
Observational Scaling Laws and
the Predictability of Language Model Performance

Yangjun Ruan1,2,3

yjruan@cs.toronto.edu
Chris J. Maddison2,3

cmaddis@cs.toronto.edu
Tatsunori Hashimoto1
thashim@stanford.edu

1Stanford University 2University of Toronto 3Vector Institute

Abstract
Understanding how language model performance varies with scale is critical to
benchmark and algorithm development. Scaling laws are one approach to building
this understanding, but the requirement of training models across many different
scales has limited their use. We propose an alternative, observational approach
that bypasses model training and instead builds scaling laws from ∼100 publically
available models. Building a single scaling law from multiple model families
is challenging due to large variations in their training compute efficiencies and
capabilities. However, we show that these variations are consistent with a simple,
generalized scaling law where language model performance is a function of a
low-dimensional capability space, and model families only vary in their efficiency
in converting training compute to capabilities. Using this approach, we show the
surprising predictability of complex scaling phenomena: we show that several
emergent phenomena follow a smooth, sigmoidal behavior and are predictable
from small models; we show that the agent performance of models such as GPT-4
can be precisely predicted from simpler non-agentic benchmarks; and we show
how to predict the impact of post-training interventions like Chain-of-Thought and
Self-Consistency as language model capabilities continue to improve.

1 Introduction
Language model (LM) scaling plays a central role in discussions of model capabilities and affects
everything from the tasks they can perform to the effectiveness of post-training techniques such as
Chain-of-Thought [99]. Due to this importance, understanding and predicting LM behaviors across
scales, benchmarks, and algorithmic interventions is a major question for many researchers and
engineers. Machine learning researchers may wish to understand whether their proposed algorithmic
interventions remain effective in the face of future model scaling, while engineers and benchmark
builders may wish to understand whether complex capabilities such as agentic abilities will scale
predictably in the same way as existing LM benchmarks.
Scaling laws [6, 36, 37, 44, 65] have been powerful tools for understanding the scaling trend
of LMs, which have shown that LMs follow a precise power-law relationship between compute
measures (such as training FLOPs) and downstream capabilities ranging from perplexity [37, 44] to
benchmark performance [34, 35]. This power-law relationship has been used in a variety of ways –
including hyperparameter and architecture selection [9, 37, 44] as well as model capability forecasting
[25, 66, 67]. Unfortunately, scaling analyses remain uncommon in many benchmarking and post-
training studies, as most researchers do not have the compute resources to build scaling laws from
scratch, and open models are trained at too few scales (3-5) for reliable scaling predictions.
We show that many scaling analyses, such as understanding complex LM capabilities (e.g., “emergent”
behaviors) and post-training interventions, can be done with a lower-cost, higher-resolution, and
broader-coverage alternative to the standard approach of training LMs across compute scales.
The starting point of our work is the observation that there now exist hundreds of open models
spanning a large range of scales and capabilities. While we cannot directly use these models for

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

mailto:yjruan@cs.toronto.edu
mailto:cmaddis@cs.toronto.edu
thashim@stanford.edu

Standard compute
scaling laws

Log-linear
scaling

Low-rank
decomposition

Log-linear scaling

Compute measures

PC1

Complex downstream
capabilities

Model

M
et

ric

Standardized
benchmark leaderboard

Principal capability
measures (PC)

Ac
cu

ra
cy

w1PC1 + w2PC2

Fitted
Extrapolated

PC2

PC
i

Log(FLOPs)

Llama

OPT

Figure 1: Observational scaling laws generalize existing compute scaling laws which directly relate
training compute to downstream capabilities (dashed line) by hypothesizing the existence of a low-
rank space of LM capabilities that have a log-linear relationship with compute (center), and can
be extracted directly from standardized LM benchmarks (left). This enables us to get low-cost,
high-resolution scaling predictions of LMs’ complex downstream capabilities from their observable
standard benchmark metrics using nearly 100 publicly accessible LMs (left to right).

compute scaling laws (as the training compute efficiency varies widely across model families), we
might hope that there exists a more general scaling law that holds across model families. In particular,
we hypothesize that the downstream performance of an LM is a function of a low-dimensional space
of capabilities (e.g., natural language understanding, reasoning, and code generation), and that model
families vary only in the efficiency by which they convert training compute to these capabilities. If
such a relationship held, it would imply that there is a log-linear relationship from low-dimensional
capabilities to downstream capabilities across model families (which would allow us to build scaling
laws that leverage all existing models), as well as a log-linear relationship between training compute
and capabilities within each model family (as in standard compute scaling) (Fig. 1).
Through an analysis of standard LM benchmarks (e.g., Open LLM Leaderboard [8]), we find a
few such capability measures that have scaling relationships with compute within model families
(R2 > 0.9) (Fig. 3), and with downstream metrics across families. We call such relationships
observational scaling laws as they predict complex downstream capabilities from simple observable
quantities that we expect to scale with compute (like standardized benchmark performance)
The ability to build scaling laws across a large number of existing LMs from their standard benchmark
metrics has significant advantages in cost, resolution, and coverage: Observational scaling incurs no
training cost, while leveraging models spanning a much larger compute range than any single model
family. It also significantly increases the resolution of scaling laws by virtue of using more models,
which is useful for studying nearly discontinuous phenomena like “emergent” capabilities. Finally,
observational scaling can combine model families from heterogeneous sources with very different
scaling properties (e.g., LLaMA [91] vs StarCoder [48]) which allows us to study how different
scaling strategies impact downstream performance and algorithmic interventions.
Finally, we show that using observational scaling laws is low-cost and straightforward, as there are a
few model families that are sufficiently representative to replicate many of our core findings (Sec. 5).
By using these representative families, we find that future works can easily make scaling predictions
on benchmarks and post-training interventions by evaluating only 10-20 models.
We demonstrate the utility of observational scaling laws in three different settings that are challenging
for compute scaling laws but are accurately predicted by ours: (i) Emergent capabilities (Sec. 4.1):
We show that the high resolution of observational scaling laws reveals that the emergent behaviors of
LMs [98] follow a smooth sigmoid, and can be predicted accurately using sub Llama-2 7B models.
(ii) Agentic capabilities (Sec. 4.2): We show that the more complex capabilities of LMs as agents, as
measured by AgentBench [57] and AgentBoard [61], can be predicted with simple benchmark metrics.
Our scaling law precisely predicts the GPT-4 performance using weaker models (sub GPT-3.5) and
identifies programming capabilities as driving agent performance. (iii) Post-training interventions
(Sec. 4.3): We show that our scaling laws can reliably predict the gains of post-training techniques,
such as CoT [99] and Self-Consistency [97] at scale, even when they are fitted on weak models (sub

2

Llama-2 7B). Finally, we show how to select only 10-20 representative models to replicate our core
findings, making our scaling analyses more accessible with a low cost (Sec. 5).

2 Related Work
In this section, we briefly review the most relevant related work on downstream scaling laws and
benchmark correlations. We include an extended related work discussion in Appx. C.
Downstream scaling laws Scaling laws have been generalized beyond pretraining loss to analyze
transfer learning [1, 35, 85] and downstream performance [15, 30, 34] across various domains. How-
ever, whether the LM downstream performance demonstrates a rapid “emergence” or is predictable
with scaling laws remains debated [23, 27, 38, 39, 60, 79, 83, 98, 101]. Finnveden [25] and Owen
[67] have investigated the use of linear and sigmoidal scaling laws, derived from pretraining loss or
computational measures, to extrapolate the benchmark performance. Arora and Goyal [5] derived
a theory characterizing how LMs’ complex skills can be derived as a composition of base skills.
Our work differs in that we build practical higher-resolution scaling laws to predict LM downstream
performance using multiple model families and their observable standard benchmark metrics.
Correlations between benchmarks Numerous works have studied the correlations between NLP
benchmarks in vairous contexts [56, 68, 69, 71]. Most relevant to our work, Ilić [40] found that a
single factor explains 85% of the variation on the Open LLM Leaderboard [8] and GLUE leaderboard
[95], while Burnell et al. [14] extracted three factors for LM capabilities that account for 82% of the
variation on HELM [51], aligning with our observations. Our work also observes such benchmark
correlations and low-rank structures but is unique in utilizing these properties for the purpose of
scaling predictions that can be used directly for benchmark and algorithm development.

3 Observational Scaling Laws
In this section, we introduce our observational scaling laws that generalize the standard compute
scaling laws (Sec. 3.1). The key idea is to extract a low-dimensional capability measure for LMs
from their observable benchmark performance (Sec. 3.2), which we find has a log-linear relationship
with compute scale measures (Sec. 3.3) and can thus be used as surrogate “scale” for scaling analysis
of complex LM capabilities (Sec. 3.4).

3.1 Generalizing Compute Scaling Laws
Standard compute scaling In compute scaling laws, there is a hypothesized power-law relationship
between models’ compute measures Cm (e.g., training FLOPs) and their errors Em (e.g., perplexity).
Specifically, for a model m within a family f (e.g., Llama-2 7B, 13B, and 70B) we hypothesize

log(Em) ≈ βf log(Cm) + αf , (1)
and if this linear fit is sufficiently accurate, we draw inferences about the performance of a model at
future compute scales C ′ > C by extrapolating this relationship. However, fitting such a scaling law
can be tricky, as each model family f and downstream benchmark has its own scaling coefficients βf
and αf . This means that scaling experiments, especially for post-training analysis, are often fitted
on very few (3-5) models sharing the same model family, and any predictions are valid only for a
specific scaling strategy used within a model family.
Several studies [e.g., 25, 67] have generalized the functional form to analyze the scaling of LMs’
downstream performance (whereEm is normalized to [0, 1]) with a sigmoidal link function σ:

σ−1(Em) ≈ βf log(Cm) + αf , (2)

Observational scaling In our work, we hypothesize the existence of a low-dimensional capability
measure for LMs that relate compute to more complex LM capabilities and can be extracted from
observable standard LM benchmarks, as illustrated in Fig. 1. Specifically, given T simple benchmarks
and Bi,m the error of a model m on benchmark i ∈ [T], we hypothesize that there exists some
capability vector Sm ∈ RK such that,

σ−1(Em) ≈ β>Sm + α (3)
Sm ≈ θf log(Cm) + νf (4)

Bi,m ≈ γ>i Sm. (5)

for θf , νf , β ∈ RK , α ∈ R, and orthonormal vectors γi ∈ RK .

3

1 2 3 4 5
PC

0.0

0.2

0.4

0.6

0.8

Ex
pl

ai
ne

d
va

ria
nc

e
ra

tio

0.967
PCA Explained Variance

(a) PCA explained variance

MMLU
ARC-C

HellaSwag

Winograd

TruthfulQA
GSM8K

XWinograd

HumanEval

PC
-1

PC
-2

PC
-3

PC
-4

PC
-5

0.45 0.34 0.38 0.24 0.08 0.55 0.21 0.35

0.12 -0.30 -0.62 -0.30 0.19 0.43 -0.19 0.40

-0.32 0.04 0.10 -0.00 -0.27 -0.35 0.09 0.83

-0.59 -0.14 0.34 -0.14 -0.31 0.58 -0.23 -0.09

0.14 0.26 0.06 0.21 0.01 -0.12 -0.92 0.09
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

(b) Principal component weights

Figure 2: Just a few capability dimensions explain most variability on a diverse range of standard
LM benchmarks. We find that (a) the benchmark-model matrix is low-dimensional with the top 3
PCs explaining ∼ 97% of the variance and (b) the PCs are interpretable: PC-1, PC-2, and PC-3
emphasize LMs’ general, reasoning, programming capabilities, respectively.

We can view Eq. (3) and Eq. (4) as a generalization of Eq. (2), since combining them can recover
the original scaling relationships for a single model family. However, when there are multiple
model families, Sm serves as a shared, low-dimensional space of model capabilities from which all
downstream metrics (E and B) are derived (as indicated by the absence of f in Eq. (3) and Eq. (5)),
and model families only vary in their efficiency in converting compute into capabilities (Eq. (4)). One
useful way of interpreting Eq. (4) is that θf represents the compute efficiency of a model family f ,
and Sm is the capabilities of model m expressed in terms of log-FLOPs for this model family.
Finally, Eq. (5) ensures that these capabilities are not latent variables to be estimated for each model
family, but are instead functions of fully observable properties (B). Since γ ∈ RK×T is orthonormal,
we can linearly estimate Ŝm := γBm, which makes our scaling analysis significantly more robust.
Importantly, this enables us to apply this to a large number of public models from heterogeneous
sources, including those proprietary ones without any public information on C such as GPT-4.

3.2 Identifying a Low-Dimensional Capability Space (Eq. (5))

We validate the existence of a low-dimensional capability measure S that linearly relates to standard
LM benchmarks B by showing that only a few principal components of B capture most of its
variation (Eq. (5)). We demonstrate that the benchmark-model matrix B for a reasonable, broad set
of benchmarks and models is low-rank and that Eq. (5) is a reasonable assumption.

Models Since the benchmark-model matrix B can be directly measured for any LM, we include
a large number of publicly accessible models for subsequent analysis. We collected a broad set of
open LMs covering 21 model families (a collection of models across scales such as LLaMA-2 7B,
13B, 70B) and a total of 77 models. These encompass models trained from heterogeneous recipes,
including standard training recipes like LLaMA [91], those trained on synthetic data like Phi [50],
and models specifically trained on code data like StarCoder [48]. For this analysis, we consider only
pretrained base models to avoid the complexities introduced by instruction tuning. We also include
an analysis for instruction-tuned models that include proprietary ones like GPT-4 [66] in Appx. E.1,
which demonstrates similar results. See Table D.1 for a detailed list of collected models.

Benchmarks We collected a set of diverse benchmarks that assess various LMs’ capabilities. These
include popular aggregated benchmarks like MMLU [32] that assess the general knowledge of
LMs. For more specialized evaluations, we included ARC-C [19], HellaSwag [108], Winogrande
[77] for commonsense reasoning, GSM8K [20] for mathematical reasoning, HumanEval [16] for
programming, TruthfulQA [53] for truthfulness, and XWinograd [64] for multilingual capabilities. We
carefully collected these metrics from standardized evaluation protocols for comparability across LMs.
In particular, we compiled them from standardized leaderboards, like the Open LLM Leaderboard [8]
and EvalPlus [55], when available. Otherwise, we used standardized libraries such as the LM Eval
Harness [28] to evaluate the LMs. See Appx. D.1 for full details of our data collection pipeline.

PCA analysis After obtaining the benchmark metrics for the LMs, we addressed potential missing
values (less than 1% of all data), which may have occurred due to evaluation failures, by using PCA
imputation. Subsequently, we applied PCA to extract the principal components of the evaluation
metrics as the “principal capability” (PC) measures S (additional details in Appx. D.3).

4

2.0 2.5
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

PC
-1

R2 = 1.00
y = 0.52x - 0.92

Llama-2

2.0 2.5
Log10(FLOPs (1E21))

0.2

0.0

0.2

0.4

PC
-1

R2 = 0.98
y = 0.38x - 0.64

Llama

1 2 3
Log10(FLOPs (1E21))

0.25

0.00

0.25

0.50

0.75

1.00

PC
-1

R2 = 0.97
y = 0.43x - 0.52

Qwen1.5

2.0 2.5 3.0
Log10(FLOPs (1E21))

0.0

0.5

1.0

1.5

PC
-1

R2 = 0.96
y = 0.32x - 0.24

Qwen

1 2 3
Log10(FLOPs (1E21))

1.0

0.5

0.0

0.5

1.0

PC
-1

R2 = 0.94
y = 0.29x - 0.44

Falcon

1 0 1
Log10(FLOPs (1E21))

0.6

0.5

0.4

0.3

0.2

PC
-1

R2 = 0.99
y = 0.17x - 0.42

Pythia

0 1 2
Log10(FLOPs (1E21))

0.4

0.2

0.0

PC
-1

R2 = 0.98
y = 0.17x - 0.47

BLOOM

0 1
Log10(FLOPs (1E21))

0.6

0.4

0.2

0.0

PC
-1

R2 = 0.95
y = 0.17x - 0.43

GPT-Neo/J

1 0 1 2
Log10(FLOPs (1E21))

0.6

0.5

0.4

0.3

0.2

0.1

PC
-1

R2 = 0.98
y = 0.13x - 0.41

OPT

0.5 1.0
Log10(FLOPs (1E21))

0.5

0.4

0.3

PC
-1

R2 = 0.99
y = 0.16x - 0.53

XGLM

2.0 2.5 3.0
Log10(FLOPs (1E21))

0.25

0.00

0.25

0.50

0.75

PC
-1

R2 = 0.96
y = 0.58x - 1.29

CodeLlama

1.0 1.5 2.0
Log10(FLOPs (1E21))

0.5

0.4

0.3

0.2

PC
-1

R2 = 0.97
y = 0.19x - 0.60

StarCoder

Figure 3: The extracted PC measures linearly correlate with log-compute within each model family.
The linearity generally holds for various model families, and also for lower-ranked PCs (Fig. E.2).

PC measures are low-dimensional We observe that the extracted PC measures are predominantly
low-rank, with the top 3 PCs explaining ∼ 97% of the variance, which supports a low-dimensional
representation of benchmarks B (Fig. 2a). Surprisingly, we find that the first PC alone explains
nearly 80% of the variation in LM capabilities. Taking a closer look at these PCs, we find that these
capability measures represent interpretable directions in which LMs capabilities may naturally vary
as a function of scale (Fig. 2b). Specifically, PC-1 represents the “general capability” as a weighted
average of all metrics; PC-2 corresponds to the “reasoning capability”, emphasizing mathematical
and coding benchmarks; and PC-3 primarily reflects the “programming capability”. These findings
suggest that many simple LM capabilities (as covered in our benchmarks) can be expressed as a linear
combination of just a few “principal capabilities” S.

3.3 Principal Capability Measures as Surrogate Scale Measures (Eq. (4))
We now show that the PC measures S scale log-linearly with training FLOPs within each model
family, and can thus be interpreted as a cross-family generalization of compute C. We discuss some
additional applications of PC measures as a smooth cross-family evaluation metric in Appx. B.
Setup We collected all available information about training FLOPs on each of our models, analyzing
papers and other public information to identify model size N and pretraining data size D. For the
models where we were able to identify this information, we used the simple estimate of C ≈ 6ND
to obtain model training FLOPs [44]. See Table D.1 for our collected compute measures.
PC measures linearly correlate with log-compute measures Fig. 3 illustrates the correlation
between the top PC-1 measure with the corresponding training FLOPs for models within each model
family. We find that for each model family with controlled training recipes and comparable compute
scale measures, the LMs’ PC-1 measure linearly correlates with their log-training FLOPs (with
R2 > 0.9). This linear correlation holds across a broad range of model families including those
specifically trained on multilingual data like BLOOM [100] or those on code like StarCoder [48]. It
also generally holds for lower-ranked PCs such as PC-2 and PC-3, as shown in Fig. E.2. Together
with Sec. 3.2, these results support the validity of Equations (4) and (5), in which we hypothesized
that models share the same capability space and a log-linear relationship determines the efficiency by
which each model family converts their compute into these principal capabilities.

3.4 Fitting Observational Scaling Laws (Eq. (3))
Fitting regression with PC measures Given a certain downstream error metric E normalized to
[0, 1] that measures certain LM capabilities, we slightly generalize Eq. (3) to

Em ≈ hσ(β>Sm + α) (6)

where β ∈ RK and α ∈ R are the regression weights and bias, h ∈ [0, 1] is the sigmoidal scale that
accounts for the potential discrepancies in the floor performance. We fit the regression with ordinary
least squares and restrict h ∈ [0.8, 1.0], which results in h∗ = 1 in most experiments.
Defining interpretable compute-like measures Recall that the core component of our scaling law
is the fitted linear transformation Pm := β∗>Sm + α∗ that maps the extracted PCs into a scalar
capability measure for a target downstream metric. While this is perfectly acceptable for prediction,
our scaling analysis would be more interpretable if we expressed capabilities in units of FLOPs rather
than an arbitrary scalar measure. We can achieve this by utilizing the fact that for a single family f ,
our observational scaling law reduces to a compute scaling law (Eq. (3) & Eq. (4)). Specifically, we

5

note that when Eq. (4) holds exactly, we have that for a model m within a family f ,

Pm := β∗>Sm + α∗ = wf log(Cm) + bf (7)

where wf = β∗>θf and bf = β∗>νf + α∗. This implies a linear correlation between the scalar
capability Pm and the compute log(C) for models within a specific family on a downstream task (see
empirical validation in Fig. E.3). Since θf and νf are unknown a priori, we can fit these coefficients
wf , bf via linear regression from log(C) to P using models from the specific family f .
In the multi-model family case, we can map all models to a shared, FLOPs-based capability measure
of a specific family f . The core idea is to represent each model’s capabilities by the following
hypothetical: “how many FLOPs (C̄m,f) would it take for a model in a family f to match a model
m”. We call C̄m,f the f -equivalent FLOPs for model m, as it represents the performance of model
m relative to models in the reference model family f . This measure can be computed fairly easily as

log(C̄m,f) :=
1

w∗f

(
β∗>Sm + α∗ − b∗f

)
, (8)

obtained from solving for log(Cm) in Eq. (7). Throughout the remainder of this work, we apply this
scalar transformation where we pick Llama-2 [92] as the reference family f , and so the x-axis of all of
our plots can be interpreted as “model capabilities, as measured in units of Llama-2 FLOPs”.

