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ABSTRACT

Class unlearning in neural classifiers refers to selectively removing the
model’s ability to recognize a target (forget) class by reshaping the de-
cision boundaries. This is essential when taxonomies change, labels are
corrected, or legal or ethical requirements mandate class removal. The ob-
jective is to preserve performance on the remaining (retain) classes while
avoiding costly full retraining. Existing methods generally require access to
the source, i.e., forget/retain data or a relevant surrogate dataset. This de-
pendency limits their applicability in scenarios where access to source data
is restricted or unavailable. Even the recent source-free class unlearning
methods rely on generating samples in the data space, which is compu-
tationally expensive and not even essential for doing class unlearning. In
this work, we propose a novel source-free class unlearning framework that
enables existing unlearning methods to operate using only the deployed
model. We show that, under weak assumptions on the forget loss with re-
spect to logits, class unlearning can be performed source-free for any given
neural classifier by utilizing randomly generated samples within the clas-
sifier’s intermediate space. Specifically, randomly generated embeddings
classified by the model as belonging to the forget or retain classes are suffi-
cient for effective unlearning, regardless of their marginal distribution. We
validate our framework on four backbone architectures, ResNet-18, ResNet-
50, ViT-B-16, and Swin-T, across three benchmark datasets, CIFAR-10,
CIFAR-100, and TinylmageNet. Our experimental results show that exist-
ing class unlearning methods can operate within our source-free framework,
with minimal impact on their forgetting efficacy and retain class accuracy.

1 INTRODUCTION

Deep learning models have achieved remarkable performance across domains, but their
tendency to memorize training data makes them susceptible to privacy attacks such as
membership inference attacks (Salem et al.| 2018} |Shokri et al., |2017; [Song et al.,|2019; [Yeom
et al., |2018) and model inversion attacks (Chen et al., 2021} [Fredrikson et al., 2015)). These
risks pose serious concerns in privacy-sensitive applications, particularly under regulations
such as General Data Protection Regulation (GDPR) (Voigt & Von dem Bussche, [2017)
and California Consumer Privacy Act (CCPA) (Goldman) 2020) that mandate a "right to
be forgotten”, requiring effective removal of specific data from trained models. In response,
machine unlearning has emerged as a promising direction to remove the influence of specific
instances or classes without retraining from scratch. Unlearning methods fall into model-
intrinsic (Lin et al.; 2023), data-driven (Bourtoule et al., |2021} [Hayase et al.l [2020), and
model-agnostic categories (Kurmanji et al.,|2023; |Chen et al., 2023} |Cotogni et al., 2023} |Cha
et all 2024), with a key distinction between exact unlearning (Bourtoule et al., [2021; [Yan
et al., [2022) and approximate unlearning. Although recent approximate methods reduce
retraining overhead, most still require access to the forget set, the retain set, or a surrogate
dataset that approximates the training distribution.

This work challenges the widely held assumption that access to original training data is
required for class unlearning. We propose a novel framework for source-free class unlearning
that operates entirely without access to original or surrogate forget and retain datasets. Our
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approach leverages randomly generated embeddings in the intermediate space of the target
classifier. More precisely, we generate synthetic, class-conditional synthetic embeddings by
randomly sampling in the model’s intermediate embedding space and pseudo-labeling them
based on the model’s predictions. These synthetic embeddings serve as proxies, allowing
existing state-of-the-art unlearning methods to be adapted seamlessly to a fully source-free
setting. We theoretically prove that these synthetic embeddings are sufficient to induce
effective decision boundary adjustments, while preserving accuracy on the retain classes.

This work enables class-level unlearning in a fully source-free setting, which is compatible
with a wide range of existing unlearning methods. Our framework successfully adapts
several state-of-the-art techniques, including Finetuning (Golatkar et al., |2020), Negative
Gradient (Golatkar et all [2020), Negative Gradient+ (Kurmanji et al) [2023), Random
Labels (Hayase et al., 2020), Boundary Expanding (Chen et al., 2023)), Boundary Shrink
(Chen et al., |2023), DELETE (Zhou et al., [2025), SCRUB (Kurmanji et all 2023]), and
SCAR (Bonato et al., |2024)), to operate effectively without requiring access to any original
training data or relevant surrogate. Our main contributions are summarized as follows:

e We propose a novel source-free class unlearning framework that operates solely on
a target model and the label of the class to be forgotten, without requiring any
access to original, surrogate, or validation dataset. Our method generates synthetic
class-conditional embeddings by sampling random vectors within the model’s inter-
mediate feature space and pseudo-labeling them using the model itself, enabling the
adaptation of existing unlearning methods to a fully source-free regime.

o We show that these synthetic embeddings, regardless of their marginal distribution,
are sufficient to induce the decision boundary shifts necessary for effective class
unlearning. Remarkably, under our framework, multiple state-of-the-art unlearning
techniques perform equivalently well as in data-access settings.

e We empirically validate our framework on ResNet-18, ResNet-50, ViT-B-16, and
Swin-T backbones using CIFAR-10, CIFAR-100, and TinyImageNet datasets. The
results show that a wide range of existing unlearning methods can function within
our source-free setting with minimal degradation in the unlearning performance.

2 RELATED WORKS

Class unlearning aims to remove the influence of a target class from a trained model while
preserving performance on the remaining classes. Class unlearning methods differ mainly
by data access during unlearning: availability of retain data, forget data, both, or neither.

Methods requiring both retain and forget sets. Many effective class unlearning
methods assume access to both forget and retain datasets. Distillation-based approaches
such as SCalable Remembering and Unlearning unBound (SCRUB) (Kurmanji et al. [2023)
guide student models via knowledge transfer and pruning. Machine Unlearning with Di-
mensional Alignment (MUDA) (Seo et al} [2025) introduces dimensional alignment loss and
a self-distillation scheme that explicitly leverages both forget and retain sets to erase the
influence of forget samples while preserving retain knowledge. The recently proposed SVD-
based method (Kodge et al., 2024) performs gradient-free, single-step class unlearning by
estimating retain and forget spaces from small subsets of both datasets and suppressing
class-discriminatory activations.

Retain-free methods. These approaches remove dependence on retain data and operate
mainly on forget samples. Negative Gradient reverses the estimated contribution of forget
samples to the weights (Golatkar et al.|2020)). Boundary Shrink and Boundary Expanding
techniques (Chen et al.l 2023)) adjust decision boundaries by contracting or expanding re-
gions related to forget samples. Partially Blinded Unlearning (PBU) (Panda et al.| 2025)
perturbs model parameters using a Bayesian loss. Other lines estimate the retain Hessian
from forget data and model parameters (Ahmed et al., 2025), or inject targeted label noise
to induce misclassification with minimal updates (Ye et al.,2025). Just in Time unlearning
(JiT) enforces local Lipschitz regularization on forget samples and their perturbations (Fos-
ter et al., [2024), while zero-shot proxy generation synthesizes adversarial retain surrogates
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followed by subspace projection and pseudo-labeling (Chen et all |2025). From an input-
sensitivity view, Machine Unlearning by Minimizing input sensitivity (MU-Mis) minimizes
the sensitivity gap between target-class and irrelevant-class logits to withdraw forget influ-
ence with limited utility loss (Cheng et al.| [2024)). |Zhou et al.[ (2025) proposes DELETE, a
decoupled distillation method that suppresses the forget-class logits with a masking function
and distills dark knowledge from the frozen model to preserve remaining classes. Recently,
Selective-distillation for Class and Architecture-agnostic unleaRning (SCAR) (Bonato et al.|
2024) introduced a retain-free method that leverages Mahalanobis-guided metric learning
and a distillation strategy using a surrogate out-of-distribution dataset to preserve model
performance. In addition, it proposes a source-free class unlearning variant that requires no
access to either retain or forget data, while still relying on the surrogate dataset.

Forget-free methods. Some methods operate using retain data and without direct access
to forget samples. Fine-tuning approaches update models exclusively on retain data to
indirectly remove forget sample influence. Recent work, such as RELOAD (Newatia et al.),
introduces blind unlearning, which performs approximate unlearning without access to the
forget set. Instead, it leverages cached gradients from the original training and selectively re-
initializes parameters most influenced by the forget data, guided by differences between full
and retain gradients. Similarly, Unlearning With Single Pass Impair and Repair (UNSIR)
(Tarun et al., 2023 operates in a zero-glance setting, where forget samples are entirely
inaccessible. More precisely, it employs a single-pass impair-repair strategy using error-
maximizing noise and a small retain subset to forget class-level information.

Source-free methods. In the source-free unlearning setting, neither forget nor retain
data is available. |Chundawat et al.| (2023) proposes Min—-Max noise, which adversarially
perturbs weights to raise loss on forget classes while preserving retain accuracy, and Gated
Knowledge Transfer (GKT), which distills a student from a teacher while filtering synthetic
samples linked to the forget classes. GKT, however, can over-filter (discarding samples that
still encode retain information) and exhibits generator imbalance (overproducing forget-class
samples), reducing data efficiency. To address these issues, |Zhang et al.| (2025) introduces
the Inhibited Synthesis PostFilter (ISPF) framework, combining Inhibited Synthesis to dis-
courage the generation of forget-class data with a PostFilter to suppress forget-class logits
without discarding samples. However, both approaches initialize and train a new model
from scratch as part of the distillation process, which incurs substantial computational over-
head. Wang et al.| proposes Data Synthesis—based Discrimination-Aware (DSDA), which
synthesizes data via Accelerated Energy-Guided Langevin Sampling and performs unlearn-
ing through Discrimination-Aware Multitask Optimization. Despite efficiency gains, DSDA
still incurs nontrivial computational overhead due to the recursive sampling needed to con-
struct synthetic forget and retain datasets. We demonstrate that synthesizing input-level
data is not necessary for effective class unlearning, and intermediate random embeddings
are sufficient to reshape the decision boundaries. Building on this insight, our proposed
framework operates entirely in the intermediate embedding space by sampling synthetic
embeddings and pseudo-labeling them using the model itself. This significantly reduces
computational overhead while maintaining unlearning effectiveness. Compared to recent
source-free methods such as DSDA, ISPF, and GKT, this approach avoids data generators,
input reconstruction, and student-teacher training, making it significantly more efficient.

3 METHODOLOGY

In this section, we introduce our notations, formalize the problem setting, and lay down the
theoretical foundation necessary for source-free class unlearning. Subsequently, we propose
our source-free unlearning methodology grounded on this theoretical insight.

