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Abstract

Local SGD (i.e. Federated Averaging without client sampling) is widely used for solving federated
optimization problems in the presence of heterogeneous data. However, there is a gap between the
existing convergence rates for Local SGD and its observed performance on real-world problems. It
seems that current rates do not correctly capture the effectiveness Local SGD. We first show that
the existing rates for Local SGD in a heterogeneous setting cannot recover the correct rate when
the global function is quadratic. Then we first derive a new rate for the case that the global function
is a general strongly convex function depending on third-order smoothness and Hessian similarity.
These additional parameters allow us to capture the problem in a more refined way and to overcome
some of the limitations of the previous worst-case results derived under the standard assumptions.
We further extend our analysis to the case when all clients have non-convex quadratic functions
with identical Hessians.

1. Introduction

Machine learning (ML) models are getting bigger and bigger every day, along with the huge amount
of data needed to train such large models. Data confidentiality is also becoming more important for
security reasons, making the training process even more challenging. All this motivates us to use
Federated Learning (FL) for training our models in a distributed environment [7, 9]. Federated
Averaging (FedAvg) and Local SGD [11] allows a shared ML model to be trained across multiple
clients without having to share data with other clients. Although local SGD has been extensively
studied, the convergence results do often not correctly capture the effectiveness Local SGD in prac-
tice, as they are often a bit too pessimistic [12]. This work aims to bridge this gap by introducing
higher-order smoothness and Hessian similarity to allow for a more fine-grained analysis.

Related Work. The analysis of Local SGD have first been carried out under the assumption of
homogeneous (IID) data distribution [14]. State-of-the-art analyses also consider the heterogeneous
data case. Different measures are used to quantify the non-iid ness level of the data. One such mea-
sure is gradient dissimilarity, which comes in two flavors: Woodworth et al. [15] study Local SGD
under ¢ assumption (uniform bound on the gradient dissimilarity) and show a benefit of local steps
in the first term of their rate (optimization term). However, the works [4—6] proposed convergence
rates for Local SGD based on the (, assumption (bounded gradient dissimilarity only locally at the
solution) which is a weaker assumption. These analyses do not show a benefit of local steps in the
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optimization term. It is still unclear under which conditions we can have the benefit of local steps
and (, assumption at the same time. A recent work [10] provides a lower bound for heterogeneous
Local SGD in the convex setting, which shows that for this class of functions, it is not possible to
have the benefit of local steps and (,. There is also a line of research that argues that the gradient
similarity assumption is too pessimistic based on insights from experiments. Wang et al. [12] pro-
posed a new measure p termed average drift at optimum and showed that this measure is usually
close to zero in practice. They provided a rate for strongly convex objectives with access to full gra-
dients based on this parameter which can have a linear convergence rate if p is approximately zero.
Another paper [13] introduced a new parameter for measuring heterogeneity called heterogeneity-
driven Lipschitz condition on averaged gradients. They proposed a rate for non-convex functions
based on this new parameter which also has the benefit of local steps in the optimization term. An-
other less-discovered line of research is higher-order smoothness. Yuan and Ma [16] studied Local
SGD for convex and strongly convex objectives under third-order smoothness. However, this work
considers only the homogeneous setting. Glasgow et al. [1] used third-order smoothness for non-
convex functions in the homogeneous setting. In addition to higher-order smoothness, there is a
hope that we can make use of Hessian similarity. This measure has been used in some works like
[2—4] but it has not been utilized for Local SGD yet.

Our contribution. In this work, we derive a novel convergence rate for Local SGD that captures
the influence of higher order smoothness and Hessian similarity at the same time for the case that
the global function f is strongly convex. We show that Local SGD can benefit from local steps
when the client’s Hessians are similar (or identical, for the special case of quadratics). Although
some previous results for the quadratic case are known [1, 4, 15] we are not aware of any previous
results for quadratic functions that show this speedup even in the heterogeneous setting (i.e. with
positive gradient dissimilarity). We further show that this speedup does not require convexity and
does also hold on non-convex quadratics.

