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Abstract—Phyllodes tumors (PTs) are rare fibroepithelial
breast lesions that can be malignant but are difficult to classify
preoperatively due to their radiological similarity to benign
fibroadenomas. This often leads to unnecessary surgical exci-
sions. To address this, we propose a multimodal deep learning
framework that integrates breast ultrasound (BUS) images with
structured clinical data to improve diagnostic accuracy. We
developed a dual-branch neural network that extracts and fuses
features from ultrasound images and patient metadata from
81 subjects with confirmed PTs. Class-aware sampling and
subject-stratified 5-fold cross-validation were applied to mitigate
class imbalance and data leakage. The results show that our
proposed multimodal method outperforms unimodal baselines in
classifying benign versus borderline/malignant PTs. Among six
deep learning-based image encoders, ConvNeXt and ResNet18
achieved the best performance in the multimodal setting, with
AUC-ROC scores of 0.9427 and 0.9349, and F1-scores of 0.6720
and 0.7294, respectively. This study demonstrates the potential of
multimodal AI to serve as a non-invasive diagnostic tool, reducing
unnecessary surgical excisions and improving clinical decision-
making in breast cancer care.

Index Terms—phyllodes tumor, breast ultrasound, multimodal
AI, feature fusion, class-aware sampling

I. INTRODUCTION

Breast fibroepithelial lesions are a diverse group of biphasic
tumors consisting of fibroadenomas (FAs) and phyllodes tu-
mors (PTs). While FAs are common benign tumors with a low
risk of recurrence or metastasis, PTs are rare lesions, account-
ing for less than 1% of breast tumors, that exhibit heteroge-
neous characteristics [1]. However, their clinical significance
lies in the uncertain progression and the diagnostic challenges
[2]. Moreover, the World Health Organization (WHO) classi-
fies phyllodes tumors into benign, borderline, and malignant
subtypes with reported local recurrence rates of 7.1%, 16.7%,
and 25.1%, respectively [3]. Therefore, accurate preoperative
grading of PTs into benign versus borderline/malignant is
crucial for appropriate treatment planning.

The current standard diagnostic pathway often involves
a core needle biopsy (CNB), followed by surgical excision
if the pathology is ambiguous. However, only up to 57%
of CNB-diagnosed fibroepithelial lesions are later upgraded
to phyllodes tumors after excision, leading to unnecessary
surgeries with potential complications, scarring, and increased
healthcare costs. In the United States alone, excisional biopsies
for suspected phyllodes tumors cost over $2 million annually

[1], [4]. Artificial Intelligence (AI) could potentially mitigate
this challenge by improving the differentiation of malignant
PTs from the benign ones.

Early efforts focused on ultrasound (US) imaging alone.
Yan et al. developed a deep learning (DL) model differen-
tiating PTs from fibroadenomas (FAs) with 87.3% accuracy
using multicenter ultrasound data [3]. Similarly, the Xception
architecture achieved an area under the curve (AUC) of 0.87
for PT-FA discrimination [5]. However, these models lacked
clinical context, limiting their diagnostic utility in ambiguous
cases [6].

Multimodal AI approaches often integrate imaging with
clinical data, and they show significant promise in broader
breast cancer diagnostics. Ben et al. incorporated patient
metadata with mammography, a tissue characterization tech-
nique, which improved molecular subtyping AUC by up to
27.6% over image-only models [7]. Similarly, fusing B-mode
ultrasound with Nakagami parametric imaging increased AUC
by 10.75% [8], and combining mammography and ultrasound
boosted specificity to 96.41% [9]. Xu et al. integrated mor-
phological and texture features that reduced false positives
in BI-RADS 4 lesions by 15% [10]. Despite the progress,
multimodal strategies have rarely been applied to phyllodes
tumors, where models continue to rely on ultrasound or
histopathological features alone. This is a critical gap, as
clinical data, such as age, tumor size, and menopausal status,
are central to the overall evaluation and could significantly
enhance diagnostic performance in AI models.