3.1 NOTATIONS AND PROBLEM SETUP

Consider a pre-trained classifier model defined as ® = h o g o e. Here, the feature extractor
e: X — RY, parameterized by 6., maps input samples x € X to a d-dimensional embedding
z = e(x) € R%. An intermediate transformation g : R¢ — R! parameterized by 04, then
maps z to an [-dimensional latent embedding g(z) € R!. Finally, the classifier head h : Rt —
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R®, with parameters ), computes class logits h(g(z)) € R®. We denote the space of class
labels as Y = Yy U Y, where )y is the set of classes targeted for unlearning (forget classes),
and )Y, is the set of retain classes with Yy N Y, = (. In this work, we primarily focus on
unlearning a single class, denoted as ¢y, and thus Yy = {¢s} and Y, = Y\ {¢s}. Under
this notation, class unlearning is defined as the process of selectively removing the model’s
ability to recognize the target class c; by reshaping the decision boundary, while preserving
predictive performance on the remaining classes ).

3.2 PROPOSED METHODOLOGY

We assume availability of embeddings drawn from an arbitrary intermediate embedding
space, such as the output of the feature extractor e. Formally, we denote embeddings in
this space as random variables z € R?, sampled from an arbitrary distribution p,(z). These
embeddings do not necessarily follow any particular distribution from the original training
data. More precisely, given a classifier model & = ho goe, we obtain pseudo-labels for each
embedding z; by applying the intermediate transformation and the classifier head:

9i = arg max(h(g(zi))l- (1)

Using these pseudo-labels, we construct two embedding subsets including the forget set £
and the retain set &,, defined as follows:

Sf:{ZiERdmi:Cf}zj‘V:fla (2)
& = {z e R | g € V1V, (3)

where Ny and N, are the sizes of the forget and retain sets, respectively. In class unlearning
methods, the overall objective is often formulated as a combination of two components: a
forget loss £y computed on the forget set £, and a retain loss £, computed on the retain
set &,.. The total unlearning loss is typically expressed as £, = Ly 4+ AL, where A controls
the trade-off between forgetting and utility preservation. The forget loss L encourages the
model to remove knowledge related to the forget class by reshaping the decision boundary,
while the retain loss £, is used to preserve performance on the retain classes and prevent
catastrophic forgetting. In the following proposition, we theoretically prove that by hav-
ing access solely to these sets of embeddings—independent of the underlying embedding
distribution p,(z)—it is possible to perform class unlearning effectively.

Assumptions: We begin by stating two assumptions regarding the forget loss function
L. First, we assume that L, is differentiable with respect to the model’s parameters.
Second, we assume monotonicity conditions on the logits produced by the classifier head.
Specifically, for every embedding z; € &:

(4)

OL s >0 k=c; (monotonically increasing),
9[h(g(2i))lk

where [h(g(z:))]x = (0r); 9(z:) denotes the logit for class k, and (0); € R is the k-th row
of classifier parameter matrix 6;, € RE*!,

<0 ke€),. (monotonically decreasing),

Proposition 1 (Distribution-Agnostic Class Unlearning). Consider a trained classifier
model ® = h o g o e with parameters defined as above, and assume the availability of the
embedding sets £ and &, derived from an arbitrary embedding distribution p,(z). Let class
unlearning be performed by minimizing a forget loss function Ly, defined over embeddings
in Er. Then, class unlearning of the target class cy can be effectively achieved regardless of
the choice of embedding distribution p,(z).

Proof. Since decision boundaries between classes are directly governed by the classifier pa-
rameters 6, gradient-based updates explicitly reshape these boundaries. Consider a gradi-
ent descent update at iteration j with learning rate o > 0:

oLy

G
oy =6 — a Ty
h

()
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Applying the chain rule, the gradient of Ly with respect to (0p)r is:

0Ly
S 2; STla o) 0

Thus, the update for the logit of class k£ can be generally expressed as:

o) = o@D = 5 3 gy, loteol (7)

ZES

By substituting the monotonicity assumption into equation m we have that the forget-class
logit [h(g(2))]c, consistently decreases in response to z; € £y, due to positive gradients.
Conversely, logits corresponding to retain classes k € ). consistently increase as their gra-
dients are negative. Consequently, embeddings initially assigned to the forget class are sys-
tematically reclassified toward retain classes, progressively contracting the decision region
associated with class c¢y. Importantly, this reasoning relies only on embeddings classified as
the forget, independent of their underlying distribution p,(z). Hence, the effectiveness of
class unlearning is guaranteed irrespective of the specific embedding distribution employed.

O

Building on Proposition |1} we propose a practical and fully source-free class unlearning
framework. The central idea is to leverage synthetic embeddings sampled from an arbitrary
distribution p,(z) in the intermediate embedding space, using the classifier head to form
synthetic forget and retain sets. These synthetic sets serve as surrogates for original data,
enabling effective unlearning through gradient-based minimization of the forget loss L.
Figure[l] visually illustrates our proposed source-free unlearning pipeline, while Algorithm
summarizes the procedure in detail.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate the efficacy of our proposed source-free framework by integrating it with a
diverse set of state-of-the-art class unlearning methods, tested across three widely used
benchmark datasets. Experiments are conducted using four backbone architectures, ResNet-
18 (He et al. [2016), ResNet-50 (He et al [2016]), ViT-B-16 (Dosovitskiy et al., [2020)),
and Swin-T (Liu et al., [2021)), although our framework is architecture-agnostic and can be
extended to other network architectures without modification.

Algorithm 1 Source-Free Class Unlearning Framework

Require: Pre-trained classifier model ® = h o g o e, target class to forget cy, number of
synthetic embeddings N, embedding distribution p,(z), forget loss function L, retain
loss function £,., unlearning loss function £,, learning rate «
Initialize: synthetic forget set £y = 0 and retain set &, = ()
for i =1to N do
Sample embedding z; ~ p,(z)
Obtain pseudo-label: §; = arg maxgey|[h(9(2zi))]x
if §; = cy then
Er—&rU {z;}
else
(c,‘»,« — 57- @] {Zz}
9: end if
10: end for
11: for each gradient update step do
12:  Compute loss £, = Ly + AL,: compute Ly using £ and L, using &,
13:  Backpropagate and update parameters 6 = (0,4, 05) via 0 < 0 — aVyL,
14: end for
15: return updated model ® =h og' oe
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Figure 1: Tllustration of the proposed source-free class unlearning framework. (a) Step 1:
synthetic embeddings are sampled randomly from an arbitrary distribution in the interme-
diate embedding space and pseudo-labeled by the model to form the synthetic forget set
&; and retain set &,. (b) Step 2: the subsequent layers of the model are updated using
these embeddings by minimizing the forget loss £ to forget the target class set Yy = {cr},
while optionally preserving performance on retain classes ), through the retain loss £,.. (¢c)
t-SNE of intermediate embeddings. (d) t-SNE of softmax probability before unlearning. (e)
t-SNE of softmax probability after unlearning.

Datasets —We conduct experiments on CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100
(Krizhevsky et al., 2009), and TinyImageNet (Le & Yang, [2015). CIFAR-10 and CIFAR-
100 comprise 60,000 color images of resolution 32 x 32, split into 50,000 training and 10,000
testing samples, with 10 and 100 classes respectively. TinylmageNet contains 110,000 images
of resolution 64 x 64, distributed across 200 classes, with 100,000 samples for training and
10,000 for testing. In this work, we utilize only the test sets of these datasets to evaluate
the effectiveness of the unlearning methods within our source-free framework.

Baselines —We benchmark our approach against a comprehensive suite of methods, includ-
ing classical retraining, fine-tuning-based unlearning, and recent state-of-the-art techniques

2023), DELETE (Zhou et al. [2025), SCRUB (Kurmanji et al [2023), SCAR (Bonato et al.

2024)), Negative Gradient (NG) (Golatkar et all, [2020), Negative Gradient+ (NG+)

manji et al., [2023)), and Random Labels (RL) (Hayase et all 2020). The Original models

denote ResNet-18, ResNet-50, ViT-B-16, and Swin-T architectures trained on the full train-
ing set for 300 epochs with cosine annealing learning rate scheduling, serving as the baseline
before unlearning. The Retrained models are trained from scratch for 200 epochs exclusively
on the retain subset, representing an upper-bound performance as they have no exposure
to data from the forget set.
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Evaluation Metrics —We assess unlearning performance using three primary metrics,
including retain test accuracy (A%), forget test accuracy (A?), and the Adaptive Unlearning

Score (AUS) (Cotogni et al.l 2023)). The objective is to maximize AL, thereby preserving
retain knowledge, while minimizing Asc, indicating effective unlearning. The AUS combines
these aspects into a single scalar score that balances utility and unlearning;:

AUS (1 (ot Aﬁnft” /(1 n ‘ Adeal—t _ A?n_t‘), (8)

where A%~ is the retain test accuracy of the original model, A™~* and A;“ft are the
retain and forget test accuracies of the unlearned model respectively, and Aifdealft denotes

the target forget accuracy (ideally zero). Higher AUS values indicate superior unlearning
performance, i.e., effective forgetting while preserving the retain classes’ accuracy.

4.2 MAIN RESULTS

For each dataset, we conduct experiments using five independently initialized models, apply-
ing class-wise unlearning separately to each class. Each experiment is repeated across five
random seeds, and the results reported correspond to the mean and standard deviation ag-
gregated over all classes and seeds. To ensure a fair comparison among unlearning methods,
the number of synthetic samples generated per class matches the size of the original training
class (see Appendix [A| for the required minimum number of synthetic embeddings). These
synthetic embeddings are sampled from the intermediate feature space immediately preced-
ing the model’s classification head (see Appendix [Blfor the effect of embedding distribution).
The overall performance is summarized in Table[I[and Table[2] Across all methods, datasets,
and backbone architectures, our source-free framework consistently achieves near-complete
forgetting as indicated by the minimized forget test accuracy (Asc), while maintaining strong

classification accuracy on retain classes (A%). Moreover, the AUS obtained close approxima-
tions to retraining-based baselines with full access to the retain set. In addition, a detailed
class-level evaluation of different unlearning methods within our source-free framework is
provided in Appendix [E] and anonymized code link is provided in Appendix

Impact of Embedding Location on Source-Free Unlearning —To evaluate the flex-
ibility of our framework, we examine how the depth at which synthetic embeddings are
generated influences unlearning performance. Specifically, we compare embeddings pro-
duced at two distinct locations: (1) immediately preceding the classifier head, which serves
as our default configuration, and (2) earlier in the network, e.g., before the final convo-
lutional block within ResNet-18’s layer 4. As reported in Table [3] embeddings generated
at the earlier stage continue to deliver strong unlearning performance, with results closely
matching those obtained from embeddings sampled before the classifier head (see Table .
The marginal differences observed underscore the robustness of our method to the choice of
embedding depth. Furthermore, synthetic embeddings achieve consistently competitive re-
sults when compared directly to original embeddings extracted from the same intermediate
layer, indicating their effectiveness as surrogate representations. Collectively, these findings
confirm that our framework supports effective unlearning at multiple depths within the net-
work, offering a layer-agnostic capability that enhances adaptability to diverse architectural
configurations, privacy considerations, and computational constraints, thereby broadening
its practical applicability.

