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Abstract

Event cameras offer unique advantages in scenarios involving high speed, low light,
and high dynamic range, yet their asynchronous and sparse nature poses significant
challenges to efficient spatiotemporal representation learning. Specifically, despite
notable progress in the field, effectively modeling the full spatiotemporal context,
selectively attending to salient dynamic regions, and robustly adapting to the vari-
able density and dynamic nature of event data remain key challenges. Motivated
by these challenges, this paper proposes EventMG, a lightweight, efficient, multi-
level Mamba-Graph architecture designed for learning high-quality spatiotemporal
event representations. EventMG employs a multilevel approach, jointly modeling
information at the micro (single event) and macro (event cluster) levels to compre-
hensively capture the multi-scale characteristics of event data. At the micro-level,
it focuses on spatiotemporal details, employing State Space Model (SSM) based
Mamba, to precisely capture long-range dependencies among numerous event
nodes. Concurrently, at the macro-level, Component Graphs are introduced to
efficiently encode the local semantics and global topology of dense event regions.
Furthermore, to better accommodate the dynamic and sparse characteristics of
data, we propose the Spatiotemporal-aware Event Scanning Technology (SEST),
integrating the Adaptive Perturbation Network (APN) and Multidirectional Scan-
ning Module (MSM), which substantially enhances the model’s ability to perceive
and focus on key spatiotemporal patterns. By employing this novel collaborative
paradigm, EventMG demonstrates the ability to effectively capture multi-level
spatiotemporal characteristics of event data while maintaining a low parameter
count and linear computational complexity, suggesting a promising direction for
event representation learning.

1 Introduction

Event cameras, a novel class of vision sensors that asynchronously record pixel brightness changes to
generate high-speed, sparse data streams [1], have garnered significant attention in recent years due
to their unique capabilities. Unlike traditional cameras with fixed time exposure, event cameras offer
microsecond-level temporal resolution and a dynamic range exceeding 120 dB—far surpassing the 60-
70 dB of conventional cameras [2, 3]. These attributes provide substantial advantages in challenging
scenarios such as high-speed motion, low-light conditions, and high-contrast environments [4].

Despite their distinct advantages, event cameras pose significant challenges for data processing. The
asynchronous generation of events in response to changes in pixel brightness results in outputs with
irregular spatiotemporal properties, high temporal resolution, and large instantaneous data volumes
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EventMG的整体工作流程由三个主要模块组成：1）图形构建，涉及构建微观层面的 Event Graph 和宏观层面的
Component Graph;2）Mamba-Graph 架构，在微观和宏观层面执行时空建模;3）多级融合，它结合了来自多个级别的
输出以生成最终的综合时空表示，然后为特定的下游任务提供。

The overall workflow of EventMG consists of three main modules: 1) Graph Construction, which involves constructing the 

micro-level Event Graph and the macro-level Component Graph; 2) Mamba-Graph Architecture, which performs spatiotemporal 

modeling at both the micro and macro levels; and 3) Multilevel Fusion, which combines the outputs from multiple levels to 

generate the final comprehensive spatiotemporal representation, which is then provided for specific tasks.

Construction

Aggr

AggregationAggr

Figure 1: The overall workflow of EventMG comprises three main modules: 1) Graph Construction, which
constructs the micro-level Event Graph and macro-level Component Graph; 2) Mamba-Graph Architecture,
which performs spatiotemporal modeling at both levels; and 3) Multilevel Fusion, which integrates outputs
across levels to produce the final spatiotemporal representation for downstream tasks.

[5]. These characteristics make it difficult to directly apply traditional algorithms, which are typically
designed for regular and dense data, to event-based modeling and representation learning.

A straightforward strategy to address the above challenges is to convert the event stream into
frame-based dense representations (e.g., event counting or time surfaces [6, 7]). This conversion
facilitates the application of established frame-based processing methods, including Transformer-
based architectures, which have shown improved performance on certain tasks [8, 9]. However, this
event-to-frame conversion undermines the core microsecond-level spatiotemporal precision of event
data, introducing potential motion blur in high-speed scenarios. It also increases data density and
redundancy in non-event regions, negating the intrinsic sparsity benefits of event data [10], thereby
limiting the full exploitation of its spatiotemporal richness.

To retain the spatiotemporal precision and sparsity, recent methods directly process sparse event
streams using point-based representations. Techniques based on point clouds [11–14], Graph Neural
Networks (GNNs) [15–18], and Spiking Neural Networks (SNNs) [19–22] have emerged to avoid
dense conversions. To further capture the dynamic context and spatiotemporal dependencies of
event streams, Transformer-based architectures have been integrated into sparse processing pipelines
[23, 24]. Although self-attention enables effective modeling of spatiotemporal features of dynamic
event streams, its quadratic complexity (O(N2)) poses scalability challenges for long sequences,
resulting in high computational costs and large models.

This paper proposes EventMG, a lightweight and efficient multilevel spatiotemporal representation
learning architecture specifically tailored for event data, to address the limitations of existing methods,
particularly concerning the spatiotemporal precision, representation adequacy, and computational cost.
EventMG achieves comprehensive modeling by synergistically capturing both micro-level (individual
event spatiotemporal details) and macro-level (event cluster structure and semantics) information,
enabling systematic feature extraction and fusion while preserving spatiotemporal precision. At its
core, EventMG features an innovative Mamba-Graph structure: Mamba [25], leveraging State Space
Models (SSMs) [26–28], efficiently models long-range spatiotemporal dependencies within large-
scale events at linear (O(N)) computational cost, capturing fine-grained dynamics. Concurrently,
Component Graphs [29] are employed to effectively encode local semantics and global topological
structures within dense event regions, thus realizing a deep integration of event points and their
relational graph context. Furthermore, to specifically adapt Mamba for the unique sparsity and
dynamism inherent in event streams, we design the Spatiotemporal-aware Event Scanning Technology
(SEST). Integrating an Adaptive Perturbation Network (APN) and a Multi-directional Scanning
Module (MSM), SEST innovatively enhances the Mamba framework, significantly improving its
capacity to perceive and model complex spatiotemporal patterns native to event data.

Experimental evaluation on representative dynamic tasks indicates that EventMG delivers perfor-
mance comparable to state-of-the-art heavyweight models, but at a lower computational and paramet-
ric cost. The results underscore the potential of our proposed architectural paradigm, which seeks to
strike a deliberate balance between computational efficiency, representational power, and respect for
the intrinsic properties of event data.
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The main contributions of this study are summarized as follows:

• We introduce a novel Mamba-Graph collaborative architecture that combines the strengths
of SSM-based and graph-based approaches, efficiently modeling dynamic event data from
micro-level spatiotemporal details to macro-level cluster patterns.

• We develop the Spatiotemporal-aware Event Scanning Technology (SEST) that specifically
adapts SSM-based Mamba to the unique sparse and irregular spatiotemporal characteristics of
event streams, significantly enhancing their capacity to model complex dynamic patterns.

• We present EventMG, a lightweight and efficient spatiotemporal event representation architecture
achieving an effective balance between high performance and minimal computational overhead
(linear complexity) without requiring pre-training, across diverse dynamic tasks.

