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ABSTRACT

Guided diffusion-model generation is a promising direction for customizing the
generation process of a pre-trained diffusion-model to address the specific down-
stream tasks. Existing guided diffusion models either rely on training of the guid-
ance model with pre-collected datasets or require the objective functions to be
differentiable. However, for most real-world tasks, the offline datasets are of-
ten unavailable, and their objective functions are often not differentiable, such as
image generation with human preferences, molecular generation for drug discov-
ery, and material design. Thus, we need an online algorithm capable of collecting
data during runtime and supporting a black-box objective function. Moreover, the
query efficiency of the algorithm is also critical because the objective evaluation
of the query is often expensive in the real-world scenarios. In this work, we pro-
pose a novel and simple algorithm, Fast Direct, for query-efficient online black-
box target generation. Our Fast Direct builds a pseudo-target on the data manifold
to update the noise sequence of the diffusion model with a universal direction,
which is promising to perform query-efficient guided generation. Extensive ex-
periments on twelve high-resolution (1024× 1024) image target generation tasks
and six 3D-molecule target generation tasks show 6× up to 10× query efficiency
improvement and 11× up to 44× query efficiency improvement, respectively.

1 INTRODUCTION

Diffusion models have become the state-of-the-art generative model for image synthesis (Ho et al.,
2020; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021) and video synthesis (Ho et al., 2022),
etc. Its remarkable success is due to its powerful capability in modeling the complex multi-mode
high-dimensional data distributions.

One promising direction for utilizing the generative power of diffusion models is through target
generation. This allows users to customize the generation process to meet specific downstream
objectives, effectively extending the models’ capabilities beyond synthesis problems to engineering
optimization and science discovery problems, such as image generation with human preferences,
drug discovery (Corso et al., 2022; Guan et al., 2023) and material design (Vlassis & Sun, 2023;
Giannone et al., 2023).

The pre-trained diffusion models often struggle to generate desired samples for these applications,
especially when the target data lies out of the training data distribution. Therefore, the target gen-
eration often involves model fine-tuning or guidance techniques. Krishnamoorthy et al. (2023) pro-
poses to train the diffusion model with re-weighted training loss, while Clark et al. (2023); Black
et al. (2023); Fan et al. (2024); Yang et al. (2024) advocates for fine-tuning the parameters of the pre-
trained model. As oppose to training-time approaches, Bansal et al. (2023) introduces an inference-
time approach, which replaces the classifier in classifier guidance (Dhariwal & Nichol, 2021) with a
differentiable objective function to achieve the downstream target. However, the requirement of the
differentiable objective limits the practical usage of it for real applications with black-box feedback.

Most real-world applications of target generation involve evaluating black-box objectives in an
online manner. For example, image generation with human preferences requires human users to
evaluate the generated images; drug design requires real-world experiments to evaluate the generated
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molecules. These applications typically require several iterative query-feedback cycles with a black-
box objective to achieve satisfactory target generation. As objective evaluations are often expensive,
it becomes crucial to develop query-efficient algorithms to minimize the cost of these evaluations.

Although the online black-box target generation tasks are important, the existing works are not suit-
able to address this task. Bansal et al. (2023); Krishnamoorthy et al. (2023); Lu et al. (2023) require
training an offline guidance model with pre-collected data, while Bansal et al. (2023); Clark et al.
(2023); Prabhudesai et al. (2023); He et al. (2023) require the objective function to be differentiable.
Most recently, Black et al. (2023); Fan et al. (2024); Yang et al. (2024) can be employed for online
black-box target generation, but they require online updates of the huge number of the parameters,
which is both time-consuming and not query-efficient.

In Section 3.1, we first propose a novel guided noise sequence optimization (GNSO) technique
to guide the diffusion model sampling process towards a given target. GNSO updates the noise
sequence in a universal direction on the data manifold. Our GNSO is efficient: it enables fast
adaptation (with around only 50 steps) from any initial generation towards the given input target.
Moreover, GNSO is robust: empirically, even the input target image is noisy, it can still generate a
clear image semantically similar to the target image. The GNSO itself cannot directly handle black-
box target generation tasks, but it provides a backbone for further designing black-box algorithms.

In Section 3.2, based on our GNSO technique, we further propose a novel algorithm, Fast Direct, to
tackle the online black-box target generation tasks in a query-efficient manner. Fast Direct builds
a pseudo-target on the data manifold as the input for our GNSO, to guides the diffusion model at
inference time. Notably, our Fast Direct is easy to implement and support any stochastic diffusion
scheduler. Moreover, our Fast Direct provides a very flexible framework for extension. Any designs
of update methods for the pseudo-target can serve as a plug-in for our Fast Direct.

In Section 4, we evaluate our Fast Direct algorithm on the real-world applications: high-resolution
(1024 × 1024) image target generation tasks and 3D-molecule target generation tasks. For image
tasks, we employ the black-box API of the modern Large Language Model (LLM), Gemini 1.5,
as the black-box objective, which is much more practical compared with the synthetic toy score
function used in the literature. Extensive experiments on twelve image target generation tasks and
six 3D-molecule target generation tasks show significant query efficiency improvement: 6-times
up to 10-times query efficiency improvement on image tasks and 11-times up to 44-times query
efficiency improvement on 3D-molecule tasks, compared with baselines. Additionally, we evalu-
ate Fast Direct on compressibility, incompressibility, and atheistic quality tasks, demonstrating its
generalization ability on the unseen prompts. Our contributions are summarized as follows:

• We propose a novel guided noise sequence optimization (GNSO) technique to guide the diffu-
sion model sampling process toward a given target in an efficient and robust manner.

• Based on GNSO, we further propose a novel algorithm, Fast Direct, to address online black-box
target generation tasks in a query-efficient manner.

• Fast Direct acheives significant query efficiency improvement in the real-world applications:
high-resolution image target generation tasks and 3D-molecule target generation tasks. Addi-
tionally, we demonstrate its generalization capability for unseen prompts.