Impact of the Number of Synthetic Embeddings per Class on Unlearning Per-
formance —We investigate how the number of synthetic embeddings generated per class
influences the unlearning efficacy. To this end, the ResNet-18 trained on CIFAR-100 is
considered in the main text, with additional results for ResNet-18 on CIFAR-10 and Tiny-
ImageNet, as well as ViT-B-16 on CIFAR-10 and CIFAR-100, provided in the Appendix [C]
As illustrated in Figure[2] increasing the number of synthetic samples consistently enhances
retain class accuracy (A;) and the AUS, while reducing forget class accuracy (A%). This be-
havior indicates that generating a larger set of representative embeddings more effectively
approximates the decision boundaries of the forget and retain classes, thereby improving
source-free unlearning performances. Notably, performance gains saturate beyond a cer-
tain sample size, which means that generating additional synthetic embeddings beyond this
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Table 1: Class unlearning performance for CIFAR-10, CIFAR-100, and TinyImageNet using ResNet-
18 and ResNet-50 as the base architecture. Rows highlighted in gray represent our results using
synthetic embeddings, while the corresponding non-shaded rows use original embeddings with the
same method. Columns D,-free and Dy-free indicate whether the method operates without access
to the retain or forget set, respectively, with (v') denoting true and (X) denoting false.

Method D, Dy CIFAR-10 CIFAR-100 TinyImageNet
v free  free AL ALl AUS At Al AUS At Al AUS
ResNet-18:
Original ‘ ‘ 86.58+0.83 86.58+6.67 0.537+0.020 | 78.16+1.07 78.16+11.15 0.564+0.037 | 71.30+020 71.30+12.46 0.587+£0.045
Retrained | | 86.95+117  0.0x00  1.0040006 | 77.92+0.80 0.0+0.0 0.998+0.013 | 63.01+276 0.0+00 0.917 +0.028
e . | % V| 87431102 0.0+0.0 1.009 +0.004 | 78.20+1.00 0.0+0.0 1.000 £0.003 | 71.32+0.35 0.0+0.0 1.000 + 0.002
FT (Golatkar et m 4 v 8737+1n 0.0+00 1.008+0.003 | 78.29+1.04 0.0+0.0 1.001+0.001 | 71.25+0.32 0.0+0.1 0.999 +0.001
NG (Golatkar ot al ‘ v X ‘ 87.31+1.13 0.0+0.0 1.007 +0.003 | 78.28 +1.07 0.0+0.0 1.001 +0.001 | 71.36+0.30 0.0+0.0 1.001 +0.001
7 _ v v 8740x114 0.0+0.0 1.008 £0.004 | 78.28 +1.05 0.0+0.1 1.001 +0.002 | 71.30+0.29 0.0+0.0 1.001 + 0.000
— -1 | v X | 8743+116  0.0+0.0 1.008 £0.004 | 78.36+1.05 0.0+0.0 1.002+£0.001 | 71.35+0.32 0.0+0.0 1.001 +0.001
RL v v 87.33+1m 0.0+0.0 1.008 +0.004 | 78.12+1.03 0.0+0.0 1.000+0.001 | 71.27+0.32 0.0+0.0 1.000 +0.001
— | v X | 86.29+1.00 0.2+04 0.996 +0.009 | 74.32+1.72 0.1+0.5 0.960 +0.017 | 70.24 +0.57 0.1+0.5 0.988 +0.010
BS (Chen et al. 4 v 8737116 0.0+0.0 1.008 +0.004 | 77.25+1.05 0.1+08 0.990+0.011 | 70.36+0.99 0.0+0.1 0.991 +0.009
o - | v X | 8472x161 0.5+12 0.977+0.021 | 71.23+£243 0.1+0.6 0.930+0.024 | 62.67+2.68 1.3+20 0.902 +0.030
BE {Chen et al //  865lzost 0000 09990001 | 78.02+110  0.000 09990003 | 71232030  0.0£00  0.9990.001
5 | 7 X | 87.33x112 0.0+0.0 1.008 £0.004 | 78.28 +1.06 0.0+0.0 1.001 +0.001 | 71.43 +0.30 0.0+0.0 1.001 + 0.000
DELETE ' 4 v 87.36+113 0.0+0.0 1.008 £0.004 | 78.26+1.07 0.0+0.0 1.001 +0.001 | 71.36+0.30 0.0+0.0 1.001 +0.000
; e | x X | 85.31+0.73 0.0+0.0 0.987+0.095 | 77.57 +6.40 0.0+0.0 0.994 +0.062 | 71.21+0.86 0.0+0.0 0.999 +0.008
NG+ (Kurmanji et al |[2023 v v 87.38x114 0.0+0.0 1.008 +0.004 | 78.33+1.00 0.0+0.0 1.002+0.001 | 71.35+0.33 0.0+0.0 1.000 +0.001
q T T 5 | x X | 87.11+1.04 0.0+0.0 1.005+0.003 | 77.52+1.06 0.0+0.0 0.994 £0.002 | 67.60+1.51 0.0+0.4 0.963 +0.014
SCRUB (Kurmanji et al. /7 8T45:iir 0000 1.009+o00i | 78224101 0.0+00  1.001<ooor | 7L15t0s7  0.0+o0  0.999=0001
. 5 . .00¢ .004 .3 < X K .002 50+0.30 0.0+0.0 1.002 + 0.001
- - | X X | 8744115 0.0+00  1.009+0.004 | 78.34+1.09 0.0+0.0 1.002+0.002 | 71
SCAR 024 v v 87.38x112 0.0+0.0 1.008 £0.004 | 78.33+1.05 0.0+0.0 1.002 +0.001 | 71.41+0.30 0.0+0.0 1.001 + 0.000
ResNet-50:

Original ‘ - - ‘ 88.28 4086 88.28+5.92 0.532+0.017 | 82.62+0.79 82.62+929  0.549+0.029 ‘ 75914125 759141132 0.571+0.038
Retrained | - ~ | 89.03£101  0.0+00  1.008=0.007 | 81.73+0.99 0.0+0.0 0.991 0013 | 76.21+£2.31 0.0+0.0 1.003 +0.026
FT (Golatkar ot al | x v/ | 89404098 0.0+0.0 1.011+0.005 | 82.79+0.75 0.0+0.0 1.002 +0.001 | 75.80+1.25 0.0+0.2 0.999 +0.003
4 v 88.98x1.03 0.0+0.0 1.007 +0.003 | 82.68 +0.77 0.0+0.0 1.001 +0.001 | 75.80+1.29 0.0+0.0 0.999 +0.001
NG (Golatkar ot al | v X | 88.96+1.66 0.0+0.0 1.005+0.013 | 82.71+0.79 0.0+0.0 1.001 +0.001 | 75.97+1.24 0.0+0.0 1.001 +0.000
- — v v 89.04x1.10 0.0£00 1.008+0.004 | 82.70+0.79 0.0+0.0 1.001+0.001 | 75.95+1.25 0.0+0.0 1.000 +0.000
RL | v X | 89.06+1.07 0.0+0.0 1.008 £0.003 | 82.72+0.79 0.0+0.0 1.001 +0.001 | 75.95+1.24 0.0+0.0 1.000 +0.001
z - v v 8892104 0.0+0.0 1.006 +0.003 | 82.76+0.78 0.0+0.0 1.001 +0.001 | 75.90+1.22 0.0+0.0 1.000 +0.001
‘ v X ‘ 87.68 £1.18 0.4+09 0.990+0.014 | 82.28 £0.94 0.0+0.1 0.997 +0.003 | 74.44+1.67 0.1+05 0.984+0.013
BS ‘ 4 v 89241097 0.0+0.0 1.007 +0.003 | 82.55+0.80 0.0+0.0 0.999+0.001 | 75.19+1.21 0.0+0.0 0.993 +0.002
= ‘ v X ‘ 87.44+1.56 0.3+0.9 0.989+0.015 | 82.14+0.85 0.0+0.0 0.995+0.002 | 68.12+2.81 0.5+1.2 0.917 +0.021
BE v v 8822086 0.0+00 0.999+0.000 | 82.62+0.79 0.0+0.0 1.000+0.000 | 75.89+1.25 0.0+0.0 1.000 +0.000
— | v X | 88.99+106  0.0+00  1.007+0.003 | 82.71+0.79 0.0+0.0 1.001 +£0.001 | 75.98+1.24 0.0+0.0 1.001 +0.000
DELETE (Zhou et al. v v 8898+107 0.0+0.0 1.007 +0.003 | 82.70+0.79 0.0+0.0 1.001 +0.001 | 75.95+1.25 0.0+0.0 1.000 + 0.000
NG+ (Kurmanii ot aLlE | X X | 89.12+1.00 0.0+0.0 1.008 +0.004 | 82.78 +0.77 0.0+0.0 1.002+0.001 | 76.24+1.06 0.0+0.0 1.001 +0.001
7 v v 88.99+1.05 0.0+0.0 1.007 +0.003 | 82.79+0.90 0.0+0.0 1.001 +0.001 | 75.99+1.23 0.0+0.0 1.001 +0.000
SCRUB | % X | 88.96+0.95 0.0+0.0 1.008 £0.003 | 82.76+0.75 0.0+0.0 1.001 +0.001 | 70.65+2.51 0.3+1.0 0.944 +0.015
anjieta, 4 v 89.11+110 0.0+0.0 1.008+0.004 | 82.72+0.77 0.0+0.0 1.001+0.001 | 75.86+1.28 0.0+0.0 0.999 +0.001
SCAR (Bonato of al | x X | 89.11+1.08 0.0+0.0 1.008 £0.004 | 82.47 +0.97 0.0+0.1 0.998+0.008 | 76.01+1.22 0.0+0.0 1.001 +0.001
h el v v 89.02x107 0.0+0.0 1.007 +0.003 | 82.73+0.79 0.0+0.0 1.001 +0.001 | 76.04+1.24 0.0+0.0 1.001 +0.000

point yields minimal improvement. This allows for efficient use of computational resources
without compromising unlearning quality.

Retain Test Accuracy (%)

ol —e- SCRUB
0 1 2 0 ¥ 2 05 0 1 2

10 10 10 10 10 10 10 10 10
# Samples per Class # Samples per Class # Samples per Class

Figure 2: Effect of the number of synthetic embeddings per class on unlearning performance.
Results are averaged over three independently trained models, with class-wise unlearning
performed separately for each class. Error bars indicate 95% confidence intervals. Experi-
ments use the ResNet-18 architecture on the CIFAR-100 dataset.
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Table 2: Class unlearning performance for CIFAR-10, CIFAR-100, and TinyImageNet using ViT-
B-16 and Swin-T as the base architecture. Rows highlighted in gray represent our results using
synthetic embeddings, while the corresponding non-shaded rows use original embeddings with the
same method. Columns D,-free and Dy-free indicate whether the method operates without access
to the retain or forget set, respectively, with (v') denoting true and (X) denoting false.

