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Abstract

Abductive reasoning is ubiquitous in artificial intelligence and everyday thinking. However,
formal theories that provide probabilistic guarantees for abductive inference are lacking. We
present a quantitative formalization of abductive logic that combines Bayesian probability
with the interpretation of abduction as a search process within the Algorithmic Search
Framework (ASF). By incorporating uncertainty in background knowledge, we establish two
novel sets of probabilistic bounds on the success of abduction when (1) selecting the single
most likely cause while assuming noiseless observations, and (2) selecting any cause above
some probability threshold while accounting for noisy observations. To our knowledge, no
existing abductive or general inference bounds account for noisy observations. Furthermore,
while most existing abductive frameworks assume exact underlying prior and likelihood
distributions, we assume only percentile-based confidence intervals for such values. These
milder assumptions result in greater flexibility and applicability of our framework. We also
explore additional information-theoretic results from the ASF and provide mathematical
justifications for everyday abductive intuitions.

1 Introduction

Imagine a patient visits a doctor because of a persistent cough, fever, and shortness of breath. As the doctor
considers these symptoms and the prevalence of certain illnesses in the area, the doctor may hypothesize that
the patient has pneumonia. This is an example of abductive reasoning, or abduction.

Abduction is the process of finding the best causal explanation given some observed effects. Abductive
reasoning can be categorized into strategies that can generate new hypotheses, known as creative abduction,
and those that select the best candidate given a set of possible explanations, known as selective abduction
(Schurz, 2007). We focus on selective abduction, which can be formalized with Bayesian Decision Theory
(Romeijn, 2013). Given observation(s) O, we select a hypothesis Ci from a finite set of hypotheses C. Per
Bayesian probability, we denote Pr(Ci|O) as the posterior, where the most probable cause is that with the
highest posterior. By Bayes’ theorem,

Pr(Ci|O) = Pr(O|Ci) Pr(Ci)
Pr(O) .

However, during the hypothesis selection process, the relevant observations Pr(O) remain constant. Thus,
the relevant form of Bayes’ theorem becomes

Pr(Ci|O) ∝ Pr(O|Ci) Pr(Ci).

To perform selective abduction, one simply chooses the hypothesis whose likelihood and prior have the
greatest product.1

Abduction accompanies induction and deduction as one of three forms of logical reasoning (Rodrigues,
2011; Peirce et al., 2017). In supervised machine learning, inductive and abductive processes serve as the

1Note that a general cause (i.e., one that is likely and can produce many effects) is not guaranteed to have a high posterior
since its smaller likelihood counters the effect of its high prior.
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underlying logic behind model training and application (see Figure 1) (Mooney, 2000). While both inductive
and abductive reasoning are applied ubiquitously in the field, inductive reasoning is currently the more
well-understood process; we have already gained a theoretical understanding of inductive accuracy (Dietterich,
1989; Kietz, 1993; Cummings et al., 2016; Garg et al., 2021; Cosentino et al., 2022). However, to our knowledge,
there currently exist no formal quantitative frameworks with accuracy bounds for abductive reasoning.

In a broader context, artificial intelligence researchers such as Erik Larson argue that obtaining a quantitative
theory of abduction is a necessary step towards bridging machine and human intelligence. Abduction, more
specifically creative abduction, encapsulates human intuition or “guessing” capability lacking in current
models. Larson describes machine understanding of abductive reasoning as the central “blind spot” of artificial
intelligence:

“Abductive inference is required for general intelligence, purely inductively inspired techniques
like machine learning remain inadequate...The field requires a fundamental theory of abduction.”
(Larson, 2021)

Our work primarily aims to (1) provide currently lacking accuracy bounds for abductive reasoning and (2)
serve as a preliminary version of this “fundamental theory of abduction” needed for abductive machine
understanding. We propose a general probabilistic framework for selective abduction built from Bayesian
Decision Theory (Berger, 2013) (detailed in Section 3), serving as a jumping off point for future work on
creative abduction. Through this Bayesian framework, we first derive upper and lower probabilistic bounds
of abductive accuracy when assuming underlying q-percentile uncertainty bounds of prior and likelihood
probabilities for each cause (Section 4). This first set of accuracy bounds treats successful abduction as
choosing the single true hypothesis assuming the selection of the single highest posterior. We then extend
this by reframing abduction as a search process within the Algorithmic Search Framework (ASF) (Montañez,
2017), which lets us describe and bound the probability of selecting any hypothesis with a posterior probability
above a certain threshold while accounting for noisy observations (Section 5.1). Lastly, in addition to deriving
bounds on abductive accuracy, we apply the framework to quantitatively justify common-sense heuristic
abduction (Section 5.2, 5.3).

2 Related work

We review applications of abductive logic in machine learning and artificial intelligence, and survey existing
abductive frameworks and current literature on Bayesian inference.

2.1 Logic in Machine Learning

Peirce introduced abduction alongside induction and deduction as the three pillars of logical inference
(Shanahan, 1986). Induction, inferring causal relationships from data, is central to machine learning (Mooney,
2000). Inductive logic is core to the training process, where labeled examples are used to develop generalized
relationships within a model. Deductive and abductive logic are employed within machine learning’s underlying
inductive framework by applying the relationships derived through inductive training (Bergadano et al., 2000).
Deduction facilitates data generation by selecting a class (cause) to produce feature data (observations).
Conversely, abduction involves assigning class labels (causes) to unlabeled data (observations) using a trained
model that embeds established causal relationships (see Figure 1) (Bergadano et al., 2000).

Induction corresponds to the training phase, where input-output relationships are learned, while abduction
relates to classification, using known relationships to infer likely causes. Table 1 outlines the connections
between logical inference (Bergadano et al., 2000) and machine learning.

From this perspective, machine learning applies abductive logic in model inference. For example, machine
learning emulates the abductive reasoning used in spam detection and medical diagnosis by applying trained
algorithms to unlabeled data (i.e., text from emails or radiology scans). However, model inference is just
one of many applications of abduction in machine learning. Our work addresses the theoretical limits of the
success of abductive reasoning generalizable to applications such as these.
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Figure 1: Three methods of inference. The dotted lines show which part of each process is being inferred.

Table 1: Schematic outline of the processes of inference in supervised machine learning (Bergadano et al.,
2000).

Logical Inference Machine Learning

Induction:
P (a)
∴ ∀wP (w)

Training:
(x1, y1), ..., (xn, yn)
∴ f : X → Y

Abduction:
Q(a)
P (w) → Q(w)
∴ P (a)

Classification:
xm

ym = f(xm)
∴ ym

2.2 Applying Abduction in Machine Learning

In addition to its synonymy with the higher-level logic of model inference, abductive logic is central to several
common machine-learning processes.

Abduction is the underlying logic of Bayesian networks, which are used for tasks such as clustering, supervised
classification, anomaly detection, and temporal modeling (Mihaljević et al., 2021). Bayesian networks are
particularly useful for decision-making under uncertainty (Mihaljević et al., 2021) and are widely used in
criminology and prognosis, diagnosis, and prescription in healthcare (Song et al., 2021).

Additionally, maximum a posteriori (MAP) applies abductive reasoning through Bayes’ theorem to optimize
model parameters.2 Analogizing training data D as observations and a possible model parameterization w to
a possible cause, MAP optimizes parameters by maximizing the posterior, Pr(w|D) (Bishop, 2006).

Abductive reasoning is also prevalent in relational learning and computer vision. In relational learning, where
data is represented through relationships with other data, abduction guides search and generates missing
input data (Bergadano et al., 2000). In computer vision, integrating abductive reasoning with convolutional
neural networks (CNNs) enhances spatial-temporal reasoning and image segmentation tasks, which also
contributes to explainable AI by incorporating understandable reasoning into black-box models (Zhang et al.,
2021; Rafanelli et al., 2023).

