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Abstract

In Machine Translation (MT) Evaluation, met-001
ric performance is assessed based on agreement002
with human judgments. In recent years, auto-003
matic metrics have demonstrated increasingly004
high levels of agreement with humans. To gain005
a clearer understanding of metric performance006
and establish an upper bound, we incorporate007
human baselines in the MT Meta-Evaluation,008
that is, the assessment of MT metrics capabil-009
ities. Our results show that human annotators010
are not consistently superior to automatic met-011
rics, with state-of-the-art metrics often ranking012
on par with or higher than human baselines.013
Despite these findings suggesting human parity,014
we discuss several reasons for caution. Finally,015
we explore the broader implications of our re-016
sults for the research field, asking: Can we still017
reliably measure improvements in MT Evalua-018
tion? With this work, we aim to shed light on019
the limits of our ability to measure progress in020
the field, fostering discussion on an issue that021
we believe is crucial to the entire MT Evalua-022
tion community.023

1 Introduction and Related Work024

Machine Translation (MT) Evaluation is the task025

of assessing the quality of the translated text, while026

MT Meta-Evaluation estimates the capabilities of027

automatic evaluation techniques, i.e., MT met-028

rics. Historically, automatic metrics have been029

employed for their low cost and fast experimen-030

tation time, whereas human evaluation is still con-031

sidered the gold standard, necessary for validating032

automatically derived findings. However, in recent033

years the MT Evaluation field has seen significant034

advancements. Neural-based metrics have demon-035

strated strong correlations with human judgments,036

largely replacing traditional heuristic-based met-037

rics, and becoming the de facto standard in MT038

evaluation (Freitag et al., 2022, 2023, 2024). More039

recently, LLM-based approaches to MT Evaluation040

have emerged (Kocmi and Federmann, 2023b,a;041

Fernandes et al., 2023; Bavaresco et al., 2024), of- 042

fering not only high correlation with human judg- 043

ments but also improved interpretability. Thus, we 044

ask: What is missing for automatic techniques to 045

achieve human parity – if they have not already? 046

Indeed, unlike other Natural Language Processing 047

(NLP) tasks, MT Evaluation lacks a human perfor- 048

mance reference, making it difficult to gauge the 049

true capabilities of MT metrics. For instance, in 050

MT, human performance is measured by evaluating 051

human references alongside system translations 052

(Läubli et al., 2018; Kocmi et al., 2023, 2024a). 053

Similarly, popular NLP benchmarks such as Hel- 054

laSwag (Zellers et al., 2019), MMLU (Hendrycks 055

et al., 2021), and MT-bench (Zheng et al., 2023) 056

report the performance of human baselines. 057

Since in MT Evaluation metric performance is 058

measured based on agreement with human anno- 059

tators, we posit that the agreement between dif- 060

ferent annotators can serve as a reference for hu- 061

man performance. Previous studies reported the 062

Inter-Annotator Agreement (IAA) in MT Evalua- 063

tion: Lommel et al. (2014b) used Cohen’s kappa 064

to measure the pairwise agreement between raters; 065

Freitag et al. (2021a) grouped raters’ assessments 066

into seven score bins before computing pairwise 067

agreement; and Kocmi et al. (2024b) used Kendall 068

τ correlation coefficient. However, they have used 069

different measures, making direct comparisons dif- 070

ficult, and none of them contextualized IAA in 071

relation to the performance of automatic metrics. 072

To the best of our knowledge, Perrella et al. (2024a) 073

were the first to assess metric and human perfor- 074

mance jointly. However, since comparing humans 075

and metrics was not their primary focus, they used 076

a single human annotation protocol that exhibited 077

very poor performance – likely due to low annota- 078

tion quality – rendering it ineffective as a human 079

performance reference for MT metrics. 080

In this work, we address this gap by incorporat- 081

ing human baselines into the metric rankings from 082
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2020 2022 2023 2024
→ DE ZH → → DE → ZH → DE → ES

MQM 3 3 3 3 2 1
ESA ✗ ✗ ✗ ✗ 2 1
SQM 3 3 ✗ ✗ ✗ ✗

DA+SQM ✗ ✗ 1 1 1 ✗

#Seg 681 895 583 1065 156 449
#Sys 9 9 10 13 12 12

Table 1: The four top rows indicate the number of avail-
able and distinct annotations for each annotation proto-
col and test set. We list the studies that released these
annotations in Appendix A. ‘2020’ refers to the data
released by Freitag et al. (2021a), while other years
correspond to the test sets from the respective WMT
editions. The notation → X indicates that the test set
contains translations from English to X, whereas X →
denotes translations from X to English. The two bottom
rows contain the number of source segments and the
number of translations per source segment present in
the intersection of annotations from each protocol, for
each test set.