2 RELATED WORKS

2.1 GUIDED GENERATION

Diffusion guided generation (also called inference-time guidance) refers to the technique to guide
the sampling trajectory of the pre-trained diffusion to generate target data (Croitoru et al., 2023;
Chen et al., 2024). The key advantage of this approach is that it does not require updating the model
parameters, which is computationally expensive, especially for large models.

Dhariwal & Nichol (2021) proposed classifier guidance. However, it requires a guidance model that
trained on noisy images with different noise scales, which generally not readily available and often
requires training from scratch for each domain. Chung et al. (2022); Bansal et al. (2023); He et al.
(2023) extend the classifier guidance by using a differentiable objective function that is defined only
for clean data. Instead of using noisy images, the predicted clean images at each sampling steps are
used as the input for the guidance objective function. In this way, the guidance process can operate
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on the clean image space. While the predicted clean image is naturally imperfect, empirically it still
provide informative feedback to guide image generation (Bansal et al., 2023).

However, this approximation can harm image quality. Bansal et al. (2023) proposed universal guid-
ance that comprises of backward guidance followed by a self-recurrence step to preserve image qual-
ity. On the other hand, He et al. (2023) leverages the differentiability of a well-trained auto-encoder
to project the image to the data manifold and thus preserve image quality during the guidance pro-
cess. Instead of guiding the sampling trajectory, Karunratanakul et al. (2024); Eyring et al. (2024)
treat the diffusion process as a black-box and only optimize the initial (prior) noise.

While the aforementioned approaches assume a differentiable objective function, Lu et al. (2023)
tackles black-box objective f by learning a differentiable proxy neural network h to match their
gradients, i.e., ∇f ≈ ∇h. Li et al. (2024) eliminates the need for a differentiable proxy model
by employing importance sampling weighted by the objective values during the sampling process.
Most recently, DNO (Tang et al., 2024) proposes optimize the diffusion noise sequence by using
ZO-SGD (Nesterov & Spokoiny, 2017) to tackle black-box objective function. However, it runs at
the instance level; namely, each run only produces one image.

2.2 DIFFUSION-MODEL FINE-TUNING

Diffusion-model fine-tuning refer to the technique that updating the pre-trained diffusion-model
parameters to improve its performance on a specific use case. In this section, we review the fine-
tuning methods that support online learning of the black-box objective function.

Black et al. (2023); Fan et al. (2024) formulate the diffusion fine-tuning problem as a reinforce-
ment learning (RL) problem within Markov Decision Processes (MDPs), and proposes an iterative
algorithm to fine-tune diffusion model by using Proximal Policy Optimization (PPO) (Schulman
et al., 2017; Uehara et al., 2024) loss function. Fan et al. (2024) integrates the PPO with a KL
regularization to prevent the fine-tuned model deviated too much from the pre-trained model.

On the other hand, Yang et al. (2024) does not requires an absolute objective values, instead it
uses the relative reward on pair of samples by integrating DPO (Direct Preference Optimization)
(Rafailov et al., 2024), a technique for fine-tuning large language models, into diffusion model.

Fine-tuning diffusion model requires large amount of GPU memory. Existing works mitigates the
memory consumption by using LoRA (Low-Rank Adaptation) (Hu et al., 2021) technique, and only
fine-tune parameters of the attention blocks in UNet. We categorize the related works based on
whether they support the online and black-box objective tasks in Appendix F Table 2.

3 METHODS

In this section, we first present a novel inference-time guidance generation method by guided noise
sequence optimization. Based on this method, we further present our query-efficient online black-
box guidance algorithm, Fast Direct, to address online black-box guidance tasks.

3.1 NOISE SEQUENCE OPTIMIZATION WITH TARGET GUIDANCE

Take i.i.d. Gaussian samples {ϵ0, · · · , ϵK} ∼ N (0, I), for k ∈ {1, · · · ,K}, the inference process
of the diffusion model can be formulated as follows:

xk = Sθ(xk−1, ϵk), (1)

where Sθ(·, ·) denotes the diffusion model sampler that depends on the concrete SDE solver used,
x0 = ϵ0 is a Gaussian sample, and xK denotes the generated data.

Question 1: Given an input target x∗, can we guide a pre-trained diffusion model at inference time
to generate the target data in an efficient and robust manner?

To answer this question, we need to develop an algorithm to address two challenges simultaneously:
(1) Guidance Efficiency: the algorithm can use only a few iteration steps of guidance update to
generate target data x∗. (2) Robust to noisy target: given a noisy target (e.g., a noise perturbed
image), the algorithm can generate meaningful target data (e.g., a clear image).
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Algorithm 1: Guided Noise Sequence Optimization
Input: Stepsize α, target data x∗, number of diffusion sampling steps K, pre-trained diffusion

sampler Sθ, number of iterations T .
Output: Generated target xK .

1 Take i.i.d. noise {ϵ0, · · · , ϵK} ∼ N (0, I)
2 Compute the norm of noise ϵnorm

k = ∥ϵk∥ for k ∈ {0, · · · ,K}.
3 for t← 1 to T do
4 x0 ← ϵ0
5 for k ← 1 to K do
6 xk ← Sθ(xk−1, ϵk)

7 for k ← 0 to K do
8 ϵ̂k ← ϵk + α(x∗ − xK)

9 ϵk ← ϵ̂k
∥ϵ̂k∥ϵ

norm
k

Line 4 - Line 6: Call diffusion-model sampler to generate data xK .
Line 7 - Line 9: Update the noise ϵk by moving along direction x∗ − xK .

Figure 1: Demonstration of guided generation for a given target by Algorithm 1. Column 2 (Update
Direction) indicates the update term of Algorithm 1 Line 8. Row 1 to 3 analyze how different update
directions can affect the generated images. Row 4 and 5 show that by using the update direction of
x∗ − xK , diffusion model is able to generate visually satisfied images even when the target image
is noisy. The noisy target image (x∗) of the row 4 is obtained by clean image added with noise
N (0, I), and row 5 is added with noise N (0, 9× I).