2.3 Formalizations of Abduction

Various formalizations of abduction have been explored in symbolic AI literature (Paul, 2000). Set-cover-based
approaches involve selecting a subset of hypotheses from a larger set, requiring complete causal relationships
(Allemang et al., 1987). Knowledge-level approaches propose explanations based on beliefs (Levesque, 1989).
Abductive Logic Programming (ALP) represents inferences as entailments from a prior knowledge base to
the veracity of specific causes (Kakas et al., 1992; Alberti et al., 2008; Raghavan & Mooney, 2010).

2Note that training remains an inductive process on a larger scale; MAP applies abductive logic within training steps since it
is a Bayesian method.
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Probabilistic Horn Abduction extends Prolog by combining exact probabilities of hypotheses with Bayes’
theorem to generate posterior probabilities built from multiple observations (Poole, 1991; Ng & Mooney, 1991).
Unlike our proposed framework, it assumes exact prior and likelihood probabilities and does not incorporate
confidence ranges for these distributions (Poole, 1991). Developments in probabilistic and probabilistic
abductive logic programming (Turliuc et al., 2013; Azzolini et al., 2021) depart from our work in similar ways,
as exact probabilities are assumed and general bounds for abductive success are not provided.

A recently developed framework applying stochastic mathematical systems (SMSs) models abduction by
representing reasoning as stochastic systems, with the human reasoner SMS generating hypotheses and an
oracle SMS evaluating their validity based on explanatory power and evidence (Wolpert & Kinney, 2024).
Like Probabilistic Horn Abduction, it also does not account for the uncertainties in underlying distributions.

These methods lack probabilistic guarantees for the correctness of the abductive inferences and do not quantify
associated uncertainties. Our approach addresses this gap by integrating formal machine learning frameworks,
which allows for more precise quantification of the uncertainties involved in abductive inferences.

2.4 Bayesian Inference

Bayesian inference forms the basis of our framework, deriving accuracy bounds using qp and ql confidence
intervals for prior and likelihood distributions, respectively. These intervals represent confidence in causal
relationships (ql) and general world knowledge (qp), providing flexibility in representation.

Bayesian inference estimations and bounds are well-explored in the literature, with numerous known methods
of deriving accuracy bounds for inference of specific algorithms or tasks (Yekutieli, 2012; Pati et al., 2018;
Chérief-Abdellatif et al., 2019; Alroobaea et al., 2020; Audibert, 2009; Zhang et al., 2021; Alquier & Ridgway,
2020; Ferguson et al., 1992; Cox, 1993; Alvarez et al., 2014). However, general methods for deriving bounds
using techniques like multi-valued mapping (Dempster, 1968) or prior measure intervals (Dempster, 1967) are
less common. To our knowledge, no existing method derives Bayesian inference bounds based on specific
prior and likelihood confidence intervals with probabilities ql, as our framework does.

Our work is the first to leverage the ASF (Montañez, 2017) to construct a formalization of abduction or
abduction by Bayesian inference. Unlike other established frameworks (Poole, 1991; Ng & Mooney, 1991;
Poole, 1993), the ASF accounts for noisy observations – observations that may not fully reflect “true” events.
The framework makes very few assumptions of given information resources, F , which (in the case of abduction)
embeds observation data. Such data is abstracted as binary strings, with no conditions placed on what
form the binary strings take, only that we have functions available to extract feedback from the strings
for individual search queries. Thus, with no restrictions placed on the information resources, the ASF
accommodates both noisy and noiseless observations. To our knowledge, there are no abductive or general
inference bounds with this specific property. Existing work has only analyzed the correlation of real dataset
noise with the accuracy of Bayesian inference for specific algorithms, assuming specific data qualities (An
et al., 2012).

3 Preliminaries

We formalize the fundamental building blocks of abduction, causes and observations, as vectors. The
vectorization of such outcomes allows the formalization of posterior, likelihood, and prior probabilities as
distributions over a vector space. We then formalize the likelihood and posterior uncertainty intervals on
which the abductive search process relies.

3.1 Vectorizing Observations

We formalize observations as binary vectors, where each scalar component corresponds to the existence of a
specific observation feature or certain observed outcome. For example, suppose you swallow an unknown pill
and then your headache disappears. A representative observation vector might be ⟨1, 1⟩ with each feature
representing (1) “Did you swallow a pill?” and (2) “Did the headache go away?” (respectively). If the
headache disappeared without taking a pill, the observation vector would be ⟨0, 1⟩.
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Definition 3.1. (O) Let O denote the vector space of discrete topology containing all binary-featured
observation vectors.

Since any outcome must strictly occur or not occur, the set of possibilities within O is mutually exclusive
and collectively exhaustive. In the case where an observation is a continuous variable, such as temperature,
we would convert the variable by adding additional features representing levels of the value, such as [“cold”,
“lukewarm”,“hot”].3

Proposition 3.1. The set of possible outcomes represented as vectors within O is mutually exclusive and
collectively exhaustive.

3.2 Vectorizing Causes and Likelihood Probability Mass Functions

A cause Ci has some probability of instigating any possible observation vector x ∈ O, inducing a conditional
probability mass distribution (i.e., likelihood function) Pr(x|Ci) over all observations x ∈ O. Note that every
observation x ∈ O is disjoint (Proposition 3.1), and we assume exactly one observation vector is produced
and observed.

Following the earlier example, the likelihood distribution over the observation space for the cause “aspirin”
expresses the probability that, assuming aspirin was taken, phenomena x ∈ O would follow. Knowing that
aspirin typically relieves headaches and is ingested in pill form, the likelihood distribution over O with
dimensions {“Pill taken?”, “Headache relieved?”} may be similar to Table 2. Such a likelihood distribution
depends only on the cause Ci, and will act over O. The notation do(aspirin = True)) denotes that we taking
some action to force the condition “aspirin" to be True, per do-calculus (Pearl et al., 2000).

Table 2: Example likelihood distribution for effects of aspirin.

Pill taken? Headache relieved? x Pr(x|do(aspirin = True))
no no ⟨0, 0⟩ 0.05
no yes ⟨0, 1⟩ 0.10
yes no ⟨1, 0⟩ 0.15
yes yes ⟨1, 1⟩ 0.70

Assuming that exactly one of the observation vectors must occur, we know that the probabilities for each
collectively must sum to one. Considering all the possible ways there are to assign probabilities to a collectively
exhaustive and mutually exclusive set of options forms a mathematical simplex, S. For k observation features
(where dim (O) = k), simplex S forms a continuous 2k−1 dimensional hyperplane containing all possible “cause
vectors”, each corresponding with some likelihood probability mass function over the 2k observation vectors
in O. Each scalar component of a 2k dimensional “cause” vector c ∈ S denotes how much probability mass is
placed on a corresponding observation vector in O. Since we define a “cause” as the event representation of a
likelihood distribution over O, a single cause vector in O can actually represent multiple concurrent events or
causes.

Ensuring that every cause c ∈ S corresponds to a valid probability mass function on O requires the following
two properties: (1) the simplex is bounded within [0, 1] on every dimension such that no c ∈ S holds a
component that indicates an invalid probability, and (2) the sum of all components of a cause vector equals 1.

3.3 Defining Posterior Confidence Bounds

During the decision-making process, we compare different posterior probabilities for the same observation x.
Since the evidence, Pr(x), is constant, we will only compare the product of the likelihood and prior across
causes, namely, Pr(x|c) Pr(c), which we will be referring to as the “posterior” for simplicity.