4 Validating Observational Scaling Laws
We evaluate the usefulness of observational scaling laws by showing that they accurately predict the
scaling behaviors of LMs over complex, hard-to-predict phenomena (like emergent phenomena and
agentic abilities) and help estimate the value of techniques such as Chain-of-Thought.
To ensure that our scaling laws are actually predictive and that we are not simply overfitting
through various choices in scaling law construction and hyperparameters, we design our exper-
iments to have systematic holdout sets and robustness checks. We have also preregistered our
predictions for future models after the initial release of the paper as a test of whether our scaling
laws overfit current models. We release our code including the implementation and collected data at
https://github.com/ryoungj/ObsScaling.
Details in scaling law fits For extracting PC measures, we fixed the number of PCs K = 3 as
it covered ∼ 97% of the variation in benchmark performance and it consistently yielded the best
performance across most of our experiments, see Appx. E.4 for robustness checks on PC selection.
For the capability-equivalent scale transformation, we used the Llama-2 [92] as the reference model
family as it is currently the most representative and widely used open model in the community. For
better interpretability and visualization, we used the accuracy metric, typically defined as Y = 1−E,
for fitting the scaling laws and making the plots.
Holdout validation To validate our observational scaling laws, our primary objective is to assess
how accurately the scaling laws fit the available data and extrapolate from smaller-scale, less capable
models to larger-scale, more powerful models. We validate this through systematic holdouts for
the test set, where we split available models into weaker and stronger ones based on both scale or
capability (e.g., FLOPs or accuracy). We used the weaker models to fit the scaling law and evaluated
the extrapolated predictions on the stronger ones. To prevent any train-test leakage, all preprocessing
steps (e.g., PCA imputation) were fitted on the train set only and then applied to the test set. Unless
otherwise stated, we set the cutoff to include all models with training FLOPs less than or equal to that
of Llama-2-7B (8.4× 1022) as training data, resulting in a training set of 47 models and a test set of
30 models. We included robustness checks for different holdout strategies in Appx. E.4.
As baselines, we compare our scaling predictions to using existing compute-based scale measures like
training FLOPs and model size. We used the mean squared error (MSE) on the test set as our main
evaluation measure, which is comparable as the target range is always normalized (0 to 1).
Preregisteration of predictions In the initial release of our paper (May 2024), we have prereg-
istered our scaling predictions for future models (see preregistered functional forms in Appx. E.9)
and committed to updating the manuscript on ArXiv with our prediction results after 4 months. We
have assessed these predictions on new models released after the initial paper release, collected as of
September 1st 2024, including most capable open models to date such as Llama 3.1-405B [24] and
Qwen2-72B [105] (see the full collected model list in Appx. D.1.1), resulting in an additional test set
of 20 models for robustness checks. The results are included in Fig. 4, and additional results on other
tasks and new benchmarks are included in Appx. E.3.

6

https://github.com/ryoungj/ObsScaling

0 5 10
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ex

ac
t M

at
ch

y = sigmoid(1.04x - 7.03)
MSEtrain = 2.6e-04
MSEtest = 1.3e-02

Word Unscramble

0 5 10
Log10(FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
Ac

cu
ra

cy

y = sigmoid(0.57x - 6.40)
MSEtrain = 2.7e-04
MSEtest = 2.1e-02

Persian QA

0 5 10
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ac

cu
ra

cy

y = sigmoid(1.07x - 4.67)
MSEtrain = 9.1e-03
MSEtest = 6.3e-02

3-Digit Substraction

0 5 10
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ac

cu
ra

cy

y = sigmoid(0.50x - 3.17)
MSEtrain = 6.2e-03
MSEtest = 1.2e-01

2-Digit Multiplication

Train
Test
Pre-registered

Llama-2
Llama
Llama-3

Llama-3.1
Qwen1.5
Qwen

Yi
Yi-1.5
Gemma

Gemma-2
Falcon
Phi

Pythia
BLOOM
GPT-Neo/J

OPT
MPT
XGLM

StarCoder
DeepSeek-V2
DeepSeek-Coder-V2

(a) Training FLOP based scaling law

1 0 1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
Ex

ac
t M

at
ch

y = sigmoid(2.00x - 6.11)
MSEtrain = 1.3e-04
MSEtest = 4.0e-03

Word Unscramble

1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

0.5

0.6
No

rm
al

ize
d

Ac
cu

ra
cy

y = sigmoid(2.32x - 8.43)
MSEtrain = 1.8e-04
MSEtest = 3.2e-03

Persian QA

0 1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ac

cu
ra

cy

y = sigmoid(5.50x - 8.92)
MSEtrain = 6.5e-03
MSEtest = 1.3e-02

3-Digit Substraction

0 1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ac

cu
ra

cy

y = sigmoid(2.22x - 4.45)
MSEtrain = 2.8e-03
MSEtest = 9.9e-03

2-Digit Multiplication

Train
Test
Pre-registered

Llama-2
Llama
Llama-3

Llama-3.1
Qwen1.5
Qwen

Yi
Yi-1.5
Gemma

Gemma-2
Falcon
Phi

Pythia
BLOOM
GPT-Neo/J

OPT
MPT
XGLM

StarCoder
DeepSeek-V2

DeepSeek-Coder-V2
Jamba

(b) Observational scaling laws

Figure 4: “Emergent” capabilities of LMs can be accurately predicted from weaker models to stronger
ones with observational scaling laws, and using PC measures as the predictor provides much more
accurate predictions than using compute measures like training FLOPs and model size (see Fig. E.12).
Our preregistered predictions also accurately extrapolate to new models released after the initial
paper release, including Llama-3.1-405B [24]. Four tasks from BigBench [82], which are identified
as “emergent” in [98], are used for illustration.

4.1 Predictability of “Emergent” Capabilities
Recent works have argued that many LM capabilities are “emergent” and cannot easily be predicted
from small-scale models [27, 98]. There have been ongoing debates about whether these capabilities
are truly discontinuous and whether the discontinuity is an artifact of the metric used [23, 39, 60, 78]
or lack of high-resolution data points [38]. The debate has been complicated by the fact that existing
scaling analyses (including the original ones in Wei et al. [98]) have very few points [38]. When
there are only 5 models across many orders of magnitudes of scale, phenomena can appear to be
discontinuous, even if the underlying phenomenon is a smooth but rapidly varying sigmoid.
We show that the higher resolution of observational scaling laws allows us to clearly see smooth
sigmoidal curves in phenomena that were identified as emergent in Wei et al. [98], and even more
surprisingly, we can often accurately forecast the transition points where models go from near-
random to high performance using only models whose performance is only slightly above random.
Our findings validate the observational approach to scaling laws and provide evidence that higher-
resolution scaling laws could help us better understand scaling phenomena for LMs.

Setup We tested on four BigBench [82] tasks that were labeled as “emergent” in Wei et al. [98],
including two arithmetic tasks (3-digit subtraction and 2-digit multiplication) and two non-arithmetic
tasks (word unscramble and Persian QA). Additional results on more tasks covering Wei et al. [98] are
included in Appx. E.5. For the models, we included base pretrained models following the approach
of Wei et al. [98]. For non-arithmetic tasks, we used the default FLOPs cutoff. For arithmetic tasks,
we found that this cutoff resulted in an excess of training data near perfect performance (see results
in Fig. E.13), making the prediction tasks trivial. Consequently, we reduced the cutoff to a quarter of
the default value and also excluded GSM8K (which may be a superset of arithmetic tasks) from our
base metrics B to make the tasks more challenging.

Prediction results Fig. 4 shows our prediction results using our PC measures as well as the baseline
of predicting performance based on training FLOPs. We find that these capabilities can be accurately
predicted using our PC measures, even when only using models that perform poorly. In contrast,
using training FLOPs results in significantly poorer extrapolation on the test set and fits on the train
set, as indicated by the much higher MSE values. This discrepancy is likely due to the incomparability
of training FLOPs across different model families. Additional results of the model size baseline are
included in Appx. E.5.

7

1 2 3 4 5
Log10(Llama-2-Chat-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = 0.99sigmoid(x - 5.52) + 0.01

MSEtrain = 3.7e-04
MSEtest = 2.2e-04

Train
Test
GPT-4
Claude-2
Claude-1
GPT-3.5-Turbo
Claude-Instant
Llama-2-Chat
Vicuna
Codellama-Instruct
OpenChat
WizardLM
Guanaco
Koala
Dolly-v2
Oasst-SFT

(a) AgentBench

2 3 4 5 6
Log10(Llama-2-Chat-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

y = 0.97sigmoid(0.98x - 6.60) + 0.03

MSEtrain = 2.9e-04
MSEtest = 3.6e-03

Train
Test
GPT-4
Claude-2
GPT-3.5-Turbo
Llama-2-Chat
Mistral-Instruct
Vicuna
Codellama-Instruct
Deepseek-LLM-Chat
Lemur-Chat

(b) AgentBoard

AgentBench

MMLU
ARC-C

HellaSwag

Winogrande

TruthfulQA
GSM8K

HumanEval

2.34 0.82 0.32 0.54 0.60 -0.42 2.63
0.0

2.5

AgentBoard

MMLU
ARC-C

HellaSwag

Winogrande

TruthfulQA
GSM8K

HumanEval

-0.10 -0.31 -0.55 0.14 0.56 2.28 3.36
0.0

2.5

(c) Weight visualization

Figure 5: (a)-(b) The agentic capabilities of instruction-tuned LMs measured by agent benchmarks
can be accurately predicted from weaker models (sub GPT-3.5) to stronger ones (e.g., GPT-4) by
their PC measures. (c) The fitted weights (β>γ) on both benchmarks demonstrate the importance of
programming capabilities (HumanEval) for the agentic capabilities of LMs.

4.2 Predictability of Agentic Capabilities
There is significant interest in building autonomous agents using LMs, with notable examples
including AutoGPT [75], Devin [46], and SWE-agent [106]. Although the performance of these
agents still falls far below human-level on challenging real-world tasks [43, 62, 110], there is a belief
that future models at larger scales will significantly enhance these agents’ capabilities. However,
there is a significant uncertainty about whether existing models that are trained for language and
code capabilities will transfer well to agentic tasks that require taking actions over many rounds.
In this section, we utilize our observational scaling laws to analyze the scaling properties of LMs’
agentic capabilities w.r.t. their backbone model capabilities and show that agent performance is highly
predictable from simple benchmark metrics.
Setup We tested on two standardized agent evaluation benchmarks, AgentBench [57] and Agent-
Board [61], each is a collection of diverse tasks for evaluating LMs’ agentic capabilities. For both
benchmarks, we utilized their provided aggregated metrics on all tasks for prediction. Specifically,
we used the “Overall Score” on AgentBench, which is a weighted average of scores across all tasks
(denoted as “OA” there), and the “Average Success Rate” on AgentBoard. We included models that
have been evaluated on each benchmark, which encompasses both open instruction-tuned models
like LLaMA-2-Chat [92], and proprietary models like GPT-4 [66] and Claude-2 [3], see Table D.2
for a complete list of models. We followed the same procedure to collect standardized benchmark
metrics B for instruction-tuned models, see Appx. D.1.2 for details. Notably, since compute scale
measures are not available for proprietary models, only our observational scaling laws apply here
and not compute scaling laws. The default FLOPs cutoff does not apply either, and thus we held out
the top 10% performing models on each agent benchmark as the test set to simulate weak-to-strong
predictions, which included GPT-4 and Claude-2 on AgentBench and GPT-4 on AgentBoard.
Prediction results Fig. 5 illustrates the prediction results with our observational scaling laws
using PC measures. We find that on both agent benchmarks, the performance of held-out models
(GPT-4/Claude-2) can be accurately predicted from models with much weaker performance (> 10%
gap). This indicates that the more complex agentic capabilities of LMs are well-correlated with
and predictable from their base model capabilities, suggesting the promising scaling properties of
LM-based agent capabilities as backbone LMs continue to scale up.
Interpreting the capability dimensions In Fig. 5c, we visualize the weights assigned to the base
evaluation metrics on both benchmarks, which are derived from the regression weights fitted on
PC measures and applied with learned PCA transformation, i.e., β>γ. We observe that the fitted
weights assign significant importance to programming capabilities (HumanEval) on both benchmarks,
underscoring its significance in defining the agentic capabilities of LMs. The weights also emphasize
general knowledge (MMLU) on AgentBench, and reasoning capabilities (GSM8K) on AgentBoard,
suggesting that these capabilities may also be important for LMs’ agentic capabilities.

4.3 Predicting the Impact of Post-Training Techniques
When researchers propose a new prompting or post-training technique to improve a pretrained model,
how can we know whether these gains will persist across models and scales? Systematic scaling
analyses have been rare due to the small number of models within a single model family. Moreover,
some recent works have argued that certain interventions, such as Chain-of-Thought [99], behave in
an emergent way that is not predictable from smaller models [98]. Using observational scaling laws,
we show that it is possible to make relatively accurate predictions on the effectiveness of techniques

8

0 1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

CoT

Naive + Greedy
y = sigmoid(1.09x - 4.77)
CoT + Greedy
y = sigmoid(2.04x - 5.53)

Train Test

1.0 1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Self-Consistency

CoT + 1 Sample
y = sigmoid(1.97x - 5.58)
CoT + SC + 5 Samples
y = sigmoid(2.19x - 5.74)

Train Test

(a) Scaling prediction of post-training techniques

MMLU
ARC-C

HellaSwag

Winograd

TruthfulQA

XWinograd

HumanEval

Naive

CoT

CoT + SC

2.13 1.31 1.15 0.82 0.53 0.83 2.34

2.90 1.36 0.74 0.70 0.91 0.89 3.68

3.25 1.45 0.68 0.72 1.05 0.96 4.24 1

2

3

4

(b) Weight visualization

Figure 6: (a) The LM performance with and without techniques like CoT and Self-Consistency can be
accurately predicted with observational scaling laws. The fitted scaling curves indicate that CoT has
a better scaling behavior than SC. See Fig. E.15 for detailed per-method scaling plots and comparison
with compute baselines. (b) The fitted weights (β>γ) demonstrate a very different pattern when CoT
is applied, emphasizing general knowledge (MMLU) and programming capabilities (Humaneval).

such as Chain-of-Thought (CoT) [99] and Self-Consistency (SC) [97] as model scale increases. We
focus on these post-training interventions in particular, as they are sometimes discussed as examples
of post-training interventions that require scale to be effective [98, 99].
Our approach to quantifying the scaling properties of post-training is straightforward: we fit one
observational scaling law using base model performance on a target benchmark (e.g., GSM8K few-
shot), and then fit another on the performance of models with the post-training intervention (e.g.,
GSM8K w/ CoT). Each of these fits produces a sigmoidal scaling curve as a function of log(C̄f), and
the relative gaps as a function of log(C̄f) indicates the scaling efficiency of the intervention.
Setup We tested on GSM8K with CoT and SC as post-training techniques and included additional
results on BigBench-Hard [83] with CoT in Appx. E.6. As with our study on emergent phenomena on
arithmetic tasks, we excluded GSM8K from the base metrics B to avoid making the prediction tasks
trivial. We included all the pretrained base models listed in Table D.1 including those specifically
trained for code data and applied the default FLOPs cutoff for holdout validation. For CoT, we
followed Wei et al. [99] and compared CoT prompting using eight reasoning examples with naive
prompting using only few-shot examples in the greedy decoding setting. For SC, we sampled five
CoT reasoning paths at temperature 0.7 to aggregate the final answers following Wang et al. [97] and
compared it with a single sampled CoT answer.
Prediction results Fig. 6a shows the scaling predictions for CoT and SC using observational
scaling laws. We find that the performance with (CoT, CoT + SC) and without (Naive) post-training
techniques for stronger, larger scale models can be accurately predicted from weaker, smaller scale
models. In contrast, predictions based on compute scale measures like model size and training FLOPs
are less reliable as seen in Fig. E.15. Notably, the scaling trends between the two techniques differ;
CoT shows a much more pronounced scaling trend compared to Self-Consistency w/ CoT.
Interpreting the capability dimensions Another advantage of observational scaling laws over
scaling laws constructed on single families is that we can visualize the capabilities that are important
to the post-training intervention. Fig. 6b visualizes the fitted regression weights β, mapped to the
space of base capability benchmarks B via β>γ. We clearly see that when we go from Naive to
CoT, there are significantly higher weights placed on MMLU and HumanEval - meaning that scaling
models in a way that enhances general knowledge (MMLU) and code (HumanEval) leads to greater
gaps between CoT and the baseline, while improving along commonsense, such as Winogrande does
not necessarily lead to improvements at scale. These analyses can inform how different post-training
interventions affect different scaling recipes – such as code models vs general-purpose LLMs.

5 Selecting Low-Cost Model Subsets for Practical Scaling Analyses
Although our observational scaling law incurs no training cost, it still requires evaluating our bench-
marks and post-training methods on a larger number of models. To make observational scaling
analyses more broadly accessible, we identify a small set of representative models that maintain high
prediction accuracy while significantly reducing the evaluation cost.
Method More specifically, we consider the constrained optimization problem of identifying the
optimal set of models to choose for a regression problem, subject to the constraint that we select a
model subsetM of at mostMmax models from the set of all modelsMa. To define optimality, we turn

9

4 8 12 16 20 24 28 32 36
Number of Selected Models

10 2

O
ve

ra
ll

M
SE

V-Optimality Selection (Ours)
Random Selection
All 47 Models

(a) Prediction error vs model counts

1.0 1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

CoT
Naive + Greedy
y = 0.97sigmoid(1.45x - 6.07) + 0.03
CoT + Greedy
y = 0.94sigmoid(2.42x - 6.73) + 0.06

Train Test

1.0 1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Self-Consistency
CoT + 1 Sample
y = 0.96sigmoid(2.44x - 6.83) + 0.04
CoT + SC + 5 Samples
y = 0.96sigmoid(2.44x - 6.46) + 0.04

(b) Prediction results with only 12 models chosen by V-optimality

Figure 7: (a) Selecting the model subsets with our V-optimality criterion leads to significantly lower
errors than random selection, and quickly converges to the errors of using the full set of models. (b)
Using 12 (out of 47) models selected by our method maintains the overall prediction accuracy.

to the theory of optimal experimental design, which states that for linear regression with a fixed design
X and subsetM, the expected prediction error from using the subsetXM is Tr(X>X

(
X>MXM

)−1
).

This gives a straightforward objective achieving the V-optimality [70]:

min
M∈P(Ma) s.t.|M|≤Mmax

Tr(S>S
(
S>MSM

)−1
) (9)

where S ∈ RM×K is the model-capability matrix obtained from our PC analysis. We conduct a struc-
tured, exhaustive search over the 21 model families where we include or exclude entire model families
under the budget constraint, as we believe these selected models are more interpretable.
Validation We followed the setup in Sec. 4.3 for validating our selection method, as this represents
the most likely application scenario for our observational scaling laws by practitioners. Our objective
is to replicate our scaling analysis (using a full set of 47 models) in Fig. 6a using a small subset of
models selected by our method. In Fig. 7a, we compute the geometric average of test MSEs on all
prediction tasks (Naive, CoT, CoT + SC) as the evaluation metric for different selection methods. We
find that our V-optimality selection method significantly outperforms random selection and quickly
converges to the prediction performance of using the full set of models. In Fig. 7b, we show that using
only a small subset of 12 models selected by our method, the fitted scaling curves already effectively
capture the scaling trends of different post-training methods, in contrast to randomly selected models
(Fig. E.18). To facilitate future scaling analyses at alow cost, we provide a reference list of models
selected with our method under different budget constraints in Table E.1.

