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ABSTRACT

Generalized Category Discovery (GCD) aims to identify unlabeled samples by
leveraging the base knowledge from labeled ones, where the unlabeled set con-
sists of both base and novel classes. Since clustering methods are time-consuming
at inference, parametric-based approaches have become more popular. However,
recent parametric-based methods suffer inferior base discrimination due to the un-
reliable self-supervision. To address this issue, we propose a Reciprocal Learning
Framework (RLF) that introduces an auxiliary branch devoted to base classifica-
tion. During training, the main branch filters the pseudo-base samples to the aux-
iliary branch. In response, the auxiliary branch provides more reliable soft labels
for the main branch, leading to a virtuous cycle. Furthermore, we introduce Class-
wise Distribution Regularization (CDR) to mitigate the leaning bias towards base
classes. CDR essentially increases the prediction confidence of the unlabeled data
and boosts the novel class performance. Combined with both components, our
method achieves superior performance in all classes with negligible extra compu-
tation. Extensive experiments on seven GCD datasets validate the effectiveness
of our method, e.g. delivering a notable 2.1% improvement on the Stanford Cars
dataset. Our codes will be available upon acceptance.

1 INTRODUCTION

With the development of deep learning in recent years, models can perform well in traditional tasks
such as image recognition He et al. (2016; 2017); Vaswani (2017); Dosovitskiy (2020). Generally,
the models rely on abundant annotated data in a closed scenario where the unlabeled data share the
same classes with the labeled training data. However, these models have limitations in the real-world
scenario where unlabeled data comes from unknown classes. In this way, Category Discovery (CD)
has garnered attention in the machine learning community. Initially, Han et al. (2019) proposes
Novel Class Discovery (NCD) which is designed to cluster novel class data with the assistance of
labeled data exclusively. However, NCD assumes the unlabeled data all belong to novel classes,
which is unrealistic in practical scenarios. Recently, Generalized Category Discovery (GCD) Vaze
et al. (2022) has emerged and it allows the unlabeled data spanning both base and novel categories.
Compared to the NCD task, GCD is more practical and challenging in real-world scenarios.

Vaze et al. (2022) first defined the GCD problem and tackled it using contrastive learning along
with the semi-supervised k-means clustering method. Wen et al. (2023)further proposes an effective
parametric framework SimGCD which outperforms the clustering methods with reduced inference
time. Due to its effectiveness, the parametric framework has become popular in GCD research.
Wang et al. (2024) designs a two-stage framework on the pre-trained SimGCD model that introduces
both global and spatial prompts to fine-tune the model. Cao et al. (2024) observes that SimGCD
suffers catastrophic forgetting of base classes and they propose a novel regularization to address it.
Despite the significant advancements in parametric methods, experimental results show that these
methods often suffer inferior base discrimination. To quantitatively reveal the main limitation in
existing works, we define the oracle base accuracy for evaluating base discrimination, which solely
considers base-class prediction, and calculates the accuracy of unlabeled base data. Fig. 1 validates
that SimGCD and LegoGCD lag behind the supervised-only reference (SupRef) which exclusively
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Figure 1: Comparison of the oracle base class accuracy between SimGCD, LegoGCD, and our
method. SimGCD and LegoGCD exhibit poor performance, falling behind the supervised reference
(SupRef). Contrarily, our method exhibits enhanced discrimination, even surpassing SupRef.

utilizes labeled data for training. This disparity primarily arises from the unreliable soft labels in
self-supervised learning.

To promote base discrimination, we design a reciprocal learning framework (RLF). In particular,
we insert an auxiliary token named AUX in the model architecture. This AUX is concatenated with
the CLS token and image feature tokens to form the input of the final block. Subsequently, the
corresponding AUX output is dedicated to a base-only classifier while the CLS output is designated
for the all-class classifier. During training, the main branch filters pseudo-base samples, which are
predicted to the base classes, and directs them to the auxiliary branch. In feedback, the auxiliary
branch provides reliable base class distribution to the main branch. This collaboration between the
two branches contributes to more robust base predictions, improving base-class discrimination and
overall accuracy.

However, the reciprocal framework may incur learning bias toward base classes that more novel
samples are misclassified into the base classes. To alleviate the above bias, we propose a Class-wise
Distribution Regularization (CDR) loss. Specifically, CDR involves calculating the expected distri-
bution for each category based on mini-batch predictions. Then, CDR loss promotes expectation
consistency between two views of mini-batch and boosts prediction confidence. Since each class
can be treated equally, CDR effectively mitigates the bias and boosts novel class performance. By
integrating CDR into the RLF, our method further obtains improved performance.

Our key contributions can be summarized as follows: (1) We define the oracle base class accuracy
to evaluate the base discrimination of GCD models and unravel the inferior discrimination in para-
metric methods. (2) We design a novel reciprocal framework to promote base class discrimination
and a class-wise distribution regularization loss to improve novel class performance. (3) We conduct
comprehensive evaluations of our method on seven GCD datasets, where it significantly outperforms
state-of-the-art approaches in most cases.

2 RELATED WORKS

Semi-Supervised Learning (SSL) is a prominent area in machine learning that addresses the chal-
lenge of training models with limited labeled data. Pseudo Label Lee et al. (2013) iteratively assigns
pseudo labels for unlabeled data, which join the labeled set for further training. Mean-teacher Tar-
vainen & Valpola (2017), UDA Xie et al. (2020), Fixmatch Sohn et al. (2020) adopt confidence
threshold to generate pseudo labels on weak augmented samples and utilize it to supervise strongly
augmented samples, and DST Chen et al. (2022) proposes an adversary framework to refine pseudo
labels. Consistency-based methods introduce extra regularization on unlabeled data. ConMatch Kim
et al. (2022) adds self-supervised features regularization while SimMatch extends consistency to the
semantic and instance levels. PAWS Assran et al. (2021) incorporates self-supervised clustering
principles into SSL, learning better representation. Several works explore more realistic scenarios
including open-word semi-supervised learning Cao et al. (2022), and long-tailed semi-supervised
learning Wei & Gan (2023). Prevailing semi-supervised methods widely adopt threshold-based
pseudo-label learning during training. However, this mechanism faces significant limitations when
unlabeled data include samples from unknown classes.
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Novel Class Discovery (NCD) aims to recognize novel classes in unlabeled data, by exploiting
knowledge from known classes. Han et al. (2019) first proposes the NCD problem and addresses it
utilizing a two-stage training strategy. Han et al. (2020) employ rank statistics to find positive data
pairs and pull them closer. OpenMix Zhu et al. (2023) generates virtual samples by MixUp between
labeled and unlabeled data, guiding the model to resist nosily labeled data. Zhong et al. (2021)
proposes neighborhood contrastive leaning to aggregate pseudo-positive pairs. Fini et al. (2021) in-
troduces a unified objective framework with the Sinkhorn-Knopp algorithm, allowing cross-entropy
to operate on both labeled and unlabeled sets. Current NCD methods often utilize the Optimal-
Transport (OT) algorithm to dynamically cluster unlabeled data. However, OT achieves unsatisfac-
tory novel class performance when unlabeled data involves known class samples. Therefore, current
NCD methods are unsuitable for the GCD task. Moreover, CRNCD Gu et al. (2023) introduces a
two-stage class-relationship distillation approach to improve novel-class performance. However, we
observe that this distillation shows inferior performance on GCD. Unlike CRNCD, we propose a
novel one-stage distillation method tailored for GCD.

