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ABSTRACT

Retrieval-augmented generation (RAG) enhances large language models (LLMs)
by integrating external knowledge sources to address their limitations in accessing
up-to-date or specialized information. A natural strategy to increase the likelihood
of retrieving relevant information is to expand the number of retrieved documents.
However, involving more documents could introduce significant noise, as many
documents may be irrelevant or misleading, thereby reducing the overall accuracy
of the generated responses. To overcome the challenge associated with handling a
larger number of documents, we propose WinnowRAG, a novel RAG framework
designed to systematically filter out noisy documents while preserving valuable
content – a process we refer to as winnowing. WinnowRAG operates in two
stages: In Stage I, we perform query-aware clustering to group similar docu-
ments and form distinct topic clusters. Each cluster is assigned to an LLM agent
for generating a unique answer. In Stage II, we perform winnowing, wherein
a critic LLM evaluates the outputs of multiple agents and iteratively separates
useful documents from noisy ones. To retain useful documents when discarding
agents, we propose two strategic merging techniques to ensure that only rele-
vant knowledge is used for generating the final response. Crucially, WinnowRAG
is model-agnostic and does not require any model fine-tuning, making it easily
adaptable to various tasks. Extensive experiments on various realistic datasets
demonstrate the effectiveness of WinnowRAG over state-of-the-art baselines.

1 INTRODUCTION

Large language models (LLMs) have achieved significant success in various tasks such as text gen-
eration and question answering (Brown et al., 2020; Team et al., 2023; Dubey et al., 2024). While
LLMs can store vast amounts of knowledge within their parameters, they exhibit weakness in spe-
cific knowledge-extensive tasks (Yoran et al., 2024). For example, when the input queries demand
up-to-date information or out-of-domain knowledge, which is not present in the pre-training cor-
pus (Shuster et al., 2021), LLMs would struggle to provide accurate answers (Zhang et al., 2023).

To overcome limitations in handling knowledge-intensive tasks, retrieval-augmented generation
(RAG) has been proposed to improve LLMs by integrating external knowledge sources (Asai et al.,
2023b; Zhao et al., 2024). Specifically, RAG retrieves relevant documents from external sources
and incorporates them into the LLM’s input, in order to help LLMs generate accurate responses in
knowledge-intensive tasks (Yu et al., 2023). Consequently, RAG could benefit from the vast and
consistently updated knowledge base to provide factual and timely knowledge. RAG frameworks
typically retrieve multiple documents to ensure the inclusion of relevant information (Petroni et al.,
2021). However, this approach can also introduce irrelevant or incorrect documents, which may
hinder the LLM’s ability to extract accurate information (Jiang et al., 2023; Jin et al., 2024).

In practice, retrieving more documents does not necessarily improve the RAG performance. As
shown in Fig. 1, increasing the number of retrieved documents raises the probability that the correct
information is included – enhancing the recall rate. However, beyond a certain threshold, adding
more documents introduces significant noise, which can negatively impact the accuracy of the final
answer. This presents the challenge in handling large sets of documents: while involving more docu-
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ments may have a theoretically higher upper bound of accuracy, it simultaneously introduces greater
challenges in processing them effectively. This trade-off explains why most existing approaches
limit the number of retrieved documents to fewer than 20 (Wei et al., 2024; Wang et al., 2024c).
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Figure 1: The accuracy results of the re-
call (i.e., upper bound), direct input, and
WinnowRAG on the NaturalQ (Kwiatkowski
et al., 2019) dataset with different numbers of
retrieved documents.

