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ABSTRACT

Although deep networks are typically used to approximate functions over high
dimensional inputs, recent work has increased interest in neural networks as func-
tion approximators for low-dimensional-but-complex functions, such as represent-
ing images as a function of pixel coordinates, solving differential equations, or
representing signed distance functions or neural radiance fields. Key to these re-
cent successes has been the use of new elements such as sinusoidal nonlineari-
ties or Fourier features in positional encodings, which vastly outperform simple
ReLU networks. In this paper, we propose and empirically demonstrate that an
arguably simpler class of function approximators can work just as well for such
problems: multiplicative filter networks. In these networks, we avoid traditional
compositional depth altogether, and simply multiply together (linear functions of)
sinusoidal or Gabor wavelet functions applied to the input. This representation
has the notable advantage that the entire function can simply be viewed as a linear
function approximator over an exponential number of Fourier or Gabor basis func-
tions, respectively. Despite this simplicity, when compared to recent approaches
that use Fourier features with ReLU networks or sinusoidal activation networks,
we show that these multiplicative filter networks largely outperform or match the
performance of these approaches on the domains highlighted in these past works.

1 INTRODUCTION

Neural networks are most commonly used to approximate functions over high-dimensional input
spaces, such as functions that operate on images or long text sequences. However, there has been a
recent growing interest in neural networks used to approximate low-dimensional-but-complex func-
tions: for example, one could represent a continuous image as a function f : R2 → R3 where the
input to this function specifies (x, y) coordinates of a location in the image, and the output specifies
the RGB value of the pixel at that location. However, two recent papers in particular have argued
that specific architectural changes are required to make (fully-connected) deep networks suitable to
this task: Sitzmann et al. (2020) employ sinusoidal activation functions within a multi-layer net-
works (called the SIREN architecture); and Tancik et al. (2020) propose random Fourier features
input to a traditional ReLU-based network. Both papers show that the resulting networks can ap-
proximate these low-dimensional functions much better than simple feedforward ReLU networks,
and achieve striking results in representing fairly complex functions (e.g. 3D signed distance fields
or neural radiance fields) with a high degree of fidelity. However, the precise benefit of sinusoidal
bases or a first layer of Fourier features seems difficult to characterize, and it remains unclear why
such representations work well for these tasks.

∗The first three authors contributed equally, listed in alphabetical order by last name.
†Work done while at Bosch Center for Artificial Intelligence.
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In this paper, however, we argue and empirically demonstrate that an arguably simpler class of func-
tions can work as well or better than these previously-proposed networks on this task. Specifically,
we propose an architecture we call the multiplicative filter network (MFN). Unlike a traditional
multi-layer network that achieves representation power through compositional depth, the MFN in-
stead simply repeatedly applies nonlinear filters (such as a sinusoid or a Gabor wavelet function) to
the network’s input, then multiplies together linear functions of these features. The notable advan-
tage of this representation that, owing to the multiplicative properties of Fourier and Gabor filters,
the entire function is ultimately just a linear function of (an exponential number of) these Fourier
or Gabor features of the input. Indeed, we can express the exact linear form of these MFNs, which
can make their analysis considerably simpler than that for deep networks, where compositions of
nonlinear activation’s make the entire function difficult to characterize.

In this work, we show that despite this simplicity, the proposed networks often perform as well or
better than the previously proposed SIREN or Fourier feature networks. Specifically, we compare
our approach on networks with comparable numbers of parameters to the exact benchmarks pro-
posed in the SIREN and Fourier features papers. We show that MFNs achieve better performance
deltas when increasing the depth or width of the networks. Despite this, we do emphasize that
SIREN networks, in particular, appear to retain some notable advantages over MFNs, such as a bias
towards smoother regions in the represented function and its gradients. However, especially given
the fact that MFNs ultimately just correspond to a linear Fourier or Wavelet representation of a low-
dimensional function, we believe they should be considered a standard benchmark for future work
on such problems, to indicate where the compositional depth of typical deep networks can propose
a substantial benefit.