Generalized Category Discovery (GCD) is to cluster unlabeled images by leveraging the base
knowledge from labeled images, where the unlabeled set compromises both base and novel classes.
Vaze et al. (2022) formulates the GCD problem and conducts contrastive training on a pre-trained
ViT model Dosovitskiy (2020) with DINO Caron et al. (2021), clustering the data using semi-
supervised k-means. CiPR Hao et al. (2024) designs a novel contrastive learning method by ex-
ploiting cross-instance positive relations in labeled data and introducing a hierarchical clustering
algorithm. PromptCAL Zhang et al. (2023) designs a two-stage framework that exploits affinity
graphs to enhance semantic discrimination. GPC Zhao et al. (2023) applies Gaussian mixture mod-
els that learn robust representation and estimate the novel class number. InfoSieve Rastegar et al.
(2024) and CMS Choi et al. (2024) achieve great clustering results utilizing specialized contrastive
learning. Wen et al. (2023) proposes a parametric framework that trains a prototype classifier to fit
all categories. SimGCD utilizes mean-entropy regularization to automatically find novel classes. As
SimGCD boots GCD performance with lower inference latency, the parametric framework becomes
popular. SPTNet Wang et al. (2024) introduces a two-stage strategy that combines the global and
spatial prompts to further finetune the SimGCD model. LegoGCD Cao et al. (2024) finds SimGCD
suffers catastrophic forgetting in training and solves it by adding regularization to potential known
class samples. While parametric-based methods achieve great GCD performance, they often suffer
degraded base discrimination. To address this issue, we propose a Reciprocal Learning Framework
(RLF) that provides more reliable base pseudo-labels and effectively strengthens base performance
with negligible extra computation cost. Combined with class-wise distribution regularization, our
method achieves superior performance.

3 METHOD

3.1 PRELIMINARIES

Problem Formulation. Generalized Category Discovery (GCD) aims to adaptively cluster unla-
beled data utilizing the knowledge from labeled data. GCD is built upon the open-world dataset,
which compromises two subsets: labeled dataset Dl = {(xi, yi)} ∈ X × Y l and unlabeled dataset
Du = {(xi, yi)} ∈ X ×Yu. Formally, Y l is a subset of Yu, and Yu spans all categories. Following
previous research, the number of |Yu| is assumed as the prior. GCD adopts a transductive training
strategy in which all the samples are involved in the training process.

Parametric Clustering. Wen et al. (2023) proposes an efficient parametric framework that builds
a prototype classifier for clustering. Specifically, the classifier weight is the set of prototypes
C = {c1, . . . , cK}, where K is the total number of prototypes. Given an image xi, the model
correspondingly output feature f(xi), and the probability of category k is denoted as:

p
(k)
i =

exp (cos (f (xi) , ck) /τs)∑
k′ exp (cos (f (xi) , ck′) /τs)

, (1)

where cos denotes the cosine similarity between two vectors and τs is the temperature scalar. Sim-
ilarly, the shrink probability qi can be derived by substituting τs with a smaller τt. Subsequently,
SimGCD adopts the cross entropy loss Lce(q,p) = −

∑
k q

(k) log p(k) to regularize the probability
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Figure 2: Overview of our method. We insert an auxiliary token AUX before the last block of the
ViT backbone. The final AUX feature is utilized for the base-only classifier while the CLS feature is
assigned to the all-class classifier. The main branch filters the pseudo-base samples to the aux branch
for better base class learning. In response, the auxiliary branch provides the main branch with refined
base class distribution. Class-wise Distribution Regularization (CDR) boosts novel performance by
maximizing the similarity between class-wise probability matrices m from two views.

self-consistency between two views of an image. For i-th image, the loss is formulated as:

L(i)
self =

1

2
Lce (q

′
i,pi) +

1

2
Lce (qi,p

′
i) , (2)

where p′
i and q′

i are the prototype probabilities of another view. Additionally, SimGCD employs a
mean-entropy maximization regulariser for clustering: H(p) = −

∑
k p

(k) log p(k) where p is the
mean predicted probability of all the samples. The supervised loss for the labeled data is the sum of
cross-entropy and supervised contrastive learning losses Khosla et al. (2020):

L(i)
sup = Lce (yi,pi) +

1

|Pi|
∑
q∈Pi

− log
exp

(
cos(f

(
xi), f(x

′
q)
)
/τc
)∑

n ̸=i exp ((f (xi) , f (x′
n)) /τc)

, (3)

where yi is the one-hot distribution associated with yi, τc denotes the temperature scalar for super-
vised contrastive learning and the Pi is the positive index set sharing the same label as xi. While
SimGCD applies InfoNCE Oord et al. (2018) loss in the training, we found the loss tends to push
apart same-class features, which conflicts with the SupCon loss and impairs feature discrimination.
Consequently, we chose to remove InfoNCE in our approach to maintain better class discrimination.
Overall, parametric clustering loss Lcls is the average per-sample combination of supervised loss,
self-consistency loss, and entropy regularization loss:

Lcls = λLsup + (1− λ)(Lself − ϵH(p)), (4)

where λ is the balance weight belonging to [0,1] and ϵ is the scalar to control entropy regularization.

