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Abstract

Class unlearning in neural classifiers refers to selectively removing the
model’s ability to recognize a target (forget) class by reshaping the de-
cision boundaries. This is essential when taxonomies change, labels are
corrected, or legal or ethical requirements mandate class removal. The ob-
jective is to preserve performance on the remaining (retain) classes while
avoiding costly full retraining. Existing methods generally require access to
the source, i.e., forget/retain data or a relevant surrogate dataset. This de-
pendency limits their applicability in scenarios where access to source data
is restricted or unavailable. Even the recent source-free class unlearning
methods rely on generating samples in the data space, which is compu-
tationally expensive and not even essential for doing class unlearning. In
this work, we propose a novel source-free class unlearning framework that
enables existing unlearning methods to operate using only the deployed
model. We show that, under weak assumptions on the forget loss with re-
spect to logits, class unlearning can be performed source-free for any given
neural classifier by utilizing randomly generated samples within the clas-
sifier’s intermediate space. Specifically, randomly generated embeddings
classified by the model as belonging to the forget or retain classes are suffi-
cient for effective unlearning, regardless of their marginal distribution. We
validate our framework on four backbone architectures, ResNet-18, ResNet-
50, ViT-B-16, and Swin-T, across three benchmark datasets, CIFAR-10,
CIFAR-100, and TinyImageNet. Our experimental results show that exist-
ing class unlearning methods can operate within our source-free framework,
with minimal impact on their forgetting efficacy and retain class accuracy.

1 Introduction

Deep learning models have achieved remarkable performance across domains, but their
tendency to memorize training data makes them susceptible to privacy attacks such as
membership inference attacks (Salem et al., 2018; Shokri et al., 2017; Song et al., 2019; Yeom
et al., 2018) and model inversion attacks (Chen et al., 2021; Fredrikson et al., 2015). These
risks pose serious concerns in privacy-sensitive applications, particularly under regulations
such as General Data Protection Regulation (GDPR) (Voigt & Von dem Bussche, 2017)
and California Consumer Privacy Act (CCPA) (Goldman, 2020) that mandate a ”right to
be forgotten”, requiring effective removal of specific data from trained models. In response,
machine unlearning has emerged as a promising direction to remove the influence of specific
instances or classes without retraining from scratch. Unlearning methods fall into model-
intrinsic (Lin et al., 2023), data-driven (Bourtoule et al., 2021; Hayase et al., 2020), and
model-agnostic categories (Kurmanji et al., 2023; Chen et al., 2023; Cotogni et al., 2023; Cha
et al., 2024), with a key distinction between exact unlearning (Bourtoule et al., 2021; Yan
et al., 2022) and approximate unlearning. Although recent approximate methods reduce
retraining overhead, most still require access to the forget set, the retain set, or a surrogate
dataset that approximates the training distribution.
This work challenges the widely held assumption that access to original training data is
required for class unlearning. We propose a novel framework for source-free class unlearning
that operates entirely without access to original or surrogate forget and retain datasets. Our
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approach leverages randomly generated embeddings in the intermediate space of the target
classifier. More precisely, we generate synthetic, class-conditional synthetic embeddings by
randomly sampling in the model’s intermediate embedding space and pseudo-labeling them
based on the model’s predictions. These synthetic embeddings serve as proxies, allowing
existing state-of-the-art unlearning methods to be adapted seamlessly to a fully source-free
setting. We theoretically prove that these synthetic embeddings are sufficient to induce
effective decision boundary adjustments, while preserving accuracy on the retain classes.
This work enables class-level unlearning in a fully source-free setting, which is compatible
with a wide range of existing unlearning methods. Our framework successfully adapts
several state-of-the-art techniques, including Finetuning (Golatkar et al., 2020), Negative
Gradient (Golatkar et al., 2020), Negative Gradient+ (Kurmanji et al., 2023), Random
Labels (Hayase et al., 2020), Boundary Expanding (Chen et al., 2023), Boundary Shrink
(Chen et al., 2023), DELETE (Zhou et al., 2025), SCRUB (Kurmanji et al., 2023), and
SCAR (Bonato et al., 2024), to operate effectively without requiring access to any original
training data or relevant surrogate. Our main contributions are summarized as follows:

• We propose a novel source-free class unlearning framework that operates solely on
a target model and the label of the class to be forgotten, without requiring any
access to original, surrogate, or validation dataset. Our method generates synthetic
class-conditional embeddings by sampling random vectors within the model’s inter-
mediate feature space and pseudo-labeling them using the model itself, enabling the
adaptation of existing unlearning methods to a fully source-free regime.

• We show that these synthetic embeddings, regardless of their marginal distribution,
are sufficient to induce the decision boundary shifts necessary for effective class
unlearning. Remarkably, under our framework, multiple state-of-the-art unlearning
techniques perform equivalently well as in data-access settings.

• We empirically validate our framework on ResNet-18, ResNet-50, ViT-B-16, and
Swin-T backbones using CIFAR-10, CIFAR-100, and TinyImageNet datasets. The
results show that a wide range of existing unlearning methods can function within
our source-free setting with minimal degradation in the unlearning performance.

2 Related Works

Class unlearning aims to remove the influence of a target class from a trained model while
preserving performance on the remaining classes. Class unlearning methods differ mainly
by data access during unlearning: availability of retain data, forget data, both, or neither.
Methods requiring both retain and forget sets. Many effective class unlearning
methods assume access to both forget and retain datasets. Distillation-based approaches
such as SCalable Remembering and Unlearning unBound (SCRUB) (Kurmanji et al., 2023)
guide student models via knowledge transfer and pruning. Machine Unlearning with Di-
mensional Alignment (MUDA) (Seo et al., 2025) introduces dimensional alignment loss and
a self-distillation scheme that explicitly leverages both forget and retain sets to erase the
influence of forget samples while preserving retain knowledge. The recently proposed SVD-
based method (Kodge et al., 2024) performs gradient-free, single-step class unlearning by
estimating retain and forget spaces from small subsets of both datasets and suppressing
class-discriminatory activations.
Retain-free methods. These approaches remove dependence on retain data and operate
mainly on forget samples. Negative Gradient reverses the estimated contribution of forget
samples to the weights (Golatkar et al., 2020). Boundary Shrink and Boundary Expanding
techniques (Chen et al., 2023) adjust decision boundaries by contracting or expanding re-
gions related to forget samples. Partially Blinded Unlearning (PBU) (Panda et al., 2025)
perturbs model parameters using a Bayesian loss. Other lines estimate the retain Hessian
from forget data and model parameters (Ahmed et al., 2025), or inject targeted label noise
to induce misclassification with minimal updates (Ye et al., 2025). Just in Time unlearning
(JiT) enforces local Lipschitz regularization on forget samples and their perturbations (Fos-
ter et al., 2024), while zero-shot proxy generation synthesizes adversarial retain surrogates
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followed by subspace projection and pseudo-labeling (Chen et al., 2025). From an input-
sensitivity view, Machine Unlearning by Minimizing input sensitivity (MU-Mis) minimizes
the sensitivity gap between target-class and irrelevant-class logits to withdraw forget influ-
ence with limited utility loss (Cheng et al., 2024). Zhou et al. (2025) proposes DELETE, a
decoupled distillation method that suppresses the forget-class logits with a masking function
and distills dark knowledge from the frozen model to preserve remaining classes. Recently,
Selective-distillation for Class and Architecture-agnostic unleaRning (SCAR) (Bonato et al.,
2024) introduced a retain-free method that leverages Mahalanobis-guided metric learning
and a distillation strategy using a surrogate out-of-distribution dataset to preserve model
performance. In addition, it proposes a source-free class unlearning variant that requires no
access to either retain or forget data, while still relying on the surrogate dataset.
Forget-free methods. Some methods operate using retain data and without direct access
to forget samples. Fine-tuning approaches update models exclusively on retain data to
indirectly remove forget sample influence. Recent work, such as RELOAD (Newatia et al.),
introduces blind unlearning, which performs approximate unlearning without access to the
forget set. Instead, it leverages cached gradients from the original training and selectively re-
initializes parameters most influenced by the forget data, guided by differences between full
and retain gradients. Similarly, Unlearning With Single Pass Impair and Repair (UNSIR)
(Tarun et al., 2023) operates in a zero-glance setting, where forget samples are entirely
inaccessible. More precisely, it employs a single-pass impair-repair strategy using error-
maximizing noise and a small retain subset to forget class-level information.
Source-free methods. In the source-free unlearning setting, neither forget nor retain
data is available. Chundawat et al. (2023) proposes Min–Max noise, which adversarially
perturbs weights to raise loss on forget classes while preserving retain accuracy, and Gated
Knowledge Transfer (GKT), which distills a student from a teacher while filtering synthetic
samples linked to the forget classes. GKT, however, can over-filter (discarding samples that
still encode retain information) and exhibits generator imbalance (overproducing forget-class
samples), reducing data efficiency. To address these issues, Zhang et al. (2025) introduces
the Inhibited Synthesis PostFilter (ISPF) framework, combining Inhibited Synthesis to dis-
courage the generation of forget-class data with a PostFilter to suppress forget-class logits
without discarding samples. However, both approaches initialize and train a new model
from scratch as part of the distillation process, which incurs substantial computational over-
head. Wang et al. proposes Data Synthesis–based Discrimination-Aware (DSDA), which
synthesizes data via Accelerated Energy-Guided Langevin Sampling and performs unlearn-
ing through Discrimination-Aware Multitask Optimization. Despite efficiency gains, DSDA
still incurs nontrivial computational overhead due to the recursive sampling needed to con-
struct synthetic forget and retain datasets. We demonstrate that synthesizing input-level
data is not necessary for effective class unlearning, and intermediate random embeddings
are sufficient to reshape the decision boundaries. Building on this insight, our proposed
framework operates entirely in the intermediate embedding space by sampling synthetic
embeddings and pseudo-labeling them using the model itself. This significantly reduces
computational overhead while maintaining unlearning effectiveness. Compared to recent
source-free methods such as DSDA, ISPF, and GKT, this approach avoids data generators,
input reconstruction, and student-teacher training, making it significantly more efficient.

3 Methodology

In this section, we introduce our notations, formalize the problem setting, and lay down the
theoretical foundation necessary for source-free class unlearning. Subsequently, we propose
our source-free unlearning methodology grounded on this theoretical insight.

3.1 Notations and Problem Setup

Consider a pre-trained classifier model defined as Φ = h ◦ g ◦ e. Here, the feature extractor
e : X → Rd, parameterized by θe, maps input samples x ∈ X to a d-dimensional embedding
z = e(x) ∈ Rd. An intermediate transformation g : Rd → Rl, parameterized by θg, then
maps z to an l-dimensional latent embedding g(z) ∈ Rl. Finally, the classifier head h : Rl →
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RC , with parameters θh computes class logits h(g(z)) ∈ RC . We denote the space of class
labels as Y = Yf ∪Yr, where Yf is the set of classes targeted for unlearning (forget classes),
and Yr is the set of retain classes with Yf ∩ Yr = ∅. In this work, we primarily focus on
unlearning a single class, denoted as cf , and thus Yf = {cf} and Yr = Y \ {cf}. Under
this notation, class unlearning is defined as the process of selectively removing the model’s
ability to recognize the target class cf by reshaping the decision boundary, while preserving
predictive performance on the remaining classes Yr.

