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Abstract

In Machine Translation (MT) Evaluation, met-
ric performance is assessed based on agreement
with human judgments. In recent years, auto-
matic metrics have demonstrated increasingly
high levels of agreement with humans. To gain
a clearer understanding of metric performance
and establish an upper bound, we incorporate
human baselines in the MT Meta-Evaluation,
that is, the assessment of MT metrics capabil-
ities. Our results show that human annotators
are not consistently superior to automatic met-
rics, with state-of-the-art metrics often ranking
on par with or higher than human baselines.
Despite these findings suggesting human parity,
we discuss several reasons for caution. Finally,
we explore the broader implications of our re-
sults for the research field, asking: Can we still
reliably measure improvements in MT Evalua-
tion? With this work, we aim to shed light on
the limits of our ability to measure progress in
the field, fostering discussion on an issue that
we believe is crucial to the entire MT Evalua-
tion community.

1 Introduction and Related Work

Machine Translation (MT) Evaluation is the task
of assessing the quality of the translated text, while
MT Meta-Evaluation estimates the capabilities of
automatic evaluation techniques, i.e., MT met-
rics. Historically, automatic metrics have been
employed for their low cost and fast experimen-
tation time, whereas human evaluation is still con-
sidered the gold standard, necessary for validating
automatically derived findings. However, in recent
years the MT Evaluation field has seen significant
advancements. Neural-based metrics have demon-
strated strong correlations with human judgments,
largely replacing traditional heuristic-based met-
rics, and becoming the de facto standard in MT
evaluation (Freitag et al., 2022, 2023, 2024). More
recently, LLM-based approaches to MT Evaluation
have emerged (Kocmi and Federmann, 2023b,a;

Fernandes et al., 2023; Bavaresco et al., 2024), of-
fering not only high correlation with human judg-
ments but also improved interpretability. Thus, we
ask: What is missing for automatic techniques to
achieve human parity — if they have not already?
Indeed, unlike other Natural Language Processing
(NLP) tasks, MT Evaluation lacks a human perfor-
mance reference, making it difficult to gauge the
true capabilities of MT metrics. For instance, in
MT, human performance is measured by evaluating
human references alongside system translations
(Laubli et al., 2018; Kocmi et al., 2023, 2024a).
Similarly, popular NLP benchmarks such as Hel-
laSwag (Zellers et al., 2019), MMLU (Hendrycks
et al., 2021), and MT-bench (Zheng et al., 2023)
report the performance of human baselines.

Since in MT Evaluation metric performance is
measured based on agreement with human anno-
tators, we posit that the agreement between dif-
ferent annotators can serve as a reference for hu-
man performance. Previous studies reported the
Inter-Annotator Agreement (IAA) in MT Evalua-
tion: Lommel et al. (2014b) used Cohen’s kappa
to measure the pairwise agreement between raters;
Freitag et al. (2021a) grouped raters’ assessments
into seven score bins before computing pairwise
agreement; and Kocmi et al. (2024b) used Kendall
T correlation coefficient. However, they have used
different measures, making direct comparisons dif-
ficult, and none of them contextualized IAA in
relation to the performance of automatic metrics.
To the best of our knowledge, Perrella et al. (2024a)
were the first to assess metric and human perfor-
mance jointly. However, since comparing humans
and metrics was not their primary focus, they used
a single human annotation protocol that exhibited
very poor performance — likely due to low annota-
tion quality — rendering it ineffective as a human
performance reference for MT metrics.

In this work, we address this gap by incorporat-
ing human baselines into the metric rankings from



2020 2022 2023 | 2024

— DE ‘ ZH — — DE ‘ — ZH — DE — ES
MQM 3 3 3 3 2 1
ESA X X X X 2 1
SQM 3 3 X X X X
DA+SQM | X X 1 1 1 X

#Seg 681 | 895 | 583 | 1065 | 156 | 449
#Sys 9 9 10| 13| 12| 12

Table 1: The four top rows indicate the number of avail-
able and distinct annotations for each annotation proto-
col and test set. We list the studies that released these
annotations in Appendix A. 2020’ refers to the data
released by Freitag et al. (2021a), while other years
correspond to the test sets from the respective WMT
editions. The notation — X indicates that the test set
contains translations from English to X, whereas X —
denotes translations from X to English. The two bottom
rows contain the number of source segments and the
number of translations per source segment present in
the intersection of annotations from each protocol, for
each test set.

various editions of the Metrics Shared Task of the
Conference on Machine Translation (WMT). By
using Meta-Evaluation strategies from WMT 2024
we derive a single, comprehensive ranking of MT
evaluators — both human and automatic — establish-
ing a human performance reference for MT metrics
across several test sets, translation directions, and
human annotation protocols, and offering a clearer
understanding of the capabilities of current MT
evaluation techniques. Then, given that our results
suggest that automatic metrics may have reached
human parity, we critically examine this claim and
discuss its implications for future research in MT
Evaluation.