2 Related Work

The unique asynchronous sparse data from event cameras poses challenges for efficient representation
learning and modeling, driving diverse processing strategies with varying efficiency and performance.
This chapter reviews key event data representation approaches and spatiotemporal sequence modeling
architectures, analyzing their characteristics and limitations.

2.1 Event Data Representation Strategies

Frame-based Representations: A common strategy to exploit mature frame-based methods (e.g.
CNNs, Vision Transformers) is to convert asynchronous, sparse event streams into dense, image-like
representations by accumulating events over fixed counts [30] or time windows [31], effectively
projecting and compressing temporal information into 2D or 3D tensors. This enables direct use of
existing architectures but compromises microsecond-level precision and destroys sparsity, leading to
motion blur, redundant computation, and low efficiency [10, 32, 33]. Furthermore, processing these
dense representations often requires heavyweight models, increasing latency [23], thus fundamentally
limiting the exploitation of event camera advantages.

Sparse Representations: Directly processing sparse events preserves spatiotemporal fidelity, better
aligning with event data characteristics. Point cloud methods [11, 12] treat events as spacetime points,
processed by adapted point networks or specialized kernels [13, 14], but must contend with unordered
sets and neighborhood definitions. Graph-based methods [15–17] use GNNs on constructed event
graphs to capture structure, offering flexibility but facing challenges in effective graph construction,
especially under event noise [34] and high dynamics. Spiking Neural Networks (SNNs) [35–37],
bio-inspired asynchronous models well-suited to event data due to their spike-driven mechanisms
[4, 38], offer high energy efficiency potential [21, 39] but present training challenges, representing a
distinct research path. Although these sparse methods preserve data fidelity, effectively modeling
long-range spatiotemporal dependencies in large-scale data remains the key challenge to deeply
understanding dynamic scenes and learning insightful spatiotemporal representations.

2.2 Spatiotemporal Sequence Modeling

Transformer-based Methods: Transformers [40–43] have been introduced into event processing
due to its strong representation capabilities and ability to model global dependencies through the
self-attention mechanism. These methods have been applied to frame-based sequences [8, 9, 44] and
directly to sparse event, point cloud, or graph node feature sequences [33, 45, 23, 24, 46]. However,
the quadratic complexity O(N2) of self-attention limits scalability, making it challenging to handle
large-scale, high-resolution event data in resource-constrained scenarios.

SSM-based Methods: To address Transformer inefficiency in long-sequence modeling, State
Space Models (SSMs) have emerged as a promising alternative [26–28, 47, 48]. Mamba [25] enables
efficient long-range modeling with linear complexity and hardware-friendly properties, rivaling
Transformers. However, applying Mamba to event streams is challenging due to sparsity, asynchrony,
and dynamics. EventMG addresses this by introducing APN and MSM modules to improve robustness
and spatiotemporal modeling while fully leveraging Mamba’s O(N) efficiency.

In summary, EventMG is designed to effectively address the challenges of processing event streams.
Building upon the Mamba enhancements (APN and MSM), EventMG further innovates by estab-
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lishing a Mamba-Graph collaborative architecture. This unique combination efficiently implements
multilevel modeling, capturing information from micro to macro scales and local to global con-
texts. As a pre-training-free, end-to-end framework, EventMG strikes an excellent balance between
performance and lightweight design.

3 Methodology

This section details our proposed EventMG, a lightweight end-to-end architecture for efficiently
learning multi-level spatiotemporal representations from event streams. We begin in Section 3.1 with
a high-level overview of the model’s overall architecture. The subsequent subsections then delve
into its core modules: micro-level representation learning (Section 3.2), macro-level representation
learning (Section 3.3), and the final multi-level fusion strategy (Section 3.4).

3.1 Overall Architecture

The overall architecture of EventMG is a multi-level information processing pipeline designed to
simulate the "event→object→scene" hierarchy inherent in event data. This pipeline deeply fuses
local event details with global context through three core stages: micro-level modeling, macro-level
aggregation, and multi-level feedback and fusion. The entire workflow is illustrated in Figure 1.

Specifically, the process begins at the micro-level, where input event slices are first constructed
into a sparse graph and then processed by the Spatiotemporal-aware Event Scanning Technology
(SEST) and the EventsMamba module to extract fine-grained node features encapsulating long-range
dependencies. Subsequently, at the macro-level, the model leverages these micro-level features to
construct a Component Graph and perform information aggregation, distilling the macro-level feature
that represents the global scene. Finally, through the serial and mutually-feeding mechanism, the
macro-level feature is fed back to enhance each micro-level representation, generating a final output
that is both detailed and context-aware. This design fully embodies our core philosophy of "starting
from the micro, abstracting to the macro, and then guiding the micro with the macro."

3.2 Micro-level: Representation based on Events

The processing in EventMG begins at the micro-level, focusing on individual events and their local
spatiotemporal context. The core objective at this level is to model fine-grained dynamics and high
temporal resolution inherent in event data.

3.2.1 Event Graph Construction

At the micro-level, we first process the continuous event stream. Following established methods
[10, 4], we employ a sliding window strategy with a fixed number of events, N, to segment the
stream into multiple event slices. This approach ensures that each slice contains a stable amount
of information and can adapt to the scene’s activity intensity, providing standardized inputs for
subsequent processing.

Within each event slice, every individual event is represented as a event node vi = (xi, yi, ti, pi),
which encapsulates its spatial coordinates, timestamp, and polarity information [4]. To capture local
relationships between events, a basic event graph G = (V,E) is constructed, where V is the set of
event nodes. We employ an efficient sparse graph construction strategy that establishes connections
by finding at most k neighbors for each node, rather than constructing a dense adjacency matrix. This
method ensures the graph’s storage and computational complexity is O(Nk), maintaining a linear
relationship with the number of events, N . Consequently, the memory footprint is predictable and
strictly controllable, which provides a fundamental guarantee for processing large-scale event streams.
The edges E of the graph are established based on spatiotemporal proximity, as defined below:

E(vi, vj) =

{
1 if

√
∥si − sj∥22 + c2(ti − tj)2 ≤ δst,

0 otherwise,
(1)

where an edge exists if the spatiotemporal distance, calculated as the L2 norm of the spatial component
∥si − sj∥2 and the scaled temporal component c|ti − tj |, does not exceed the threshold δst.
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Although graph construction defines the event’s topological structure, the initial node features contain
limited information and are insufficient for describing complex local dynamics. To address this, we
then introduce a lightweight Event Graph Neural Network (GNN) for local feature enhancement. The
module updates and enriches the representation of each node vi by aggregating information from its
local spatiotemporal neighborhood N (vi) = {vj | E(vi, vj) = 1}, thereby transforming the original,
discrete event point cloud into a graph rich with local features. This preliminary feature distillation
process provides high-quality input node features for subsequent operations.