3.2 RECIPROCAL LEARNING FRAMEWORK

Motivation. While SimGCD demonstrates greater effectiveness than clustering methods, it falls
short in base class discrimination. Specifically, when focusing on base classification, the unlabeled
base data is defined as Du

base = {(xi, yi)|(xi, yi) ∈ Du, yi ∈ Y l}. The oracle base accuracy is
defined as ACCOB = 1

|Du
base|
∑

xi,yi∈Du
base
1 (ỹi = yi), where ỹi is the predicted base class result. As

depicted in Fig. 1, prevailing parametric methods exhibit unsatisfactory oracle base accuracy, falling

4
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behind the supervised-only reference. We conduct a detailed loss analysis of the parametric baseline.
Specifically, N2N represents the percentage of novel class samples classified as novel, while B2B
indicates the percentage of base class samples classified as base.

Table R1: Effect of loss configuration.

OB(%) N2N(%) B2B(%)

Lsup 86.7 0 100
Lsup + Lself 85.6 0 100
Lsup +H 84.4 18.8 98.1
Lsup + Lself +H 83.9 93.1 69.8

As shown in Table R1, applying Lsup exclusively builds
a strong discriminative model as the training data is cor-
rectly labeled. Since the novel class prototype is randomly
initialized, all unlabeled data would be classified as the
base. Combining Lsup and Lself, novel data are still mis-
classified due to the absence of annotations. Additionally,
Lself adopts a shrink-soft probability distillation mechanism
that increases the incorrect confidence of novel data, which
harms model representation and degrades OB. The combination of Lsup and H increases novel class
prediction, slightly improving N2N but causing a decline in OB. This decline occurs because H
encourages a balanced average prediction. When all three losses are applied, the model predicts
more novel class samples, leading to 93.1% N2N. This is because Lself increases the novel class
confidence, facilitating novel class prototype learning. However, H simultaneously drives the mis-
classification of some base samples, while Lself amplifies incorrect novel confidence, further deterio-
rating the pseudo-label quality. These findings suggest that both Lself and H contribute to unreliable
pseudo-labels. Besides, Lself is particularly susceptive to H and exacerbates noisy learning. This
motivates us to introduce a more robust base-class expert to assist Lself. By providing more reliable
base labels, this intervention aims to enhance discrimination and mitigate the side effects of H .

To this end, we propose a one-stage reciprocal learning framework. As shown in Fig. 2, we insert
the auxiliary token AUX before the last block, concatenating it with CLS and feature tokens to form
the input. The ultimate AUX feature is utilized for the base-only classification while CLS feature is
assigned to the all-class classifier. Different from the CLS feature, which is unique to each image,
the AUX token is a trainable parameter shared across all training samples.

During the training procedure, the main branch is akin to generic parametric clustering. Besides, the
main branch filters the pseudo-base class samples to the auxiliary branch according to the prediction
result, i.e., if a sample is predicted to belong to the base classes, it will also be involved in the
auxiliary branch. In response, the auxiliary branch distills the base class prediction of pseudo-
base samples to the main branch. The collaboration between the two branches effectively enhances
base discrimination, mitigates the influence of noise labels, and facilitates the model in acquiring
improved representations.

Note that most of the training samples will be predicted as the base classes in the initial, the auxiliary
branch also incorporates novel samples. To this end, the auxiliary branch adopts self-supervised
learning and supervised learning, rather than threshold-based semi-supervised methods. Further-
more, we utilize the maximum probability as the uncertainty weight for each pseudo-base sample in
the cross-branch distillation. The distillation loss for a pseudo-base sample i is denoted as:

L(i)
dis = max(paux

b,i ) · LKL(p
aux
b,i ,pb,i), (5)

where paux
b , pb is the base class distribution from the auxiliary and main branch, LKL is the standard

KL-divergence loss, and the auxiliary probability is detached in the distillation. Consequently, the
loss functions of the two branches can be presented as:

Lmain = Lcls + αLdis, Laux = Lsup + Lself. (6)

where α is the scalar weight to control the distillation strength.

3.3 CLASS-WISE DISTRIBUTION REGULARIZATION.

While the proposed reciprocal framework can effectively improve base class discrimination, it still
shows inferior performance in the novel classes. This is primarily due to the cross-branch distillation
being confined to base class distributions, resulting in a learning bias where training samples are
more likely to be recognized as base classes. Fig. 3(a) shows that the predicted novel samples
lag behind the ground truth number. To mitigate the learning bias, we propose a novel class-wise
distribution regularization (CDR) shown in the bottom right of Fig. 2.

5
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Adopted by Zhang et al. (2024), the class-wise expected distribution m for category k is:

mk =
1∑N

i=1 p
(k)
i

(
N∑
i=1

p
(k)
i pi

)
, (7)

where N is the batch size, and m has a dimension of K × K. For the main branch, Kmain is
the number of all classes, while Kaux denotes the number of base classes in the auxiliary branch.
Intuitively, the k-th probability of mk, denoted as m(k, k), reflects the confidence that “the mini-
batch contains at least one sample belonging to category k.”
Theorem 1. The sum of all elements in mk equals 1, i.e., 1Tmk = 1 Zhang et al. (2024).

Proof. Please refer to the Appendix A.1.
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Figure 3: The efficacy of CDR is evident in two aspects. Left: CDR induces more predicted novel
class samples. Right: CDR contributes to higher prediction confidence.

Theorem 1 shows that mk conforms to the standard probability distribution. Intuitively, the class-
wise prediction should be consistent between the two views of the images and close to the one-hot
distribution. To this end, for class k, the CDR loss is formulated as

L(k)
CDR = 1− ⟨mk,m

′
k⟩, (8)

where ⟨·, ·⟩ denotes the inner product calculation, representing the similarity between two distri-
butions, and m′

k is the expectation from another view. Since each class is treated equally, CDR
effectively alleviates the bias towards the base classes in the main branch.

Theorem 2. L(k)
CDR equals to zero ⇐⇒ mk equals m′

k and is a one-hot distribution.

Proof. Please refer to the Appendix A.1.