2 Preliminaries and Experimental Setup

In this section, we describe the human annotations,
the annotation protocols, the test sets selected for
our work, the Meta-Evaluation strategies employed,
and the automatic metrics included.

2.1 The Human Annotations

Each year WMT conducts new manual annotation
campaigns to collect human judgments about trans-
lation quality. First, several test sets are created by
selecting IV, source segments per test set ¢, from
various sources. Source segments can be single
sentences or entire paragraphs. These segments are
then translated into the target language using M,
MT systems. As a result, each test set ¢ contains

Ny X M; translations. Finally, human raters are
hired to assess the quality of the collected trans-
lations (Kocmi et al., 2023; Freitag et al., 2023;
Kocmi et al., 2024a; Freitag et al., 2024). In or-
der to annotate such a large volume of translations,
non-overlapping portions of the data are typically
assigned to multiple raters. Consequently, an anno-
tated test set is formed by combining annotations
from multiple raters. Unless explicitly stated oth-
erwise, the annotations used in this work follow
this approach. In this context, we use the term eval-
uator to refer to any entity that performs the MT
Evaluation task. An evaluator can be an MT metric,
a human rater, an ensemble of MT Metrics, or an
entity that selects annotations from different raters
depending on the source segment.

2.2 Test Sets and Annotation Protocols

To estimate a human performance reference in MT
Evaluation we require multiple human annotations
about translation quality for the same test set. This
way, we can designate one annotation as ground
truth and the others as human baselines. Conse-
quently, we use the test sets released by Freitag et al.
(2021a) and at WMT editions from 2022 to 2024,
which contain human annotations from at least
two of the following protocols: Multidimensional
Quality Metrics (Lommel et al., 2014a, MQM), Er-
ror Span Annotation (Kocmi et al., 2024b, ESA),
Professional Scalar Quality Metrics (Freitag et al.,
2021a, pSQM), and Direct Assessments + Scalar
Quality Metrics (Kocmi et al., 2022a, DA+SQM).
Table 1 summarizes the test sets and language direc-
tions used in our work, along with the availability
of human annotations. We describe the aforemen-
tioned annotation protocols in Appendix A.

Following standard practice in the literature (Fre-
itag et al., 2021a,b, 2022, 2023, 2024), we desig-
nate the MQM annotations released annually at
WMT as the ground truth, and employ the others as
human baselines. Indeed, the MQM protocol relies
on experienced annotators, providing a more fine-
grained (and more expensive) evaluation compared
to other protocols.

2.3 The MT Meta-Evaluation

We compute metric rankings using the Meta-
Evaluation strategies employed at the WMT 2024
Metrics Shared Task:

* Soft Pairwise Accuracy (SPA) estimates evalu-
ator performance based on ability to rank MT



Test set 2020 EN—DE ZH—EN Test set 2023 EN—DE
SPA accy, SPA accy, ) SPA ‘ accg,
Metric Rank  Acc. Rank  Acc Rank  Acc. Rank  Acc. Metric Rank  Acc. | Rank  Acc.
MQM-2020-2 1 9645 1 5886 1 88.10 1 55.70 GEMBA-MQM* | 1 96.07 3 57.50
CometKiwi-XXL* 1 9551 3  57.56
pSQM-1 1 95.59 6 4941 1 79.16 13 43.89 MetricX-23-QE-XXL* 1 9482 1 6144
MQM-2020-3 2 90.39 2 56.84 1 92.06 2 52.80 DA+SQM 2 93.00 13 46.41
BLEURT-0.2 2 86.81 4 50.81 2 7259 3 50.57 ESA-1 2 9221 13 46.49
pSQM-2 2  85.87 9  46.97 1 89.33 9  46.77 MQM-2023-2 3 89.45 14 43.08
BLEURT-20 2 85.52 3  51.68 3 67.46 4 50.12 ESA-2 3 89.14 11 49.77
Test set 2022 EN—DE EN—ZH Test set 2024 EN—ES
SPA accy, SPA accy, SPA accy,
Metric Rank  Acc. Rank Acc. Rank  Acc. Rank  Acc. Metric Rank  Acc. Rank  Acc.
MetricX-23-QE-XXL* 1 94.89 3 57.64 2 83.92 2 4743 CometKiwi-XXL* 1 86.12 4  67.24
MQM-2022-2 1 94.49 6  55.55 2 80.82 3 47.05 gemba_esa* 1 85.72 3  67.68
MQM-2022-3 1 92.59 1 61.06 1 87.22 2 47.56 ESA 2 80.12 8 63.84
MetricX-23-XXL 2 9234 2 59.27 1 87.69 1 48.43 metametrics_mt_mqm 2 80.10 1 68.95
DA+SQM 6  66.61 16  46.03 2 8295 12 36.26 MetricX-24-Hybrid 2 79.75 1 69.20

Table 2: Results obtained by applying the WMT 2024 Meta-Evaluation strategies to the test sets illustrated in
Section 2.2. The ‘Acc.” column contains the Meta-Evaluation accuracy, while ‘Rank’ reports clusters of statistical
significance computed following Freitag et al. (2024), using the PERM-BOTH hypothesis test introduced by Deutsch
et al. (2021). Starred metrics are reference-less metrics, and rows highlighted in gray are human evaluators.

systems in the same order as in the ranking de-
rived from ground truth annotations (Thomp-
son et al., 2024).