3.2.2 Spatiotemporal-aware Event Scanning Technology (SEST)

To efficiently model long-range spatiotemporal dependencies at the micro level, we adopt the SSM-
based Mamba model [25]. However, its standard scanning struggles with the sparsity, asynchrony,
and dynamics of event data. To address this, we propose the Spatiotemporal-aware Event Scanning
Technology (SEST), which integrates APN and MSM modules to optimize event arrangement and
scanning (see Figure 2), enabling Mamba to better adapt to the uniqueness of event streams.

Adaptive Perturbation Network (APN): Although graph construction defines the event’s topolog-
ical structure, the initial node features contain limited information. To address this, we first employ a
lightweight Event Graph Neural Network (GNN) for local feature enhancement. The GNN module
updates and enriches the representation of each node vi by aggregating information from its local
spatiotemporal neighborhood N (vi) = {vj | E(vi, vj) = 1}, thereby transforming the original,
discrete event point cloud into a graph rich with local features. This preliminary feature distillation
process provides high-quality input node features, denoted as h, for subsequent operations.

Subsequently, the APN module enhances the model’s adaptability to event data and further optimizes
the event arrangement through a learnable coordinate perturbation mechanism. It consists of two
complementary paths, Local and Global, to jointly optimize the features:

hlocal
v = Conv1D(h), (2a)

hglobal
v = MLPglobal(h), (2b)

(∆x,∆y,∆t) = Tanh
(
MLPfinal(h

local
v + hglobal

v )
)
, (2c)

where, the Local path is processed by a convolution (Conv1d), which operates on the sequence
of node features sorted by timestamp t. Through its sliding convolutional kernel, it efficiently
captures short-term temporal dynamics between an event and its temporally adjacent neighbors.
Complementing this, the processing in the Global path targets all nodes, aiming to extract global
feature patterns independent of the sequential context. By fusing the outputs of these two paths, the
APN module computes the spatiotemporal perturbations (∆x,∆y,∆t) based on a comprehensive
judgment of both local temporal dynamics and global feature patterns. These perturbation values are
then applied to the original coordinates to generate the perturbed positions (x′i, y

′
i, t

′
i):

x′i = xi +∆x, y′i = yi +∆y, t′i = ti +∆t. (3)

The core objective of this adaptive coordinate adjustment is not merely to "correct" the spatiotemporal
positions of events, but rather to learn a more discriminative Effective Coordinate Space for the
subsequent MSM scanning module. This adaptive coordinate adjustment serves two main purposes:
(1) It enhances the expression of event dynamics by refining local spatiotemporal node arrangements
(e.g., promoting effective aggregation or dispersion in dense regions), thereby improving the model’s
robustness to noise and variation. (2) It ensures sufficient distinction across the x, y, and t dimensions,
laying a discriminative foundation for the subsequent multidirectional scanning.

Multidirectional Scanning Module (MSM): To overcome the limitations of unidirectional scan-
ning (e.g., the time-based sorting in standard Mamba) in capturing the irregular, multidimensional
structure of event data, we introduce the Multidirectional Scanning Module (MSM). The primary
function of this module is to construct a set of multidirectional event sequences in preparation for
subsequent long-range dependency modeling. It utilizes the effective coordinates optimized by
APN to sort the node set Vi along multiple fundamental dimensions dk, thereby generating a set of
sequences S . These scanning directions typically include forward and backward scans along the t, x,
and y axes, i.e., the direction set D = {t+, t−, x+, x−, y+, y−}.

S = {Sk = Scan(Vi, dk) | dk ∈ D}. (4)
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Figure 2: The Spatiotemporal-aware Event Scanning Technology (SEST) includes two modules: Adaptive
Perturbation Network (APN) and Multidirectional Scanning Module (MSM).

In summary, APN and MSM work in synergy to implement a data-driven, adaptive scanning strategy:
APN first learns a task-driven effective coordinate space that is born for scanning, after which MSM
performs multidirectional scans within this optimized space. The final output of this process is an
optimized set of events S , containing multiple sequential perspectives, which serves as the input for
the core modeling module in the next stage.

3.2.3 Micro-level Spatiotemporal Modeling

We introduce EventsMamba as our core micro-level modeling module, leveraging Mamba [25], an
efficient state-space model, to process large-scale event streams. This module takes as input the set of
multidirectional sequences S generated by MSM from APN-optimized coordinates.

By applying the Mamba core processor along these diverse sequential directions, EventsMamba
captures long-range spatiotemporal dependencies and dynamic patterns from multiple perspectives.
Finally, the processed results from all sequences are fused into the final fine-grained features hv via
an aggregation function, as follows:

hv = Aggr
Sk∈S

(Mamba(Sk)) (5)

Combined with Mamba’s inherent O(N) linear complexity, this design efficiently extracts node
features hv that capture detailed event-level dynamics and interactions.

3.3 Macro-level: Representation based on Components

Although micro-level modeling captures fine-grained spatiotemporal dynamics, it often lacks aware-
ness of global structure and large-scale patterns, resulting in incomplete representations. To address
this, we introduce a macro-level representation strategy based on Component Graphs to effectively
extract and organize such macro-structural information.

3.3.1 Component Graph Construction

Macro-level modeling begins by identifying and abstracting key structural units in the event stream.
Event-dense regions—such as object edges, texture boundaries, or areas with strong luminance
contrast—not only concentrate events in space and time but also carry important macro-structural and
semantic information. Motivated by their structure, these regions—often forming strongly connected
subgraphs—are formalized via the graph-theoretic notion of connected components [49]:

VC ⊆ V, EC ⊆ E,

∀vi, vj ∈ VC , there exists a path Pij ,

∀vk ∈ (V \ VC), no path connects vk to VC ,
|VC | ≥ nmin.

(6)

A connected component is defined as a maximal subgraph where any two nodes are path-connected
and no external node is connected to it. To exclude insignificant regions that may correspond to noise,
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we impose a minimum node count threshold nmin, retaining only components with |VC | ≥ nmin. Each
valid component C corresponds to a subgraph GC = (VC , EC).

Next, we construct the Component Graph as a macro-level structural representation from valid con-
nected components, each abstracted as a supernode. Given the typically small number of supernodes
representing high-level relationships, we adopt a fully connected strategy. The feature of each supern-
ode hC is obtained by average pooling over its constituent event nodes hv within the component,
which effectively captures essential characteristics while reducing processing complexity:

hC =
1

|VC |
∑
v∈VC

hv. (7)

The component graph offers three core benefits: (1) It provides a macro-level, structured view of event
stream, simplifying the underlying event graph by modeling scene structure and dynamics at a higher
level. (2) By selecting valid components, it denoises the data and highlights salient structures, yielding
a more robust basis for downstream feature learning. (3) Together with micro-level representations, it
forms the foundation of EventMG’s multilevel architecture, enabling cross-level interaction.

3.3.2 Macro-level Spatiotemporal Modeling

After constructing the Component Graph GC , we introduce the ComponentsNet module for macro-
level spatiotemporal modeling. As the key processing unit at this level, ComponentsNet captures
structural interactions between supernodes and scene-level dynamics. Leveraging Graph Neural
Networks (GNNs), the module performs message passing and node updates over the component graph,
aggregating information from connected supernodes to model their dependencies. This produces
high-level representations of the scene’s overall state and dynamics, offering essential macro-context
for guiding micro-level features in subsequent processing.