2. Setting

The goal in FL is to learn a shared model among M clients that has a good performance on each
client’s data for certain ML tasks. Each client m € [M] has only access to its own dataset (modeled
by a local objective function f,,: R — R) and samples one data point at each time step. At
each round, every client performs exactly K steps of SGD on its data and then communicates its
parameters to a central server for averaging. We have a total of R rounds which implies that each
client performs a total of 7' = K R steps of SGD. The problem can be formulated as below:

x€R4

1 M 1 M
min [f(x) = M Z fm(X) = M Z ]EﬁmNDm fm(x7§m) ) (D
m=1 m=1

where D,,, denotes the data distribution on client m and &, denotes a sample of data drawn from
D The Local SGD [11] update formula can be written as:

o X e ift+1¢ Ty
t+1 — . ,
ﬁ ZmE[M} (xi* —ng"), ift+1¢€ Iy,

where g;" = V fp,(x]"; &) and Zg,y, is a set of synchronization indices (we will always use Zgyn, =
{Kn | n € N} in this work). Now we introduce a set of assumptions that will be used in this work.
For each theorem, we will explicitly mention which assumptions are used.
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Assumption 1 (Smoothness) A function f is called to be L-smooth if for any x,y € R¢ we have

F3) < 569 + V1) Ty =) + o lx— v @

Assumption 2 (Strong Convexity) A function f is called to be yi-strongly convex if for any x,y €
R? we have

2
Ellx = y[* + 97607 (y = %) + £(x) < £(3). )
For the case of u = 0, the function [ is just convex.

Smoothness, convexity and strong convexity are very common assumptions that are used in many
previous works [4, 5, 15]. Note that some works only need the global function to be convex while
some require every f,, to be convex. The same argument holds for strong convexity as well.

Assumption 3 (Lipschitz Hessian) Function f has a H Lipschitz Hessian if for any x,y € R¢
we have

[92¢60) ~ 213 < B2 e - v ®

)7

The third-order smoothness is less common in the literature and is used by a few works like [1, 16].
Note that it can be the case that H < L.

Assumption 4 (Bounded Noise Variance) For every client m € [M] the variance of noise im-
posed by SGD is uniformly upper bounded

By, |||V fon (K55 6m) = V fon ()| < 02 ©)

Assumption 5 (Gradient Similarity) We assume that the difference between the local gradients
and global gradient is bounded by C for any x € R? .
2 —
sw\Wﬁz - V)T < ¢ (7
me[M
Assumption 6 (Gradient Similarity at Optimum) We assume that the difference between the lo-
cal gradients and global gradient is bounded by (, for x = xX* € argmin,cpa f(x).
2 2
sup Hme )—Vf(x*)H = sup Hme(x*)H <. (8)
me[M me[M]
Both Assumptions 5 and 6 have been widely used in different works for measuring heterogeneity
[4-6, 15]. Assumption 6 is a special case of Assumption 5 and the latter is stronger assumption.
In addition, for using Assumption 5 we should be careful as for example it does not hold for the

class of quadratic functions unless we can show that all the parameters generated by SGD in the
optimization trajectory remain in a ball with a certain fixed radius.

Assumption 7 (Hessian Similarity) We assume that the difference between the local Hessians and
global Hessian at any point x € R% is bounded by 6.

sup {| V2 fin(x) = V2 S (x)[}: < .- ©)
me[M]

This similarity has been used in a few works such as [3, 4]. Note that if f,, is L-smooth, then we
have that 6, < 2L. In general, 8y, can be much less than L and even can be zero while L is very
large.
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3. Convergence Rates

In this section, we provide our convergence rates for Local SGD: (1) for the case that f is a general
strongly convex function. This new rate is based on third-order smoothness and Hessian similarity
and (2) for the case that all clients are quadratic non-convex functions with identical Hessians.
We use intuition from simple quadratic functions to show that even for this simple case, existing
convergence rates cannot capture the effectiveness of Local SGD while our new rate can recover
this specific case. One of the main questions in FL is whether can we benefit from more local steps
and less communications. And under which conditions can we beat mini-batch SGD? We start by
showing two extreme cases where we assume that each client is a quadratic function. In these two
scenarios, we are able to see the benefit of local steps.