6 Conclusion, Limitations, and Future Work
We have presented observational scaling laws that generalize existing compute scaling laws to handle
multiple model families using a shared, low-dimensional capability space. Using this approach, we
show that we can build low-cost, high-resolution, and broad-coverage scaling laws that allow us to
make accurate predictions for many complex scaling phenomena, such as emergent behaviors, agentic
capabilities, and the value of post-training interventions. We provide concrete practical prescriptions
for practitioners to perform similar scaling analyses in the hopes of encouraging more quantitative,
scaling-law-based approaches to designing benchmarks and post-training methods.
Limitations and future work Finally, we discuss some limitations of our approach and findings:
Firstly, observational scaling laws are primarily applicable to post-training scaling analyses and do
not directly translate to pretraining scenarios in the same way as standard compute-based scaling laws.
Secondly, our study mostly focuses on the scaling behavior of model capabilities measured through
few-shot prompting or basic prompting techniques (such as CoT, self-consistency, or simple agent
scaffolding). Extending our approach to other post-training setups, including scenarios involving
fine-tuning or more intensive inference-time computation [12, 81], would be valuable. Thirdly, while
we have demonstrated that our observational scaling analyses can provide meaningful insights into
improving particular models’ complex capabilities, a promising direction for future work would be to
apply the findings from our approach, such as by deriving surrogate measures for model complex
capabilities that can be used to optimize models directly and efficiently. Lastly, our assumptions
do not account for potential benchmark contamination (where particular benchmark data leaks into
model training) or the heterogeneity within model families (where models within the same family
may have varying compute efficiencies and scaling behaviors). Investigating the impact of these
assumptions on our approach would be an interesting avenue for future research.

10

Acknowledgements
We thank Zitong Yang for his assistance with an early experiment of the project. We also thank
Jimmy Ba, Yann Dubois, Honghua Dong, Pavan Kapanipathi, Lisa Li, Karthik Narasimhan, Ethan
Perez, Chenglei Si, Tristan Thrush, Zitong Yang, Shunyu Yao, the Hashimoto Group, and anonymous
reviewers for their helpful discussions or feedback on the paper draft. This project is not possible
without the open-source contributions including HuggingFace, EleutherAI LM Eval Harness [28],
Open LLM Leaderboard [8], EvalPlus [55], vLLM [45], LMSys Chatbot Arena Leaderboard [18],
and AlpacaEval Leaderboard [49].
TH and YR were supported in part by gifts from the Tianqiao and Chrissy Chen Institute, Open
Philanthropy, Amazon ARA, Meta, and IBM. Resources used in preparing this research were provided
in part by the Province of Ontario, the Government of Canada through CIFAR, and companies
sponsoring the Vector Institute. We acknowledge the support of the Natural Sciences and Engineering
Research Council of Canada (NSERC), RGPIN-2021-03445.

References
[1] Samira Abnar, Mostafa Dehghani, Behnam Neyshabur, and Hanie Sedghi. Exploring the limits

of large scale pre-training. arXiv preprint arXiv:2110.02095, 2021.

[2] Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra
Cojocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin
Malartic, et al. The falcon series of open language models. arXiv preprint arXiv:2311.16867,
2023.

[3] Anthropic. Claude 2, July 2023. URL https://www.anthropic.com/index/claude-2.
Accessed: 2023-08-31.

[4] Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase,
Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, et al. Foundational
challenges in assuring alignment and safety of large language models. arXiv preprint
arXiv:2404.09932, 2024.

[5] Sanjeev Arora and Anirudh Goyal. A theory for emergence of complex skills in language
models. arXiv preprint arXiv:2307.15936, 2023.

[6] Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining
neural scaling laws. arXiv preprint arXiv:2102.06701, 2021.

[7] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin
Ge, Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

[8] Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen
Rajani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard. https:
//huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard, 2023.

[9] Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui
Ding, Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language
models with longtermism. arXiv preprint arXiv:2401.02954, 2024.

[10] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward
Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In
International Conference on Machine Learning, pages 2397–2430. PMLR, 2023.

[11] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding,
Horace He, Connor Leahy, Kyle McDonell, Jason Phang, et al. Gpt-neox-20b: An open-source
autoregressive language model. arXiv preprint arXiv:2204.06745, 2022.

[12] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré,
and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated
sampling. arXiv preprint arXiv:2407.21787, 2024.

11

https://www.anthropic.com/index/claude-2
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

[13] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neural information processing systems, 33:1877–
1901, 2020.

[14] Ryan Burnell, Han Hao, Andrew RA Conway, and Jose Hernandez Orallo. Revealing the
structure of language model capabilities. arXiv preprint arXiv:2306.10062, 2023.

[15] Ethan Caballero, Kshitij Gupta, Irina Rish, and David Krueger. Broken neural scaling laws.
arXiv preprint arXiv:2210.14891, 2022.

[16] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating
large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[17] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality. https://lmsys.org/
blog/2023-03-30-vicuna/, March 2023. Accessed: 2024-05-13.

[18] Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica.
Chatbot arena: An open platform for evaluating llms by human preference, 2024.

[19] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

[20] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[21] Databricks. Dolly: The first open commercially viable instruction-
tuned llm. https://www.databricks.com/blog/2023/04/12/
dolly-first-open-commercially-viable-instruction-tuned-llm, April 2023.
Accessed: 2024-05-13.

[22] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Advances in Neural Information Processing Systems, 36, 2023.

[23] Zhengxiao Du, Aohan Zeng, Yuxiao Dong, and Jie Tang. Understanding emergent abilities of
language models from the loss perspective. arXiv preprint arXiv:2403.15796, 2024.

[24] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[25] Lukas Finnveden. Extrapolating gpt-n performance. https://www.lesswrong.com/posts/
k2SNji3jXaLGhBeYP/extrapolating-gpt-n-performance, 2020. Accessed: 2024-05-
07.

[26] Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell
Wortsman, Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, et al. Language mod-
els scale reliably with over-training and on downstream tasks. arXiv preprint arXiv:2403.08540,
2024.

[27] Deep Ganguli, Danny Hernandez, Liane Lovitt, Amanda Askell, Yuntao Bai, Anna Chen, Tom
Conerly, Nova Dassarma, Dawn Drain, Nelson Elhage, et al. Predictability and surprise in large
generative models. In Proceedings of the 2022 ACM Conference on Fairness, Accountability,
and Transparency, pages 1747–1764, 2022.

12

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.lesswrong.com/posts/k2SNji3jXaLGhBeYP/extrapolating-gpt-n-performance
https://www.lesswrong.com/posts/k2SNji3jXaLGhBeYP/extrapolating-gpt-n-performance

[28] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A
framework for few-shot language model evaluation, 12 2023. URL https://zenodo.org/
records/10256836.

[29] Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wallace, Pieter Abbeel, Sergey Levine, and
Dawn Song. Koala: A dialogue model for academic research. Blog post, April 2023. URL
https://bair.berkeley.edu/blog/2023/04/03/koala/.

[30] Behrooz Ghorbani, Orhan Firat, Markus Freitag, Ankur Bapna, Maxim Krikun, Xavier Garcia,
Ciprian Chelba, and Colin Cherry. Scaling laws for neural machine translation. arXiv preprint
arXiv:2109.07740, 2021.

[31] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets
programming–the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

[32] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

[33] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021.

[34] Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Hee-
woo Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive
generative modeling. arXiv preprint arXiv:2010.14701, 2020.

[35] Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for
transfer. arXiv preprint arXiv:2102.01293, 2021.

[36] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan
Kianinejad, Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is
predictable, empirically. arXiv preprint arXiv:1712.00409, 2017.

[37] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

[38] Shengding Hu, Xin Liu, Xu Han, Xinrong Zhang, Chaoqun He, Weilin Zhao, Yankai Lin, Ning
Ding, Zebin Ou, Guoyang Zeng, Zhiyuan Liu, and Maosong Sun. Predicting emergent abilities
with infinite resolution evaluation. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=lDbjooxLkD.

[39] Yuzhen Huang, Jinghan Zhang, Zifei Shan, and Junxian He. Compression represents intelli-
gence linearly. arXiv preprint arXiv:2404.09937, 2024.

[40] David Ilić. Unveiling the general intelligence factor in language models: A psychometric
approach. arXiv preprint arXiv:2310.11616, 2023.

[41] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

[42] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

[43] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik R Narasimhan. Swe-bench: Can language models resolve real-world github issues?
In The Twelfth International Conference on Learning Representations, 2023.

13

https://zenodo.org/records/10256836
https://zenodo.org/records/10256836
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://openreview.net/forum?id=lDbjooxLkD

[44] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. arXiv preprint arXiv:2001.08361, 2020.

[45] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large
language model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th
Symposium on Operating Systems Principles, 2023.

[46] Cognition Labs. Introducing devin, the first ai software engineer, March 2024. URL https:
//www.cognition-labs.com/introducing-devin. Accessed: 2023-05-03.

[47] LAION. Open assistant. https://projects.laion.ai/Open-Assistant/, 2023. Ac-
cessed: 2024-05-13.

[48] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source
be with you! arXiv preprint arXiv:2305.06161, 2023.

[49] Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-
following models. https://github.com/tatsu-lab/alpaca_eval, 2023.

[50] Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat
Lee. Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463,
2023.

[51] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of
language models. arXiv preprint arXiv:2211.09110, 2022.

[52] Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez
Safahi, Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid
transformer-mamba language model. arXiv preprint arXiv:2403.19887, 2024.

[53] Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic
human falsehoods. arXiv preprint arXiv:2109.07958, 2021.

[54] Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig,
Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, et al. Few-shot learning with multilingual
language models. arXiv preprint arXiv:2112.10668, 2021.

[55] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code generation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=1qvx610Cu7.

[56] Nelson F Liu, Tony Lee, Robin Jia, and Percy Liang. Do question answering modeling
improvements hold across benchmarks? arXiv preprint arXiv:2102.01065, 2021.

[57] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang
Ding, Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. In The Twelfth
International Conference on Learning Representations, 2023.

[58] Frederic M Lord. Applications of item response theory to practical testing problems. Routledge,
2012.

[59] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier,
Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and
the stack v2: The next generation. arXiv preprint arXiv:2402.19173, 2024.

[60] Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Harish Tayyar Madabushi, and Iryna
Gurevych. Are emergent abilities in large language models just in-context learning? arXiv
preprint arXiv:2309.01809, 2023.

14

https://www.cognition-labs.com/introducing-devin
https://www.cognition-labs.com/introducing-devin
https://projects.laion.ai/Open-Assistant/
https://github.com/tatsu-lab/alpaca_eval
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7

[61] Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan,
Lingpeng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn
llm agents. arXiv preprint arXiv:2401.13178, 2024.

[62] Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
Scialom. Gaia: a benchmark for general ai assistants. arXiv preprint arXiv:2311.12983, 2023.

[63] John P Miller, Rohan Taori, Aditi Raghunathan, Shiori Sagawa, Pang Wei Koh, Vaishaal
Shankar, Percy Liang, Yair Carmon, and Ludwig Schmidt. Accuracy on the line: on the strong
correlation between out-of-distribution and in-distribution generalization. In International
conference on machine learning, pages 7721–7735. PMLR, 2021.

[64] Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts, Stella Biderman,
Teven Le Scao, M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hailey Schoelkopf, et al.
Crosslingual generalization through multitask finetuning. arXiv preprint arXiv:2211.01786,
2022.

[65] Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Alek-
sandra Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained
language models. Advances in Neural Information Processing Systems, 36, 2024.

[66] OpenAI. Gpt-4 technical report, 2023.

[67] David Owen. How predictable is language model benchmark performance? arXiv preprint
arXiv:2401.04757, 2024.

[68] Yotam Perlitz, Elron Bandel, Ariel Gera, Ofir Arviv, Liat Ein-Dor, Eyal Shnarch, Noam
Slonim, Michal Shmueli-Scheuer, and Leshem Choshen. Efficient benchmarking (of language
models). arXiv preprint arXiv:2308.11696, 2023.

[69] Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail
Yurochkin. tinybenchmarks: evaluating llms with fewer examples. arXiv preprint
arXiv:2402.14992, 2024.

[70] Friedrich Pukelsheim. Optimal design of experiments. SIAM, 2006.

[71] Yuanyuan Qiu, Hongzheng Li, Shen Li, Yingdi Jiang, Renfen Hu, and Lijiao Yang. Revisiting
correlations between intrinsic and extrinsic evaluations of word embeddings. In Chinese
Computational Linguistics and Natural Language Processing Based on Naturally Annotated
Big Data: 17th China National Conference, CCL 2018, and 6th International Symposium,
NLP-NABD 2018, Changsha, China, October 19–21, 2018, Proceedings 17, pages 209–221.
Springer, 2018.

[72] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-10
classifiers generalize to cifar-10? arXiv preprint arXiv:1806.00451, 2018.

[73] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet
classifiers generalize to imagenet? In International conference on machine learning, pages
5389–5400. PMLR, 2019.

[74] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a
benchmark. arXiv preprint arXiv:2311.12022, 2023.

[75] Toran Bruce Richards. Auto-gpt: Autonomous artificial intelligence software agent. https:
//github.com/Significant-Gravitas/Auto-GPT, 2023. URL https://github.com/
Significant-Gravitas/Auto-GPT. Initial release: March 30, 2023.

[76] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950, 2023.

[77] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

15

https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT

[78] Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? Advances in Neural Information Processing Systems, 36, 2023.

[79] Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? In Thirty-seventh Conference on Neural Information Processing Systems,
2023.

[80] Zhihong Shao, Damai Dai, Daya Guo, Bo Liu (Benjamin Liu), and Zihan Wang. Deepseek-v2:
A strong, economical, and efficient mixture-of-experts language model. ArXiv, abs/2405.04434,
2024. URL https://api.semanticscholar.org/CorpusID:269613809.

[81] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute opti-
mally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314,
2024.

[82] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al.
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models.
arXiv preprint arXiv:2206.04615, 2022.

[83] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-
bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

[84] Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig
Schmidt. Measuring robustness to natural distribution shifts in image classification. Advances
in Neural Information Processing Systems, 33:18583–18599, 2020.

[85] Yi Tay, Mostafa Dehghani, Samira Abnar, Hyung Won Chung, William Fedus, Jinfeng Rao,
Sharan Narang, Vinh Q Tran, Dani Yogatama, and Donald Metzler. Scaling laws vs model
architectures: How does inductive bias influence scaling? In The 2023 Conference on
Empirical Methods in Natural Language Processing, 2023.

[86] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

[87] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin,
Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé,
et al. Gemma 2: Improving open language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

[88] Qwen Team. Introducing qwen1.5. https://qwenlm.github.io/blog/qwen1.5/, 2024.
Accessed: 2024-05-13.

[89] The MosaicML NLP Team. Introducing mpt-7b: A new standard for open-source, com-
mercially usable llms. https://www.databricks.com/blog/mpt-7b, 2023. Accessed:
2024-05-13.

[90] François Torregrossa, Vincent Claveau, Nihel Kooli, Guillaume Gravier, and Robin Alle-
siardo. On the correlation of word embedding evaluation metrics. In Proceedings of the 12th
Conference on Language Resources and Evaluation (LREC 2020), pages 4789–4797, 2020.

[91] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[92] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

16

https://api.semanticscholar.org/CorpusID:269613809
https://qwenlm.github.io/blog/qwen1.5/
https://www.databricks.com/blog/mpt-7b

[93] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[94] Pablo Villalobos. Scaling laws literature review, 2023. URL https://epochai.org/blog/
scaling-laws-literature-review. Accessed: 2024-05-12.

[95] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2018.

[96] Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, Sen Song, and Yang Liu. Openchat:
Advancing open-source language models with mixed-quality data. In The Twelfth International
Conference on Learning Representations, 2023.

[97] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in
language models. In The Eleventh International Conference on Learning Representations,
2023.

[98] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
language models. Transactions on Machine Learning Research, 2022.

[99] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[100] BigScience Workshop, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana
Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, et al. Bloom:
A 176b-parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100,
2022.

[101] Mengzhou Xia, Mikel Artetxe, Chunting Zhou, Xi Victoria Lin, Ramakanth Pasunuru, Danqi
Chen, Luke Zettlemoyer, and Ves Stoyanov. Training trajectories of language models across
scales. arXiv preprint arXiv:2212.09803, 2022.

[102] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
arXiv preprint arXiv:2304.12244, 2023.

[103] Yiheng Xu, SU Hongjin, Chen Xing, Boyu Mi, Qian Liu, Weijia Shi, Binyuan Hui, Fan Zhou,
Yitao Liu, Tianbao Xie, et al. Lemur: Harmonizing natural language and code for language
agents. In The Twelfth International Conference on Learning Representations, 2024.

[104] Chhavi Yadav and Léon Bottou. Cold case: The lost mnist digits. Advances in neural
information processing systems, 32, 2019.

[105] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

[106] John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. Swe-agent: Agent computer interfaces enable software en-
gineering language models, 2024.

[107] Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li,
Jiangcheng Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by 01. ai. arXiv
preprint arXiv:2403.04652, 2024.

[108] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

17

https://epochai.org/blog/scaling-laws-literature-review
https://epochai.org/blog/scaling-laws-literature-review

[109] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

[110] Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi
Cheng, Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environ-
ment for building autonomous agents. In The Twelfth International Conference on Learning
Representations, 2023.

18

A Algorithm
In Algorithm A.1, we include the detailed algorithm for fitting the observational scaling laws as
described in Sec. 3.

Algorithm A.1: Fitting observational scaling laws
Args: number of models M , number of LM benchmarks T , number of principal components K,

reference model family f
Input: base LM benchmark error metrics B ∈ RT×M , target downstream error metric E ∈ RM ,

LM compute scales C ∈ RM

Result: functional form of fitted scaling law F

/* Extract principal capability measures with applicable metric preprocessing */
B ← PCAImpute(B) . Fill in missing values with PCA imputation
E ← Normalize(E) . Normalize metric to [0, 1] for sigmoid non-linearity
γ, S ← PCA(B,K) . Fit PCA transformation γ ∈ RK×T and extract top S = γB

/* Fit a non-linear regression with weights β ∈ RK and bias α ∈ R, and sigmoidal scale h ∈ R */
β∗, α∗, h∗ ← Fit

(
E = hσ(β>S + α)

)
. Obtain optimal parameters

P ← β∗>S + α∗ . Obtain aggregated capability measures P ∈ RM

/* Project to the capability-equivalent scale of a reference model family */
w∗, b∗ ← Fit(Pf = w log(Cf) + b) . Fit linear projection with models in the reference family
log(C̄f)← (P − b∗)/w∗ . Compute f -equivalent FLOPs for all models

/* Return the fitted scaling law with capability-equivalent scale transformation */
return F : B → h∗σ

(
β∗>γB + α∗

)
or C̄f → h∗σ

(
w∗ log(C̄f) + b∗

)

19

-1 0 1 2 3 4 N/AN/A
Log10(FLOPs (1E21))

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

PC
-1

R2
avg = 0.97

Llama-2
Llama
Llama-3
Qwen1.5
Qwen
Mistral
Mixtral
Yi
Gemma
Falcon
Phi
Pythia
BLOOM
GPT-Neo/J
OPT
MPT
XGLM
CodeLlama
StarCoder
StarCoder2
DeepSeek-Coder

Figure B.1: PC-1 provides a smooth capability mea-
sure with a wider dynamic range than specific bench-
marks like MMLU (Fig. E.4). In contrast to compute
scale measures, it also enables the comparison of mod-
els from heterogeneous sources on a unified scale.

4 2 0 2 4 6
Log10(Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CoT
Llama-2
y = sigmoid(2.04x - 5.53)
Phi
y = sigmoid(x - 0.55)
Gemma
y = sigmoid(3.46x - 8.06)
CodeLlama
y = sigmoid(2.34x - 6.86)
DeepSeek-Coder
y = sigmoid(1.06x - 3.56)

Figure B.2: By transforming the fitted scal-
ing curves to f -equivalent scales for different
model families, we can compare their scaling
properties with CoT and analyze the effect
of training recipes on the scaling behavior.

B Discussion and Other Applications of Observational Scaling
Our work validates the hypothesis that there is a low-dimensional space of LM capabilities that
captures their scaling behaviors and can be measured via a low-rank decomposition of existing
LM benchmarks – which interestingly connects to the item response theory in psychometrics [58]
that models humans’ test performance by their fundamental abilities such as general intelligence.
While the majority of our work focuses on applications to scaling laws and predictions, we also find
that the shared, low-dimensional capabilities could potentially be used as an evaluation metric and
optimization target for LMs. We discuss some of these possibilities here.
PC-1 as a smooth capability measure with high dynamic range Many existing benchmarks
suffer from a limited dynamic range: they either saturate quickly for large models (e.g., HellaSwag,
Winogrande) or have completely random performance for small models (e.g., MMLU, GSM8K), see
Fig. E.4 for the behavior of each benchmark. In contrast, we find that PC-1 is a smooth capability
measure that can be used to compare LMs across many (at least 5) orders of magnitude. This allows
us to compare models from heterogeneous sources and of extremely different capabilities on a single,
unified scale (Fig. B.1). We believe that the high dynamic range of PC1 may make it suitable as
an optimization target for pretraining, where architecture or data interventions can be benchmarked
against PC-1 at small scales and validated at large scales.
Training data efficiency measurements using PC-1 Extending these ideas further, since PC-1
serves as a unified measure of capabilities, it may serve as a good way to compare compute efficiencies
across many model families. In Fig. B.1, we plot PC-1 against log-FLOPs and find that most models
fall along a clear pattern in the training-compute to capabilities tradeoff curve. The Phi family is a
clear outlier in compute efficiency, though this is likely because we are not accounting for the fact that
Phi uses additional inference FLOPs to generate training data that is not shown in this figure.
Post-training interventions and their interactions with model families Finally, we can analyze
the interactions between post-training techniques and model families by projecting the fitted scaling
curves in Fig. 6a to f -equivalent FLOPs for different families f using Eq. (8). We can then identify
which model families benefit the most from these techniques and the point at which they start to
benefit. Fig. B.2 shows an example of comparing the predicted scaling of CoT across model families.
We find that LMs benefit similarly from CoT, but that Phi is once again an outlier in its behavior: it
benefits from CoT much earlier than other model families, but scales less rapidly. Similarly, models
specifically trained on code (DeepSeek-Coder), also demonstrate an earlier transition but less rapid
scaling compared to models trained with standard protocols. The distinct behavior of Phi/DeepSeek-
Coder relative to other models indicates the importance of pretraining data in determining model
scaling behaviors. While we did not specifically focus on these types of analysis in this work, we
hope that our approach enables future works to gain further insights into differences between LM
training recipes and their scaling behavior.