3.2 Proposed Methodology

We assume availability of embeddings drawn from an arbitrary intermediate embedding
space, such as the output of the feature extractor e. Formally, we denote embeddings in
this space as random variables z ∈ Rd, sampled from an arbitrary distribution pz(z). These
embeddings do not necessarily follow any particular distribution from the original training
data. More precisely, given a classifier model Φ = h ◦ g ◦ e, we obtain pseudo-labels for each
embedding zi by applying the intermediate transformation and the classifier head:

ŷi = arg max
k∈Y

[h(g(zi))]k. (1)

Using these pseudo-labels, we construct two embedding subsets including the forget set Ef

and the retain set Er, defined as follows:

Ef = {zi ∈ Rd | ŷi = cf}
Nf

i=1, (2)
Er = {zi ∈ Rd | ŷi ∈ Yr}Nr

i=1, (3)

where Nf and Nr are the sizes of the forget and retain sets, respectively. In class unlearning
methods, the overall objective is often formulated as a combination of two components: a
forget loss Lf computed on the forget set Ef , and a retain loss Lr computed on the retain
set Er. The total unlearning loss is typically expressed as Lu = Lf + λLr, where λ controls
the trade-off between forgetting and utility preservation. The forget loss Lf encourages the
model to remove knowledge related to the forget class by reshaping the decision boundary,
while the retain loss Lr is used to preserve performance on the retain classes and prevent
catastrophic forgetting. In the following proposition, we theoretically prove that by hav-
ing access solely to these sets of embeddings—independent of the underlying embedding
distribution pz(z)—it is possible to perform class unlearning effectively.
Assumptions: We begin by stating two assumptions regarding the forget loss function
Lf . First, we assume that Lf is differentiable with respect to the model’s parameters.
Second, we assume monotonicity conditions on the logits produced by the classifier head.
Specifically, for every embedding zi ∈ Ef :

∂Lf

∂[h(g(zi))]k

{
> 0 k = cf (monotonically increasing),

< 0 k ∈ Yr (monotonically decreasing),
(4)

where [h(g(zi))]k = (θh)⊤
k g(zi) denotes the logit for class k, and (θh)k ∈ Rl is the k-th row

of classifier parameter matrix θh ∈ RC×l.
Proposition 1 (Distribution-Agnostic Class Unlearning). Consider a trained classifier
model Φ = h ◦ g ◦ e with parameters defined as above, and assume the availability of the
embedding sets Ef and Er derived from an arbitrary embedding distribution pz(z). Let class
unlearning be performed by minimizing a forget loss function Lf , defined over embeddings
in Ef . Then, class unlearning of the target class cf can be effectively achieved regardless of
the choice of embedding distribution pz(z).

Proof. Since decision boundaries between classes are directly governed by the classifier pa-
rameters θh, gradient-based updates explicitly reshape these boundaries. Consider a gradi-
ent descent update at iteration j with learning rate α > 0:

θ
(j+1)
h = θ

(j)
h − α

∂Lf

∂θ
(j)
h

. (5)
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Applying the chain rule, the gradient of Lf with respect to (θh)k is:
∂Lf

∂(θh)(j)
k

= 1
Nf

∑
zi∈Ef

∂Lf

∂[h(g(zi))]k
g(zi). (6)

Thus, the update for the logit of class k can be generally expressed as:

[h(g(zi))](j+1)
k = [h(g(zi))](j)

k −
α

Nf

∑
zi∈Ef

∂Lf

∂[h(g(zi))]k
∥g(zi)∥2. (7)

By substituting the monotonicity assumption into equation 7, we have that the forget-class
logit [h(g(zi))]cf

consistently decreases in response to zi ∈ Ef , due to positive gradients.
Conversely, logits corresponding to retain classes k ∈ Yr consistently increase as their gra-
dients are negative. Consequently, embeddings initially assigned to the forget class are sys-
tematically reclassified toward retain classes, progressively contracting the decision region
associated with class cf . Importantly, this reasoning relies only on embeddings classified as
the forget, independent of their underlying distribution pz(z). Hence, the effectiveness of
class unlearning is guaranteed irrespective of the specific embedding distribution employed.

Building on Proposition 1, we propose a practical and fully source-free class unlearning
framework. The central idea is to leverage synthetic embeddings sampled from an arbitrary
distribution pz(z) in the intermediate embedding space, using the classifier head to form
synthetic forget and retain sets. These synthetic sets serve as surrogates for original data,
enabling effective unlearning through gradient-based minimization of the forget loss Lf .
Figure 1 visually illustrates our proposed source-free unlearning pipeline, while Algorithm 1
summarizes the procedure in detail.

4 Experiments

4.1 Experimental Setup

We evaluate the efficacy of our proposed source-free framework by integrating it with a
diverse set of state-of-the-art class unlearning methods, tested across three widely used
benchmark datasets. Experiments are conducted using four backbone architectures, ResNet-
18 (He et al., 2016), ResNet-50 (He et al., 2016), ViT-B-16 (Dosovitskiy et al., 2020),
and Swin-T (Liu et al., 2021), although our framework is architecture-agnostic and can be
extended to other network architectures without modification.

Algorithm 1 Source-Free Class Unlearning Framework
Require: Pre-trained classifier model Φ = h ◦ g ◦ e, target class to forget cf , number of

synthetic embeddings N , embedding distribution pz(z), forget loss function Lf , retain
loss function Lr, unlearning loss function Lu, learning rate α

1: Initialize: synthetic forget set Ef = ∅ and retain set Er = ∅
2: for i = 1 to N do
3: Sample embedding zi ∼ pz(z)
4: Obtain pseudo-label: ŷi = arg maxk∈Y [h(g(zi))]k
5: if ŷi = cf then
6: Ef ← Ef ∪ {zi}
7: else
8: Er ← Er ∪ {zi}
9: end if

10: end for
11: for each gradient update step do
12: Compute loss Lu = Lf + λLr: compute Lf using Ef and Lr using Er

13: Backpropagate and update parameters θ = (θg, θh) via θ ← θ − α∇θLu

14: end for
15: return updated model Φ′ = h′ ◦ g′ ◦ e

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 1: Illustration of the proposed source-free class unlearning framework. (a) Step 1:
synthetic embeddings are sampled randomly from an arbitrary distribution in the interme-
diate embedding space and pseudo-labeled by the model to form the synthetic forget set
Ef and retain set Er. (b) Step 2: the subsequent layers of the model are updated using
these embeddings by minimizing the forget loss Lf to forget the target class set Yf = {cf},
while optionally preserving performance on retain classes Yr through the retain loss Lr. (c)
t-SNE of intermediate embeddings. (d) t-SNE of softmax probability before unlearning. (e)
t-SNE of softmax probability after unlearning.

Datasets —We conduct experiments on CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100
(Krizhevsky et al., 2009), and TinyImageNet (Le & Yang, 2015). CIFAR-10 and CIFAR-
100 comprise 60,000 color images of resolution 32× 32, split into 50,000 training and 10,000
testing samples, with 10 and 100 classes respectively. TinyImageNet contains 110,000 images
of resolution 64 × 64, distributed across 200 classes, with 100,000 samples for training and
10,000 for testing. In this work, we utilize only the test sets of these datasets to evaluate
the effectiveness of the unlearning methods within our source-free framework.
Baselines —We benchmark our approach against a comprehensive suite of methods, includ-
ing classical retraining, fine-tuning-based unlearning, and recent state-of-the-art techniques
such as Boundary Shrink (BS) (Chen et al., 2023), Boundary Expanding (BE) (Chen et al.,
2023), DELETE (Zhou et al., 2025), SCRUB (Kurmanji et al., 2023), SCAR (Bonato et al.,
2024), Negative Gradient (NG) (Golatkar et al., 2020), Negative Gradient+ (NG+) (Kur-
manji et al., 2023), and Random Labels (RL) (Hayase et al., 2020). The Original models
denote ResNet-18, ResNet-50, ViT-B-16, and Swin-T architectures trained on the full train-
ing set for 300 epochs with cosine annealing learning rate scheduling, serving as the baseline
before unlearning. The Retrained models are trained from scratch for 200 epochs exclusively
on the retain subset, representing an upper-bound performance as they have no exposure
to data from the forget set.
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Evaluation Metrics —We assess unlearning performance using three primary metrics,
including retain test accuracy (At

r), forget test accuracy (At
f ), and the Adaptive Unlearning

Score (AUS) (Cotogni et al., 2023). The objective is to maximize At
r, thereby preserving

retain knowledge, while minimizing At
f , indicating effective unlearning. The AUS combines

these aspects into a single scalar score that balances utility and unlearning:

AUS =
(

1−
(
Aor−t

r −Aun−t
r

) )
/
(

1 +
∣∣∣Aideal−t

f −Aun−t
f

∣∣∣ )
, (8)

where Aor−t
r is the retain test accuracy of the original model, Aun−t

r and Aun−t
f are the

retain and forget test accuracies of the unlearned model respectively, and Aideal−t
f denotes

the target forget accuracy (ideally zero). Higher AUS values indicate superior unlearning
performance, i.e., effective forgetting while preserving the retain classes’ accuracy.

4.2 Main Results

For each dataset, we conduct experiments using five independently initialized models, apply-
ing class-wise unlearning separately to each class. Each experiment is repeated across five
random seeds, and the results reported correspond to the mean and standard deviation ag-
gregated over all classes and seeds. To ensure a fair comparison among unlearning methods,
the number of synthetic samples generated per class matches the size of the original training
class (see Appendix A for the required minimum number of synthetic embeddings). These
synthetic embeddings are sampled from the intermediate feature space immediately preced-
ing the model’s classification head (see Appendix B for the effect of embedding distribution).
The overall performance is summarized in Table 1 and Table 2. Across all methods, datasets,
and backbone architectures, our source-free framework consistently achieves near-complete
forgetting as indicated by the minimized forget test accuracy (At

f ), while maintaining strong
classification accuracy on retain classes (At

r). Moreover, the AUS obtained close approxima-
tions to retraining-based baselines with full access to the retain set. In addition, a detailed
class-level evaluation of different unlearning methods within our source-free framework is
provided in Appendix E and anonymized code link is provided in Appendix D.
Impact of Embedding Location on Source-Free Unlearning —To evaluate the flex-
ibility of our framework, we examine how the depth at which synthetic embeddings are
generated influences unlearning performance. Specifically, we compare embeddings pro-
duced at two distinct locations: (1) immediately preceding the classifier head, which serves
as our default configuration, and (2) earlier in the network, e.g., before the final convo-
lutional block within ResNet-18’s layer 4. As reported in Table 3, embeddings generated
at the earlier stage continue to deliver strong unlearning performance, with results closely
matching those obtained from embeddings sampled before the classifier head (see Table 1).
The marginal differences observed underscore the robustness of our method to the choice of
embedding depth. Furthermore, synthetic embeddings achieve consistently competitive re-
sults when compared directly to original embeddings extracted from the same intermediate
layer, indicating their effectiveness as surrogate representations. Collectively, these findings
confirm that our framework supports effective unlearning at multiple depths within the net-
work, offering a layer-agnostic capability that enhances adaptability to diverse architectural
configurations, privacy considerations, and computational constraints, thereby broadening
its practical applicability.
Impact of the Number of Synthetic Embeddings per Class on Unlearning Per-
formance —We investigate how the number of synthetic embeddings generated per class
influences the unlearning efficacy. To this end, the ResNet-18 trained on CIFAR-100 is
considered in the main text, with additional results for ResNet-18 on CIFAR-10 and Tiny-
ImageNet, as well as ViT-B-16 on CIFAR-10 and CIFAR-100, provided in the Appendix C.
As illustrated in Figure 2, increasing the number of synthetic samples consistently enhances
retain class accuracy (At

r) and the AUS, while reducing forget class accuracy (At
f ). This be-

havior indicates that generating a larger set of representative embeddings more effectively
approximates the decision boundaries of the forget and retain classes, thereby improving
source-free unlearning performances. Notably, performance gains saturate beyond a cer-
tain sample size, which means that generating additional synthetic embeddings beyond this

7
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Table 1: Class unlearning performance for CIFAR-10, CIFAR-100, and TinyImageNet using ResNet-
18 and ResNet-50 as the base architecture. Rows highlighted in gray represent our results using
synthetic embeddings, while the corresponding non-shaded rows use original embeddings with the
same method. Columns Dr-free and Df -free indicate whether the method operates without access
to the retain or forget set, respectively, with (✓) denoting true and (✗) denoting false.