We propose a novel guided noise sequence optimization method to address the above two chal-
lenges, which is presented in Algorithm 1. Our method optimizes the noise sequence by updating
noise along direction on data manifold. Specifically, Algorithm 1 consists of two procedures: data
generation procedure and noise update procedure. In data generation procedure, Line 4 - Line 6 in
Algorithm 1 employ current noise sequence {ϵ0, · · · , ϵK} to generate a data xK . In noise update
procedure, Line 7 - Line 9 in Algorithm 1, we update each noise ϵk by moving along a universal
direction x∗ − xK . Then, Algorithm 1 continues to employ the updated noise to generate a new
data xK . By looping the data generation procedure and noise update procedure, Algorithm 1 can
generate a clear and meaningful target.

The direction x∗ − xK point from the current generation data xK to the target x∗. Intuitively,
moving in this direction will shift the diffusion sampling trajectory toward the target. We highlight
the advantage of updating noise with the universal direction x∗ − xK compared with direction
x∗ − xk as the following remark.

Remark: In our Algorithm 1, we guided the noise update by moving along a universal direction
x∗ − xK . This direction lies in the data manifold, which alleviates the quality degeneration of the
generated data. We employ the direction x∗ − xK instead of the direction x∗ − xk because the
internal xk during inference sampling process may be far away from the data manifold (e.g., the xk

can be a very noisy and distorted image), which may degenerate the quality.
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We empirically evaluate Algorithm 1 with different update directions: d⃗ = x∗ − xK and d⃗ =
x∗ −xk. Additionally, we consider the approximation xK ≈ x̂k

1. Lastly, we set the noisy target to
test the robustness. We use the stable-diffusion model as the pre-trained model. The stepsize α is set
to α = 2× 10−3. We present the generated images at every 10-iteration for each cases in Figure 1.

From Figure 1, we can observe that Algorithm 1 (with update direction x∗ − xK) can successfully
guide the diffusion process towards the target image, while x∗ − xk leads to a degenerated image.
The approximation x∗ − x̂K can achieve comparable target image but not as accurate as x∗ − xK .

Interestingly, even the input target x∗ is perturbed by noise and lies out of the data manifold, Algo-
rithm 1 will generate a pseudo-data on data manifold that is similar to the noisy target x∗ but with
much higher quality compared with the input noisy target. This property is important for designing
black-box guidance methods because the update direction is an approximation or estimation of the
true gradient of the black-box objective.

Moreover, we present the updating direction x∗ − xK′ for K ′ ∈ {K,K/2,K/4,K/8} in Ap-
pendix C. We observe that the generated image quality decreases as the xK′ becomes more noisy.

3.2 QUERY-EFFICIENT ONLINE BLACK-BOX GUIDANCE

In section 3.1, we address the diffusion guidance sampling with a given optimal target input. How-
ever, in reality, we often only have access to the black-box objective function f(x), where the
optimal target data x∗ = argmin f(x) is unknown. In this section, we further investigate the dif-
fusion guidance sampling with only black-box objective feedback. For this task, it is natural to ask
the following question.

Question 2: Can we guide a pre-trained diffusion model at inference time to generate target data
with only black-box objective feedback in a query-efficient online manner?

To answer this question, we need to address two challenges: (1) Black-box challenge and (2) On-
line guidance challenge. The black-box challenge means that we cannot access the gradient of the
objective. The online guidance challenge means we don’t have a prior dataset to train a surrogate
(classifier) for guidance; we can only access the black-box objective through query feedback online.
Usually, the query evaluation is expensive. Thus, the query efficiency is critical.

We start addressing the above two challenges based on our target guidance generation Algorithm 1.
Although Algorithm 1 itself cannot handle black-box guidance tasks because it needs input a target
x∗, it provides a basis for us to design query efficient online black-box guidance methods. To be
specific, Algorithm 1 enables us to generate a target even updating with a noisy direction x∗ − xK .
This property is important for black-box guidance tasks because we can use a noisy estimation of
the gradient of the black-box objective to guide the generation.

The key idea is to set a pseudo target x̂∗ to guide the generation process based on our Algorithm 1.
We present our Fast Direct method as in Algorithm 2. In Algorithm 2, we call Algorithm 1 inside
the for-loop w.r.t. the number of batch queries t. The only difference compared with Alg. 1 is that
we set a pseudo target x̂∗ in Line 10 of Algorithm 2 instead of a given fixed target x∗.
The choice of models for updating the pseudo target x̂∗ in Algorithm 2 is flexible, which supports
various black-box target generation method designs based on our Fast Direct algorithm framework.
In this work, we set the pseudo target x̂∗ through nonparametric methods without additional training.
Specifically, we employ two methods for setting the pseudo target x̂∗, namely, Gaussian process
(GP) update and historical optimal update.

Set pseudo target x̂∗ by GP update: For the GP update case, we set the pseudo target x̂∗ as the one
gradient step update using the gradient of the posterior mean prediction of the GP surrogate model
as follows:

x̂∗ = xK −∇f̂(xK ;Xn) (2)

where xK denotes the generated data in Algorithm 2 and f̂(xK ;Xn) denotes the posterior predic-
tion of the GP surrogate model (Seeger, 2004) evaluated at xK , which has closed-form as below:

f̂(xK ;Xn) = k(xK ,Xn)⊤
(
K(Xn,Xn) + λI

)−1
y (3)

1The x̂k is the ”predicted clean image” at step k, see the Eq.12 of DDIM (Song et al., 2020). Note that it is
undefined for initial step, so we simply set x̂0 := x̂1.
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Algorithm 2: Fast Direct
Input: Max number of batch queries N , batch size B, step-size α, number of diffusion

sampling steps K, pre-trained diffusion sampler Sθ.
Output: Set of optimized samples {x1