Theorem 2 indicates CDR essentially increases the prediction confidence, approaching the one-hot
distribution. The effectiveness of CDR is evidenced in Fig. 3, as it leads to a higher number of pre-
dicted novel class samples, reducing learning bias and boosting prediction confidence. Furthermore,
the CDR loss operates independently of ground-truth labels and is compatible with both branches.
When applied to the auxiliary branch, CDR also benefits base class learning with minimal impact
on the novel class performance of the main branch. By integrating the CDR loss into the reciprocal
framework, the overall loss is summarized as:

L = Lmain + Laux + βLCDR, (9)

where β is the control factor to assign the regularization weight. After the training procedure, we
abandon the auxiliary classifier and only keep the main branch for evaluation. As a result, the
inference latency difference from SimGCD is negligible.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Following previous works, we evaluate our method on seven different GCD datasets.
Those consist of generic image recognition datasets CIFAR10/100 Krizhevsky et al. (2009) and

6
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Table 1: Comparative results on the Semantic Shift Benchmark and Herbarium-19.

Methods CUB200 Stanford Cars FGVC-Aircraft Herbarium-19

All Base Novel All Base Novel All Base Novel All Base Novel

k-means Macqueen (1967) 34.3 38.9 32.1 12.8 10.6 13.8 16.0 14.4 16.8 13.0 12.2 13.4
RS+ Han et al. (2021) 33.3 51.6 24.2 28.3 61.8 12.1 26.9 36.4 22.2 27.9 55.8 12.8
UNO+ Fini et al. (2021) 35.1 49.0 28.1 35.5 70.5 18.6 40.3 56.4 32.2 28.3 53.7 14.7
ORCA Cao et al. (2022) 35.3 45.6 30.2 23.5 50.1 10.7 22.0 31.8 17.1 20.9 30.9 15.5
∗CRNCD Gu et al. (2023) 62.7 71.6 58.2 54.1 75.7 43.7 54.4 59.5 51.8 41.3 60.7 30.9

GCD Vaze et al. (2022) 51.3 56.6 48.7 39.0 57.6 29.9 45.0 41.1 46.9 35.4 51.0 27.0
DCCL Pu et al. (2023) 63.5 60.8 64.9 43.1 55.7 36.2 - - - - - -
GPC Zhao et al. (2023) 55.4 58.2 53.1 42.8 59.2 32.8 46.3 42.5 47.9 36.5 51.7 27.9
PromptCAL1 Zhang et al. (2023) 51.1 55.4 48.9 42.6 62.8 32.9 44.5 44.6 44.5 37.0 52.0 28.9
SimGCD Wen et al. (2023) 60.3 65.6 57.7 53.8 71.9 45.0 54.2 59.1 51.8 44.0 58.0 36.4
CMS Choi et al. (2024) 68.2 76.5 64.0 56.9 76.1 47.6 56.0 63.4 52.3 36.4 54.9 26.4
InfoSeive Rastegar et al. (2024) 69.4 77.9 65.2 55.7 74.8 46.4 56.3 63.7 52.5 41.0 55.4 33.2
SPTNet Wang et al. (2024) 65.8 68.8 65.1 59.0 79.2 49.3 59.3 61.8 58.1 43.4 58.7 35.2
LegoGCD Cao et al. (2024) 63.8 71.9 59.8 57.3 75.7 48.4 55.0 61.5 51.7 45.1 57.4 38.4

Ours 69.5 76.4 65.9 61.1 76.6 53.6 60.6 62.2 59.8 46.4 61.2 38.4

ImageNet-100 Tian et al. (2020); Semantic Shit Benchmark (SSB) Vaze et al. (2021) datasets:
CUB200 Wah et al. (2011), Stanford Cars Krause et al. (2013), and FGVC-Aircraft Maji et al.
(2013); large-scale fine-grained dataset: Herbarium-19 Tan et al. (2019). Formally, each dataset is
partitioned into base and novel subsets. The novel subset data is entirely unlabeled, while half of the
base data is labeled during training, with the remaining half left unlabeled. For a fair comparison,
we adopt the same random seed in the data split with Vaze et al. (2022).

Evaluation Metric. We adopt cluster accuracy (ACC) to evaluate the performance of our method.
More specifically, given the samples’ prediction ŷ and ground-truth labels y, the Hungarian opti-
mal assignment algorithm Kuhn (1955) allocates the clustering result and calculates the accuracy.
ACC = 1

|Du|
∑|Du|

i=1 1 (yi = G (ŷi)), where G denotes the optimal permutation function.

Implementation details. In alignment with other methods, we conduct our experiments using the
pre-trained DINO ViT-B/16 backbone Caron et al. (2021), fine-tuning only the last block and the
auxiliary token across all datasets. The final output retains the features from the CLS and AUX
tokens for classification. The default learning rate is set to 0.1, following a cosine annealing decay
schedule. The model is trained for 200 epochs with a batch size of 128. Following Wen et al.
(2023), the temperature scalars are τc = 0.1, τs = 0.07, while τt scaling from 0.07 to 0.04 within
30 epochs, and the balance weight λ = 0.35. The hyper-parameters in our method are specified as
α = 0.5, β = 0.5. The default augmentation includes Resize, RandomCrop, Random Horizontal
Flip, Color Jittering, and Image Normalization. All experiments are conducted on a single NVIDIA
GeForce 3090 GPU based on PyTorch.

4.2 MAIN RESULTS

We compare our approach with SOTA methods including clustering-based methods: k-means Mac-
queen (1967), GCD Vaze et al. (2022), GPC Zhao et al. (2023), PromptCAL Zhang et al. (2023),
DCCL Pu et al. (2023), InfoSieve Rastegar et al. (2024), CMS Choi et al. (2024); parametric-based
methods: SimGCD Wen et al. (2023), SPTNet Wang et al. (2024), LegoGCD Cao et al. (2024) and
strong baseline derived from NCD: RS+ Han et al. (2021), UNO+ Fini et al. (2021), ORCA Cao
et al. (2022), CRNCD Gu et al. (2023). The best results are highlighted in bold and ∗ denotes
reproduced results.

Evaluation on fine-grained datasets. Table 1 shows the comparative results on four fine-grained
datasets which are more challenging than the generic. Clustering methods demonstrate inadequate
performance, falling far behind the parametric methods. Our method consistently outperforms the
others, achieving 2.1% on Stanford Cars, 1.3% on Aircraft, and 1.3% on Herbarium-19. Specifically,
we obtain the highest novel class accuracy in all four datasets as well as leading in base accuracy
than parametric based methods in most cases. The great performance in both base and novel classes
aligns with our expectations.
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Table 2: Comparative results on generic image recognition datasets.