In life, we often lack these exact likelihood and prior distributions. Instead, we may estimate such probabilities
through numerical techniques, including asymptotic estimations, Monte Carlo methods, numerical integration,
and various sampling methods (Tierney, 1994; Chib, 1996; Levine & Casella, 2001). Other distribution

3Note that any probability mass function over O would, by default, place zero mass on contradictory observation vectors,
such as one that is both “hot” and “cold.”
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estimation methods include smoothing and reduction methods, and Markov chain algorithms can be further
used to combine estimation methods (Tierney, 1994). Thus, to account for uncertainty, we estimate likelihood,
prior, and posterior probabilities through confidence intervals.

We define two functions denoting the upper bound likelihood probability, lU (c, x) , and lower bound likelihood,
lL(c, x), of the ql-percentile likelihood uncertainty interval, where lU (c, x) ≥ lL(c, x). The prior qr-percentile
uncertainty interval is similarly represented through an upper and lower bound rU (c) and rL(c) (respectively).

The upper and lower confidence bounds of the posterior, pU (c, x) and pL(c, x), can then be found by simply
multiplying the upper or lower bounds of the likelihood and prior probabilities together:

pU (c, x) = lU (c, x)rU (c) and pL(c, x) = lL(c, x)rL(c).

This bound assumes there is a ql probability that the likelihood lies in its ql-percentile interval [lL(c, x), lU (c, x)]
and, likewise, that there is a qr probability that the prior lies in its qr-percentile interval [rL(c, x), rU (c, x)].
Thus, the interval [pU (c, x), pL(c, x)] defines the q-percentile confidence interval for posterior Pr(c|x) where
q = qlqr.

3.4 Narrowing the Space of Possible Causes

We have established S as the infinite space containing all possible likelihood distributions over O and, thus,
the space of all possible causes. However, this space includes likelihood distributions generated by causes that
are implausible. In the real world, we often choose the most likely cause from a smaller set of plausible causes;
for example, one would not consider an atomic bomb to be a plausible cause for your headache disappearing.
Rather than considering the entirety of S as the pool of possible causes, we assume that some finite subset
C ⊂ S with cardinality k = |C| has been pre-selected as the finite set of plausible causes assumed to contain
the true cause. We further assume C includes a “cause” Cother, whose posterior encapsulates the (likely low)
combined probability of all other causes in S occurring. With this, we assume that all causes in C are disjoint
and that C contains the one true explanation for observation x (namely, what actually caused it).
Definition 3.2. (C) Let C ⊂ S denote the relevant finite subset of possible cause vectors in S.

For notational simplicity, we additionally denote each cause as Ci ∈ C and its corresponding “true” posterior
probability as Mi in posterior set M. We likewise simplify the notation of the upper and lower bounds of
q-percentile uncertainty interval posterior Mi as follows: from pU (c, x) and pL(c, x) to ui and li, respectively.
For future reference, we define the following:
Definition 3.3. (Mi) Let Mi ∈ M denote the “true” posterior probability of cause Ci ∈ C, where
Mi = Pr(Ci|x) Pr(Ci). Then Mi falls into the following uncertainty interval with probability q:

Mi ∈ [li, ui].

Since we assume each Ci ∈ C is disjoint, and that C surely contains the true explanation for observation x,
each posterior probability Pr(Ci|x) sums to 1. Thus,∑

Mi∈M
Mi = Pr(x).

Definition 3.4. (U) Let U denote the set containing the q-percentile uncertainty interval bounds [li, ui] for
each posterior Mi ∈ M.

Note that we also assume |M| = |C| = |U| ≥ 2, as determining the most likely cause from a set of only one is
trivial.

4 Abduction by Bayesian Inference

4.1 Cause Selection with Uncertainty Intervals

Given the set of q-percentile confidence posterior probability uncertainty bounds [li, ui] ∈ U for each cause
Ci ∈ C, one selects the cause whose point estimate posterior probability is highest. Since the true posterior
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probabilities of each cause are unknown, this process may incorrectly select a cause whose posterior is not
the true maximum. We quantify this rate of incorrect selection in the case where every posterior Mi ∈ M is
contained in respective confidence bound [li, ui]. Let predicate IsMax(Mi) denote whether posterior Mi is
truly the highest posterior. We first define the probability range where the maximum posterior must lie, [l, u].

Definition 4.1. Let each posterior Mi ∈ M occur within q-percentile confidence interval [li, ui] ∈ U . Then,
we set

l = max({li|i ∈ Z+, i ≤ |M |})

and
u = max({ui|i ∈ Z+, i ≤ |M |}).

Proposition 4.1. Assuming that every Mi ∈ M lies in respective q-percentile confidence interval [li, ui] ∈ U ,
the max posterior is bounded by u and l.

Thus, in the case that every confidence bound fully contains its respective posterior almost surely (instead of
just with probability q), any posterior Mi whose uncertainty bounds [li, ui] overlap with [l, u] is potentially
the maximum posterior with some probability Pr(IsMax(Mi)).
Theorem 4.2. Let M′ ⊆ M denote the set of posteriors whose confidence intervals intersect with [l, u]. The
probability that Mi ∈ M′ is the maximum posterior is as follows:

Pr(IsMax(Mi)) =
∫ u

l

P

Mi = x,
⋂

Mj∈M′,
Cj ̸=Ci

(Mj < x)

dx.

This accounts for any estimated posterior probability distribution within [li, ui], but assumes Mi is contained
by [li, ui] with probability 1.4

4.2 Bayes Error Rate

However, even assuming the cause with the true highest posterior is successfully identified, there is the
unavoidable error from non-zero posteriors of the “losing” categories. The true cause of a feature may simply
not have the highest posterior. This minimum achievable error is expressed by Bayes Error Rate (BER):
Definition 4.3. (ϵ, (Sekeh et al., 2020)) Let ϵ denote Bayes multiclass error rate (BER) for every Ci ∈ C.
For |C| = k possible causes:

ϵ = 1 −
∫

Pr(x) max
i

Pr(Ci|x)dx.

However, the formula above is often impractical to compute for k > 2 causes. Instead, one can derive bounds
for the multi-cause BER with techniques such as the Bhattacharyya bound, estimations using Friedman-Rafsky
test statistics, and non-parametric bounds using Henze-Penrose divergence (Sekeh et al., 2018). We adopt
a recent method5 of upper bounding BER through global minimal spanning trees (Sekeh et al., 2020) and
adopt a pairwise computational lower bounding method for BER (Lin, 1991).
Definition 4.4. (ϵupper, (Sekeh et al., 2020)) Let ϵupper denote the upper bound of BER such that ϵ ≤ ϵupper.
Then, for |C| = k,

ϵupper = 2
k−1∑
i=1

k∑
j=i+1

δij

where
δij :=

∫ Pr(Ci) Pr(Cj) Pr(x|Ci) Pr(x|Cj)
Pr(Ci) Pr(x|Ci) + Pr(Cj) Pr(x|Cj)dx.

4See the appendix for directly computable forms of Theorem 4.2.
5This method provides a tighter bound than aforementioned techniques (Sekeh et al., 2020).
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Definition 4.5. (ϵlower, (Wisler et al., 2016), (Lin, 1991)) Let ϵlower denote the lower bound of BER such
that ϵ ≥ ϵlower. BER may be lower bounded by applying pairwise computations of Bayes error ϵij for i and j
between every unique cause pair (Ci, Cj) where Ci ∈ C, Ci ∈ C, i ̸= j:

ϵlower = 2
k

k−1∑
i=1

k∑
j=i+1

(Pr(Ci) + Pr(Cj))ϵij .

4.3 Abductive Error Guarantees

Assume an algorithm selects from the set of possible causes C the cause with the highest estimated posterior.
The preceding subsections detail the two possible sources of error:

1. Incomplete or imprecise background information (e.g., not knowing all the potential causes and causal
relationships). This uncertainty is represented through q-percentile posterior confidence intervals in
U .