K , · · · , xB
K}, pseudo target model that learns from

dataset D.
1 Initialize D ← {}
2 for i← 1 to N do
3 do parallel for B instances
4 Take i.i.d. noise {ϵ0, · · · , ϵK} ∼ N (0, I).
5 Compute the norm of noise ϵnorm

k = ∥ϵk∥ for k ∈ {0, · · · ,K}.
6 for t← 1 to i do
7 x0 ← ϵ0
8 for k ← 1 to K do
9 xk ← Sθ(xk−1, ϵk)

10 Set a pseudo target x̂∗ by the pseudo target model with input xK .
11 for k ← 0 to K do
12 ϵ̂k ← ϵk + α(x̂∗ − xK)

13 ϵk ← ϵ̂k
∥ϵ̂k∥ϵ

norm
k

14 Query black-box objective score y ← f(xK).
15 Increment dataset D ← D ∪ {(xK , y)}.
16 Update pseudo target model with dataset D.

where Xn = [x1, · · · ,xn] and y = [y1, · · · , yn] denotes the collected data and its corresponding
score value in the historical set D in Algorithm 2, respectively. When the historical set D is empty,
we simply set the gradient∇f̂(xK ;∅) = 0.

In this work, we employ shift-invariant kernels that can be rewritten in the form as k(z1, z2) =
g(∥z1 − z2∥2), e.g., Gaussian kernel and Matérn kernel. We show that the gradient of the GP
surrogate when employing these shift-invariant kernels lies on the low-dimensional data manifold.
We present this property in Proposition 1. Detailed proof of Proposition 1 can be found in Ap-
pendix E. This property enables us to generate meaningful data on the data manifold instead of
degenerated data, which is important for high-dimensional diffusion-model target generation prob-
lems, e.g., high-resolution (1024× 1024) target image generation tasks.

Proposition 1. Given prior data Xn = [x1, · · · ,xn] and its corresponding score y = [y1, · · · , yn],
let f̂(x;Xn) denotes the posterior mean of the GP model. For shift-invariant kernels k(z1, z2) =
g(∥z1 − z2∥2), ∇f̂(x;Xn) lies on a subspace spanned by [x,x1, · · · ,xn], where xi denotes the
ith data sample in Xn.

Remark: When setting the pseudo target x̂∗ as Eq.(2), we know the pseudo target x̂∗ lies on the
low-dimensional subspace spanned by data according to Proposition 1. Usually, the gradient descent
update in Eq.(2) will lead to a new pseudo target x̂∗ with a lower score. In addition, based on the
empirical observation from Algorithm 1, we know even the pseudo target x̂∗ is noisy, Algorithm 1
can still generate similar data that is meaningful lies on the data manifold. These two properties
enable Algorithm 2 to generate data with lower and lower scores along the data manifold.

Set pseudo target x̂∗ by historical optimal update: For the historical optimal update case, we set
pseudo target x̂∗ as the empirical optimal point from the historical dataset D in Algorithm 2 as:

x̂∗ = argmin
x∈D

f(x). (4)

Set pseudo target x̂∗ as Eq.(4) is an empirical approximation of the optimal target x∗ =
argminx∈X f(x). In Algorithm 2, at each iteration w.r.t. the batch query i, we employ the gener-
ated data that achieves the current best score as the pseudo target x̂∗ to guide the generation process.
Intuitively, given this pseudo target x̂∗, Algorithm 2 will generate a batch of data that is similar to x̂∗

on the low-dimensional data manifold, which is promising to further improve the score. By looping
this procedure, we will get data generation with lower and lower scores.

6
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4 EXPERIMENTS

In this section, we evaluate our algorithm in two domains, images and molecules, and compare it
against four baseline methods: DDPO (Black et al., 2023), DPOK (Fan et al., 2024), D3PO (Yang
et al., 2024), DNO (Tang et al., 2024). Moreover, we further evaluate our algorithm in compress-
ibility, incompressibility, and aesthetic quality tasks in Appendix A. Our source code will be made
public available upon publication.

4.1 IMAGE BLACK-BOX TARGET GENERATION TASK

Problem: Prompt Alignment. We consider the image-prompt alignment problem. While the
current state-of-the-art image generative models excel at generating highly realistic images, they
sometime struggle to faithfully generate images that accurately aligned with the input prompts,
especially those complex prompts involving rare object combinations, object counting, or specific
object positioning.

Pre-trained Model: SDXL-Lightning. We use SDXL (Podell et al., 2023) diffusion model as the
backbone text-to-image model. It is able to generate 1024×1024 high resolution realistic image.
In our experiment, we use the distilled version, SDXL-Lightning (Lin et al., 2024), for its high
sampling efficiency, which can generate image with comparable quality with just K = 8 steps. We
use the official implementation 2

Objective Function: Gemini 1.5. We leverage Gemini 1.5 (Reid et al., 2024), an advanced multi-
modal LLM service, as our black-box objective function to evaluate the alignment between input
prompts and generated images. To avoid confusion, the term query refers to the input to Gemini,
while prompt refers to the text used for image generation.

The query to Gemini 1.5 composes of the generated images with the question like: ”Does the prompt
$prompt accurately describe the image? Rate from 1 to 5”. We state the complete query in
Appendix G.

Because it is a closed-source paid service, we limit the number of batch queries in our exper-
iments, referred to as the batch queries budget. We use the Gemini 1.5 Flash model (code:
gemini-1.5-flash-001) for its cost-efficiency, and set the temperature as 0 for experiments
consistency and reproducibility. For conciseness, we call it simply Gemini in the following section.

Experiment Procedure. We identify 12 prompts that the pre-trained model SDXL-Lighning strug-
gles to generate, and refer these as the 12 tasks in our experiment, where the goal is to generate im-
ages that accurately aligned with the input prompts. We compare our Fast Direct algorithm against
each baselines methods, and each experiment is constrained with 50 of batch queries budget.