Method D, Dy CIFAR-10 CIFAR-100 TinyImageNet
free  free Al Ayl AUS 1 ALt Ayl AUS 1 Al g Ayl AUS 1
ViT-B-16:
Original ‘ - - 97.69+018 97.69+130 0.506+0003 | 87.22+026 87.22+7.83 0.535+0.023 | 88.20£014 88.20+£7.29 0.532+0.022
Retrained | | 98.38+0.21 0.0+0.0 1.007 £0.002 | 88.74+0.21 0.0+0.0 1.015+0.008 | 89.59+0.13 0.0+0.0 1.014 £ 0.002
NG (Golatkar ot al.l2020] v X | 97.89+0.25 0.0+0.0 1.002+0.001 | 87.29+0.27 0.0+0.0 1.001 £0.001 | 88.23+0.14 0.0+0.0 1.000 + 0.000
- . v v | 97.90+0.24 0.0+0.0 1.002+0.001 | 87.30+0.27 0.0+0.0 1.001 £0.001 | 88.23+0.14 0.0+0.0 1.000 =+ 0.000
RL (Hayase of al| 2020} 4 X | 9791025 0.0+0.0 1.002+0.001 | 87.31+0.28 0.0+0.0 1.001 +0.001 | 88.24+0.14 0.0+0.0 1.000 + 0.000
g SR A v v | 97.93+0.24 0.0+0.0 1.002+0.001 | 87.35+0.28 0.0+0.0 1.001+0.001 | 88.27+0.14 0.0+0.0 1.001 +0.001
BS (Chen of aLl2023 v X 97.76 +0.22 0.0+0.0 1.001 £0.001 | 87.27+0.27 0.0+0.0 1.000 +0.000 | 88.22+0.14 0.0+0.0 1.000  0.000
" — - v v | 97.89+0.23 0.0+0.0 1.002+0.001 | 87.22+0.28 0.0£0.0 1.000+0.001 | 88.08+0.16 0.0+0.1 0.999 £ 0.001
4 X 97.89+0.25 0.0+0.0 1.002+0.001 | 87.30+0.27 0.0+0.0 1.001 +0.001 | 88.23+0.14 0.0+0.0 1.000 + 0.000
5095
DELETE {Zhou et al.||2025) ‘ v v | 97.91+0.25 0.0+0.0 1.002 +0.001 ‘ 87.32+0.27 0.0+0.0 1.001+0.001 | 88.25+0.14 0.0+0.0 1.001 +0.000
NG+ (Kurmanfi ot al][2023] X X | 97.88+0.25 0.0+0.0 1.002+0.001 | 87.15+0.29 0.0+0.2 0.999 +0.003 | 87.64+0.27 0.1+0.4 0.993 + 0.005
! anl el 3 v v | 97.92x0.25 0.0+0.0 1.002+0.001 | 87.32+0.30 0.0+0.0 1.001 +0.001 | 88.28+0.15 0.0+0.0 1.001 +0.000
Swin-T:

Original ‘ ‘ 97.73+017 97.73+147 0.506+0.004 | 87.58+0.53 87.58+9.01 0.534+0.020 | 86.18 £0.09 86.18+7.59 0.538+0.023
Retrained | | 98.36+023  0.0+00  1.006+0.001 | 88.89+021  0.0+00  1.0I13=0.005 | 87.13+013  0.0+00  1.010+0.002
y — v X 97.93+0.: 0.0+0.0 1.002+0.001 | 87.65+0.54 0.0+0.0 1.001 +0.001 0.0+0.0 1.000 + 0.000
NG {Golatkar et al |2020] ‘ 4 v | 97.64x0.56 0.5+1.0 0.995+0.017 | 83.19+3.93 157725147 0.941 £0.047 | 80.79 £4.72 19+16 0.929 +0.051
NG+ (Kurmanji ot all[2023] X X | 97.83x0.27 0.0+0.0 1.001 +£0.001 | 87.60 +0.54 0.0+0.0 1.000 =+ 0.002 X 0.0+0.3 0.982+0.012
AN et 8k 3 v v | 93.50+£7.54 ll+13 0.948 +0.080 | 86.84+0.95 0.3+08 0.990 +0.014 | 85.28 +0.76 0.4+1.0 0.987 +0.014
- — e X X 97.85+0.25 0.0+0.0 1.001 +0.001 | 87.73+0.47 0.0+0.0 1.001 +0.001 | 86.19+0.09 0.0+0.0 1.000 + 0.001
SCRUB (Kurmanji et al.|[2023) ‘ v v ‘ 97.39+1.11 0.0+0.0 0.997 £0.011 | 87.07 +0.65 0.0+03 0.995 +0.007 ‘ 84.92+0.73 0.1+04 0.987 +£0.008

Table 3: Class unlearning performance using random samples generated from layer 4 (immediately
before the last convolutional layer) of ResNet-18 as the base architecture. Rows highlighted in gray
show results obtained with synthetic embeddings.

DELETE (Zhou et al.||2025)

87.02+1.11 0.0+0.1 1.004+0.005 | 74.29+2.31 1.3+14 0.948 +£0.026 | 68.89+0.99 0.0+0.3 0.972 +0.010

83.82+0.70 0.0+0.0 0.972+0.010
87.16+1.17 0.1+05 1.005 + 0.007

78.20+1.01 0.0+0.1 1.000 + 0.002
78.18 +1.06 0.0+0.2 1.000 + 0.004

70.41 +0.44 0.0+0.0 0.991 +0.003
71.37+0.43 0.0+0.1 1.001 +0.002

Method D, Dy CIFAR-10 CIFAR-100 TinyImageNet
: free  free Al 1 A AUS ALt Al AUS 1 ALt Al AUS 1
Original ‘ ‘ 86.58+0.83  86.58+6.67 0.537+0.020 | 7816+1.07 7816+11.15 0.564+0037 | 71.30+020 713041246 0.587 £0.045
Retrained | | 86.95+1.22 0.0£00  1.000+0.005 | 77.92+0.80 0.0+0.0 0.956+0.036 | 63.01+2.77 0.0+0.0 0.855 +0.029
FT (Golatkar ot al|[2020 X v 87.55+1.09 0.2+0.9 1.007 +0.010 | 76.80+4.06 0.2+0.6 0.985+0.042 | 71.72+0.33 0.6+1.2 0.998 +0.012
— — v v/ | 81.03x3s2 0.0£01  0.944+0.037 | 76.09+1.10 0.0+03 0.979+0.009 | 69.64+0.46 0.0+0.0 0.983 +0.002
NG (Golatkar ot al.|[2020] v X 87.30+1.23 0.0+0.0 1.007+0.005 | 78.29+1.08 0.0+0.0 1.001+0.001 | 70.51 +1.02 0.1+05 0.991 £0.011
= - v v 87.24+1.16 0.0£0.1 1.006 +£0.004 | 76.28 +1.40 0.0+0.1 0.981+0.011 | 71.30 +£0.46 0.0+0.0 1.000 +0.003
RL (fayase ot al][2020] v X 87.27+1.08 0.0+0.0 1.007 £0.003 | 78.32+1.06 0.0+0.0 1.002 £ 0.001 | 71.56 +0.39 0.0+0.0 1.003 £ 0.001
2 — v 4 87.18+1.24 0.0£0.1 1.006 £0.007 | 77.76 +1.65 0.0+0.2 0.996 £0.013 | 71.62+0.45 0.0+0.0 1.003 +0.002
‘ v X ‘ T7.62415.23 0.4+08 0.905+0.150 | 75.97 £4.21 0.1+0.6 0.978+£0.039 | 54.84 +£6.63 l4x17 0.819 +0.069
v v
X X
v v

NG+ (Kurmanji et al.|[2023

5 CONCLUSION

We introduced a novel source-free framework for class unlearning, which removes specific
class knowledge from a trained model without requiring access to the original training data,
including forget, retain, or surrogate sets. By leveraging the internal structure of the model
to synthesize class-conditional embeddings, we enable the adaptation of various state-of-
the-art unlearning techniques to a fully source-free regime. Our experiments demonstrate
that the proposed approach retains high accuracy on retain classes while effectively forget-
ting the target class across multiple datasets and unlearning strategies. The framework’s
compatibility with existing methods and complete independence from training data position
it as a strong candidate for class unlearning in real-world scenarios. Future work includes
extending this approach to instance-level unlearning and applying the technique to domains
beyond image classification, such as language models.
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A DETERMINING THE MINIMUM NUMBER OF SYNTHETIC EMBEDDINGS
FOR RELIABLE CLASS COVERAGE

In the proposed source-free settings, synthetic embeddings are generated by sampling ran-
dom vectors in the classifier’s intermediate embedding space. The underlying sampling
distribution significantly influences predicted class distribution, often causing class imbal-
ance. To address this, we employ a class-aware rejection sampling strategy that continues
sampling until a predefined minimum number of samples is obtained for each class. This
ensures a balanced synthetic dataset and establishes a stable basis for source-free unlearn-
ing. To guarantee sufficient representation of all target classes, we estimate the minimum
number of synthetic samples N required such that the probability of having at least one
sample from a given class ¢ exceeds a confidence threshold p. We first generate a large pilot

batch {z; ﬁV:pf“ of embeddings sampled from an arbitrary distribution in the intermediate
embedding space, and obtain their predicted labels §;. The empirical class probability for
class c is then estimated as

1 Npilot
qe = g = c}, 9
= N 2 M=) (9)

where 1{-} is the indicator function that equals one if the condition inside is true, and zero
otherwise. Assuming independent sampling, the probability that none of the N synthetic
embeddings fall into class ¢ is (1 — ¢.)". To ensure that at least one embedding belongs to
class ¢ with confidence p, we require 1 — (1 — g.)" > p, which yields

N> bl-p)
~ In(1—q.)
where In(1 — g.) < 0 ensures the inequality holds in the correct direction. This expression

provides a principled estimate for the number of synthetic embeddings required to achieve
class-wise coverage with the desired confidence level.

(10)

We empirically validate this estimate by reporting the minimum number of synthetic em-
beddings required to ensure, with high confidence, that at least one embedding is classified
into each target class. Table [4] summarizes statistics computed for a ResNet-18 classifier
on CIFAR-10, CIFAR-100, and TinylmageNet datasets, using Gaussian, Laplace, and Uni-
form embedding distributions. We report the lower bound, average, and upper bound for
the total number of synthetic embeddings needed across all classes for each dataset and
embedding distribution. These values correspond, respectively, to the easiest, average, and
most difficult classes to cover. This analysis shows the impact of dataset complexity and
embeddings distribution on sample requirements for achieving reliable class representation
in source-free unlearning.