In this work, we propose to leverage large sets of re-
trieved documents by strategically filtering out noisy
ones while retaining those that are useful, a process
we refer to as winnowing. ❶ To handle a large num-
ber of documents, we first introduce query-aware
clustering, which groups documents based on sim-
ilar perspectives or information related to the query.
This allows us to identify a range of topics within the
retrieved documents, enabling filtering at the topic
level rather than processing each document individ-
ually. This design significantly improves efficiency.
Moreover, each cluster is assigned an LLM agent to
provide a cluster-specific answer. ❷ To avoid dis-
carding useful information, we propose a strategic,
merging-based winnowing approach that filters out
noisy documents while selectively retaining relevant
ones. In particular, only a subset of documents from
each cluster is discarded, allowing us to refine the information extracted from a large document
set. Throughout the winnowing process, we employ a critic LLM to evaluate the noisiness of an-
swers generated from document clusters and guide the filtering process. Additionally, WinnowRAG
requires no task-specific supervision, relying solely on a multi-agent framework with pretrained
LLMs. Without any additional tuning, WinnowRAG can be easily adapted to a wide range of tasks.
Our contributions are summarized as follows:

• Framework: We introduce WinnowRAG, a novel retrieval-augmented generation framework
that clusters documents by topic and progressively filters out irrelevant or noisy documents using
LLM agents. This structured filtering enhances the quality of the retrieved information.

• Innovation and Adaptability: WinnowRAG leverages the increased number of retrieved doc-
uments while minimizing the influence of irrelevant or incorrect content through its filtering
(i.e., winnowing) mechanism. Notably, it operates without task-specific supervision, utilizing a
multi-agent approach with pretrained LLMs. This eliminates the need for fine-tuning, making it
versatile and easily applicable to a wide range of tasks.

• Experiments and Results: Through extensive experiments, we show that WinnowRAG con-
sistently outperforms existing retrieval-augmented generation methods on several knowledge-
intensive tasks. These results highlight its effectiveness in managing noisy data and boosting the
performance of retrieval-augmented generation.

2 RELATED WORK

Retrieval Augmented Generation. Large language models (LLMs) struggle with domain-specific
or knowledge-intensive tasks (Kandpal et al., 2023), often producing ”hallucinations” (Zhang et al.,
2023) when dealing with queries outside their training data or requiring up-to-date information.
Retrieval-Augmented Generation (RAG) addresses this by retrieving relevant documents from ex-
ternal knowledge bases, reducing the risk of generating incorrect content (Lewis et al., 2020; Izacard
& Grave, 2020; Asai et al., 2023a; Borgeaud et al., 2022; Guu et al., 2020; Gao et al., 2023). Re-
cent works have primarily focused on enhancing precision and recall while minimizing irrelevant or
toxic outputs that compromise the quality and reliability of responses (Shi et al., 2024; Ma et al.,
2023; Jiang et al., 2023; Baek et al., 2023; Xu et al., 2023; Shi et al., 2024; Wang et al., 2024b; Luo
et al., 2023). Among them, Self-Reflective RAG (Asai et al., 2023b) fine-tunes a general-purpose
LLM to generate specific tags for self-reflection. Speculative RAG (Wang et al., 2024c) adopts
instruction-tuned LLMs as drafters to offer diverse perspectives while reducing input token counts
per draft. Moreover, InstructRAG (Wei et al., 2024) applies self-synthesized rationales as supervised
fine-tuning data to train the model. However, these approaches require prior task-specific knowledge
and additional instruction-tuning of LLMs, which is resource-intensive and limits their adaptability
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across different domains. In contrast, we harness the potential of LLMs by assigning documents to
agents and filtering out irrelevant content within a multi-agent winnowing framework. Our proposed
method, WinnowRAG, is highly adaptable across domains without requiring task-specific signals or
additional fine-tuning.

LLMs as Critics. Similar to humans, LLMs exhibit the ability to provide natural language feedback
or critique, either based on their own internal knowledge (Wang et al., 2023; Zheng et al., 2024) or
by utilizing external tools (Gao et al., 2022; Gou et al., 2023). Previous research has primarily
focused on using such critiques to refine and improve the model’s initial outputs on its own (Madaan
et al., 2024; Shinn et al., 2024), or in multi-agent frameworks through discussion (Lu et al., 2024;
Wang et al., 2024a; Chen et al., 2023) and debate (Du et al., 2023; Michael et al., 2023; Xiong et al.,
2023; Khan et al., 2024; Subramaniam et al., 2024). To the best of our knowledge, RA-ISF (Liu
et al., 2024) has the most similar framework design to ours in the field of RAG by utilizing self-
feedback to iteratively filter out irrelevant retrieved documents. However, while RA-ISF focuses on
denoising through query decomposition, our method directly filters the initial documents using a
multi-agent framework. In our approach, LLM agents are assigned different groups of documents to
form various perspectives. During inference time, a critic LLM progressively identifies agents with
irrelevant or harmful content, enabling explicit denoising of the retrieved information with natural
language feedback and reducing the risk of generating incorrect or misleading outputs.