various editions of the Metrics Shared Task of the083

Conference on Machine Translation (WMT). By084

using Meta-Evaluation strategies from WMT 2024085

we derive a single, comprehensive ranking of MT086

evaluators – both human and automatic – establish-087

ing a human performance reference for MT metrics088

across several test sets, translation directions, and089

human annotation protocols, and offering a clearer090

understanding of the capabilities of current MT091

evaluation techniques. Then, given that our results092

suggest that automatic metrics may have reached093

human parity, we critically examine this claim and094

discuss its implications for future research in MT095

Evaluation.096

2 Preliminaries and Experimental Setup097

In this section, we describe the human annotations,098

the annotation protocols, the test sets selected for099

our work, the Meta-Evaluation strategies employed,100

and the automatic metrics included.101

2.1 The Human Annotations102

Each year WMT conducts new manual annotation103

campaigns to collect human judgments about trans-104

lation quality. First, several test sets are created by105

selecting Nt source segments per test set t, from106

various sources. Source segments can be single107

sentences or entire paragraphs. These segments are108

then translated into the target language using Mt109

MT systems. As a result, each test set t contains110

Nt × Mt translations. Finally, human raters are 111

hired to assess the quality of the collected trans- 112

lations (Kocmi et al., 2023; Freitag et al., 2023; 113

Kocmi et al., 2024a; Freitag et al., 2024). In or- 114

der to annotate such a large volume of translations, 115

non-overlapping portions of the data are typically 116

assigned to multiple raters. Consequently, an anno- 117

tated test set is formed by combining annotations 118

from multiple raters. Unless explicitly stated oth- 119

erwise, the annotations used in this work follow 120

this approach. In this context, we use the term eval- 121

uator to refer to any entity that performs the MT 122

Evaluation task. An evaluator can be an MT metric, 123

a human rater, an ensemble of MT Metrics, or an 124

entity that selects annotations from different raters 125

depending on the source segment. 126

2.2 Test Sets and Annotation Protocols 127

To estimate a human performance reference in MT 128

Evaluation we require multiple human annotations 129

about translation quality for the same test set. This 130

way, we can designate one annotation as ground 131

truth and the others as human baselines. Conse- 132

quently, we use the test sets released by Freitag et al. 133

(2021a) and at WMT editions from 2022 to 2024, 134

which contain human annotations from at least 135

two of the following protocols: Multidimensional 136

Quality Metrics (Lommel et al., 2014a, MQM), Er- 137

ror Span Annotation (Kocmi et al., 2024b, ESA), 138

Professional Scalar Quality Metrics (Freitag et al., 139

2021a, pSQM), and Direct Assessments + Scalar 140

Quality Metrics (Kocmi et al., 2022a, DA+SQM). 141

Table 1 summarizes the test sets and language direc- 142

tions used in our work, along with the availability 143

of human annotations. We describe the aforemen- 144

tioned annotation protocols in Appendix A. 145

Following standard practice in the literature (Fre- 146

itag et al., 2021a,b, 2022, 2023, 2024), we desig- 147

nate the MQM annotations released annually at 148

WMT as the ground truth, and employ the others as 149

human baselines. Indeed, the MQM protocol relies 150

on experienced annotators, providing a more fine- 151

grained (and more expensive) evaluation compared 152

to other protocols. 153

2.3 The MT Meta-Evaluation 154

We compute metric rankings using the Meta- 155

Evaluation strategies employed at the WMT 2024 156

Metrics Shared Task: 157

• Soft Pairwise Accuracy (SPA) estimates evalu- 158

ator performance based on ability to rank MT 159
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Test set 2020 EN→DE ZH→EN
SPA acc∗eq SPA acc∗eq

Metric Rank Acc. Rank Acc. Rank Acc. Rank Acc.

MQM-2020-2 1 96.45 1 58.86 1 88.10 1 55.70
pSQM-1 1 95.59 6 49.41 1 79.16 13 43.89
MQM-2020-3 2 90.39 2 56.84 1 92.06 2 52.80
BLEURT-0.2 2 86.81 4 50.81 2 72.59 3 50.57
pSQM-2 2 85.87 9 46.97 1 89.33 9 46.77
BLEURT-20 2 85.52 3 51.68 3 67.46 4 50.12

Test set 2023 EN→DE
SPA acc∗eq

Metric Rank Acc. Rank Acc.

GEMBA-MQM* 1 96.07 3 57.50
CometKiwi-XXL* 1 95.51 3 57.56
MetricX-23-QE-XXL* 1 94.82 1 61.44
DA+SQM 2 93.00 13 46.41
ESA-1 2 92.21 13 46.49
MQM-2023-2 3 89.45 14 43.08
ESA-2 3 89.14 11 49.77

Test set 2022 EN→DE EN→ZH
SPA acc∗eq SPA acc∗eq

Metric Rank Acc. Rank Acc. Rank Acc. Rank Acc.

MetricX-23-QE-XXL* 1 94.89 3 57.64 2 83.92 2 47.43
MQM-2022-2 1 94.49 6 55.55 2 80.82 3 47.05
MQM-2022-3 1 92.59 1 61.06 1 87.22 2 47.56
MetricX-23-XXL 2 92.34 2 59.27 1 87.69 1 48.43
DA+SQM 6 66.61 16 46.03 2 82.95 12 36.26

Test set 2024 EN→ES
SPA acc∗eq

Metric Rank Acc. Rank Acc.

CometKiwi-XXL* 1 86.12 4 67.24
gemba_esa* 1 85.72 3 67.68
ESA 2 80.12 8 63.84
metametrics_mt_mqm 2 80.10 1 68.95
MetricX-24-Hybrid 2 79.75 1 69.20

Table 2: Results obtained by applying the WMT 2024 Meta-Evaluation strategies to the test sets illustrated in
Section 2.2. The ‘Acc.’ column contains the Meta-Evaluation accuracy, while ‘Rank’ reports clusters of statistical
significance computed following Freitag et al. (2024), using the PERM-BOTH hypothesis test introduced by Deutsch
et al. (2021). Starred metrics are reference-less metrics, and rows highlighted in gray are human evaluators.