Convex quadratics with identical Hessians: In this case, we have that §;, = 0 so the global op-
timum x* is simply the average of clients’ optima so x* = ﬁ 2%21 x* where x7"* is the optimum
of client m. It is clear that we only need K — oo and R = 1 to achieve the global optimum. This
is a case in which we should see the benefit of local steps. Having this benefit is important in many
real-world applications as local steps are usually cheap to compute while communication comes at
a high cost. So we would rather perform more local steps and less communication. However, none
of the rates proposed by [5, 6, 15] can capture this setting. The reason is that these papers lack
parameters for controlling the similarity between Hessians and measuring higher-order smoothness.
We will recover this result as a special case of our Theorem 1 by introducing new parameters ¢y, and
H in our convergence rate.

Convex quadratics with identical optima: In this case, we have that (, = 0. It implies that
Vm € [M],x}* = x*. So, it is clear that we need KX — oo and R = 1 to reach the global optimum.
This case also cannot be recovered from the current rates [4—6] by just setting (, = 0. We conjecture
that for the case that each f,,, is quadratic and (, = 0, we should have a rate of O(%R) which has the
benefit of local steps. However, working with the weaker assumption of local gradient dissimilarity
(¢,) is much more challenging than assuming uniformly bounded gradient diversity (). That is why
we focus on the ¢ assumption in this work and leave the extension to (, for future works.

We now state our main result:

Theorem 1 Let Assumptions 3, 4, 5 and 7 hold. Also consider each f,, to be L-smooth and let
the global function f to be p-strongly convex. Also let on — X*H2 < B2. With a learning rate of
n < 2, we have the following convergence rate for Local SGD on heterogeneous data.

6T)

T-1
1 _ . LB? oB
= — <
Tt: E[f(xt) f(x )] cz(KR—i-\/m—i-w(éh)—Ho(H)), (10)
W(0h) = (365%02)1/4 (365%52)1/4 (B16202)1/3 (B46202)1/3 o

h): K2/4R3/4 K1/4R2/3 u1/3K1/3R2/3 M1/3R2/3 )

(H) = (BloMH204)1/6 (BloMH2§4>1/6 (BSMH204)1/5 (BSMH2§4)1/5 12

¥ T K3/6 R5/6 K1/6 R5/6 u1/5K2/5R4/5 M1/5R4/5 ’

where co is an absolute constant.

We define two extra functions to simplify the notations for the extra terms we have in our rate. The
functions 1 (d;) and ¢(H ) are defined to capture the terms that are affected by J;, and H. To the
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best of our knowledge, this is the first work that analyses Local SGD with heterogeneous data, using
Hessian similarity and third-order smoothness simultaneously. The work [16] proposed a rate for
Local SGD for convex and strongly convex cases based on H but with homogeneous data. Note that
for our Theorem 1, we only need the global function f to be strongly convex in contrast to some
other papers that require each f,, to be strongly convex [4, 6, 15] which is a stronger assumption.
One problem with the current analysis based on ( is that this parameter can get very large. How-
ever, in our rates, wherever we have C_ , it is multiplied by either §;, or H, which can be very small
or even zero. In contrast, in other works like [15], the term L appears in their rates, which can be
significantly larger than §;,¢ or H( in our rates.