Method Dr

free
Df

free
CIFAR-10 CIFAR-100 TinyImageNet

At
r ↑ At

f ↓ AUS ↑ At
r ↑ At

f ↓ AUS ↑ At
r ↑ At

f ↓ AUS ↑

ResNet-18:

Original – – 86.58 ± 0.83 86.58 ± 6.67 0.537 ± 0.020 78.16 ± 1.07 78.16 ± 11.15 0.564 ± 0.037 71.30 ± 0.29 71.30 ± 12.46 0.587 ± 0.045

Retrained – – 86.95 ± 1.17 0.0 ± 0.0 1.004 ± 0.006 77.92 ± 0.80 0.0 ± 0.0 0.998 ± 0.013 63.01 ± 2.76 0.0 ± 0.0 0.917 ± 0.028

FT (Golatkar et al., 2020) ✗ ✓ 87.43 ± 1.02 0.0 ± 0.0 1.009 ± 0.004 78.20 ± 1.00 0.0 ± 0.0 1.000 ± 0.003 71.32 ± 0.35 0.0 ± 0.0 1.000 ± 0.002
✓ ✓ 87.37 ± 1.11 0.0 ± 0.0 1.008 ± 0.003 78.29 ± 1.04 0.0 ± 0.0 1.001 ± 0.001 71.25 ± 0.32 0.0 ± 0.1 0.999 ± 0.001

NG (Golatkar et al., 2020) ✓ ✗ 87.31 ± 1.13 0.0 ± 0.0 1.007 ± 0.003 78.28 ± 1.07 0.0 ± 0.0 1.001 ± 0.001 71.36 ± 0.30 0.0 ± 0.0 1.001 ± 0.001
✓ ✓ 87.40 ± 1.14 0.0 ± 0.0 1.008 ± 0.004 78.28 ± 1.05 0.0 ± 0.1 1.001 ± 0.002 71.30 ± 0.29 0.0 ± 0.0 1.001 ± 0.000

RL (Hayase et al., 2020) ✓ ✗ 87.43 ± 1.16 0.0 ± 0.0 1.008 ± 0.004 78.36 ± 1.05 0.0 ± 0.0 1.002 ± 0.001 71.35 ± 0.32 0.0 ± 0.0 1.001 ± 0.001
✓ ✓ 87.33 ± 1.11 0.0 ± 0.0 1.008 ± 0.004 78.12 ± 1.03 0.0 ± 0.0 1.000 ± 0.001 71.27 ± 0.32 0.0 ± 0.0 1.000 ± 0.001

BS (Chen et al., 2023) ✓ ✗ 86.29 ± 1.09 0.2 ± 0.4 0.996 ± 0.009 74.32 ± 1.72 0.1 ± 0.5 0.960 ± 0.017 70.24 ± 0.87 0.1 ± 0.5 0.988 ± 0.010
✓ ✓ 87.37 ± 1.16 0.0 ± 0.0 1.008 ± 0.004 77.25 ± 1.05 0.1 ± 0.8 0.990 ± 0.011 70.36 ± 0.99 0.0 ± 0.1 0.991 ± 0.009

BE (Chen et al., 2023) ✓ ✗ 84.72 ± 1.61 0.5 ± 1.2 0.977 ± 0.021 71.23 ± 2.43 0.1 ± 0.6 0.930 ± 0.024 62.67 ± 2.68 1.3 ± 2.0 0.902 ± 0.030
✓ ✓ 86.51 ± 0.81 0.0 ± 0.0 0.999 ± 0.001 78.02 ± 1.10 0.0 ± 0.0 0.999 ± 0.003 71.23 ± 0.30 0.0 ± 0.0 0.999 ± 0.001

DELETE (Zhou et al., 2025) ✓ ✗ 87.33 ± 1.12 0.0 ± 0.0 1.008 ± 0.004 78.28 ± 1.06 0.0 ± 0.0 1.001 ± 0.001 71.43 ± 0.30 0.0 ± 0.0 1.001 ± 0.000
✓ ✓ 87.36 ± 1.13 0.0 ± 0.0 1.008 ± 0.004 78.26 ± 1.07 0.0 ± 0.0 1.001 ± 0.001 71.36 ± 0.30 0.0 ± 0.0 1.001 ± 0.000

NG+ (Kurmanji et al., 2023) ✗ ✗ 85.31 ± 9.73 0.0 ± 0.0 0.987 ± 0.095 77.57 ± 6.40 0.0 ± 0.0 0.994 ± 0.062 71.21 ± 0.86 0.0 ± 0.0 0.999 ± 0.008
✓ ✓ 87.38 ± 1.14 0.0 ± 0.0 1.008 ± 0.004 78.33 ± 1.00 0.0 ± 0.0 1.002 ± 0.001 71.35 ± 0.33 0.0 ± 0.0 1.000 ± 0.001

SCRUB (Kurmanji et al., 2023) ✗ ✗ 87.11 ± 1.04 0.0 ± 0.0 1.005 ± 0.003 77.52 ± 1.06 0.0 ± 0.0 0.994 ± 0.002 67.60 ± 1.51 0.0 ± 0.4 0.963 ± 0.014
✓ ✓ 87.45 ± 1.17 0.0 ± 0.0 1.009 ± 0.004 78.22 ± 1.01 0.0 ± 0.0 1.001 ± 0.001 71.15 ± 0.37 0.0 ± 0.0 0.999 ± 0.001

SCAR (Bonato et al., 2024) ✗ ✗ 87.44 ± 1.15 0.0 ± 0.0 1.009 ± 0.004 78.34 ± 1.09 0.0 ± 0.0 1.002 ± 0.002 71.50 ± 0.30 0.0 ± 0.0 1.002 ± 0.001
✓ ✓ 87.38 ± 1.12 0.0 ± 0.0 1.008 ± 0.004 78.33 ± 1.05 0.0 ± 0.0 1.002 ± 0.001 71.41 ± 0.30 0.0 ± 0.0 1.001 ± 0.000

ResNet-50:

Original – – 88.28 ± 0.86 88.28 ± 5.92 0.532 ± 0.017 82.62 ± 0.79 82.62 ± 9.29 0.549 ± 0.029 75.91 ± 1.25 75.91 ± 11.32 0.571 ± 0.038

Retrained – – 89.03 ± 1.04 0.0 ± 0.0 1.008 ± 0.007 81.73 ± 0.99 0.0 ± 0.0 0.991 ± 0.013 76.21 ± 2.31 0.0 ± 0.0 1.003 ± 0.026

FT (Golatkar et al., 2020) ✗ ✓ 89.40 ± 0.98 0.0 ± 0.0 1.011 ± 0.005 82.79 ± 0.75 0.0 ± 0.0 1.002 ± 0.001 75.80 ± 1.25 0.0 ± 0.2 0.999 ± 0.003
✓ ✓ 88.98 ± 1.03 0.0 ± 0.0 1.007 ± 0.003 82.68 ± 0.77 0.0 ± 0.0 1.001 ± 0.001 75.80 ± 1.29 0.0 ± 0.0 0.999 ± 0.001

NG (Golatkar et al., 2020) ✓ ✗ 88.96 ± 1.66 0.0 ± 0.0 1.005 ± 0.013 82.71 ± 0.79 0.0 ± 0.0 1.001 ± 0.001 75.97 ± 1.24 0.0 ± 0.0 1.001 ± 0.000
✓ ✓ 89.04 ± 1.10 0.0 ± 0.0 1.008 ± 0.004 82.70 ± 0.79 0.0 ± 0.0 1.001 ± 0.001 75.95 ± 1.25 0.0 ± 0.0 1.000 ± 0.000

RL (Hayase et al., 2020) ✓ ✗ 89.06 ± 1.07 0.0 ± 0.0 1.008 ± 0.003 82.72 ± 0.79 0.0 ± 0.0 1.001 ± 0.001 75.95 ± 1.24 0.0 ± 0.0 1.000 ± 0.001
✓ ✓ 88.92 ± 1.04 0.0 ± 0.0 1.006 ± 0.003 82.76 ± 0.78 0.0 ± 0.0 1.001 ± 0.001 75.90 ± 1.22 0.0 ± 0.0 1.000 ± 0.001

BS (Chen et al., 2023) ✓ ✗ 87.68 ± 1.18 0.4 ± 0.9 0.990 ± 0.014 82.28 ± 0.94 0.0 ± 0.1 0.997 ± 0.003 74.44 ± 1.67 0.1 ± 0.5 0.984 ± 0.013
✓ ✓ 89.24 ± 0.97 0.0 ± 0.0 1.007 ± 0.003 82.55 ± 0.80 0.0 ± 0.0 0.999 ± 0.001 75.19 ± 1.21 0.0 ± 0.0 0.993 ± 0.002

BE (Chen et al., 2023) ✓ ✗ 87.44 ± 1.56 0.3 ± 0.9 0.989 ± 0.015 82.14 ± 0.85 0.0 ± 0.0 0.995 ± 0.002 68.12 ± 2.81 0.5 ± 1.2 0.917 ± 0.021
✓ ✓ 88.22 ± 0.86 0.0 ± 0.0 0.999 ± 0.000 82.62 ± 0.79 0.0 ± 0.0 1.000 ± 0.000 75.89 ± 1.25 0.0 ± 0.0 1.000 ± 0.000

DELETE (Zhou et al., 2025) ✓ ✗ 88.99 ± 1.06 0.0 ± 0.0 1.007 ± 0.003 82.71 ± 0.79 0.0 ± 0.0 1.001 ± 0.001 75.98 ± 1.24 0.0 ± 0.0 1.001 ± 0.000
✓ ✓ 88.98 ± 1.07 0.0 ± 0.0 1.007 ± 0.003 82.70 ± 0.79 0.0 ± 0.0 1.001 ± 0.001 75.95 ± 1.25 0.0 ± 0.0 1.000 ± 0.000

NG+ (Kurmanji et al., 2023) ✗ ✗ 89.12 ± 1.00 0.0 ± 0.0 1.008 ± 0.004 82.78 ± 0.77 0.0 ± 0.0 1.002 ± 0.001 76.24 ± 1.06 0.0 ± 0.0 1.001 ± 0.001
✓ ✓ 88.99 ± 1.05 0.0 ± 0.0 1.007 ± 0.003 82.79 ± 0.90 0.0 ± 0.0 1.001 ± 0.001 75.99 ± 1.23 0.0 ± 0.0 1.001 ± 0.000

SCRUB (Kurmanji et al., 2023) ✗ ✗ 88.96 ± 0.95 0.0 ± 0.0 1.008 ± 0.003 82.76 ± 0.75 0.0 ± 0.0 1.001 ± 0.001 70.65 ± 2.51 0.3 ± 1.0 0.944 ± 0.015
✓ ✓ 89.11 ± 1.10 0.0 ± 0.0 1.008 ± 0.004 82.72 ± 0.77 0.0 ± 0.0 1.001 ± 0.001 75.86 ± 1.28 0.0 ± 0.0 0.999 ± 0.001

SCAR (Bonato et al., 2024) ✗ ✗ 89.11 ± 1.08 0.0 ± 0.0 1.008 ± 0.004 82.47 ± 0.97 0.0 ± 0.1 0.998 ± 0.008 76.01 ± 1.22 0.0 ± 0.0 1.001 ± 0.001
✓ ✓ 89.02 ± 1.07 0.0 ± 0.0 1.007 ± 0.003 82.73 ± 0.79 0.0 ± 0.0 1.001 ± 0.001 76.04 ± 1.24 0.0 ± 0.0 1.001 ± 0.000

point yields minimal improvement. This allows for efficient use of computational resources
without compromising unlearning quality.

Figure 2: Effect of the number of synthetic embeddings per class on unlearning performance.
Results are averaged over three independently trained models, with class-wise unlearning
performed separately for each class. Error bars indicate 95% confidence intervals. Experi-
ments use the ResNet-18 architecture on the CIFAR-100 dataset.
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Table 2: Class unlearning performance for CIFAR-10, CIFAR-100, and TinyImageNet using ViT-
B-16 and Swin-T as the base architecture. Rows highlighted in gray represent our results using
synthetic embeddings, while the corresponding non-shaded rows use original embeddings with the
same method. Columns Dr-free and Df -free indicate whether the method operates without access
to the retain or forget set, respectively, with (✓) denoting true and (✗) denoting false.