2 BACKGROUND AND RELATED WORK

Our approach is related to many previous works in Fourier and Wavelet transforms, random Fourier
features, and implicit neural representations. We explore the connection among the areas below.

Fourier and Wavelet transforms. Transforming time or space domain signals to frequency domain
using transforms such as Fourier and Wavelet transforms have been at the heart of many develop-
ments in image processing, signal processing, and computer vision. In particular, the Fourier trans-
form (Bracewell & Bracewell, 1986; Vetterli et al., 2014) and its various forms have found usage in
myriad applications, such as spectroscopy, quantum mechanics, signal processing. Wavelet trans-
forms, which in particular aid in multi-scale analysis, have been found to be particularly useful in
data compression, JPEG2000 (Rabbani, 2002) being one example.

Random Fourier features. A seminal work by Rahimi & Recht (2008) demonstrates the power of
Fourier transform in machine learning applications. They show that simply projecting the original
dataset into random Fourier bases vastly improves the expressiveness of models as it approximates
kernel computations. Many subsequent works apply the Fourier features and variations (Rahimi &
Recht, 2009; Le et al., 2013; Yu et al., 2016) to improve machine learning algorithm performance in
many domain areas, including classification (Sun et al., 2018; Rawat et al., 2019), regression (Avron
et al., 2017; Brault et al., 2016), clustering (Chitta et al., 2012; Liu et al., 2019), online learning (Lin
et al., 2014; Hu et al., 2015), and deep learning (Xue et al., 2019; Mehrkanoon & Suykens, 2018;
Rick Chang et al., 2016; Mairal et al., 2014; Jacot et al., 2018; Tancik et al., 2020).

Implicit neural representations. A recent line of work in representing signals as a continuous
function parameterized by neural network (instead of using the traditional discrete representation)
is gaining popularity. This strategy has been used to represent different objects such as images
(Nguyen et al., 2015; Stanley, 2007), shapes (Park et al., 2019; Genova et al., 2019; Chen & Zhang,
2019; Chabra et al., 2020), scenes (Mildenhall et al., 2020; Sitzmann et al., 2019; Jiang et al., 2020;
Niemeyer et al., 2020), and textures (Oechsle et al., 2019; Henzler et al., 2020). In most of these
applications, the standard neural networks architecture with multi-layer perceptrons and ReLU ac-
tivation function is often used. Recently, motivated by the success of Fourier transform in machine
learning, a few papers have suggested architectural changes that integrate periodic nonlinearities into
the network. Mildenhall et al. (2020); Zhong et al. (2020); Tancik et al. (2020) proposed the use of
sinusoidal mapping of the input features (Rahimi & Recht, 2008) that uses positional encoding and
Gaussian random distribution in the mapping. Others (Klocek et al., 2019; Sitzmann et al., 2020)
have proposed the use of sinusoidal activation function within a multi-layer perceptron architecture.
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Both of these strategies are demonstrated to vastly improve the results on many object representation
tasks.

3 MULTIPLICATIVE FILTER NETWORKS

A traditional k-layer deep network f : Rn → Rm is typically defined by a recurrence such as:

z(1) = x

z(i+1) = σ
(
W (i)z(i) + b(i)

)
, i = 1, . . . , k − 1

f(x) = W (k)z(k) + b(k)

(1)

where σ denotes a nonlinearity applied elementwise, W (i) ∈ Rdi+1×di and b(i) ∈ Rdi+1 denote the
weight and bias of the ith layer, and z(i) ∈ Rdi denotes the hidden unit at layer i. We refer to these
networks as compositional depth networks, because each nonlinearity is applied compositionally to
outputs of the previous nonlinearity in order to achieve its representational complexity.