3 METHODOLOGY

In this section, we first formulate the problem setting in Section 3.1 before introducing the pro-
posed framework, WinnowRAG, which effectively filters irrelevant documents without relying on
task-specific knowledge. As illustrated in Figure 2, WinnowRAG operates through two stages:
query-aware clustering (Stage I) and multi-agent winnowing (Stage II). In Stage I (§ 3.2), the re-
trieved external documents are clustered into groups based on their perspectives relevant to the
query, with each group assigned to an LLM agent. In Stage II (§ 3.3), agents with similar perspec-
tives are merged to form super-agents, consolidating their respective documents. These super-agents
then participate in a multi-round reflection process, called winnowing, where a critic LLM provides
feedback to refine the results while filtering out irrelevant information. During each round, the critic
LLM evaluates the agents’ responses. Agents that are producing misleading outputs, from the critic
LLM’s perspective, will be merged with the remaining agents. A key challenge in both merging
processes is to balance the inclusion of relevant documents while eliminating noise. To address this,
we leverage the embedding space and design two merging methods, as detailed in Section 3.4.

3.1 PROBLEM FORMULATION

We follow the standard RAG setting (Wei et al., 2024; Asai et al., 2023b), where each task T
consists of a triple (Q,A,D). Given a question-answer pair (q, a) ∈ (Q,A), a retriever R retrieves
supporting documents DR ⊆ D from the external knowledge base D. We aim to filter out noisy
documents in DR such that the LLM can better generate the response a′ containing the correct
answer based on the retrieved external knowledge, i.e., to maximize E(q,a)M(a, a′), where M
represents a specific evaluation metric, e.g., accuracy.

3.2 STAGE I: QUERY-AWARE CLUSTERING

In this section, we provide a detailed explanation of the query-aware document clustering process.
The key motivation is that the external documents often contain diverse and noisy content (Wang
et al., 2024c). By clustering the documents based on their relevance to the query, each group will
have a more consistent perspective regarding the query. This enables each LLM agent to provide
relatively consistent answers when using a specific group of documents as input. Specifically, we
first cluster the retrieved documents into groups using query-aware embeddings and the K-Means
clustering algorithm (Anderberg, 2014).

To ensure documents with similar perspectives on a query are grouped together, given a query q and
a set of retrieved documents DR = {d1, d2, . . . , dN} from the external database, we encode each
document alongside the query using a structured prompt. This representation is then processed using
the K-Means algorithm to group documents with related viewpoints. The clustering is performed
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Figure 2: The overall process of our WinnowRAG framework. We first perform query-aware clus-
tering to group documents with similar semantic meanings with respect to the query. In Stage II,
we first perform agent initialization to form multiple super-agents that will be used in the following
winnowing steps. During multi-agent winnowing, we gradually discard agents with incorrect an-
swers, guided by the critic LLM, while retaining useful documents.

as follows:

emb(di) = f(Prompt(q ⊕ di)), i = 1, 2, . . . , N.

{D1,D2, . . . ,DK} = K-Means(emb(d1), emb(d2), . . . , emb(dN )).
(1)

Here f(·) represents the text embedding model (e.g., Sentence-BERT (Reimers, 2019)); emb(di) is
the query-aware embedding for the document di; Dj is a cluster of documents with similar contents;
K is a hyper-parameter that controls the number of clusters. We then assign each document group
Dj to an LLM agent Aj ∈ {A1, A2, . . . , AK}, which is a general pretrained LLM. At this stage, we
typically use a relatively large value of K (e.g., K = 10) to ensure that different clusters contain
divergent views. Agents assigned to a noisy cluster will produce responses that deviate from the
correct answer, making it easier to identify and eliminate them in the subsequent winnowing stage.