systems in the same order as in the ranking de-160

rived from ground truth annotations (Thomp-161

son et al., 2024).162

• Pairwise Accuracy with Tie Calibration163

(acc∗eq) estimates evaluator performance based164

on ability to rank individual translations in the165

same order as in the ranking derived from the166

human annotations selected as ground truth167

(Deutsch et al., 2023).168

We describe these measures in more detail in Ap-169

pendix D.170

2.4 Metrics171

The automatic evaluators considered – i.e., the MT172

metrics – are those submitted to the WMT Metrics173

Shared Task in the 2020, 2022, 2023, and 2024174

editions. Additionally, we include several state-175

of-the-art metrics from recent WMT editions in176

rankings from previous years, provided they were177

not trained on the corresponding test sets. Table 3178

in Appendix B lists all considered metrics.179

3 Results180

Table 2 presents the evaluator rankings. Due to181

space constraints, each table includes only a subset182

of evaluators. A complete set of results, including183

all the evaluators, is provided in Appendix C.184

Results vary substantially across years and trans-185

lation directions. Notably, human evaluators do186

not consistently rank higher than automatic metrics.187

Under SPA, human evaluators often share clusters188

of statistical significance with automatic metrics,189

whereas, under acc∗eq, they are frequently outper- 190

formed. For example, in 2020 EN→DE, BLEURT- 191

0.2 and BLEURT-20 fall within the same statistical 192

significance cluster as MQM-2020-3 and pSQM-2 193

under SPA, with pSQM-2 ranking 9th under acc∗eq. 194

Similarly, in 2022 EN→DE, MQM-2022-2 and 195

MQM-2022-3 share the top cluster with MetricX- 196

23-QE-XXL* under SPA, with MQM-2022-2 rank- 197

ing 6th under acc∗eq. Finally, in 2023 and 2024, 198

human evaluators rank consistently below various 199

automatic metrics under both SPA and acc∗eq. Even 200

when restricted to the human evaluators who follow 201

the same protocol as the annotations employed as 202

gold – i.e., MQM – they rank consistently in the 203

top positions solely in 2020. 204

These results may indicate that MT Evaluation 205

has reached human parity. Nonetheless, we argue 206

that our findings are insufficient to establish equiv- 207

alence between human and automatic MT Evalua- 208

tion and discuss our reasons in the next section. 209

4 Discussion 210

First, we outline several factors to consider before 211

claiming human parity in MT Evaluation. Then, 212

we discuss the broader implications of our findings, 213

warning that measuring progress in the field may 214

become increasingly challenging. 215

Meta-Evaluation measures Certain Meta- 216

Evaluation measures may be inadequate for 217

comparing human and automatic evaluators. In 218

particular, our results consistently rank human 219

evaluators higher under SPA than under acc∗eq. 220

This discrepancy may be related to the findings 221
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of Perrella et al. (2024b), who show that acc∗eq222

favors evaluators whose assessments fall within223

a continuous interval, whereas, as detailed in224

Appendix A, human evaluators produce discrete225

assessments.226

Annotation quality Certain annotation cam-227

paigns might have produced low-quality annota-228

tions, either due to a lack of clarity in the anno-229

tation guidelines or to the ability of the involved230

raters. This is particularly concerning in the 2023231

data, where, even if restricted to SPA, all human232

evaluators fall within the second and third clusters233

of statistical significance, alongside heuristic-based234

metrics such as BLEU.1235

Benchmarks difficulty Current test sets might236

be too easy for the MT systems whose translations237

are being evaluated. Supporting this hypothesis,238

we observe that sentinel-cand-mqm, a metric that239

assesses only translation fluency, ranks on par with240

the human evaluator ESA under SPA, and even241

higher under acc∗eq (Table 7). This suggests that242

the evaluated translations may differ only in mi-243

nor fluency-related nuances. Additionally, previ-244

ous research has shown that metrics may struggle245

in unseen domains (Zouhar et al., 2024) and lack246

sensitivity to specific translation errors such as in-247

correct number, gender (Karpinska et al., 2022), or248

word sense disambiguation (Martelli et al., 2024).249

Thus, before claiming human parity, future stud-250

ies should compare metrics and humans in more251

demanding contexts rather than relying solely on252

standard benchmarks.253

4.1 Can We Still Measure Improvements in254

MT Evaluation?255

As discussed, we believe claiming human parity is256

premature without first addressing the issues out-257

lined above. Nonetheless, with automatic metrics258

ranking the same as, or higher than, human evalua-259

tors in standard benchmarks, our results raise a crit-260

ical concern about our ability to measure progress261

in MT Evaluation: What does a higher or lower262

ranking truly mean?263

If a metric ranks higher than a human evaluator264

using a non-MQM protocol, is the metric a bet-265

ter evaluator, or does it merely align more closely266

with the score distribution of the MQM protocol?267

1However, we wish to highlight that our 2023 test set fea-
tures only 156 segments annotated by all human evaluators (as
reported in Table 1), which might have resulted in unreliable
estimates of SPA and acc∗eq in this test set.