2. The true cause is not the cause with the highest true posterior. If the exact likelihood and prior is
given, this minimum achievable error is simply expressed through the Bayes Error Rate (Definition
4.3).

We derive bounds of the error rate by combining these two possible sources of error. Let W denote the
event of incorrect abduction (not selecting the true cause). Then, the probability of correctly selecting the
maximum posterior Mi and incorrect abduction is

Pr(W, IsMax(Mi)) = Pr(W|IsMax(Mi)) Pr(IsMax(Mi))
= ϵ Pr(IsMax(Mi)).

The probability of both incorrectly selecting the maximum posterior and incorrect abduction is

Pr(W, ¬IsMax(Mi)) = Pr(W|¬IsMax(Mi)) Pr(¬IsMax(Mi))
= (1 − Pr(Mi|x))(1 − Pr(IsMax(Mi))).

Such definitions let us derive upper and lower bounds for the error rate assuming that all posteriors Mi ∈ M
lie in q-percentile confidence intervals [li, ui] ∈ U with probability 1. Let γi denote the error rate given this
assumption.
Theorem 4.6. Let γi denote the error rate of selected cause Ci when assuming posterior Mi lies in confidence
interval [li, ui] almost surely. Then, γi is bounded above by

γi ≤ ϵupper Pr(IsMax(Mi)) + (1 − li)(1 − Pr(IsMax(Mi)))

where ϵupper may be derived by Definition 4.4

Theorem 4.7. Let γi denote the error rate of selected cause Ci when assuming posterior Mi lies in confidence
interval [li, ui] almost surely. Then, γi is bounded below by

γi ≥ ϵlower Pr(IsMax(Mi)) + (1 − ui)(1 − Pr(IsMax(Mi)))

where ϵlower may be derived by Definition 4.5

We extend this result to the general case where all posteriors Mi ∈ M are assumed to jointly lie in their
respective confidence intervals [li, ui] ∈ U with probability q.
Theorem 4.8. Let qk be the probability that all Mi ∈ M lie in their respective confidence bounds [li, ui] ∈ U .
Let γi, upper be the upper bound of γi defined in Theorem 4.6. Then, the upper bound of the general error rate
is given by

Pr(W ) ≤ 1 − qk(1 − γi, upper).
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Theorem 4.9. Let qk be the probability that all Mi ∈ M lie in their respective confidence bounds [li, ui] ∈ U .
Let γi, lower be the lower bound of γi defined in Theorem 4.7. Then, the lower bound of the general error rate
is given by

Pr(W ) ≥ γi, lowerqk.

We note that the upper bound 1 − qk(1 − γi,upper) < 1 and the lower bound γi,lowerqk > 0, so our bounds for
Pr(W ) are nontrivial, being strictly tighter than the general bounds on probabilities (e.g., [0, 1]).

We should note that the bounds presented in this section assume noiseless observations. That is, we assume
observation x is a wholly accurate description of the “true” outcomes of a cause. A noisy observation vector
may have entries that deviate from the “true” outcome of a cause, akin to the possibility of a faulty observer
or inaccurate data pipeline with which observations is processed (i.e., faulty equipment, random errors in
sampling, etc.). Accounting for noisy observations for selecting the highest posterior cause is a subject of
future work, and may involve the averaging of posteriors among a probability distribution of observation
vectors.

The next section explores a different set of bounds describing the selection of any cause whose probability
is above some threshold. With this broader definition of “success,” we can account for noisy observations
through applying the Algorithmic Search Framework (Montañez, 2017).

5 Search and Heuristic Applications

The Algorithmic Search Framework (ASF) characterizes learning problems as search, allowing one to equate
the chance of success of any learning algorithm to that of a search process described by the three-tuple
(Ω, T, F ) – the search space, target set, and external information resource, respectively (Montañez, 2017). This
framework formalizes the seminal work of Mitchell (1982) and extends results beyond binary classification
problems (Montanez, 2017). Recent developments have also extended the ASF for continuous or fuzzy
measures of success (Knell et al., 2024), allowing even greater flexibility. Most relevant to our use-case, the
ASF provides formal bounds accounting for noise, and formalizes insights into the frequency of favorable
search strategies and problems (Montanez, 2017). To our knowledge, there are no extensions of Mitchell’s
work or other formal frameworks that provide such use cases (Mitchell et al., 1986; Dupont et al., 1994;
Duarte et al., 2023).

We have previously discussed abductive success in terms of finding the one “true” cause for some observation
vector (which may or may not have the highest posterior) assuming the selection of the single highest
posterior. Furthermore, we assumed noiseless observations. By reframing the ASF for abduction, we
describe an algorithm’s ability to identify the cause(s) with posteriors above some threshold in terms of
information-theoretic properties within (Ω, T, F ) and generalize to noisy observation vectors.

As explained in section 2, there exist no formal bounds on abductive success to our knowledge, and the ASF
has not yet been applied to abduction. Existing work involving abduction and search such as abduction as
inference to the best explanation (IBS) (Schurz, 2007), have not yielded formal explanations of abductive
certainty or heuristics like Theorems 5.2 and 5.1. The ASF has not yet been applied to abduction, we believe
doing so provides new formal and rigorous insights.

5.1 ASF: Success of Abduction through Search

We define each term of (Ω, T, F ) as follows.

Search Space (Ω) constitutes the finite set of pre-selected, plausible causes for the given observation vector
x; it is synonymous with C defined in 3.2. Pi over search space Ω denotes the probability distribution over the
space at step i, and Pi(T ) is the probability of success – namely, the amount of probability mass placed on the
target set T at time i (Montañez, 2017). In our adaptation, Pi denotes the posterior distribution of Pr(Ci|x)
over all possible causes Ci in Ω. Pi may be derived from aforementioned bounds [li, ui] ∈ U of posterior-
adjacent value Pr(Ci|x) Pr(x) (Definition 4.1) with two modifications: (1) Pi denotes the point estimate
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probability of the posterior within these confidence bounds, and (2) this point estimate of Pr(Ci|x) Pr(x) is
inversely scaled by Pr(x) such that Pi is a valid probability mass function that sums to one.

Target Set (T ), a subset of the search space Ω, contains the set of the “more plausible” causes with posterior
probability Pi above or at minimum performance value in (0, 1]. Search aims to identify causes in Ω that lie
in T , a task whose difficulty increases as the threshold for T rises. Note that T is a random variable as it
describes a set of likely causes for random observations.

External Information Resource (F ) is a finite-length binary string drawn from a distribution with
an “API”-like interface, meaning one can extract information from F (Montañez, 2017). In our case, it
embeds (1) the observation vector x whose cause we determine, and (2) the upper and lower bounds of the
q-confidence intervals for likelihood and prior probabilities across Ω for every cause Ci ∈ Ω. More specifically,
F contains the likelihood bounds lU (c, x) and lL(c, x) and prior bounds rU (c, x) and rL(c, x), which inform
the construction posterior probability distribution Pi over Ω for the search process as defined previously.
Since F is a function of random data, it is itself a random variable.

Note that, as explained in Section 4, the ASF places few restrictions on information resources F , and thus
allows for both noisy or noiseless observations.

Framing abduction through the ASF, we apply established derivations of the maximal success probability of
success defined in terms of information-theoretic properties of (Ω, T, F ) and the complexity of the search
problem (Montañez, 2017).
Theorem 5.1. (Montañez, 2017) The probability of a successful abduction, q, is bounded above by

q ≤ I(T ; F ) + D(PT ||UT ) + 1
IΩ

,

where IΩ = − log |T |
|Ω| , D(PT ||UT ) is the Kullback-Leibler divergence between the marginal distribution on

target sets and the uniform distribution on possible target sets, and I(T ; F ) is the mutual information between
the target and observation.