Corollary 2 (Convex Quadratics with identical Hessians) Assume that the global function f is
quadratic so H = 0 which yields ¢(H) = 0. Also consider the clients to have identical Hessians
so 0, = 0 and ¥ (0y) = 0. Then we have the following convergence rate for Local SGD on
heterogeneous data (we do not make an assumption on ():

1 .1 _ LB? 0B
T;?ﬁw%%&>gKR+ﬁwm. (13)

It is clear that for converging to the global optimum x*, we need K — oo and R = 1. Now we can
see the benefit of local steps in this rate. Note that in our rate, only the global function f needs to be
a quadratic function while clients f,;,, can be any arbitrary functions with identical Hessians. This is
much weaker than assuming every client f,, to be a quadratic function.

Theorem 3 Ler Assumption 4 hold and suppose all clients to be arbitrary (possibly non-convex)
quadratic functions with identical Hessians, which yields §,, = 0. Also let f(xo)— f(x*) < A. With
a learning rate of n < L, we have the following convergence rate for Local SGD on heterogeneous
data:

-1

15 LA
7 2 E[[vs 6 W) < 4+ = (14)
t=0

Previously, the work [1] proposed a rate for the non-convex case which is based on third-order
smoothness but with homogeneous data For the special case that functions are quadratics which

implies H = 0 they get a rate of (9( %5 T \/T) However, from the above theorem we know
that we should be able to get the same rate even in the heterogeneous setting. We leave the rate for
general non-convex setting based on &5, and H to future works.

4. Conclusion

In this work, we introduced Hessian similarity and third-order smoothness as new controllable pa-
rameters for analyzing Local SGD with heterogeneous data. Our rate only needs the global function
to be strongly convex and the clients to be just L-smooth. We also showed that non-convex quadrat-
ics with identical Hessians can benefit from local steps in the heterogeneous regime. Our new result
can bridge the gap between theory and practice as for example, the widely used MSE loss function
for linear regression tasks is third-order smooth.
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Appendix A. Proofs

Below, you can see the summary of the notations used in this paper.

Table 1: Summary of symbols used in this paper.

Symbol Usage

x;" Parameters of client m at time step ¢.
g Stochastic gradient on client m at time step .

Xy Average of iterates at time step . ﬁ Z%zl x3"
x Optimum of client m.

x* Global optimum.

¢ Gradient similarity (Assumption 5).

Cx Gradient similarity at optimum (Assumption 6).

o Uniform upper bound on the noise of stochastic gradient.
K Number of local steps.

R Number of rounds.

H Lipschitz hessian parameter (Assumption 3).

o Hessian similarity (Assumption 7).

B x| < B

f(x0) = f(x*) < A.
T Total number of iterations. T' = KR
c1,Co Absolute constants for dropping numbers in proofs.

E, Expectation conditioned on x}, ..., x}M.

E Unconditional expectation.

We first introduce some useful lemmas which will be used throughout the proofs.

Lemma 4 For a convex function f we have:

1 M 1 M
(57 D0 %m) <97 D Fxm) (1)
m=1 m=1
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Lemma 5 For a set of M vectors ay, as, ...,ay € R* we have:

M 9 M
| zlamH gMZZlHamH2 (16)

Lemma 6 For a set of M vectors aj,as,...,ay € R? we have:

Z 4 <M< %&)2 (17)

m=1

Lemma 7 For two arbitrary vectors a,b € R% and v > 0 we have:

Yoz, 1 2
—a'b < _|al]” + gHbH (18)
Lemma 8 For two arbitrary vectors a,b € R% and v > 0 we have:
1
la+ b S(1+;)H3H2+27Hb|!2 (19)
Lemma 9 For any random variable X we have:
B[ - ELx)?] < E[1x|] )
Lemma 10 Let Assumption 4 holds. Then we have:
M M
1 1 2 2
Eel||27 o o = 57 - Vi) ] <% @1)
m=1 m=1
Lemma 11 Let f be a convex and L-smooth function. Then for any X,y € R% we have:
1
S IVF6) = V)" < £(y) = 160 + (V). x ) (22)