More concerningly, if a metric ranks higher than 268

an MQM evaluator, does this suggest superior eval- 269

uation capabilities, or does it simply reflect better 270

alignment with the specific raters who produced 271

the gold annotations? Indeed, Finkelstein et al. 272

(2024) achieved an exceptionally high agreement 273

with gold annotations by explicitly optimizing their 274

metric to align with the raters themselves. More 275

generally, we argue that in current benchmarks it is 276

unclear whether a higher ranking – relative to either 277

a human or an automatic evaluator – reflects gen- 278

uine improvements in evaluation quality or merely 279

closer alignment with a particular annotation proto- 280

col or rater style. 281

To ensure the reliability of Meta-Evaluation, fu- 282

ture research should focus on exploring whether 283

the gap between human and automatic evaluators 284

can be restored. This could be pursued in several 285

ways, including (but not limited to) selecting more 286

challenging test sets, using test sets adversarial to 287

MT metrics (e.g., from domains different from their 288

training data), producing higher-quality human an- 289

notations, or designing new annotation protocols 290

that yield stronger IAA. Additionally, greater re- 291

sources could be allocated to human annotation 292

campaigns – either by collecting multiple annota- 293

tions per translation to reach a consensus among 294

annotators or by increasing the number of segments 295

in test sets, as suggested by Riley et al. (2024). 296

5 Conclusions 297

We incorporate human baselines into the metric 298

rankings from previous editions of the WMT Met- 299

rics Shared Task. Our results show that MT met- 300

rics frequently rank higher than human evaluators, 301

particularly when the latter follow annotation pro- 302

tocols different from MQM – the protocol used as 303

the gold standard. While our findings may indicate 304

human parity, we recommend caution and high- 305

light several issues the research community should 306

address before making such claims. Finally, we 307

discuss a critical concern arising from our findings: 308

the limits of measuring progress in MT Evaluation 309

as automatic metrics approach human baselines. 310

In this respect, we propose research directions to 311

ensure that progress remains measurable or, at the 312

very least, to extend the period during which it can 313

be reliably tracked. 314
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Limitations315

This study requires test sets annotated by multiple316

human evaluators. Consequently, our analysis is317

limited to six test sets and four language directions.318

Moreover, assessing the agreement between var-319

ious human evaluators required restricting our anal-320

ysis to segments annotated by all of them. As a321

result, some test sets contain only a small number322

of segments, which might reduce the reliability of323

the results. To mitigate this issue, our findings are324

supported by statistical significance analyses.325
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Popel, Maja Popović, Mariya Shmatova, Steinthór 485
Steingrímsson, and Vilém Zouhar. 2024a. Findings 486
of the WMT24 general machine translation shared 487
task: The LLM era is here but MT is not solved yet. 488
In Proceedings of the Ninth Conference on Machine 489
Translation, pages 1–46, Miami, Florida, USA. As- 490
sociation for Computational Linguistics. 491

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden, 492
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Popović, Mrinmaya Sachan, and Mariya Shmatova.544
2024b. Error span annotation: A balanced approach545
for human evaluation of machine translation. In546
Proceedings of the Ninth Conference on Machine547
Translation, pages 1440–1453, Miami, Florida, USA.548
Association for Computational Linguistics.549

Samuel Läubli, Rico Sennrich, and Martin Volk. 2018.550
Has machine translation achieved human parity? a551
case for document-level evaluation. In Proceedings552
of the 2018 Conference on Empirical Methods in Nat-553
ural Language Processing, pages 4791–4796, Brus-554
sels, Belgium. Association for Computational Lin-555
guistics.556

Yilun Liu, Xiaosong Qiao, Zhanglin Wu, Su Chang,557
Min Zhang, Yanqing Zhao, Song Peng, Shimin Tao,558
Hao Yang, Ying Qin, Jiaxin Guo, Minghan Wang,559
Yinglu Li, Peng Li, and Xiaofeng Zhao. 2022. Partial560
could be better than whole. HW-TSC 2022 submis-561
sion for the metrics shared task. In Proceedings of the562
Seventh Conference on Machine Translation (WMT),563
pages 549–557, Abu Dhabi, United Arab Emirates564
(Hybrid). Association for Computational Linguistics.565

Chi-kiu Lo. 2019. YiSi - a unified semantic MT quality566
evaluation and estimation metric for languages with567
different levels of available resources. In Proceed-568
ings of the Fourth Conference on Machine Transla-569
tion (Volume 2: Shared Task Papers, Day 1), pages570
507–513, Florence, Italy. Association for Computa-571
tional Linguistics.572

Arle. Language Technology Lab) Lommel, Hans. Lan-573
guage Technology Lab) Uszkoreit, and Aljoscha.574
Language Technology Lab) Burchardt. 2014a. Multi-575
dimensional quality metrics (mqm) : a framework for576
declaring and describing translation quality metrics.577
Translation, (12):455–463.578

Arle Richard Lommel, Maja Popovic, and Aljoscha Bur-579
chardt. 2014b. Assessing inter-annotator agreement580
for translation error annotation. In MTE: Workshop581
on Automatic and Manual Metrics for Operational582
Translation Evaluation. International Conference on583
Language Resources and Evaluation (LREC-14), lo-584
cated at LREC 14, May 26-31, Reykjavik, Iceland.585
LREC.586

Federico Martelli, Stefano Perrella, Niccolò Campol-587
ungo, Tina Munda, Svetla Koeva, Carole Tiberius,588
and Roberto Navigli. 2024. Dibimt: A gold evalua-589
tion benchmark for studying lexical ambiguity in ma-590
chine translation. Computational Linguistics, pages591
1–72.592

Nitika Mathur, Timothy Baldwin, and Trevor Cohn.593
2019. Putting evaluation in context: Contextual em-594
beddings improve machine translation evaluation. In595
Proceedings of the 57th Annual Meeting of the Asso-596
ciation for Computational Linguistics, pages 2799–597
2808, Florence, Italy. Association for Computational598
Linguistics.599

Nitika Mathur, Johnny Wei, Markus Freitag, Qingsong 600
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A Human Annotations886