20

C Extended Related Work
Compute scaling laws In standard scaling laws [6, 34–37, 44, 65], the “scale” is defined by the
compute resources allocated to training LMs, such as the number of training FLOPs C, model param-
eters N , and training tokens D. Scaling laws are typically formulated as a power-law relationship
between LMs’ cross-entropy loss L and their compute scale measures. Common functional forms
include L(N,D) = a

Nα + b
Dβ + e [37, 65] or L(C) = c

Cγ + h [34, 44], where C ≈ 6ND [44] for
the Transformer [93]. The parameters {α, β, a, b, e} or {γ, c, h} are fitted by training LMs across
different compute scales, varying N and/or D, and measuring their loss. Our work differs from
compute scaling laws in our goals – compute scaling aims to understand the scaling properties
of pretraining, and thus focuses on a single model family and relates downstream performance to
directly controllable quantities such as training compute. In contrast, we are interested in scaling laws
for downstream, post-training performance, which leads us to consider scaling laws across model
families and use more directly observable capability measures than compute.
Downstream scaling laws Scaling laws have been generalized beyond pretraining loss to analyze
transfer learning [1, 35, 85] and downstream performance [15, 30, 34] across various domains, see
Villalobos [94] for a comprehensive review. In particular, there has been evidence suggesting that
the few-shot performance of LMs on downstream benchmarks is closely tied to compute measures
like model size [13], but whether this is predictable with scaling laws remains debated. Extensive
research has explored the difficulties of predicting benchmark performance due to their appearing
rapid “emergence” [27, 83, 98], while recent works argued the discontinuity is due to the metrics used
[60, 79] or the lack of data points [38] (see Anwar et al. [4] for a survey on this topic). Finnveden
[25] and Owen [67] have investigated the use of linear and sigmoidal scaling laws, derived from
pretraining loss or computational measures, to extrapolate the benchmark performance. Notably,
Owen [67] also utilized publicly available LMs from different families to fit their compute scaling
laws despite the potential discrepancies in their compute efficiencies. Recent studies have also more
extensively investigated the correlations between the pretraining loss and downstream performance of
LMs [39, 101], aiding in the understanding of downstream scaling [26] and emergent capabilities [23]
of LMs. On the theory front, Arora and Goyal [5] derived a theory characterizing how performance
on complex skills of LMs can be derived as a composition of base skills. While our work shares
similar goals in that we aim to understand the downstream, post-training performance of models, we
differ in our approach in that we aim to build practical higher-resolution scaling laws using multiple
model families and their observable standard benchmark metrics.
Correlations between benchmarks Numerous works have investigated the correlations between
different benchmarks across various contexts. Extensive research has explored the relationship
between the out-of-distribution performance and in-distribution performance of machine learning
models [63, 72, 73, 84, 104]. In the realm of NLP and LM benchmarks, Qiu et al. [71], Torregrossa
et al. [90] found that different evaluations and metrics for word embeddings are highly correlated,
and Liu et al. [56] observed a strong correlation between question-answering benchmarks. Moreover,
Perlitz et al. [68], Polo et al. [69] observed strong correlations between samples within various LM
benchmarks and utilized this observation to develop more efficient benchmarks. Most relevant to
our work, Ilić [40] found that a single factor explains 85% of the performance on the Open LLM
Leaderboard [8] and GLUE leaderboard [95], while Burnell et al. [14] extracted three factors for LM
capabilities that account for 82% of the variation on the HELM benchmark [51], aligning with our
observations. Our work also observes such benchmark correlations and low-rank structures but is
unique in utilizing these properties for the purpose of scaling predictions that can be used directly for
benchmark and algorithm development.

21

D Experimental Details
D.1 Model Collection & Evaluation
D.1.1 Pretrained Base Models
Model collection We collected a broad set of representative open LMs covering 21 model families
and a total of 77 models. These model families include Llama-2 [92], Llama [91], Llama-3 [24],
Qwen1.5 [88], Qwen [7], Mistral [41], Mixtral [42], Yi [107], Gemma [86], Falcon [2], Phi [50],
Pythia [10], BLOOM [100], GPT-Neo/J [11], OPT [109], MPT [89], XGLM [54], CodeLlama [76],
StarCoder [48], StarCoder2 [59], DeepSeek-Coder [31]. For preregistration test, we have collected
an additional set of 20 models covering 8 families released after May 2024 and as of September
1st 2024, including Llama-3.1 [24], Qwen2 [105], DeepSeek V2 [80], Gemma-2, [87], Jamba [52],
Yi-1.5 [107], etc. For each model, we collected their available metadata including the number of
model parameters N and the amount of pretraining tokens D by analyzing papers and other public
information. We then estimated the training FLOPs C using the simple estimate of C ≈ 6ND [44]
for each model. Note that for models that were continually pretrained on additional data such as
CodeLlama, we used the sum of the pretraining tokens and the additional continual pretraining tokens
to estimate D. See Table D.1 for the collected metadata of these models.
Benchmark collection & evaluation We collected a set of diverse benchmarks that assess various
LMs’ capabilities, including MMLU [32], ARC-C [19], HellaSwag [108], Winogrande [77], GSM8K
[20], TruthfulQA [53], and XWinogrande [64], HumanEval [16]. For MMLU, ARC-C, HellaSwag,
Winogrande, GSM8K, and TruthfulQA, we primarily sourced results from the Open LLM Leader-
board1 [8], with updates current as of May 6th, 2024. When there were missing benchmark results,
we followed the standardized evaluation protocols of the Open LLM Leaderboard and used the LM
Eval Harness [28] library to evaluate the LMs. For XWinogrande, we used the LM Eval Harness
library to evaluate the models with 5-shot examples. For HumanEval, we primarily used the EvalPlus
[55] library and followed their standardized protocols for evaluation, and sourced the results from the
EvalPlus leaderboard2 when available. We used the ‘Base Tests’ results provided by EvalPlus for all
the models. See Table D.1 for all collected benchmark results.

D.1.2 Instruction-Tuned Models
Model collection We collected the set of instruction-tuned models that have been evaluated on the
AgentBench [57] and AgentBoard [61] benchmarks. These include models like GPT [66], Claude [3],
Llama-2-Chat [92], Codellama-Instruct [76], Mistral-Instruct [41], Vicuna [17], Deepseek-LLM-Chat
[9], Lemur-Chat [103], OpenChat [96], WizardLM [102], Guanaco [22], Koala [29], Dolly-v2 [21],
OpenAssistant [47]. We followed the same procedure in Appx. D.1.1 to collect the metadata of open
models, while for proprietary models these metadata were not publicly available. Note that we only
counted the pretraining tokens (and the continual pretraining tokens when applicable) for D and
excluded the data for instruction-tuning or additional finetuning, as these are typically only a small
fraction of the total data and are nuanced to estimate due to the complexities in data curation for
instruction-tuning. See Table D.2 for the collected metadata of these models.
Benchmark collection & evaluation For instruction-tuned models, we also included standard LM
evaluations such as MMLU [32], ARC-C [19], HellaSwag [108], Winogrande [77], TruthfulQA
[53], GSM8K [20], and HumanEval [16], and we followed the same protocols in Appx. D.1.1 for
evaluating open models. For proprietary models like GPT and Claude, it is more nuanced to evaluate
them with a unified protocol (e.g., due to the lack of access to likelihood scores), so we collected the
official results from their respective papers and documentation for all standard benchmarks (except for
HumanEval, which we were able to evaluate using the EvalPlus library). Additionally, we collected
Elo scores from the Chatbot Arena3 [18] which assess instruction-following capabilities of these
instruction-tuned models (as of February 2nd, 2024) for reference, we did not utilize this metric for
our downstream predictions. See Table D.2 for all collected benchmark results.

D.2 Downstream Evaluation
For all downstream tasks of pretrained base models included in Sec. 4.1 and Sec. 4.3, we used the LM
Eval Harness [28] library to evaluate all the models. For the “emergent” capability tasks in Sec. 4.1,
we applied likelihood-based evaluation [13] with 2-shot examples. For the post-training intervention

1https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
2https://evalplus.github.io/leaderboard.html
3https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard

22

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://evalplus.github.io/leaderboard.html
https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard

Table D.1: Collected metadata and base evaluation metrics for base pretrained models used in Sec. 4.1,
Sec. 4.3, and Sec. 5. Model names follow the HuggingFace naming. See data collection details
in Appx. D.1.1. For the most up-to-date results, please refer to https://github.com/ryoungj/
ObsScaling/blob/main/eval_results/base_llm_benchmark_eval.csv.

Model Family Model Param (B) Data (T) FLOPs (1E21) MMLU ARC-C HellaSwag Winograd TruthfulQA XWinograd HumanEval

Llama-2
Llama-2-7b-hf 7.0 2.0 84.00 0.4380 0.5307 0.7774 0.7403 0.3898 0.7549 0.1280

Llama-2-13b-hf 13.0 2.0 156.00 0.5434 0.5811 0.8097 0.7664 0.3417 0.7868 0.1829
Llama-2-70b-hf 70.0 2.0 840.00 0.6983 0.6732 0.8733 0.8374 0.4492 0.8245 0.2988

Llama

llama-7b 6.7 1.0 40.20 0.3569 0.5094 0.7781 0.7143 0.3433 0.6932 0.1280
llama-13b 13.0 1.0 78.00 0.4761 0.5614 0.8092 0.7624 0.3948 0.7304 0.1585
llama-30b 32.5 1.4 273.00 0.5845 0.6143 0.8473 0.8003 0.4227 0.7711 0.2073
llama-65b 65.2 1.4 547.68 0.6393 0.6348 0.8609 0.8256 0.4343 0.7768 0.2317

Llama-3 Meta-Llama-3-8B 8.0 15.0 720.00 0.6649 - 0.8202 0.7711 0.4395 0.8012 0.3841
Meta-Llama-3-70B 70.0 15.0 6300.00 0.7923 - 0.8798 0.8532 0.4556 0.8447 0.5244

Qwen1.5

Qwen1.5-0.5B 0.5 2.4 7.20 0.3935 0.3148 0.4905 0.5722 0.3830 0.5756 0.1159
Qwen1.5-1.8B 1.8 2.4 25.92 0.4671 0.3788 0.6142 0.6030 0.3943 0.6438 0.1829
Qwen1.5-4B 4.0 2.4 57.60 0.5652 0.4846 0.7158 0.6622 0.4727 0.6888 0.2622
Qwen1.5-7B 7.0 4.0 168.00 0.6197 0.5418 0.7851 0.7127 0.5108 0.7524 0.3476
Qwen1.5-14B 14.0 4.0 336.00 0.6936 0.5657 0.8108 0.7348 0.5206 0.7775 0.3963
Qwen1.5-32B 32.0 4.0 768.00 0.7430 0.6357 0.8500 0.8145 0.5739 0.7912 0.4207
Qwen1.5-72B 72.0 3.0 1296.00 0.7720 0.6587 0.8599 0.8303 0.5961 0.8258 0.4512

Qwen
Qwen-7B 7.0 2.4 100.80 0.5984 0.5137 0.7847 0.7269 0.4779 0.7346 0.3171

Qwen-14B 14.0 3.0 252.00 0.6770 0.5828 0.8399 0.7680 0.4943 0.7915 0.3537
Qwen-72B 72.0 3.0 1296.00 0.7737 0.6519 0.8594 0.8248 0.6019 0.8287 0.3720

Mistral Mistral-7B-v0.1 7.3 - - 0.6416 0.5998 0.8331 0.7861 0.4215 0.7819 0.2744

Mixtral Mixtral-8x7B-v0.1 45.0 - - 0.7188 0.6638 0.8646 0.8169 0.4681 0.8002 0.3354

Yi Yi-6B 6.0 3.0 108.00 0.6411 0.5555 0.7657 0.7419 0.4196 0.7239 0.1585
Yi-34B 34.0 3.0 612.00 0.7635 0.6459 0.8569 0.8303 0.5623 0.7956 0.2683

Gemma gemma-2b 2.0 6.0 72.00 0.4177 0.4838 0.7177 0.6630 0.3308 0.7093 0.2317
gemma-7b 7.0 6.0 252.00 0.6603 0.6109 0.8247 0.7845 0.4491 0.7839 0.3354

Falcon

falcon-rw-1b 1.0 0.35 2.10 0.2528 0.3507 0.6356 0.6204 0.3596 0.5355 -
falcon-7b 7.0 1.5 63.00 0.2779 0.4787 0.7813 0.7238 0.3426 0.7176 -
falcon-40b 40.0 1.0 240.00 0.5698 0.6195 0.8528 0.8129 0.4172 0.7846 -

falcon-180B 180.0 3.5 3780.00 0.6959 0.6920 0.8889 0.8690 0.4516 0.8446 -

Phi phi-1_5 1.3 0.15 1.17 0.4389 0.5290 0.6379 0.7222 0.4089 0.5111 0.3415
phi-2 2.7 1.4 22.68 0.5792 0.6101 0.7492 0.7348 0.4424 0.5267 0.4939

Pythia

pythia-70m-deduped 0.07 0.3 0.13 0.2526 0.2108 0.2717 0.4964 0.4751 0.5101 0.0000
pythia-160m-deduped 0.16 0.3 0.29 0.2486 0.2406 0.3139 0.5138 0.4434 0.5236 0.0000
pythia-410m-deduped 0.41 0.3 0.74 0.2599 0.2483 0.4129 0.5438 0.4095 0.5363 0.0122

pythia-1b-deduped 1.0 0.3 1.80 0.2427 0.2910 0.4965 0.5359 0.3894 0.5610 0.0427
pythia-1.4b-deduped 1.4 0.3 2.52 0.2556 0.3268 0.5496 0.5730 0.3866 0.5941 0.0427
pythia-2.8b-deduped 2.8 0.3 5.04 0.2678 0.3626 0.6066 0.6022 0.3556 0.6400 0.0488
pythia-6.9b-deduped 6.9 0.3 12.42 0.2648 0.4130 0.6705 0.6409 0.3519 0.6525 0.0854
pythia-12b-deduped 12.0 0.3 21.60 0.2563 0.4138 0.7026 0.6646 0.3300 0.6824 0.1159

BLOOM

bloom-560m 0.56 0.341 1.15 0.2422 0.2474 0.3715 0.5193 0.4244 0.5786 0.0061
bloom-1b1 1.1 0.341 2.25 0.2670 0.2833 0.4278 0.5501 0.4180 0.6095 0.0000
bloom-3b 3.0 0.341 6.14 0.2659 0.3575 0.5437 0.5762 0.4057 0.6648 0.0183
bloom-7b1 7.1 0.341 14.53 0.2625 0.4113 0.6200 0.6543 0.3890 0.6977 0.0488

bloom 176.0 0.366 386.50 0.3085 0.5043 0.7641 0.7206 0.3976 0.7355 0.1220

GPT-Neo/J

gpt-neo-125m 0.125 0.3 0.22 0.2597 0.2295 0.3026 0.5178 0.4558 0.5022 0.0061
gpt-neo-1.3B 1.3 0.38 2.96 0.2482 0.3123 0.4847 0.5691 0.3963 0.5611 0.0366
gpt-neo-2.7B 2.7 0.42 6.80 0.2645 0.3336 0.5624 0.6006 0.3978 0.5740 0.0671

gpt-j-6b 6.05 0.402 14.59 0.2678 0.4138 0.6754 0.6598 0.3596 0.6811 0.1159
gpt-neox-20b 20.0 0.472 56.64 0.2500 0.4573 0.7345 0.6890 0.3161 0.7163 0.1280

OPT

opt-125m 0.125 0.18 0.14 0.2602 0.2287 0.3147 0.5162 0.4287 0.4987 0.0000
opt-350m 0.35 0.18 0.38 0.2602 0.2355 0.3673 0.5264 0.4083 0.5181 0.0000
opt-1.3b 1.3 0.18 1.40 0.2496 0.2952 0.5453 0.5975 0.3871 0.5440 0.0000
opt-2.7b 2.7 0.18 2.92 0.2543 0.3396 0.6143 0.6196 0.3743 0.5685 0.0000
opt-6.7b 6.7 0.18 7.24 0.2457 0.3916 0.6866 0.6598 0.3512 0.5943 0.0061
opt-13b 13.0 0.18 14.04 0.2490 0.3993 0.7120 0.6851 0.3410 0.6088 0.0061
opt-30b 30.0 0.18 32.40 0.2666 0.4326 0.7407 0.7064 0.3516 0.6264 0.0122
opt-66b 66.0 0.18 71.28 0.2699 0.4633 0.7625 0.7001 0.3543 0.6426 0.0122

MPT mpt-7b 7.0 1.0 42.00 0.2807 0.4770 0.7753 0.7214 0.3355 0.7144 0.1646
mpt-30b 30.0 1.0 180.00 0.4800 0.5597 0.8242 0.7490 0.3842 0.7453 0.2134

XGLM

xglm-564M 0.564 0.5 1.69 0.2518 0.2457 0.3464 0.5225 0.4043 0.5855 0.0000
xglm-1.7B 1.7 0.5 5.10 0.2510 0.2585 0.4568 0.5391 0.3721 0.6307 0.0000
xglm-4.5B 4.5 0.5 13.50 0.2543 0.3148 0.5795 0.5493 0.3584 0.6585 0.0000
xglm-7.5B 7.5 0.5 22.50 0.2779 0.3413 0.6077 0.5872 0.3666 0.6956 0.0000

CodeLlama

CodeLlama-7b-hf 7.0 2.52 105.84 0.3112 0.3993 0.6080 0.6401 0.3782 0.7297 0.3354
CodeLlama-13b-hf 13.0 2.52 196.56 0.3281 0.4087 0.6335 0.6717 0.4379 0.7349 0.3841
CodeLlama-34b-hf 34.0 2.52 514.08 0.5502 0.5410 0.7582 0.7356 0.3911 0.7861 0.4756
CodeLlama-70b-hf 70.0 3.02 1268.40 0.5967 0.5674 0.7821 0.7522 0.3979 0.7756 0.5488

StarCoder

starcoderbase-1b 1.0 1.0 6.00 0.2667 0.2270 0.3431 0.4996 0.4579 0.5617 0.1460
starcoderbase-3b 3.0 1.0 18.00 0.2735 0.2585 0.3911 0.5114 0.4305 0.5976 0.1770
starcoderbase-7b 7.0 1.0 42.00 0.2845 0.2986 0.4387 0.5438 0.4046 0.5978 0.2440

starcoderbase 15.5 1.0 93.00 0.3212 0.3029 0.4721 0.5580 0.4002 0.5952 0.3410

StarCoder2
starcoder2-3b 3.0 3.3 59.40 0.3865 0.3456 0.4762 0.5454 0.4049 0.6037 0.3170
starcoder2-7b 7.0 3.7 155.40 0.4121 0.3831 0.5191 0.5919 0.4199 0.6201 0.3540
starcoder2-15b 15.0 4.3 387.00 0.5135 0.4735 0.6409 0.6385 0.3787 0.7383 0.4630

DeepSeek-Coder
deepseek-coder-1.3b-base 1.3 2.0 15.60 0.2602 0.2577 0.3928 0.5272 0.4261 0.6063 0.2870
deepseek-coder-6.7b-base 6.7 2.0 80.40 0.3839 0.3703 0.5346 0.5809 0.4028 0.6789 0.4760
deepseek-coder-33b-base 33.0 2.0 396.00 0.4091 0.4249 0.5999 0.6243 0.3997 0.6961 0.5120

tasks in Sec. 4.3, we used the same evaluation protocol as the original papers, as described in the
main paper. For agentic capability tasks of instruction-tuned models in Sec. 4.2, we directly sourced
the results from the AgentBench [57] and AgentBoard [61] leaderboards and scaled the metrics to
[0, 1].

