
Extended Abstract Track
Under Review - Extended Abstract Track 1–12, 2024 Symmetry and Geometry in Neural Representations

sa-SVAE: a Shared and Aligned Structured Variational
Autoencoder for Extracting Behaviorally Relevant and

Preserved Neural Dynamics Across Animals

Editors: List of editors’ names

Abstract

Understanding the preserved behaviorally-relevant neural dynamics across individuals when
performing similar tasks presents a critical challenge. Current methods typically focus on
analyzing subject-specific neural dynamics or employing post-training alignment to adapt
latent dynamics across sessions and individuals. Yet, establishing a shared latent space
that effectively captures the continuous nature of behavioral data remains elusive. In
this study, we introduce sa-SVAE, a Shared and Aligned Structural Variational AutoEn-
coder that integrates neural recordings from multiple subjects and uncovers the shared,
behaviorally-relevant latent dynamics, facilitating the prediction of corresponding behav-
iors through a universal decoder. Utilizing a Structured Variational AutoEncoder (SVAE),
our approach infers nonlinear latent factors and learns tractable dynamics driven by behav-
ior on a circuit-level manifold. We employ contrastive learning to align low-dimensional,
behaviorally-relevant geometries across subjects, thereby preserving the integrity of neu-
ral representations linked to specific behaviors across different sessions and subjects. This
alignment enables the development of a unified behavior decoder that outperforms previous
methods. Our model demonstrates robust decoding of task-relevant behaviors by capturing
these preserved latent dynamics, underscoring the factors essential for cross-subject gen-
eralization. This study highlights the potential for building a universal behavior decoder
and provides neuroscience insights into preserved and behaviorally constrained neural rep-
resentations.

Keywords: Structured variational autoencoder, contrastive learning, latent dynamics.

1. Introduction

Brain-computer Interfaces (BCIs) have gained significant attention due to their potential
to enable direct communication between the brain and machines (Hochberg et al., 2006;
Chaudhary et al., 2016; Maiseli et al., 2023). One of the major challenges is decoding neu-
ral activity in a way that generalizes across multiple subjects when behaving under a similar
context. Recent research suggests that despite individual differences in neural circuitry, pre-
served latent dynamics—common patterns of neural activity shared across individuals—are
responsible for producing similar behavioral outputs (Safaie et al., 2023; Degenhart et al.,
2020; Saha et al., 2017; Ray et al., 2015). This indicates that BCIs could be designed to
decode the behavior of these conserved neural trajectories, enabling generalization between
subjects under similar behavioral tasks. A universal behavioral decoder that can integrate
and align neural data from different subjects with high robustness and performance is highly
desirable. This necessitates the extraction of the preserved behaviorally-relevant latent dy-
namics governing specific behaviors across individuals. This capability is crucial not only for
practical applications like neuroprosthetics but also for uncovering fundamental principles
of brain function (Koralek et al., 2012; Portes et al., 2022).

© 2024 .
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Figure 1: A schematic overview of sa-SVAE architecture. A The sa-SVAE model ex-
tracts low-dimensional latent factors from neural recordings using session-specific
encoders, models their dynamics with a shared linear system, and aligns them to
behavioral data via contrastive learning. B Contrastive learning for regression
tasks by ranking the manifold latent factors based on their distances.

Aligning behaviorally-relevant latent dynamics across subjects remains a significant chal-
lenge. Traditionally, methods like canonical correlation analysis (CCA) have been employed
to align the latent spaces of neural activities, facilitating the development of decoders that
generalize across different subjects (Safaie et al., 2023). More recently, transformer-based
neural foundation models have been utilized to harness large-scale neural data from various
subjects, aiming to establish a universal neural representation (Azabou et al., 2024; Ye et al.,
2024; Antoniades et al., 2023). However, these methods often do not provide a mathematical
description of the temporal dynamics of neural activity, which is crucial for understanding
continuous behavioral processes. Additionally, some approaches have attempted to project
neural activities from different subjects into a common space using subject-specific projec-
tors, such as multi-layer perceptrons (MLP), and then trained a shared dynamical system
to capture these dynamics (Schneider et al., 2023; Pandarinath et al., 2018). Despite these
efforts, the resulting latent dynamics still vary significantly between subjects, complicating
the interpretation of shared behaviorally-relevant components.