Lemma 12 ([3, Lemma 3]) Let Assumption 7 holds and f(x) = ﬁ Z%:l fm(x). Then for any
x,y € R% we have the following inequality:

IV fin(x) = Vf(x) + VI(y) = Vi) < |x -y (23)

Lemma 13 ([8, Definition 2]) Let function f satisfies Assumption 3, then for any x,y € R% we
have the following inequality:

|95 = V5) ~ V) x—3)]| < 5 [~ 31 @)

Lemma 14 Let Assumptions 4 and 5 hold and the global function f be convex. We can upper
bound the consensus error =y using the Lemma from [15]. For any fixed learning rate n; = n we
have:

1

M
v= 22 3 | < 3K 4 6K (25)

m=1

[1

Where xi" is the parameters of client m at time step t and X, = M Z X
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A.l. Proof of Theorem 1

Proof We start with the distance from the optimal point and taking the conditional expectation on
the previous iterate x}*, Vm € [M] we have:

E; Hitﬂ — X*HZ

M M M ,
= Ei[|% = x" = 15 D V() + 25 > V) = 20 > |
m=1 m=1 m=1
(Lemma 10) M 252
2 - 2 S e+
m=1
_ 2 ol 1 M 2 2n M _ 77202
= =P 42| D0 V)| = 5 Y (= V) 2 26)
m=1 m=1
T T
For the term § we have:
1 Y 2
t=n?| 57 D Vialx") = VFGR) + V()|
m=1
(Lemma 5) M
T || S0 V) - V| 202w s @)
m=1
For the first term in (27) we have:
of| 1 - N
27| == D7 V") — VI ()|
m=1

1 & ) ) 1 < 2

= 2| — 3 (V) = V1) + 91 (x) = V() + 37 3 97 6e7) = Vi)
=1 m=1

S [~ s+ 9150 = V| 4 3w - s
m=1

< a5 o By 30 Vo) -9 w0
m=1

10
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For the second term in the above inequality we have:
1 < 2
|47 0 V)~ V(%)
m=1

1 < M 2
= || 57 S (VFG) = V() = V()T (" =) + 57 D0 VAF )T %) |

m=1 m=1

(Lemma 4)

"’ - 2
< M;va — V(%) = V()T (" %)

(Lemma 13) H M B
= leHXT—XtW

For the second term in (27) we also have:

N2 _ 2
27|V (x)||” = 20%||V f(%e) = VI (x|
(Lemma 11) 9 B N
< PL[f(x) — 1]
Now by putting everything together we can bound the term 7 as follows:
t < APE S+ MEPPE} + 4P L[ f(x) — F(x)
(Lemma1d) 12 o 45272 752 6 27-2 4 6 2 474 2 -
< 120%050°K + 2406, K + 180" MH Ko™ + 720" MH*K*(" + 4n°L| f(x¢) — f(x¥)

Now we bound the term 7.

T

Il

|
=y
NE

(%= %"V fu(x))

3
Il

Il

|
=| Y
NE

<5<t — X" Vin(x") = Vf(xe) + Vf(it)>

3
Il

Il

|
=y
NE

<5<t - x*, Vf(f(t)> — 277<5<t - x¥, % i Vfm(x{") — Vf(it>>
m=1

3
I

(4,Lemma 7) 9 2 nl M 2
< —am[s) — 16 ke P e P4 L 7 DD V) - V)|
m=1

~

11
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:—%U@o—ﬂfﬂ+Zh@ff@MAﬁw—VAﬁw+VAﬁwwmeD+

M m=1
(Lemma 12 2 M
T ) - )] + IS S (VA6 - V() - V) TG - x)) +
v )
TDIRRLINCHEE]
m=1

(Lemma 4,13)

< -2 f) - £ +

(Lemma 14) - " 6 309, 9 12 55 959 0 5 9.2 4 18 5 2 44
< —277[f(xt)—f(x )}+;n GKo” + PR P MEP K0t - S MEP K