We perform inference-time guidance using Fast Direct (Algorithm 2) to maximize the Gemini rating.
We use the GP model in Eq. 2 for the pseudo-target, and set the kernel as Gaussian kernel, and we
follow (Hvarfner et al., 2024) to set the lengthscale as λ =

√
d, where d = 4×128×128 is the latents

dimensionality of SDXL. We use N = 50 iterations to utilize 50 batch queries budget, and set the
batch size as B = 32 and step size as α = 80. We use the EularDescreteScheduler (Karras
et al., 2022) sampler as suggested by the SDXL-Lightning implementation (Lin et al., 2024), and the
DDIMScheduler (Song et al., 2020) (DDIM) sampler for a fair comparison with the baselines.

For all baseline methods, we perform 50 iterations, each iteration utilizes one batch query for updat-
ing. We set the batch size as 32, and leave the rest of the hyper-parameters as default. We state more
details for baselines in the Appendix D. Note that for DNO, in which each experiment trial can only
produce one image, we run 16 independent experiment trials and report the average results3.

Experiment Results. We present the results for the ”deer-elephant” 4 task in this section and defer
the results for the other 11 tasks to Appendix I due to space constraints. We compare the images
generated by our method with those generated by the baseline methods at each 10 batch queries
intervals in Fig. 2. We can observe that our algorithm successfully satisfies the visual objectives
for both samplers within the 50 batch queries budget, while the baseline methods fall short within

2https://huggingface.co/ByteDance/SDXL-Lightning
3Note that DNO spent 16× 50 = 800 batch queries for each task.
4The complete prompt is: A yellow reindeer and a blue elephant.
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Figure 2: The generated images over each number of batch queries on the prompt ”deer-eleplant” 4,
extra batch queries budgets (until 500) are given to the baselines methods for demonstration.
the same budget. Similar phenomenon are observed for the other 11 tasks in Appendix I. We grant
baseline methods with extra batch queries budget, and we observed that DDPO and DPOK almost
achieves the visual objectives, whereas D3PO and DNO remain unsuccessful in this particular task.

We collect the 32 randomly generated images using our algorithm (by utilizing 50 batch queries
budget) and present in Fig. 3. We can observe that most images are well satisfies the visual objective.
Similar phenomenon are observed on the other 11 tasks as shown in Appendix I.

For the quantitative results, we report the average objective values over each batch query across
the 12 tasks in Fig. 4. For DNO, which only produces one image each experiment, we average
the results from 16 independent experiments. We observe that the Fast Direct achieves nearly full
score within the 50 batch queries budget in all tasks, which is significant higher than the baseline
methods. Moreover, we observe that Fast Direct achieve similar score for both samplers, suggesting
it is invariant to sampler. We further perform ablation study in Appendix B, and show that Fast
Direct is insensitive to the hyper-parameters: step size α and batch size B.

We further employ tasks 1 to 3 and assigns extra batch queries budget of 200 to the baseline methods.
We report the accumulated objective values, which represents the best objective values achieved up
to each number of batch queries, in Appendix Fig. 11. We observe that our algorithm, utilizing only
50 batch queries budget, consistently outperforms all baseline methods even when they are assigned
with expanded batch queries budget of 200.

To quantify this advantage, in Table 1, we identify the minimum number of batch queries budget
(denotes as N∗) our algorithm requires to surpass each baseline methods with their 200 batch query
budget. We further calculate ours batch-query-efficiency gain compared to baselines as 200

N∗ and
report (in the bracket) in Table 1. We can observe that our algorithm is at least 667% and up to
1000% more batch-queries-efficient than the baseline methods.

4.2 MOLECULE BLACK-BOX TARGET GENERATION TASK

Problem: Drug Discovery. We consider the drug discovery problem. One of the key problem is to
find drug molecules that has a strong binding affinity with the target protein receptor. The binding
affinity quantify the strength of the interaction between two bio-molecules, so a stronger binding
affinity indicates a higher drug efficacy.

A traditional approach to this problem requires human-design molecules, which are highly time-
consuming. Recent advancements in AI poses a great potential to speedup this process by gen-
erating molecules using advanced generative model such as diffusion model. Although the cur-
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Figure 3: The 32 randomly generated image for the prompt ”deer-eleplant” 4 guided by Fast Direct
(w/ EDM) by utilizing 50 batch queries budget.

Figure 4: The average Gemini rating (from 1 to 5, higher is better) of the generated images over
each number of batch queries on the 12 different tasks (the prompts abbreviation shown in bracket,
see the complete prompts in Appendix 3).
rent pre-trained molecules models, such as TargetDiff, are capable of generating relatively realistic
molecules, it lacks the ability of generating molecules with user desired high binding affinity.

Pre-trained Model: TargetDiff. We use TargetDiff (Guan et al., 2023) as the backbone molecules
generative model. It is pre-trained on the CrossDocked2020 dataset (Francoeur et al., 2020), and
can generate realistic 3D molecular structures conditioned on the given protein receptor. For sam-
pling efficiency, we use the DDIMScheduler sampler with K = 200 sampling steps as we find
that it can generate comparable results. During the generation process, we fix the atoms type ac-
cording to the dataset reference and only allow the atoms position to be varied. We use the official
implementation 5 in our experiment.

Objective Function: Molecules Binding Affinity. Measurement of the binding affinity requires
real-world experiment which is highly expensive (David et al., 2020). In our experiment, we leverage
the Vina score (kcal/mol) calculated by the AutoDock Vina simulation software (Eberhardt et al.,
2021) to estimate the binding affinity. A lower (more negative) Vina score indicates a stronger
estimated binding affinity. Therefore, our objective is to minimize the Vina score.

Experiment Procedure. We conduct experiments on 6 tasks, where the goal of each task is to
optimize the Vina score on the protein receptors of ID from 1 to 6, respectively. Similar to images
tasks, each algorithm is constrained with 50 of batch queries budget.