We illustrate, at a high level, how each considered887

annotation protocol works:888

• Multidimensional Quality Metrics (MQM) re-889

quires annotators to identify error spans in the890

translated text, specifying error category and891

severity, to be selected among Neutral, Mi-892

nor, Major, and Critical. A translation quality893

score is derived by assigning a penalty to each894

error span depending on severity (Lommel895

et al., 2014a).896

• Error Span Annotation (ESA) requires anno-897

tators to identify error spans in the translated898

text, specify error severity, and later assign899

a scalar quality score from 0 to 100 to the900

translation (Kocmi et al., 2024b).901

• Scalar Quality Metrics (SQM) requires anno-902

tators to assign a scalar quality score from 0903

to 6 to the translated text. Following (Freitag904

et al., 2021a), we use ‘pSQM’ to refer to SQM905

conducted by professional annotators.2906

• Direct Assessments + Scalar Quality Met-907

rics (Kocmi et al., 2022a, DA+SQM) requires908

raters to assign a scalar quality score from 0909

to 100 to the translated text. Raters are pre-910

sented with seven labeled tick marks describ-911

ing translation quality levels at various score912

thresholds, similar to the SQM protocol.913

Here, for each set of annotations employed in914

this work (i.e., those reported in Table 1), we indi-915

cate the reference paper that released them:916

• The MQM-based and pSQM-based annota-917

tions for the test sets 2020 EN→DE and 2020918

ZH→EN have been released by Freitag et al.919

(2021a).920

• The MQM-based annotations for the test sets921

2022 EN→DE and 2022 EN→ZH have been922

released by Freitag et al. (2022) and Riley923

et al. (2024).924

• The DA+SQM-based annotations for the test925

sets 2022 EN→DE and 2022 EN→ZH have926

been released by Kocmi et al. (2022a).927

2In this work, we use only annotations produced by profes-
sional annotators or translators. Therefore, we exclude cSQM
and Direct Assessments (DA) – which were crowdsourced –
from the 2020 test sets.

• One set of MQM-based annotations for the 928

test set 2023 EN→DE has been released by 929

Freitag et al. (2023). 930

• The ESA-based annotations and the other set 931

of MQM-based annotations for the test set 932

2023 EN→DE have been released by Kocmi 933

et al. (2024b). 934

• The ESA-based annotations for the test set 935

2024 EN→ES have been released by Kocmi 936

et al. (2024a). 937

• The MQM-based annotations for the test set 938

2024 EN→ES have been released by Freitag 939

et al. (2024). 940

B Metrics 941

Table 3 lists the complete set of automatic evalua- 942

tors considered in this work. 943

C Full Rankings 944

Tables 4, 5, 6, and 7 present the ranking containing 945

all tested evaluators. 946

D Meta-Evaluation Measures 947

In this section, we describe the two Meta- 948

Evaluation measures used in our work, as listed 949

in Section 2.3. 950

D.1 Soft Pairwise Accuracy (SPA) 951

Thompson et al. (2024) introduced Soft Pairwise 952

Accuracy (SPA) as an extension of Pairwise Accu- 953

racy (Kocmi et al., 2021, PA). 954

Given a test set t, which consists of Nt source 955

segments and Mt translations generated by the 956

respective Mt MT systems (as described in Sec- 957

tion 2.1), PA counts how often an evaluator e ranks 958

system pairs in the same order as the ground truth g. 959

Let aij be 1 if evaluator e ranks systems i and j in 960

the same order as the ground truth and 0 otherwise, 961

where i, j ∈ {0, ...,Mt}. Then, PA is defined as: 962

PA =

(
N

2

)−1 Mt∑
i=0

Mt∑
j=i+1

aij (1) 963

SPA extends PA by incorporating the confidence 964

with which an evaluator and the ground truth rank 965

two MT systems. Confidence is represented using 966

statistical p-values. Specifically, peij denotes the 967

p-value associated with the statistical hypothesis 968

that system i is better than system j according to 969
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Metric Reference paper

all-rembert-20 (Mathur et al., 2020)
BAQ_dyn (Mathur et al., 2020)
BAQ_static (Mathur et al., 2020)
BERT-base-L2 (Mathur et al., 2020)
BERT-large-L2 (Mathur et al., 2020)
BERTScore (Zhang et al., 2020)
BLCOM_1 (Freitag et al., 2024)
BLEU (Papineni et al., 2002)
BLEURT (Sellam et al., 2020a)
BLEURT-0.1-all (Mathur et al., 2020)
BLEURT-0.1-en (Mathur et al., 2020)
BLEURT-0.2 (Mathur et al., 2020)
BLEURT-20 (Sellam et al., 2020a)
bleurt-combi (Mathur et al., 2020)
BLEURT-extended (Sellam et al., 2020b)
bright-qe* (Freitag et al., 2024)
Calibri-COMET22 (Freitag et al., 2023)
Calibri-COMET22-QE* (Freitag et al., 2023)
CharacTER (Wang et al., 2016)
chrF (Popović, 2015)
chrF++ (Popović, 2017)
chrfS (Mukherjee and Shrivastava, 2024)
COMET (Rei et al., 2020b)
COMET-20 (Rei et al., 2020a)
COMET-22 (Rei et al., 2022a)
COMET-2R (Rei et al., 2020b)
COMET-HTER (Rei et al., 2020b)
COMET-MQM (Rei et al., 2020b)
COMET-QE* (Rei et al., 2021)
COMET-Rank (Rei et al., 2020b)
COMETKiwi* (Rei et al., 2022b)
CometKiwi-XL* (Rei et al., 2023)
CometKiwi-XXL* (Rei et al., 2023)
cometoid22-wmt22* (Gowda et al., 2023)
damonmonli (Freitag et al., 2024)
docWMT22CometDA (Vernikos et al., 2022)
docWMT22CometKiwiDA* (Vernikos et al., 2022)
eBLEU (ElNokrashy and Kocmi, 2023)
EED (Stanchev et al., 2019)
embed_llama (Dreano et al., 2023a)
esim (Mathur et al., 2019)
f200spBLEU (Team et al., 2022)
GEMBA-MQM* (Kocmi and Federmann, 2023a)
gemba_esa* (Freitag et al., 2024)
HWTSC-Teacher-Sim* (Liu et al., 2022)
KG-BERTScore* (Wu et al., 2023)
MaTESe (Perrella et al., 2022)
MaTESe-QE* (Perrella et al., 2022)
mBERT-L2 (Mathur et al., 2020)
mbr-metricx-qe* (Naskar et al., 2023)
MEE (Mukherjee et al., 2020)
MEE4 (Mukherjee and Shrivastava, 2022b)