Method Dr

free
Df

free
CIFAR-10 CIFAR-100 TinyImageNet

At
r ↑ At

f ↓ AUS ↑ At
r ↑ At

f ↓ AUS ↑ At
r ↑ At

f ↓ AUS ↑

ViT-B-16:

Original – – 97.69 ± 0.18 97.69 ± 1.30 0.506 ± 0.003 87.22 ± 0.26 87.22 ± 7.83 0.535 ± 0.023 88.20 ± 0.14 88.20 ± 7.29 0.532 ± 0.022

Retrained – – 98.38 ± 0.21 0.0 ± 0.0 1.007 ± 0.002 88.74 ± 0.21 0.0 ± 0.0 1.015 ± 0.003 89.59 ± 0.13 0.0 ± 0.0 1.014 ± 0.002

NG (Golatkar et al., 2020) ✓ ✗ 97.89 ± 0.25 0.0 ± 0.0 1.002 ± 0.001 87.29 ± 0.27 0.0 ± 0.0 1.001 ± 0.001 88.23 ± 0.14 0.0 ± 0.0 1.000 ± 0.000
✓ ✓ 97.90 ± 0.24 0.0 ± 0.0 1.002 ± 0.001 87.30 ± 0.27 0.0 ± 0.0 1.001 ± 0.001 88.23 ± 0.14 0.0 ± 0.0 1.000 ± 0.000

RL (Hayase et al., 2020) ✓ ✗ 97.91 ± 0.25 0.0 ± 0.0 1.002 ± 0.001 87.31 ± 0.28 0.0 ± 0.0 1.001 ± 0.001 88.24 ± 0.14 0.0 ± 0.0 1.000 ± 0.000
✓ ✓ 97.93 ± 0.24 0.0 ± 0.0 1.002 ± 0.001 87.35 ± 0.28 0.0 ± 0.0 1.001 ± 0.001 88.27 ± 0.14 0.0 ± 0.0 1.001 ± 0.001

BS (Chen et al., 2023) ✓ ✗ 97.76 ± 0.22 0.0 ± 0.0 1.001 ± 0.001 87.27 ± 0.27 0.0 ± 0.0 1.000 ± 0.000 88.22 ± 0.14 0.0 ± 0.0 1.000 ± 0.000
✓ ✓ 97.89 ± 0.23 0.0 ± 0.0 1.002 ± 0.001 87.22 ± 0.28 0.0 ± 0.0 1.000 ± 0.001 88.08 ± 0.16 0.0 ± 0.1 0.999 ± 0.001

DELETE (Zhou et al., 2025) ✓ ✗ 97.89 ± 0.25 0.0 ± 0.0 1.002 ± 0.001 87.30 ± 0.27 0.0 ± 0.0 1.001 ± 0.001 88.23 ± 0.14 0.0 ± 0.0 1.000 ± 0.000
✓ ✓ 97.91 ± 0.25 0.0 ± 0.0 1.002 ± 0.001 87.32 ± 0.27 0.0 ± 0.0 1.001 ± 0.001 88.25 ± 0.14 0.0 ± 0.0 1.001 ± 0.000

NG+ (Kurmanji et al., 2023) ✗ ✗ 97.88 ± 0.25 0.0 ± 0.0 1.002 ± 0.001 87.15 ± 0.29 0.0 ± 0.2 0.999 ± 0.003 87.64 ± 0.27 0.1 ± 0.4 0.993 ± 0.005
✓ ✓ 97.92 ± 0.25 0.0 ± 0.0 1.002 ± 0.001 87.32 ± 0.30 0.0 ± 0.0 1.001 ± 0.001 88.28 ± 0.15 0.0 ± 0.0 1.001 ± 0.000

Swin-T:

Original – – 97.73 ± 0.17 97.73 ± 1.47 0.506 ± 0.004 87.58 ± 0.53 87.58 ± 9.01 0.534 ± 0.029 86.18 ± 0.09 86.18 ± 7.59 0.538 ± 0.023

Retrained – – 98.36 ± 0.23 0.0 ± 0.0 1.006 ± 0.001 88.89 ± 0.21 0.0 ± 0.0 1.013 ± 0.005 87.13 ± 0.13 0.0 ± 0.0 1.010 ± 0.002

NG (Golatkar et al., 2020) ✓ ✗ 97.93 ± 0.27 0.0 ± 0.0 1.002 ± 0.001 87.65 ± 0.54 0.0 ± 0.0 1.001 ± 0.001 86.21 ± 0.10 0.0 ± 0.0 1.000 ± 0.000
✓ ✓ 97.64 ± 0.86 0.5 ± 1.0 0.995 ± 0.017 83.19 ± 3.93 1.7 ± 1.7 0.941 ± 0.047 80.79 ± 4.72 1.9 ± 1.6 0.929 ± 0.051

NG+ (Kurmanji et al., 2023) ✗ ✗ 97.83 ± 0.27 0.0 ± 0.0 1.001 ± 0.001 87.60 ± 0.54 0.0 ± 0.0 1.000 ± 0.002 84.46 ± 1.19 0.0 ± 0.3 0.982 ± 0.012
✓ ✓ 93.50 ± 7.54 1.1 ± 1.3 0.948 ± 0.080 86.84 ± 0.95 0.3 ± 0.8 0.990 ± 0.014 85.28 ± 0.76 0.4 ± 1.0 0.987 ± 0.014

SCRUB (Kurmanji et al., 2023) ✗ ✗ 97.85 ± 0.25 0.0 ± 0.0 1.001 ± 0.001 87.73 ± 0.47 0.0 ± 0.0 1.001 ± 0.001 86.19 ± 0.09 0.0 ± 0.0 1.000 ± 0.001
✓ ✓ 97.39 ± 1.11 0.0 ± 0.0 0.997 ± 0.011 87.07 ± 0.65 0.0 ± 0.3 0.995 ± 0.007 84.92 ± 0.73 0.1 ± 0.4 0.987 ± 0.008

Table 3: Class unlearning performance using random samples generated from layer 4 (immediately
before the last convolutional layer) of ResNet-18 as the base architecture. Rows highlighted in gray
show results obtained with synthetic embeddings.

Method Dr

free
Df

free
CIFAR-10 CIFAR-100 TinyImageNet

At
r ↑ At

f ↓ AUS ↑ At
r ↑ At

f ↓ AUS ↑ At
r ↑ At

f ↓ AUS ↑

Original – – 86.58 ± 0.83 86.58 ± 6.67 0.537 ± 0.020 78.16 ± 1.07 78.16 ± 11.15 0.564 ± 0.037 71.30 ± 0.29 71.30 ± 12.46 0.587 ± 0.045

Retrained – – 86.95 ± 1.22 0.0 ± 0.0 1.000 ± 0.005 77.92 ± 0.80 0.0 ± 0.0 0.956 ± 0.036 63.01 ± 2.77 0.0 ± 0.0 0.855 ± 0.029

FT (Golatkar et al., 2020) ✗ ✓ 87.55 ± 1.09 0.2 ± 0.9 1.007 ± 0.010 76.80 ± 4.06 0.2 ± 0.6 0.985 ± 0.042 71.72 ± 0.33 0.6 ± 1.2 0.998 ± 0.012
✓ ✓ 81.03 ± 3.82 0.0 ± 0.1 0.944 ± 0.037 76.09 ± 1.10 0.0 ± 0.3 0.979 ± 0.009 69.64 ± 0.46 0.0 ± 0.0 0.983 ± 0.002

NG (Golatkar et al., 2020) ✓ ✗ 87.30 ± 1.23 0.0 ± 0.0 1.007 ± 0.005 78.29 ± 1.08 0.0 ± 0.0 1.001 ± 0.001 70.51 ± 1.02 0.1 ± 0.5 0.991 ± 0.011
✓ ✓ 87.24 ± 1.16 0.0 ± 0.1 1.006 ± 0.004 76.28 ± 1.40 0.0 ± 0.1 0.981 ± 0.011 71.30 ± 0.46 0.0 ± 0.0 1.000 ± 0.003

RL (Hayase et al., 2020) ✓ ✗ 87.27 ± 1.08 0.0 ± 0.0 1.007 ± 0.003 78.32 ± 1.06 0.0 ± 0.0 1.002 ± 0.001 71.56 ± 0.39 0.0 ± 0.0 1.003 ± 0.001
✓ ✓ 87.18 ± 1.24 0.0 ± 0.1 1.006 ± 0.007 77.76 ± 1.65 0.0 ± 0.2 0.996 ± 0.013 71.62 ± 0.45 0.0 ± 0.0 1.003 ± 0.002

DELETE (Zhou et al., 2025) ✓ ✗ 77.62 ± 15.23 0.4 ± 0.8 0.905 ± 0.150 75.97 ± 4.21 0.1 ± 0.6 0.978 ± 0.039 54.84 ± 6.63 1.4 ± 1.7 0.819 ± 0.069
✓ ✓ 87.02 ± 1.11 0.0 ± 0.1 1.004 ± 0.005 74.29 ± 2.31 1.3 ± 1.4 0.948 ± 0.026 68.89 ± 0.99 0.0 ± 0.3 0.972 ± 0.010

NG+ (Kurmanji et al., 2023) ✗ ✗ 83.82 ± 0.70 0.0 ± 0.0 0.972 ± 0.010 78.20 ± 1.01 0.0 ± 0.1 1.000 ± 0.002 70.41 ± 0.44 0.0 ± 0.0 0.991 ± 0.003
✓ ✓ 87.16 ± 1.17 0.1 ± 0.5 1.005 ± 0.007 78.18 ± 1.06 0.0 ± 0.2 1.000 ± 0.004 71.37 ± 0.43 0.0 ± 0.1 1.001 ± 0.002

5 Conclusion

We introduced a novel source-free framework for class unlearning, which removes specific
class knowledge from a trained model without requiring access to the original training data,
including forget, retain, or surrogate sets. By leveraging the internal structure of the model
to synthesize class-conditional embeddings, we enable the adaptation of various state-of-
the-art unlearning techniques to a fully source-free regime. Our experiments demonstrate
that the proposed approach retains high accuracy on retain classes while effectively forget-
ting the target class across multiple datasets and unlearning strategies. The framework’s
compatibility with existing methods and complete independence from training data position
it as a strong candidate for class unlearning in real-world scenarios. Future work includes
extending this approach to instance-level unlearning and applying the technique to domains
beyond image classification, such as language models.
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A Determining the Minimum Number of Synthetic Embeddings
for Reliable Class Coverage

In the proposed source-free settings, synthetic embeddings are generated by sampling ran-
dom vectors in the classifier’s intermediate embedding space. The underlying sampling
distribution significantly influences predicted class distribution, often causing class imbal-
ance. To address this, we employ a class-aware rejection sampling strategy that continues
sampling until a predefined minimum number of samples is obtained for each class. This
ensures a balanced synthetic dataset and establishes a stable basis for source-free unlearn-
ing. To guarantee sufficient representation of all target classes, we estimate the minimum
number of synthetic samples N required such that the probability of having at least one
sample from a given class c exceeds a confidence threshold p. We first generate a large pilot
batch {zi}

Npilot
i=1 of embeddings sampled from an arbitrary distribution in the intermediate

embedding space, and obtain their predicted labels ŷi. The empirical class probability for
class c is then estimated as

qc = 1
Npilot

Npilot∑
i=1

1{ŷi = c}, (9)

where 1{·} is the indicator function that equals one if the condition inside is true, and zero
otherwise. Assuming independent sampling, the probability that none of the N synthetic
embeddings fall into class c is (1− qc)N . To ensure that at least one embedding belongs to
class c with confidence p, we require 1− (1− qc)N ≥ p, which yields

N ≥ ln(1− p)
ln(1− qc) , (10)

where ln(1 − qc) < 0 ensures the inequality holds in the correct direction. This expression
provides a principled estimate for the number of synthetic embeddings required to achieve
class-wise coverage with the desired confidence level.
We empirically validate this estimate by reporting the minimum number of synthetic em-
beddings required to ensure, with high confidence, that at least one embedding is classified
into each target class. Table 4 summarizes statistics computed for a ResNet-18 classifier
on CIFAR-10, CIFAR-100, and TinyImageNet datasets, using Gaussian, Laplace, and Uni-
form embedding distributions. We report the lower bound, average, and upper bound for
the total number of synthetic embeddings needed across all classes for each dataset and
embedding distribution. These values correspond, respectively, to the easiest, average, and
most difficult classes to cover. This analysis shows the impact of dataset complexity and
embeddings distribution on sample requirements for achieving reliable class representation
in source-free unlearning.

Table 4: Estimated minimum total number of synthetic embeddings required to guarantee, with
high confidence, that a forget class is represented by at least one embedding. Results correspond
to the ResNet-18 architecture evaluated on CIFAR-10, CIFAR-100, and TinyImageNet datasets,
using Gaussian, Laplace, and Uniform distributions for embedding generation.

Dataset Embedding
Distribution

Lower bound
(across classes)

Average
(across classes)

Upper bound
(across classes)

CIFAR-10
Gaussian 32 46 55
Laplace 33 46 53
Uniform 29 48 60

CIFAR-100
Gaussian 223 494 1041
Laplace 269 483 822
Uniform 139 544 1735

TinyImageNet
Gaussian 407 990 2550
Laplace 427 987 2437
Uniform 353 1011 2880
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In the worst-case scenario, where the rarest class has empirical probability qmin, the min-
imum number of synthetic embeddings needed to ensure, with confidence p, that at least
one embedding belongs to this class is Nworst = ln(1−p)

ln(1−qmin) . If a stricter criterion is imposed
to require at least m embeddings from this rarest class, the required number of embeddings
increases significantly. This corresponds to solving

1−
m−1∑
k=0

(
N

k

)
qk

min(1− qmin)N−k ≥ p, (11)

which involves computing the cumulative distribution function of a Binomial distribution.
Although no closed-form solution exists, this inequality can be estimated numerically.

B Impact of Embedding Distribution and Sampling Strategy
on Unlearning Performance

We investigate the effect of different embedding distributions on class-wise unlearning by
sampling embeddings from Gaussian, Laplace, and Uniform distributions. As reported
in Table 5 and Table 6, the choice of embedding distribution does impact downstream
unlearning performance. Nevertheless, all three distributions achieve competitive results,
demonstrating near-complete forgetting alongside strong accuracy on the retain classes.
These findings highlight the robustness of our framework to variations in the sampling
strategy, as expected from the Proposition 1.