5https://github.com/guanjq/targetdiff
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Table 1: The minimum number of batch queries budget (denotes as N∗) for Fast Direct (ours) to
outperform each baselines (when each baseline is granted with 200 batch queries budget) on images
and molecules tasks. The values in bracket show the batch-query-efficiency gain ( 200N∗ ) of Fast Direct
(ours) over the baselines.

Minimum number of batch queries (N∗) for
Fast Direct to outperform each baselines:

DDPO DPOK D3PO
Image Tasks
Task 1 15 (13.34×) 15 (13.34×) 10 (20.00×)
Task 2 8 (25.00×) 8 (25.00×) 4 (50.00×)
Task 3 37 (5.41×) 46 (4.34×) 16 (12.50×)
Average 20 (10.00×) 23 (8.70 ×) 30 (6.67×)

Molecules Tasks
Task 1 6 (33.33×) 5 (40.00×) 25 (8.00×)
Task 2 9 (22.22×) 4 (50.00×) 11 (18.18×)
Average 7.5 (26.67×) 4.5 (44.44×) 18 (11.11×)

Figure 5: The Vina score (lower is better) of the generated molecules for each number batch queries
on the six protein receptors.
We perform inference-time guidance using our Algorithm 2 to minimize the Vina score. We use
the historical optimal in Eq. 4 for the pseudo-target. We use N = 50 iterations to utilize 50 batch
queries budget, and set the batch size as B = 32, and the step size as α = 10−2. We then conduct
experiments on the baseline methods for 50 fine-tuning iteration. For DDPO and DPOK, the batch
size is set as the same 32; while D3PO requires binary rewards, so we double the batch size as 64 6.
We keep the hyper-parameters as default for all baseline methods.

Experiment Results. We report the average Vina score (recall, lower is better) for each batch
queries across 6 tasks in Fig. 5. We observe that our algorithm consistently achieves much lower
Vina score compared to the baseline methods across all tasks. Similar to the images task, we grant
extra batch queries budget of 200 to the baselines for task 1 and 2, and report the accumulated
objective values in Appendix Fig 12, and list the batch-query-efficiency gain in Table 1. We observe
that our algorithm is at least 1111% and up to 4444% more batch-query-efficient compared to the
baseline methods.

5 CONCLUSION

In this work, we proposed Fast Direct for diffusion model target generation, which effectively
addresses the challenges of limited batch query budgets and black-box objective functions, demon-
strating its potential for various applications, including image generation and drug discovery. Fast
Direct is highly practical, as it is easy to implement, supports any type of SDE solver, and has only
one hyper-parameter to tune (step size α). Our algorithm is based on the surprising empirical ob-
servation that the universal update direction (i.e., x∗ − xK in Algorithm 1) can efficiently guide
the diffusion trajectory toward the target, even when the target x∗ is extremely noisy. This phe-
nomenon suggests an intriguing robustness in the diffusion inference process. Future research could
investigation for its underlying theoretical principles.

6However, unlike image tasks where Gemini can evaluate rewards for two images in a single query, the Vina
simulation lacks this capability, requiring 64 individual queries for a batch of size 64.
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A MORE EXPERIMENTS: COMPRESSIBILITY, INCOMPRESSIBILITY, AND
AESTHETIC QUALITY

Problem. We follow DDPO (Black et al., 2023) to evaluate our algorithm on the three black-box
optimization tasks for images: compressibility, incompressibility, and aesthetic quality.

Objective Function. For compressibility, we aimed to minimize the compressed JPEG size (MB)
of the generated images. For incompressibility, it’s simply the inverse. For aesthetic quality, the aes-
thetic score is evaluated by the pre-trained LAION aesthetics predictor (Schuhmann, 2022), which
is trained on human rating of the images aesthetic quality, and we aimed to maximize the aesthetic
score.

Experiment Procedure. For each task, we uniformly sample from the 45 common animals (as
proposed by DDPO (Black et al., 2023)) as input prompts and optimize the objective using Fast
Direct in Algorithm 2. The prompt for each instance within a batch is sampled randomly and
independently. We set N = 50 batch queries budget for compressibility and incompressibility,
and N = 100 for aesthetic quality. We use the same pre-trained model, hyper-parameters, and
GP settings as in Section 4.1. The 45 common animals prompts used in the experiment is as follows:

cat dog horse monkey rabbit zebra spider bird sheep
deer cow goat lion tiger bear raccoon fox wolf

lizard beetle ant butterfly fish shark whale dolphin squirrel
mouse rat snake turtle frog chicken duck goose bee

pig turkey fly llama camel bat gorilla hedgehog kangaroo

For DNO, where each experimental trial generates only a single image and the objective score is
highly dependent on the specific prompt. To ensure a more accurate evaluation, we run 45 inde-
pendent experiment trials using each prompt and report the average results. Consequently, DNO
requires 45× more batch queries per task compared to other methods.

Experiment Result. We present the objective scores for each task in the left column of Fig. 6 and
provide the generated images for the three tasks in the supplementary materials. For compressibility
and incompressibility, we observe that Fast Direct achieves significantly better scores than the base-
lines. For aesthetic quality, Fast Direct with the EDM sampler achieves significantly better scores
than with DDIM, likely due to EDM being a more advanced sampler, capable of generating higher-
quality images. DNO achieves comparable scores; however, note that each experiment optimizes
and generates only a single image.