* Pairwise Accuracy with Tie Calibration
(acc:q) estimates evaluator performance based
on ability to rank individual translations in the
same order as in the ranking derived from the
human annotations selected as ground truth
(Deutsch et al., 2023).

We describe these measures in more detail in Ap-
pendix D.

24

The automatic evaluators considered — i.e., the MT
metrics — are those submitted to the WMT Metrics
Shared Task in the 2020, 2022, 2023, and 2024
editions. Additionally, we include several state-
of-the-art metrics from recent WMT editions in
rankings from previous years, provided they were
not trained on the corresponding test sets. Table 3
in Appendix B lists all considered metrics.

Metrics

3 Results

Table 2 presents the evaluator rankings. Due to
space constraints, each table includes only a subset
of evaluators. A complete set of results, including
all the evaluators, is provided in Appendix C.
Results vary substantially across years and trans-
lation directions. Notably, human evaluators do
not consistently rank higher than automatic metrics.
Under SPA, human evaluators often share clusters
of statistical significance with automatic metrics,

*

whereas, under accg,, they are frequently outper-
formed. For example, in 2020 EN—DE, BLEURT-
0.2 and BLEURT-20 fall within the same statistical
significance cluster as MQM-2020-3 and pSQM-2
under SPA, with pSQM-2 ranking 9th under accZ,.
Similarly, in 2022 EN—DE, MQM-2022-2 and
MQM-2022-3 share the top cluster with MetricX-
23-QE-XXL* under SPA, with MQM-2022-2 rank-
ing 6th under acc;,. Finally, in 2023 and 2024,
human evaluators rank consistently below various
automatic metrics under both SPA and accy,,. Even
when restricted to the human evaluators who follow
the same protocol as the annotations employed as
gold —i.e., MQM - they rank consistently in the
top positions solely in 2020.

These results may indicate that MT Evaluation
has reached human parity. Nonetheless, we argue
that our findings are insufficient to establish equiv-
alence between human and automatic MT Evalua-
tion and discuss our reasons in the next section.

4 Discussion

First, we outline several factors to consider before
claiming human parity in MT Evaluation. Then,
we discuss the broader implications of our findings,
warning that measuring progress in the field may
become increasingly challenging.

Meta-Evaluation measures Certain Meta-
Evaluation measures may be inadequate for
comparing human and automatic evaluators. In
particular, our results consistently rank human
evaluators higher under SPA than under accg,.
This discrepancy may be related to the findings



of Perrella et al. (2024b), who show that acc’ch
favors evaluators whose assessments fall within
a continuous interval, whereas, as detailed in
Appendix A, human evaluators produce discrete
assessments.

Annotation quality Certain annotation cam-
paigns might have produced low-quality annota-
tions, either due to a lack of clarity in the anno-
tation guidelines or to the ability of the involved
raters. This is particularly concerning in the 2023
data, where, even if restricted to SPA, all human
evaluators fall within the second and third clusters
of statistical significance, alongside heuristic-based
metrics such as BLEU.!

Benchmarks difficulty Current test sets might
be too easy for the MT systems whose translations
are being evaluated. Supporting this hypothesis,
we observe that sentinel-cand-mqm, a metric that
assesses only translation fluency, ranks on par with
the human evaluator ESA under SPA, and even
higher under acc, (Table 7). This suggests that
the evaluated translations may differ only in mi-
nor fluency-related nuances. Additionally, previ-
ous research has shown that metrics may struggle
in unseen domains (Zouhar et al., 2024) and lack
sensitivity to specific translation errors such as in-
correct number, gender (Karpinska et al., 2022), or
word sense disambiguation (Martelli et al., 2024).
Thus, before claiming human parity, future stud-
ies should compare metrics and humans in more
demanding contexts rather than relying solely on
standard benchmarks.

4.1 Can We Still Measure Improvements in
MT Evaluation?

As discussed, we believe claiming human parity is
premature without first addressing the issues out-
lined above. Nonetheless, with automatic metrics
ranking the same as, or higher than, human evalua-
tors in standard benchmarks, our results raise a crit-
ical concern about our ability to measure progress
in MT Evaluation: What does a higher or lower
ranking truly mean?

If a metric ranks higher than a human evaluator
using a non-MQM protocol, is the metric a bet-
ter evaluator, or does it merely align more closely
with the score distribution of the MQM protocol?