We interpret I(T ; F ) as the dependence between the target set and the observation, D(PT ||UT ) as the
non-uniformness of the target, and IΩ as the sparseness of the targets inside the search space. When the true
cause is highly correlated with the observations (i.e., less random), the achievable success rate is high. When
the search space consists of a large number of causes, the achievable success rate is lower. This gives us an
additional information-theoretic upper bound on the probability of successful abduction.

5.2 ASF: High-Likelihood Causes are Rare

Any high-posterior cause must also confer high-likelihood to observed effects, due to the multiplicative nature
of posterior computation. Yet a cause can only make an observation vector more probable at the cost of
making others less probable. Such high-likelihood causes must necessarily be rare to the degree they confer
high joint-probability on the observations, as shown by the following theorem (Montañez, 2017).
Theorem 5.2. (Famine of Favorable Strategies Theorem, (Montañez, 2017)) For any fixed search problem
(Ω, T, F ), set of probability mass functions P = {P : P ∈ [0, 1]|Ω|,

∑
j Pj = 1}, and a fixed threshold

qmin ∈ [0, 1],
µ(Gt,qmin)

µ(GP) ≤ p

qmin
,

where p = |T |
|Ω| ,Gt,qmin = {P : P ∈ P, t⊤P ≥ qmin}, and µ is Lebesgue measure.

In contrast to Section 5.1, we consider a different search problem in applying Theorem 5.2. The search space
Ω no longer consists of posteriors, but is now the space of all possible observation vectors, some of which
are “close enough” to the true vector to comprise a noisy target set, T . Causes sample observation vectors
by producing effects: a blind, weighted search. F becomes irrelevant. Theorem 5.2 then tells us that the
proportion of causes which confer at least qmin probability to the observation set is necessarily small whenever
qmin is high, if we are only willing to tolerate so much noise in our observations (leading to small |T |).

10



Under review as submission to TMLR

One might argue that although not many causes can confer high joint likelihood to the observations, several
independent causes might together constitute an abductive explanation for the observed phenomena, if
each sufficiently raises the likelihood of a single observed feature. Simple arithmetic renders this possibility
unpersuasive. Assuming independent causes for each observed feature, the probability of jointly occurring
outcomes in an observation vector x scales exponentially with |x| or the number of features. For instance, if
two features have a 50/50 chance of occurring coincidentally, then the chance of them occurring together is
1/2 · 1/2 = 1/4. For four such features, the probability drops to 6.25%. Thus, the coincidental co-occurrence
of independent causes that together explain an observation vector is unlikely as the number of observations
increases.

5.3 Increasing Certainty in Abductive Inference

Inductive inference error guarantees derive their strength from data abundance: increasing the number
of observed examples typically increases the tightness of such bounds. In contrast, abductive inference
proceeds from a single observation. How do we increase confidence in our abductive judgment? In the real
world, our confidence in abductive reasoning typically depends on the amount of evidence supporting or
contradicting a potential hypothesis. Though consisting of a single example, there are often many features of
that observation, which may or may not be well-explained by a proposed cause. This suggests a “horizontal”
mode of confirmation built on many conditionally independent features, rather than the “vertical” mode of
confirmation based on many observed examples typical of inductive inference. We note the importance of
conditional independence among features, since features that necessarily imply each other even given the
cause do not give us additional confidence in our abductive judgment.

Recall that observation vector x ∈ O consists of binary features representing the existence or non-existence of
some conditionally independent observed outcome. Letting x1, . . . , xn represent each feature of x ∈ O where
|x| = dim(O) = n, we quantitatively demonstrate this phenomenon with the following theorem.
Theorem 5.3. For each conditionally independent feature x1, . . . , xn, define βi > 0 such that for all i = 1...n,

Pr(xi|C) = βi Pr(xi|C).

Let β = n
√∏n

i βi, the geometric mean of the βi. If β > 1, then

lim
n→∞

Pr(x1, . . . , xn|C)
Pr(x1, . . . , xn|C)

= lim
n→∞

βn = ∞.

Each conditionally independent observation feature can either support (βi > 1) or contradict (βi < 1) the
proposed cause. If features support the current cause C on average (i.e., β > 1), then the confidence of
abduction (ratio between likelihood under C over C) approaches infinity as the number of (on average)
supporting features increases.

6 Discussion

We formalize abduction as selecting the cause with the highest estimated posterior from some finite pool of
causes. Our focus on single-cause abduction problems is justified by their foundational role in simplifying
complex decision-making processes, allowing for more precise modeling and analysis that lays the groundwork
for tackling multi-cause scenarios with greater accuracy in future research. For k possible causes whose
posteriors are estimated within a confidence interval set with joint probability qk, the probability of incorrect
abduction Pr(W ) is bounded below by Pr(W ) ≥ γi,lowerqk (Theorem 4.9) and bounded above by Pr(W ) ≤
1−qk(1−γi, upper) (Theorem 4.8). As q approaches 1, the bounds on the error rate depend more heavily on γi

(Theorems 4.6, 4.7), which scales with the Bayes Error Rate and the amount of overlap between uncertainty
intervals. One should obtain comprehensive and representative training data (i.e., maximizing q) to achieve
better estimates of posteriors and thus minimize error.

Extending this formalization to the ASF, we re-frame abductive success in information-theoretic terms and
account for noisy observations. In this case, the maximum success rate of abduction is governed by the
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complexity of the search problem and other information-theoretic properties (Theorem 5.1). The maximum
success rate increases as the plausible causes (i.e., causes whose posteriors are above the minimum performance
value) become more explainable and less random; inherent unpredictability is brought from the randomness
of the “true” cause. However, one may constrain this randomness by decreasing the sparseness of the search
space and/or excluding less probable causes.

Regarding the practicality of our results, it has been shown that bounds on the Bayes Error Rate can be
empirically estimated by learning from training data instead of density estimation (Sekeh et al., 2020). Unlike
traditional methods for estimating BER, such as those based on pairwise HP divergence or generalized
Jensen-Shannon (JS) divergence, which becomes computationally infeasible as the number of classes or
dimensions increases. The GHP-based method is shown to be computationally more efficient, making it more
suitable for large-scale applications like neural networks (Sekeh et al., 2020). Then, in practice, it is possible
to model a selective abduction problem using a Bayesian Neural Network and obtain approximate posterior
distributions (Myshkov & Julier, 2016; Charnock et al., 2022), which can be directly used in our bounds for
abductive inference.

The mathematical formalization and bounds established in our paper have implications for human-like
reasoning abilities which are crucial for understanding the limits of decision-making processes in artificial
intelligence. Theorem 5.2 demonstrates how high-likelihood causes are rare; one is less likely to stumble across
them accidentally. In addition, more supporting observations increase our confidence in a unified causal
explanation, instead of the coincidental co-occurrence of observed effects. Furthermore, Theorem 5.3 aims
to capture the degree of certainty of our everyday abductive inferences. Consider a scenario where we are
trying to convict a suspect of a crime. If pieces of evidence collectively support that the victim is guilty, our
confidence to convict grows as the amount of such evidence grows. However, if pieces of evidence were heavily
contradictory and/or refuted a suspect’s involvement, then we become less confident of a conviction. Our
confidence would approach 0 as the amount of (on average) contradictory observations tends toward infinity.

7 Conclusion

Abductive reasoning is a key component of human rationality and discovery. State-of-the-art artificial
intelligence is currently incapable of performing abductive reasoning at a human level. To achieve true
human-like reasoning, it is important to consider the process of abduction and incorporate such ability in
future developments.