Table 4: Estimated minimum total number of synthetic embeddings required to guarantee, with
high confidence, that a forget class is represented by at least one embedding. Results correspond
to the ResNet-18 architecture evaluated on CIFAR-10, CIFAR-100, and TinyImageNet datasets,
using Gaussian, Laplace, and Uniform distributions for embedding generation.

Embedding Lower bound Average Upper bound
Dataset S
Distribution  (across classes) (across classes) (across classes)
Gaussian 32 46 55
CIFAR-10 Laplace 33 46 53
Uniform 29 48 60
Gaussian 223 494 1041
CIFAR-100 Laplace 269 483 822
Uniform 139 544 1735
Gaussian 407 990 2550
TinyImageNet Laplace 427 987 2437
Uniform 353 1011 2880
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In the worst-case scenario, where the rarest class has empirical probability ¢min, the min-
imum number of synthetic embeddings needed to ensure, with confidence p, that at least
In(1—p)
In(1—gmin)
to require at least m embeddings from this rarest class, the required number of embeddings

increases significantly. This corresponds to solving

one embedding belongs to this class is Nyorst = If a stricter criterion is imposed

m—1

N _
1- Z k qglin(l - qmin)N F > P, (11)
k=0

which involves computing the cumulative distribution function of a Binomial distribution.
Although no closed-form solution exists, this inequality can be estimated numerically.

B IMPACT OF EMBEDDING DISTRIBUTION AND SAMPLING STRATEGY
ON UNLEARNING PERFORMANCE

We investigate the effect of different embedding distributions on class-wise unlearning by
sampling embeddings from Gaussian, Laplace, and Uniform distributions. As reported
in Table [5] and Table [6] the choice of embedding distribution does impact downstream
unlearning performance. Nevertheless, all three distributions achieve competitive results,
demonstrating near-complete forgetting alongside strong accuracy on the retain classes.
These findings highlight the robustness of our framework to variations in the sampling
strategy, as expected from the Proposition [T}

Table 5: Effect of embedding distribution on data-free class unlearning performance of some of
methods on CIFAR-10, CIFAR-100, and TinyImageNet using ResNet-18 as the backbone archi-
tecture. Rows highlighted in gray represent our results using synthetic embeddings, while the
corresponding non-shaded rows use original embeddings with the same method.

Method Embedding D, Dy CIFAR-10 CIFAR-100 TinyImageNet

Hetho Distribution | free free | ALT AL AUS 1 ALt AL AUS 1 ALt AL AUS 1
Original ‘ - ‘ - - ‘ 86.58 £0.83 86.58+6.67 0.537+0.020 | 78.16+1.07 78.16+11.15 0.564£0.037 | 71.30x029 T1.30£1246 0.587+£0.045
Retrained | | | 86954122 00200  1.000:0005 | 77924050 0000  0.956005 | 63.01£277 00200  0.855:0.020
‘ Real distribution ‘ v X 87.43 +1.16 0.0+0.0 1.008 +0.004 | 78.36+1.05 0.0+0.0 1.002+0.001 | 71.35+0.32 0.0+0.0 1.001 +0.001
RL (Hayase of aLl2020 Gaussian v v | 87.25+1.10 0.0+0.0 1.007+0.003 | 77.98+1.03 0.0+0.0 0.998+0.002 | 71.10+0.34 0.0+00 0.998 +0.001
— Laplace v v | 87.25+1.00 0.0+0.0 1.007 +0.003 | 78.00+1.04 0.0+0.0 0.998 +0.002 | 71.18 +0.34 0.0+0.0 0.999 + 0.001
Uniform 4 v | 87.30+1.12 0.0+0.0 1.007+0.004 | 78.01+1.02 0.0+0.0 0.999+0.002 | 71.19+0.33 0.0+0.0 0.999 -+ 0.001
‘ Real distribution ‘ v X 87.33+1.12 0.0+0.0 1.008 +0.004 | 78.28+1.06 0.0+0.0 1.001 +0.001 | 71.43+0.30 0.0+0.0 1.001 +0.000
DELETE (Zhou ot aL|B025] aussian v v | 87354113 0.0+0.0 1.008+0.004 | 78.25+1.07 0.0+0.1 1.001+0.001 | 71.36+0.30 0.0+0.0 1.001 +0.000
4 | el Laplace v v | 87.35+1.13 0.0+0.0 1.008+0.004 | 78.25+1.07 0.0+00 1.001+0.001 | 71.36+0.30 0.0+0.0 1.001 +0.000
Uniform v v | 87.33+113 0.0+0.0 1.008 £0.004 | 78.25+1.07 0.0+0.0 1.001 +0.001 | 71.35+0.30 0.3+1.2 0.998 +0.011
‘ Real distribution ‘ X X 85.31+9.73 0.0+0.0 0.987+0.095 | 77.57 +6.40 0.0+0.0 0.994 +0.062 | 71.21 +0.86 0.0+0.0 0.999 +0.008
NG+ (Kurmangi et aL|2023 Ga v v | 87.33+112 0.0+0.0 1.007 +0.004 | 78.26+1.04 0.0+0.1 1.001 +0.002 | 71.29+0.36 0.0+0.1 1.000 +0.001
et - 4 v | 87354113 0.0+0.0 1.008+0.004 | 78.31+0.99 0.0+0.0 1.001+0.001 | 71.06 +0.46 0.0+0.2 0.997 £ 0.004
Uniform v v | 87.32+112 0.0+0.0 1.007+0.003 | 78.27+1.05 0.0+0.0 1.001+0.001 | 71.33+0.33 0.0+00 1.000 = 0.001
i X X 87.11+1.04 0.0+0.0 1.005+0.003 | 77.52+1.06 0.0+0.0 0.994 £0.002 | 67.60+1.51 0.0+0.4 0.963 +0.014
SCRUB (Kurmanji et al|[2023 v v | 8741116 0.0+0.0 1.008+0.004 | 78.10+1.06 0.0+0.0 0.999+0.001 | 71.02+0.42 0.0+0.0 0.997 +0.002
: neta - v v | 87T4l+115 0.0+0.0 1.008 +0.004 | 78.19+1.00 0.0+0.0 1.000 +0.001 | 71.11+0.37 0.0+0.0 0.998 + 0.001
Uniform 4 v | 8T4l+115 0.0+0.0 1.008+0.004 | 78.09+1.05 0.0+0.0 0.999+0.001 | 70.88+0.35 0.0+0.0 0.996 -+ 0.001

Table 6: Effect of embedding distribution on data-free class unlearning performance of some of
methods on CIFAR-10, CIFAR-100, and TinyIlmageNet using ViT-B-16 as the backbone archi-
tecture. Rows highlighted in gray represent our results using synthetic embeddings, while the
corresponding non-shaded rows use original embeddings with the same method.

Method Embedding D, Dy CIFAR-10 CIFAR-100 TinyImageNet

’ Distribution | free  free AL Al | AUS 1 AL Al | AUS 1 At AL AUS 1
Original ‘ - ‘ - - 97.69+018  97.69+130 0.506+0003 | 87.22+026 87.224783 0.535+0.023 | 88.20+014 88.20+720 0.532+0.022
Retrained | | | 98.384+021  0.0£00  1.007+0002 | 88.74x021  0.0+00  1.015+0003 | 89.60+013  0.0:00  1.014+0002
Real distribution v X 97.91+0.25 0.0+0.0 1.002+0.001 | 87.31+0.28 0.0+0.0 1.001 +0.001 ‘ 88.24+0.14 0.0+0.0 1.000 +0.000
RL {flayase ot aLl[2020 Gaussian 4 v | 97.92+025 0.0+00 1.002+0.001 | 87.30+0.29 0.0+00 1.001+£0.001 88.23+0.14 0.0+0.0 1.000 +0.001
: — - Laplace v v | 97.90+0.23 0.0+00 1.002+0.001 | 87.30+0.28 0.0+00 1.001 +£0.001 88.23+0.14 0.0+0.0 1.000 +0.001
Uniform v v | 97.92+0.24 0.0+00 1.002+0.001 | 87.29+0.28 0.0+00 1.001+0.001 88.17+0.14 0.0+0.0 1.000 +0.001
Real distribution | X | 97.89+025  0.0+00 1.002 +0.001 0.0+00 1.001£0001 | 88232014  0.0+0.0 1.000 ++ 0.000
T Gaussian v v | 97.90 +0.25 0.0+00 1.002 + 0.001 0.0+00 1.001+0.001 88.23+0.14 2.7+82 0.979 + 0.060
DELETE {Zhou et al {2025] Laplace / /| 97904025  0.0+00  1.002:+0.001 0.04£00  1.001+0001 88244014  0.0+00  1.00040.000
Uniform v v 97.89+0.25 0.0+0.0 1.002 + 0.001 0.0+0.0 1.001+0.001 88.24+0.14 0.0+0.0 1.000 +0.000
Real distribution | X X | 97.88+025 0.0+00 1.002 +0.001 0.0+0.2 0.9990.003 | 87.64+0.27 0.1+0.4 0.993 +0.005
NG+ (Kurmanii et al12023 Gaussian v v | 97.91+0.25 0.0+00 1.002 +0.001 0.0+00 1.001 +0.001 88.25+0.15 0.0+0.0 1.001 +0.000
any |l Laplace v v | 97.91+025 0.0+0.0 1.002 +0.001 0.0+0.0 1.001+0.001 88.24+0.15 0.0+0.0 1.001 +0.000
Uniform 4 v | 97.90+0.25 0.0+00 1.002 +0.001 0.0+00 1.001 +0.001 88.26+0.15 0.0+0.0 1.001 +0.000
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C IMPACT OF THE NUMBER OF SYNTHETIC EMBEDDINGS PER CLASS
ON UNLEARNING PERFORMANCE

This part extends the ablation in Section [4] (see Figure [2]) by considering additional back-
bones and datasets such as ResNet-18 on CIFAR-10 (Figure, ResNet-18 on TinylmageNet
(Figure7 ViT-B-16 on CIFAR-10 (Figure[5)), and ViT-B-16 on CIFAR-100 (Figure@. For
each setting, we vary the number of synthetic embeddings per class and measure retain
accuracy Al forget accuracy A%, and AUS. Across all configurations, the trend is consis-
tent. The pattern is consistent across configurations: increasing the number of synthetic
embeddings raises A% and AUS while reducing A’}.
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Figure 3: Effect of the number of synthetic embeddings per class on unlearning performance.
Results are averaged over three independently trained models, with class-wise unlearning
performed separately for each class. Error bars indicate 95% confidence intervals. Experi-
ments use the ResNet-18 architecture on the CIFAR-10 dataset.
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Figure 4: Effect of the number of synthetic embeddings per class on unlearning performance.
Results are averaged over three independently trained models, with class-wise unlearning
performed separately for each class. Error bars indicate 95% confidence intervals. Experi-
ments use the ResNet-18 architecture on the TinyImageNet dataset.