23

https://github.com/ryoungj/ObsScaling/blob/main/eval_results/base_llm_benchmark_eval.csv
https://github.com/ryoungj/ObsScaling/blob/main/eval_results/base_llm_benchmark_eval.csv

Table D.2: Collected metadata and base evaluation metrics for instruction-tuned models used in
Sec. 4.2. Model names follow the HuggingFace naming for open models. See data collection details
in Appx. D.1.2.

Model Family Model Param (B) Data (T) FLOPs (1E21) Arena-Elo MMLU ARC-C HellaSwag Winogrande TruthfulQA HumanEval

GPT
gpt-4-0613 - - - 1161.6608 0.8640 0.9630 0.9530 0.8750 0.5900 0.8720
gpt-4-0314 - - - 1189.5486 0.8640 0.9630 0.9530 0.8750 0.5900 0.9024

gpt-3.5-turbo-0613 - - - 1118.1123 0.7000 0.8520 0.8550 0.8160 0.4700 0.7744

Claude
claude-2.0 - - - 1132.3173 0.7850 0.9100 - - 0.6900 0.6707
claude-1.3 - - - 1149.3443 0.7700 0.9000 - - 0.6200 0.6159

claude-instant-1.1 - - - 1109.4714 0.7340 0.8570 - - 0.6600 0.5915

Llama-2-Chat
llama-2-7b-chat 7.0 2.0 84.00 1024.1411 0.4706 0.5290 0.7855 0.7174 0.4557 0.1220

llama-2-13b-chat 13.0 2.0 156.00 1041.8442 0.5412 0.5904 0.8194 0.7451 0.4412 0.1829
llama-2-70b-chat 70.0 2.0 840.00 1082.0000 0.6345 0.6459 0.8588 0.8051 0.5280 0.3171

Codellama-Instruct
codellama-7b-instruct 7.0 2.52 105.84 - 0.3454 0.3652 0.5544 0.6456 0.4125 0.3963

codellama-13b-instruct 13.0 2.52 196.56 - 0.3889 0.4454 0.6493 0.6803 0.4588 0.4451
codellama-34b-instruct 34.0 2.52 514.08 1043.4381 0.5462 0.5427 0.7692 0.7451 0.4444 0.4878

Mistral-Instruct mistral-7b-instruct-v0.1 7.0 - - 1006.4716 0.5539 0.5452 0.7563 0.7372 0.5628 0.3537

Vicuna

vicuna-7b-v1.5 7.0 2.0 84.00 1004.9595 0.5031 0.5324 0.7739 0.7214 0.5033 0.1341
vicuna-13b-v1.5 13.0 2.0 156.00 1040.3549 0.5624 0.5657 0.8109 0.7466 0.5107 0.2134
vicuna-13b-16k 13.0 2.0 156.00 - 0.5489 0.5674 0.8037 0.7285 0.5196 0.2500
vicuna-33b-v1.3 33.0 2.0 396.00 1093.4174 0.5921 0.6160 0.8306 0.7703 0.5609 0.2134

Deepseek-LLM-Chat deepseek-llm-67b-chat 67.0 2.0 804.00 1081.7334 0.7174 0.6775 0.8680 0.8421 0.5583 0.7012

Lemur-Chat lemur-70b-chat-v1 70.0 2.09 877.80 - 0.6599 0.6698 0.8573 0.8169 0.5658 0.5915

OpenChat openchat-13b-v3.2 13.0 2.0 156.00 - 0.5668 0.5964 0.8268 0.7695 0.4449 0.2073

WizardLM wizardlm-13b-v1.2 13.0 2.0 156.00 1058.0881 0.5367 0.5904 0.8221 0.7190 0.4727 0.3902
wizardlm-30b-v1.0 30.0 3.0 540.00 - 0.5888 0.6254 0.8327 0.7751 0.5249 -

Guanaco guanaco-33b 33.0 1.4 277.20 1031.9123 0.5569 0.6246 0.8448 - 0.5122 0.2622
guanaco-65b 65.0 1.4 546.00 - 0.6251 0.6544 0.8647 0.8240 0.5281 0.2744

Koala koala-13b 13.0 1.0 78.00 965.7386 0.4501 0.5299 0.7759 0.7403 0.5023 0.1220

Dolly-v2 dolly-v2-12b 12.0 0.3 21.60 822.6771 0.2581 0.4241 0.7253 0.6085 0.3383 0.0000

OpenAssistant oasst-sft-4-pythia-12b-epoch-3.5 12.0 0.3 21.60 - 0.2682 0.4573 0.6859 0.6590 0.3781 0.0793

D.3 PCA Analysis
PCA imputation The PCA imputation starts with a simple mean imputation for missing values in
the data matrix, and then PCA is applied to transform the data into a lower-dimensional space where
the missing values are imputed by the PCA reconstruction. The above procedure is repeated until
the imputed values converge or reach a maximum of 1000 iterations. By default, we used the first
principal component (PC-1) to impute the missing values, as we found it to be the most robust in
our preliminary experiments. Notably, when there are train and test splits, we first applied the PCA
imputation procedure on the training set and then applied the same transformation to the test set to
prevent any train-test leakage.
PC extraction When applying PCA to extracting the capability measures, we extracted the top
K = 3 principal components from the model-capability matrix. By default, we mean-centered
the data before applying PCA without additional scaling, since most evaluation metrics are already
normalized into [0, 1]. Similar to PCA imputation, we only fitted the PCA on the training set and
applied the same transformation to the test set to prevent any train-test leakage.

24

E Additional Results
E.1 PC Analysis of Instruction-Tuned LMs
In Fig. E.1, we conducted a PC analysis for instruction-tuned models (see the model list in Ta-
ble D.2) following exactly the same procedure as Fig. 2. We find that the extracted PC measures
for instruction-tuned LMs follow similar patterns as pretrained models and exhibit an even more
significant low-rank structure, with the top 3 PCs explaining about 98.6% of the variance in the
benchmark performance.

1 2 3 4 5
PC

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl

ai
ne

d
va

ria
nc

e
ra

tio

0.986
PCA Explained Variance

(a) PCA explained variance

MMLU
ARC-C

HellaSwag

Winogrande

TruthfulQA
GSM8K

HumanEval
PC

-1
PC

-2
PC

-3
PC

-4
PC

-5

0.32 0.35 0.17 0.15 0.14 0.67 0.51

-0.27 -0.31 -0.41 -0.19 -0.22 -0.09 0.76

0.59 0.02 0.16 0.18 0.20 -0.67 0.33

0.01 0.49 0.23 -0.13 -0.81 -0.16 0.05

0.45 -0.68 0.11 0.20 -0.46 0.25 -0.12

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

(b) Principal component weights

Figure E.1: The extracted PC measures for instruction-tuned LMs follow similar low-rank structures
and interpretable patterns as pretrained base LMs (see Fig. 2).

E.2 Properties of PC measures
Lower-ranked PCs linearly correlate with log-compute measures In Fig. 3, we showed that
the top PC-1 linearly correlates with log-compute scale measures (log-training FLOPs) within each
comparable model family. In Fig. E.2, we show that this linear correlation generally holds for lower-
ranked PCs, specifically PC-2 and PC-3, though the correlation tends to decrease with lower-rank
PCs compared to the top PC-1.
Aggregated PCs linearly correlate with log-compute measures When fitting our observational
scaling laws, we utilized the (hypothetical) linear relation between the aggregated PC measures
Pm := β∗>Sm and the log-compute measures log(Cm) within each model family to transform Pm

into compute-equivalent scales (Eq. (8)) . This linear correlation has been partially validated through
the linear correlation of top PCs (Fig. 3 & Fig. E.2). Here we more directly validate this linearity
by analyzing the aggregated PC measures Pm fitted on specific tasks. Specifically, in Fig. E.3, we
visualize the fitted Pm on the “emergent” capability tasks (i.e., Fig. 4b) versus the compute measures
log(Cm) within each comparable model family. We find that the aggregated PC measures generally
exhibit a linear correlation with the log-compute measures within each family. Notably, the linear
correlation is consistently significant for the Llama-2 family, which we have used as the default
reference family for computing the equivalent scales in our experiments.
Single benchmark metric suffers from limited dynamic range In Fig. B.1, we have shown that
PC-1 can serve as a smooth capability measure for LMs that provide meaningful readouts across many
orders of scales (about 5 orders of magnitude). In Fig. E.4, we show that using a single benchmark
metric as LM capability measures amy suffer from a limited dynamic range. In particular, they may
either saturate quickly for large models (e.g., HellaSwag, Winogrande) or provide random readouts
for weak models (e.g., MMLU, GSM8K).

25

2.0 2.5
Log10(FLOPs (1E21))

0.4

0.2

0.0

0.2

0.4

PC
-2

R2 = 0.97
y = -0.15x + 0.49

Llama-2

2.0 2.5
Log10(FLOPs (1E21))

0.4

0.2

0.0

0.2

0.4

PC
-2

R2 = 0.47
y = -0.06x + 0.34

Llama

1 2 3
Log10(FLOPs (1E21))

0.4

0.2

0.0

0.2

0.4

PC
-2

R2 = 0.08
y = 0.01x - 0.14

Qwen1.5

2.0 2.5 3.0
Log10(FLOPs (1E21))

0.4

0.2

0.0

0.2

0.4

PC
-2

R2 = 0.98
y = -0.04x + 0.02

Qwen

1 2 3
Log10(FLOPs (1E21))

0.4

0.2

0.0

0.2

0.4

PC
-2

R2 = 0.00
y = -0.00x + 0.14

Falcon

1 0 1
Log10(FLOPs (1E21))

0.4

0.2

0.0

0.2

0.4

PC
-2

R2 = 0.99
y = 0.18x - 0.06

Pythia

0 1 2
Log10(FLOPs (1E21))

0.4

0.2

0.0

0.2

0.4

PC
-2

R2 = 0.89
y = 0.13x - 0.08

BLOOM

0 1
Log10(FLOPs (1E21))

0.4

0.2

0.0

0.2

0.4

PC
-2

R2 = 0.98
y = 0.16x - 0.08

GPT-Neo/J

1 0 1 2
Log10(FLOPs (1E21))

0.4

0.2

0.0

0.2

0.4

PC
-2

R2 = 0.96
y = 0.17x - 0.01

OPT

0.5 1.0
Log10(FLOPs (1E21))

0.4

0.2

0.0

0.2

0.4

PC
-2

R2 = 1.00
y = 0.21x - 0.17

XGLM

2.0 2.5 3.0
Log10(FLOPs (1E21))

0.4

0.2

0.0

0.2

0.4

PC
-2

R2 = 0.90
y = -0.08x + 0.14

CodeLlama

1.0 1.5 2.0
Log10(FLOPs (1E21))

0.4

0.2

0.0

0.2

0.4

PC
-2

R2 = 0.28
y = 0.02x - 0.22

StarCoder

(a) PC-2

2.0 2.5
Log10(FLOPs (1E21))

0.2

0.1

0.0

0.1

0.2

0.3

PC
-3

R2 = 0.91
y = -0.08x + 0.15

Llama-2

2.0 2.5
Log10(FLOPs (1E21))

0.2

0.1

0.0

0.1

0.2

0.3

PC
-3

R2 = 0.80
y = -0.08x + 0.18

Llama

1 2 3
Log10(FLOPs (1E21))

0.2

0.1

0.0

0.1

0.2

0.3

PC
-3

R2 = 0.04
y = 0.00x - 0.09

Qwen1.5

2.0 2.5 3.0
Log10(FLOPs (1E21))

0.2

0.1

0.0

0.1

0.2

0.3

PC
-3

R2 = 1.00
y = -0.10x + 0.16

Qwen

1 2 3
Log10(FLOPs (1E21))

0.2

0.1

0.0

0.1

0.2

0.3

PC
-3

R2 = 0.01
y = 0.00x + 0.07

Falcon

1 0 1
Log10(FLOPs (1E21))

0.2

0.1

0.0

0.1

0.2

0.3

PC
-3

R2 = 0.98
y = 0.09x - 0.06

Pythia

0 1 2
Log10(FLOPs (1E21))

0.2

0.1

0.0

0.1

0.2

0.3

PC
-3

R2 = 0.94
y = 0.05x - 0.09

BLOOM

0 1
Log10(FLOPs (1E21))

0.2

0.1

0.0

0.1

0.2

0.3

PC
-3

R2 = 0.95
y = 0.08x - 0.07

GPT-Neo/J

1 0 1 2
Log10(FLOPs (1E21))

0.2

0.1

0.0

0.1

0.2

0.3

PC
-3

R2 = 0.94
y = 0.04x - 0.07

OPT

0.5 1.0
Log10(FLOPs (1E21))

0.2

0.1

0.0

0.1

0.2

0.3

PC
-3

R2 = 0.95
y = 0.04x - 0.10

XGLM

2.0 2.5 3.0
Log10(FLOPs (1E21))

0.2

0.1

0.0

0.1

0.2

0.3

PC
-3

R2 = 0.64
y = -0.03x + 0.27

CodeLlama

1.0 1.5 2.0
Log10(FLOPs (1E21))

0.2

0.1

0.0

0.1

0.2

0.3

PC
-3

R2 = 0.96
y = 0.13x - 0.10

StarCoder

(b) PC-3

Figure E.2: The lower-ranked PC measures also linearly correlate with log-compute measures within
each comparable model family, though the correlation decreases with lower-rank PCs.

1 0 1 2 3 4
Log10(FLOPs (1E21))

8

6

4

2

0

Ag
gr

eg
at

ed
 P

C

R2
avg = 0.98

 R2
Llama 2 = 0.99

Word Unscramble

1 0 1 2 3 4
Log10(FLOPs (1E21))

6

5

4

3

2

1

0

Ag
gr

eg
at

ed
 P

C

R2
avg = 0.96

 R2
Llama 2 = 1.00

Persian QA

1 0 1 2 3 4
Log10(FLOPs (1E21))

5

0

5

10

Ag
gr

eg
at

ed
 P

C

R2
avg = 0.95

 R2
Llama 2 = 0.98

3-Digit Substraction

1 0 1 2 3 4
Log10(FLOPs (1E21))

4

2

0

2

4

Ag
gr

eg
at

ed
 P

C

R2
avg = 0.97

 R2
Llama 2 = 0.99

2-Digit Multiplication
Llama-2
Llama
Llama-3
Qwen1.5
Qwen
Yi
Gemma
Falcon
Phi
Pythia
BLOOM
GPT-Neo/J
OPT
MPT
XGLM
StarCoder

Figure E.3: The aggregated PC measures exhibit a strong linear correlation with the log-compute
measures within each comparable model family, especially for Llama-2 which we have used as the
default reference family for computing the f -equivalent FLOPs in our experiments.

26

-1 0 1 2 3 4 N/AN/A
Log10(FLOPs (1E21))

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
M

LU

R2
avg = 0.71

Llama-2
Llama
Llama-3
Qwen1.5
Qwen
Mistral
Mixtral
Yi
Gemma
Falcon
Phi
Pythia
BLOOM
GPT-Neo/J
OPT
MPT
XGLM
CodeLlama
StarCoder
StarCoder2
DeepSeek-Coder

(a) MMLU

-1 0 1 2 3 4 N/AN/A
Log10(FLOPs (1E21))

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H
el

la
Sw

ag

R2
avg = 0.95

Llama-2
Llama
Llama-3
Qwen1.5
Qwen
Mistral
Mixtral
Yi
Gemma
Falcon
Phi
Pythia
BLOOM
GPT-Neo/J
OPT
MPT
XGLM
CodeLlama
StarCoder
StarCoder2
DeepSeek-Coder

(b) HellaSwag

-1 0 1 2 3 4 N/AN/A
Log10(FLOPs (1E21))

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

W
in

og
ra

d

R2
avg = 0.96

Llama-2
Llama
Llama-3
Qwen1.5
Qwen
Mistral
Mixtral
Yi
Gemma
Falcon
Phi
Pythia
BLOOM
GPT-Neo/J
OPT
MPT
XGLM
CodeLlama
StarCoder
StarCoder2
DeepSeek-Coder

(c) Winogrande

-1 0 1 2 3 N/AN/A
Log10(FLOPs (1E21))

0.2

0.3

0.4

0.5

0.6

0.7

AR
C-

C

R2
avg = 0.96

Llama-2
Llama
Qwen1.5
Qwen
Mistral
Mixtral
Yi
Gemma
Falcon
Phi
Pythia
BLOOM
GPT-Neo/J
OPT
MPT
XGLM
CodeLlama
StarCoder
StarCoder2
DeepSeek-Coder

(d) ARC-C

-1 0 1 2 3 4 N/AN/A
Log10(FLOPs (1E21))

0.35

0.40

0.45

0.50

0.55

0.60

Tr
ut

hf
ul

Q
A

R2
avg = 0.74

Llama-2
Llama
Llama-3
Qwen1.5
Qwen
Mistral
Mixtral
Yi
Gemma
Falcon
Phi
Pythia
BLOOM
GPT-Neo/J
OPT
MPT
XGLM
CodeLlama
StarCoder
StarCoder2
DeepSeek-Coder

(e) TruthfulQA

-1 0 1 2 3 4 N/AN/A
Log10(FLOPs (1E21))

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

XW
in

og
ra

d

R2
avg = 0.89

Llama-2
Llama
Llama-3
Qwen1.5
Qwen
Mistral
Mixtral
Yi
Gemma
Falcon
Phi
Pythia
BLOOM
GPT-Neo/J
OPT
MPT
XGLM
CodeLlama
StarCoder
StarCoder2
DeepSeek-Coder

(f) XWinogrande

-1 0 1 2 3 4 N/AN/A
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

G
SM

8K

R2
avg = 0.82

Llama-2
Llama
Llama-3
Qwen1.5
Qwen
Mistral
Mixtral
Yi
Gemma
Falcon
Phi
Pythia
BLOOM
GPT-Neo/J
OPT
MPT
XGLM
CodeLlama
StarCoder
StarCoder2
DeepSeek-Coder

(g) GSM8K

-1 0 1 2 3 4 N/AN/A
Log10(FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

0.5

H
um

an
Ev

al

R2
avg = 0.93

Llama-2
Llama
Llama-3
Qwen1.5
Qwen
Mistral
Mixtral
Yi
Gemma
Phi
Pythia
BLOOM
GPT-Neo/J
OPT
MPT
XGLM
CodeLlama
StarCoder
StarCoder2
DeepSeek-Coder

(h) HumanEval

Figure E.4: Using a single benchmark metric to measure LM capabilities may suffer from a limited
dynamic range. They may either saturate quickly for large models (e.g., HellaSwag, Winogrande) or
provide random readouts for weak models (e.g., MMLU, GSM8K).

27

E.3 Additional Preregisteration Results
Preregistered predictions on post-training analysis tasks In Fig. E.5, we tested our preregistered
predictions on the post-training analysis tasks. We observe reasonable forecasts on new models,
and the predictions using PC measures outperform the ones using compute measures like training
FLOPs.

0 5 10
Log10(FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

y = 0.99sigmoid(0.36x - 4.46) + 0.01
MSEtrain = 4.6e-04
MSEtest = 8.9e-03

Naive + Greedy

0 5 10
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = 0.99sigmoid(0.58x - 4.01) + 0.01
MSEtrain = 1.4e-02
MSEtest = 4.5e-02

CoT + Greedy

0 5 10
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = 0.98sigmoid(0.68x - 4.46) + 0.02
MSEtrain = 1.5e-02
MSEtest = 4.6e-02

CoT + SC + 5 Samples

Train
Test
Pre-registered

Llama-2
Llama
Llama-3

Llama-3.1
Qwen1.5
Qwen

Yi
Yi-1.5
Gemma

Gemma-2
Falcon
Phi

Pythia
BLOOM
GPT-Neo/J

OPT
MPT
XGLM

CodeLlama
StarCoder
StarCoder2

DeepSeek-Coder
DeepSeek-V2

(a) Trainig FLOP based scaling laws

0 1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

y = sigmoid(1.09x - 4.77)
MSEtrain = 4.6e-05
MSEtest = 2.6e-03

Naive + Greedy

1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = sigmoid(2.04x - 5.53)
MSEtrain = 3.1e-03
MSEtest = 6.0e-03

CoT + Greedy

1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8
Ac

cu
ra

cy
y = sigmoid(2.19x - 5.74)
MSEtrain = 2.9e-03
MSEtest = 6.4e-03

CoT + SC + 5 Samples

Train
Test
Pre-registered

Llama-2
Llama
Llama-3

Llama-3.1
Qwen2
Qwen1.5

Qwen
Mistral
Mixtral

Yi
Yi-1.5
Gemma

Gemma-2
Falcon
Phi

Pythia
BLOOM
GPT-Neo/J

OPT
MPT
XGLM

CodeLlama
StarCoder
StarCoder2

DeepSeek-Coder
DeepSeek-V2
Jamba

(b) Observational scaling laws

Figure E.5: Our preregistered predictions of observational scaling laws using PC measures (with # =
3) provides reasonable forecasts for new models that are released after our initial paper release. The
predictions on naive prompting is a bit off, but still align with the general trend and perform better
than using compute measures like training FLOPs.