In this work, we propose a multimodal deep learning
framework integrating US images and structured clinical data
for PT classification. Our dual-branch architecture fuses image
and tabular features, while class-aware sampling and subject-
stratified 5-fold cross-validation address class imbalance and
data leakage. We also evaluated the method on multiple deep
learning-based image encoders, all of which outperformed
unimodal baselines, highlighting its potential as a non-invasive
decision support tool in clinical workflows.

II. METHODS

A. Dataset

The phyllodes tumor dataset was retrospectively collected
and anonymized at the Massachusetts General Hospital
(MGH) and was approved by the Institutional Review Board.



The deidentified dataset comprises clinical data from 106
subjects, breast ultrasound (BUS) images from 71, and BUS
videos from 10 subjects in DICOM format. Not all subjects
had complete clinical and imaging data. After data matching,
a subset of 81 subjects (an average age of 38.01 ± 13.37
years) with both modalities was selected for this study. In
terms of phyllodes tumor class, there were 65 benign, 10
borderline, and 6 malignant subjects. For this study, we
combined the borderline and malignant cases to formulate a
binary classification task.

B. Preprocessing

The BUS images and videos, originally in DICOM for-
mat, were converted to PNG format. Duplicate images were
removed, and only frames containing tumors were retained.
Since most BUS images included text along the image borders
(e.g., probe position, frequency, and other metadata), we
cropped the borders to remove these artifacts. Additionally,
the extracted images were in RGB, and we converted them to
grayscale to ensure a consistent color profile across the dataset.
The resulting image dataset consisted of 1,213 benign and 425
malignant images, resulting in a class ratio of approximately
3:1.

The clinical dataset was then preprocessed based on fea-
ture availability, retaining three numeric (age at diagnosis,
BMI, and tumor size) and three categorical features (race,
menopausal status, and tumor echogenicity). Categorical vari-
ables were processed using one-hot encoding, yielding a total
of 10 clinical features.

C. Class-aware sampling

In highly imbalanced datasets, conventional random sam-
pling often results in mini-batches dominated by the ma-
jority class, which can lead to biased model updates and
poor generalization to minority classes. Class-aware sampling
addresses this issue by decoupling the sampling process into
two stages. First, a class is selected uniformly at random,
ensuring equal sampling probability for each class regardless
of its prevalence in the dataset. Second, a sample is drawn
uniformly from within the selected class. By repeating this
process, the constructed mini-batches contain a more equitable
distribution of classes over time [11]. This approach has
effectively improved the training dynamics of deep learning
models on long-tailed and imbalanced datasets [12].

D. Multimodal Deep Learning Framework

Our multimodal architecture consists of two parallel
branches as illustrated in Figure 1.

The imaging branch is a convolutional neural network
(CNN)-based image encoder to extract one-dimensional fea-
ture embeddings from grayscale ultrasound images. Transfer
learning was used during training to finetune the ImageNet-
pretrained image encoders. In parallel, the clinical data (10-
dimensional input) was processed by a two-layer multilayer
perceptron (MLP) with 10→16→8 units and ReLU activations
to generate a compact embedding of the tabular features. The
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Fig. 1. Multimodal AI model architecture with feature-level fusion. The image
branch consists of an image encoder (e.g., VGG16, ConvNeXt), while the
clinical data branch uses an MLP. The resulting embeddings are concatenated
and passed to a deep learning classifier (fully-connected layer) for the final
prediction.

two embeddings were then concatenated at the feature level.
Lastly, the fused vector was passed through a final linear
classifier with a softmax activation function to predict the class
label.

This design enables the model to jointly reason over visual
and tabular inputs, enhancing robustness and interpretability.

III. RESULTS

A. Experimental Setup

We performed subject-stratified 5-fold cross-validation to
prevent data leakage across training and validation sets. More-
over, class-aware sampling was applied during training to
address class imbalance. Ultrasound images were resized to
224×224 pixels, and the intensity values were normalized to
the [0, 1] range. During training, we applied random horizontal
flipping and small rotation (±10◦). Models were trained for 30
epochs using stochastic gradient descent (SGD) with a learning
rate of 0.001, momentum of 0.9, and a batch size of 4. Each
model was evaluated using average accuracy, F1-score, and
its 95% confidence interval (CI) across folds. All experiments
were conducted using an NVIDIA RTX A4000 GPU (16GB
VRAM) and a system with 32GB RAM.