D CobDE

Our code is available at this repositoryEl

"https: //anonymous .4open.science/r/MU_source_free_iclrl
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Figure 5: Effect of the number of synthetic embeddings per class on unlearning performance.
Results are averaged over three independently trained models, with class-wise unlearning
performed separately for each class. Error bars indicate 95% confidence intervals. Experi-
ments use the ViT-B-16 architecture on the CIFAR-10 dataset.
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Figure 6: Effect of the number of synthetic embeddings per class on unlearning performance.
Results are averaged over three independently trained models, with class-wise unlearning
performed separately for each class. Error bars indicate 95% confidence intervals. Experi-
ments use the ViT-B-16 architecture on the CIFAR-100 dataset.

E PgER-CLASS UNLEARNING RESULTS ON CIFAR-10

To supplement the average unlearning performance presented in Table [T] and 2] we provide
a detailed per-class evaluation in Table [7] for ResNet-18, Table [ for ResNet-50, Table [9] for
ViT-B-16 and Table for Swin-T. These tables present class-wise unlearning metrics on
CIFAR-10 using ResNet-18, ResNet-50, ViT-B-16, and Swin-T backbones, respectively. The
results illustrate variability in both unlearning effectiveness and the retain accuracy across
target classes, highlighting the impact of semantic complexity and class-specific challenges.
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Table 7: Class unlearning performance for CIFAR-10 using ResNet-18, averaged over 5 random
trials. Rows highlighted in gray represent our results using synthetic embeddings, while the corre-
sponding non-shaded rows use original embeddings with the same method.

N Forget Class
Method ‘ Metric 0 1 2 3 4 5 6 7 8 9
!t 86.22+0.54 85.91+0.40 86.91+0.47 88.30+0.29 86.50 +0.50 87.43 +0.42 86.05+0.43 86.29 +0.46 86.01+0.38 86.16+0.33
Original 'jL 89.8+1.1 92.6 0.7 T1.0+20 87.3+09 78.9+08 9l4+10 89.2+07 91.7+0s 90.3+£1.4
AUS T | 0.527+0.003  0.519+0.002 0.585+0.007  0.534+0.002  0.559+0.002 0.523+0003  0.529+0002 0.522+0.002  0.525+0.004
ALt 86.43 86.29 89.53 86.79 88.66 86.16 86.24 85.92 86.14
Retrained vl 0.0 0.0 . 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.002 1.004 1.005 1.012 1.003 1.012 1.001 1.000 0.999 1.000
87.01+0.26 86.58 +0.13 87.82+017 89.64+0.22 87.38 +0.29 88.83+0.27 86.77+0.10 86.85+0.27 86.53+0.25 86.91 +0.28
0.0£00 0.0+0.0 0.0£00 0.0£0.0 0.0£00 0.0£00 0.0£0.0 0.0£00 0.0£0.0 0.0£00

1.008 +0.003  1.007+0.003  1.009+0004 1.013+0.002 1.009+0003 1.014+0005 1.007+0.003 1.006+0003 1.005+0001  1.007+0.001

86.92+0.43 86.50 +0.41 87.79+0.31 89.74 +0.30 87.26+0.48 88.78 +0.31 86.66 +0.35 86.77+0.48 86.40+0.43 86.88 +0.44
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.007+0.002  1.006+£0001  1.009+0.002 1.014+0.001  1.008+0.000 1.013+0.002 1.006+0001 1.005+0001  1.004+0.001  1.007=+0.001

86.89+0.54 86.46 +0.36 87.71+0.41 89.71+034 87.20+0.54 88.68 +0.43 86.59 +0.41 86.71+0.54 86.37 +0.50 86.76 +0.40
0.0+0.0 0.0+0.0 0.0+00 0.0+0.0 0.0+00 0.0+0.0 0.0+0.0 0.0+00 0.0+0.0 0.0+0.0
1.007+0.000  1.005+0001  1.008+0001 1.014+0001  1.007+0001 1.012+0001  1.005+0001  1.004+0002 1.004+0.001  1.006+0.001

86.98 +0.46 86.47 +0.41 87.79+0.35 89.82+0.42 87.27+0.52 88.89+0.31 86.69+0.33 86.77 +0.46 86.46 +0.44 86.86 +0.41
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.008 +0.001  1.006+0.000 1.009+0002 1.015+0001 1.008+0001 1.015+0001 1.006+0.001  1.005+0001  1.004+0.001  1.007 +o0.001

86.99+0.51 86.48 +0.41 87.83+0.35 89.83+0.45 87.35+0.42 88.99+0.44 86.73+0.33 86.81+0.47 86.43 +0.44 86.82+0.44
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+00 0.0+0.0 0.0+0.0 0.0+0.0
1.008+0.001  1.006+0.000  1.009+0.001  1.015+0002 1.008+0001  1.016+0002 1.007+0001  1.005+0001  1.004+0.001  1.007 +0.001
86.93 +0.46 86.38+0.38 87.77+0.28 89.65+0.33 87.22+0.48 88.82+0.34 86.64 +0.37 86.78 +0.45 86.41+0.41 86.72+0.36
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.007+0.002  1.005+0000 1.009+0002 1.013+0.001 1.007+0001 1.014+0002 1.006+0.001 1.005+0001  1.004+0.000 1.006+0.001
85.31+1.26 85.83+0.58 86.87 +0.57 88.18+0.65 85.98 +0.33 87.44x0.91 85.74 +0.89 86.08 +0.55 85.45+0.52 86.06 +0.34
0.5+08 0.2+02 0.1+01 0.0+00 0.5£10 0.0+0.0 0.0+00 0.1x02 0.1+02 0.0+00
0.986+0.017  0.997+0005  0.998+0005  0.999+0005  0.990+0.013  1.000+0.007  0.997+0.005 0.997x0002  0.993+0006  0.999+0.001
86.83+0.50 86.46 +0.37 87.70+0.37 89.81+0.34 87.26 +0.50 89.01+0.32 86.62+0.37 86.77+0.48 86.45 +0.41 86.81+0.36
0.0+0.0 0.0£00 0.0+0.0 0.0+00 0.0+00 0.0+0.0 0.0£00 0.0+0.0 0.0+00 0.0+00
1.006+0.001  1.005£0001  1.008+0002 1.015+0.001 1.008+0.001 1.016+0.002 1.006+0002 1.005+0001 1.004+0.001  1.007+0.001
82.40+3.28 84.66 +1.05 85.63+0.18 85.60 +0.64 85.32+0.77 84.51+1.89 84.56 +0.64 85.49 +0.57 83.78+1.71 85.23 +0.61
ld+rr 0.0+0.0 0.1+02 10+22 0.5£11 0.5+1.0 0.6+0.9 0.0+0.0 0.9+17 0.0£0.1
0.949+0.000  0.987+0.008  0.986+0004  0.964+0020 0.983+0.010 0.966+0.016 0.980+0.005 0.992+0002 0.969+0.02  0.990+0.004

86.01 +0.60 85.92+0.38 86.82+0.47 88.15+0.39 86.50 +0.45 87.33+054 86.04 +0.43 86.25+0.48 85.95 +0.30 86.13 +0.27
0.0+00 0.0£00 0.0+0.0 0.0+00 0.0+0.0 0.0+00 0.0£00 0.0+0.0 0.0+0.0 0.0£00
0.998+0.002  1.000+0000 0.999+0001  0.999+0001  1.000+0001  0.999+0.002 1.000+0.000 1.000+0.000 0.999+0001  1.000+0.001

86.93 +0.44 86.42+0.38 87.74+032 89.71+0.38 87.22+0.48 88.80+0.34 86.60 +0.32 86.74+0.46 86.41+0.42 86.75+0.39
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+00 0.0+0.0 0.0+0.0
1.007+0.001  1.005+0000 1.008+0002 1.014+0001 1.007+0001 1.014+0001  1.006+0.001  1.004+0001  1.004+0001  1.006+0.001

86.95+0.46 86.44 +0.39 87.76 +0.34 89.75+0.40 87.24+052 88.83+0.39 86.63 +0.34 86.76 +0.48 86.43 +0.44 86.79 +0.40
0.0+0.0 0.0+00 0.0+00 0.0+0.0 0.0+00 0.0+0.0 0.0£00 0.0+0.0 0.0+0.0 0.0+00
1.007+0001  1.005£0.000 1.009+0.001 1.014+0001  1.007£0.001 1.014+0001 1.006+0001  1.005+0.001 1.004+0.001  1.006+0.001
86.31+1.29 86.18 +0.52 87.41+0.38 89.23 +0.30 86.99 +0.50 88.08+0.33 85.58+1.39 83.70+6.71 73.08+29.61  86.60+0.39
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.001+0.008  1.003+0.001  1.005+0002 1.009+0.003 1.005+0001  1.006+0002 0.995+0011  0.974+0064 0.871+0203  1.004+0.002
86.95 +0.49 86.45+0.41 87.82+0.34 89.79 +0.42 87.27T+0.54 88.82+0.32 86.63+0.33 86.77 +0.46 86.46 +0.48 86.79+0.44
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.007+0.001  1.005+0000 1.009+0001 1.015+0001 1.008+0001 1.014+0001 1.006+0.001  1.005+0001  1.005+0.001  1.006+0.001
‘ 86.48 +0.74 86.33+0.44 87.53+0.28 89.32+0.32 86.96 +0.42 88.41x0.22 86.44 +0.23 86.69 +0.38 86.35+0.37 86.61 +0.51

FT (Golatkar et al

NG (Golatkar et ]

R, Hayase o al

Bs [Clhew ot 1]

BE (Chen et al.

DELETE (Zlon e al)

NG+ (Kurmanji et al.