Generalization Ability. We follow DDPO to evaluate generalization ability. For Fast Direct, we
freeze the learned GP model to generate 16 unseen images using distinct unseen animal prompts.
Specifically, in this phase, Lines 17 and 18 are removed from Algorithm 2, and our algorithm does
not access the objective function. For DDPO, DPOK, and D3PO, the fine-tuned models are frozen
to generate images with the 16 unseen animal prompts. DNO is not applicable to this experiment
because DNO needs to perform optimization for each image without generalization. For the unseen
prompts, since DDPO didn’t publish the unseen prompts, we created our own as follows:

elephant eagle pigeon hippo hamster otter panda reindeer
owl penguin flamingo seal koala giraffe parrot cheetah

In Fig.7, we present the images generated using the unseen prompt ”hippo” by each algorithm across
the three tasks. The remaining 15 prompts for the three tasks are provided in the supplementary ma-
terial. A similar phenomenon is observed for all 15 other unseen prompts across the three tasks. For
quantitative evaluation, we report the objective values for the unseen prompts in the right column of
Fig.6. We can observe that Fast Direct with GP model has generalization ability to unseen prompts.
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Figure 6: Left column: The average objective score of the generated images over each number of
batch queries on the 3 black-box optimization tasks, the images are generated using the 45 common
animals that used in DDPO (Tang et al., 2024) as the input prompts. Right column: The objective
score of the images generated by unseen prompts, it demonstrates the generalization capability.
Note that DNO is not applicable to this task.
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(a) Compressibility

(b) Incompressibility

(c) Aesthetic Quality

Figure 7: The generated images using the unseen prompt ”hippo” in aesthetic quality task, extra
batch queries budgets (until 500) are given to the baselines methods for demonstration.
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(a) Pre-trained (b) Compressibility

(c) Incompressibility (d) Aesthetic Quality

Figure 8: The generated images using the 16 unseen prompts. Top left is the images generated by
pre-trained model, the rest are the Fast Direct generated images in the corresponding tasks.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B ABLATION STUDY

We perform an ablation study on the target image generation Task-1. For step size analysis, we fix
the batch size as 32, then perform experiment with different step size α = {20, 40, 80, 160, 320};
for batch size analysis, we fix the step size as 80, then perform experiment with different batch size
B = {4, 8, 16, 32, 64}. Additionally, we report the run time for different batch size. We report the
result in Fig. 9.

We can observe that the performance steadily increase for any step size and any batch size, suggests
that our algorithm is not sensitive to the hyper-parameters settings. The run time scales linearly with
the batch size. In our target image generation experiments in Section 4.1, as the batch size is set as
32, each experiment takes approximately 6.4 hours to process 32 images in parallel.

Figure 9: Left: Gemini rating for different step size settings. Middle: Gemini rating for different
batch size settings. Right: Run time (hours) for different batch size settings.

C ANALYSIS OF UNIVERSAL DIRECTION

In Fig. 10, we demonstrate Algorithm 1 with update direction d⃗ = x∗ − xK′ for K ′ ∈
{K,K/2,K/4,K/8}. It shows that the generated image quality decreases as the K ′ decreases.
This is because as K ′ decreases, the xK′ becomes noisier and may move further away from the data
manifold.

Figure 10: The update direction d⃗ = x∗ − xK′ for K ′ ∈ {K,K/2,K/4,K/8}, the generated
images quality decrease as the xK′ being more more noisy.

D BASELINES DETAILS

For DDPO, DPOK and D3PO, we fine-tune the model to maximize the Gemini rating. We fine-tune
the model with 50 epochs; each epoch utilizes one batch query for model updating. For DDPO
and DPOK, we set the batch size to 32; for D3PO, it requires a relative reward, so we doubled
the batch size to 64.7 As these RL-based methods require closed-form expression of the logarithm
probabilities, we follow their official implementation to use the DDIMScheduler (Song et al.,
2020) sampler.

7For D3PO, to evaluate 64 images only requires 32 queries calls, see Appendix G.
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For DNO, we optimize the noise sequence w.r.t the Gemini rating. Recall that the Gemini is black-
box, so we use the non-differentiable mode, with the number of samples for gradient approximation
set as 32, and optimize for 50 iterations; each iteration utilizes one batch query for updating. How-
ever, each experiment of DNO only produces one image, where the score is highly dependent on the
initial prior. Thus, for a more accurate evaluation, we run 16 independent experiments to generate
16 images and report the average results. Note that this requires 16 × 50 = 800 batch queries for
each task, which is 16 times compared with our Fast Direct and other baselines.

E PROOF OF PROPOSITION 1

Proof. Let α =
(
K(Xn,Xn) + λI

)−1
y = [α1, · · · , αn]

⊤, for GP with a shift-invariant kernel
that can be rewritten as k(z1, z2) = g(∥z1 − z2∥2), the gradient of the GP prediction is

∇f̂(x;Xn) = ∇k(x,Xn)⊤α (5)

=

n∑
i=1

αi∇k(x,xi) (6)

=

n∑
i=1

αi

∥x− xi∥
g′(∥x− xi∥2)(x− xi) (7)

=

n∑
i=1

ci(x)(x− xi) (8)

where xi denotes the ith sample in Xn = [x1, · · · ,xn], and ci(x) =
αi

∥x−xi∥g
′(∥x − xi∥2), and

g′(·) denotes the derivative of g(·).

From Eq.(8), we can see that the gradient ∇f̂(x;Xn) is a weighted sum of x − xi for i ∈
{1, · · · , n}. Thus, we know ∇f̂(x;Xn) lies on a subspace spanned by [x,x1, · · · ,xn]

F OVERVIEW OF RELATED WORKS

We present the summary of related works according to its category and supported problem scenarios
in Table 2.

Table 2: Overview of existing approaches.
Algorithm Category Algorithm Online Black-box

Training /
Fine-tune

DRaFT (Clark et al., 2023) ✓ ✗
DDOM (Krishnamoorthy et al., 2023),
RCGDM (Yuan et al., 2024),
DPO (Wallace et al., 2024)

✗ ✓

DDPO (Black et al., 2023),
DPOK (Fan et al., 2024),
D3PO (Yang et al., 2024)

✓ ✓

Inference-time
Guidance

LGD (Song et al., 2023),
MPGD (He et al., 2023),
DNO (2024a) (Karunratanakul et al., 2024),
ReNO (Eyring et al., 2024)

✓ ✗

CEP (Lu et al., 2023) ✗ ✓
DNO (Tang et al., 2024),
Fast Direct (ours) ✓ ✓

G EXPERIMENT DETAILS

We use the following query question to the Gemini:

Does the prompt $prompt accurately describe the image?
Rate from 1 (inaccurate) to 5 (accurate).
Answer in the format: Score=(score), Reason=(reason).
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where the $prompt is substituted by the input prompt used for image generation. We extract the
integer score as the objective value.