B. Evaluation of multimodal image encoders

We evaluated six ImageNet-pretrained image encoders:
VGG16 [13], ResNet18, ResNet50 [14], EfficientNet-B7 [15],
CCT [16], and ConvNeXt [17] within the multimodal architec-
ture. Table I summarizes the average accuracy, F1-score, and
AUC-ROC over five subject-stratified cross-validation folds.

TABLE I
EVALUATION OF THE MULTIMODAL FRAMEWORK WITH DIFFERENT IMAGE

ENCODERS (SORTED BY AUC-ROC)

Image
Encoder

Mean
Accuracy

Mean
F1-Score

Mean
AUC

95% CI
(AUC)

ConvNeXt 0.9098 0.6720 0.9427 [0.8842, 1.0000]
CCT 0.9018 0.6683 0.9406 [0.8633, 1.0000]

ResNet18 0.9179 0.7294 0.9349 [0.8775, 0.9923]
ResNet50 0.9100 0.7065 0.9168 [0.8253, 1.0000]

EfficientNet-B7 0.8252 0.5473 0.8963 [0.8203, 0.9722]
VGG16 0.8885 0.6389 0.8886 [0.7376, 1.0000]



Among all models, ConvNeXt achieved the highest AUC-
ROC of 0.9427, closely followed by CCT (0.9406) and
ResNet18 (0.9349). In addition, ConvNeXt achieved a sen-
sitivity of 0.71, a specificity of 0.95, a PPV of 0.87, and an
NPV of 0.81. ResNet18 obtained the best average accuracy of
0.9179 and an F1-score of 0.7294. In contrast, EfficientNet-
B7 and VGG16 exhibited lower performance, particularly in
F1-score (0.5473 and 0.6389, respectively), likely reflecting
their sensitivity to class imbalance or limited generalization
on small datasets.

C. Attribution analysis

To improve explainability, we used Score-CAM to visu-
alize salient regions in ultrasound images, highlighting the
model’s decision process. Score-CAM generates class-specific
attribution maps by weighting activation maps with their
corresponding class scores [18]. Figure 2 shows examples
of true positive, true negative, and misclassified cases using
ConvNeXt as the image encoder.
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Fig. 2. Score-CAM attributes of the ConvNeXt image encoder benign and
malignant cases. Warmer colors indicate regions contributing more strongly
to the predicted class. Correctly predicted cases show focused attention on
relevant tumor regions, whereas misclassified cases often exhibit diffuse or
misplaced activations, suggesting visual ambiguity or model uncertainty.

In the correctly predicted malignant cases, the image en-
coder focused on tumor regions and the surroundings with
heterogeneous echotexture, while the misclassified samples
showed dispersed or ambiguous activation patterns. These
insights suggest that visual cues alone are sometimes insuffi-
cient, which further justifies the use of multimodal reasoning.

D. Modality Ablation

We adopted a drop-based ablation approach to quantify the
relative importance of each modality. For each sample, we
computed the model’s predicted probability for the malignant
class using all validation data across 5 folds. We repeated
the process after zeroing out either the image or the clinical
features. The magnitude of the change in probability is treated
as the modality’s contribution. We normalized these changes
to obtain relative contribution scores per sample. Figure 3
illustrates that BUS contributes 63% ± 0.09 in the class
prediction and clinical data contributes to 37% ± 0.09. The
box plot boundaries represent the 25th and 75th percentiles.

Fig. 3. Modality ablation analysis showing relative contributions of ultrasound
images and clinical data in the multimodal ConvNeXt model. The box bound-
aries represent the interquartile range (IQR). Ultrasound imaging contributed
more strongly (mean 0.63 ± 0.09) than clinical features (mean 0.37 ± 0.09),
while both provided complementary information for classification.