In this study, we introduce the Shared and Aligned Structured Variational AutoEncoder
(sa-SVAE), a novel model designed to address the integration of neural recordings from
multiple subjects and the extraction of behaviorally-relevant latent dynamics during tasks.
Our architecture incorporates the Structured Variational AutoEncoder (SVAE) framework,
which supports tractable linear dynamics in the latent space, allowing us to capture the
temporal structure of shared manifold factors. The process begins by projecting the neural
activity from different subjects onto a common manifold using a subject-specific encoder
implemented with MLPs (Figure 1A). We then model the latent factors with a linear dy-
namical system that operates consistently across subjects and sessions (Figure 1A). Finally,
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Figure 2: Behavioral decoding performance from a universal linear decoder. A
Left: the steering wheel turning task. Middle: the ground truth and the pre-
dicted wheel velocities. Right: 2P calcium imaging in the dorsolateral striatum.
B Ablation analysis. Averaged decoding R2 with sa-SVAE, s-SVAE without con-
trastive learning, SVAE trained on each individual session, and PCA with CCA
alignment. C Averaged decoding R2 with LDS, SLDS, PCA, PLS, and decoding
from raw neural activity. (Error bar: s.e.m across three sessions.)

we employ contrastive learning, guided by continuous behavioral data, to align these latent
factors across various subjects and sessions (Figure 1B).

Our key contributions include: 1) A novel architecture that deciphers the shared and
behaviorally-relevant neural dynamics to uncover underlying preserved patterns across sub-
jects. 2) An innovative application of contrastive learning for regressions to generate la-
tent factors conditioned on behavior, aligning the latent space across sessions and subjects
for improved behavior decoding. 3) Demonstration of competitive performance and inter-
pretability on real neural data. By addressing these challenges, our model provides an
accurate and identifiable framework for universal BCIs, advancing our understanding of the
preserved dynamics of the brain between subjects that drive the downstream behavior and
paving the way for generalizable BCIs.

2. Experiments and Results

Datasets. All the methods are trained on two-photon calcium imaging data from the
dorsolateral striatum when a mouse is conducting a steering wheel turning task, where the
mouse needs to turn the wheel to move the visual cue from either left or right to the center
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Figure 3: Visualization of the latent factors. The first two PC dimensions of the latent
factors color-coded by (A) the wheel velocity and (B) session ID.

of the screen (Figure 2A). We used two mice and three sessions in total, with one session
from mouse K and two sessions from mouse J . Other details regarding data collection and
preprocessing details are detailed in Appendix C.

Behavior decoding performance comparison We first compared the performance of
behavior decoding from latent dynamics between our sa-SVAE, linear dynamical systems
(LDS), switching linear dynamical systems (SLDS), latent factor analysis via dynamical
system (LFADS), principle component analysis (PCA) and partial least square regression
(PLS) and compared with decoding directly from the raw neural activity (NoMethod). We
trained a Lasso linear regression on the latent/original dynamics as the behavior decoder
and showed that the sa-SVAE outperformed all other methods in this dataset Figure 2B.

Ablation analysis We analyzed the contribution of the two key components of the sa-
SVAE framework through ablation analysis: 1) the shared dynamics across sessions and
subjects; and 2) the contrastive learning between latent dynamics and behavior. The highest
decoding performance can only be achieved with both components (Figure 2C).

Neural manifold analysis We visualized these manifolds to assess the sa-SVAE model’s
ability to extract the preserved latent dynamics across sessions and achieve effective align-
ment in the latent space. In Figure 3A, we plot the first two PC dimensions of the manifold
latent factors a of four representative methods, color-coded by the behavior and the session.
Notably, sa-SAVE demonstrated a better alignment of neural latent dynamics to behavior
(Figure 3A) which is shared across all the sessions (Figure 3B) than other methods.
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Appendix A. Methodology

In this section, we introduce our model architectures, which include the shared SVAE part
and the contrastive learning section. Our model leverages the shared linear dynamical
system in the SVAE structure to emphasize the preserved latent dynamics and we use a
contrastive learning objective to align between two modalities: latent factors and behaviors.