The SIREN or Fourier feature networks of (Sitzmann et al., 2020) and Tancik et al. (2020) respec-
tively can be viewed as simple specializations of this structure. In a SIREN network, one uses the
sinusoid σ(x) = sin(x) as the nonlinearity, plus proper initialization of the weights and scaling of
the input. In a Fourier features network, one replaces the input layer with

z(1) =

[
sin(Ωx+ φ)
cos(Ωx+ φ)

]
(2)

where Ω ∈ R
d1
2 ×n is matrix of random N (0, τ2) variables (τ being a hyperparameter of the

method), but with the typical ReLU nonlinearities σ(x) = ReLU(x).

Our proposed multiplicative filter network, in contrast, uses a different recursion that never results
in composition of nonlinear functions. Specifically, an MFN is defined via the following recursion

z(1) = g
(
x; θ(1)

)
z(i+1) =

(
W (i)z(i) + b(i)

)
◦ g
(
x; θ(i+1)

)
, i = 1, . . . , k − 1

f(x) = W (k)z(k) + b(k)

(3)

where ◦ denotes elementwise multiplication, W (i), b(i), z(i) are all defined as above, but where
g : Rn → Rdi is parameterized by parameters θ(i) (the size of θ(i) can vary to implicitly define
the output dimensions di) and denotes a nonlinear filter applied to the input directly. Of immediate
importance here is that in such a network, we never apply a nonlinearity to the output of a previous
nonlinearity. All the nonlinearity of the network occurs within the g functions; layers z(i), after
passing through a linear function, are simply multiplied by new filters of the input. This results in
a considerably different type of function that is currently employed by most multi-layer networks,
and indeed it is largely only by convention that we refer to such a function as a “network” at all.

We now present two instantiations of the MFN, using sinusoids or a Gabor wavelet as the filter
g; we call these two networks the FOURIERNET and GABORNET respectively. As we show, the
crucial property of a function f represented by a FOURIERNET or GABORNET is that the entire
function f can also be written as a linear combination of sinusoids and Gabor wavelets of the input
respectively (albeit an exponentially large number of such features, but of course also with a highly
reduced space of allowable coefficients on this exponential number of terms, since there are only a
polynomial number of parameters that define the MFN). Thus, we would claim that the MFN really
looks more like a (rich) Fourier or Wavelet representation of the underlying signal, just one that
happens to have a similar parameterization as deep networks (and which can be tuned by typical
gradient descent methods).

3.1 MULTIPLICATIVE FOURIER NETWORKS

As our first instantiation of the MFN, we consider using a simple sinusoidal filter

g(x; θ(i)) = sin(ω(i)x+ φ(i)) (4)
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with parameters θ(i) = {ω(i) ∈ Rdi×n, φ(i) ∈ Rdi}. We term such a network the FOURIERNET, as
the sinusoidal activation (with arbitrary phase shifts, to represent sine or cosine functions equally)
corresponds naturally to a Fourier random feature representation of the entire function.

An immediate and compelling feature of the FOURIERNET, compared to networks based upon com-
position, is that its output can be directly viewed as a linear function of (an exponential number of)
Fourier bases, with a low-rank set of coefficients determined by the parameters of the network. This
is conveyed by the following theorem.
Theorem 1. The output of a Fourier Network is given by a linear combination of sinusoidal bases,

fj(x) =

T∑
t=1

ᾱt sin(ω̄tx+ φ̄t) + b̄, (5)

for some coefficients ᾱ1:T , frequencies ω̄1:T , phase offsets φ̄1:T , and bias term b̄.

In other words, the FOURIERNET represents its final function as a linear combination of traditional
Fourier bases, just as do “classical” random Fourier features, for instance. The key element of the
proof (given in the appendix) is the fact that for two Fourier filters, with parameters ω, φ and τ, ψ
respectively, their elementwise product can be transformed to a sum of the same type of filters

sin(ωx+ φ) ◦ sin(τx+ ψ) =
1

2
cos ((ω − τ)x+ φ− ψ)− 1

2
cos ((ω + τ)x+ φ+ ψ) (6)

(note that the cosine can be expressed as a sine with a separate phase offset). Moreover, an inspection
of the proof also lets us compute the exact coefficients of the linear expansion, as a function of the
network parameters. This is shown in the following corollary.