3.4 Multilevel Fusion for Comprehensive Representation

To obtain a unified and informative representation, EventMG introduces an adaptive multilevel fusion
mechanism based on learnable gating. The macro-level feature hC is first mapped via a learnable layer
fmap and assigned to each micro-level event node v ∈ VC as macro-context hC→v = fmap(hC).
A gating network then adaptively fuses the node’s micro feature hv with its macro-context hC→v,
producing the final fused feature hfused

v :
gv = σ(MLP([hv,hC→v])), (8a)

hfused
v = gv ⊙ hv + (1− gv)⊙ hC→v, (8b)

where gv is the gating weight learned by a multi-layer perceptron (MLP), [·, ·] denotes feature
concatenation, σ is the Sigmoid function, and ⊙ is element-wise multiplication.

This multilevel fusion mechanism integrates micro-level details with macro-level structure, enabling
fine-grained features to be contextually guided and macro patterns refined by local specifics. This
bidirectional interaction results in spatiotemporal representations that are robust, comprehensive, and
discriminative, effectively capturing fast local changes as well as global structural shifts.

4 Experiments

In this section, we evaluate EventMG on two representative tasks with high spatiotemporal dynamics:
Object Detection and Action Recognition, demonstrating its effectiveness in learning spatiotemporal
representations from dynamic event streams.

4.1 Datasets and Evaluation Metrics

Object Detection is evaluated on two traffic scene event camera datasets using three standard metrics.

• Gen1 Dataset [50]: The Gen1 Automotive Detection Dataset comprises over 39 hours of 304×240
event video, captured across urban, highway, and rural traffic scenarios. It contains over 255,000
manual annotations for pedestrians and cars, annotated at a frequency of 1-4 Hz.
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Table 1: Comparison on Gen1 and 1Mpx Datasets. Performance is reported in terms of parameters (Params),
mean Average Precision (mAP), and backbone inference time per batch (Time). A star (*) indicates estimated
values. Best results are in bold; second-best are underlined.

Method Backbone Params (M) Gen1 1Mpx

mAP (%) Time (ms) mAP (%) Time (ms)

Asynet [32] Sparse CNN 11.4 14.5 - - -
RRC-Events [63] CNN >100* 30.7 21.5 34.3 46.4
YOLOv3 Events [64] CNN >60* 31.2 22.3 34.6 49.4
AEGNN [15] GNN 20 16.3 - - -
Spiking DenseNet [22] SNN 8.2 18.9 - - -
ERGO-12 [44] Transformer 59.6 50.4 69.9 40.6 100.0
RED [51] CNN + RNN 24.1 40.0 16.7 39.3 24.1
RVT-B [8] Transformer + RNN 18.5 47.2 10.2 47.4 11.9
Nested-T [65] Transformer + RNN 22.2 46.3 25.9 46.0 33.5
GET-T [9] Transformer + RNN 21.9 47.9 16.8 48.4 18.2
S5-ViT-B [66] Transformer + SSM 18.2 47.4 8.16 47.2 9.57

EventMG (ours) GNN + SSM 1.96 53.7 8.66 47.4 9.63

• 1Mpx Dataset [51]: The 1 Megapixel Automotive Detection Dataset provides over 14 hours of
high-resolution event video and 25 million annotations for cars, pedestrians, and two-wheelers,
making it ideal for developing advanced detection models in dynamic traffic scenes.

• Evaluation Metrics: We evaluate model performance using three primary metrics: 1) Total
Parameters, indicating model complexity; 2) Mean Average Precision (mAP@0.5:0.95), computed
with COCO [52] toolkit to asses accuracy; 3) Mean inference Time, measuring runtime efficiency.

Action Recognition is assessed on four representative datasets using three evaluation metrics.

• THUE-ACT-50-CHL Dataset [53]: The dataset is a very challenging dataset with 50 action classes
and 2330 recordings, capturing actions of 18 students from various viewpoints in long corridor and
hall scenes using a DAVIS346 camera (346× 260), with each clip lasting 2–5 seconds.

• DVS Action Dataset [54]: The dataset contains 10 actions performed by 15 subjects in an office
environment, captured by a DAVIS346 event camera at 346× 260 resolution.

• HMDB51-DVS & UCF101-DVS [55]: Event-based versions of HMDB51 [56] and UCF101 [57],
converted using a DAVIS240 camera. HMDB51-DVS includes 6,766 clips across 51 classes, while
UCF101-DVS comprises 13,320 clips from 101 classes. Both use a resolution of 320× 240.

• Evaluation Metrics: We evaluate model performance based on three key metrics: 1) Parameters
(Params), reflecting model size and complexity; 2) GFLOPs, measuring the computational cost;
and 3) Accuracy (Acc), assessing predictive precision on the recognition task.

Notably, while action recognition datasets such as DVS128 Gesture [58] and Daily DVS [39] are
widely used, most advanced methods already achieve near-saturation accuracy close to 100%. To
better assess EventMG, we conduct experiments on the above more discriminative datasets.

4.2 Implementation Details

EventMG is built upon a hierarchical multi-stage architecture designed to extract comprehensive
spatiotemporal features. The implementation relies on PyTorch [59] for the core framework and
PyTorch Geometric (PyG) [60] for graph-based operations. The number of stages and their feature
dimensions are flexibly configured to align with the requirements of different downstream tasks,
such as object detection and action recognition. To ensure efficient processing of our custom graph
operations, parts of PyG’s underlying code were modified. The training pipeline is managed with
PyTorch Lightning on NVIDIA GPUs, and the model is optimized using the AdamW optimizer [61]
with a OneCycle learning rate schedule [62].
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4.3 Benchmark Comparison

4.3.1 Object Detection

To comprehensively evaluate the effectiveness of EventMG on event-based object detection tasks, we
compare it with several representative methods on two widely-used benchmark datasets: Gen1 and
1Mpx. The detailed results are presented in Table 1.

On the Gen1 dataset, EventMG demonstrates competitive performance, achieving the mAP of 53.7%.
Notably, the model stands out for its compact model size; including the task head, it has only 1.96M
parameters, making it very lean compared to similar methods. For instance, ERGO-12 [44] reaches
50.4% mAP with 59.6M parameters, whereas EventMG achieves higher accuracy with only 3.3% of
its model size. Furthermore, the efficiency advantage of the model also extends to inference, where it
runs significantly faster than high-performance models such as ERGO-12 (69.9 ms).

On the more challenging and higher-resolution 1Mpx dataset, EventMG remains competitive, achiev-
ing an mAP of 47.4%, which is comparable to the best-performing result from GET-T [9] (48.4%).
This performance is achieved while maintaining a significant efficiency advantage, utilizing a small
fraction of the parameters in contrast to GET-T’s 21.9M.

In summary, EventMG matches or outperforms existing methods across datasets while significantly
reducing model complexity and inference latency, demonstrating its effectiveness in learning and
integrating spatiotemporal patterns from event streams.