Our work formalizes selective abduction, deriving formal error guarantees for abductive reasoning within
a finite space of causes. Also, by viewing selective abduction through the lens of the Algorithmic Search
Framework, we better understood how the inherent complexities of abductive inference problems affect the
achievable success rates. Future work might explore creative abduction using our framework as a starting
point. Creative abduction can be represented through a search space that is potentially infinite. Rather than
filtering S to a finite pool C, we represent hypothesis generation as optimization within an infinite subset
of S. Proving bounds within this infinite set requires more complex mathematics, but extends the same
underlying logic. Statistical bounds within such a framework would hold implications for general scientific
reasoning and human creativity.
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Appendix: Proofs

Proposition 4.1. Assuming that every Mi ∈ M lies in respective q-percentile confidence interval [li, ui] ∈ U ,
the max posterior is bounded by u and l.

Proof. We prove that the maximum posterior probability Mmax ∈ M is in the interval [l, u] (4.1) by way of
contradiction. Assume Mmax /∈ [l, u]. Then, knowing that |M| ≥ 2, one of the following is true:

Case 1: Mmax > u. Since u is defined as the maximum of all posterior upper bounds, we reach a contradiction
if Mmax > u as Mmax would not be in M.

Case 2: Mmax < l. If Mmax < l, then since l is defined as the highest lower bound, there must exist an
Mi ∈ M such that Mi ̸= Mmax whose lower bound li ≥ l. If this is the case, Mi > Mmax since Mi ≥ li,
li ≥ l, and l > Mmax. Mmax would not be the maximum posterior, resulting in a contradiction.

Both possibilities result in contradiction, so Mmax /∈ [l, u] is not true. Thus, the maximum posterior is
bounded by u and l, or Mmax ∈ [l, u].

Theorem 4.2. Let M′ ⊆ M denote the set of posteriors whose confidence intervals intersect with [l, u]. The
probability that Mi ∈ M′ is the maximum posterior is as follows:

Pr(IsMax(Mi)) =
∫ u

l

P

Mi = x,
⋂

Mj∈M′,
Cj ̸=Ci

(Mj < x)

dx.

Proof. Via Proposition 4.2.1, the max posterior is bounded by u and l. So, if x is the value of Mi and Mi

is the maximum posterior, l ≤ x ≤ u. For Mi to be the maximum posterior value with a value of x, both
Mi = x and Mj < x for all j ̸= i. So, we express Pr(IsMax(Mi)) as an integral of joint probabilities:

Pr(IsMax(Mi)) =
∫ u

l

Pr

Mi = x,

k⋂
j=1,j ̸=i

(Mj < x)

dx.

Theorem 4.6. Let γi denote the error rate of selected cause Ci when assuming posterior Mi lies in confidence
interval [li, ui] almost surely. Then, γi is bounded above by

γi ≤ ϵupper Pr(IsMax(Mi)) + (1 − li)(1 − Pr(IsMax(Mi)))

where ϵupper may be derived by Definition 4.4

Proof. Let Pr(Wi) be the probability we produce a wrong abduction given we selected cause Ci (this is
synonymous with the “error rate" of selecting cause Ci). By the law of total probability,

Pr(Wi) = Pr(Wi, IsMax(Mi)) + Pr(Wi, ¬IsMax(Mi)).

We first discuss the case where the maximum posterior is selected (i.e., IsMax(Mi) holds). Here, Pr(Wi |
IsMax(Mi)) is given by Bayes error rate, which is upper bounded by ϵupper (Definition 4.4). Thus,

Pr(Wi, IsMax(Mi)) = Pr(Wi|IsMax(Mi)) Pr(IsMax(Mi))
≤ ϵupper Pr(IsMax(Mi)).

In the case that the highest posterior is not selected, the probability that we result in a false inference is
given by 1 − Pr(Ci|x), where Pr(Ci|x) is the theoretical true posterior. Let li denote the lower bound of
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Pr(Ci|x), which we assume to bound the true posterior almost surely. Thus,

Pr(Wi, ¬IsMax(Mi)) = Pr(Wi | ¬IsMax(Mi)) Pr(¬IsMax(Mi))
= (1 − Pr(Ci | x))(1 − Pr(IsMax(Mi)))
≤ (1 − li)(1 − Pr(IsMax(Mi))).

We combine our bounds to obtain

Pr(Wi) ≤ ϵupper Pr(IsMax(Mi)) + (1 − li)(1 − Pr(IsMax(Mi))).

We relabel γi as the error rate of selected cause Ci:

γi ≤ ϵupper Pr(IsMax(Mi)) + (1 − li)(1 − Pr(IsMax(Mi))).

Theorem 4.7. Let γi denote the error rate of selected cause Ci when assuming posterior Mi lies in confidence
interval [li, ui] almost surely. Then, γi is bounded below by

γi ≥ ϵlower Pr(IsMax(Mi)) + (1 − ui)(1 − Pr(IsMax(Mi)))

where ϵlower may be derived by Definition 4.5

Proof. Let Pr(Wi) denote the probability we produce a wrong abduction given we selected cause Ci (this is
synonymous with the “error rate” of selecting cause Ci). By the law of total probability,

Pr(Wi) = Pr(Wi, IsMax(Mi)) + Pr(Wi, ¬IsMax(Mi)).

We first explore the case where the highest posterior is selected (i.e., IsMax(Mi) holds). Here, Pr(Wi |
IsMax(Mi)) is given by the Bayes error, which is lower-bounded ϵlower from Definition 4.5.

Pr(Wi, IsMax(Mi)) = Pr(Wi | IsMax(Mi)) Pr(IsMax(Mi))
≥ ϵlower Pr(IsMax(Mi))

If the cause we have selected does not have the maximum posterior (i.e., IsMax(Mi) does not hold), the
probability that we result in a false inference is given by 1 − Pr(Ci|x), where Pr(Ci|x) is the theoretical true
posterior. Let ui denote the upper bound of Pr(Ci|x) so that 1 − ui lower bounds 1 − Pr(Ci|x). Thus, we
can derive the lower bound

Pr(Wi, ¬IsMax(Mi)) = (1 − Pr(Ci | x))(1 − Pr(IsMax(Mi)))
≥ (1 − ui)(1 − Pr(IsMax(Mi))).

We combine the lower bounds of both components to obtain

Pr(Wi) = Pr(Wi, IsMax(Mi)) + Pr(Wi, ¬IsMax(Mi))
≥ ϵlower Pr(IsMax(Mi)) (1 − ui)(1 − Pr(IsMax(Mi))).

We then relabel γi for error rate Pr(Wi):

γi ≥ ϵlower Pr(IsMax(Mi)) + (1 − ui)(1 − Pr(IsMax(Mi))).

Theorem 4.8. Let qk be the probability that all Mi ∈ M lie in their respective confidence bounds [li, ui] ∈ U .
Let γi, upper be the upper bound of γi defined in Theorem 4.6. Then, the upper bound of the general error rate
is given by

Pr(W ) ≤ 1 − qk(1 − γi, upper).
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Proof. Let CIi be shorthand for the posterior confidence interval [li, ui] ∈ U containing posterior Mi ∈ M.
By the law of total probability,

Pr(W ) = Pr(W, ∀(Mi ∈ M), Mi ∈ CIi) + Pr(W, ∃(Mi ∈ M)Mi ̸∈ CIi)
= Pr(W | ∀(Mi ∈ M)Mi ∈ CIi) · Pr(∀(Mi ∈ M)Mi ∈ CIi) +

Pr(W | ∃(Mi ∈ M)Mi ̸∈ CIi) · Pr(∃(Mi ∈ M)Mi ̸∈ CIi).