Corollary 1. Let i1, i2, . . . , ik−1 range over all
∏k−1

j=1 dj possible indices of each hidden unit of
each layer of an MFN, and let s2, . . . , sk ∈ {−1,+1} range over all 2k−1 possible binary signs;
then the expansion of z(k)

ik
from (2) is given by all the terms

ᾱ =

{
1

2k−1
W

(k−1)
ik,ik−1

. . .W
(2)
i3,i2

W
(1)
i2,i1

}
ω̄ =

{
skω

(k)
ik

+ . . .+ s2ω
(2)
i2

+ ω
(1)
i1

}
φ̄ =

{
skφ

(k)
ik

+ . . .+ s2φ
(2)
i2

+ φ
(1)
i1

+
π

2

k∑
i=2

sk

}
.

(7)

with a similar form for terms that begin at the i > 1 layer, multiplied by the corresponding b(j)
ij

term.

This corollary follows simply by inspection of the proof in the appendix, noting that each additional
multiplicative layer creates both a positive and negative combination of frequencies in the sinusoid
terms, and a multiplication of the corresponding entries of W . In other words, the multiplicative
“depth” of the FOURIERNET allows it to represent an exponential number of sinusoidal functions,
but with the constraint that the actual number of coefficients on these features is given by a “low-
rank” tensor consisting mainly of the coefficients in the W matrices. This expansion also suggests
a method for initializing parameters specific to this network in a manner that scales appropriately
with the network size. Specifically, however W (i)s are initialized (typically random uniform or
Gaussian, though here with an additional scaling factor that depends on the relative scale of the
input), one should divide these terms by

√
k, to ensure that the variance of the final frequency ωt is

independent of the number of layers.

3.2 MULTIPLICATIVE GABOR NETWORKS

A well-known deficiency of the pure Fourier bases is that they have global support, and thus may
have difficulty representing more local features. A common alternative to these bases is the use of
Gabor filter to capture both a frequency and spatial locality component. Specifically, we consider a
Gabor filter of the form

gj(x; θ(i)) = exp

(
−
γ

(i)
j

2

∥∥∥x− µ(i)
j

∥∥∥2

2

)
sin
(
ω

(i)
j x+ φ

(i)
j

)
(8)
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Figure 1: Left: Performance of various models on an image representation task (top row) and three
frames from a video representation task (remaining rows). Leftmost column shows ground truth.
Right: PSNR of each model in the image reconstruction task for the first 1000 training iterations.

with parameters θ(i) =
{
γ

(i)
1:di
∈ R, µ(i)

1:di
∈ Rn, ω

(i)
1:di
∈ Rn, φ

(i)
1:di
∈ R

}
(here µ

(i)
j denotes the

mean of the jth Gabor filter and γ(i)
j denotes the scale term), and where for simplicity we spec-

ify the functional form of each j = 1 . . . , di coordinates of the function g : Rn → Rdi . We call the
MFN using this filter the GaborNet.

As with the FourierNet, a compelling feature of the Gabor network is that the final function f can
be represented as a linear combination of Gabor filters. This is captured by the following theorem:

Theorem 2. The output of a Gabor Network is given by a linear combination of Gabor bases,

fj(x) =

T∑
t=1

ᾱt exp

(
−1

2
γ̄t‖x− µ̄t‖2

)
sin(ω̄tx+ φ̄t) + b̄, (9)

for coefficients ᾱ1:T , scales γ̄1:T , means µ̄1:T , frequencies ω̄1:T , phase offsets φ̄1:T , and bias term b̄.