28

Preregistered predictions on Open LLM leaderboard v2 benchmarks Besides testing new
models on exsiting benchmarks with preregistred predictions, we also tested observational scaling
laws on the new, more challenging benchmarks being used in Open LLM Leaderboard v2. In
particular, we selected a subset of new tasks where at least some exsiting open models demonstrate
non-trivial performance (which will exclude benchmarks like IFEval and MUSR) and where scaling
predictions from base benchmarks are non-trivial (which will exclude MMLU Pro), including GPQA
[74], MATH [33], and BBH [83]. We fit both observational scaling laws and compute-based scaling
laws on these benchmarks and compared their extrapolation performance. Since the tasks are
more challenging, it requires a larger cutoff threshold to include more data points with non-trivial
performance on these tasks. We set the FLOPs cutoff to be 16.8, 25.2, 8.4× 1021 for GPQA, MATH,
and BBH, respectively. The results are in Fig. E.6. We find that observational scaling laws provides
reasonable forecasts on these new, challenging benchmarks and outperform compute-based scaling
laws when extrapolating to larger models.

2.5 0.0 2.5 5.0 7.5
Log10(FLOPs (1E21))

0.00

0.05

0.10

0.15

0.20

0.25

No
rm

al
ize

d
Ac

cu
ra

cy

y = sigmoid(0.55x - 6.06)
MSEtrain = 4.9e-04
MSEtest = 2.3e-03

GPQA

2.5 0.0 2.5 5.0 7.5
Log10(FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
Ac

cu
ra

cy

y = sigmoid(0.77x - 7.15)
MSEtrain = 2.5e-04
MSEtest = 1.3e-02

MATH Lvl 5

2.5 0.0 2.5 5.0 7.5
Log10(FLOPs (1E21))

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
Ac

cu
ra

cy

y = sigmoid(0.19x - 2.74)
MSEtrain = 2.7e-03
MSEtest = 2.7e-02

BBH

Train
Test

Llama-2
Llama
Llama-3

Llama-3.1
Qwen1.5
Yi

Yi-1.5
Gemma
Gemma-2

Falcon
Phi
BLOOM

GPT-Neo/J
OPT

MPT
StarCoder2

(a) Training FLOP based scaling laws

1.0 1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.00

0.05

0.10

0.15

0.20

No
rm

al
ize

d
Ac

cu
ra

cy

y = sigmoid(1.84x - 7.70)
MSEtrain = 2.7e-04
MSEtest = 8.3e-04

GPQA

1.0 1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.00

0.05

0.10

0.15

0.20

0.25

No
rm

al
ize

d
Ac

cu
ra

cy

y = sigmoid(2.27x - 9.33)
MSEtrain = 6.6e-05
MSEtest = 2.2e-03

MATH Lvl 5

1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
Ac

cu
ra

cy

y = sigmoid(1.19x - 4.22)
MSEtrain = 3.4e-04
MSEtest = 1.5e-03

BBH

Train
Test

Llama-2
Llama
Llama-3

Llama-3.1
Qwen1.5
Yi

Yi-1.5
Gemma
Gemma-2

Falcon
Phi
BLOOM

GPT-Neo/J
OPT
MPT

StarCoder2
Jamba

(b) Observational scaling laws

Figure E.6: Observational scaling laws also provide reasonable forcasts on new, more challenging
benchmarks being used in Open LLM Leaderboard v2 and outperform compute-based scaling laws.

29

E.4 Robustness Checks
Number of PC selection Recall that we defaulted to use 3 PC measures for all of our prediction
tasks. Here we provide additional analysis on the impact of using different numbers of PCs on the
prediction performance and validate the robustness of our choice. In particular, we compare the fitted
curves and prediction performance of using 1-4 PCs on all our tasks. The results are in Fig. E.7,
Fig. E.8, and Fig. E.9 for post-training analysis, “emergent” capability, and agentic capability tasks,
respectively. Our results indicate that using more than 2 PCs leads to better prediction performance
than using compute measures like FLOPs, and using 3 PCs consistently leads to the most robust
predictions across all the tasks. These validate our choice of using 3 PCs as the default number of
PCs and indicate the robustness of our results to the choice of the number of PCs.

2.5 0.0 2.5 5.0 7.5 10.0
Log10(FLOPs (1E21))

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

y = 0.99sigmoid(0.36x - 4.46) + 0.01

MSEtrain = 4.6e-04
MSEtest = 3.7e-03

FLOPs

1 0 1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

y = 0.98sigmoid(1.53x - 5.54) + 0.02

MSEtrain = 1.3e-04
MSEtest = 2.1e-03

PC # = 1

0 1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

y = 0.99sigmoid(1.14x - 4.90) + 0.01

MSEtrain = 4.7e-05
MSEtest = 6.7e-04

PC # = 2

0 1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

y = sigmoid(1.09x - 4.77)

MSEtrain = 4.6e-05
MSEtest = 7.3e-04

PC # = 3

0 1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

y = sigmoid(0.95x - 4.52)

MSEtrain = 4.3e-05
MSEtest = 1.5e-03

PC # = 4

Train
Test

Llama-2
Llama

Llama-3
Qwen1.5

Qwen
Yi

Gemma
Falcon

Phi
Pythia

BLOOM
GPT-Neo/J

OPT
MPT

XGLM
CodeLlama

StarCoder
StarCoder2

DeepSeek-Coder
Mistral

Mixtral

(a) Naive + Greedy

2.5 0.0 2.5 5.0 7.5
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = 0.99sigmoid(0.58x - 4.01) + 0.01

MSEtrain = 1.4e-02
MSEtest = 3.7e-02

FLOPs

1 0 1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = 0.97sigmoid(2.09x - 5.09) + 0.03

MSEtrain = 9.3e-03
MSEtest = 2.1e-02

PC # = 1

1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = sigmoid(1.86x - 5.13)

MSEtrain = 3.9e-03
MSEtest = 7.9e-03

PC # = 2

1.0 1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = sigmoid(2.04x - 5.53)

MSEtrain = 3.1e-03
MSEtest = 4.7e-03

PC # = 3

1.0 1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = sigmoid(2.90x - 6.94)

MSEtrain = 1.6e-03
MSEtest = 2.8e-02

PC # = 4

Train
Test

Llama-2
Llama

Llama-3
Qwen1.5

Qwen
Yi

Gemma
Falcon

Phi
Pythia

BLOOM
GPT-Neo/J

OPT
MPT

XGLM
CodeLlama

StarCoder
StarCoder2

DeepSeek-Coder
Mistral

Mixtral

(b) CoT + Greedy

2.5 0.0 2.5 5.0 7.5
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = 0.98sigmoid(0.68x - 4.46) + 0.02

MSEtrain = 1.5e-02
MSEtest = 3.8e-02

FLOPs

1 0 1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = 0.97sigmoid(2.27x - 5.35) + 0.03

MSEtrain = 9.9e-03
MSEtest = 2.4e-02

PC # = 1

1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = sigmoid(1.99x - 5.29)

MSEtrain = 4.1e-03
MSEtest = 9.5e-03

PC # = 2

1.0 1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = sigmoid(2.19x - 5.74)

MSEtrain = 2.9e-03
MSEtest = 5.6e-03

PC # = 3

1.0 1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = sigmoid(3.06x - 7.15)

MSEtrain = 1.2e-03
MSEtest = 2.6e-02

PC # = 4

Train
Test

Llama-2
Llama

Llama-3
Qwen1.5

Qwen
Yi

Gemma
Falcon

Phi
Pythia

BLOOM
GPT-Neo/J

OPT
MPT

XGLM
CodeLlama

StarCoder
StarCoder2

DeepSeek-Coder
Mistral

Mixtral

(c) CoT + SC + 5 Samples

Figure E.7: Comparing the prediction performance of using different numbers of PCs for observational
scaling laws on the post-training analysis tasks included in Sec. 4.3. Using PC measures consistently
leads to better prediction performance than using compute measures like FLOPs with 3 PCs being
the best across different tasks.

30

2.5 0.0 2.5 5.0 7.5
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 E
xa

ct
 M

at
ch

y = sigmoid(1.04x - 7.03)

MSEtrain = 2.6e-04
MSEtest = 1.3e-02

FLOPs

0 1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

 E
xa

ct
 M

at
ch

y = sigmoid(1.39x - 5.58)

MSEtrain = 3.0e-04
MSEtest = 2.5e-02

PC # = 1

1 0 1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
or

m
al

iz
ed

 E
xa

ct
 M

at
ch

y = sigmoid(1.79x - 5.79)

MSEtrain = 1.4e-04
MSEtest = 4.5e-03

PC # = 2

1 0 1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
or

m
al

iz
ed

 E
xa

ct
 M

at
ch

y = sigmoid(2.00x - 6.11)

MSEtrain = 1.3e-04
MSEtest = 2.6e-03

PC # = 3

1 0 1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 E
xa

ct
 M

at
ch

y = sigmoid(2.20x - 6.42)

MSEtrain = 5.6e-05
MSEtest = 1.5e-02

PC # = 4

Train
Test

Llama-2
Llama

Llama-3
Qwen1.5

Qwen
Yi

Gemma
Falcon

Phi
Pythia

BLOOM
GPT-Neo/J

OPT
MPT

XGLM
StarCoder

(a) Word Unscramble

2.5 0.0 2.5 5.0 7.5
Log10(FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(0.57x - 6.40)

MSEtrain = 2.7e-04
MSEtest = 9.5e-03

FLOPs

0 1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(1.81x - 7.01)

MSEtrain = 2.4e-04
MSEtest = 2.6e-03

PC # = 1

1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(2.33x - 8.44)

MSEtrain = 1.8e-04
MSEtest = 1.6e-03

PC # = 2

1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(2.32x - 8.43)

MSEtrain = 1.8e-04
MSEtest = 1.5e-03

PC # = 3

1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(2.31x - 8.76)

MSEtrain = 1.7e-04
MSEtest = 2.0e-03

PC # = 4

Train
Test

Llama-2
Llama

Llama-3
Qwen1.5

Qwen
Yi

Falcon
Pythia

BLOOM
GPT-Neo/J

OPT
MPT

XGLM
StarCoder

(b) Persian QA

2.5 0.0 2.5 5.0 7.5
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(1.07x - 4.67)

MSEtrain = 9.1e-03
MSEtest = 7.5e-02

FLOPs

2 1 0 1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(0.88x - 2.95)

MSEtrain = 1.1e-02
MSEtest = 3.6e-01

PC # = 1

1 0 1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(0.94x - 3.23)

MSEtrain = 1.1e-02
MSEtest = 3.6e-01

PC # = 2

0 1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(5.50x - 8.92)

MSEtrain = 6.5e-03
MSEtest = 1.7e-02

PC # = 3

0 1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(3.56x - 6.63)

MSEtrain = 6.3e-03
MSEtest = 4.8e-02

PC # = 4

Train
Test

Llama-2
Llama

Llama-3
Qwen1.5

Qwen
Yi

Gemma
Falcon

Phi
Pythia

BLOOM
GPT-Neo/J

OPT
MPT

XGLM
StarCoder

(c) 3-Digit Substraction

2.5 0.0 2.5 5.0 7.5
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(0.50x - 3.17)

MSEtrain = 6.2e-03
MSEtest = 1.1e-01

FLOPs

2 1 0 1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(1.28x - 2.80)

MSEtrain = 4.4e-03
MSEtest = 6.5e-02

PC # = 1

0 1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(1.47x - 3.58)

MSEtrain = 3.4e-03
MSEtest = 5.5e-02

PC # = 2

0 1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(2.22x - 4.45)

MSEtrain = 2.8e-03
MSEtest = 1.2e-02

PC # = 3

0 1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(1.67x - 3.97)

MSEtrain = 2.6e-03
MSEtest = 3.1e-02

PC # = 4

Train
Test

Llama-2
Llama

Llama-3
Qwen1.5

Qwen
Yi

Gemma
Falcon

Phi
Pythia

BLOOM
GPT-Neo/J

OPT
MPT

XGLM
StarCoder

(d) 2-Digit Multiplication

Figure E.8: Comparing the prediction performance of using different numbers of PCs for observational
scaling laws on different “emergent” capability tasks included in Sec. 4.1. Using 3 PCs consistently
leads to the best prediction performance across different tasks.

31

1 2 3 4 5 6
Log10(Llama-2-Chat-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4
N

or
m

al
iz

ed
 A

cc
ur

ac
y

y = sigmoid(0.59x - 4.15)

MSEtrain = 6.8e-04
MSEtest = 5.7e-03

PC # = 1

1 2 3 4 5 6
Log10(Llama-2-Chat-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = 0.98sigmoid(0.81x - 5.42) + 0.02

MSEtrain = 4.6e-04
MSEtest = 2.6e-04

PC # = 2

1 2 3 4 5
Log10(Llama-2-Chat-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = 0.99sigmoid(x - 5.52) + 0.01

MSEtrain = 3.7e-04
MSEtest = 2.2e-04

PC # = 3

1 2 3 4 5
Log10(Llama-2-Chat-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = 0.99sigmoid(0.79x - 4.83) + 0.01

MSEtrain = 3.5e-04
MSEtest = 1.0e-03

PC # = 4

Train
Test

GPT-4
Claude-2

Claude-1
GPT-3.5-Turbo

Claude-Instant
Llama-2-Chat

Vicuna
Codellama-Instruct

OpenChat
WizardLM

Guanaco
Koala

Dolly-v2
Oasst-SFT

(a) AgentBench

2 3 4 5 6
Log10(Llama-2-Chat-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

y = sigmoid(0.62x - 4.45)

MSEtrain = 5.9e-04
MSEtest = 2.0e-02

PC # = 1

2 3 4 5 6 7
Log10(Llama-2-Chat-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

y = 0.97sigmoid(1.01x - 6.75) + 0.03

MSEtrain = 3.2e-04
MSEtest = 1.3e-03

PC # = 2

2 3 4 5 6
Log10(Llama-2-Chat-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

y = 0.97sigmoid(0.98x - 6.60) + 0.03

MSEtrain = 2.9e-04
MSEtest = 3.6e-03

PC # = 3

0 5 10 15 20
Log10(Llama-2-Chat-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

y = sigmoid(0.16x - 3.52)

MSEtrain = 9.1e-05
MSEtest = 1.8e-02

PC # = 4

Train
Test

GPT-4
Claude-2

GPT-3.5-Turbo
Llama-2-Chat

Mistral-Instruct
Vicuna

Codellama-Instruct
Deepseek-LLM-Chat

Lemur-Chat

(b) AgentBoard

Figure E.9: Comparing the prediction performance of using different numbers of PCs for observational
scaling laws on the agentic capability tasks included in Sec. 4.2. Using 2 or 3 PCs leads to the best
prediction performance across different tasks.

Holdout cutoff selection The cutoff for selecting the holdout set could have a significant impact
on the prediction performance of observational scaling laws, as it determines the size of the training
set that could be crucial when the entire dataset is not large (as in our case). Here we analyze how
the prediction performance changes with different holdout cutoffs for various predictive measures
(PCs vs compute measures) and provide a quantitative comparison that characterizes their overall
prediction performance under varying cutoffs.
Specifically, we conducted the analysis on the post-training analysis tasks in Sec. 4.3 and the
“emergent” capability tasks in Sec. 4.1, where there are more data points (compared to the agentic
capability tasks in Sec. 4.2) to provide a more robust analysis. For each task, we vary the FLOPs
cutoff to control the ratio of the test set from 60% to 5% (linearly spaced), which consequently
changes the difficulty of the prediction task from more difficult (less training data with weaker
performance) to easier (more training data with stronger performance). We can then compare the
test MSE of using different predictive measures under different cutoffs and quantify the overall
prediction performance using the area under the error curve (AUE). For “emergent” capability tasks,
we additionally include a variant of the cutoff strategy that holds out test data based on the accuracy
on the task, which simulates a more challenging weak-to-strong prediction scenario and offers an
extra robust analyses.
The results are depicted in Fig. E.10 and Fig. E.11. We observe that in most of our evaluated setups,
using our PC measures (especially with 3 PCs) generally leads to an earlier transition to the low
prediction error region and much lower AUE compared to using compute scales like training FLOPs
and model size. This indicates that PC measures are more robust under different cutoffs and more
sample-efficient for scaling analysis.

32

0.10.20.30.40.50.6
Test Set Ratio

10 3

10 2

10 1

100

Te
st

 M
SE

Naive + Greedy
Model Size: AUE = 6.64E-03
FLOPs: AUE = 2.07E-02
PC # = 1: AUE = 5.20E-03
PC # = 2: AUE = 5.33E-04
PC # = 3: AUE = 6.02E-04
PC # = 4: AUE = 7.54E-04

0.10.20.30.40.50.6
Test Set Ratio

10 3

10 2

10 1

Te
st

 M
SE

CoT + Greedy
Model Size: AUE = 8.41E-02
FLOPs: AUE = 4.07E-02
PC # = 1: AUE = 1.94E-02
PC # = 2: AUE = 5.61E-03
PC # = 3: AUE = 5.75E-03
PC # = 4: AUE = 1.81E-02

0.10.20.30.40.50.6
Test Set Ratio

10 2

10 1

Te
st

 M
SE

CoT + SC + 5 Samples
Model Size: AUE = 9.72E-02
FLOPs: AUE = 3.68E-02
PC # = 1: AUE = 2.01E-02
PC # = 2: AUE = 6.68E-03
PC # = 3: AUE = 7.06E-03
PC # = 4: AUE = 1.63E-02

Figure E.10: Comparing different scale measures under different holdout cutoffs on post-training
analysis tasks in Sec. 4.3. The training/test data size is varied by changing the FLOPs cutoff and the
area under the test error curves (AUE) is used to measure the overall prediction errors. PC measures
(with # = 2 or 3) consistently lead to an earlier transition to low prediction error region and much
lower AUE compared to compute measures like training FLOPs and model size.

0.10.20.30.40.50.6
Test Set Ratio

10 3

10 2

10 1

Te
st

 M
SE

Word Unscramble
Model Size: AUE = 3.50E-02
FLOPs: AUE = 1.70E-02
PC # = 1: AUE = 1.22E-02
PC # = 2: AUE = 6.27E-03
PC # = 3: AUE = 5.59E-03
PC # = 4: AUE = 7.90E-03

0.10.20.30.40.50.6
Test Set Ratio

10 3

10 2

10 1

Te
st

 M
SE

Persian QA
Model Size: AUE = 1.49E-02
FLOPs: AUE = 1.91E-02
PC # = 1: AUE = 6.34E-03
PC # = 2: AUE = 3.66E-02
PC # = 3: AUE = 4.16E-02
PC # = 4: AUE = 4.02E-02

0.10.20.30.40.50.6
Test Set Ratio

10 5

10 4

10 3

10 2

10 1

100

Te
st

 M
SE

3-Digit Substraction
Model Size: AUE = 1.73E-01
FLOPs: AUE = 2.05E-02
PC # = 1: AUE = 5.07E-02
PC # = 2: AUE = 5.00E-02
PC # = 3: AUE = 9.03E-03
PC # = 4: AUE = 1.40E-02

0.10.20.30.40.50.6
Test Set Ratio

10 3

10 2

10 1

Te
st

 M
SE

2-Digit Multiplication
Model Size: AUE = 1.24E-01
FLOPs: AUE = 2.16E-02
PC # = 1: AUE = 1.32E-02
PC # = 2: AUE = 1.09E-02
PC # = 3: AUE = 6.70E-03
PC # = 4: AUE = 9.72E-03

(a) Varying FLOPs cutoff

0.10.20.30.40.50.6
Test Set Ratio

10 3

10 2

10 1

Te
st

 M
SE

Word Unscramble
Model Size: AUE = 3.85E-02
FLOPs: AUE = 1.18E-02
PC # = 1: AUE = 1.51E-02
PC # = 2: AUE = 1.01E-02
PC # = 3: AUE = 1.16E-02
PC # = 4: AUE = 1.00E-02

0.10.20.30.40.50.6
Test Set Ratio

10 3

10 2

10 1

Te
st

 M
SE

Persian QA
Model Size: AUE = 1.58E-02
FLOPs: AUE = 1.07E-02
PC # = 1: AUE = 6.83E-03
PC # = 2: AUE = 7.00E-03
PC # = 3: AUE = 6.25E-03
PC # = 4: AUE = 6.51E-03

0.10.20.30.40.50.6
Test Set Ratio

10 6

10 5

10 4

10 3

10 2

10 1

100

Te
st

 M
SE

3-Digit Substraction
Model Size: AUE = 2.09E-01
FLOPs: AUE = 7.53E-02
PC # = 1: AUE = 7.42E-02
PC # = 2: AUE = 6.57E-02
PC # = 3: AUE = 2.17E-02
PC # = 4: AUE = 3.18E-02

0.10.20.30.40.50.6
Test Set Ratio

10 3

10 2

10 1

Te
st

 M
SE

2-Digit Multiplication
Model Size: AUE = 1.47E-01
FLOPs: AUE = 4.48E-02
PC # = 1: AUE = 5.25E-02
PC # = 2: AUE = 1.30E-02
PC # = 3: AUE = 1.31E-02
PC # = 4: AUE = 1.93E-02

(b) Varying accuracy cutoff

Figure E.11: Comparing different scale measures under different holdout cutoffs on “emergent”
capability tasks in Sec. 4.1. The training/test data size is varied by changing the FLOPs (a) or
accuracy (b) cutoff and the area under the test error curves (AUE) is used to measure the overall
prediction errors. In 7 out of 8 setups, PC measures (with # = 3) lead to much lower AUE compared
to compute measures like training FLOPs and model size.