Methods CIFAR10 CIFAR100 ImageNet-100

All Base Novel All Base Novel All Base Novel

k-means Macqueen (1967) 83.6 85.7 82.5 52.0 52.2 50.8 72.7 75.5 71.3
RS+ Han et al. (2021) 46.8 19.2 60.5 58.2 77.6 19.3 37.1 61.6 24.8
UNO+ Fini et al. (2021) 68.6 98.3 53.8 69.5 80.6 47.2 70.3 95.0 57.9
ORCA Cao et al. (2022) 81.8 86.2 79.6 69.0 77.4 52.0 73.5 92.6 63.9
∗CRNCD Gu et al. (2023) 96.9 97.5 96.6 80.3 84.7 71.5 81.4 94.4 74.8

GCD Vaze et al. (2022) 91.5 97.9 88.2 73.0 76.2 66.5 74.1 89.8 66.3
DCCL Pu et al. (2023) 96.3 96.5 96.9 75.3 76.8 70.2 80.5 90.5 76.2
GPC Zhao et al. (2023) 92.2 98.2 89.1 77.9 85.0 63.0 76.9 94.3 71.0
PromptCAL1 Zhang et al. (2023) 97.1 97.7 96.7 76.0 80.8 66.6 75.4 94.2 66.0
SimGCD Wen et al. (2023) 97.1 95.1 98.1 80.1 81.2 77.8 83.0 93.1 77.9
InfoSieve Rastegar et al. (2024) 94.8 97.7 93.4 78.3 82.2 70.5 80.5 93.8 73.8
CMS Choi et al. (2024) - - - 82.3 85.7 75.5 84.7 95.6 79.2
SPTNet Wang et al. (2024) 97.3 95.0 98.6 81.3 84.3 75.6 85.4 93.2 81.4
LegoGCD Cao et al. (2024) 97.1 94.3 98.5 81.8 81.4 82.5 86.3 94.5 82.1

Ours 97.4 96.4 97.9 82.8 84.1 80.1 86.5 93.9 82.8

Evaluation on generic datasets. As shown in Table 2, we present the comparison on generic
datasets including CIFAR10/100 and ImageNet-100. Our method consistently achieves the best per-
formance in all classes, with a 0.5% improvement on CIFAR100 to CMS. Our method still surpasses
the two-stage method SPTNet and with even fewer parameters in the training. Note that, DINO is
pre-trained on the extensive generic dataset ImageNet-1000 Deng et al. (2009). Leveraging the ro-
bust feature representation of DINO, existing methods exhibit comparable performance on datasets
like CFAR10 and ImageNet-100. Furthermore, the three datasets are rich in labeled data for training,
resulting in minimal degradation in discrimination for parametric methods. While our method may
not show substantial enhancements, it consistently delivers the best results.

4.3 VISUALIZATION

As shown in Fig. 4, we utilize t-SNE Van der Maaten & Hinton (2008) to visualize the feature
distribution between DINO, SimGCD, LegoGCD, and our model on the FGVC-Aircraft dataset.
The t-SNE results for DINO demonstrate poor clustering performance, primarily due to the sig-
nificant domain gap between the ImageNet and Aircraft datasets, which hinders effective feature
learning.Meanwhile, SimGCD and LegoGCD achieve unsatisfactory feature clustering. It is ob-
served that “Class 3” features of SimGCD spread out in the feature space, while LegoGCD forms
two clusters of “Class 3”. In contrast, our model reveals distinct clusters corresponding to different
categories. The visualization comparison validates the superior feature representation of our model.

(a) DINO (b) SimGCD (c) LegoGCD (d) Ours

Figure 4: T-SNE visualization comparing DINO, SimGCD, LegoGCD, and our method on the
FGVC-Aircraft dataset, with samples randomly selected from 10 classes.

4.4 ABLATION STUDY

Effect of different loss components. As previously outlined, our approach mainly has four loss
components: main branch loss (Main), auxiliary branch loss (AUX), cross-branch distillation (Dis-
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till), and class-wise distribution regularization (CDR). Here we demonstrate their effectiveness on
CIFAR100 and CUB200 datasets. Additionally, we introduce the oracle base class accuracy (OB)
as a reference. Table 3 shows the GCD performance with different loss configurations. Specifically,
using only the Main loss in (1) serves as the baseline, while (5) represents our complete method. The
comparison of (1) with (2) indicates that CDR enhances overall performance with minimal influence
on OB, contributing substantial improvements in novel classes—3.3% on CIFAR100 and 5.3% on
CUB200. The inclusion of AUX in training (3) leads to comprehensive improvement and better
discrimination. Since the last block is shared between the two branches, the model learns more
robust parameters, resulting in enhanced feature representation. Comparing (3) with (4), we find
that distillation further strengthens performance, improving base accuracy by 0.5% on CIFAR100
and 2.2% on CUB200. Finally, combining all components in (5) results in further improvement in
novel class performance while preserving base class accuracy, ultimately yielding the best overall
results. When either the Distill (6) or the AUX (7) is exclusively removed, our model suffers a
significant drop in base performance. This outcome highlights the necessity of both components in
our approach. Comparing (5) and (8) shows that CDR in the both branches helps improve base class
performance without exacerbating the base class learning bias.
Table 3: Ablation experiments on different configurations of loss components: Main, AUX, Distill,
and CDR. OB denotes the Oracle base class accuracy and M represents only on main-branch.

Main AUX Distill CDR CIFAR100 CUB200

All Base Novel OB All Base Novel OB

(1) ✓ 79.6 82.6 73.6 84.4 62.1 70.8 57.7 83.9
(2) ✓ ✓ 80.4 82.2 76.9 84.8 65.7 71.1 63.0 83.7
(3) ✓ ✓ 80.3 82.9 75.2 85.3 64.3 73.7 59.7 85.9
(4) ✓ ✓ ✓ 80.8 83.8 74.7 86.2 66.5 75.9 61.8 87.2
(5) ✓ ✓ ✓ ✓ 82.8 84.1 80.1 86.0 69.5 76.4 65.9 87.3
(6) ✓ ✓ ✓ 81.6 82.7 79.2 85.5 67.6 71.7 65.6 85.8
(7) ✓ ✓ ✓ 81.0 81.9 79.2 84.9 65.9 73.8 61.9 84.6
(8) ✓ ✓ ✓ M 82.3 83.5 80.0 85.6 68.7 75.3 65.4 86.7

Effect of different α and β. As indicated in Equations (6) and (9), we utilize α and β to control
the distillation and regularization strength. Fig. 5 (a) illustrates the GCD performance curves with
varying values of α. As α increases, we observe a significant improvement in base class accuracy,
aligning with the intuition that stronger distillation enhances base class dissemination. However,
when α becomes excessively large, it leads to degradation in novel class performance, ultimately
harming overall accuracy. As shown in Fig. 5 (b), we see that increasing the weight of β notably
impacts novel class performance. However, overly large β shows a negative effect on base class
accuracy. Our analysis indicates that the optimal values for α and β are approximately 0.5, which
yields the best overall performance.
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Figure 5: Effect of different weights of α and β on CUB200 dataset.