Table 5: Effect of embedding distribution on data-free class unlearning performance of some of
methods on CIFAR-10, CIFAR-100, and TinyImageNet using ResNet-18 as the backbone archi-
tecture. Rows highlighted in gray represent our results using synthetic embeddings, while the
corresponding non-shaded rows use original embeddings with the same method.

Method Embedding
Distribution

Dr

free
Df

free
CIFAR-10 CIFAR-100 TinyImageNet

At
r ↑ At

f ↓ AUS ↑ At
r ↑ At

f ↓ AUS ↑ At
r ↑ At

f ↓ AUS ↑

Original – – – 86.58 ± 0.83 86.58 ± 6.67 0.537 ± 0.020 78.16 ± 1.07 78.16 ± 11.15 0.564 ± 0.037 71.30 ± 0.29 71.30 ± 12.46 0.587 ± 0.045

Retrained – – – 86.95 ± 1.22 0.0 ± 0.0 1.000 ± 0.005 77.92 ± 0.80 0.0 ± 0.0 0.956 ± 0.036 63.01 ± 2.77 0.0 ± 0.0 0.855 ± 0.029

RL (Hayase et al., 2020)
Real distribution ✓ ✗ 87.43 ± 1.16 0.0 ± 0.0 1.008 ± 0.004 78.36 ± 1.05 0.0 ± 0.0 1.002 ± 0.001 71.35 ± 0.32 0.0 ± 0.0 1.001 ± 0.001

Gaussian ✓ ✓ 87.25 ± 1.10 0.0 ± 0.0 1.007 ± 0.003 77.98 ± 1.03 0.0 ± 0.0 0.998 ± 0.002 71.10 ± 0.34 0.0 ± 0.0 0.998 ± 0.001
Laplace ✓ ✓ 87.25 ± 1.09 0.0 ± 0.0 1.007 ± 0.003 78.00 ± 1.04 0.0 ± 0.0 0.998 ± 0.002 71.18 ± 0.34 0.0 ± 0.0 0.999 ± 0.001
Uniform ✓ ✓ 87.30 ± 1.12 0.0 ± 0.0 1.007 ± 0.004 78.01 ± 1.02 0.0 ± 0.0 0.999 ± 0.002 71.19 ± 0.33 0.0 ± 0.0 0.999 ± 0.001

DELETE (Zhou et al., 2025)
Real distribution ✓ ✗ 87.33 ± 1.12 0.0 ± 0.0 1.008 ± 0.004 78.28 ± 1.06 0.0 ± 0.0 1.001 ± 0.001 71.43 ± 0.30 0.0 ± 0.0 1.001 ± 0.000

Gaussian ✓ ✓ 87.35 ± 1.13 0.0 ± 0.0 1.008 ± 0.004 78.25 ± 1.07 0.0 ± 0.1 1.001 ± 0.001 71.36 ± 0.30 0.0 ± 0.0 1.001 ± 0.000
Laplace ✓ ✓ 87.35 ± 1.13 0.0 ± 0.0 1.008 ± 0.004 78.25 ± 1.07 0.0 ± 0.0 1.001 ± 0.001 71.36 ± 0.30 0.0 ± 0.0 1.001 ± 0.000
Uniform ✓ ✓ 87.33 ± 1.13 0.0 ± 0.0 1.008 ± 0.004 78.25 ± 1.07 0.0 ± 0.0 1.001 ± 0.001 71.35 ± 0.30 0.3 ± 1.2 0.998 ± 0.011

NG+ (Kurmanji et al., 2023)
Real distribution ✗ ✗ 85.31 ± 9.73 0.0 ± 0.0 0.987 ± 0.095 77.57 ± 6.40 0.0 ± 0.0 0.994 ± 0.062 71.21 ± 0.86 0.0 ± 0.0 0.999 ± 0.008

Gaussian ✓ ✓ 87.33 ± 1.12 0.0 ± 0.0 1.007 ± 0.004 78.26 ± 1.04 0.0 ± 0.1 1.001 ± 0.002 71.29 ± 0.36 0.0 ± 0.1 1.000 ± 0.001
Laplace ✓ ✓ 87.35 ± 1.13 0.0 ± 0.0 1.008 ± 0.004 78.31 ± 0.99 0.0 ± 0.0 1.001 ± 0.001 71.06 ± 0.46 0.0 ± 0.2 0.997 ± 0.004
Uniform ✓ ✓ 87.32 ± 1.12 0.0 ± 0.0 1.007 ± 0.003 78.27 ± 1.05 0.0 ± 0.0 1.001 ± 0.001 71.33 ± 0.33 0.0 ± 0.0 1.000 ± 0.001

SCRUB (Kurmanji et al., 2023)
Real distribution ✗ ✗ 87.11 ± 1.04 0.0 ± 0.0 1.005 ± 0.003 77.52 ± 1.06 0.0 ± 0.0 0.994 ± 0.002 67.60 ± 1.51 0.0 ± 0.4 0.963 ± 0.014

Gaussian ✓ ✓ 87.41 ± 1.16 0.0 ± 0.0 1.008 ± 0.004 78.10 ± 1.06 0.0 ± 0.0 0.999 ± 0.001 71.02 ± 0.42 0.0 ± 0.0 0.997 ± 0.002
Laplace ✓ ✓ 87.41 ± 1.15 0.0 ± 0.0 1.008 ± 0.004 78.19 ± 1.00 0.0 ± 0.0 1.000 ± 0.001 71.11 ± 0.37 0.0 ± 0.0 0.998 ± 0.001
Uniform ✓ ✓ 87.41 ± 1.15 0.0 ± 0.0 1.008 ± 0.004 78.09 ± 1.05 0.0 ± 0.0 0.999 ± 0.001 70.88 ± 0.35 0.0 ± 0.0 0.996 ± 0.001

Table 6: Effect of embedding distribution on data-free class unlearning performance of some of
methods on CIFAR-10, CIFAR-100, and TinyImageNet using ViT-B-16 as the backbone archi-
tecture. Rows highlighted in gray represent our results using synthetic embeddings, while the
corresponding non-shaded rows use original embeddings with the same method.

Method Embedding
Distribution

Dr

free
Df

free
CIFAR-10 CIFAR-100 TinyImageNet

At
r ↑ At

f ↓ AUS ↑ At
r ↑ At

f ↓ AUS ↑ At
r ↑ At

f ↓ AUS ↑

Original – – – 97.69 ± 0.18 97.69 ± 1.30 0.506 ± 0.003 87.22 ± 0.26 87.22 ± 7.83 0.535 ± 0.023 88.20 ± 0.14 88.20 ± 7.29 0.532 ± 0.022

Retrained – – – 98.38 ± 0.21 0.0 ± 0.0 1.007 ± 0.002 88.74 ± 0.21 0.0 ± 0.0 1.015 ± 0.003 89.60 ± 0.13 0.0 ± 0.0 1.014 ± 0.002

RL (Hayase et al., 2020)
Real distribution ✓ ✗ 97.91 ± 0.25 0.0 ± 0.0 1.002 ± 0.001 87.31 ± 0.28 0.0 ± 0.0 1.001 ± 0.001 88.24 ± 0.14 0.0 ± 0.0 1.000 ± 0.000

Gaussian ✓ ✓ 97.92 ± 0.25 0.0 ± 0.0 1.002 ± 0.001 87.30 ± 0.29 0.0 ± 0.0 1.001 ± 0.001 88.23 ± 0.14 0.0 ± 0.0 1.000 ± 0.001
Laplace ✓ ✓ 97.90 ± 0.23 0.0 ± 0.0 1.002 ± 0.001 87.30 ± 0.28 0.0 ± 0.0 1.001 ± 0.001 88.23 ± 0.14 0.0 ± 0.0 1.000 ± 0.001
Uniform ✓ ✓ 97.92 ± 0.24 0.0 ± 0.0 1.002 ± 0.001 87.29 ± 0.28 0.0 ± 0.0 1.001 ± 0.001 88.17 ± 0.14 0.0 ± 0.0 1.000 ± 0.001

DELETE (Zhou et al., 2025)
Real distribution ✓ ✗ 97.89 ± 0.25 0.0 ± 0.0 1.002 ± 0.001 87.30 ± 0.27 0.0 ± 0.0 1.001 ± 0.001 88.23 ± 0.14 0.0 ± 0.0 1.000 ± 0.000

Gaussian ✓ ✓ 97.90 ± 0.25 0.0 ± 0.0 1.002 ± 0.001 87.30 ± 0.27 0.0 ± 0.0 1.001 ± 0.001 88.23 ± 0.14 2.7 ± 8.2 0.979 ± 0.060
Laplace ✓ ✓ 97.90 ± 0.25 0.0 ± 0.0 1.002 ± 0.001 87.24 ± 0.26 0.0 ± 0.0 1.001 ± 0.001 88.24 ± 0.14 0.0 ± 0.0 1.000 ± 0.000
Uniform ✓ ✓ 97.89 ± 0.25 0.0 ± 0.0 1.002 ± 0.001 87.30 ± 0.27 0.0 ± 0.0 1.001 ± 0.001 88.24 ± 0.14 0.0 ± 0.0 1.000 ± 0.000

NG+ (Kurmanji et al., 2023)
Real distribution ✗ ✗ 97.88 ± 0.25 0.0 ± 0.0 1.002 ± 0.001 87.15 ± 0.29 0.0 ± 0.2 0.999 ± 0.003 87.64 ± 0.27 0.1 ± 0.4 0.993 ± 0.005

Gaussian ✓ ✓ 97.91 ± 0.25 0.0 ± 0.0 1.002 ± 0.001 87.30 ± 0.31 0.0 ± 0.0 1.001 ± 0.001 88.25 ± 0.15 0.0 ± 0.0 1.001 ± 0.000
Laplace ✓ ✓ 97.91 ± 0.25 0.0 ± 0.0 1.002 ± 0.001 87.29 ± 0.31 0.0 ± 0.0 1.001 ± 0.001 88.24 ± 0.15 0.0 ± 0.0 1.001 ± 0.000
Uniform ✓ ✓ 97.90 ± 0.25 0.0 ± 0.0 1.002 ± 0.001 87.30 ± 0.30 0.0 ± 0.0 1.001 ± 0.001 88.26 ± 0.15 0.0 ± 0.0 1.001 ± 0.000
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C Impact of the Number of Synthetic Embeddings per Class
on Unlearning Performance

This part extends the ablation in Section 4 (see Figure 2) by considering additional back-
bones and datasets such as ResNet-18 on CIFAR-10 (Figure 3), ResNet-18 on TinyImageNet
(Figure 4), ViT-B-16 on CIFAR-10 (Figure 5), and ViT-B-16 on CIFAR-100 (Figure 6). For
each setting, we vary the number of synthetic embeddings per class and measure retain
accuracy At

r, forget accuracy At
f , and AUS. Across all configurations, the trend is consis-

tent. The pattern is consistent across configurations: increasing the number of synthetic
embeddings raises At

r and AUS while reducing At
f .

Figure 3: Effect of the number of synthetic embeddings per class on unlearning performance.
Results are averaged over three independently trained models, with class-wise unlearning
performed separately for each class. Error bars indicate 95% confidence intervals. Experi-
ments use the ResNet-18 architecture on the CIFAR-10 dataset.

Figure 4: Effect of the number of synthetic embeddings per class on unlearning performance.
Results are averaged over three independently trained models, with class-wise unlearning
performed separately for each class. Error bars indicate 95% confidence intervals. Experi-
ments use the ResNet-18 architecture on the TinyImageNet dataset.

D Code

Our code is available at this repository.1

1https://anonymous.4open.science/r/MU_source_free_iclr.
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Figure 5: Effect of the number of synthetic embeddings per class on unlearning performance.
Results are averaged over three independently trained models, with class-wise unlearning
performed separately for each class. Error bars indicate 95% confidence intervals. Experi-
ments use the ViT-B-16 architecture on the CIFAR-10 dataset.

Figure 6: Effect of the number of synthetic embeddings per class on unlearning performance.
Results are averaged over three independently trained models, with class-wise unlearning
performed separately for each class. Error bars indicate 95% confidence intervals. Experi-
ments use the ViT-B-16 architecture on the CIFAR-100 dataset.

