ] + λρL (specializing

Proposition 6.17), which yields an LP via standard absolute-value auxiliaries; cf. Kuhn et al. (2025,
Prop. 6.17).

For p = 2, using the convex conjugate of the logistic loss together with the quadratic cost conjugate
c∗, the envelope reduces to a conic program representable as an SDP, and to an SOCP under
diagonal/rotated-quadratic structure; this is the standard Fenchel–Moreau route in our WDRO–MRO
derivations, see Lemma B.10 therein.

For 2 < p < ∞, the cost conjugate c∗ admits a Hölder-type form with q = p/(p − 1), which is
power-cone representable for rational p (and exponential-cone for irrational p). Hence the envelope
is a convex conic program; see Lemma B.4.

For p = ∞, the ℓ∞-ball uncertainty reduces the envelope to vertex (box) constraints, which are
LP/SDP-representable; see the tractability table and corresponding Lemmas in 3.2.1.

Collecting these cases gives the claimed tractable envelopes per p, all as finite-dimensional convex
conic programs with zero duality gap and attained optima under our standing assumptions.

I.4 EMPIRICAL OBSERVATIONS OF REMARK 4.1 IN EXPERIMENTS

To show the relation that larger αk (more trusted modality) yields weaker shrinkage on wk, we vary
one modality weight over [0.25, 0.5, 1.0, 2.0, 4.0, 8.0] while keeping all other modality weights fixed
at 1.0, shown in Figure 2.

J ADDITIONAL EXPERIMENTAL DETAILS

J.1 PREPROCESSING PIPELINE

Figure 3 in Appendix J.1 illustrates the preprocessing and splitting pipeline. Following Dörrich
et al. (2025), we preprocess and integrate five modalities: Demographics (age, gender, and related
variables), Blood parameters (routine test values, z-score normalized), Pathological features (tumor
grading, stage, and lymph node status), ICD codes (categorical disease codes, bag-of-words encoded),
and TMA cell density (CD3/CD8 immune cell infiltration counts). Data is separated into training
(80%, 612 patients) and test (20%, 151 patients) sets, with 5-fold cross-validation for hyperparameter
tuning. We consider three evaluation splits: in-distribution (ID), out-of-distribution (OOD), and an
Oropharynx-specific split.
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Figure 2: Relation between αk ∈ [0.25, 0.5, 1.0, 2.0, 4.0, 8.0] and ||wk||2 for noise rates ∈
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5].
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Figure 3: Preprocessing and splitting pipeline for the HANCOCK dataset (Dörrich et al., 2025).
Multiple modalities (Demographics, Pathology, Blood, ICD, TMA) are integrated into multimodal
patient vectors, visualized with UMAP, and split into training/testing sets using a genetic algorithm.

J.2 METRICS

Table 4: Definitions of evaluation metrics. ↑ indicates higher is better, ↓ indicates lower is better.

Abbrev. Full Name Definition / Formula
Performance
Avg AUC ↑ Average AUC Mean ROC-AUC across all noise rates and trials.
Std AUC ↓ Standard Deviation of AUC Variability of ROC-AUC across repeated trials.

Robustness
Robust AUC ↑ Robust AUC Worst-case (minimum over noise rates) mean AUC.
RR-AUC ↑ Relative Robustness AUC Robust AUC/maxρ{AUC(ρ)}.
W.C. Drop ↓ Worst-Case Drop maxρ{AUC(ρ)} − Robust AUC.

Stability
NS Drop ↓ Noise Sensitivity Drop AUC(ρ = 0)− Robust AUC.
NS Slope ↓ Noise Sensitivity Slope Slope of regression of AUC vs. noise rate ρ.

Fairness
GNR ↑ Group-Noise Robustness ming,ρ{AUCg(ρ)}.
GF Gap ↓ Group-Fairness Gap maxg AUCg −ming AUCg .

J.3 GROUP DISTRIBUTIONALLY ROBUST OPTIMIZATION (GROUP DRO)

In addition to the instance-level Wasserstein ambiguity sets considered in the main text, we include
Group DRO (Sagawa et al., 2020) as a baseline method. Group DRO assumes that data points are
partitioned into G predefined groups (e.g., tumor sites or clinical subpopulations), and seeks a model
whose loss is uniformly controlled across all groups.
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Formulation. Let {Sg}Gg=1 denote the index sets corresponding to each group. For a model f with
parameters θ and loss ℓ(z, f(z)), define each group loss as

Lg(θ) =
1

|Sg|
∑
i∈Sg

ℓ(zi, fθ(zi)).

Group DRO solves the minimax problem

min
θ

max
g∈{1,...,G}

Lg(θ), (2)

which guarantees that performance is optimized for the worst group.

Convex Logistic Regression Case. In our experiments, fθ is a linear classifier fθ(z) = w⊤z + b
with logistic loss ℓ(y, v) = log(1+ exp(−yv)). Problem equation 2 admits the convex reformulation

min
w,b,t

t

s.t.
1

|Sg|
∑
i∈Sg

log
(
1 + exp

(
− yi(w

⊤xi + b)
))
≤ t, g = 1, . . . , G,

(3)

which can be solved using standard convex programming tools (e.g., MOSEK). This formulation is
structurally aligned with the LP/SOCP/SDP reformulations used in WDRO and WDRO-MRO, en-
abling fair comparison. Group DRO provides robustness against protected groups and subpopulation
shifts, complementing the instance-level perturbation robustness captured by Wassserstein DRO and
the regret-based robustness in WDRO-MRO. It serves as a strong baseline that ensures:

Group-level fairness ⇐⇒ max
g

Lg(θ) is small,

which is distinct from (i) distributional shifts modeled via Wasserstein balls, and (ii) model-based
adversarial perturbations arising in the minimax regret objective.

J.4 ADDITIONAL RESULTS

J.4.1 ADDITIONAL RESULTS FOR UNIFORM MODALITY WEIGHTS, αk = 1.0

The results presented in Figures 1 and 4 to 7 were generated using uniform modality weights, with
αk = 1.0 for all k.
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Figure 4: WDRO-MRO shows the strongest robustness to label noise on the HANCOCK dataset:
although LR achieves the best AUC on clean data splits (ρ = 0.0, in distribution, out of distribution), its
performance degrades with increasing noise, while WDRO-MRO maintains consistently higher AUC
at moderate and high noise levels, and dominates across all noise rates on the Oropharynx data split.
Heatmaps report mean AUC for each model (rows) under different noise rates ρ ∈ {0.0, 0.1, ..., 0.5}
(columns), with color intensity indicating performance.

K USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used to improve grammar and readability of the text.
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Figure 5: In-distribution split: Boxplots show the distribution of AUC across 5 random seeds under
increasing noise rates (ρ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}).
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Figure 6: Out-of-distribution split: AUC distributions across seeds for LR, MLP, GDRO, WDRO,
and WDRO-MRO.
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Figure 7: Oropharynx split: Boxplots highlight that WDRO-MRO dominates across all noise
levels, achieving both higher AUC and smaller variance compared to LR, MLP, GDRO and WDRO,
demonstrating strong robustness in this data split.
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