The proof is given in the appendix, but the basic procedure is the same as the above: using the fact
that just like Fourier filters, the product of Gabor filters is also a linear combination of (a different
set of) Gabor filters. Likewise, we can also compute the explicit form of the coefficients and for
this linear basis expansion, with the explicit form again given in the appendix. One relevant point,
though, is how we choose initializations for the γ and µ parameters. Since γ effectively acts as an
inverse covariance term of a Gaussian, a Gamma(α, β) random variable (the conjugate prior of the
Gaussian inverse covariance), is a reasonable choice for this parameter. And since the γ̄ functions
in the final linear expansion end up being a sum of the individual random γ(i) terms at each layer,
we scale each layer’s α term by 1/k to effectively control this parameter at the final layer. We also
simply choose each µ(i) to be uniformly distributed over the range of the allowable input space x.

4 EXPERIMENTAL RESULTS

We test MFNs on a broad range of representation tasks, showing that the relative simplicity of
MFNs improves upon the performance of existing neural representation methods. Our set of ex-
periments draws from those presented in Sitzmann et al. (2020) alongside SIREN (image repre-
sentation, shape representation, and differential equation experiments) and in Tancik et al. (2020)
alongside Fourier feature networks with Gaussian random features, which we call FF Gaussian
(image generalization and 3D inverse rendering experiments). In each case, we compare against
the set of models tested in the original experiment (generally, either SIREN or FF Gaussian,
along with a basic ReLU MLP). A PyTorch implementation of MFN is available at https:
//github.com/boschresearch/multiplicative-filter-networks, and full de-
tails on hyperparameters and training specifications are available in the appendix.
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Figure 2: Image generalization samples from the Natural and Text datasets.

4.1 IMAGE REPRESENTATION & GENERALIZATION

Table 1: PSNR of each model’s recon-
struction in image and video representa-
tion tasks after 10,000 training iterations.
For video representation, mean ± stan-
dard deviation over all frames is reported.

Method PSNR (in dB)
Image Video

FF Basic 20.13 24.09± 1.03
FF Positional 40.09 27.90± 0.99
SIREN 56.54 30.58 ± 0.93
FOURIERNET 43.32 27.93± 0.91
GABORNET 73.98 29.83± 0.71

We first examine the ability of several networks ar-
chitectures in the task of image representation as de-
scribed in Section 1, where we fit the network to a func-
tion f : R2 → Rc using a dataset where input coor-
dinates (x, y) corresponding to the output pixel value
at those coordinates (with c = 1 or 3 for grayscale
or RGB images, respectively). To demonstrate this,
we construct such a dataset from a 256 × 256 pixel
grayscale image and fit various models using a sim-
ple mean squared error (MSE) loss, including SIREN,
GABORNET, FOURIERNET, and ReLU MLPs with and
without positional encoding (PE). Visual results and
a plot of PSNR early in training are shown in (Fig-
ure 1). In particular, both FOURIERNET and GABOR-
NET show quicker initial convergence than other archi-
tectures. PSNRs after training (Table 1) show that SIREN eventually outperforms FOURIERNET,
while GABORNET remains the best model throughout the training. Indeed, after only 1000 training
iterations, GABORNET performs reconstruction better than all other models trained for 10 times
longer.

We can broaden the task above to represent video by appending a third dimension to the input: the
output corresponding to the input (x, y, t) is the pixel value at (x, y) at frame t. We aim to represent
a 300 frame color video with 512 × 512 resolution in this manner, testing all of the architectures
used in the previous experiment. As shown in Figure 1, SIREN and GABORNET are most capable of
reproducing fine details of the original video, such as whiskers and and eye color. This is reflected in
the PSNR of these reconstructions (Table 1); SIREN performs best with a PSNR over 30 dB, while
the GABORNET reconstruction comes within 1 dB of SIREN and exhibits much lower variation
across frames than any other model.

Table 2: Image generalization results (mean ±
standard deviation of PSNR).