E Per-Class Unlearning Results on CIFAR-10

To supplement the average unlearning performance presented in Table 1 and 2, we provide
a detailed per-class evaluation in Table 7 for ResNet-18, Table 8 for ResNet-50, Table 9 for
ViT-B-16 and Table 10 for Swin-T. These tables present class-wise unlearning metrics on
CIFAR-10 using ResNet-18, ResNet-50, ViT-B-16, and Swin-T backbones, respectively. The
results illustrate variability in both unlearning effectiveness and the retain accuracy across
target classes, highlighting the impact of semantic complexity and class-specific challenges.
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Table 7: Class unlearning performance for CIFAR-10 using ResNet-18, averaged over 5 random
trials. Rows highlighted in gray represent our results using synthetic embeddings, while the corre-
sponding non-shaded rows use original embeddings with the same method.

Method Metric Forget Class
0 1 2 3 4 5 6 7 8 9

Original
At

r ↑ 86.22 ± 0.54 85.91 ± 0.40 86.91 ± 0.47 88.30 ± 0.29 86.50 ± 0.50 87.43 ± 0.42 86.05 ± 0.43 86.29 ± 0.46 86.01 ± 0.38 86.16 ± 0.33
At

f ↓ 89.8 ± 1.1 92.6 ± 0.7 83.6 ± 0.8 71.0 ± 2.0 87.3 ± 0.9 78.9 ± 0.8 91.4 ± 1.0 89.2 ± 0.7 91.7 ± 0.8 90.3 ± 1.4
AUS ↑ 0.527 ± 0.003 0.519 ± 0.002 0.545 ± 0.002 0.585 ± 0.007 0.534 ± 0.002 0.559 ± 0.002 0.523 ± 0.003 0.529 ± 0.002 0.522 ± 0.002 0.525 ± 0.004

Retrained
At

r ↑ 86.43 86.29 87.38 89.53 86.79 88.66 86.16 86.24 85.92 86.14
At

f ↓ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AUS ↑ 1.002 1.004 1.005 1.012 1.003 1.012 1.001 1.000 0.999 1.000

FT (Golatkar et al., 2020)

At
r ↑ 87.01 ± 0.26 86.58 ± 0.13 87.82 ± 0.17 89.64 ± 0.22 87.38 ± 0.29 88.83 ± 0.27 86.77 ± 0.10 86.85 ± 0.27 86.53 ± 0.25 86.91 ± 0.28
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.008 ± 0.003 1.007 ± 0.003 1.009 ± 0.004 1.013 ± 0.002 1.009 ± 0.003 1.014 ± 0.005 1.007 ± 0.003 1.006 ± 0.003 1.005 ± 0.001 1.007 ± 0.001

At
r ↑ 86.92 ± 0.43 86.50 ± 0.41 87.79 ± 0.31 89.74 ± 0.30 87.26 ± 0.48 88.78 ± 0.31 86.66 ± 0.35 86.77 ± 0.48 86.40 ± 0.43 86.88 ± 0.44
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.007 ± 0.002 1.006 ± 0.001 1.009 ± 0.002 1.014 ± 0.001 1.008 ± 0.000 1.013 ± 0.002 1.006 ± 0.001 1.005 ± 0.001 1.004 ± 0.001 1.007 ± 0.001

NG (Golatkar et al., 2020)

At
r ↑ 86.89 ± 0.54 86.46 ± 0.36 87.71 ± 0.41 89.71 ± 0.34 87.20 ± 0.54 88.68 ± 0.43 86.59 ± 0.41 86.71 ± 0.54 86.37 ± 0.50 86.76 ± 0.40
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.007 ± 0.001 1.005 ± 0.001 1.008 ± 0.001 1.014 ± 0.001 1.007 ± 0.001 1.012 ± 0.001 1.005 ± 0.001 1.004 ± 0.002 1.004 ± 0.001 1.006 ± 0.001

At
r ↑ 86.98 ± 0.46 86.47 ± 0.41 87.79 ± 0.35 89.82 ± 0.42 87.27 ± 0.52 88.89 ± 0.31 86.69 ± 0.33 86.77 ± 0.46 86.46 ± 0.44 86.86 ± 0.41
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.008 ± 0.001 1.006 ± 0.000 1.009 ± 0.002 1.015 ± 0.001 1.008 ± 0.001 1.015 ± 0.001 1.006 ± 0.001 1.005 ± 0.001 1.004 ± 0.001 1.007 ± 0.001

RL (Hayase et al., 2020)

At
r ↑ 86.99 ± 0.51 86.48 ± 0.41 87.83 ± 0.35 89.83 ± 0.45 87.35 ± 0.42 88.99 ± 0.44 86.73 ± 0.33 86.81 ± 0.47 86.43 ± 0.44 86.82 ± 0.44
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.008 ± 0.001 1.006 ± 0.000 1.009 ± 0.001 1.015 ± 0.002 1.008 ± 0.001 1.016 ± 0.002 1.007 ± 0.001 1.005 ± 0.001 1.004 ± 0.001 1.007 ± 0.001

At
r ↑ 86.93 ± 0.46 86.38 ± 0.38 87.77 ± 0.28 89.65 ± 0.33 87.22 ± 0.48 88.82 ± 0.34 86.64 ± 0.37 86.78 ± 0.45 86.41 ± 0.41 86.72 ± 0.36
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.007 ± 0.002 1.005 ± 0.000 1.009 ± 0.002 1.013 ± 0.001 1.007 ± 0.001 1.014 ± 0.002 1.006 ± 0.001 1.005 ± 0.001 1.004 ± 0.000 1.006 ± 0.001

BS (Chen et al., 2023)

At
r ↑ 85.31 ± 1.26 85.83 ± 0.58 86.87 ± 0.57 88.18 ± 0.65 85.98 ± 0.33 87.44 ± 0.94 85.74 ± 0.89 86.08 ± 0.55 85.45 ± 0.52 86.06 ± 0.34
At

f ↓ 0.5 ± 0.8 0.2 ± 0.2 0.1 ± 0.1 0.0 ± 0.0 0.5 ± 1.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.2 0.1 ± 0.2 0.0 ± 0.0
AUS ↑ 0.986 ± 0.017 0.997 ± 0.005 0.998 ± 0.005 0.999 ± 0.005 0.990 ± 0.013 1.000 ± 0.007 0.997 ± 0.005 0.997 ± 0.002 0.993 ± 0.006 0.999 ± 0.001

At
r ↑ 86.83 ± 0.50 86.46 ± 0.37 87.70 ± 0.37 89.81 ± 0.34 87.26 ± 0.50 89.01 ± 0.32 86.62 ± 0.37 86.77 ± 0.48 86.45 ± 0.41 86.81 ± 0.36
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.006 ± 0.001 1.005 ± 0.001 1.008 ± 0.002 1.015 ± 0.001 1.008 ± 0.001 1.016 ± 0.002 1.006 ± 0.002 1.005 ± 0.001 1.004 ± 0.001 1.007 ± 0.001

BE (Chen et al., 2023)

At
r ↑ 82.40 ± 3.28 84.66 ± 1.05 85.63 ± 0.18 85.60 ± 0.64 85.32 ± 0.77 84.51 ± 1.89 84.56 ± 0.64 85.49 ± 0.57 83.78 ± 1.71 85.23 ± 0.61
At

f ↓ 1.4 ± 1.7 0.0 ± 0.0 0.1 ± 0.2 1.0 ± 2.2 0.5 ± 1.1 0.5 ± 1.0 0.6 ± 0.9 0.0 ± 0.0 0.9 ± 1.7 0.0 ± 0.1
AUS ↑ 0.949 ± 0.040 0.987 ± 0.008 0.986 ± 0.004 0.964 ± 0.020 0.983 ± 0.010 0.966 ± 0.016 0.980 ± 0.005 0.992 ± 0.002 0.969 ± 0.029 0.990 ± 0.004

At
r ↑ 86.01 ± 0.60 85.92 ± 0.38 86.82 ± 0.47 88.15 ± 0.39 86.50 ± 0.45 87.33 ± 0.54 86.04 ± 0.43 86.25 ± 0.48 85.95 ± 0.30 86.13 ± 0.27
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 0.998 ± 0.002 1.000 ± 0.000 0.999 ± 0.001 0.999 ± 0.001 1.000 ± 0.001 0.999 ± 0.002 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.001 1.000 ± 0.001

DELETE (Zhou et al., 2025)

At
r ↑ 86.93 ± 0.44 86.42 ± 0.38 87.74 ± 0.32 89.71 ± 0.38 87.22 ± 0.48 88.80 ± 0.34 86.60 ± 0.32 86.74 ± 0.46 86.41 ± 0.42 86.75 ± 0.39
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.007 ± 0.001 1.005 ± 0.000 1.008 ± 0.002 1.014 ± 0.001 1.007 ± 0.001 1.014 ± 0.001 1.006 ± 0.001 1.004 ± 0.001 1.004 ± 0.001 1.006 ± 0.001

At
r ↑ 86.95 ± 0.46 86.44 ± 0.39 87.76 ± 0.34 89.75 ± 0.40 87.24 ± 0.52 88.83 ± 0.39 86.63 ± 0.34 86.76 ± 0.48 86.43 ± 0.44 86.79 ± 0.40
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.007 ± 0.001 1.005 ± 0.000 1.009 ± 0.001 1.014 ± 0.001 1.007 ± 0.001 1.014 ± 0.001 1.006 ± 0.001 1.005 ± 0.001 1.004 ± 0.001 1.006 ± 0.001

NG+ (Kurmanji et al., 2023)

At
r ↑ 86.31 ± 1.29 86.18 ± 0.52 87.41 ± 0.38 89.23 ± 0.30 86.99 ± 0.50 88.08 ± 0.33 85.58 ± 1.39 83.70 ± 6.71 73.08 ± 29.61 86.60 ± 0.39
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.001 ± 0.008 1.003 ± 0.001 1.005 ± 0.002 1.009 ± 0.003 1.005 ± 0.001 1.006 ± 0.002 0.995 ± 0.011 0.974 ± 0.064 0.871 ± 0.293 1.004 ± 0.002

At
r ↑ 86.95 ± 0.49 86.45 ± 0.41 87.82 ± 0.34 89.79 ± 0.42 87.27 ± 0.54 88.82 ± 0.32 86.63 ± 0.33 86.77 ± 0.46 86.46 ± 0.48 86.79 ± 0.44
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.007 ± 0.001 1.005 ± 0.000 1.009 ± 0.001 1.015 ± 0.001 1.008 ± 0.001 1.014 ± 0.001 1.006 ± 0.001 1.005 ± 0.001 1.005 ± 0.001 1.006 ± 0.001

SCRUB (Kurmanji et al., 2023)

At
r ↑ 86.48 ± 0.74 86.33 ± 0.44 87.53 ± 0.28 89.32 ± 0.32 86.96 ± 0.42 88.41 ± 0.22 86.44 ± 0.23 86.69 ± 0.38 86.35 ± 0.37 86.61 ± 0.51
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.003 ± 0.002 1.004 ± 0.001 1.006 ± 0.002 1.010 ± 0.002 1.005 ± 0.004 1.010 ± 0.003 1.004 ± 0.002 1.004 ± 0.002 1.003 ± 0.001 1.004 ± 0.003

At
r ↑ 87.01 ± 0.46 86.54 ± 0.39 87.82 ± 0.30 89.97 ± 0.40 87.28 ± 0.53 88.96 ± 0.35 86.69 ± 0.32 86.82 ± 0.46 86.50 ± 0.45 86.89 ± 0.38
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.008 ± 0.001 1.006 ± 0.000 1.009 ± 0.002 1.017 ± 0.001 1.008 ± 0.001 1.015 ± 0.001 1.006 ± 0.001 1.005 ± 0.001 1.005 ± 0.001 1.007 ± 0.001

SCAR (Bonato et al., 2024)

At
r ↑ 87.03 ± 0.47 86.50 ± 0.37 87.85 ± 0.32 89.87 ± 0.39 87.31 ± 0.52 88.96 ± 0.41 86.73 ± 0.35 86.81 ± 0.46 86.49 ± 0.43 86.88 ± 0.43
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.008 ± 0.001 1.006 ± 0.000 1.009 ± 0.002 1.016 ± 0.001 1.008 ± 0.001 1.015 ± 0.002 1.007 ± 0.001 1.005 ± 0.001 1.005 ± 0.001 1.007 ± 0.001

At
r ↑ 86.97 ± 0.45 86.46 ± 0.37 87.80 ± 0.31 89.77 ± 0.37 87.27 ± 0.49 88.85 ± 0.34 86.66 ± 0.30 86.78 ± 0.46 86.46 ± 0.42 86.80 ± 0.39
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.007 ± 0.001 1.005 ± 0.001 1.009 ± 0.002 1.015 ± 0.001 1.008 ± 0.001 1.014 ± 0.001 1.006 ± 0.001 1.005 ± 0.001 1.004 ± 0.001 1.006 ± 0.001
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Table 8: Class unlearning performance for CIFAR-10 using ResNet-50, averaged over 5 random
trials. Rows highlighted in gray represent our results using synthetic embeddings, while the corre-
sponding non-shaded rows use original embeddings with the same method.