Metric Reference paper

metametrics_mt_mqm (Anugraha et al., 2024)
metametrics_mt_mqm_qe* (Anugraha et al., 2024)
MetricX-23-QE-XXL* (Juraska et al., 2023)
MetricX-23-XXL (Juraska et al., 2023)
MetricX-24-Hybrid (Juraska et al., 2024)
MetricX-24-Hybrid-QE* (Juraska et al., 2024)
metricx_xxl_MQM_2020 (Freitag et al., 2022)
mre-score-labse-regular (Viskov et al., 2023)
MS-COMET-22 (Kocmi et al., 2022b)
MS-COMET-QE-22* (Kocmi et al., 2022b)
OpenKiwi-Bert* (Kepler et al., 2019)
OpenKiwi-XLMR* (Kepler et al., 2019)
parbleu (Bawden et al., 2020)
parchrf++ (Bawden et al., 2020)
paresim-1 (Bawden et al., 2020)
prism (Thompson and Post, 2020a)
prismRef (Thompson and Post, 2020a,b)
PrismRefMedium (Thompson and Post, 2020a,b)
PrismRefSmall (Thompson and Post, 2020a,b)
prismSrc* (Thompson and Post, 2020a,b)
Random-sysname* (Freitag et al., 2023)
REUSE* (Mukherjee and Shrivastava, 2022a)
sentBLEU (Papineni et al., 2002)
sentinel-cand-mqm* (Perrella et al., 2024b)
sentinel-ref-mqm (Perrella et al., 2024b)
sentinel-src-mqm* (Perrella et al., 2024b)
SEScore (Xu et al., 2022)
sescoreX (Xu et al., 2023)
spBLEU (Team et al., 2022)
SWSS+METEOR (Xu et al., 2020)
TER (Snover et al., 2006)
tokengram_F (Dreano et al., 2023b)
UniTE (Wan et al., 2022b,a)
UniTE-src* (Wan et al., 2022b)
XCOMET (Guerreiro et al., 2024)
XCOMET-Ensemble (Guerreiro et al., 2024)
XCOMET-QE* (Guerreiro et al., 2024)
XCOMET-QE-Ensemble* (Guerreiro et al., 2024)
XLsim (Mukherjee and Shrivastava, 2023)
XLsimMqm* (Mukherjee and Shrivastava, 2023)
YiSi-0 (Lo, 2019)
YiSi-1 (Lo, 2019)
YiSi-2* (Lo, 2019)
Yisi-combi (Mathur et al., 2020)
yisi1-translate (Mathur et al., 2020)

Table 3: List of all automatic evaluators considered, i.e., MT metrics, associated with their reference paper. If some
metrics do not have a dedicated reference paper, we provide the Metrics Shared Task results paper in which they
were submitted.

evaluator e, while pgij represents the corresponding970

p-value for the ground truth g. SPA is then defined971

as follows:972

SPA =

(
N

2

)−1 Mt∑
i=0

Mt∑
j=i+1

1− |pgij − peij | (2)973

Thus, SPA rewards an evaluator for expressing con-974

fidence levels similar to those of the ground truth975

and penalizes deviations.976

D.2 Pairwise Accuracy with Tie Calibration977

(acc∗eq)978

Deutsch et al. (2023) introduced acc∗eq to account979

for tied scores in Meta-Evaluation. Unlike PA and980

SPA, acc∗eq is a segment-level measure, meaning it981

evaluates a metric’s ability to estimate the quality 982

of individual translations rather than MT systems. 983

Specifically, acc∗eq counts how often an evaluator 984

e ranks pairs of translations of the same source in 985

the same order as the ground truth g, accounting 986

for tied scores. 987

Let C be the number of translation pairs ranked 988

in the same order by both the evaluator e and the 989

ground truth g. Similarly, let D denote the pairs 990

ranked in the opposite order. The terms Te and Tg 991

represent pairs tied only in the evaluator’s scores 992

and only in the ground truth, respectively. Lastly, 993

Teg refers to pairs tied in both the evaluator’s scores 994

and the ground truth. acc∗eq is then defined as: 995
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acc∗eq =
C + Teg