4.3.2 Action Recognition

Table 2: Comparison on THUE-ACT-50-CHL dataset.

Method Params (M) GFLOPs Acc

HMAX SNN [67] - - 0.327
Motion-based SNN [39] - - 0.473
EV-ACT [53] 21.3 29 0.585
EventMamba [10] 0.905 0.953 0.594

EventMG (Ours) 0.773 0.691 0.588

Table 3: Evaluation results on DVS Action dataset.

Method Params (M) GFLOPs Acc

STCA [68] 15.13 - 0.792
Motion-based SNN [39] - - 0.781
ST-EVNet [69] 1.6 - 0.887
TTPOINT [14] 0.334 0.587 0.927
EventMamba [10] 0.905 0.476 0.891
Two-stream SNN [70] 9.17 - 0.917

EventMG (Ours) 0.773 0.531 0.933

We evaluate EventMG on event-based action recognition across four popular datasets, comparing it
with leading methods. Results are shown in Tables 2, 3, and 4, with some baselines referenced from
[10] and supplemented by original sources.

On the challenging THUE-ACT-50-CHL dataset (Table 2), EventMG delivers strong performance.
Compared to EV-ACT [53], it achieves higher accuracy with only 3.6% of the parameters and 2.3%
of the GFLOPs. Although slightly behind EventMamba [10] in accuracy (0.588 vs. 0.594), EventMG
requires fewer parameters (0.773M vs. 0.905M) and less computation (0.691 vs. 0.953 GFLOPs).
These results confirm the efficiency of our proposed multilevel spatiotemporal modeling strategy.

On the DVS Action dataset (Table 3), EventMG achieves the highest accuracy among all methods
at 93.3%, while maintaining a relatively low parameter count (0.773M) and the second-lowest
computational cost (0.531 GFLOPs). These results highlight its balance between accuracy and
efficiency. Although prior work [10] noted the risk of overfitting on small-scale datasets, EventMG
mitigates this through the APN module, which enhances generalization to salient spatiotemporal
patterns, ensuring robust and efficient performance.

For the larger HMDB51-DVS and UCF101-DVS datasets converted from conventional videos,
EventMG demonstrates strong overall performance (Table 4). It achieves the lowest GFLOPs among
all methods and keeps the parameter count below 1M—slightly above TTPOINT [14] but still far
smaller than most advanced models. In terms of accuracy, while marginally below the best-reported
results in [10], EventMG outperforms most existing approaches, including TTPOINT. This favorable
trade-off is achieved without increasing internal feature dimensions, validating the effectiveness of
the proposed multilevel spatiotemporal architecture in modeling complex dynamic scenes efficiently.

9



Table 4: Evaluation results on HMDB51-DVS and UCF101-DVS.

Method HMDB51-DVS UCF101-DVS

Params (M) GFLOPs Acc Params (M) GFLOPs Acc

C3D [71] 78.41 39.69 0.417 78.41 39.69 0.472
I3D [72] 12.37 30.11 0.466 12.37 30.11 0.635
ResNet-34 [73] 63.70 11.64 0.438 - - -
ResNext-50 [74] 26.05 6.46 0.394 26.05 6.46 0.602
RG-CNN [55] 3.86 12.39 0.515 6.95 12.46 0.632
EVTC+I3D [75] - - 0.704 - - 0.791
EventMix [76] 12.63 1.99 0.703 - - -
Event-LSTM [77] - - - 21.4 - 0.776
TTPOINT [14] 0.345 0.587 0.569 0.357 0.587 0.725
EventMamba [10] 0.916 0.953 0.864 3.28 3.722 0.979

EventMG (Ours) 0.773 0.531 0.712 0.773 0.531 0.796

4.4 Ablation Studies
This section presents ablation studies to assess the impact of key EventMG components. Starting
from the full model, each module is removed individually and evaluated across two tasks (Table 5).

Table 5: Ablation results on Gen1 and THUE-ACT-50-CHL. Gen1 corresponds to object detection, and
THUE-ACT-50-CHL to action recognition. Note: Parameter counts on Gen1 exclude the task head (∼1.2M).

Ablation Modules Gen1 (Detection) THUE-ACT-50-CHL (Action)

Component Graph APN MSM Params (M) mAP Time (ms) Params (M) GFLOPs Acc

× × × 0.367 0.213 3.20 0.334 0.397 0.322
× ✓ ✓ 0.639 0.447 6.95 0.632 0.608 0.491
✓ × ✓ 0.555 0.410 6.81 0.561 0.589 0.502
✓ ✓ × 0.630 0.424 5.26 0.685 0.585 0.486
✓ ✓ ✓ 0.729 0.537 8.66 0.773 0.691 0.588

Component Graph models structural relationships among event clusters to provide macro-level
semantics. Removing this module results in a significant accuracy drop in both tasks, highlighting its
essential role in global structure modeling and cross-level feature fusion.

SEST-APN (Adaptive Perturbation Network) applies learnable coordinate perturbations to enhance
robustness and focus on salient spatiotemporal patterns. Its removal reduces complexity but causes a
sharp accuracy drop, confirming its value for dynamic adaptation and feature learning.

SEST-MSM (Multi-directional Scanning Module) captures spatiotemporal dependencies through
multidirectional scanning. Excluding this module degrades performance in both tasks, demonstrating
its importance in modeling diverse dynamic trajectories.

Impact of Scanning Directions. We conduct an ablation study on the scanning directions to validate
our multidirectional design. For this study, we employ a configuration of forward scans along the
t, x, and y axes, which represents an effective balance of performance and efficiency. On the Gen1
dataset, this three-direction model achieves an mAP of 53.7%, showing a significant synergistic gain
compared to unidirectional scans (t-axis only: 42.4%, x-axis only: 44.0%, and y-axis only: 43.8%).

5 Conclusion and Discussion
We propose EventMG, a Mamba-Graph collaborative architecture that systematically addresses
the intrinsic challenges of event data. It leverages GNNs for local topology and an innovative
SEST module to intelligently serialize graph information, enabling Mamba to model long-range
dependencies with linear complexity while achieving a multi-level understanding of the data. The
core contribution of EventMG lies in a novel design philosophy that seeks a delicate balance among
representational power, computational efficiency, and respect for the data’s intrinsic properties.

The limitations and future directions of EventMG warrant further exploration, including its generaliza-
tion across diverse tasks, robustness under extreme conditions, and the challenges of hyperparameter
tuning and interpretability inherent to its multi-module design. Future research should focus on ex-
ploring more efficient adaptive and interpretable methods to further refine this architectural paradigm.
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needed to reproduce the experiments, including the type of compute workers, memory, and
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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Answer: [Yes]
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broader implications.
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11. Safeguards
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Answer: [NA]
Justification: The paper poses no such risks.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
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or other labor should be paid at least the minimum wage in the country of the data
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Answer: [NA]
Justification: The core methods in this research do not involve Large Language Models
(LLMs) as any important, original, or non-standard components.
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A Preliminaries

A.1 State Space Models

State Space Models (SSMs) [78] provide a classical framework for modeling dynamic systems by
capturing the relationships between inputs and outputs through hidden states. These models describe
the evolution of a system in terms of state variables that are not directly observed. Formally, an SSM
is expressed as:

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t),
(9)

where h(t) ∈ RN represents the hidden state, x(t) is the input signal, and y(t) is the output signal.
The matrices A, B, and C are system parameters that govern the dynamics of the system.