Note that the true posterior values are fixed and not random, but their estimates and confidence intervals
(based on sampled data) are random. Given the true posterior values, data is generated from which confidence
intervals are constructed and point estimates taken. The true posterior values thus act as parameters in a
parameter estimation task. Given the value of such a parameter, the probability that a generated dataset and
subsequent confidence interval captures the true parameter value is q, which (by d-separation) is conditionally
independent of anything else that happens in the world. Specifically, any other parameter’s (i.e., posterior’s)
value does not affect the probability that data generated using this parameter’s value produces a confidence
interval that captures it. All that matters is the specific parameter under which the data is generated. In
other words, the probability that a second dataset generated from a different posterior produces a confidence
interval that captures this second parameter’s true value is independent of the outcome of the first data
generation event, once we condition on the parameter. This second parameter is indeed given, as we need it
to generate the data. Therefore, assuming k confidence intervals are constructed from data conditioned on
their true parameter values, the joint probability of all k posterior probabilities being captured simultaneously
by their respective q-percent confidence bounds is qk. Thus,

Pr(W ) = Pr(W | ∀(Mi ∈ M)Mi ∈ CIi)qk + Pr(W | ∃(Mi ∈ M)Mi ̸∈ CIi)(1 − qk).

We apply γi,upper from Theorem 4.6, which is the probability of incorrect abduction assuming that all posterior
probabilities fall into their respective confidence intervals. Thus, Pr(W | ∀(Mi ∈ M), Mi ∈ CIi) is bounded
above by γi,upper. Additionally, we simply upper bound Pr(W | ∀(Mi ∈ M)Mi ̸∈ CIi) by one. Thus, we
conclude

Pr(W ) ≤ γi,upperq
k + (1)(1 − qk),

or equivalently
Pr(W ) ≤ 1 − qk(1 − γi,upper).

Theorem 4.9. Let qk be the probability that all Mi ∈ M lie in their respective confidence bounds [li, ui] ∈ U .
Let γi, lower be the lower bound of γi defined in Theorem 4.7. Then, the lower bound of the general error rate
is given by

Pr(W ) ≥ γi, lowerqk.

Proof. Let CIi be shorthand for the posterior confidence interval [li, ui] ∈ U containing posterior Mi ∈ M.
By the law of total probability,

Pr(W ) = Pr(W, ∀(Mi ∈ M)Mi ∈ CIi) + Pr(W, ∃(Mi ∈ M)Mi ̸∈ CIi)
= Pr(W | ∀(Mi ∈ M)Mi ∈ CIi) · Pr(∀(Mi ∈ M)Mi ∈ CIi) +

Pr(W | ∃(Mi ∈ M)Mi ̸∈ CIi) · Pr(∃(Mi ∈ M)Mi ̸∈ CIi).

Recall that the number of considered causes is |C| = |M| = k. Assuming all k confidence intervals
simultaneously capture their respective posterior values with joint probability qk (see discussion in the proof
for Theorem 4.8), we obtain

Pr(W ) = Pr(W | ∀(Mi ∈ M)Mi ∈ CIi)qk + Pr(W | ∃(Mi ∈ M)Mi ̸∈ CIi)(1 − qk).
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We apply γi,lower from Theorem 4.7, which is the probability of incorrect abduction, assuming all posterior
probabilities fall into their respective confidence intervals. Thus, Pr(W | ∀(Mi ∈ M)Mi ∈ CIi) is bounded
below by γi,lower. Additionally, we simply lower bound Pr(W | ∃(Mi ∈ M)Mi ̸∈ CIi) by zero. Thus, we
conclude

Pr(W ) ≥ γi,lowerq
k + (0)(1 − qk),

or equivalently
Pr(W ) ≥ γi,lowerq

k.

Theorem 5.3. For each conditionally independent feature x1, . . . , xn, define βi > 0 such that for all i = 1...n,

Pr(xi|C) = βi Pr(xi|C).

Let β = n
√∏n

i βi, the geometric mean of the βi. If β > 1, then

lim
n→∞

Pr(x1, . . . , xn|C)
Pr(x1, . . . , xn|C)

= lim
n→∞

βn = ∞.

Proof. If
Pr(xi|C) = βi Pr(xi|C),

then

βi = Pr(xi|C)
Pr(xi|C)

.

So, we can write
n∏
i

βi =
n∏
i

Pr(xi|C)
Pr(xi|C)

=
∏n

i Pr(xi|C)∏n
i Pr(xi|C)

.

Since the features are conditionally independent,

n∏
i

Pr(xi|C) = Pr(x1, ..., xn|C)

and
n∏
i

Pr(xi|C̄) = Pr(x1, ..., xn|C̄).

Thus,

βn =
n∏
i

βi = Pr(x1, ..., xn|C)
Pr(x1, ..., xn|C̄)

.

Therefore, when β > 1,

lim
n→∞

Pr(x1, ..., xn|C)
Pr(x1, ..., xn|C̄)

= lim
n→∞

βn = ∞.
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Appendix: Toy Example and Additional Derivations of Theorem 4.2

Setup

We present a toy example computing the bounds in section 4 (namely, Theorems 4.8 and 4.9). In this example,
dim(O) = 2 and has features [“pill taken?", “headache relief?"]. We consider three selected possible causes:
[“aspirin", “caffeine", “placebo"] and derive abductive error bounds for abducing the observation [1,0].

For simplicity, this example uses normalized posterior probabilities (i.e., Mi = Pr(x|Ci) Pr(Ci)
Pr(x) rather than

Pr(x|Ci) Pr(Ci)). This produces the same results as using non-normalized posteriors since the ranking of
posterior ranges is the same.

The setup of the example is as follows. Table 9 displays the evidence distribution over O (Definition 3.1)–the
only given distribution assuming exact probabilities.

Table 3: Example evidence distribution.

Pill taken? Headache relieved? x Pr(x)
no no ⟨0, 0⟩ 0.3
no yes ⟨0, 1⟩ 0.05
yes no ⟨1, 0⟩ 0.15
yes yes ⟨1, 1⟩ 0.5

Tables 4 and 5 display the q = 0.95 percentile prior and likelihood ranges for each possible cause: “aspirin",
“placebo", and “caffeine".

Table 4: 95% confidence intervals for the prior of each cause.

Cause Pr(Ci) Lower Bound Pr(Ci) Upper Bound
aspirin 0.4 0.517
caffeine 0.32 0.37
placebo 0.1 0.113

Table 5: 95% confidence intervals for the likelihood of each cause.

x CI for Pr(x|do(aspirin = True)) CI for Pr(x|do(placebo = True)) CI for Pr(x|do(caffeine = True))
⟨0, 0⟩ [0.02, 0.058] [0.0067, 0.067] [0.64, 0.83]
⟨0, 1⟩ [0.006, 0.014] [0.004, 0.06] [0.58, 0.8]
⟨1, 0⟩ [0.13, 0.15] [0.33,0.4] [0.011,0.067]
⟨1, 1⟩ [0.4, 0.77] [0.005, 0.06] [0.064, 0.14]

Calculating Pr(IsMax(Mi))

From here, we will abduce the cause of observation x = [1, 0] (“pill taken", “headache not relieved"). The
posterior confidence bounds for this observation are displayed in ??. Note that for this toy example, we
assume uniform distributions within posterior confidence intervals for easy visualization, but our methods
and code support any bounded distribution.

Recall that Pr(IsMax(Mi)) is the probability that Mi is the maximum posterior assuming that all other
posteriors Mi ∈ M lie in their q-percentile confidence intervals [li, ui]. Theorem 4.2 presents a general method
of describing this value, making no assumptions of the positions of the upper/lower posterior bounds. We
derive two directly computable versions of Theorem 4.2 with varying constraints.
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Figure 2: Posterior probability ranges for observation [1,0] (pill taken, headache not relieved).