Method Metric Forget Class
0 1 2 3 4 5 6 7 8 9

Original
At

r ↑ 88.18 ± 0.55 87.84 ± 0.51 88.57 ± 0.62 89.58 ± 0.50 88.10 ± 0.69 89.26 ± 0.73 87.77 ± 0.57 87.98 ± 0.71 87.73 ± 0.83 87.74 ± 0.63
At

f ↓ 89.1 ± 3.1 92.2 ± 2.2 85.6 ± 1.2 76.5 ± 2.4 89.9 ± 0.6 79.4 ± 0.9 92.8 ± 1.3 90.9 ± 0.8 93.2 ± 2.4 93.1 ± 0.8
AUS ↑ 0.529 ± 0.009 0.520 ± 0.006 0.539 ± 0.004 0.567 ± 0.008 0.527 ± 0.002 0.557 ± 0.003 0.519 ± 0.003 0.524 ± 0.002 0.518 ± 0.006 0.518 ± 0.002

Retrained
At

r ↑ 88.79 88.42 89.40 91.09 89.04 90.66 87.92 88.82 87.92 88.27
At

f ↓ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AUS ↑ 1.006 1.006 1.008 1.015 1.009 1.014 1.002 1.008 1.002 1.005

FT (Golatkar et al., 2020)

At
r ↑ 89.17 ± 0.37 88.62 ± 0.35 89.73 ± 0.27 91.46 ± 0.49 89.39 ± 0.27 90.64 ± 0.37 88.68 ± 0.42 88.95 ± 0.32 88.55 ± 0.50 88.83 ± 0.34
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.010 ± 0.003 1.008 ± 0.003 1.012 ± 0.004 1.019 ± 0.003 1.013 ± 0.005 1.014 ± 0.005 1.009 ± 0.003 1.010 ± 0.005 1.008 ± 0.004 1.011 ± 0.004

At
r ↑ 88.80 ± 0.60 88.27 ± 0.57 89.34 ± 0.60 90.92 ± 0.50 88.88 ± 0.57 90.18 ± 0.62 88.31 ± 0.58 88.55 ± 0.64 88.25 ± 0.67 88.30 ± 0.59
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.006 ± 0.002 1.004 ± 0.001 1.008 ± 0.001 1.013 ± 0.001 1.008 ± 0.002 1.009 ± 0.001 1.005 ± 0.001 1.006 ± 0.002 1.005 ± 0.002 1.006 ± 0.001

NG (Golatkar et al., 2020)

At
r ↑ 87.20 ± 3.36 88.34 ± 0.44 89.54 ± 0.42 91.24 ± 0.20 89.09 ± 0.40 90.54 ± 0.35 88.53 ± 0.37 88.67 ± 0.41 88.03 ± 0.35 88.43 ± 0.42
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.1 0.0 ± 0.0
AUS ↑ 0.990 ± 0.035 1.004 ± 0.000 1.008 ± 0.001 1.015 ± 0.002 1.007 ± 0.001 1.010 ± 0.002 1.006 ± 0.001 1.006 ± 0.002 1.000 ± 0.006 1.005 ± 0.001

At
r ↑ 88.75 ± 0.62 88.19 ± 0.55 89.35 ± 0.62 91.18 ± 0.58 88.99 ± 0.60 90.41 ± 0.58 88.33 ± 0.60 88.61 ± 0.65 88.29 ± 0.61 88.33 ± 0.46
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.006 ± 0.001 1.004 ± 0.001 1.008 ± 0.001 1.016 ± 0.001 1.009 ± 0.001 1.012 ± 0.002 1.006 ± 0.001 1.006 ± 0.003 1.006 ± 0.003 1.006 ± 0.002

RL (Hayase et al., 2020)

At
r ↑ 88.86 ± 0.60 88.25 ± 0.55 89.38 ± 0.60 91.14 ± 0.54 89.02 ± 0.58 90.30 ± 0.59 88.39 ± 0.59 88.59 ± 0.63 88.30 ± 0.66 88.40 ± 0.50
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.007 ± 0.002 1.004 ± 0.001 1.008 ± 0.001 1.016 ± 0.001 1.009 ± 0.002 1.010 ± 0.002 1.006 ± 0.001 1.006 ± 0.003 1.006 ± 0.002 1.007 ± 0.001

At
r ↑ 88.79 ± 0.60 88.15 ± 0.57 89.28 ± 0.62 90.93 ± 0.46 88.81 ± 0.57 90.14 ± 0.63 88.21 ± 0.50 88.43 ± 0.63 88.20 ± 0.67 88.30 ± 0.56
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.006 ± 0.001 1.003 ± 0.001 1.007 ± 0.001 1.013 ± 0.002 1.007 ± 0.001 1.009 ± 0.001 1.004 ± 0.001 1.004 ± 0.002 1.005 ± 0.002 1.006 ± 0.001

BS (Chen et al., 2023)

At
r ↑ 88.15 ± 0.70 87.73 ± 0.51 88.18 ± 0.70 87.62 ± 1.28 87.21 ± 0.91 87.41 ± 2.87 87.32 ± 1.15 87.98 ± 0.89 87.71 ± 0.80 87.70 ± 0.67
At

f ↓ 3.8 ± 5.2 0.0 ± 0.0 0.3 ± 0.6 0.0 ± 0.0 0.0 ± 0.0 3.7 ± 8.2 0.7 ± 1.3 0.6 ± 1.1 0.4 ± 0.5 0.6 ± 1.1
AUS ↑ 0.965 ± 0.045 0.999 ± 0.002 0.993 ± 0.008 0.980 ± 0.012 0.991 ± 0.008 0.950 ± 0.066 0.989 ± 0.014 0.995 ± 0.012 0.996 ± 0.004 0.993 ± 0.009

At
r ↑ 88.68 ± 0.58 88.44 ± 0.46 89.48 ± 0.33 91.14 ± 0.58 89.15 ± 0.29 90.58 ± 0.32 88.66 ± 0.37 88.78 ± 0.42 88.61 ± 0.06 88.71 ± 0.39
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.005 ± 0.001 1.005 ± 0.001 1.007 ± 0.002 1.014 ± 0.002 1.008 ± 0.002 1.011 ± 0.003 1.007 ± 0.003 1.005 ± 0.002 1.003 ± 0.001 1.006 ± 0.001

BE (Chen et al., 2023)

At
r ↑ 87.68 ± 0.52 87.24 ± 0.53 88.27 ± 0.64 86.68 ± 4.42 87.86 ± 0.57 89.21 ± 0.68 86.89 ± 0.69 87.39 ± 0.78 87.14 ± 0.80 86.79 ± 0.60
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.2 ± 1.6 0.5 ± 1.1 10.1 ± 14.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 0.995 ± 0.002 0.994 ± 0.004 0.997 ± 0.001 0.959 ± 0.033 0.993 ± 0.010 0.919 ± 0.107 0.991 ± 0.003 0.994 ± 0.001 0.994 ± 0.002 0.990 ± 0.002

At
r ↑ 88.14 ± 0.58 87.81 ± 0.50 88.51 ± 0.61 89.47 ± 0.55 88.08 ± 0.70 89.19 ± 0.76 87.70 ± 0.61 87.97 ± 0.71 87.67 ± 0.85 87.69 ± 0.65
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.000 0.999 ± 0.001 1.000 ± 0.000 0.999 ± 0.000 0.999 ± 0.001 1.000 ± 0.000 0.999 ± 0.001 1.000 ± 0.000

DELETE (Zhou et al., 2025)

At
r ↑ 88.78 ± 0.60 88.17 ± 0.56 89.33 ± 0.62 91.04 ± 0.51 88.90 ± 0.59 90.25 ± 0.59 88.33 ± 0.53 88.52 ± 0.63 88.24 ± 0.66 88.32 ± 0.50
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.006 ± 0.001 1.003 ± 0.001 1.008 ± 0.001 1.014 ± 0.002 1.008 ± 0.001 1.010 ± 0.001 1.006 ± 0.001 1.005 ± 0.002 1.005 ± 0.002 1.006 ± 0.001

At
r ↑ 88.76 ± 0.62 88.16 ± 0.55 89.33 ± 0.63 91.04 ± 0.51 88.91 ± 0.60 90.26 ± 0.61 88.30 ± 0.62 88.50 ± 0.66 88.23 ± 0.64 88.32 ± 0.52
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.006 ± 0.001 1.003 ± 0.001 1.008 ± 0.001 1.014 ± 0.002 1.008 ± 0.001 1.010 ± 0.001 1.005 ± 0.001 1.005 ± 0.002 1.005 ± 0.002 1.006 ± 0.001

NG+ (Kurmanji et al., 2023)

At
r ↑ 88.91 ± 0.60 88.47 ± 0.57 89.54 ± 0.54 90.96 ± 0.49 89.09 ± 0.57 90.33 ± 0.62 88.43 ± 0.71 88.64 ± 0.62 88.24 ± 0.51 88.59 ± 0.48
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.007 ± 0.003 1.006 ± 0.003 1.010 ± 0.003 1.014 ± 0.003 1.010 ± 0.003 1.011 ± 0.003 1.007 ± 0.003 1.007 ± 0.003 1.005 ± 0.004 1.009 ± 0.003

At
r ↑ 88.77 ± 0.66 88.22 ± 0.57 89.35 ± 0.64 90.96 ± 0.52 88.97 ± 0.62 90.24 ± 0.63 88.32 ± 0.62 88.51 ± 0.64 88.25 ± 0.65 88.33 ± 0.55
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.006 ± 0.002 1.004 ± 0.001 1.008 ± 0.001 1.014 ± 0.001 1.009 ± 0.001 1.010 ± 0.002 1.006 ± 0.001 1.005 ± 0.001 1.005 ± 0.002 1.006 ± 0.001

SCRUB (Kurmanji et al., 2023)

At
r ↑ 88.87 ± 0.57 88.33 ± 0.47 89.33 ± 0.44 90.70 ± 0.35 88.92 ± 0.53 90.16 ± 0.62 88.28 ± 0.64 88.47 ± 0.51 88.16 ± 0.64 88.39 ± 0.59
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.007 ± 0.002 1.006 ± 0.003 1.009 ± 0.003 1.013 ± 0.002 1.010 ± 0.003 1.011 ± 0.003 1.007 ± 0.003 1.006 ± 0.003 1.006 ± 0.004 1.008 ± 0.002

At
r ↑ 88.82 ± 0.56 88.32 ± 0.55 89.37 ± 0.65 91.25 ± 0.59 89.02 ± 0.57 90.46 ± 0.67 88.37 ± 0.60 88.66 ± 0.64 88.32 ± 0.59 88.46 ± 0.53
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.006 ± 0.002 1.005 ± 0.001 1.008 ± 0.001 1.017 ± 0.001 1.009 ± 0.002 1.012 ± 0.002 1.006 ± 0.002 1.007 ± 0.003 1.006 ± 0.003 1.007 ± 0.001

SCAR (Bonato et al., 2024)

At
r ↑ 88.87 ± 0.58 88.31 ± 0.54 89.39 ± 0.55 91.25 ± 0.52 89.02 ± 0.61 90.43 ± 0.50 88.37 ± 0.58 88.64 ± 0.66 88.37 ± 0.60 88.44 ± 0.48
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.007 ± 0.002 1.005 ± 0.001 1.008 ± 0.001 1.017 ± 0.002 1.009 ± 0.001 1.012 ± 0.003 1.006 ± 0.001 1.007 ± 0.003 1.006 ± 0.002 1.007 ± 0.002

At
r ↑ 88.81 ± 0.63 88.21 ± 0.56 89.36 ± 0.64 91.06 ± 0.51 88.95 ± 0.60 90.29 ± 0.63 88.34 ± 0.61 88.56 ± 0.65 88.26 ± 0.64 88.36 ± 0.54
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.006 ± 0.001 1.004 ± 0.001 1.008 ± 0.001 1.015 ± 0.002 1.008 ± 0.001 1.010 ± 0.001 1.006 ± 0.001 1.006 ± 0.002 1.005 ± 0.002 1.006 ± 0.001
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Table 9: Class unlearning performance for CIFAR-10 using ViT-B-16, averaged over 5 random trials.
Rows highlighted in gray represent our results using synthetic embeddings, while the corresponding
non-shaded rows use original embeddings with the same method.