3.3 STAGE II: MULTI-AGENT WINNOWING

▷ Super-Agent Initialization. To remove redundant agents and reduce further winnowing rounds
for efficiency, we first query the agents from Stage I to provide answers to the query based on their
assigned documents (prompt provided in Appendix B.1). Next, we introduce a critic LLM, which
is a pretrained language model, to summarize the distinct responses from them without making
judgments (prompt provided in Appendix B.3). We then merge any pair of agents with similar
answers into a super-agent. When merging, our goal is for the super-agent to retain documents that
adequately represent the perspectives of both original agents. To achieve this, we operate in the
embedding space and propose the Ellipse Merging strategy. Intuitively, when two agents arrive
at similar conclusions, their document embeddings should be closer. We define an ellipse in the
embedding space, with its foci close to the centroids of the two agents’ document embeddings,
and select the documents within the ellipse as documents for the super-agent. In Section 3.4, we
introduce the ellipse merging process in detail.

▷ Multi-Agent Winnowing. After the super-agent initialization process, we have K ′ super-agents
A′ = {A′

1, A
′
2, . . . , A

′
K′}, where K ′ is the number of distinct responses determined by the critic

LLM and K ′ ≤ K. Each super-agent A′
j now has a different perspective from others to the query.

We then propose the multi-agent winnowing stage to harness the critic LLM’s ability to identify
potential errors in the super-agents’ outputs, thereby producing more consistent and precise answers.

In multi-agent winnowing, we perform maximally M rounds of winnowing. During each round of
winnowing, the super-agents act in parallel, each presenting an argument based on the critic LLM’s
feedback (from the previous round) and its current documents. To provide enough supportive infor-
mation to the critic LLM to make decisions, each argument includes three components: (a) evidence,
extracted from the documents of that agent, (b) rationale, explaining how the evidence supports the
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conclusion, and (c) the final answer. The detailed prompt is provided in Appendix B.2. The critic
LLM oversees and manages the entire winnowing process by taking one of the following actions:
(a) concluding the winnowing and obtaining the final answer a′, or (b) continuing the winnowing by
identifying incorrect super-agents, denoted as A′

inc. If the winnowing process concludes, the critic
LLM will output the final answer a′. If the critic LLM decides to continue, each super-agent A′

j in
A′

inc is merged with the closest remaining agent A′
i, i.e.,

A′
i = argmin

A′
k∈A′\A′

inc

|µ′
i − µ′

k|, (2)

where µ′
k is the centroid of the super-agent A′

k’s document embeddings.

When merging the incorrect super-agent A′
j with a remaining agent A′

i, our goal is to retain helpful
documents from A′

j’s documents while preventing noisy ones from being assigned to A′
i for the next

round of winnowing. To achieve this, we propose the Hyperbola Merging strategy. Specifically,
we define a hyperbola in the embedding space, using the foci close to the centroids of the two super-
agents’ document embeddings, µ′

i and µ′
j . Document embeddings that fall on the opposite side of

the hyperbola relative to µ′
j will have a smaller distance to µ′

i by a fixed threshold. Assigning these
documents to A′

i for the next round of winnowing ensures a more specialized and complementary
merging process while explicitly filtering out noisy documents. We describe this hyperbola merging
process in detail in Section 3.4.

After each round, the rationales provided by the critic LLM will be handed over to each remaining
super-agent. The detailed prompt is provided in Appendix B.4. Notably, this enables the super-
agents to incorporate feedback from the previous round and generate improved responses in the
subsequent round.

3.4 MERGING STRATEGIES

Stage II involves two types of agent merging processes. During the initialization of super-agents, we
focus on merging agents with similar views, while in the winnowing process, incorrect super-agents
are merged into the remaining ones. Both processes require balancing the inclusion of relevant doc-
uments with the elimination of noise. To address this challenge, we propose two merging strategies
in the embedding space.