For discrete-time inputs, the Zero-Order Hold (ZOH) method [79] is commonly used to discretize the
continuous-time model. The discretization of the system is given by:

Ā = exp(∆A),

B̄ = (∆A)−1(exp(∆A)− I) ·∆B,
(10)

where ∆ denotes the time step and exp(∆A) represents the matrix exponential. The discretized
system is then described by the following equations:

ht = Āht−1 + B̄xt,

yt = Cht.
(11)

Although this formulation allows for modeling of discrete-time inputs, the assumption of linear
time-invariance (LTI) restricts its flexibility. This limitation makes SSMs less adaptable to dynamic
or non-uniform data patterns, where the system dynamics may change over time.

A.2 Mamba: Linear-Time Sequence Modeling with Selective State Spaces

Mamba [25] extends the classical State Space Model framework by introducing dynamic, input-
dependent parameters, allowing the system to adapt in real time to varying input sequences. The key
difference lies in the system’s ability to modify its parameters based on the current input, enabling a
more flexible representation of dynamic systems. The formulation of Mamba is as follows:

ht = A(xt)ht−1 +B(xt)xt,

yt = C(xt)ht,
(12)

where A(xt), B(xt), and C(xt) are dynamic, learnable parameters that depend on the input sequence.
This flexibility allows Mamba to capture both long-range dependencies and local features, making it
more adaptable to complex data patterns.

A distinctive feature of Mamba is its selective mechanism, which enables the model to decide which
information should be propagated or discarded based on the current input token. This selective
information flow improves computational efficiency and enhances the ability of the model to capture
crucial dependencies in the data. By adjusting the influence of different parts of the input, Mamba is
able to focus on the most relevant information at each time step, leading to more efficient learning
and better generalization.

A.3 Graph Neural Networks

Graph Neural Networks (GNNs) [80–84] are deep learning models tailored for graph-structured
data, designed to extract high-order features from non-Euclidean domains by modeling interactions
between nodes. Unlike traditional deep learning models such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), which primarily target Euclidean data with regular
structures (e.g., images and text), GNNs are specifically built for scenarios where data is inherently
represented as graphs. Examples include social networks, molecular structures, and recommendation
systems, where connections between entities are complex and dynamically evolving.

The core mechanism of GNNs is message passing, which iteratively aggregates information from
neighboring nodes to update node representations. This approach enables GNNs to capture global

24



structural patterns and solve tasks such as node classification, link prediction, and graph classification,
establishing their significance in graph representation learning.

Given a graph G = (V,E), where V = {v1, v2, . . . , vN} is the set of nodes and E ⊆ V × V

is the set of edges, each node v ∈ V is associated with an initial feature vector h(0)
v ∈ Rd, and

edges euv ∈ E may carry feature vectors huv ∈ Rk. The neighborhood of a node v is denoted as
N (v) = {u | (u, v) ∈ E}. The update process at each layer in a GNN can be expressed as:

h(l+1)
v = ϕupdate

(
h(l)
v , ψaggregate

(
{h(l)

u | u ∈ N (v)}
))

, (13)

where h(l)
v is the representation of node v at layer l, ψaggregate aggregates information from neighbor-

ing nodes (e.g., sum, mean, max), and ϕupdate updates the node representation using this aggregated
information.

Early implementations of GNNs were introduced by Scarselli et al. [80], forming the foundation
for subsequent advancements. Over time, specialized variants have been developed to enhance the
expressiveness and efficiency of GNNs in different applications.

Graph Convolutional Network (GCN): The GCN model [81] simplifies the message-passing pro-
cess by using spectral graph convolutions. It enhances local feature propagation through normalized
adjacency matrices, making it efficient for smoothing features across neighbors. Its layer-wise update
is defined as:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W(l)

)
, (14)

where Ã = A + I is the adjacency matrix with self-loops, D̃ is the degree matrix, and W(l) ∈
Rd(l)×d(l)

is a learnable weight matrix.

Graph Attention Network (GAT) GAT [82] introduces an attention mechanism, allowing nodes
to dynamically weigh the importance of their neighbors during aggregation. This enables GAT to
capture heterogeneous relationships within the graph effectively. The update rule is:

h(l+1)
v = σ

 ∑
u∈N (v)∪{v}

α(l)
vuW

(l)h(l)
u

 , (15)

where α(l)
vu are attention coefficients computed by an attention mechanism (typically a shared linear

transformation followed by a LeakyReLU activation and normalized via Softmax across u), and
W(l) is a learnable weight matrix for transforming node features. Note the inclusion of v in its own
neighborhood for self-attention.

Graph Isomorphism Network (GIN) GIN [83] is designed to achieve maximum discriminative
power, theoretically matching the expressiveness of the Weisfeiler-Lehman (WL) graph isomorphism
test. It optimizes aggregation and update functions, often using a Multi-Layer Perceptron (MLP). A
common update rule is:

h(l+1)
v = MLP(l)

(1 + ϵ(l)) · h(l)
v +

∑
u∈N (v)

h(l)
u

 , (16)

where MLP(l) is a layer-specific MLP, and ϵ(l) is either a learnable parameter or a fixed scalar that
adjusts the weight of the central node’s feature.

GraphSAGE GraphSAGE (Graph SAmple and aggreGatE) [84] focuses on inductive representation
learning, enabling GNNs to generalize to unseen nodes or entirely new graphs. Instead of aggregating
features from all neighbors, it typically samples a fixed-size neighborhood for each node and applies
an aggregation function. A general update step can be written as:

h
(l)
N (v) = AGGREGATE(l)

(
{h(l−1)

u | u ∈ Nsampled(v)}
)

h(l)
v = σ

(
W(l) · CONCAT(h(l−1)

v ,h
(l)
N (v)) + b(l)

)
,

(17)
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where Nsampled(v) is the sampled neighborhood of v, AGGREGATE(l) can be functions like mean,
LSTM, or pooling, CONCAT denotes concatenation, and W(l) and b(l) are learnable parameters.
GraphSAGE is particularly effective for inductive tasks.

Each of these models enhances GNN capabilities through distinct technical innovations, achieving
great performance in tasks like node and graph classification.

B Discussion on Theoretical Limitations

This section provides an objective discussion on the inherent theoretical limitations of the foundational
modules our model relies on (GNNs and SSMs), as well as the analysis of the interpretability of
our proposed APN module. Understanding these limitations is key to clarifying the trade-offs and
motivations behind our EventMG hybrid architecture.

B.1 Limitations of Graph Neural Networks

GNNs based on message passing are powerful for processing structured data, but they also face
several inherent theoretical challenges:

Over-smoothing: In message-passing GNNs, the nodes’ features are formed by aggregating informa-
tion from their neighborhoods. As the network deepens, the receptive field of each node expands
and begins to significantly overlap with others. This causes the representations of different nodes to
become homogenous, ultimately losing their distinctiveness and discriminative power. Consequently,
modeling long-range dependencies by simply stacking GNN layers is extremely difficult, as the
deepening of the network is the very cause of this feature smoothing.