"However, we wish to highlight that our 2023 test set fea-
tures only 156 segments annotated by all human evaluators (as
reported in Table 1), which might have resulted in unreliable
estimates of SPA and acc;,, in this test set.

More concerningly, if a metric ranks higher than
an MQM evaluator, does this suggest superior eval-
uation capabilities, or does it simply reflect better
alignment with the specific raters who produced
the gold annotations? Indeed, Finkelstein et al.
(2024) achieved an exceptionally high agreement
with gold annotations by explicitly optimizing their
metric to align with the raters themselves. More
generally, we argue that in current benchmarks it is
unclear whether a higher ranking — relative to either
a human or an automatic evaluator — reflects gen-
uine improvements in evaluation quality or merely
closer alignment with a particular annotation proto-
col or rater style.

To ensure the reliability of Meta-Evaluation, fu-
ture research should focus on exploring whether
the gap between human and automatic evaluators
can be restored. This could be pursued in several
ways, including (but not limited to) selecting more
challenging test sets, using test sets adversarial to
MT metrics (e.g., from domains different from their
training data), producing higher-quality human an-
notations, or designing new annotation protocols
that yield stronger IAA. Additionally, greater re-
sources could be allocated to human annotation
campaigns — either by collecting multiple annota-
tions per translation to reach a consensus among
annotators or by increasing the number of segments
in test sets, as suggested by Riley et al. (2024).

5 Conclusions

We incorporate human baselines into the metric
rankings from previous editions of the WMT Met-
rics Shared Task. Our results show that MT met-
rics frequently rank higher than human evaluators,
particularly when the latter follow annotation pro-
tocols different from MQM - the protocol used as
the gold standard. While our findings may indicate
human parity, we recommend caution and high-
light several issues the research community should
address before making such claims. Finally, we
discuss a critical concern arising from our findings:
the limits of measuring progress in MT Evaluation
as automatic metrics approach human baselines.
In this respect, we propose research directions to
ensure that progress remains measurable or, at the
very least, to extend the period during which it can
be reliably tracked.



Limitations

This study requires test sets annotated by multiple
human evaluators. Consequently, our analysis is
limited to six test sets and four language directions.
Moreover, assessing the agreement between var-
ious human evaluators required restricting our anal-
ysis to segments annotated by all of them. As a
result, some test sets contain only a small number
of segments, which might reduce the reliability of
the results. To mitigate this issue, our findings are
supported by statistical significance analyses.
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A Human Annotations

We illustrate, at a high level, how each considered
annotation protocol works:

* Multidimensional Quality Metrics (MQM) re-
quires annotators to identify error spans in the
translated text, specifying error category and
severity, to be selected among Neutral, Mi-
nor, Major, and Critical. A translation quality
score is derived by assigning a penalty to each
error span depending on severity (Lommel
et al., 2014a).

Error Span Annotation (ESA) requires anno-
tators to identify error spans in the translated
text, specify error severity, and later assign
a scalar quality score from 0 to 100 to the
translation (Kocmi et al., 2024b).

Scalar Quality Metrics (SQM) requires anno-
tators to assign a scalar quality score from O
to 6 to the translated text. Following (Freitag
etal., 2021a), we use ‘pSQM’ to refer to SQM
conducted by professional annotators.”

Direct Assessments + Scalar Quality Met-
rics (Kocmi et al., 2022a, DA+SQM) requires
raters to assign a scalar quality score from 0
to 100 to the translated text. Raters are pre-
sented with seven labeled tick marks describ-
ing translation quality levels at various score
thresholds, similar to the SQM protocol.

Here, for each set of annotations employed in
this work (i.e., those reported in Table 1), we indi-
cate the reference paper that released them:

* The MQM-based and pSQM-based annota-
tions for the test sets 2020 EN—DE and 2020

ZH—EN have been released by Freitag et al.
(2021a).

¢ The MQM-based annotations for the test sets
2022 EN—DE and 2022 EN—ZH have been
released by Freitag et al. (2022) and Riley
et al. (2024).

¢ The DA+SQM-based annotations for the test
sets 2022 EN—DE and 2022 EN—ZH have
been released by Kocmi et al. (2022a).

*In this work, we use only annotations produced by profes-
sional annotators or translators. Therefore, we exclude cSQM
and Direct Assessments (DA) — which were crowdsourced —
from the 2020 test sets.
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* One set of MQM-based annotations for the
test set 2023 EN—DE has been released by
Freitag et al. (2023).

* The ESA-based annotations and the other set
of MQM-based annotations for the test set
2023 EN—DE have been released by Kocmi
et al. (2024b).

* The ESA-based annotations for the test set
2024 EN—ES have been released by Kocmi
et al. (2024a).

e The MQM-based annotations for the test set
2024 EN—ES have been released by Freitag
et al. (2024).

B Metrics

Table 3 lists the complete set of automatic evalua-
tors considered in this work.