▷ Ellipse Merging. This strategy is used to merge agents with similar answers in the super-agent
initialization step. We denote the K agentsas {A1, A2, . . . , AK}, and their corresponding docu-
ments as {D1,D2, . . . ,DK}.

Suppose that the answer of agent Ai is sufficiently similar to that of Aj , decided by the critic LLM.
We aim to merge these two agents by merging the documents of these two agents, i.e., Di and Dj .
Intuitively, since these two agents bear similar answers, their documents should also bear similar
meanings. Therefore, to retain the documents that are mostly helpful, we propose to select docu-
ments that are close to both clusters. As such, we define the set of merged documents, Di,j , based
on their distances to the centroids of cluster Di and Dj as follows:

Di,j = {x | dAi
(x) + dAj

(x) ≤ Tij , x ∈ Di ∪ Dj},

where Tij =
1

|Di|+ |Dj |
∑

x∈Di∪Dj

(
dAi

(x) + dAj
(x)

)
, and dAi

(x) = ||emb(x)− µi||2. (3)

Here µi is the centroid of the i-th cluster, i.e., µi =
1

|Di|
∑

x∈Di
emb(x). In the above equation, we

set a threshold Tij , such that the documents with a summed distance to centroids µi and µj less than
Tij are included in the merged set. As a result, the documents that are included in this defined ellipse
will be kept during merging. To determine the value of the threshold Tij , we resort to selecting the
summed distance to both centroids, averaged across documents in the two clusters. This describes
the average summed distance of any document to both centroids. Thus, documents with a summed
distance less than Tij are more likely to be close to both clusters.

▷ Hyperbola Merging. At the end of each winnowing round, we aim to merge the documents of
two agents, one of which is considered incorrect by the critic LLM. Rather than selecting documents
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Table 1: Dataset statistics and the corresponding retrieval models.

Dataset Train Test Retriever Recall@5 Recall@20
Natural Questions 79,168 3,610 DPR 68.8 80.1
TriviaQA 78,785 11,313 Contriever 73.5 82.7
PopQA 12,868 1,399 Contriever 68.7 78.2
ASQA 4,353 948 GTR 82.2 87.5
2WikiMQA 167,454 12,576 BM25 33.2 62.3

that are close to both clusters, as in Ellipse Merging, we now select documents that are close to the
potentially correct agent while sufficiently far from the other. This strategy helps in identifying
documents that are more likely to be helpful but clustered into the incorrect agent.

Suppose that super-agent Ai is considered potentially correct, and another super-agent Aj is consid-
ered incorrect. We aim to merge their documents in a way that emphasizes documents that are close
to Ai but distant from Aj . Nevertheless, even though Aj provides a wrong answer, the documents in
Dj may still be useful for reasoning of subsequent steps. Therefore, we aim to keep most documents
of agent Ai while only keeping the documents of Aj that are close to Ai. Therefore, we propose the
merging conditions as follows: {

dAi
(x) < Ti,

dAj
(x) > Tj ,

(4)

where dAi
(x) = ||emb(x) − µi||2 and dAj

(x) = ||emb(x) − µj ||2 represent the distances of a
document x to the centroids of the clusters associated with agents Ai and Aj , respectively. The
value Ti is selected as a threshold below which documents are considered close to the centroid of
agent Ai, while Tj is the threshold above which documents are considered distant from agent Aj .
Combining the merging conditions, the set of merged documents, Di,j , is achieved as follows:

Di,j = {x | dAj
(x)− dAi

(x) > Tj − Ti, x ∈ Di ∪ Dj},

Ti =
1

|Di|+ |Dj |
∑

x∈Di∪Dj

dAi
(x), Ti =

1

|Di|+ |Dj |
∑

x∈Di∪Dj

dAj
(x). (5)

Therefore, remained documents are included in a hyperbola defined by the above equation. This
merging strategy helps in identifying and merging documents that are primarily relevant to agent Ai

but distant from agent Aj , allowing for a focused merging of contrasting perspectives (of Ai and
Aj). By applying this hyperbola-based merging criterion, we highlight documents that contribute to
divergent views, ensuring a more specialized and complementary merging process.