Method Natural Text

FF Basic 21.61 ± 2.62 20.50 ± 2.13
FF Positional 25.13 ± 4.01 26.49 ± 3.11
FF Gaussian 25.57 ± 4.18 30.46 ± 1.97
FOURIERNET 26.03 ± 2.77 31.02 ± 2.04
GABORNET 26.18 ± 2.95 31.19 ± 2.00

In addition to representing images, we demon-
strate that the MFNs are able to generalize the
representation to unseen pixels. We train the net-
works using only 25% of the image pixels (ev-
ery other pixel in the width and height dimen-
sions) and evaluate using the complete images.
We compare the results of our methods with the
Fourier feature networks on two datasets (natural
and text images) presented in Tancik et al. (2020).
The peak signal-to-noise ratio (PSNR) metric is
used to evaluate the performance. As we can see
from Table 2, both FOURIERNET and GABOR-
NET outperform all versions of the Fourier feature networks that uses basic, positional encoding,
and random Gaussian features. Some examples of the generated images are presented in Figure
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Table 3: Total training loss after training for differential equations, where the iterations column
refers to the number of iterations for which the networks were trained. PLI and PGI refer to Poisson
equation based image reconstruction using Laplacians and gradients respectively. Helmholtz and
wave refer to the single source inversion task.

Problem Iters SIREN FOURIERNET GABORNET

PGI 10000 0.55 1.16 0.46
PLI 10000 3432.56 76663.52 107.129
Helmholtz 50000 84949.92 46486.0 18845.75
Wave 10000 2090.15 691.34 441.13

(a) Poisson Image Reconstruction: Gradients (b) Poisson Image Reconstruction: Laplacians

Figure 3: Poisson Image Reconstruction: In the left and right figures, an image on the left is recon-
structed using gradients and Laplacians respectively; the top row depicts the reconstructed images,
while the bottom row indicates the fitted gradients and the fitted Laplacians.

2, with additional images in Appendix B.2. Visually, the MFNs’ generated images also have bet-
ter quality over the baselines, particularly in Text datasets. Some parts of the text are missing in
the baselines images (highlighted with red rectangles in Figure 2), whereas the MFNs completely
generate all parts of the text in the images.

4.2 DIFFERENTIAL EQUATIONS

In this section, we aim to solve boundary value problems which are supervised by different forms
of gradient information from the functional at hand. We first focus on the Poisson equation, where
we demonstrate image reconstruction in two settings where the supervision for the model is brought
about by gradients and Laplacians respectively. It is worth noting that the model is never pre-
sented with real function values. We then focus on two 2nd order differential equations, namely, the
Helmholtz equation and the wave equation, where we solve for the wave field, where the network is
supervised by a known source function.

We demonstrate image reconstruction using gradients and compare the performance of FOURIER-
NET and GABORNET with SIREN and ReLU MLP for the Poisson equation. We use the same loss
function as in (Sitzmann et al., 2020) in (5). Figures 3a and 3b show that the image is reconstructed
successfully when the networks are trained while being supervised by gradients and Laplacians re-
spectively, while ReLU fails spectacularly. Table 3 depicts the losses of each method after 10000
iterations, where it can be seen that GABORNET beats other baselines in terms of performance.
The Helmholtz and wave equations are related to the physical modeling of diffusion and waves and
are closely related to a Fourier transform. Hence, we focus our attention on describing the Helmholtz
equation. We aim to solve for the wave field and compare the performance of FOURIERNET and
GABORNET with SIREN and ReLU MLP. To accommodate for complex-valued solutions, the net-
work is configured to output two values which can be interpreted as the real and imaginary parts.
We use the same loss function as used in (Sitzmann et al., 2020) (see Section 4.3 of (Sitzmann et al.,
2020) for details). Figure 4 shows the magnitude and the phase of the reconstructed wave front for
a single Gaussian source placed at the center of a medium with uniform wave propagation velocity.
Table 3 depicts the losses of each method after 50000 iterations, and shows that GABORNET beats
FOURIERNET and SIREN in terms of performance, while, as previously shown in (Sitzmann et al.,
2020), ReLU MLP fails miserably. Details pertaining to the network and training are relegated to
Appendix B.3.
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Figure 5: Shape representations from fitting signed distance functions (a). 2D rendered photographs
from view synthesis experiments (b).