33

E.5 Emergent Capabilities
Predicting with model sizes In Fig. E.12, we show the prediction performance of using model
size for the “emergent” capabilities of LMs. We find that it leads to significantly worse forecasts
compared to using training FLOPs and PC measures and poorly captures the “emergence” trend. This
is probably because models from different families were trained with very different data sizes and
quality and may use different architectures.
Using default cutoff for arithmetic tasks In Fig. 4, we applied a different FLOPs cutoff than the
default one on arithmetic tasks to make the prediction tasks more challenging. Here, we present the
results of using the default FLOPs cutoff on arithmetic tasks in Fig. E.13. We find that using the
default FLOPs cutoff makes the prediction tasks trivial with too many data points close to perfect
performance. Notably, using PC measures still outperforms using compute measures like model size
and training FLOPs, indicating its robustness to the choice of the cutoff.
Additional tasks In Fig. E.14, we present the results on additional “emergent” capability tasks
included in Wei et al. [98]. Similar to the main tasks (Fig. 4), we used the default FLOPs cutoff
for non-arithmetic tasks (IPA Transliterate) and a quarter of the default cutoff for arithmetic tasks
(3-Digit Addition, 2-Digit Addition). We find that using PC measures consistently leads to the best
prediction performance compared to using model size or training FLOPs. While the extrapolation
does not exactly match the trend of the ground truth on the IPA Transliterate task, possibly due to the
fact that the specific task capabilities are not well covered by our collected benchmark metrics, it still
provides a reasonable forecast of the “emergence” behavior.

2 0 2 4
Log10(Model Size (B))

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

 E
xa

ct
 M

at
ch

y = sigmoid(0.28x - 4.14)
MSEtrain = 7.3e-04
MSEtest = 7.5e-02

Word Unscramble

2 0 2 4
Log10(Model Size (B))

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(- 2.17x - 14.79)
MSEtrain = 3.6e-04
MSEtest = 2.7e-02

Persian QA

2 0 2 4
Log10(Model Size (B))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(0.42x - 3.07)
MSEtrain = 1.2e-02
MSEtest = 5.2e-01

3-Digit Substraction

2 0 2 4
Log10(Model Size (B))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(0.38x - 2.67)
MSEtrain = 6.7e-03
MSEtest = 2.8e-01

2-Digit Multiplication

Train
Test

Llama-2
Llama

Llama-3
Qwen1.5

Qwen
Yi

Gemma
Falcon

Phi
Pythia

BLOOM
GPT-Neo/J

OPT
MPT

XGLM
StarCoder

Figure E.12: Using model sizes gives poor predictions for the “emergent” capabilities of LMs.

34

1 0 1 2
Log10(Model Size (B))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(0.80x - 1.85)
MSEtrain = 3.4e-02
MSEtest = 2.6e-01

2-Digit Multiplication

1 0 1 2
Log10(Model Size (B))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(0.86x - 1.62)
MSEtrain = 9.0e-02
MSEtest = 3.3e-01

3-Digit Substraction

1 0 1 2
Log10(Model Size (B))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(0.71x - 1.45)
MSEtrain = 1.1e-01
MSEtest = 3.5e-01

3-Digit Addiiton

1 0 1 2
Log10(Model Size (B))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(1.46x - 0.98)
MSEtrain = 1.4e-01
MSEtest = 9.1e-02

2-Digit Addiiton

Train
Test

Llama-2
Llama

Llama-3
Qwen1.5

Qwen
Yi

Gemma
Falcon

Phi
Pythia

BLOOM
GPT-Neo/J

OPT
MPT

XGLM
StarCoder

(a) Model size based scaling laws

1 0 1 2 3 4
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(1.92x - 3.70)
MSEtrain = 1.7e-02
MSEtest = 2.8e-02

2-Digit Multiplication

1 0 1 2 3 4
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(3.85x - 6.15)
MSEtrain = 3.3e-02
MSEtest = 2.8e-03

3-Digit Substraction

1 0 1 2 3 4
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(3.26x - 5.08)
MSEtrain = 5.4e-02
MSEtest = 7.5e-03

3-Digit Addiiton

1 0 1 2 3 4
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(3.10x - 3.75)
MSEtrain = 7.5e-02
MSEtest = 1.1e-03

2-Digit Addiiton

Train
Test

Llama-2
Llama

Llama-3
Qwen1.5

Qwen
Yi

Gemma
Falcon

Phi
Pythia

BLOOM
GPT-Neo/J

OPT
MPT

XGLM
StarCoder

(b) Training FLOP based scaling laws

1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(2.48x - 4.51)
MSEtrain = 6.0e-03
MSEtest = 1.6e-02

2-Digit Multiplication

0 1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(6.03x - 7.66)
MSEtrain = 1.5e-02
MSEtest = 3.1e-02

3-Digit Substraction

0 1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(21.90x - 29.63)
MSEtrain = 2.1e-02
MSEtest = 5.7e-03

3-Digit Addiiton

1 0 1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(12.51x - 16.16)
MSEtrain = 1.8e-02
MSEtest = 4.0e-05

2-Digit Addiiton

Train
Test

Llama-2
Llama

Llama-3
Qwen1.5

Qwen
Yi

Gemma
Falcon

Phi
Pythia

BLOOM
GPT-Neo/J

OPT
MPT

XGLM
StarCoder

(c) Observational scaling laws

Figure E.13: Using the default FLOPs cutoff on arithmetic tasks makes the prediction tasks trivial with
too many data points close to perfect performance. Observational scaling laws using PC measures
(with # = 3) still outperform compute scaling laws using model size and training FLOPs.

35

1 0 1 2
Log10(Model Size (B))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(0.48x - 2.70)
MSEtrain = 2.8e-02
MSEtest = 5.8e-01

3-Digit Addiiton

1 0 1 2
Log10(Model Size (B))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(1.09x - 1.63)
MSEtrain = 8.4e-02
MSEtest = 3.2e-01

2-Digit Addiiton

1 0 1 2
Log10(Model Size (B))

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

 B
LE

U

y = sigmoid(0.90x - 4.21)
MSEtrain = 3.4e-03
MSEtest = 9.2e-02

IPA Transliterate

Train
Test

Llama-2
Llama

Llama-3
Qwen1.5

Qwen
Yi

Gemma
Falcon

Phi
Pythia

BLOOM
GPT-Neo/J

OPT
MPT

XGLM
StarCoder

(a) Model size based scaling laws

1 0 1 2 3 4
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(2.61x - 4.55)
MSEtrain = 2.2e-02
MSEtest = 7.3e-02

3-Digit Addiiton

1 0 1 2 3 4
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(2.17x - 2.85)
MSEtrain = 7.1e-02
MSEtest = 4.8e-02

2-Digit Addiiton

1 0 1 2 3 4
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 B
LE

U

y = sigmoid(19.78x - 38.90)
MSEtrain = 7.8e-04
MSEtest = 4.2e-01

IPA Transliterate

Train
Test

Llama-2
Llama

Llama-3
Qwen1.5

Qwen
Yi

Gemma
Falcon

Phi
Pythia

BLOOM
GPT-Neo/J

OPT
MPT

XGLM
StarCoder

(b) Training FLOP based scaling laws

0 1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(5.48x - 9.41)
MSEtrain = 1.6e-02
MSEtest = 3.0e-02

3-Digit Addiiton

0 1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(10.18x - 14.03)
MSEtrain = 2.4e-02
MSEtest = 4.1e-03

2-Digit Addiiton

2 0 2
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 B
LE

U

y = sigmoid(3.81x - 8.78)
MSEtrain = 5.8e-04
MSEtest = 9.6e-02

IPA Transliterate

Train
Test

Llama-2
Llama

Llama-3
Qwen1.5

Qwen
Yi

Gemma
Falcon

Phi
Pythia

BLOOM
GPT-Neo/J

OPT
MPT

XGLM
StarCoder

(c) Observational scaling laws

Figure E.14: Results on additional “emergent” capability tasks included in Wei et al. [98]. Ob-
servational scaling laws using PC measures (with # = 3) consistently lead to the best prediction
performance compared to compute scaling laws using model size and training FLOPs. Although the
extrapolation does not exactly match the trend of the ground truth on the IPA Transliterate task, it
still provides a reasonable forecast of the “emergence” behavior.

36

E.6 Post-Training Method Analysis
Prediction results with different scale measures In Fig. E.15, we show the prediction perfor-
mance of using different scale measures on various prediction tasks for the post-training method
analysis on GSM8K. Similarly, using PC measures well captures the scaling trend and consistently
leads to the best prediction performance across all tasks.

2 0 2 4
Log10(Model Size (B))

0.0

0.1

0.2

0.3

Ac
cu

ra
cy

y = 0.99sigmoid(0.18x - 3.64) + 0.01
MSEtrain = 6.0e-04
MSEtest = 1.3e-02

Naive + Greedy

2 0 2 4
Log10(Model Size (B))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = sigmoid(0.09x - 2.39)
MSEtrain = 1.7e-02
MSEtest = 1.9e-01

CoT + Greedy

2 0 2 4
Log10(Model Size (B))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = sigmoid(0.09x - 2.36)
MSEtrain = 1.8e-02
MSEtest = 2.2e-01

CoT + SC + 5 Samples

Train
Test

Llama-2
Llama
Llama-3

Qwen1.5
Qwen
Mistral

Mixtral
Yi
Gemma

Falcon
Phi
Pythia

BLOOM
GPT-Neo/J
OPT

MPT
XGLM
CodeLlama

StarCoder
StarCoder2
DeepSeek-Coder

(a) Model size based scaling laws

2.5 0.0 2.5 5.0 7.5 10.0
Log10(FLOPs (1E21))

0.0

0.1

0.2

0.3

Ac
cu

ra
cy

y = 0.99sigmoid(0.36x - 4.46) + 0.01
MSEtrain = 4.6e-04
MSEtest = 3.7e-03

Naive + Greedy

2.5 0.0 2.5 5.0 7.5
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = 0.99sigmoid(0.58x - 4.01) + 0.01
MSEtrain = 1.4e-02
MSEtest = 3.7e-02

CoT + Greedy

2.5 0.0 2.5 5.0 7.5
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = 0.98sigmoid(0.68x - 4.46) + 0.02
MSEtrain = 1.5e-02
MSEtest = 3.8e-02

CoT + SC + 5 Samples

Train
Test

Llama-2
Llama
Llama-3

Qwen1.5
Qwen
Yi

Gemma
Falcon
Phi

Pythia
BLOOM
GPT-Neo/J

OPT
MPT
XGLM

CodeLlama
StarCoder

StarCoder2
DeepSeek-Coder

(b) Trainig FLOP based scaling laws

0 1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

y = sigmoid(1.09x - 4.77)
MSEtrain = 4.6e-05
MSEtest = 7.3e-04

Naive + Greedy

1.0 1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = sigmoid(2.04x - 5.53)
MSEtrain = 3.1e-03
MSEtest = 4.7e-03

CoT + Greedy

1.0 1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = sigmoid(2.19x - 5.74)
MSEtrain = 2.9e-03
MSEtest = 5.6e-03

CoT + SC + 5 Samples

Train
Test

Llama-2
Llama
Llama-3

Qwen1.5
Qwen
Mistral

Mixtral
Yi
Gemma

Falcon
Phi
Pythia

BLOOM
GPT-Neo/J
OPT

MPT
XGLM
CodeLlama

StarCoder
StarCoder2
DeepSeek-Coder

(c) Observational scaling laws

Figure E.15: Predicting the impact of post-training techniques on GSM8K with different scale
measures. Observational scaling laws using PC measures (with # = 3) consistently lead to the best
prediction performance across all tasks.

37

Results on BBH We further validated our observational scaling laws for predicting the impact of
CoT on the BigBench-Hard tasks [83] following the same setup in Sec. 4.3. In particular, we used the
defaulted FLOPs cutoff and the same PC measures (# = 3). We normalized the prediction accuracy
on each BBH task by their respective random prediction accuracy and aggregated the normalized
accuracy across all tasks for predictions. The results are depicted in Fig. E.16. Surprisingly, we
observe that using training FLOPs leads to reasonable predictions of LM performance with and
without CoT on BBH tasks, possibly due to the denoising effect of aggregation over all tasks.
Furthermore, using PC measures accurately captures the scaling trends in both setups, even when
using training FLOPs leads to less tight captures in the “Naive” setup or fails to capture the behavior
of models trained on synthetic data (Phi).

2 0 2 4
Log10(Model Size (B))

0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

y = sigmoid(0.17x - 3.14)
MSEtrain = 2.2e-03
MSEtest = 3.7e-02

Naive - Greedy

2 0 2 4
Log10(Model Size (B))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = sigmoid(0.28x - 2.93)
MSEtrain = 7.1e-03
MSEtest = 1.1e-01

CoT - Greedy

Train
Test

Llama-2
Llama
Llama-3

Qwen1.5
Qwen
Mistral

Mixtral
Yi
Gemma

Falcon
Phi
Pythia

BLOOM
GPT-Neo/J
OPT

MPT
XGLM
CodeLlama

StarCoder
StarCoder2
DeepSeek-Coder

(a) Model size based scaling laws

2.5 0.0 2.5 5.0 7.5
Log10(FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

y = sigmoid(0.42x - 4.11)
MSEtrain = 1.6e-03
MSEtest = 6.5e-03

Naive - Greedy

2.5 0.0 2.5 5.0 7.5
Log10(FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = sigmoid(0.70x - 4.60)
MSEtrain = 4.3e-03
MSEtest = 3.3e-03

CoT - Greedy

Train
Test

Llama-2
Llama
Llama-3

Qwen1.5
Qwen
Yi

Gemma
Falcon
Phi

Pythia
BLOOM
GPT-Neo/J

OPT
MPT
XGLM

CodeLlama
StarCoder

StarCoder2
DeepSeek-Coder

(b) Trainig FLOP based scaling laws

1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

y = sigmoid(1.26x - 4.87)
MSEtrain = 4.1e-04
MSEtest = 3.0e-03

Naive - Greedy

0 1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = sigmoid(1.62x - 5.03)
MSEtrain = 1.2e-03
MSEtest = 9.7e-03

CoT - Greedy

Train
Test

Llama-2
Llama
Llama-3

Qwen1.5
Qwen
Mistral

Mixtral
Yi
Gemma

Falcon
Phi
Pythia

BLOOM
GPT-Neo/J
OPT

MPT
XGLM
CodeLlama

StarCoder
StarCoder2
DeepSeek-Coder

(c) Observational scaling laws

Figure E.16: Predicting the impact of CoT on BBH tasks. Both using training FLOPs and PC
measures leads to reasonable predictions, while PC measures accurately capture the scaling trends in
both setups, even when using training FLOPs leads to less tight captures in the “Naive” setup or fails
to capture the Phi model (which was trained on synthetic data) as an outlier.

38

E.7 Model Subset Selection
Prediction results with different number of models selected by V-optimality In Fig. 7a, we
demonstrated how the prediction errors change with the number of models selected by our method.
Here we present a qualitative analysis of the prediction results with different numbers of models
selected in Fig. E.17. We find that with more than 8 models, the fitted scaling curves have already
converged to accurately capture the scaling trend, indicating the efficiency of our method.

1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

y = 0.95sigmoid(2.27x - 8.79) + 0.05
MSEtrain = 1.5e-05
MSEtest = 1.1e-03

Naive + Greedy

1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = 0.96sigmoid(1.49x - 5.16) + 0.04
MSEtrain = 1.2e-11
MSEtest = 3.4e-02

CoT + Greedy

1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = sigmoid(1.40x - 4.58)
MSEtrain = 2.4e-12
MSEtest = 4.0e-02

CoT + SC + 5 Samples

Train
Test

Llama-2
Llama
Llama-3

Qwen1.5
Qwen
Mistral

Mixtral
Yi
Gemma

Falcon
Phi
MPT

CodeLlama
StarCoder

StarCoder2
DeepSeek-Coder

(a) 4 models

1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

y = 0.97sigmoid(1.52x - 6.08) + 0.03
MSEtrain = 4.6e-05
MSEtest = 6.8e-04

Naive + Greedy

1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = sigmoid(1.52x - 4.70)
MSEtrain = 5.9e-05
MSEtest = 2.6e-02

CoT + Greedy

1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = sigmoid(1.63x - 4.81)
MSEtrain = 2.3e-04
MSEtest = 2.5e-02

CoT + SC + 5 Samples

Train
Test

Llama-2
Llama
Llama-3

Qwen1.5
Qwen
Mistral

Mixtral
Yi
Gemma

Falcon
Phi
MPT

CodeLlama
StarCoder

StarCoder2
DeepSeek-Coder

(b) 8 models

1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

y = 0.97sigmoid(1.42x - 6.01) + 0.03
MSEtrain = 3.7e-05
MSEtest = 9.4e-04

Naive + Greedy

1.0 1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = 0.94sigmoid(2.42x - 6.73) + 0.06
MSEtrain = 1.3e-03
MSEtest = 1.2e-02

CoT + Greedy

1.0 1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = 0.96sigmoid(2.45x - 6.46) + 0.04
MSEtrain = 1.3e-03
MSEtest = 1.2e-02

CoT + SC + 5 Samples

Train
Test

Llama-2
Llama
Llama-3

Qwen1.5
Qwen
Mistral

Mixtral
Yi
Gemma

Falcon
Phi
MPT

CodeLlama
StarCoder

StarCoder2
DeepSeek-Coder

(c) 12 models

0 1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

y = 0.99sigmoid(1.16x - 4.99) + 0.01
MSEtrain = 3.8e-05
MSEtest = 6.8e-04

Naive + Greedy

1.0 1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = sigmoid(1.93x - 5.23)
MSEtrain = 4.8e-03
MSEtest = 8.1e-03

CoT + Greedy

1.0 1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = sigmoid(2.08x - 5.42)
MSEtrain = 4.2e-03
MSEtest = 1.0e-02

CoT + SC + 5 Samples

Train
Test

Llama-2
Llama
Llama-3

Qwen1.5
Qwen
Mistral

Mixtral
Yi
Gemma

Falcon
Phi
GPT-Neo/J

MPT
CodeLlama
StarCoder

StarCoder2
DeepSeek-Coder

(d) 20 models

Figure E.17: Prediction results with different numbers of models selected with our V-optimality
criterion. The predictions have accurately captured the scaling trend with more than 8 models.

39

Prediction results with randomly selected models We present the prediction results with ran-
domly selected models from all available models in Fig. E.18, in comparison to the results with
models selected by our V-optimality criterion (Fig. E.17). All these results are produced with a
fixed random seed. We find that using randomly selected models leads to a much worse prediction
performance, even with 16 models, demonstrating the critical need to carefully select models for
effective scaling analyses.