C Full Rankings

Tables 4, 5, 6, and 7 present the ranking containing
all tested evaluators.

D Meta-Evaluation Measures

In this section, we describe the two Meta-
Evaluation measures used in our work, as listed
in Section 2.3.

D.1 Soft Pairwise Accuracy (SPA)

Thompson et al. (2024) introduced Soft Pairwise
Accuracy (SPA) as an extension of Pairwise Accu-
racy (Kocmi et al., 2021, PA).

Given a test set t, which consists of /V; source
segments and M, translations generated by the
respective M; MT systems (as described in Sec-
tion 2.1), PA counts how often an evaluator e ranks
system pairs in the same order as the ground truth g.
Let a;; be 1 if evaluator e ranks systems 7 and j in
the same order as the ground truth and O otherwise,
where ¢, j € {0, ..., Mt}. Then, PA is defined as:

()

SPA extends PA by incorporating the confidence
with which an evaluator and the ground truth rank
two MT systems. Confidence is represented using
statistical p-values. Specifically, pf; denotes the
p-value associated with the statistical hypothesis
that system ¢ is better than system j according to

—1 My M

2. D ay

i=0 j=i+1

ey



Metric Reference paper
all-rembert-20 (Mathur et al., 2020)
BAQ_dyn (Mathur et al., 2020)
BAQ_static (Mathur et al., 2020)
BERT-base-L2 (Mathur et al., 2020)
BERT-large-L2 (Mathur et al., 2020)
BERTScore (Zhang et al., 2020)
BLCOM_1 (Freitag et al., 2024)
BLEU (Papineni et al., 2002)
BLEURT (Sellam et al., 2020a)
BLEURT-0.1-all (Mathur et al., 2020)
BLEURT-0.1-en (Mathur et al., 2020)
BLEURT-0.2 (Mathur et al., 2020)
BLEURT-20 (Sellam et al., 2020a)
bleurt-combi (Mathur et al., 2020)
BLEURT-extended (Sellam et al., 2020b)
bright-qe* (Freitag et al., 2024)
Calibri-COMET?22 (Freitag et al., 2023)
Calibri-COMET22-QE* (Freitag et al., 2023)

CharacTER

(Wang et al., 2016)

chrF (Popovi¢, 2015)

chrF++ (Popovié, 2017)

chrfS (Mukherjee and Shrivastava, 2024)
COMET (Rei et al., 2020b)

COMET-20 (Rei et al., 2020a)
COMET-22 (Rei et al., 2022a)
COMET-2R (Rei et al., 2020b)
COMET-HTER (Rei et al., 2020b)
COMET-MQM (Rei et al., 2020b)
COMET-QE* (Rei et al., 2021)

COMET-Rank (Rei et al., 2020b)
COMETKiwi* (Rei et al., 2022b)

CometKiwi-XL*
CometKiwi-XXL*

cometoid22-wmt22* (Gowda et al., 2023)
damonmonli (Freitag et al., 2024)
docWMT22CometDA (Vernikos et al., 2022)
docWMT22CometKiwiDA*  (Vernikos et al., 2022)

eBLEU (EINokrashy and Kocmi, 2023)
EED (Stancheyv et al., 2019)
embed_llama (Dreano et al., 2023a)

esim (Mathur et al., 2019)
f200spBLEU (Team et al., 2022)
GEMBA-MQM* (Kocmi and Federmann, 2023a)
gemba_esa* (Freitag et al., 2024)

HWTSC-Teacher-Sim*
KG-BERTScore*

(Rei et al., 2023)
(Rei et al., 2023)

(Liu et al., 2022)
(Wu et al., 2023)

MaTESe (Perrella et al., 2022)
MaTESe-QE* (Perrella et al., 2022)
mBERT-L2 (Mathur et al., 2020)

mbr-metricx-qe* (Naskar et al., 2023)
MEE (Mukherjee et al., 2020)
MEE4 (Mukherjee and Shrivastava, 2022b)

Metric

Reference paper

metametrics_mt_mqm
metametrics_mt_mqm_ge*
MetricX-23-QE-XXL*
MetricX-23-XXL
MetricX-24-Hybrid
MetricX-24-Hybrid-QE*
metricx_xxI_MQM_2020
mre-score-labse-regular
MS-COMET-22
MS-COMET-QE-22*
OpenKiwi-Bert*
OpenKiwi-XLMR*

(Anugraha et al., 2024)
(Anugraha et al., 2024)
(Juraska et al., 2023)
(Juraska et al., 2023)
(Juraska et al., 2024)
(Juraska et al., 2024)
(Freitag et al., 2022)
(Viskov et al., 2023)
(Kocmi et al., 2022b)
(Kocmi et al., 2022b)
(Kepler et al., 2019)
(Kepler et al., 2019)

parbleu (Bawden et al., 2020)
parchrf++ (Bawden et al., 2020)
paresim-1 (Bawden et al., 2020)

prism (Thompson and Post, 2020a)
prismRef (Thompson and Post, 2020a,b)
PrismRefMedium (Thompson and Post, 2020a,b)
PrismRefSmall (Thompson and Post, 2020a,b)
prismSrc* (Thompson and Post, 2020a,b)
Random-sysname* (Freitag et al., 2023)