If the sum of the upper bounds for each posterior does not exceed 1 (or, for non-normalized posteriors, Pr(x)),
the posteriors of selected causes are independent6, leaving any remaining probability to the (dependent)
last cause, Cother with posterior Mother. This is the combined (likely small) posterior probability that any
cause not in the selected set C is the true cause of x. Representing each Mi ∈ M as a random variable (rv),
then Mother = 1 −

∑
Mi ̸=Mother

Mi where all Mi ̸= Mother are independent of each other. From here, we will
denote any M1 . . . MN as the posteriors not describing Cother for notational simplicity. Let f denote the joint
probability density function of all M1 . . . MN , and let fj(mj) denote the (give) marginal distribution of rv
Mj .

One brute-force approach of computing theorem 4.2 is to treat Pr(IsMax(Mi)) as the expected value of the
following indicator function. Let mj denote the specific value taken by any posterior Mj when computing the
integral. Then, let the the following indicator function denote whether mi is the maximum posterior among
all other posteriors’ set values and the probability of mother = 1 =

∑
j mj .

1mi
(m1, . . . , mN ) =

{
1 if mi = max{m1, . . . mN , 1 −

∑
j mj}

0 otherwise

Intuitively, the expected value of this indicator function is similar to tallying up the total number of
configurations of m1, . . . mN , where mi is the maximum, and then dividing it by the total number of
configurations of m1, . . . , mN . This is equivalent to the probability that random variable Mi is the maximum.

6If the sum of normalized posterior upper bounds exceeds 1, then posteriors cannot be treated as independent random
variables because the configurations where their sum exceeds 1 are invalid with probability 0. A way to compute Pr(IsMax(Mi))
when posterior upper bounds exceed 1 is through random sampling over the given distributions of Mi ∈ M, ignoring instances
where the sum of posteriors exceeds 1.
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Pr(IsMax(Mi)) =
∫ u1

l1

· · ·
∫ uN

lN

1mi(m1, . . . , mN )f(m1, . . . , mN ) dmN · · · dm1

=
∫ u1

l1

· · ·
∫ uN

lN

1mi
(m1, . . . , mN )

N∏
k=1

f(mk) dmN · · · dm1

Furthermore, if we can guarantee that Mother cannot be the highest posterior when Mi ∈ M lie their q-percent
bounds (i.e., there exists at least one posterior lower bound li such that li > 1 −

∑
j lj), then we can apply a

more efficient computable derivation of Theorem 4.2. Note that Mother would likely have this property for
any problem with a non-trivial number of causes.

Pr(IsMax(Mi)) =
∫ u

l

P

Mi = x,

N⋂
j ̸=i

(Mj < x)

dx (Theorem 4.2 with adjusted notation)

=
∫ u

l

P (Mi = x)P

 N⋂
j ̸=i

Mj ≤ Mi

∣∣∣∣Mi = x

 dx (“and" rule)

=
∫ u

l

P (Mi = x)P

 N⋂
j ̸=i

Mj ≤ x

∣∣∣∣Mi = x

 dx

=
∫ u

l

P (Mi = x)
N∏

j ̸=i

P

(
Mj ≤ x

∣∣∣∣Mi = x

)
dx (Independence of posteriors M1 . . . MN )

If we have lj > x for some j ̸= i, then and Mj is guaranteed to be greater than x, and so Mi cannot be the
maximum posterior at Mi = x. Otherwise, we can find the probability that Mj < x by integrating over the
probability density function of Mj , fj . This leaves the following computable form.

Pr(IsMax(Mi)) =
∫ u

l

P (Mi = x)
N∏

j ̸=i

[
1lj≤x

∫ x

li

fj(y)dy

]
dx

We used the derivation above to compute the following Pr(IsMax(Mi)) values for each selected cause.

Table 6: Pr(IsMax(Mi)) for observation [1,0].

Cause Pr(IsMax(Mi)) Error
aspirin 0.89772 1.0e-05
caffeine 0.10227 7.8e-10
placebo 0.0 0.0

Referring to the posterior ranges in Figure ??, notice that “aspirin", as the rightmost posterior range, is the
most likely to be the maximum posterior when all posteriors are within their confidence intervals. This is
consistent with the calculation above, as aspirin has the highest probability of being the maximum posterior.
Also, notice from Figure ?? that “caffeine" can never the greatest posterior as its upper bound is much lower
than the lower bound of any other cause. As expected, this Pr(IsMax(caffeine)) is calculated to be zero with
no error.

Bayes Error Rate, γi, and Final Bounds

Next, we find Bayes Error Rate (BER). This example is small enough to directly calculate lower and upper
bounds of BER with the summation form of Definition 4.3 (Sekeh et. al.) without the use of estimation
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techniques. (For more complex problems with many causes |O| = 2|C| may be very large, so it is likely more
practical apply the estimation techniques while treating the observations as continuous). We found Bayes’
rate to be bounded by ϵlower = 0.23 and ϵupper = 0.5667 for the observation [1,0].

Now that we have ϵlower, ϵupper, and the Pr(IsMax(Mi)) values for all possible causes, we can follow section
4.3 to find the final general error rate bounds.

We can now calculate γi,upper and γi,lower per Theorems 4.7 and 4.6 for each cause – the error rate when
posterior Mi is chosen, given the assumption that posteriors lie in their 95% confidence intervals.

γi,upper = ϵupper Pr(IsMax(Mi)) + (1 − li)(1 − Pr(IsMax(Mi))),

γi,lower = ϵlower Pr(IsMax(Mi)) + (1 − ui)(1 − Pr(IsMax(Mi)))

Next, we calculate upper and lower bounds for this error rate for all three possible causes:

Table 7: γi bounds for observation [1,0].

Posterior γi,lower γi,lower

placebo 0.562 0.656
aspirin 0.254 0.575
caffeine 0.933 0.989

As expected, aspirin (as the highest posterior range in Figure ??) has the lowest error rate assuming posteriors
lie in confidence intervals. Caffeine (as the lowest posterior range) has the highest error rate – i.e., choosing
caffeine as the cause for observation [1,0] (“pill taken" and “no headache relief") is most likely to be wrong.

We now compute the final bounds per Theorems 4.9 and 4.8. Where W is the event of “wrong abduction",
Pr(W ) ≤ 1 − qN (1 − γi,upper) and Pr(W ) ≥ γi,lowerq

N .

Table 8: General abductive error bounds for observation [1,0].

Cause Pr(W ) lower bound Pr(W ) upper bound
placebo 0.562 0.656
aspirin 0.254 0.575
caffeine 0.933 0.989

As expected, “aspirin" has the lowest error rate rate, followed by “placebo" and then “caffeine".

Results Summary

Table 9 displays the computed bounds for γi and Pr(W ) for every cause and observation. Figure 3 displays
the corresponding posterior confidence interval ranges for each observation.

Table 9: Summary of bounds for every observation

x γi (aspirin) γi (placebo) γi (caffeine) Pr(W ) (aspirin) Pr(W ) (placebo) Pr(W ) (caffeine)
⟨0, 0⟩ [0.9, 0.973] [0.93,0.99] [0.23,0.57] [0.772,0.977] [0.8,0.994] [0.197, 0.628]
⟨0, 1⟩ [0.86,0.952] [0.94,0.996] [0.23, 0.567] [0.737,0.959] [0.806,0.997] [0.197, 0.628]
⟨1, 0⟩ [0.254,0.575] [0.562,0.656] [0.933,0.989] [0.218, 0.8] [0.482, 0.705] [0.80,0.99]
⟨1, 1⟩ [0.223, 0.567] [0.94,0.995] [0.86,0.936] [0.197,0.629] [0.806,0.996] [0.737,0.945]
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Figure 3: Posterior confidence ranges for each observation.
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