Scalability Limitations: When processing large-scale graphs or those with high-degree nodes, the
computational and memory costs of GNNs can grow exponentially with depth, a phenomenon known
as "neighbor explosion." This poses significant challenges to model scalability.

These limitations, particularly the over-smoothing problem, highlight the inadequacy of solely
stacking GNN layers for long-range dependency modeling and motivate the integration with other
paradigms, such as SSMs.

B.2 Limitations of State Space Models

SSMs, as represented by Mamba, demonstrate excellent capabilities in capturing long-range depen-
dencies with linear complexity. However, their nature as sequence models also introduces inherent
limitations:

Topology-agnostic Nature: The fundamental design of an SSM is to process one-dimensional,
ordered sequences, where its core function is to understand "before-and-after" relationships. However,
the structure of high-dimensional data such as graphs and images is topological and lacks a single,
natural sequential order. Therefore, before applying SSM, the data must be "flattened" into a 1D
sequence through a scanning process. This step is a performance bottleneck: a poor serialization
strategy can destroy the original local topology, preventing the SSM from learning meaningful
patterns. Consequently, an SSM’s effectiveness is highly dependent on the design of a "smart
serializer" that can effectively encode high-dimensional structural information into a 1D sequence.

Inherent Unidirectionality: Standard SSMs, including Mamba, are causal models that only process
unidirectional information flow. This is a limitation for many perception tasks that require global
context, unlike autoregressive generation tasks. Although this can be compensated for by using
bidirectional scanning, it typically requires additional computational and design complexity.

These limitations, especially the topology-agnostic nature, highlight the necessity of designing a
"smart serialization" front-end for SSMs that is aware of multidimensional structures.

B.3 Limitations in the Interpretability of APN

We had planned to provide a more intuitive validation for the APN module’s Effective Coordinate
Space hypothesis by visualizing the coordinate perturbation values (∆x,∆y,∆t). Our initial assump-
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tion was that these perturbations might exhibit an easily interpretable pattern, such as larger spatial
perturbations occurring at object edges to achieve a separation between foreground and background.

However, after conducting rigorous and comprehensive experiments on multiple samples, we found
that these perturbation values exhibit a high degree of non-linearity and sample dependency. Although
the expected trends were observed in a minority of samples, in most cases, the distribution of
perturbations presented complex patterns that are difficult to interpret intuitively. We attribute this
primarily to the following reasons:

The Non-linear Nature of Optimization: The perturbations learned by APN are not meant to align
with human intuition. Instead, they are driven by the final task loss to create optimal 1D sequences
for the subsequent MSM and Mamba modules. This optimization process is highly non-linear, and
its final solution may be a complex yet effective mapping that is not directly interpretable by humans.

Collective vs. Individual Effect: The effectiveness of APN likely stems from the collective effect
of all node perturbations, rather than relying on a few individual nodes producing large, intuitive
offsets. While the perturbation of a single node may have limited significance, the aggregate effect of
all perturbations collectively forms a coordinate space that is more advantageous for scanning.

We believe that presenting only a few well-behaved samples carries the risk of cherry-picking evidence
and may not objectively reflect the general behavior of APN in all cases. This essentially touches
upon the challenge we have already noted in the main Discussion section: the interpretability of
complex models’ internal mechanisms. Based on this consideration, we have decided to omit this
visual analysis from the current version and plan to explore this more challenging topic as a dedicated
direction for mechanistic research in future work.

C Downstream Task

C.1 Graph-to-Vision Pyramid

The Graph-to-Vision Pyramid (GVP) module is specifically designed for downstream vision tasks,
with the core objective of converting the sparse, unstructured graph node features from upstream
modules into the dense, multi-scale pyramidal feature maps favored by vision applications.

The core of this transformation is an efficient, index-based Sparse-to-Dense Mapping strategy. Specif-
ically, for each graph node feature hi that fuses micro- and macro-level information, we place it
directly onto a 2D feature grid at its corresponding original pixel coordinate (xi, yi). This process
initially forms a sparse feature map. Subsequently, we process this sparse grid with standard convolu-
tional layers to densify and convert it into a dense base feature map. From this base map, multi-layer
projection operations are used to generate feature maps at different resolutions, {F1,F2, . . . ,FK},
which collectively form the visual pyramid.

It is worth noting that while this process does not explicitly preserve the graph’s edge structure, the
key semantic information is effectively embedded into the final multi-scale visual features because
the input node features hi have already been deeply encoded with rich spatiotemporal and structural
relationships by the upstream modules. This mapping strategy, being based entirely on indexing
operations, is highly parallelizable and therefore extremely efficient for GPU execution.

For non-visual tasks or those that only require a global feature representation, the GVP module can
be replaced with other more suitable pooling or processing techniques. This modular design ensures
the flexibility and adaptability of our overall framework to a diverse range of tasks.

C.2 Detection Head: RT-DETR

Our EventMG employs RT-DETR [85] as its detection head, with a parameter size of approximately
1.20M. RT-DETR (Real-Time Detection Transformer) is the first end-to-end real-time detection
model, designed to accelerate the DETR (Detection Transformer) framework while enhancing query
selection for improved detection accuracy. By addressing computational bottlenecks in traditional
Transformer-based object detection, RT-DETR significantly enhances both efficiency and accuracy,
making it a practical choice for real-time vision applications.
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1. Architecture and Key Enhancements RT-DETR is composed of three principal components.
First, the backbone extracts multi-scale features from the input image, serving as the foundation for
subsequent processing. Second, the Efficient Hybrid Encoder improves computational efficiency
by decoupling intra-scale feature interactions from cross-scale feature fusion, effectively reducing
redundancy while maintaining rich contextual information. Third, the Transformer Decoder employs
iterative refinement to optimize object queries using auxiliary prediction heads.

A key innovation in RT-DETR is the Uncertainty-Minimal Query Selection mechanism, which
refines target queries by reducing ambiguity, leading to greater robustness and a lower false positive
rate. This mechanism ensures that the most relevant object representations are selected during
detection, improving precision in complex scenes.

2. Loss Function RT-DETR follows an end-to-end training approach similar to DETR, incorporat-
ing a dynamic matching strategy for target assignment. The loss function is formulated as:

L = λclsLcls + λboxLbox + λgiouLgiou, (18)
where Lcls represents the classification loss, implemented using Focal Loss to improve the handling
of imbalanced class distributions. The term Lbox is the L1 loss applied to bounding box regression,
ensuring precise localization of detected objects. Additionally, Lgiou employs Generalized IoU (GIoU)
loss, which enhances bounding box alignment and optimizes spatial consistency between predicted
and ground-truth boxes.