Method Metric Forget Class
0 1 2 3 4 5 6 7 8 9

Original
At

r ↑ 97.65 ± 0.07 97.60 ± 0.11 97.71 ± 0.13 97.98 ± 0.11 97.68 ± 0.18 97.88 ± 0.11 97.55 ± 0.13 97.63 ± 0.08 97.55 ± 0.13 97.65 ± 0.15
At

f ↓ 98.0 ± 0.6 98.5 ± 0.5 97.5 ± 0.2 95.1 ± 0.8 97.8 ± 0.7 95.9 ± 0.2 98.9 ± 0.3 98.2 ± 0.9 98.9 ± 0.2 98.0 ± 0.4
AUS ↑ 0.505 ± 0.002 0.504 ± 0.001 0.506 ± 0.001 0.513 ± 0.002 0.506 ± 0.002 0.510 ± 0.000 0.503 ± 0.001 0.505 ± 0.002 0.503 ± 0.000 0.505 ± 0.001

Retrained
At

r ↑ 98.39 98.38 98.21 98.86 98.38 98.67 98.17 98.28 98.20 98.31
At

f ↓ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AUS ↑ 1.007 1.008 1.005 1.009 1.007 1.008 1.006 1.006 1.006 1.007

NG (Golatkar et al., 2020)

At
r ↑ 97.80 ± 0.10 97.78 ± 0.10 97.85 ± 0.12 98.34 ± 0.09 97.92 ± 0.12 98.27 ± 0.14 97.64 ± 0.14 97.77 ± 0.07 97.71 ± 0.13 97.82 ± 0.12
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.002 ± 0.000 1.002 ± 0.000 1.001 ± 0.000 1.004 ± 0.001 1.002 ± 0.001 1.004 ± 0.001 1.001 ± 0.000 1.001 ± 0.001 1.002 ± 0.000 1.002 ± 0.001

At
r ↑ 97.81 ± 0.10 97.78 ± 0.10 97.86 ± 0.12 98.34 ± 0.09 97.93 ± 0.12 98.28 ± 0.13 97.65 ± 0.14 97.77 ± 0.06 97.71 ± 0.14 97.82 ± 0.12
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.002 ± 0.000 1.002 ± 0.000 1.002 ± 0.000 1.004 ± 0.001 1.003 ± 0.001 1.004 ± 0.001 1.001 ± 0.000 1.001 ± 0.001 1.002 ± 0.000 1.002 ± 0.001

RL (Hayase et al., 2020)

At
r ↑ 97.81 ± 0.10 97.79 ± 0.10 97.85 ± 0.12 98.37 ± 0.10 97.94 ± 0.12 98.28 ± 0.12 97.68 ± 0.13 97.78 ± 0.07 97.72 ± 0.14 97.83 ± 0.12
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.002 ± 0.000 1.002 ± 0.000 1.001 ± 0.000 1.004 ± 0.000 1.003 ± 0.001 1.004 ± 0.001 1.001 ± 0.000 1.001 ± 0.001 1.002 ± 0.000 1.002 ± 0.001

At
r ↑ 97.85 ± 0.07 97.84 ± 0.12 97.90 ± 0.13 98.38 ± 0.11 97.96 ± 0.13 98.30 ± 0.13 97.70 ± 0.12 97.83 ± 0.06 97.75 ± 0.15 97.83 ± 0.12
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.002 ± 0.000 1.002 ± 0.001 1.002 ± 0.000 1.004 ± 0.000 1.003 ± 0.001 1.004 ± 0.000 1.001 ± 0.000 1.002 ± 0.001 1.002 ± 0.000 1.002 ± 0.000

BS (Chen et al., 2023)

At
r ↑ 97.67 ± 0.12 97.75 ± 0.08 97.79 ± 0.19 98.13 ± 0.24 97.74 ± 0.19 97.97 ± 0.19 97.61 ± 0.15 97.68 ± 0.07 97.60 ± 0.14 97.72 ± 0.22
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.000 ± 0.001 1.002 ± 0.001 1.001 ± 0.001 1.002 ± 0.002 1.001 ± 0.000 1.001 ± 0.001 1.001 ± 0.000 1.000 ± 0.000 1.000 ± 0.001 1.001 ± 0.001

At
r ↑ 97.80 ± 0.10 97.76 ± 0.07 97.86 ± 0.11 98.29 ± 0.08 97.92 ± 0.13 98.25 ± 0.14 97.67 ± 0.14 97.79 ± 0.05 97.69 ± 0.17 97.82 ± 0.11
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.002 ± 0.000 1.002 ± 0.001 1.001 ± 0.000 1.003 ± 0.001 1.002 ± 0.001 1.004 ± 0.000 1.001 ± 0.000 1.002 ± 0.001 1.001 ± 0.000 1.002 ± 0.001

DELETE (Zhou et al., 2025)

At
r ↑ 97.81 ± 0.10 97.78 ± 0.09 97.85 ± 0.12 98.34 ± 0.10 97.93 ± 0.12 98.28 ± 0.13 97.64 ± 0.13 97.77 ± 0.07 97.71 ± 0.13 97.82 ± 0.12
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.002 ± 0.000 1.002 ± 0.000 1.001 ± 0.000 1.004 ± 0.001 1.003 ± 0.001 1.004 ± 0.001 1.001 ± 0.000 1.001 ± 0.001 1.002 ± 0.000 1.002 ± 0.001

At
r ↑ 97.81 ± 0.09 97.79 ± 0.10 97.87 ± 0.13 98.35 ± 0.10 97.95 ± 0.12 98.29 ± 0.13 97.66 ± 0.15 97.79 ± 0.07 97.72 ± 0.14 97.83 ± 0.13
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.002 ± 0.000 1.002 ± 0.000 1.002 ± 0.000 1.004 ± 0.000 1.003 ± 0.001 1.004 ± 0.001 1.001 ± 0.000 1.002 ± 0.001 1.002 ± 0.000 1.002 ± 0.000

NG+ (Kurmanji et al., 2023)

At
r ↑ 97.79 ± 0.10 97.77 ± 0.13 97.83 ± 0.13 98.34 ± 0.09 97.91 ± 0.13 98.26 ± 0.15 97.64 ± 0.14 97.75 ± 0.08 97.69 ± 0.14 97.81 ± 0.13
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.001 ± 0.000 1.002 ± 0.000 1.001 ± 0.000 1.004 ± 0.001 1.002 ± 0.001 1.004 ± 0.001 1.001 ± 0.000 1.001 ± 0.001 1.001 ± 0.000 1.002 ± 0.001

At
r ↑ 97.82 ± 0.10 97.80 ± 0.10 97.88 ± 0.13 98.37 ± 0.10 97.96 ± 0.12 98.31 ± 0.14 97.67 ± 0.14 97.79 ± 0.07 97.74 ± 0.14 97.85 ± 0.13
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.002 ± 0.000 1.002 ± 0.000 1.002 ± 0.000 1.004 ± 0.000 1.003 ± 0.001 1.004 ± 0.001 1.001 ± 0.000 1.002 ± 0.001 1.002 ± 0.000 1.002 ± 0.000

Table 10: Class unlearning performance for CIFAR-10 using Swin-T, averaged over 5 random trials.
Rows highlighted in gray represent our results using synthetic embeddings, while the corresponding
non-shaded rows use original embeddings with the same method.

Method Metric Forget Class
0 1 2 3 4 5 6 7 8 9

Original
At

r ↑ 97.58 ± 0.08 97.65 ± 0.05 97.78 ± 0.08 97.96 ± 0.15 97.74 ± 0.03 98.03 ± 0.10 97.55 ± 0.05 97.63 ± 0.08 97.60 ± 0.07 97.74 ± 0.09
At

f ↓ 99.0 ± 0.3 98.4 ± 0.5 97.3 ± 0.6 95.6 ± 0.9 97.6 ± 0.7 95.0 ± 0.9 99.3 ± 0.3 98.6 ± 0.3 98.8 ± 0.1 97.6 ± 0.3
AUS ↑ 0.502 ± 0.001 0.504 ± 0.001 0.507 ± 0.002 0.511 ± 0.002 0.506 ± 0.002 0.513 ± 0.002 0.502 ± 0.001 0.504 ± 0.001 0.503 ± 0.000 0.506 ± 0.001

Retrained
At

r ↑ 98.22 98.30 98.31 98.80 98.30 98.73 98.14 98.14 98.17 98.43
At

f ↓ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AUS ↑ 1.006 1.006 1.005 1.008 1.006 1.007 1.006 1.005 1.006 1.007

NG (Golatkar et al., 2020)

At
r ↑ 97.73 ± 0.05 97.86 ± 0.05 97.88 ± 0.07 98.46 ± 0.10 97.91 ± 0.04 98.37 ± 0.12 97.65 ± 0.06 97.76 ± 0.06 97.74 ± 0.07 97.88 ± 0.08
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.002 ± 0.000 1.002 ± 0.000 1.001 ± 0.000 1.005 ± 0.001 1.002 ± 0.000 1.003 ± 0.001 1.001 ± 0.000 1.001 ± 0.000 1.001 ± 0.000 1.001 ± 0.000

At
r ↑ 97.71 ± 0.10 97.65 ± 0.28 97.74 ± 0.08 97.31 ± 2.61 97.90 ± 0.07 97.81 ± 0.60 97.28 ± 0.72 97.66 ± 0.19 97.71 ± 0.08 97.71 ± 0.11
At

f ↓ 0.0 ± 0.0 1.1 ± 1.6 0.3 ± 0.3 0.9 ± 1.9 0.1 ± 0.2 1.1 ± 1.6 0.2 ± 0.3 0.2 ± 0.2 0.1 ± 0.1 0.7 ± 0.6
AUS ↑ 1.001 ± 0.001 0.990 ± 0.017 0.997 ± 0.003 0.985 ± 0.044 1.001 ± 0.002 0.987 ± 0.021 0.995 ± 0.010 0.998 ± 0.004 1.001 ± 0.001 0.993 ± 0.007

NG+ (Kurmanji et al., 2023)

At
r ↑ 97.67 ± 0.07 97.67 ± 0.06 97.85 ± 0.06 98.32 ± 0.13 97.81 ± 0.02 98.32 ± 0.14 97.59 ± 0.05 97.66 ± 0.06 97.64 ± 0.04 97.76 ± 0.07
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.001 ± 0.000 1.000 ± 0.000 1.001 ± 0.000 1.004 ± 0.001 1.001 ± 0.000 1.003 ± 0.001 1.000 ± 0.000 1.000 ± 0.001 1.000 ± 0.001 1.000 ± 0.000

At
r ↑ 97.45 ± 0.30 90.38 ± 11.22 92.22 ± 6.15 95.45 ± 3.03 97.15 ± 0.70 95.16 ± 0.77 85.57 ± 16.19 94.36 ± 5.09 94.61 ± 4.95 92.80 ± 4.31
At

f ↓ 0.0 ± 0.1 2.1 ± 1.5 1.2 ± 0.7 0.9 ± 1.4 0.1 ± 0.2 3.0 ± 0.5 1.2 ± 1.8 0.8 ± 0.5 0.5 ± 0.5 2.2 ± 1.6
AUS ↑ 0.998 ± 0.003 0.908 ± 0.113 0.933 ± 0.060 0.967 ± 0.041 0.993 ± 0.007 0.943 ± 0.009 0.872 ± 0.172 0.960 ± 0.052 0.966 ± 0.053 0.931 ± 0.054

SCRUB (Kurmanji et al., 2023)

At
r ↑ 97.63 ± 0.09 97.68 ± 0.06 97.84 ± 0.07 98.38 ± 0.09 97.87 ± 0.03 98.22 ± 0.10 97.65 ± 0.06 97.73 ± 0.04 97.69 ± 0.04 97.79 ± 0.04
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.000 ± 0.001 1.000 ± 0.001 1.001 ± 0.000 1.004 ± 0.001 1.001 ± 0.000 1.002 ± 0.001 1.001 ± 0.000 1.001 ± 0.001 1.001 ± 0.001 1.001 ± 0.001

At
r ↑ 97.59 ± 0.07 97.49 ± 0.35 97.57 ± 0.18 97.93 ± 0.38 96.70 ± 2.09 97.94 ± 0.37 97.23 ± 0.53 96.36 ± 2.62 97.38 ± 0.29 97.71 ± 0.10
At

f ↓ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AUS ↑ 1.000 ± 0.001 0.998 ± 0.003 0.998 ± 0.002 1.000 ± 0.005 0.990 ± 0.021 0.999 ± 0.003 0.997 ± 0.005 0.987 ± 0.026 0.998 ± 0.003 1.000 ± 0.001
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