REUSE* (Mukherjee and Shrivastava, 2022a)
sentBLEU (Papineni et al., 2002)

sentinel-cand-mqm*
sentinel-ref-mgm
sentinel-src-mgm*

(Perrella et al., 2024b)
(Perrella et al., 2024b)
(Perrella et al., 2024b)

SEScore (Xu et al., 2022)
sescoreX (Xu et al., 2023)
spBLEU (Team et al., 2022)
SWSS+METEOR (Xu et al., 2020)

TER (Snover et al., 2006)
tokengram_F (Dreano et al., 2023b)
UniTE (Wan et al., 2022b,a)
UniTE-src* (Wan et al., 2022b)
XCOMET (Guerreiro et al., 2024)
XCOMET-Ensemble (Guerreiro et al., 2024)
XCOMET-QE* (Guerreiro et al., 2024)

XCOMET-QE-Ensemble*
XLsim

(Guerreiro et al., 2024)

(Mukherjee and Shrivastava, 2023)

XLsimMgm* (Mukherjee and Shrivastava, 2023)
YiSi-0 (Lo, 2019)

YiSi-1 (Lo, 2019)

YiSi-2* (Lo, 2019)

Yisi-combi (Mathur et al., 2020)

yisil-translate (Mathur et al., 2020)

Table 3: List of all automatic evaluators considered, i.e., MT metrics, associated with their reference paper. If some
metrics do not have a dedicated reference paper, we provide the Metrics Shared Task results paper in which they

were submitted.

evaluator e, while pfj represents the corresponding
p-value for the ground truth g. SPA is then defined
as follows:

N —1 My My
SPA:<2> ZZ1-|p§j—p§j| )

i=0 j=i+1

Thus, SPA rewards an evaluator for expressing con-
fidence levels similar to those of the ground truth
and penalizes deviations.

D.2 Pairwise Accuracy with Tie Calibration

(acc))

Deutsch et al. (2023) introduced acczq to account
for tied scores in Meta-Evaluation. Unlike PA and
SPA, accg, is a segment-level measure, meaning it
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evaluates a metric’s ability to estimate the quality
of individual translations rather than MT systems.
Specifically, accy, counts how often an evaluator
e ranks pairs of translations of the same source in
the same order as the ground truth g, accounting
for tied scores.

Let C' be the number of translation pairs ranked
in the same order by both the evaluator e and the
ground truth g. Similarly, let D denote the pairs
ranked in the opposite order. The terms T, and 7T},
represent pairs tied only in the evaluator’s scores
and only in the ground truth, respectively. Lastly,
T4 refers to pairs tied in both the evaluator’s scores
and the ground truth. acc?, is then defined as:



. C+Tey
acc

- 3
AT A DA T AT, 1 Ty

Tie Calibration Many automatic metrics pro-
duce assessments on a continuous scale, such as
the real numbers in the interval [0, 1]. As a conse-
quence, these metrics rarely, if ever, produce tied
scores, resulting in T, ~ 0 and T, ~ 0. The Tie
Calibration algorithm addresses this issue by esti-
mating a threshold value ¢, for each evaluator e,
such that two assessments e; and e; are considered
tied if |e; — e;| < €.

E Fair Extraction of Evaluators from
Human Annotations

The human evaluation campaigns conducted by Fre-
itag et al. (2021a) and Riley et al. (2024) produced
multiple annotations for each translation (MQM
and pSQM produced three annotations per transla-
tion, as reported in the columns ‘2020’ and ‘2022’
in Table 1). As described in Section 2.1, these anno-
tation campaigns distributed the annotation work-
load among multiple raters. Since some of these
annotations were used as ground truth, and since
we are interested in measuring the performance of
independent evaluators, we prevent the same rater
from contributing to both a human evaluator and
the ground truth, or to two distinct evaluators, si-
multaneously. For example, in the ‘2020’ EN—DE
test set, six raters provided three annotations per
translation. We would like to extract three human
evaluators from these annotations, using one as the
ground truth and the other two as human evaluators
(MQM-2020-2 and MQM-2020-3 in Table 2). To
achieve this, we need to partition the six raters, for
instance, into three groups of two raters each. How-
ever, not all raters annotated the entire set of source
segments, and the workload distribution did not
allow for a rater assignment that covers all anno-
tated segments. Therefore, to maximize the number
of segments in our test sets, we need to solve the
following optimization problem: Find the largest
subset of segments for which the set of raters can
be partitioned into three disjoint groups i.e., the
three human evaluators.