Effect of different regularization. We here present the GCD performance across different proba-
bility regularized methods. The baseline is our reciprocal learning framework and the comparative
methods include entropy minimization(ENT) Grandvalet & Bengio (2004), minimum class confu-
sion (MCC) Jin et al. (2020), maximizing F -norm of probability matrix (BNM) Cui et al. (2020),
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and label-encoding risk minimization (LERM) Zhang et al. (2024). Besides, we modify the CDR
loss into pair-wise distribution regularization (PDR) that directly maximizes the probability similar-
ity between two views of a sample.

Table 4 indicates that prevailing regularization methods are not competitive in the GCD task. ENT
shows a serious negative effect, leading to considerable degradation in both base and novel classes.
MCC effectively improves the base performance yet harms the novel performance in CIFAR100
and FGVC-Aircraft. BNM and LERM show marginal effects as their performance is close to base-
line. While PDR benefits all three datasets, the improvement is slight and widens the performance
difference between the base and novel classes in FGVC-Aircraft. In contrast, our proposed CDR ef-
fectively boosts novel class accuracy while maintaining base performance. Overall, the comparison
demonstrates our proposed CDR is more appropriate for GCD tasks.

Table 4: Comparison of different regularization on CIFAR100, CUB200, and FGVC-Aircraft.

Methods CIFAR100 CUB200 FGVC-Aircraft

All Base Novel All Base Novel All Base Novel

RLF 80.8 83.8 74.7 66.5 75.9 61.8 56.6 61.8 54.0

+ ENT Grandvalet & Bengio (2004) 72.3 80.5 56.0 62.2 66.0 60.3 51.7 52.2 51.5
+ MCC Jin et al. (2020) 79.4 84.6 68.9 67.2 77.6 62.0 56.3 63.4 52.7
+ BNM Cui et al. (2020) 80.2 83.9 72.7 65.9 76.1 60.8 55.8 60.4 53.6
+ LERM Zhang et al. (2024) 80.5 83.2 75.2 65.6 76.4 60.2 56.2 64.2 52.2
+ PDR 81.0 83.7 75.5 68.2 76.5 64.0 57.2 64.5 53.5

+ CDR 82.8 84.1 80.1 69.5 76.4 65.9 60.6 62.2 59.8

Effect of estimated category number. As the previous evaluation is built on the known cate-
gory numbers K, we here report the results with estimated categories borrowed from off-the-shelf
methods GCD Vaze et al. (2022) and GPC Zhao et al. (2023). As shown in Table 5, our method
exhibits reduced performance on ImageNet-100 and Stanford Cars under GCD estimation, yet still
surpasses other methods. With the increased number of prototypes, the mean-entropy regularization
renders unlabeled samples clustered into more clusters. Consequently, all three datasets maintain
the base class performance yet suffer novel class performance degradation. Particularly, The impact
on CUB200 is minimal, with a 1.0% degradation. By leveraging the advanced estimated algorithm
within GPC, the performance gap is narrowed across both datasets, with differences of merely 0.2%,
0.1%, and 0.4% among the three datasets. The result indicates that our approach is not reliant on
exact category numbers.
Table 5: Comparison of estimated category numbers on ImageNet-100, CUB200, and Stanford Cars.

Methods K
ImageNet-100 CUB200 Stanford Cars

All Base Novel All Base Novel All Base Novel

Ours 100 /200/196 86.5 93.9 82.8 69.5 76.4 65.9 61.1 76.6 53.6

GCD Vaze et al. (2022) 109 / 231 /230 73.8 92.1 64.6 49.2 56.2 46.3 36.3 56.6 25.9
SimGCD Wen et al. (2023) 109 / 231/230 81.1 90.9 76.1 61.0 66.0 58.6 49.1 65.1 41.3
SPTNet Wang et al. (2024) 109 / 231/230 83.4 91.8 74.6 65.2 71.0 62.3 - - -
Ours 109 / 231/230 84.4 93.2 80.0 68.4 77.1 64.1 58.6 76.4 50.8
GPC Zhao et al. (2023) 103 / 212/201 75.3 93.4 66.7 52.0 55.5 47.5 38.2 58.9 27.4
Ours 103 / 212/201 86.3 94.1 82.4 69.4 78.5 64.8 60.7 77.7 52.5

5 CONCLUSION

In this paper, we propose a novel approach for enhancing generalized category discovery perfor-
mance. To promote base class discrimination, we design a Reciprocal Learning Framework (RLF)
that incorporates an auxiliary branch, which generates reliable soft labels for the main branch, while
the main branch effectively filters pseudo-base samples based on an all-class classifier prediction.
Additionally, to mitigate the learning bias towards base classes, we introduce Class-wise Distribution
Regularization (CDR), which significantly boosts the prediction confidence of unlabeled data and
improves novel class performance. These two components are complementary, and their integration
leads to great performance of both base and novel classes. Extensive experiments demonstrate the
superiority of our method, achieving state-of-the-art results across seven GCD datasets.
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A APPENDIX

A.1 THEORETICAL SUPPORT.

Proof of Theorem 1

Proof. 1Tmk = 1T∑N
i=1 p
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∑N

i=1 p
(k)
i∑N

i=1 p
(k)
i

= 1.

Proof of Theorem 2

Proof. Let a and b be two probability distribution vectors in Rn to present mk and m′
k :

a = [a1, a2, . . . , an], b = [b1, b2, . . . , bn]

subject to the constraints:
n∑

i=1

ai = 1,

n∑
i=1

bi = 1, ai ≥ 0, bi ≥ 0 for i = 1, 2, . . . , n.