2n62 MH?
n Et+n

=2
4 t

Now we plug T and {7 into (26) and setting n < ﬁ and taking the unconditional expectation we
have:

nE[f(%) - /(x|

2 2
+ T 1900262 K + 241202 K2 + 180 MH2 K20 + 1208 M H2 KAC4 4

<E
- M

=" = [l = x|

6 12 5 D 18 -
P2 K o + P ol K20 + 2P MH2K 0% + — P MH2 K¢
H H H H

Now we divide by nT" and sum over ¢ and we have:

B2 2 _ _
E[ F(%) — f(x*)] <iEt % 12038202 K + 245802 K2C2 + 18P MH2K 20 + 721 MH2KAC4 4

6 12 - b 18 _
PR Ko? + 20K + 2 MH? K20t + St MH2 KA
I I I I

With this choice of learning rate

(1 BYM , B2 N4, B2 o\ B? 1/6 B? 1/6
e A gﬁ’<5§a2KT) ’<5gg2K2T) ’(MH2a4K2T) ’<MH254K4T) ’

2 2 2 2
<5,%Z§KT) 1/3’ <(5,2££{2T> 1/3’ (MHgf‘lK?T) 1/5’ <MH/;§1K4T) 1/5}

12
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We get a rate of:

= Y E[fx) - £ (28)

=0
LB? oB (365202)1/4 (365%52)1/4 (BIOMH2O'4)1/6
KR vVMKR TR KUARe3 T K36 a6

(BIOMHQCTAL)I/(S (345%02)1/3 (345}2162)1/3 (BSMH2O.4)1/5 (B8MH2<4)1/5>

K1/6 R5/6 ul/3K1/3R2/3 u1/3R2/3 u1/5 K2/5 Ra/5 + 11/5 RA/5

Where c; and cz are absolute constant numbers that are used for simplifying the rates and dropping
some constant numbers in the proof. They don’t have any effect on the convergence rate. |

A.2. Proof of Theorem 3

Proof For the proof of this section, we assume that our quadratic functions are in the form of:

1
fm(x) = §XTAX +b,x+d,,

T (29)
f(x):§x Ax+b ' x+d

Where b = 2 M bp,d= = M d,, and A € R¥ is an arbitrary symmetric matrix and
x,b,d € R%

We start by the L-smoothness property of global function and by using the fact that X;1; =
Xt — 17 SM_ g™ we have:

F1) < £+ V) (Rt — %) + 5 [%e1 — 5l

= (&) = V() 7 % 9+ ?ZLHJ\Z;A:QTHQ

By taking the conditional expectation on the previous iterate x;", Vim € [M] we have:

E [ f(x < f(x ’TnM ’”UQLIEle2
(o)) < 60 = VI 57 5V Fuloe?) + 5 By HM > o

(Lemga 10) T M

S ) = VIE) 5y 30 Ve + L MZme |+

2

_ _ - n*L, .2 n*0’L

:f(xt)—an(xt)T(Axt+b)+7HAxt+bH + 57
:Vf(iz) ZVf()_(t)
2 2

_ n°o°L
= 1) — | V)| + T |V s+ TR
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ON THE CONVERGENCE OF LOCAL SGD UNDER THIRD-ORDER SMOOTHNESS AND HESSIAN SIMILARITY

By choosing 77 < 1, rearranging the terms and taking the unconditional expectation we have:

2 2 _ _ nLo?
E|Vf(x)]” < *E[f(xt) — f(Xeg1) | +
n M
Then we sum over ¢ and divide by T" and we have:
ZEHW 2 < 22 4 1k
nT M
By the choice of learning rate in the following way we get:
R MA
=min¢ —,\/ ——
7 L'V I7s?
Which results the following convergence rate:
A LA
— E|V
LS eVl <+

14
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