2 0 2
Log10(Llama-2-Equiv. FLOPs (1E21))

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

y = 0.95sigmoid(0.47x - 4.79) + 0.05
MSEtrain = 1.4e-12
MSEtest = 1.0e-02

Naive + Greedy

1.0 1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

y = 0.95sigmoid(1.14x - 4.28) + 0.05
MSEtrain = 1.8e-14
MSEtest = 5.4e-02

CoT + Greedy

1.0 1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = 0.94sigmoid(1.98x - 5.90) + 0.06
MSEtrain = 2.8e-12
MSEtest = 2.0e-02

CoT + SC + 5 Samples

Train
Test

Llama-2
Llama
Llama-3

Qwen1.5
Qwen
Mistral

Mixtral
Yi
Gemma

Falcon
Phi
Pythia

BLOOM
GPT-Neo/J
OPT

MPT
XGLM
CodeLlama

StarCoder
StarCoder2
DeepSeek-Coder

(a) 4 models

4 2 0 2 4 6
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

Ac
cu

ra
cy

y = sigmoid(0.35x - 2.62)
MSEtrain = 1.8e-06
MSEtest = 2.9e-03

Naive + Greedy

15 10 5 0 5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

y = sigmoid(0.33x + 1.47)
MSEtrain = 4.7e-04
MSEtest = 1.1e-01

CoT + Greedy

4 2 0 2 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

y = sigmoid(0.78x + 0.30)
MSEtrain = 4.9e-04
MSEtest = 9.1e-02

CoT + SC + 5 Samples

Train
Test

Llama-2
Llama
Llama-3

Qwen1.5
Qwen
Mistral

Mixtral
Yi
Gemma

Falcon
Phi
Pythia

BLOOM
GPT-Neo/J
OPT

MPT
XGLM
CodeLlama

StarCoder
StarCoder2
DeepSeek-Coder

(b) 8 models

0 1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

Ac
cu

ra
cy

y = sigmoid(0.97x - 4.56)
MSEtrain = 3.6e-05
MSEtest = 1.3e-03

Naive + Greedy

0 1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = sigmoid(1.50x - 2.71)
MSEtrain = 6.3e-03
MSEtest = 5.1e-02

CoT + Greedy

0 1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

y = sigmoid(1.66x - 2.80)
MSEtrain = 5.8e-03
MSEtest = 5.8e-02

CoT + SC + 5 Samples

Train
Test

Llama-2
Llama
Llama-3

Qwen1.5
Qwen
Mistral

Mixtral
Yi
Gemma

Falcon
Phi
Pythia

BLOOM
GPT-Neo/J
OPT

MPT
XGLM
CodeLlama

StarCoder
StarCoder2
DeepSeek-Coder

(c) 12 models

0 1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

Ac
cu

ra
cy

y = sigmoid(0.63x - 3.87)
MSEtrain = 3.0e-05
MSEtest = 4.4e-03

Naive + Greedy

1.0 1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

y = 0.97sigmoid(7.52x - 14.53) + 0.03
MSEtrain = 4.0e-04
MSEtest = 1.6e-01

CoT + Greedy

1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

y = sigmoid(2.71x - 5.96)
MSEtrain = 1.7e-04
MSEtest = 3.3e-02

CoT + SC + 5 Samples

Train
Test

Llama-2
Llama
Llama-3

Qwen1.5
Qwen
Mistral

Mixtral
Yi
Gemma

Falcon
Phi
Pythia

BLOOM
GPT-Neo/J
OPT

MPT
XGLM
CodeLlama

StarCoder
StarCoder2
DeepSeek-Coder

(d) 20 models

Figure E.18: Prediction results with different numbers of randomly selected models. The prediction
performance is much worse than our selection method, even when 20 models are being selected.

40

Table E.1: Selected models for scaling analysis of post-training methods under different budgets.

Budget Selected Models

8 models Llama-2 {7B, 13B, 70B}, Mixtral {8x7B}, Phi {1.5B, 2}, MPT {7B, 30B}

12 models Llama-2 {7B, 13B, 70B}, Llama-3 {8B, 70B}, DeepSeek-Coder {1.3B, 6.7B, 33B},
Falcon {1B, 7B, 40B, 180B}

20 models
Llama-2 {7B, 13B, 70B}, Mixtral {8x7B}, Qwen {7B, 14B, 72B},
DeepSeek-Coder {1.3B, 6.7B, 33B}, CodeLlama {7B, 13B, 34B, 70B},
MPT {7B, 30B}, Falcon {1B, 7B, 40B, 180B}

8 models, sub 7B Llama-2 {7B}, Llama {7B}, Qwen {7B}, DeepSeek-Coder {1.3B, 6.7B},
Phi {1.5, 2}, MPT {7B}

12 models, sub 7B Llama-2 {7B}, Llama {7B}, Qwen {7B}, DeepSeek-Coder {1.3B, 6.7B},
Phi {1.5, 2}, MPT {7B}, Gemma {2B, 7B}, Falcon {1B, 7B}

Recommended model series for scaling analysis To facilitate future scaling analyses for post-
training techniques, we provide a reference list of models selected with our method under different
budget constraints in Table E.1. These models were chosen from all available ones (see Table D.1)
with Llama-2 models always being included (as it is currently the most representative and widely
used model family), and are expected to be representative of them. Notably, the selected models
cover diverse capability ranges and dimensions to capture potential scaling dimensions. For example,
under the 12 model budget constraint, the selected models cover both stronger models (Llama-3)
and weaker ones (Falcon), as well as models with specialized programming capabilities (DeepSeek-
Coder). Updating this list with other constraints (e.g., total inference FLOPs) or new model families
is straightforward, and we provide both implementations and guidelines in our released code.

41

E.8 Additional Analysis
We have received valuable feedback from anonymous reviewers and have conducted extrnsive
additional analysis to address their remaining questions.
Extracting PC measures with non-matrix factorization We note that the benchmark coefficients
on our principal capability measures are not guaranteed to be non-negative, which may hinder the
interpretability of the extracted components. Therefore, we conduct an additional analysis with non-
negative matrix factorization (NMF) to ensure the non-negativity of the component-wise benchmark
coefficients that may provide more interpretable capability dimensions. The results are included in
Fig. E.19. We observed the NMF components do generally demonstrate a interpretable decomposition,
as well as a positive and smooth scaling with training FLOPs within each model family (as our PC
measures).
While NMF offers enhanced interpretability and positive scaling properties compared to PCA, it also
has notable limitations. Firstly, unlike PCA, NMF does not enforce orthogonality among its extracted
components, as evident in the observed correlation between Components 3 and 4. Consequently,
the coefficients assigned to each model across dimensions may not serve as independent measures
of specific capabilities. Secondly, the ordering of NMF components lacks uniqueness and intrinsic
physical meaning. This contrasts with PCA components, which are systematically ordered by their
explained variances. The PCA approach provides an ‘importance’ measure for each dimension and
allows for controlled trade-offs between representativeness and noise inclusion by adjusting the
number of PCs used in the analysis.

MMLU
ARC-C

HellaSwag

Winograd

TruthfulQA
GSM8K

XWinograd

HumanEval

Component-1

Component-2

Component-3

Component-4

5.42 3.11 1.37 1.07 3.06 6.34 0.56 5.00

0.84 0.00 0.00 2.84 8.45 0.00 3.72 0.00

0.83 2.11 2.79 3.95 2.14 0.00 4.94 1.58

1.93 3.63 4.77 7.40 6.42 0.00 7.53 0.00

0

1

2

3

4

5

6

7

8

(a) NMF component weights

2.0 2.5
Log10(FLOPs (1E21))

60

80

100

120

Co
m

po
ne

nt
-1

R2 = 0.99
y = 33.10x + 6.39

Llama-2

2.0 2.5
Log10(FLOPs (1E21))

60

70

80

90

100

Co
m

po
ne

nt
-1

R2 = 0.99
y = 24.75x + 24.26

Llama

1 2 3
Log10(FLOPs (1E21))

60

80

100

120

Co
m

po
ne

nt
-1

R2 = 0.98
y = 27.63x + 37.41

Qwen1.5

1 0 1
Log10(FLOPs (1E21))

42.5

45.0

47.5

50.0

52.5

55.0

Co
m

po
ne

nt
-1

R2 = 0.87
y = 3.66x + 48.77

Pythia

0 1 2
Log10(FLOPs (1E21))

45

50

55

60

65

Co
m

po
ne

nt
-1

R2 = 1.00
y = 6.99x + 46.32

BLOOM

1 0 1 2
Log10(FLOPs (1E21))

42.5

45.0

47.5

50.0

52.5

55.0

Co
m

po
ne

nt
-1

R2 = 0.96
y = 3.39x + 47.70

OPT

2.0 2.5 3.0
Log10(FLOPs (1E21))

60

80

100

Co
m

po
ne

nt
-1

R2 = 0.98
y = 32.38x - 0.31

CodeLlama

1.0 1.5 2.0
Log10(FLOPs (1E21))

45

50

55

60

65

Co
m

po
ne

nt
-1

R2 = 0.90
y = 8.28x + 45.01

StarCoder

(b) NMF compoenent scaling

Figure E.19: Extracting PC measures with non-matrix factorization: More interpretable principal
capability measures can be obtained by non-negative matrix factorization (NMF). (a) NMF ensures
the non-negativity of the component-wise benchmark coefficients and provides an interpretable de-
composition. For example, we may view component 1 and 4 as reasoning and language understanding
capabilities, respectively. (b) The NMF components generally demonstrate a smooth, positive scaling
with increasing FLOPs. The results also hold across other model families and components.

42

1 0 1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 E
xa

ct
 M

at
ch

y = sigmoid(2.03x - 6.51)
MSEtrain = 1.0e-05
MSEtest = 2.5e-03

Word Unscramble

1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(2.32x - 8.43)
MSEtrain = 1.8e-04
MSEtest = 1.5e-03

Persian QA

1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(2.53x - 5.46)
MSEtrain = 7.9e-05
MSEtest = 2.1e-02

2-Digit Multiplication

Train
Test

Llama-3.1-405B-FP8
Llama-2

Llama
Llama-3

Qwen1.5
Qwen

Yi
Gemma

Falcon
Phi

Pythia
BLOOM

GPT-Neo/J
OPT

MPT
XGLM

StarCoder

(a)

1 2 3 4 5
Log10(Llama-2-Chat-Equiv. FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(0.79x - 4.73)

MSEtrain = 2.6e-04
MSEtest = 5.8e-03

Train
Test
GPT-4
Claude-2
Claude-1
GPT-3.5-Turbo
Claude-Instant
Llama-2-Chat
Vicuna
Codellama-Instruct
OpenChat
WizardLM
Guanaco
Koala
Dolly-v2
Oasst-SFT

(b)

Figure E.20: Pushing the limit of cutoff point: The cutoff can be further pushed back on each
individual task while still providing reasonable predictions. (a) Emergent capability tasks: We include
three representative tasks, and the task-specific FLOPs cutoff are 25, 84, and 8 ×1021 respectively
(from left to right), compared to the unified 84× 1021 in our current setup. We also test the newly
released Llama-3.1 405B (FP8) to assess the generalization to a larger scale. (b) Agentic tasks: We test
on AgentBench that has more available data points with an 80/20 train/test split. The extrapolations
underestimate performance to some extent, but still align with the overall observed trend.

2 4 6
Log10(FLOPs (1E21))

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

 E
xa

ct
 M

at
ch

y = sigmoid(0.80x - 6.07)
MSEtrain = 1.1e-04
MSEtest = 3.3e-04

Word Unscramble

2 4 6
Log10(FLOPs (1E21))

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(0.36x - 4.18)
MSEtrain = 4.8e-05
MSEtest = 4.4e-03

Persian QA

(a) Qwen1.5

2 0 2 4
Log10(FLOPs (1E21))

0.00

0.02

0.04

0.06

0.08
N

or
m

al
iz

ed
 A

cc
ur

ac
y

y = sigmoid(0.40x - 5.39)
MSEtrain = 1.6e-05
MSEtest = 3.2e-03

3-Digit Substraction

2 0 2 4
Log10(FLOPs (1E21))

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(0.61x - 3.51)
MSEtrain = 5.0e-04
MSEtest = 1.0e-03

2-Digit Multiplication

(b) OPT

Figure E.21: Scaling predictions with single-family models: For scaling prediction from FLOPs
within a single family, at least 5 models are typically required for accurate extrapolation, but the
performance is highly dependent on the specific setup. We test Qwen1.5 on non-algorithmic and OPT
on arithmetic tasks. Both model families demonstrate accurate extrapolation on one task but not the
other.

1 0 1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 E
xa

ct
 M

at
ch

y = sigmoid(2.00x - 6.11)
MSEtrain = 1.3e-04
MSEtest = 2.6e-03

Word Unscramble

1 2 3
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(2.35x - 8.46)
MSEtrain = 1.8e-04
MSEtest = 2.3e-03

Persian QA

0 1 2 3 4
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

y = sigmoid(2.22x - 4.45)
MSEtrain = 2.8e-03
MSEtest = 1.2e-02

2-Digit Multiplication

(a) Emergent capability

1.0 1.5 2.0 2.5 3.0 3.5
Log10(Llama-2-Equiv. FLOPs (1E21))

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

y = sigmoid(2.04x - 5.53)
MSEtrain = 3.1e-03
MSEtest = 4.7e-03

CoT + Greedy

(b) Post-training

Figure E.22: Confidence intervals of scaling predictions: We calculate 95% confidence intervals
for predictions from the non-linear regression models at each data point, and the observed data
points fall within these confidence intervals. When extrapolating from very few data points above
the random-guess level (e.g., in Persian QA), the confidence intervals may be wider. We include
representative tasks for both emergent capability (left) and post-training analysis (right) setups.

43

E.9 Fitted Functional Forms for Preregistration of Predictions
In Table E.2, we included the functional forms of fitted scaling laws in our experiments. These
functional forms served as a preregistration of our predictions for future models at the time of the
initial paper release, which has been used to test the generalizability of our scaling analysis to unseen
models.

Table E.2: The functional forms of the fitted scaling laws included in our paper, are preregistered
for predictions of future models. Each functional form is presented as the logit of the normalized
accuracy metric φ−1(Y, h) = σ−1 ((Y − (1− h)) /h) = X that is equivalent to Eq. (6). Each
benchmark metric is scaled to be within the range [0, 1].

Setup Task Functional Form

“Emergent” capabilities
(Sec. 4.1)

Word Unscramble

φ
−1

(Y, 1.00)

= 2.00 log10(C̄Llama-2) − 6.11

= 6.74PC1 − 3.22PC2 − 1.37PC3 − 4.93

= 1.02MMLU + 3.02ARC-C + 5.73HellaSwag + 2.44Winograd −
1.06TruthfulQA + 1.21GSM8K + 2.48XWinograd − 0.08HumanEval − 12.28

Persian QA

φ
−1

(Y, 1.00)

= 2.32 log10(C̄Llama-2) − 8.43

= 2.86PC1 + 3.18PC2 − 0.19PC3 − 5.26

= 2.08MMLU + 1.06ARC-C + 1.13HellaSwag + 0.53Winograd +

0.36TruthfulQA + 2.89GSM8K + 0.66XWinograd + 1.55HumanEval − 7.98

3-Digit Substraction

φ
−1

(Y, 1.00)

= 5.50 log10(C̄Llama-2) − 8.92

= 5.98PC1 + 8.74PC2 + 39.55PC3 − 4.68

= 2.17MMLU + 2.32ARC-C − 3.44HellaSwag − 7.96Winograd +

0.65TruthfulQA + 34.27XWinograd + 20.39HumanEval − 20.99

2-Digit Multiplication

φ
−1

(Y, 1.00)

= 2.22 log10(C̄Llama-2) − 4.45

= 3.60PC1 + 4.24PC2 + 8.05PC3 − 2.68

= 1.62MMLU + 1.95ARC-C + 0.55HellaSwag − 0.63Winograd +

0.14TruthfulQA + 6.80XWinograd + 6.52HumanEval − 8.00

Agentic capabilities
(Sec. 4.2)

AgentBench

φ
−1

(Y, 0.99)

= log10(C̄Llama-2-Chat) − 5.52

= 2.32PC1 + 0.79PC2 − 2.82PC3 − 2.96

= 2.34MMLU + 0.82ARC-C + 0.32HellaSwag + 0.54Winogrande +

0.60TruthfulQA − 0.42GSM8K + 2.63HumanEval − 6.37

AgentBoard

φ
−1

(Y, 0.97)

= 0.98 log10(C̄Llama-2-Chat) − 6.60

= 3.02PC1 + 2.60PC2 + 1.17PC3 − 2.98

= − 0.10MMLU − 0.31ARC-C − 0.55HellaSwag + 0.14Winogrande +

0.56TruthfulQA + 2.28GSM8K + 3.36HumanEval − 5.06

44

Setup Task Functional Form

Post-training
(analysis Sec. 4.3)

GSM Naive + Greedy

φ
−1

(Y, 1.00)

= 1.09 log10(C̄Llama-2) − 4.77

= 2.69PC1 + 1.55PC2 − 0.36PC3 − 3.57

= 1.53MMLU + 1.30ARC-C + 1.22HellaSwag + 0.75Winograd +

0.16TruthfulQA + 0.13XWinograd + 1.92HumanEval − 5.97

GSM CoT + Greedy

φ
−1

(Y, 1.00)

= 2.04 log10(C̄Llama-2) − 5.53

= 2.56PC1 + 4.64PC2 + 4.21PC3 − 2.50

= 5.03MMLU + 2.04ARC-C − 0.10HellaSwag + 0.96Winograd +

1.75TruthfulQA − 2.39XWinograd + 2.58HumanEval − 4.77

GSM CoT + SC

φ
−1

(Y, 1.00)

= 2.19 log10(C̄Llama-2) − 5.74

= 2.73PC1 + 4.82PC2 + 4.95PC3 − 2.49

= 5.58MMLU + 2.27ARC-C − 0.08HellaSwag + 1.11Winograd +

1.97TruthfulQA − 2.78XWinograd + 2.45HumanEval − 4.95

BBH Naive + Greedy

φ
−1

(Y, 1.00)

= 1.26 log10(C̄Llama-2) − 4.87

= 2.70PC1 + 3.06PC2 − 0.84PC3 − 3.23

= 1.41MMLU + 1.05ARC-C + 0.75HellaSwag + 0.36Winograd +

0.11TruthfulQA + 0.61XWinograd + 3.63HumanEval − 5.47

BBH CoT + Greedy

φ
−1

(Y, 1.00)

= 1.62 log10(C̄Llama-2) − 5.03

= 4.20PC1 + 3.81PC2 − 2.92PC3 − 3.12

= 0.84MMLU + 1.30ARC-C + 1.57HellaSwag + 0.42Winograd −
0.44TruthfulQA + 1.96XWinograd + 5.62HumanEval − 6.61

45

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All the claims in the abstract and the introduction were carefully drafted to
precisely describe the contributions and scope of the paper and checked to ensure that they
are consistent with the empirical results in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the major limitations of our work in the conclusion section
(Sec. 6).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

46

Answer:[NA]
Justification: Our work does not contain any theory. Note that our paper does involve a
set of assumptions to develop our observational scaling laws (Sec. 3.1), which have been
empirical validated throughout our paper (Sec. 3 & Sec. 4).
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have carefully described all the experimental setups in Sec. 4 and included
all experimental details in Appx. D. We have also included a complete algorithm for our
methd in Algorithm A.1. We have also released our code to reproduce the results and provide
the link in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

47

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have released all the code and data that we have collected to reproduce our
results. We have included the link in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have carefully described all the experimental setups in Sec. 4 and included
all experimental details in Appx. D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include our results with error bars in Fig. E.22. We also performed several
robustness checks of our method to hyperparameters in Appx. E.4.

Guidelines:

• The answer NA means that the paper does not include experiments.

48

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Our paper does not involve experiments that require significant computational
resources and our results are not sensitive to the compute being used, so we did not include
this information.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work has been conducted in accordance with the NeurIPS Code of Ethics.
We have carefully considered the ethical implications of our work.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]

49

https://neurips.cc/public/EthicsGuidelines

Justification: The paper is on the foundational research side and is not tied to particular
applications. We do not see any direct societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not involve releasing data or models that have a high risk for
misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited every public library or leaderboard that has been used in our
work, see our reference list.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

50

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our work does not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects,
so we did not need IRB approval.
Guidelines:

51

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

52

	Introduction
	Related Work
	Observational Scaling Laws
	Generalizing Compute Scaling Laws
	Identifying a Low-Dimensional Capability Space (eq:obsscaling3)
	Principal Capability Measures as Surrogate Scale Measures (eq:obsscaling2)
	Fitting Observational Scaling Laws (eq:obsscaling1)

	Validating Observational Scaling Laws
	Predictability of ``Emergent'' Capabilities
	Predictability of Agentic Capabilities
	Predicting the Impact of Post-Training Techniques

	Selecting Low-Cost Model Subsets for Practical Scaling Analyses
	Conclusion, Limitations, and Future Work
	Algorithm
	Discussion and Other Applications of Observational Scaling
	Extended Related Work
	Experimental Details
	Model Collection & Evaluation
	Downstream Evaluation
	PCA Analysis

	Additional Results
	PC Analysis of Instruction-Tuned LMs
	Properties of PC measures
	Additional Preregisteration Results
	Robustness Checks
	Emergent Capabilities
	Post-Training Method Analysis
	Model Subset Selection
	Additional Analysis
	Fitted Functional Forms for Preregistration of Predictions