The inner product is given by:

a · b =

n∑
i=1

aibi.

By the Cauchy-Schwarz inequality, we have:(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
.

Since
∑n

i=1 ai = 1 and
∑n

i=1 bi = 1, we can observe:
n∑

i=1

a2i ≤
n∑

i=1

ai = 1,

n∑
i=1

b2i ≤
n∑

i=1

bi = 1.

Thus, we have: (
n∑

i=1

aibi

)2

≤ 1 · 1 = 1 =⇒
n∑

i=1

aibi ≤ 1.

For equality
∑n

i=1 aibi = 1 to hold, the Cauchy-Schwarz inequality must achieve equality, which
occurs if and only if ai and bi are linearly dependent:

ai = cbi for some constant c for all i.

Given the constraints
∑n

i=1 ai = 1 and
∑n

i=1 bi = 1, it follows that:

1 = c

n∑
i=1

bi = c · 1 =⇒ c = 1.

Therefore, we have:
ai = bi for all i.

Besides,
n∑

i=1

a2i ≤
n∑

i=1

ai = 1 =⇒ ai ∈ {0, 1}

which means:
aj = 1 for some j and ai = 0 for i ̸= j.

Thus, we conclude that:

a = b and both are one-hot distributions.
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A.2 DATASET SPLIT

As shown in Fig. 6, we illustrate the dataset split of generalized category discovery(GCD) and
compare it with semi-supervised learning (SSL) and novel class discovery (NCD). SSL assumes the
labeled and unlabeled data share the same classes, NCD suggests unlabeled data all form the novel
classes, while GCD allows unlabeled data belonging to all classes. The comparison indicates GCD
task is more challenging and practical in real-world scenarios.

ladybugbird dog fish

Labeled Unlabeled

ladybugbird dog fish
Semi-Supervised Learning Novel Class Discovery Generalized Category Discovery

fishladybugbird dog

Figure 6: Difference of dataset split among SSL, NCD, and GCD.

A.3 LOSS ANALYSIS

Fig. 7 shows SimGCD retains a high supervised cross-entropy (SupCE) loss during training, which
indicates the noise labels in SimGCD. In contrast, our model achieves a near-zero SupCE loss. Since
we introduce an auxiliary branch, it can provide more reliable soft labels to the main branch. This
effectively eliminates noisy information and enhances discrimination capabilities.
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Figure 7: Supevised cross-entropy descent loss curves on CIFAR100 and CUB200.
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A.4 PARAMETER ANALYSIS

We provide an overview of the parameter quantities in parametric models in Table 6. Despite in-
corporating an additional base classifier in the auxiliary branch, our method excludes the projector,
resulting in significant parameter savings. The token’s contribution to the overall model size is mini-
mal, enabling us to utilize the fewest parameters during training. During the evaluation, we abandon
the base classifier and retain the extra token with the backbone, which has a negligible parameter
overhead.

Table 6: Parameter quantity statistics among parametric models.

Methods Backbone Classifier Projector Extra TotalName #Param. Name #Param. Name #Param. Name #Param.

SimGCD ViT-B/16 85,798,656 All 153,600 MLP 6,295,808 None 0 92,248,064
LegoGCD ViT-B/16 85,798,656 All 153,600 MLP 6,295,808 None 0 92,248,064
SPTNet ViT-B/16 85,798,656 All 153,600 MLP 6,295,808 Prompts 105,120 92,353,184
Ours ViT-B/16 85,798,656 All+Base 230,400 None 0 Token 768 86,029,824

A.5 COMPARISON OF ORACLE BASE ACCURACY

As shown in Table 7, the auxiliary branch AUX in our model achieves the best oracle base accuracy
in most cases, indicating superior base class discrimination. As training advances, AUX effectively
guides the main branch CLS to improve discrimination. Consequently, CLS outperforms SimGCD
and LegoGCD in most cases.

Table 7: Oracle Base accuracy comparison on seven GCD datasets. CLS and AUX denote the main
and auxiliary branches.

CIFAR10 CIFAR100 ImageNet-100 CUB200 Stanford Cars FGVC-Aircraft Herbarium-19

SupRef 98.7 86.3 95.4 86.7 85.7 72.5 65.4
SimGCD 98.4 83.6 95.4 80.5 80.7 72.8 68.6
LegoGCD 98.4 84.7 95.5 80.9 85.5 70.4 70.2
Ours-CLS 98.4 86.0 95.5 87.3 88.1 75.5 76.3
Ours-AUX 98.6 86.4 96.0 88.1 89.9 75.9 76.4

A.6 COMPARISON WITH DIFFERENT UNCERTAINTY WEIGHTS.

As depicted in Equation (5), we adopt the maximum probability in the auxiliary branch max (paux
b )to

denote the uncertainty weight of the pseudo-base samples. Here we make a comparison with dif-
ferent uncertainty weights. cmax is the prototype associated with the maximum probability. When
the uncertainty weight is set to 0, distillation is excluded, resulting in reduced base accuracy. Con-
versely, the weight of 1 biases the model towards base classes, impairing novel class performance.
Using the maximum cosine similarity for uncertainty yields similar results to using the maximum
probability. Additionally, the uncertainty weight in the auxiliary branch obtains better performance,
suggesting its greater reliability compared to the main branch.

Table 8: Comparison of different uncertainty weights.

Uncertainty weight CIFAR100 CUB200

All Base Novel All Base Novel

0 81.4 83.2 77.9 68.4 74.3 65.4
1 81.6 85.0 75.0 67.8 76.7 63.4
cos (f (xi) , cmax) 82.0 83.4 79.0 68.6 76.9 64.5
cos (f aux (xi) , c

aux
max) 82.6 84.2 79.2 69.2 76.8 65.3

max (pb) 82.1 83.4 79.3 69.1 76.5 65.4
max (paux

b ) 82.8 84.1 80.1 69.5 76.4 65.9
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A.7 DISCUSSION WITH CRNCD

As CRNCD Gu et al. (2023) and our approach both involve distillation, there are several key differ-
ences, listed below.

• Different tasks. CRNCD aims to deal with novel class discovery (NCD), where all unla-
beled data belong to novel classes. In contrast, our focus is on GCD, where unlabeled data
comprises both novel and base classes. Due to the intrinsic difference between these two
tasks, CRNCD demonstrates unsatisfactory performance in GCD.