A.1. Shared structured variational autoencoder

We denote the population neural activities for a single session s ∈ {1, . . . ,M} as X(s) ={
X

(s)
1 , . . . , X

(s)

L(s)

}
, where L(s) is the number of trials in session s and each trial data is

denoted as X
(s)
i =

[
x
(s,i)
1 , . . . , x

(s,i)

T
(s)
i

]⊤
∈ RT (s)×N(s)

, where N (s) is the number of observed

neurons in session s and T
(s)
i is the trial length (i.e. number of time bins) for the ith trial

in session s.
We denote the associated dynamics latent factors for session s as Z(s) =

{
Z

(s)
1 , . . . , Z

(s)

L(s)

}
and the dynamics latent factors for each trial i of session s are Z

(s)
i =

[
z
(s,i)
1 , . . . , z

(s,i)

T
(s)
i

]⊤
∈

RT
(s)
i ×nz . We denote the manifold latent factors as A(s) =

{
A

(s)
1 , . . . , A

(s)

L(s)

}
and A

(s)
i =[

a
(s,i)
1 , . . . , a

(s,i)

T
(s)
i

]⊤
∈ RT

(s)
i ×na . Note that nz and na are the factors dimensionality to be

picked, and we chose nz = na = 8 in this study. We further define X =
{
X(1), . . . ,X(M)

}
as the set of neural activities from all sessions, and Z =

{
Z(1), . . . ,Z(M)

}
and A ={

A(1), . . . ,A(M)
}

as the corresponding set of dynamics latent factors and manifold fac-

tors.
In this work, we consider an SVAE with a linear Gaussian dynamical system prior for

sequential data. This generative model defines a joint distribution over the latent factors
and the observed neural activity as

pθ,ϕ(X ,Z) =
∏

X,Z∈X ,Z

∏
X,Z∈X,Z

pθ(z1)
T∏
t=2

pθ(zt | zt−1)
T∏
t=2

pϕ(xt | zt) (1)

where θ denotes the prior parameters and ϕ denotes the parameters of the decoder. Note
that the outer summation is over all M sessions and we remove the superscript (s) in the
above equation for simplicity. The preserved linear dynamical system (LDS) satisfies

pθ

(
z
(s)
1

)
= N

(
z
(s)
1 ;µ1, Q1

)
pθ

(
z
(s)
t | z(s)t−1

)
= N

(
z
(s)
t ;Az

(s)
t−1, Q

)
(2)

pθ

(
a
(s)
t | z(s)t

)
= N

(
a
(s)
t ;Cz

(s)
t , R

)
pϕ

(
x
(s)
t | a(s)t

)
= N

(
xt; fϕ(a

(s)
t ), V

)
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where fϕ(·) represents the decoder in the autoencoder structure, which can be parame-
terized with a deep neural network with weights ϕ, and θ represents the LDS parameters
{A,C, µ1, Q1, Q,R, V }.

For efficiency, simplicity, and the capability to include behavior supervision learning,
we leveraged k-step-ahead prediction error (Abbaspourazad et al., 2024) together with a
penalty on behavior prediction using a linear decoder that maps from the manifold latent
factors to the behavior. We set k = 4 in this study. As a result, the overall loss function is
written as

Lmodel =
1

M

M∑
s=1

1

L(s)

K∑
κ=1

T
(s)
i∑
i=1

MSE(xi+k|i, xi+k) + λθ,ϕL2(θ, ϕ) (3)

Lbehavior =
1

M

M∑
s=1

1

L(s)
MSE

(
gγ

(
a
(s)
i

)
, y

(s)
i

)
+ λγL2(γ) (4)

where gγ(·) is a universal behavior decoder shared across subjects. In this work, we use a
Lasso linear regression as the behavior decoder for all methods.

A.2. Contrastive learning for regressions tasks

To align the distances in the neural manifold space ordered by the distances in the cor-
responding behavioral data, we leveraged one of the contrastive learning techniques for
regression tasks - the Rank-N-Contrast loss (LRNC), which ranks the latent manifold fac-
tors according to their target distances, and then contrasts them against each other based
on their relative rankings (Zha et al., 2024). These techniques ensure that closer labels in
the target space are also closer in the representation space.