E. Performance comparison between unimodal and multi-
modal approaches

We investigated the contribution of each modality by eval-
uating unimodal and multimodal models using our best-
performing image encoder (ConvNeXt) and a multilayer per-
ceptron (MLP) for clinical data. Table II summarizes the clas-
sification performance across different input configurations.
The multimodal model performed best, with an accuracy of
0.9098, F1-score of 0.6720, and AUC of 0.9427, demon-
strating the benefit of combining data sources. The image-
only ConvNeXt also performed well (AUC 0.8919), while the
clinical-only MLP was much weaker with a F1-score of 0.33,
showing that clinical features alone have limited discriminative
power. Overall, these findings confirm the value of multimodal
fusion for improving diagnostic accuracy and robustness.

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT INPUT MODALITIES

Modality Accuracy F1-Score AUC 95% CI (AUC)

Only clinical data 0.8140 0.3300 0.7846 [0.6561, 0.9132]
Only BUS image 0.8906 0.6138 0.8919 [0.8259, 0.9578]

Multimodal 0.9098 0.6720 0.9427 [0.8842, 1.0000]

Figure 4 shows ROC curves of the two best-performing
models, namely ConvNeXt and CCT, in both unimodal and
multimodal configurations. The multimodal ConvNeXt model
achieved the highest AUC of 0.9427 (95% CI: [0.8842,
1.0000]), followed closely by multimodal CCT with an AUC
of 0.9406 (95% CI: [0.8633, 1.0000]), both of which surpassed
their unimodal counterparts. At the EER point, multimodal
ConvNeXt achieved the highest score (0.8799), followed by
multimodal CCT (0.8519), both surpassing unimodal Con-
vNeXt (0.8348) and CCT (0.8098). This reiterates the value of
multimodal fusion, especially in cases where image features
alone may be insufficient for confident classification.

IV. DISCUSSION

While unimodal models based solely on ultrasound imaging
achieved reasonably strong performance, the multimodal ap-



Fig. 4. Receiver operating characteristic (ROC) curves of ConvNeXt and
CCT in unimodal and multimodal settings. Multimodal models outperformed
unimodal counterparts (ConvNeXt: 0.9427 vs. 0.8919; CCT: 0.9406 vs.
0.8590), confirming the benefit of integrating clinical data. The multimodal
ConvNeXt achieved the highest AUC (0.9427) and EER (0.8799), followed
by multimodal CCT (AUC 0.9406, EER 0.8519), with unimodal ConvNeXt
(0.8348) and CCT (0.8098) performing lower.

proach consistently outperformed them across all key metrics.
Although the modality ablation study indicates a greater
contribution from BUS images, the clinical data still plays a
significant complementary role. This aligns with clinical prac-
tice, where both imaging and patient history are considered.

Moreover, Score-CAM visualization provides a founda-
tion for clinical interpretability. Misclassified cases tended
to exhibit weaker or diffused attention maps, indicating that
the image encoder struggled with ambiguous visual patterns,
which further justifies the use of auxiliary modalities.

Despite promising results, this study has a few limitations.
The phyllodes dataset is relatively small for malignant and
borderline cases, which limits the statistical strength of the
findings. Larger and more diverse multi-center datasets are
needed before the clinical trial to further refine and test the
AI models. Overall, this work shows that multimodal deep
learning frameworks can improve phyllodes tumor diagnosis,
even when working with small and imbalanced datasets which
is a common challenge in rare diseases.

V. CONCLUSION

We proposed a multimodal deep learning framework that in-
tegrates ultrasound image features with structured clinical data
for phyllodes tumor classification. The multimodal architecture
consistently outperformed unimodal baselines across multiple
image encoders, improving diagnostic accuracy and robustness
while potentially reducing unnecessary surgical biopsies. A
key challenge was the strong class imbalance, with relatively
few borderline and malignant cases, which we mitigated using
class-aware sampling and subject-stratified cross-validation.

Future work will aim to expand the dataset, incorporate ra-
diologist annotations, and explore transformer-based encoders
with attention mechanisms to enhance interpretability and per-
formance. Prospective validation in real-world clinical settings
will also be critical to assess the system’s generalizability and
its utility in guiding biopsy decisions.
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