The D3PO takes relative reward, so we specially crafted for its selective query question:

Given this two images, which image is better aligned with
the prompt $prompt?
Answer in the format: Choice=(1/2), Reason=(reason).

where we extract the choice (1/2) as the selections.

The Gemini 1.5 Flash can faithfully respond with the correct format to ensure our experiment is
consistent.

H MORE EXPERIMENT RESULTS

We report the accumulated objective values over number of batch queries for images task in Fig. 11,
and for molecules task in Fig. 12.

Figure 11: The accumulated Gemini rating (from 1 to 5, higher is better) over number of batch
queries. The accumulated plot displays the maximum Gemini rating achieved up to each number of
batch queries.

Figure 12: The accumulated Vina score (lower is better) over number of batch queries. The accu-
mulated plot displays the minimum Vina score achieved up to each number of batch queries.
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I MORE GENERATED IMAGES BY FAST DIRECT FOR IMAGE-PROMPT
ALIGNMENT TASK

Table 3 shows the list the complete prompts used for each task in our image generation experiment.
From Fig. 13 to Fig. 23, we present the generated images of each algorithms over each number of
batch queries for prompt 2 to 12. From Fig. 24 to Fig. 34, we showcase the 32 randomly generated
by pre-trained model followed by the resultant images guided by the Fast Direct for prompt 2 to 12.

Table 3: Target Image Generation Tasks

Task ID Abbreviated Prompt Complete Prompt
1 deer-elephant A yellow reindeer and a blue elephant.
2 traffic-light A traffic light with yellow at top, green at middle, and red at bot-

tom.
3 apple Seven red apples arranged in a circle.
4 cyber-dog A natural fluffy dog talking to a cybertic dog.
5 puppy-nose Side view of a puppy lying on floor, one butterfly stopping on its

nose.
6 robot-plant A cute cybernetic robot plants a tree in the forest.
7 ocean A helicopter floating under the ocean.
8 sand-glass A transparent glass filled with a mixture of water and sand, with

one feather floating inside.
9 penguin A photo realistic photo showing a penguin standing on a very small

floating ice, with a tree is on fire in the background.
10 basket Exactly one orange in a basket of apples.
11 ice-cube A glass of water with exactly one ice cube.
12 cat-butterfly A cat with butterfly wings.

Figure 13: The generated images over each number of batch queries on the prompt ”traffic-light”,
extra batch queries budgets (until 500) are given to the baselines methods for demonstration.
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Figure 14: The generated images over each number of batch queries on the prompt ”apple”, extra
batch queries budgets (until 500) are given to the baselines methods for demonstration.

Figure 15: The generated images over each number of batch queries on the prompt ”cyber-dog” for
each algorithms.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 16: The generated images over each number of batch queries on the prompt ”puppy-nose”
for each algorithms.

Figure 17: The generated images over each number of batch queries on the prompt ”robot-plant” for
each algorithms.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 18: The generated images over each number of batch queries on the prompt ”ocean” for each
algorithms.

Figure 19: The generated images over each number of batch queries on the prompt ”sand-glass” for
each algorithms.
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Figure 20: The generated images over each number of batch queries on the prompt ”penguin” for
each algorithms.

Figure 21: The generated images over each number of batch queries on the prompt ”basket” for each
algorithms.
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Figure 22: The generated images over each number of batch queries on the prompt ”ice-cube” for
each algorithms.

Figure 23: The generated images over each number of batch queries on the prompt ”cat-butterfly”
for each algorithms.
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(a) Pre-trained

(b) Fast Direct

Figure 24: The 32 randomly generated image for the prompt ”traffic-light” guided by Fast Direct by
utilizing 50 batch queries budget.
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(a) Pre-trained

(b) Fast Direct

Figure 25: The 32 randomly generated image for the prompt ”apple” guided by Fast Direct by
utilizing 50 batch queries budget.
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(a) Pre-trained

(b) Fast Direct

Figure 26: The 32 randomly generated image for the prompt ”cyber-dog” guided by Fast Direct by
utilizing 50 batch queries budget.
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(a) Pre-trained

(b) Fast Direct

Figure 27: The 32 randomly generated image for the prompt ”puppy-nose” guided by Fast Direct
by utilizing 50 batch queries budget.
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(a) Pre-trained

(b) Fast Direct

Figure 28: The 32 randomly generated image for the prompt ”robot-plant” guided by Fast Direct by
utilizing 50 batch queries budget.
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(a) Pre-trained

(b) Fast Direct

Figure 29: The 32 randomly generated image for the prompt ”ocean” guided by Fast Direct by
utilizing 50 batch queries budget.
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(a) Pre-trained

(b) Fast Direct

Figure 30: The 32 randomly generated image for the prompt ”sand-glass” guided by Fast Direct by
utilizing 50 batch queries budget.
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(a) Pre-trained

(b) Fast Direct

Figure 31: The 32 randomly generated image for the prompt ”penguin” guided by Fast Direct by
utilizing 50 batch queries budget.
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(a) Pre-trained

(b) Fast Direct

Figure 32: The 32 randomly generated image for the prompt ”basket” guided by Fast Direct by
utilizing 50 batch queries budget.
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(a) Pre-trained

(b) Fast Direct

Figure 33: The 32 randomly generated image for the prompt ”ice-cube” guided by Fast Direct by
utilizing 50 batch queries budget.
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(a) Pre-trained

(b) Fast Direct

Figure 34: The 32 randomly generated image for the prompt ”cat-butterfly” guided by Fast Direct
by utilizing 50 batch queries budget.
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