C +D + Te + Tg + Teg
(3)996

Tie Calibration Many automatic metrics pro-997

duce assessments on a continuous scale, such as998

the real numbers in the interval [0, 1]. As a conse-999

quence, these metrics rarely, if ever, produce tied1000

scores, resulting in Te ≈ 0 and Teg ≈ 0. The Tie1001

Calibration algorithm addresses this issue by esti-1002

mating a threshold value ϵe for each evaluator e,1003

such that two assessments ei and ej are considered1004

tied if |ei − ej | ≤ ϵe.1005

E Fair Extraction of Evaluators from1006

Human Annotations1007

The human evaluation campaigns conducted by Fre-1008

itag et al. (2021a) and Riley et al. (2024) produced1009

multiple annotations for each translation (MQM1010

and pSQM produced three annotations per transla-1011

tion, as reported in the columns ‘2020’ and ‘2022’1012

in Table 1). As described in Section 2.1, these anno-1013

tation campaigns distributed the annotation work-1014

load among multiple raters. Since some of these1015

annotations were used as ground truth, and since1016

we are interested in measuring the performance of1017

independent evaluators, we prevent the same rater1018

from contributing to both a human evaluator and1019

the ground truth, or to two distinct evaluators, si-1020

multaneously. For example, in the ‘2020’ EN→DE1021

test set, six raters provided three annotations per1022

translation. We would like to extract three human1023

evaluators from these annotations, using one as the1024

ground truth and the other two as human evaluators1025

(MQM-2020-2 and MQM-2020-3 in Table 2). To1026

achieve this, we need to partition the six raters, for1027

instance, into three groups of two raters each. How-1028

ever, not all raters annotated the entire set of source1029

segments, and the workload distribution did not1030

allow for a rater assignment that covers all anno-1031

tated segments. Therefore, to maximize the number1032

of segments in our test sets, we need to solve the1033

following optimization problem: Find the largest1034

subset of segments for which the set of raters can1035

be partitioned into three disjoint groups i.e., the1036

three human evaluators.1037

More generally, let us define a test set t =1038

{s1, ..., sNt} as a set of Nt segments. Each seg-1039

ment was annotated by k out of R raters, with1040

S = {r1, ..., rR} representing the set of raters. Our1041

goal is to determine a partition Π = {S1, ..., Sk}1042

of S and a subset u ⊆ t such that u is the largest1043

subset in which every segment has been annotated 1044

by exactly one rater from each of the k sets in the 1045

partition Π. 1046

To solve this optimization problem, we formu- 1047

late it as an Integer Linear Programming (ILP) 1048

problem and solve it using the PuLP3 Python li- 1049

brary. We applied this procedure to the ‘2020’ and 1050

‘2022’ test sets. 1051

3https://coin-or.github.io/pulp/.
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EN→DE ZH→EN

SPA acc∗eq SPA acc∗eq
Metric Rank Acc. Rank Acc. Rank Acc. Rank Acc.

MQM-2020-2 1 96.45 1 58.86 1 88.10 1 55.70
pSQM-1 1 95.59 6 49.41 1 79.16 13 43.89
MQM-2020-3 2 90.39 2 56.84 1 92.06 2 52.80
BLEURT-0.2 2 86.81 4 50.81 2 72.59 3 50.57
pSQM-2 2 85.87 9 46.97 1 89.33 9 46.77
BLEURT-20 2 85.52 3 51.68 3 67.46 4 50.12
pSQM-3 2 84.61 6 49.38 1 87.94 7 47.88
all-rembert-20 3 79.19 4 51.04 3 66.41 3 50.61
BLEURT-extended 3 75.55 5 50.21 3 64.00 3 50.74
COMET-MQM 4 71.39 7 48.21 4 55.43 6 48.49
BLEURT-0.1-all 4 71.38 7 48.63 2 71.04 5 49.54
COMET 4 71.09 8 47.36 4 56.01 5 49.28
COMET-QE* 4 70.59 8 47.82 3 58.37 8 47.09
COMET-HTER 5 65.71 8 47.62 4 54.79 5 49.30
mBERT-L2 5 65.03 10 45.48 4 56.49 6 48.97
COMET-2R 6 58.12 9 46.43 4 55.99 4 50.20
COMET-Rank 6 54.78 14 41.31 3 58.16 14 43.57
OpenKiwi-XLMR* 6 53.25 11 44.11 4 53.29 8 47.23
OpenKiwi-Bert* 6 52.01 16 39.98 3 59.55 11 45.13
prism 6 51.92 11 43.59 4 57.88 8 47.56
Yisi-combi 7 51.10 12 42.63 – – – –
bleurt-combi 7 51.10 12 42.63 – – – –
esim 7 50.72 14 41.35 4 52.90 10 46.19
chrF 7 49.86 13 42.05 5 47.70 13 44.09
EED 7 49.81 15 40.94 5 45.41 14 43.64
paresim-1 7 49.54 14 41.37 4 53.34 10 46.15
chrF++ 7 48.87 13 41.99 5 48.96 12 44.27
YiSi-1 7 48.79 12 42.70 4 52.74 7 48.01
CharacTER 7 47.71 16 40.45 5 48.84 13 44.01
BLEURT-0.1-en 7 47.43 15 40.96 4 57.29 7 48.26
YiSi-0 7 46.23 17 39.78 5 46.47 14 43.60
TER 7 45.98 16 40.15 6 39.68 15 43.34
parchrf++ 7 45.57 13 42.25 5 48.68 12 44.25
MEE 7 45.31 14 41.61 4 52.91 13 43.94
sentBLEU 7 44.41 15 41.07 4 50.45 15 43.37
parbleu 8 41.38 15 41.01 4 50.28 15 43.43
yisi1-translate 8 39.76 12 42.60 4 52.28 11 44.70
YiSi-2* 8 38.44 18 34.36 5 43.35 12 44.60

Table 4: 2020
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EN→DE EN→ZH

SPA acc∗eq SPA acc∗eq
Metric Rank Acc. Rank Acc. Rank Acc. Rank Acc.