For a given anchor a
(s,i)
h , i.e., a manifold factor, from session s with associated y

(s,i)
h

as the behavior data, we define a set of samples that have higher ranks than the anchor

a
(s,i)
h as Sh,j :=

{
ak | k ̸= h, d

(
y
(s,i)
h , y

(s,i)
k

)
≥ d

(
y
(s,i)
h , y

(s,i)
j

)}
, where d(·, ·) is the distance

measure between two behavioral labels (e.g., L1 distance). The normalized likelihood of

a
(s,i)
j given the anchor and the positive set is

P
(
a
(s,i)
j | a(s,i)h ,Sh,j

)
=

exp
(
sim

(
a
(s,i)
h , a

(s,i)
j

)
/τ

)
∑

a
(s,i)
k ∈Sτ,j

exp
(
sim

(
a
(s,i)
h , a

(s,i)
k

)
/τ

) (5)

where sim(·, ·) is the similarity measure between two manifold factors (e.g., negative L2

norm) and τ as the temperature parameter.

As a result, we define a contrastive loss based on the ranking of the continuous behavior
samples (we obviate the upper script (s, i) for simplicity):

Lcontrastive =
1

N

N∑
h−1

1

N − 1

N∑
j=1,j ̸=h

− log
exp(sim(ah, aj)/τ)∑

ak∈Sh,j
exp(sim(ah, ak)/τ)

(6)
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A.3. Extraction of shared and behaviorally aligned latent factors

Combining the shared SVAE together with behavior supervision and contrastive learning,
we propose an architecture that aims to identify the preserved and behaviorally-relevant
neural manifold under a specific behavioral task:

Lsa-svae = Lmodel + λbehaviorLbehavior + λcontrastiveLcontrastive (7)

where λbehv is the scaling factor the behavior decoding loss and λcon is the scaling factor
for the contrastive learning loss.

Appendix B. Model architecture and training details

The latent dimension for all methods is set to 8.

B.1. SVAE family models

For all the SVAE structures, we used a two-layer MLP, where the number of nodes is 64
and 16 respectively. The number of steps for calculating the reconstruction loss function is
4. The scale for regularization λθ,ϕ = 1 × 10−5. The temperature for the RNC-loss is 0.2
and contrastive learning loss scaler λcon is 1.0. The batch size for training is 32 and the
maximum number of time points for contrastive learning is 2048. We used Adam optimizer
(Kingma and Ba, 2014) with an initial learning rate of 1 × 10−3. The learning rate decay
is 0.9 every 15 steps.

We trained all the models for 500 epochs and chose the model with the best validation
loss to perform all the analysis in this work.

B.2. LFADS

We individually trained an LFADS model and the downstream behavior decoder for each
session. We used a two-layer MLP for the encoder and decoder in LFADS, where the hidden
layer size is 100 and 50 respectively. The latent dimension of the distribution is equal to 32.
The dropout is set to 0.1 and the training batch size is set to 20. We used Adam optimizer
with an initial learning rate set to 1×10−3. We trained the model for 500 epochs and chose
the model with the best validation loss to perform the analysis. Note that in future work,
we will perform a more thorough sweep of the hyperparameters to prevent the overfitting
issue as depicted in Fig. 2 B. Moreover, we will try the stitch-LFADS (Pandarinath et al.,
2018) to leverage all sessions for training and compare the performance with the sa-SVAE
in the future.

B.3. LDS and SLDS

We set the dynamics matrix to be Gaussian and the emission matrix to be orthogonal
Gaussian. The number of states in the SLDS model is selected between 1, 2, and 3 based
on the behavior decoding performance in the validation set.
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Appendix C. Data collection and processing

To study the relationship between neural activity and motor behavior, we head-fixed the
mice and had them manipulate a steering wheel to control a visual cursor on a screen during
neural recordings. The initial position of the cursor on the iPad screen was randomly
selected. Concurrently, neural activities were collected using a two-photon microscope,
providing a 400-µm wide field of view at a sampling rate of 30 Hz.