More generally, let us define a test set ¢
{s1,...,sn,} as a set of N; segments. Each seg-
ment was annotated by k£ out of R raters, with
S = {r1,...,rr} representing the set of raters. Our
goal is to determine a partition IT = {51, ..., Sk}
of S and a subset v C ¢ such that u is the largest
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subset in which every segment has been annotated
by exactly one rater from each of the & sets in the
partition II.

To solve this optimization problem, we formu-
late it as an Integer Linear Programming (ILP)
problem and solve it using the PuLP? Python li-
brary. We applied this procedure to the ‘2020’ and
2022’ test sets.

Shttps://coin-or.github.io/pulp/.


https://coin-or.github.io/pulp/

EN—DE ZH—EN
SPA accg, SPA accy,

Metric Rank Acc. | Rank Acc. | Rank Acc. | Rank Acc.

MQM-2020-2 1 96.45 1 58.86 1 88.10 1 55.70
pSQM-1 1 95.59 6 49.41 1 79.16 13 43.89
MQM-2020-3 2 90.39 2  56.84 1 92.06 2 52.80
BLEURT-0.2 2 86.81 4  50.81 2 7259 3 50.57
pSQM-2 2  85.87 9 46.97 1 89.33 9  46.77
BLEURT-20 2 85.52 3 51.68 3 67.46 4 50.12
pSQM-3 2  84.61 6 49.38 1 87.94 7 47.88
all-rembert-20 3 79.19 4  51.04 3  66.41 3 50.61
BLEURT-extended 3 75.55 5 50.21 3 64.00 3  50.74
COMET-MQM 4 71.39 7 48.21 4  55.43 6 48.49
BLEURT-0.1-all 4 7138 7 48.63 2 T71.04 5 49.54
COMET 4 71.09 8 47.36 4 56.01 5 49.28
COMET-QE* 4 70.59 8 47.82 3 58.37 8 47.09
COMET-HTER 5 65.71 8 47.62 4  54.79 5 49.30
mBERT-L2 5 65.03 10 45.48 4  56.49 6 48.97
COMET-2R 6 58.12 9 46.43 4  55.99 4 50.20
COMET-Rank 6 54.78 14  41.31 3 58.16 14 43.57
OpenKiwi-XLMR* 6 53.25 11 44.11 4  53.29 8 47.23
OpenKiwi-Bert* 6 52.01 16 39.98 3 959.55 11 45.13
prism 6 51.92 11 43.59 4 5788 47.56
Yisi-combi 7 51.10 12 42.63 - - -
bleurt-combi 7 51.10 12 42.63 - - - -
esim 7 50.72 14  41.35 4 52.90 10 46.19
chrF 7 49.86 13 42.05 5 47.70 13 44.09
EED 7 49.81 15 40.94 5 45.41 14 43.64
paresim-1 7 49.54 14 41.37 4 53.34 10 46.15
chrF++ 7 48.87 13 41.99 5 48.96 12 44.27
YiSi-1 7 48.79 12 42.70 4 52.74 7 48.01
CharacTER 7T 4771 16 40.45 5 48.84 13 44.01
BLEURT-0.1-en 7 4743 15 40.96 4  57.29 7 48.26
YiSi-0 7 46.23 17 39.78 5 46.47 14 43.60
TER 7 4598 16 40.15 6 39.68 15  43.34
parchrf++ 7 45.57 13 42.25 5 48.68 12 44.25
MEE 7 4531 14 41.61 4 52091 13 43.94
sentBLEU 7 44.41 15 41.07 4 50.45 15 43.37
parbleu 8 41.38 15 41.01 4 50.28 15  43.43
yisil-translate 8 39.76 12 42.60 4 52.28 11 44.70
YiSi-2* 8 38.44 18  34.36 5 43.35 12 44.60

Table 4: 2020
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EN—DE EN—ZH
SPA accg, SPA accy,

Metric Rank Acc. | Rank Acc. | Rank Acc. | Rank Acc.