MetricX-23-QE-XXL* 1 94.89 3 57.64 2 83.92 2 47.43
MQM-2022-2 1 94.49 6 55.55 2 80.82 3 47.05
MQM-2022-3 1 92.59 1 61.06 1 87.22 2 47.56
MetricX-23-XXL 2 92.34 2 59.27 1 87.69 1 48.43
COMET-22 2 91.63 5 56.51 2 84.08 3 46.74
COMET-20 2 91.28 9 52.42 2 80.56 7 43.81
CometKiwi* 2 89.51 7 53.77 3 75.36 8 43.21
BLEURT-20 3 88.20 7 53.33 3 77.80 7 43.84
metricx_xxl_MQM_2020 3 88.10 3 57.43 1 87.04 3 46.89
COMET-QE* 3 85.51 10 51.69 3 78.33 7 43.61
MS-COMET-22 3 85.37 8 53.13 1 85.18 6 44.92
CometKiwi-XXL* 3 84.43 7 53.27 2 81.25 2 47.28
UniTE 4 82.77 4 57.03 2 83.88 5 45.86
UniTE-src* 4 81.55 6 55.00 4 65.74 7 43.53
CometKiwi-XL* 4 81.13 8 52.73 2 81.56 4 46.33
YiSi-1 4 78.91 13 48.26 4 70.72 8 43.23
MATESE 5 78.03 7 53.48 – – – –
BERTScore 5 75.61 14 47.57 4 70.69 8 43.28
SEScore 5 75.16 12 50.45 – – – –
MS-COMET-QE-22* 5 74.44 12 50.37 2 78.84 9 42.51
MEE4 5 74.19 15 46.81 – – – –
chrF 5 73.05 16 46.38 3 72.67 10 41.87
f200spBLEU 5 71.04 15 46.84 4 71.76 10 41.85
HWTSC-Teacher-Sim* 5 69.68 13 48.10 4 68.43 11 40.53
DA+SQM 6 66.61 16 46.03 2 82.95 12 36.26
MATESE-QE* 6 65.42 11 51.06 – – – –
BLEU 6 65.00 15 46.51 4 67.31 13 34.28
REUSE* 7 37.95 17 43.58 5 33.46 12 35.89

Table 5: 2022
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EN→DE

SPA acc∗eq
Metric Rank Acc. Rank Acc.

GEMBA-MQM* 1 96.07 3 57.50
CometKiwi-XL* 1 95.65 4 57.20
CometKiwi-XXL* 1 95.51 3 57.56
MetricX-23-XXL 1 94.98 2 60.13
MetricX-23-QE-XXL* 1 94.82 1 61.44
COMET 1 94.59 5 56.12
BLEURT-20 1 94.35 5 55.63
docWMT22CometDA 1 94.26 6 54.59
Calibri-COMET22-QE* 1 94.18 12 48.48
XCOMET-QE-Ensemble* 1 93.99 3 58.30
sescoreX 1 93.94 6 55.22
XCOMET-Ensemble 2 93.75 2 59.91
cometoid22-wmt22* 2 93.66 3 57.60
DA+SQM 2 93.00 13 46.41
CometKiwi* 2 92.55 4 57.36
docWMT22CometKiwiDA* 2 92.44 6 54.36
MS-COMET-QE-22* 2 92.33 6 54.93
ESA-1 2 92.21 13 46.49
KG-BERTScore* 2 92.05 5 56.50
mbr-metricx-qe* 2 91.89 3 58.03
Calibri-COMET22 2 91.19 9 51.53
MaTESe 2 89.89 7 52.79
mre-score-labse-regular 2 89.78 8 52.51
mqm-2023-2 3 89.45 14 43.08
prismRef 3 89.32 11 50.18
f200spBLEU 3 89.20 8 51.86
ESA-2 3 89.14 11 49.77
YiSi-1 3 88.88 7 53.33
XLsim 3 88.56 9 51.32
BLEU 3 87.84 9 51.17
BERTscore 3 87.03 9 51.54
MEE4 3 86.55 8 51.85
eBLEU 3 85.37 10 50.50
tokengram_F 4 84.83 9 50.99
chrF 4 83.88 10 50.91
embed_llama 4 81.46 12 48.10
Random-sysname* 5 59.50 15 40.37
prismSrc* 6 27.58 14 42.33

Table 6: 2023
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EN→ES

SPA acc∗eq
Metric Rank Acc. Rank Acc.

CometKiwi-XXL* 1 86.12 4 67.24
gemba_esa* 1 85.72 3 67.68
COMET-22 1 82.37 5 66.60
bright-qe* 1 81.77 4 67.39
ESA 2 80.12 8 63.84
XCOMET-QE* 2 80.10 3 67.99
metametrics_mt_mqm_hybrid_kendall 2 80.10 1 68.95
XCOMET 2 79.96 2 68.67
MetricX-24-Hybrid 2 79.75 1 69.20
BLCOM_1 2 79.17 6 65.02
MetricX-24-Hybrid-QE* 2 79.09 2 68.92
sentinel-cand-mqm* 2 78.54 5 66.39
BLEURT-20 2 75.96 7 64.48
metametrics_mt_mqm_qe_kendall.seg.s* 3 73.29 4 67.49
CometKiwi* 3 71.74 5 66.51
PrismRefMedium 3 70.93 11 61.39
PrismRefSmall 3 70.52 10 61.51
YiSi-1 3 70.51 11 61.44
BERTScore 3 67.75 11 61.41
chrF 3 66.73 13 61.05
damonmonli 3 66.37 9 62.10
chrfS 4 64.31 11 61.37
spBLEU 4 63.19 12 61.08
BLEU 5 60.67 13 61.04
MEE4 5 60.36 10 61.57
sentinel-ref-mqm 6 44.19 13 61.04
sentinel-src-mqm* 6 44.19 13 61.04
XLsimMqm* 6 39.25 12 61.11

Table 7: 2024
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