0.0+0.0 0.0+00 0.0x0.0 0.0+00 0.0=0.0 0.0+0.0 0.0+00 0.0x0.0 0.0+00 0.0£0.0
1.003+0.002  1.004+0001 10060002 1.010+0002  1.005+0.004 1.010+0.003 1.004+0002 1.004£0002 10030001  1.004+0.003
Al g 87.01+046  86.54+030  87.82+030  89.97+040  87.28+053  88.96+035  86.69+032  86.82+046  86.50+045  86.89+038
AL 0.0+0.0 0.0x0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0x0.0 0.0+0.0 0.0+0.0 0.0+0.0
AUS T  1.008+0001  1.006+0000 1.009+0002 1.017+0.001  1.008+0.001  1.015+0001 1.006+£0001  1.005+0001  1.005+0.001  1.0070.001

‘ ALt ‘ 87.03 +0.47 86.50 +0.37 87.85+032 89.87+0.39 87.31+0.52 88.96 +0.41 86.73+0.35 86.81+0.46 86.49+0.43 86.88 +0.43

E
A
—

SORUB (Kt e T

0.0£00 0.0£00 0.0x00 0.0£00 0.0£00 0.0£0.0 0.0£00 0.0£00 0.0£00 0.0£00

AUS T | 1.008+0.001  1.006+£0000 1.009+0002 1.016+0.001  1.008+0.001  1.015+0002 1.007+0001  1.005£0001  1.005+0001  1.007+0.001
ALt 86.97 +0.45 86.46 +0.37 87.80+0.31 89.77+0.37 87.27+0.49 88.85+0.31 86.66 + 0.30 86.78 +0.46 86.46 + 0.42 86.80 +0.39
AL 0.0+0.0 0.0£00 0.0+0.0 0.0+00 0.0+0.0 0.0+0.0 0.0£00 0.0+0.0 0.0+0.0 0.0£00
AUST  1.007+0.001  1.005+0001 1.009+0002 1.015+0001 1.008+0.001 1.014+0.001  1.006+0001  1.005+0001 1.004+0001  1.006+0.001
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Table 8: Class unlearning performance for CIFAR-10 using ResNet-50, averaged over 5 random
trials. Rows highlighted in gray represent our results using synthetic embeddings, while the corre-
sponding non-shaded rows use original embeddings with the same method.

N Forget Class
Method ‘ Metric 0 1 2 3 4 5 6 7 8 9
!t 88.18+0.55 87.84+0.51 88.57+0.62 89.58+0.50 88.10+0.69 89.26 +0.73 87.77+0.57 87.98+0.71 87.73+0.83 87.74+0.63
Original 'jL 89.1+3.1 92.2+22 85.6+1.2 76.5+2.4 89.9+0.6 79.4x09 92.8+13 90.9+08 93.2+24 93.1+08
AUS T | 0.529+0000  0.520+0006  0.539=0.004  0.567+0.008 0.527+0.002 0.557+0003 0.519+0003 0.524x0002  0.518+0.006  0.518+0.002
ALt 88.79 88.42 89.40 91.09 89.04 90.66 87.92 88.82 87.92 88.27
Retrained vl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.006 1.006 1.008 1.015 1.009 1.014 1.002 1.008 1.002 1.005
89.17+0.37 88.62+0.35 89.73+0.27 91.46 +0.49 89.39 +0.27 90.64 +0.37 88.68 +0.42 88.95+0.32 88.55+0.50 88.83+0.34
0.0£00 0.0+00 0.0£00 0.0£0.0 0.0£00 0.0£00 0.0£0.0 0.0£00 0.0£0.0 0.0£00

1.010+0.003  1.008+0.003  1.012+0004 1.019+0003 1.013+0005 1.014+0005 1.009+0.003 1.010+0005 1.008+0004  1.011+0.004
88.80 +0.60 88.27 +0.57 89.34 +0.60 90.92 +0.50 88.88 +0.57 90.18 +0.62 88.31+0.58 88.55+0.64 88.25+0.67 88.30+0.59
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.006+0.002  1.004+0001  1.008+0001  1.013+0.001  1.008+0.002  1.009+0.001 1.005+0001 1.006+0002 1.005+0002  1.006+0.001
87.20+3.36 88.34+0.44 89.54 +0.42 91.24+0.20 89.09 +0.40 90.54+0.35 88.53+0.37 88.67 +0.41 88.03+0.35 88.43 +0.42
0.0+0.0 0.0+0.0 0.0+00 0.0+0.0 0.0+00 0.0+0.0 0.0+0.0 0.0+00 0.1+0.1 0.0+0.0
0.990+0.035  1.004+0000 1.008+0.001  1.015+0002 1.007+0001  1.010+0.002 1.006+0.001  1.006+0.002  1.000+0.006  1.005+0.001
88.75+0.62 88.19+0.55 89.35+0.62 91.18 +0.58 88.99 +0.60 90.41+0.58 88.33 +0.60 88.61+0.65 88.29+0.61 88.33+0.46
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.006+0.001  1.004+0001 1.008+0001 1.016+0001 1.009+0001 1.012+0002 1.006+£0.001  1.006+0.003 1.006+0.003  1.006+0.002

88.86 +0.60 88.25+0.55 89.38+0.60 91.14 +0.54 89.02+0.58 90.30+0.59 88.39+0.50 88.59+0.63 88.30+0.66 88.40+0.50
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+00 0.0+0.0 0.0+0.0 0.0+0.0
1.007+0.002  1.004+0001  1.008+0001  1.016+0001  1.009+0002 1.010+0002 1.006+0001  1.006+0003 1.006+0.002  1.007+0.001
88.79+0.60 88.15+0.57 89.28+0.62 90.93 +0.46 88.81+0.57 90.14 +0.63 88.21+0.50 88.43+0.63 88.20+0.67 88.30+0.56
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.006 +0.001  1.003+0.001  1.007+0001 1.013+0.002 1.007+0001 1.009+0.001 1.004+0.001 1.004+0002 1.005+0.002 1.006+0.001
88.15+0.70 87.73 4051 88.18 +0.70 87.62+1.28 87.2140.91 8741287 87.32+1.15 87.98 +0.89 87.71+0.80 87.70+0.67
3.8+452 0.0+00 0.3x06 0.0+00 0.0£00 37482 0.7+13 0.6£11 0.4+05 0.6£1.1
0.965+0.045  0.999+0002  0.993+000s  0.980+£0012  0.991+0.008 0.950+0.066 0.989+0.014  0.995 0.996+0.004  0.993 +£0.009
88.68+0.58 88.44 +0.46 89.48+0.33 91.14 +0.58 89.15+0.29 90.58 +0.32 88.66 +0.37 88.78 +0.42 88.61+0.06 88.71+0.39
0.0+0.0 0.0£00 0.0+0.0 0.0+00 0.0+00 0.0+0.0 0.0£00 0.0+0.0 0.0+00 0.0+00
1.005+0.001  1.005£0001  1.007+0002 1.014+0002 1.008+0.002 1.011+0003 1.007+0003 1.005+0002 1.003+0.001  1.006+0.001
87.68 +0.52 87.24+0.53 88.27+0.64 86.68 + 4.42 87.86 +0.57 89.21+0.68 86.89 +0.69 87.39+0.78 87.14+0.80 86.79 +0.60
0.0+0.0 0.0+0.0 0.0£00 12416 0.5£11 10.1+149 0.0+0.0 0.0+0.0 0.0+0.0 0.0£00
0.995+0.002  0.994+0004  0.997+0001  0.959+0033 0.993+0.010 0.919+0107  0.991+0.003 0.994+0001  0.994+0.002  0.990+0.002
88.14 +0.58 87.81+0.50 88.51+0.61 89.47 +0.55 88.08 +0.70 89.19+0.76 87.70 +0.61 87.97+0.711 87.67T+0.85 87.69+0.65
0.0+00 0.0£00 0.0+0.0 0.0+00 0.0+0.0 0.0+00 0.0£00 0.0+0.0 0.0+0.0 0.0£00
1.000+0.000  1.000+0000  0.999+0000  0.999+0.001  1.000+0.000 0.999+0.000 0.999+0001 1.000+0000 0.999+0.001  1.0000.000
88.78 +0.60 88.17 +0.56 89.33 +0.62 91.04 +0.51 88.90 +0.59 90.25+0.59 88.33+0.53 88.52+0.63 88.24 +0.66 88.32+0.50
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+00 0.0+0.0 0.0+0.0
1.006+0.000  1.003+0001  1.008+0001 1.014+0002 1.008+0001 1.010+0001  1.006+0.001  1.005+0002 1.005+0002  1.006+0.001
88.76 +0.62 88.16+0.55 89.33+0.63 91.04 +0.51 88.91 +0.60 90.26 +0.61 88.30 +0.62 88.50+0.66 88.23+0.64 88.32+0.52
0.0+0.0 0.0+00 0.0+00 0.0+0.0 0.0+00 0.0+0.0 0.0£00 0.0+0.0 0.0+0.0 0.0+00
1.006 +0.001  1.003£0.001  1.008+0.001 1.014+0002 1.008+0.001 1.010+0.001  1.005+0001  1.005+0.002 1.005+0002  1.006+0.001
88.91+0.60 88.47+0.57 89.54+0.54 90.96 +0.49 89.09+0.57 90.33 +0.62 88.43+0.71 88.64+0.62 88.24+0.51 88.59+0.48
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.007+0.003  1.006+0.003 1.010+0003 1.014+0003 1.010+0003 1.011+0003 1.007+0.003 1.007+0.003  1.005+0004  1.009+0.003

88.77+066  88.22+057  89.35+t064  90.96+052  88.97+062  90.24+063  88.32+062  88.51xo061  88.25+065  88.33:055
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.006 +0.002  1.004+0001  1.008+0001 1.014+0001 1.009+0001 1.010+0.002 1.006+0.001  1.005+0001  1.005+0.002  1.006+0.001

‘ 88.87+0.57 88.33+0.47 89.33+0.44 90.70 +0.35 88.92+0.53 90.16 +0.62 88.28 +0.64 88.47+0.51 88.16 +0.61 88.39+0.59

FT (Golatkar et al

NG (Golatkar et ]

R, Hayase o al

Bs [Clhew ot 1]

BE (Chen et al.

DELETE (Zlon e al)

NG+ (Kurmanji et al.

0.0+0.0 0.0+00 0.0x0.0 0.0+00 0.0=0.0 0.0+0.0 0.0+00 0.0x0.0 0.0+00 0.0£0.0
1.007+0.002  1.006+0003  1.009=0003 1.013+0002 1.010£0.003 1.011+0.003 1.007+0.003 1.006£0003 1.006+0004  1.008+0.002
Al g 88.82+056  88.32+055  89.37x065  91.25+059  89.02x057  90.46+067  88.37+o060  88.66+064  88.32+050  88.46+053
AL 0.0+0.0 0.0x0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0x0.0 0.0+0.0 0.0+0.0 0.0+0.0
AUS T 1.006+0002 1.005+0001 1.008+0001 1.017+0.001  1.009+0.002 1.012+0002 1.006+£0002 1.007+0003  1.006+0.003  1.0070.001

‘ ALt ‘ 88.87+0.58 88.31 +0.54 89.39+0.55 91.25+052 89.02+0.61 90.43 +0.50 88.37+0.58 88.64 +0.66 88.37 +0.60 88.44 +0.48

E
A
—

SORUB (Kt e T

0.0£00 0.0£00 0.0x00 0.0£00 0.0£00 0.0£0.0 0.0£00 0.0£00 0.0£00 0.0£00

AUS T | 1.007+0.002  1.005£0001  1.008+0001  1.017+0.002  1.009+0.001  1.012+0003 1.006+0001  1.007£0003 1.006+0.002  1.007+0.002
A’T T 88.81+0.63 88.21 +0.56 89.36 +0.61 91.06 +0.51 88.95 +0.60 90.29 +0.63 88.34 +0.61 88.56 +0.65 88.26 £0.64 88.36 +0.54
AL 0.0+0.0 0.0£00 0.0+0.0 0.0+00 0.0+0.0 0.0+0.0 0.0£00 0.0+0.0 0.0+0.0 0.0£00
AUST 1.006+0.001  1.004+0001 1.008+0001 1.015+0002 1.008+0.001  1.010+0.001 1.006+0.001 1.006+0002 1.005+0002  1.006+0.001
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Table 9: Class unlearning performance for CIFAR-10 using ViT-B-16, averaged over 5 random trials.
Rows highlighted in gray represent our results using synthetic embeddings, while the corresponding

non-shaded rows

use original embeddings with the same method.