4.3 SHAPE REPRESENTATION VIA SIGNED DISTANCE FIELDS

Ground Truth FourierNet Siren GaborNet

M
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tu
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ReLU

Figure 4: Solving Helmholtz equation for a single point
source placed at the center of a medium with uniform wave
propagation velocity. The top row presents the magnitude,
while the bottom row presents the phase.

Recent work (Park et al., 2019) has
explored the problem of 3D shape
representation with neural architec-
tures, often with surprisingly effec-
tive results. This is done by training
on raw geometric data: given an ori-
ented point cloud, we seek to learn
a function f : R3 → R that takes
points as input such that the zero level
set {x | f(x) = 0} of the network ac-
curately represents the surfaces of the
shape. Effective training objectives
for this task has been explored in con-
siderable depth; we use the training
loss presented by Park et al. (2019)
and used in Sitzmann et al. (2020),
which includes terms involving the
network’s output (penalties to encourage SDF values near and away from 0 for surface and off-
surface points, respectively) as well as its gradients (a term encouraging the gradient to match the
surface points’ normals, and a gradient norm penalty throughout the entire 3D space). A complete
description of the loss function is left to the appendix.

Figure 5a shows the results of our shape representation task on SIREN, a standard ReLU MLP,
and both variants of MFN. As can be seen, the ReLU network’s fails to represent some features
of the scene entirely, such as doorways, picture frames, and pillows. Both MFN architectures far
outperform this baseline, and are able to reconstruct the room and objects within it to a recognizable
degree. However, likely owing to its strong ability to produce smooth outputs and gradients, SIREN
is largely able to avoid the visual artifacts on flat surfaces like walls that remain in reconstructions
by FOURIERNET and, to a lesser extent, GABORNET.

4.4 3D INVERSE RENDERING FOR VIEW SYNTHESIS

In this view synthesis task, we aim to reconstruct 3D representation from the observed 2D pho-
tographs. Using the reconstructed 3D representation, we then render 2D images from new view-
points. We use the “simplified Neural Radiance Fields (NeRF)” task on Lego dataset presented in
Tancik et al. (2020). The networks are trained to predict the color (in RGB format) and the volume
density at a given 3D location of the viewpoint. Volumetric rendering is then used to re-render the
2D image photograph at the viewpoint. The training loss is computed as the mean squared error
between the rendered photograph and the actual 2D image observations. The results in Table 4
show that both MFNs perform competitively in the task. GABORNET has a slight advantage over
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the baselines and FOURIERNET in terms of the overall PSNR metric. It also arguably produces a
slightly better image rendering quality as shown in Figure 5b and other images in Appendix B.5.

5 CONCLUSION

Table 4: View synthesis results
(mean ± st.d. of PSNR).

Method PSNR

FF Basic 23.37 ± 0.96
FF Positional 25.76 ± 0.79
FF Gaussian 25.76 ± 0.92
FOURIERNET 25.20 ± 0.72
GABORNET 25.81 ± 0.76

We have introduced multiplicative filter networks (MFNs), a class
of neural representation architectures that forego the usual com-
positional notion of network depth in favor of a similarly expres-
sive multiplicative operation. They also admit a natural signal
processing interpretation, as in the two instantiations of MFNs,
FOURIERNET and GABORNET, which are proven to be exactly
equivalent to a linear combination of sinusoidal or Gabor wavelet
bases, respectively. In experiments, we show that, despite their
simplicity relative to other deep architectures designed for im-
plicit representation, MFNs stand up to or surpass the previous
state of the art on a battery of representation tasks.
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