3. Performance and Efficiency RT-DETR achieves state-of-the-art results on the COCO dataset,
demonstrating a strong balance between detection accuracy and inference speed. RT-DETR-R50
achieves 53.1% mAP while running at 108 FPS on an NVIDIA T4 GPU, while RT-DETR-R101
reaches 54.3% mAP at 74 FPS. These results outperform many existing YOLO-based models,
positioning RT-DETR as a highly effective choice for real-time detection scenarios.

Compared to conventional Transformer-based detectors, RT-DETR significantly reduces computa-
tional overhead while maintaining end-to-end training benefits. Its capability to efficiently process
complex object scenes makes it particularly well-suited for event-based vision applications within the
EventMG framework.

C.3 Detection Head: YOLOX

YOLOX [86] is included in our study as an optional alternative detection head. Although detection
results based on YOLOX are not reported in this work, it remains one of the widely adopted detection
heads in the field. As an advanced variant of the YOLO series, YOLOX enhances detection accuracy
while maintaining computational efficiency. It improves upon YOLOv3 and YOLOv5 by introducing
an anchor-free paradigm, a decoupled detection head, and the SimOTA target assignment strategy,
effectively addressing the limitations of anchor dependency and suboptimal target assignment in
earlier YOLO models.

1. Architecture and Key Enhancements The YOLOX architecture comprises four main com-
ponents. The backbone, typically based on DarkNet53 or CSPNet, extracts hierarchical feature
representations from the input image. The Feature Pyramid Network (FPN) and Path Aggregation
Network (PAN) refine multi-scale feature fusion, significantly improving the detection of small
objects. The decoupled detection head independently processes classification and regression tasks,
reducing task conflicts and improving both convergence speed and accuracy. Lastly, the SimOTA
target assignment strategy dynamically assigns positive samples using optimal transport theory,
leading to superior target matching and robustness.

Three major improvements distinguish YOLOX from its predecessors. First, the anchor-free detection
approach eliminates reliance on predefined anchor boxes, simplifying training and reducing the need
for hyperparameter tuning. Second, the decoupled detection head enables separate processing for
classification and localization, leading to higher precision in object detection. Third, the SimOTA tar-
get assignment mechanism enhances label assignment flexibility, particularly benefiting the detection
of occluded and small objects.
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2. Loss Function The loss function of YOLOX is formulated as follows:
L = Lcls + λregLreg + λiouLiou, (19)

where: - Lcls represents the classification loss (Cross Entropy Loss). - Lreg denotes the bounding box
regression loss (L1 loss). - Liou is the IoU-based loss, optimizing bounding box localization accuracy.

3. Performance and Efficiency YOLOX achieves state-of-the-art performance on the COCO
dataset. Specifically, YOLOX-L attains 50.0% AP on 640×640 input resolution, outperforming
YOLOv5-L (48.2% AP). Additionally, its lightweight variants, YOLOX-Tiny and YOLOX-Nano,
achieve 32.8% and 25.3% AP, respectively, making them highly suitable for real-time and resource-
constrained applications.

Compared to RT-DETR, YOLOX’s anchor-free framework facilitates faster inference and lower
computational overhead. However, it may be less suited for fully end-to-end detection tasks due to its
separate processing pipeline. Within the EventMG framework, YOLOX is employed as an alternative
detection head, offering flexibility for different event-based vision applications, particularly those
requiring real-time performance.

D Hyperparameter Sensitivity Analysis

This section presents a sensitivity analysis of several key hyperparameters in EventMG to validate
the robustness of our model design and the rationale for our parameter choices. All experiments are
conducted on the Gen1 dataset, with mAP used as the performance metric.

Table 6: Hyperparameter sensitivity analysis. All experiments are conducted on the Gen1 dataset,
with mAP as the metric. Bold values indicate the default settings used in our paper.

N nmin δst

Value mAP Value mAP Value mAP

10,000 0.471 50 0.529 0.01 0.498
20,000 0.537 100 0.537 0.02 0.531
30,000 0.549 150 0.534 0.05 0.537

200 0.522 0.10 0.533
0.15 0.534

D.1 Impact of Event Count

In our method, we employ a strategy of using a fixed number of events, N (rather than a fixed time
window), to segment the event stream. This design effectively constitutes an Activity-driven Dynamic
Frame Rate: in scenes with dense events, the time required to acquire N events is short, equivalent
to a ’high frame rate’; conversely, in sparse scenes, the time taken is longer, equivalent to a ’low
frame rate’. This mechanism allows the model to avoid processing information-less ’empty windows,’
thereby enabling efficient use of computational resources.

To investigate the impact of the value of N on performance, we conducted a sensitivity analysis,
with the results shown in Table 6. The analysis clearly shows that when N is halved from 20,000 to
10,000, the model’s performance drops significantly (-12.3%) due to insufficient input information
and an inability to capture the complete spatiotemporal structure. Conversely, increasing N by 50%
to 30,000 yields only a marginal gain in performance (+2.2%). Therefore, N=20,000 is selected as an
effective balance point between accuracy and efficiency for the model.

D.2 Impact of Minimum Component Size

The parameter nmin is used to filter out excessively small event clusters when constructing the
macro-level component graph. In our design, nmin acts merely as a coarse-grained noise filter
rather than a precise object segmenter. Its effectiveness is based on a key observation: event clusters
generated by the motion of real objects are typically much larger than those formed by random noise.

29



More importantly, our subsequent macro-micro fusion design provides a degree of fault tolerance.
The final refined predictions still rely on micro-level features, with macro-level information serving
only as contextual guidance. This means that even if the filtering by nmin is imperfect (e.g., one
component containing multiple objects, or multiple components corresponding to a single object), the
model can still distinguish them based on micro-level features, which greatly reduces the system’s
sensitivity to nmin.

The quantitative analysis results, as shown in Table 6, confirm the robustness of our design. Adjusting
nmin within a four-fold range (50 to 200) results in largely stable model performance, proving that
the overall architecture is not sensitive to this hyperparameter.

D.3 Impact of Spatiotemporal Distance Threshold

The threshold δst is used to define the neighborhood range of nodes when constructing the initial
event graph. Our sensitivity analysis on this parameter (see Table 6) reveals a key phenomenon of
asymmetric sensitivity.

On one hand, when δst is too small (e.g., 0.01), model performance drops sharply. This is because
event data is not uniformly distributed in spacetime but rather clusters along contours and edges
generated by object motion. An excessively small threshold fails to connect these physically close-
related events, thereby disrupting the graph’s fundamental topology.

On the other hand, once δst reaches a reasonable value capable of capturing the local neighborhood
(e.g., ≥0.02), the model’s performance enters a broad and stable operating range. This robustness to
larger threshold values is due to two safeguard mechanisms in our design: 1) The hard constraint of
the maximum number of neighbors, k, prevents nodes from connecting to too many neighbors even
with a large threshold; 2) The micro-macro fusion feedback architecture has strong fault tolerance,
which can mitigate the noise effects of redundant connections.

This analysis indicates that our model does not rely on a fragile optimal value for δst. Although
adaptive threshold schemes, such as [87], represent a more advanced direction in the field, they are
often accompanied by higher computational costs. How to strike a balance between the flexibility
of adaptive methods and the simple efficiency of our current strategy is a topic worthy of future
exploration.
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