Method ‘ Metric ‘ 0 . ) 5 Forget Class 6 ; s 0

97.60+0.11 97.71+0.13 97.98+0.11 97.68+0.18 97.88+0.11 97.55+0.13 97.63+0.08 97.55+0.13 97.65+0.15

Original 98.5+0.5 97502 95.1+0.8 97.8+0.7 95.9+0.2 98.9+0.3 98.2+0.9 98.9+0.2 98.0+0.4
0.504+0.001  0.506+0001  0.513+0002  0.506+0002  0.510+0.000 0.503+0.001  0.505+0.002  0.503+0.000  0.505+0.001

98.38 98.21 98.86 98.38 98.67 98.17 98.28 98.20 98.31
Retrained 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.008 1.005 1.009 1.007 1.008 1.006 1.006 1.006 1.007

97.80+0.10 97.78 £0.10 97.85 +0.12 98.34 +0.09 97.92+0.12 98.27+0.14 97.64 +0.14 97.7T +0.07 97.71+0.13 97.82+0.12

0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
NG (Golatkar ot al. 1.002+0.000  1.002+0.000 1.001+0000 1.004+0001  1.002+0001  1.004+0001  1.001+0000 1.001+0001  1.002+0.000  1.002=0.001
97.81+0.10 97.78 +0.10 97.86 +0.12 98.34 +0.09 97.93+0.12 98.28 £0.13 97.65+0.14 97.77 £ 0.06 97.71+0.14 97.82 0.2

0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.002+0.000  1.002+0.000 1.002+0.000 1.004+0001  1.003+0001  1.004+0001  1.001+0000 1.001+0001 1.002+0.000  1.002+0.001
97.81+0.10 97.79+0.10 97.85+0.12 98.37+0.10 97.94+0.12 98.28+0.12 97.68+0.13 97.78 +0.07 97.72+0.14 97.83+0.12

0.0+00 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+00 0.0+00 0.0£00
RL 1.002+0.000  1.002+0000  1.001+0.000 1.004+0000  1.003+0001  1.004+0.001  1.001+0.000 1.001+0.001  1.002+0.000  1.002+0.001
97.85+0.07 97.84+0.12 97.90+0.13 98.38+0.11 97.96+0.13 98.30+0.13 97.70+0.12 97.83+0.06 97.75+0.15 97.83£0.12

0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+00 0.0+00 0.0£00 0.0£00 0.0+0.0 0.0+0.0
1.002+0.000  1.002+0001  1.002+0000 1.0040000  1.003+0001  1.004+0.000 1.001+0.000 1.002+0.001 1.002+0.000  1.002+0.000
97.67x0.12 97.75£0.08 97.79+0.19 98.13+0.24 97.74x0.19 97.97+0.19 97.61+0.15 97.68+0.07 97.60+0.14 97.72x022

0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
BS (Chen et al. 1.000 £0.001  1.002+0.001  1.001+0.001  1.002+0002 1.001+0000 1.001+0.001  1.001+0.000 1.000+0.000 1.000+0.001  1.001+0.0010
97.80+0.10 97.76 +0.07 97.86+0.11 98.29+0.08 97.92+013 98.25+0.14 97.67+0.14 97.79+0.05 97.69+0.17 97.82+0.11

0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.002+0.000  1.002+0.001  1.001+0000 1.003+0001  1.002+0001  1.004+0.000 1.001£0.000 1.002£0.001 1.001+0.000 1.002+0.001

97.81+0.10 97.78 £ 0.09 97.85 0.2 98.34+0.10 97.93+0.12 98.28 +0.13 97.64+0.13 9777 +0.07 97.71+0.13 97.82+0.12

0.0+0.0 0.0+0.0 0.0+0.0 0.0+00 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
DELETE 1.002+0.000  1.002+0.000 1.001+0.000 1.004+0.001  1.003+0.001  1.004+0.001  1.001+0.000 1.001+0001  1.002+0000  1.002+0.001
97.81 +0.09 97.79 +0.10 97.87 +0.13 98.35+0.10 97.95 012 98.29+0.13 97.66 £0.15 97.79 £0.07 97.72+0.14 97.83+0.13

0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.002+0.000  1.002+0.000 1.002+0.000 1.004+0000 1.003+0001  1.004+0001 1.001+0000 1.002+0001  1.002+0.000  1.002+0.000

97.79+0.10 97.77+0.13 97.83 +0.13 98.34 +0.09 97.91+0.13 98.26+0.15 97.64+0.14 97.75+0.08 97.69+0.14 97.81+0.13

0.0+00 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+00 0.0+00 0.0£00
NG+ (Kurmanji ot al ] 1.001£0.000  1.002+0.000  1.001+0000 1.004+0001  1.002+0001  1.004+0001  1.001+0000 1.001+0001  1.001+0.000  1.002=0.001
97.82+000  97.80£010  97.88k013  98.37+010  97.96+012  983Lioua  97.67x01a  97.79:007  97.7dz01a 978501

0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.002+0.000 1.002+0.000 1.002+0.000 1.004+0.000 1.003+0001  1.004+0001  1.001+0000 1.002+0001 1.002+0.000  1.002+0.000

Table 10: Class unlearning performance for CIFAR-10 using Swin-T, averaged over 5 random trials.
Rows highlighted in gray represent our results using synthetic embeddings, while the corresponding
non-shaded rows use original embeddings with the same method.

Forget Class
Method ‘ Metric 0 1 9 3 4 5 6 7 8 9
ALt 97.58 +0.08 97.65 +0.05 97.78 +0.08 97.96 +0.15 97. 74 +0.03 98.03 +0.10 97.55+0.05 97.63 +0.08 97.60 +0.07 97.74 +0.09
Original Al 99.0+03 98.4+05 97.3£06 95.6+0.9 97.6+0.7 95.0+0.9 99.3+03 98.6 03 98.8+0.1 97.6+0.3
AUS T | 0.502+0.001  0.504+0.001  0.507+0002 0.511+0002 0.506+£0002 0.513+0002  0.502+0.001  0.504=0.001  0.503+0.000 0.506+0.001
ALt 98.22 98.30 98.31 98.80 98.30 98.73 98.14 98.14 98.17 98.43
Retrained Al 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AUS 1 1.006 1.006 1.005 1.008 1.006 1.007 1.006 1.005 1.006 1.007
AT | 9773x00s 9786005 97882007 9846010  979Tro00i 98370z 9T6b00s 977600 9TTAzoor 978800
'jL 0.0+0.0 0.0+0.0 0.0+00 0.0+0.0 0.0+00 0.0+0.0 0.0+00 0.0+0.0 0.0+0.0 0.0+0.0
G (Golatkar of al. AUS T | 1.002+0000 1.002+0000 1.001x0000 1.005+0.001  1.002+0.000 1.003+0001  1.001+0000 1.001x0000 1.001+0.000  1.001+0.000
Al g 97.71+0.10 97.65+0.28 97.74+0.08 97.31+2.61 97.90+0.07 97.81+0.60 97.28 +0.72 97.66+0.19 97.71+0.08 97.71+0.11
.Af,l 0.0+0.0 1l+1e 0.3+0.3 0.9+19 0.1+02 ll+1e 0.2+03 0.2+0.2 0.1+01 0.7+06
AUSt  1.001+o001  0.990+£0017 0.997+0003 0.985+0.044 1.001x0002 0.987+0021  0.995+0010 0.998+0004 1.001+0.001 0.9
Al 97.67+0.07 97.67 +0.06 97.85+0.06 98.32+0.13 97.81+0.02 98.32+0.14 97.59 +0.05 97.66 +0.06 97.64+0.04 97.76 +0.07
Af 0.0+0.0 0.0+00 0.0+00 0.0+00 0.0£00 0.0+00 0.0+00 0.0£00 0.0+00 0.0+00
NG+ (Kurmanji ot al] AUS T | 1.001+0.000 1.000+0.000 1.001+0000 1.004+0001  1.001+0000 1.003+0.001  1.000+0.000 1.000+0.001  1.000+0.001  1.000+0.000
Al g 97.45+030  90.38+11.22  92.22+6.15 95.45 +3.03 97.15+0.70 95.16+0.77  85.57£1619  94.36£5.09 94.61 +4.95 92.80+4.31
.A'l'l 0.0+0.1 2115 1.2+07 09+1.4 0.1+02 3.0+05 1.2+18 0.8+0.5 0.5+05 22116
AUST  0.998+0.003 0.908+0113 0.933+0060 0.967+0041  0.993+0007 0.943+0.009 0.872+0172 0.960+0052 0.966+0053  0.931+0.054
ALt 97.63 +0.09 97.68 + 0.06 97.84 +0.07 98.38 +0.09 97.87+0.03 98.22+0.10 97.65+0.06 97.73+0.04 97.69+0.04 97.79+0.04
A'!i 0.0+00 0.0+00 0.0£00 0.0£00 0.0£00 0.0£00 0.0£00 0.0£00 0.0+00 0.0£00
SCRUB {Kurmanji et al AUS T | 1.000£0.001  1.000£0001  1.001£0000 1.004+0.001  1.001+0.000 1.002+0.001  1.001+0000  1.00 001 1.001+o0.000  1.001 +0.001
Aﬁ T 97.59 +0.07 97.49+0.35 97.57 0.8 97.93+0.38 96.70 +2.09 97.94 +0.37 97.23 +0.53 96.36 + 2.62 97.38 +0.29 97.71x0.10
AL 0.0+0.0 0.0£00 0.0+0.0 0.0+00 0.0+0.0 0.0+0.0 0.0£00 0.0+0.0 0.0+0.0 0.0+00
AUST 1.000+0.001  0.998+0003 0.998+0002 1.000+£0005 0.990+0.021  0.999+0.003 0.997+0.005 0.987+002  0.998+0003  1.000+0.001
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