MetricX-23-QE-XXL* 1 94.89 3 57.64 2 83.92 2 47.43
MQM-2022-2 1 94.49 6 55.55 2 80.82 3 47.05
MQM-2022-3 1 92.59 1  61.06 1 87.22 2 47.56
MetricX-23-XXL 2 92.34 2 59.27 1 87.69 1 48.43
COMET-22 2  91.63 5 56.51 2  84.08 3  46.74
COMET-20 2 91.28 9 52.42 2 80.56 7 43.81
CometKiwi* 2 89.51 7  53.77 3 75.36 8 43.21
BLEURT-20 3 88.20 7 53.33 3 77.80 7 43.84
metricx_xx1_MQM_2020 3  88.10 3 5743 1 87.04 3  46.89
COMET-QE* 3 85.51 10  51.69 3 78.33 7 43.61
MS-COMET-22 3 85.37 8 53.13 1 85.18 6 44.92
CometKiwi-XXL* 3  84.43 7 53.27 2 81.25 2 47.28
UniTE 4  82.77 4 57.03 2  83.88 5 45.86
UniTE-src* 4 81.55 6 55.00 4  65.74 7 43.53
CometKiwi-XL* 4 81.13 8 52.73 2 81.56 4  46.33
YiSi-1 4 78.91 13 48.26 4 70.72 8 43.23
MATESE 5 78.03 7 53.48 - - - -
BERTScore 5 75.61 14 47.57 4 70.69 8 43.28
SEScore 5 75.16 12 50.45 - - - -
MS-COMET-QE-22* 5 74.44 12 50.37 2 78.84 9 42.51
MEE4 5 74.19 15 46.81 - - - -
chrF 5 173.05 16  46.38 3  72.67 10 41.87
f200spBLEU 5 71.04 15  46.84 4 T71.76 10  41.85
HWTSC-Teacher-Sim* 5 69.68 13 48.10 4  68.43 11 40.53
DA+SQM 6 66.61 16 46.03 2 8295 12 36.26
MATESE-QE* 6 65.42 11 51.06 - - - -
BLEU 6 65.00 15 46.51 4  67.31 13 34.28
REUSE* 7 37.95 17 43.58 5 33.46 12 35.89

Table 5: 2022
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EN—DE

SPA accq,

Metric Rank Acc. | Rank  Acc.

GEMBA-MQM#* 1 96.07 3  57.50
CometKiwi-XL* 1 95.65 4  57.20
CometKiwi-XXL* 1 9551 3 57.56
MetricX-23-XXL 1 94.98 2 60.13
MetricX-23-QE-XXL* 1 94.82 1 61.44
COMET 1 94.59 5 56.12
BLEURT-20 1 94.35 5 55.63
docWMT22CometDA 1 94.26 6 54.59
Calibri-COMET22-QE* 1 94.18 12 48.48
XCOMET-QE-Ensemble* 1 93.99 3 58.30
sescoreX 1 93.94 6 55.22
XCOMET-Ensemble 2 93.75 2 5991
cometoid22-wmt22* 2 93.66 3 57.60
DA+SQM 2 93.00 13 46.41
CometKiwi* 2 92.55 4  57.36
docWMT22CometKiwiDA* 2 92.44 6 54.36
MS-COMET-QE-22%* 2 9233 6 54.93
ESA-1 2 92.21 13 46.49
KG-BERTScore* 2 92.05 5 56.50
mbr-metricx-qe* 2 91.89 3 58.03
Calibri-COMET22 2 91.19 9 51.53
MaTESe 2 89.89 7 5279
mre-score-labse-regular 2 89.78 8 52.51
mqm-2023-2 3 89.45 14 43.08
prismRef 3 89.32 11 50.18
f200spBLEU 3 89.20 8 51.86
ESA-2 3 89.14 11 49.77
YiSi-1 3 88.88 7 53.33
XLsim 3 88.56 9 51.32
BLEU 3 87.84 9 51.17
BERTSscore 3  87.03 9 51.54
MEE4 3  86.55 8 51.85
eBLEU 3  85.37 10 50.50
tokengram_F 4 84.83 9 50.99
chrF 4  83.88 10 50.91
embed_llama 4  81.46 12 48.10
Random-sysname* 5  59.50 15 40.37
prismSrc* 6 27.58 14 42.33

Table 6: 2023
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EN—ES

SPA accg,

Metric Rank Acc. | Rank Acc.

CometKiwi-XXL* 1 86.12 4 67.24
gemba_esa* 1 85.72 3  67.68
COMET-22 1 8237 5 66.60
bright-qe* 1 81.77 4  67.39
ESA 2 80.12 8 63.84
XCOMET-QE* 2 80.10 3 67.99
metametrics_mt_mqgm_hybrid_kendall 2  80.10 1 68.95
XCOMET 2 79.96 2 68.67
MetricX-24-Hybrid 2 79.75 1 69.20
BLCOM_1 2 7917 6 65.02
MetricX-24-Hybrid-QE* 2 79.09 2 68.92
sentinel-cand-mgqm* 2 7854 5 66.39
BLEURT-20 2 75.96 7 64.48
metametrics_mt_mqm_ge_kendall.seg.s* 3 73.29 4 6749
CometKiwi* 3 7174 5 66.51
PrismRefMedium 3 70.93 11 61.39
PrismRefSmall 3  70.52 10 61.51
YiSi-1 3 70.51 11 61.44
BERTScore 3 67.75 11 6141
chrF 3 66.73 13 61.05
damonmonli 3  66.37 9 62.10
chrfS 4 64.31 11  61.37
spBLEU 4 63.19 12 61.08
BLEU 5 60.67 13 61.04
MEE4 5 60.36 10  61.57
sentinel-ref-mgm 6 44.19 13 61.04
sentinel-src-mgm* 6 44.19 13 61.04
XLsimMgm* 6 39.25 12 61.11

Table 7: 2024
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