• Different motivations for using distillation. The distillation in CRNCD aims to improve
novel class performance, whereas our distillation is intended to promote base class discrim-
ination.

• Different training paradigms. CRNCD adopts a two-stage training procedure that first
trains a supervised model and then freezes it in the second stage. Contrarily, our frame-
work adopts one-stage training in which the main and auxiliary branches help each other
simultaneously.

• Different distilled data. While CRNCD distills all unlabeled data, our approach focuses
on pseudo-base data. Here, pseudo-base refers to predictions belonging to the base classes
within the main branch.

• Different distillation weights. CRNCD adopts a learnable weight function to control the
distillation strength. We utilize the maximum auxiliary probability as an uncertainty-based
weight, which provides a simpler yet effective mechanism for regulating distillation.

Besides the above statement, we conduct a thorough experiment to compare the different distillation
strategies. Table 9 shows that distilling across all unlabeled data reduces novel-class performance,
as novel data increases the likelihood of incorrect base-class prediction. Additionally, the learnable
distillation weight in CRNCD performs poorly for GCD, causing a significant drop in performance.
These results highlight the effectiveness of our proposed design.

Table 9: Comparison of different distillation strategies.

Distillation strategy CIFAR100 CUB200

All Base Novel All Base Novel

Distill on all unlabeled data 81.8 83.8 77.8 66.4 75.4 61.8
Learnable weight 80.9 82.6 77.5 65.0 74.5 60.2
Ours 82.8 84.1 80.1 69.5 76.4 65.9

A.8 EXTENDED EXPERIMENT ON DIFFERENT REGULARIZATIONS

We have conducted the ablation study of different regularizations on three datasets in Table 4, and we
here to include more results on the other datasets. As shown in Fig. 8, our proposed CDR achieves
consistently great GCD performance, outperforming other regularization among all datasets. The
result further demonstrates the superiority of our approach.

A.9 EXTENDED EXPERIMENT ON ESTIMATED CATEGORY NUMBERS.

Since the estimated category numbers from GCP Zhao et al. (2023) cover the partial datasets, we
conduct comparison on other datasets under CMS estimation.
Table 10: Comparison of estimated category numbers on CIFAR100, FGVC-Aircraft, Herbarium-
19 and Stanford Cars datasets.

Methods K
CIFAR100 FGVC-Aircraft Herbarium-19 Standford Cars

All Base Novel All Base Novel All Base Novel All Base Novel

CMS Choi et al. (2024) 97/98/666/152 79.6 83.2 72.3 55.2 60.6 52.4 37.4 56.5 27.1 51.7 68.9 43.4
Ours 97/98/666/152 80.0 84.3 71.4 69.4 78.5 64.8 46.0 62.3 37.2 56.6 73.7 48.4
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Figure 8: Comparison of different regularizations.

A.10 RESULTS ON DINOV2

The proceeding experiments are conducted based on the pre-trained DINO Caron et al. (2021)
model. To further validate the effectiveness of our method, we substitute the backbone with DI-
NOv2 Oquab et al. (2023). As shown in Tables 11 and 12, the stronger backbone brings further
improvement and our approach consistently outperforms other methods across all GCD datasets,
with a notable 8.7% improvement on FGVC-Aircraft.

Table 11: GCD performance comparison on generic datasets utilizing DINOv2.

Methods CIFAR10 CIFAR100 ImageNet-100

All Base Novel All Base Novel All Base Novel

SimGCD Wen et al. (2023) 98.8 96.9 99.7 88.5 89.3 86.9 88.5 96.2 84.6
CiPR Hao et al. (2024) 99.0 98.7 99.2 90.3 89.0 93.1 88.2 87.6 88.5
SPTNet Wang et al. (2024) - - - - - - 90.1 96.1 87.6
Ours 99.0 98.9 99.1 91.0 91.2 90.5 92.1 96.2 90.0

Table 12: GCD performance comparison on fine-grained datasets utilizing DINOv2.

Distill strategy CUB200 Stanford Cars FGVC-Aircraft Herbarium-19

All Base Novel All Base Novel All Base Novel All Base Novel

SimGCD Wen et al. (2023) 74.9 78.5 73.1 71.3 81.6 66.4 63.9 69.9 60.9 58.7 63.8 56.2
CiPR Hao et al. (2024) 78.3 73.4 80.8 66.7 77.0 61.8 - - - 59.2 65.0 56.3
SPTNet Wang et al. (2024) 76.3 79.5 74.6 - - - - - - -- - -
Ours 78.7 79.5 78.3 79.5 91.8 73.5 72.6 77.3 70.3 60.2 71.9 54.0
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Figure 9: Class-wise prediction distributions on different methods. Concretely, Root Mean Squared
Error (RMSE) is to measure the prediction distribution deviation with Ground Truth and the cumu-
lative number is marked at the end of each curve.

A.11 FURTHER ANALYSIS ON H

By definition, H encourages more diverse predictions in the mini-batch. In fact, H plays an impor-
tant role in balancing base and novel class performance in the parametric-based method. However, as
discussed in Section 3.2, H would hurt base class discrimination, resulting in degraded oracle base
class accuracy. Here, we conduct a deep analysis of the effect of H utilizing class-wise prediction
distribution (CPD). Root Mean Squared Error(RMSE) is to quantify the class prediction distribution
deviation with the Ground Truth.

As shown in Figure 9, we compare several methods, including a parametric-based baseline with and
without H , as well as our proposed approach. When H is removed, all samples are predicted as the
base class, resulting in a significantly large RMSE for both base and novel CPDs, 45.87 and 29.97,
respectively. From Figure 9(c) and (d), we observe that H effectively refines the CPD, reducing
the RMSE by 42.63 for base classes and 17.78 for novel classes. However, H also introduces
the side effect of misclassifying some base class samples. Specifically, the predicted base class
samples are much lower than the ground truth, dropping from 1499 to 1346, which introduces noisy
label learning during training. To mitigate this noisy learning, we propose a reciprocal learning
framework, where the auxiliary branch provides more reliable pseudo labels to the main branch.
Through cross-branch distillation, our method increases the number of predicted base class samples
from 1346 to 1480. Furthermore, our CPD is closer to the ground truth, outperforming the baseline
with RMSE reductions of 1.48 and 3.98 for the base and novel classes, respectively.
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