Table 1: Neural data summary
Session # of neurons # of trials # of frames

Mouse J - Day 1 239 99 2,119
Mouse K - Day 1 173 89 2,434
Mouse J - Day 5 259 118 3,822

Total 671 306 8,375

The neural recordings of each session captured ∼ 220 neurons resulting in a total number
of 671 individual neurons across the three sessions. Each session included approximately
100 trials and the trial length varies (usually between 0.5 seconds to 4 seconds, i.e., 15 - 120
time bins) as the reward was initiated when the cursor is successfully turned to the center
of the screen. We also binned the velocity of the mouse’s behavior to account for 30 Hz
sampling rate, resulting in time-aligned neural and behavior data.

Appendix D. Related work

Populational neural activities and neural manifold The rich spatiotemporal cor-
relation in population activity demonstrates the potential to model the high-dimensional
nature of neural activity in terms of low-dimensional latent factors constrained within a
neural manifold. The temporal structure of the latent factors, i.e., latent dynamics, can be
modeled by simple linear dimensionality reduction methods (Jolliffe and Cadima, 2016; Yu
et al., 2009; Safaie et al., 2023), linear dynamical systems (Sani et al., 2021; Vahidi et al.,
2024), switching linear dynamical systems (Glaser et al., 2020; Li et al., 2023), variational
autoencoders (Sussillo et al., 2016; Abbaspourazad et al., 2024), transformers (Azabou
et al., 2024; Ye et al., 2024; Antoniades et al., 2023), and diffusion models (Wang et al.,
2024). These models help uncover the underlying structure of population activity, allow for
effective behavior decoding, and gain insights into brain functions.

Constrastive learning in data fusion Contrastive learning has emerged as a popular
technique for self-supervised representation learning (Le-Khac et al., 2020). Previously, it
gained more attention in the context of discrete classification or segmentation tasks (Chen
et al., 2020; He et al., 2020; Khosla et al., 2020). Recently, machine learning scientists
have developed regression-aware representation learning techniques by contrasting samples
against each other based on their ranking in the target space (Zha et al., 2024; Xue et al.,
2024; Zhang et al., 2023). For the field of computational neuroscience, the contrastive
learning for discrete cases has been applied in multimodal models to align neural activ-
ity with external sensory inputs, e.g., behavioral and/or visual stimuli (Antoniades et al.,
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2023; Schneider et al., 2023) and demonstrated promising outcomes in finding behaviorally-
relevant latent dynamics, resulting in high behavioral decoding performance.

Appendix E. Discussion

In this work, we presented a novel Shared and Aligned Structured Variational AutoEn-
coder (sa-SVAE) model designed to capture behaviorally-relevant latent dynamics across
multiple subjects performing similar tasks. The core strength of our model lies in its abil-
ity to integrate continuous behavioral data and effectively decode behavior from neural
activity across different subjects. Our method outperformed traditional approaches in de-
coding performance including a diverse range of dynamical system methods and alignment
methods. Furthermore, by employing contrastive learning, we improved the alignment of
neural manifolds across subjects, demonstrating a significant advantage over traditional
PCA+CCA approaches and recent shared dynamical system approaches. Therefore, the
sa-SVAE framework can potentially provide a more interpretable and identifiable solution,
particularly through the neural manifold alignment to reduce noise from individual vari-
ability, offering insights into the neural mechanisms underlying behavior.

Our current study focused on calcium imaging data from the striatum of mice. Future
work will include: 1) thoroughly investigating the effect of the contrastive loss and the
behavior decoding loss on the model training using synthetic datasets, 2) studying multiple
brain regions, including motor cortex and cerebellum to capture more comprehensive neural
dynamics, 3) expanding the model to other species, including primates or humans, for
broader applicability. Furthermore, building on our linear behavior decoder, we plan to
explore nonlinear decoding methods to gain deeper insights into how complex behaviors
are encoded. By addressing these areas, we seek to further enhance both the accuracy and
interpretability of neural-behavioral models and advance our understanding of the neural
basis of behavior across species and brain regions.
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