4 EXPERIMENTS

4.1 DATASETS

In our experiments, we utilize public RAG benchmarks: NaturalQ (Kwiatkowski et al., 2019),
TriviaQA (Joshi et al., 2017), PopQA (Mallen et al., 2023), ASQA (Stelmakh et al., 2022), and
2WikiMQA (Ho et al., 2020). Detailed statistics for the datasets are provided in Table 1. We utilize
the Wikipedia corpus as the retrieval source and evaluate our approach using both sparse and dense
pre-trained retrievers, such as BM25 (Robertson & Walker, 1994), DPR (Karpukhin et al., 2020),
GTR (Ni et al., 2022), and Contriever (Izacard et al., 2021). Retrieval performance is assessed by
Recall@5 and Recall@20, which checks if the top 5 or 20 retrieved documents include the cor-
rect answer. In line with established evaluation protocols (Asai et al., 2023b; Wei et al., 2024),
we use Exact Match (EM) for ASQA (Stelmakh et al., 2022). For the other datasets, we consider
accuracy, which measures whether the generated model outputs include the correct ground-truth
answers (Mallen et al., 2023; Schick et al., 2024).
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Table 2: The overall results of our framework and baselines on five downstream tasks with and
without fine-tuning the LM. The best performance is shown in bold. “–” denotes that the results
are not reported in the original work or are not applicable. We report the accuracy for datasets NQ,
TriviaQA, PopAQ, and 2WikiMQA, and report the exact match for dataset ASQA. “8B”, and “70B’
represent Llama-3-8B-Instruct, and Llama-3-70B-Instruct, respectively.

Dataset PopQA TriviaQA NQ 2WikiMQA ASQA
Llama w/o Fine-tune 8B 70B 8B 70B 8B 70B 8B 70B 8B 70B
Zero-shot Prompting 22.8 28.9 69.4 80.6 46.6 57.9 45.6 57.5 30.6 39.1
In-Context RALM 62.3 63.8 71.4 76.3 56.8 60.2 43.4 51.2 40.0 43.1
ICL 63.1 63.9 74.2 79.1 60.1 62.9 45.3 53.9 42.6 45.4
InstructRAG-ICL 64.2 65.5 76.8 81.2 62.1 66.5 50.4 57.3 44.7 47.8
WinnowRAG 68.1 68.8 79.3 81.6 66.8 68.3 56.3 58.4 47.9 48.5

Llama w/ Fine-tune 8B 70B 8B 70B 8B 70B 8B 70B 8B 70B
SFT 61.0 – 73.9 – 56.6 – 56.1 – 43.8 –
Self-RAG 55.8 – 71.4 – 42.8 – 32.9 – 36.9 –
RetRobust 56.5 – 71.5 – 54.2 – 54.7 – 40.5 –
InstructRAG-FT 66.2 – 78.5 – 65.7 – 57.2 – 47.6 –

4.2 BASELINES

In this subsection, we introduce the baseline used in our experiments for comparison. Specif-
ically, we evaluate our approach against a variety of RAG baselines, considering settings with
and without training. For baselines with training, we consider ❶ Supervised Fine-tuning (SFT),
which optimizes the likelihood of generating the correct answer; ❷ RetRobust (Yoran et al., 2024),
which fine-tunes the model by incorporating both relevant and irrelevant contexts to improve ro-
bustness; ❸ Self-RAG (Asai et al., 2023b), which adjusts retrieval using special reflection tokens;
and ❹ InstructRAG (Wei et al., 2024), which instructs the LM to provide rationales used for fine-
tuning. Notably, for RetRobust and Self-RAG, we adopt their results with Llama-3-Instruct-8B as
the backbone model, as reported in InstructRAG, instead of using Llama-2 in the original papers.
For baselines without training, we consider ❶ In-context Retrieval-Augmented Language Modeling
(RALM) (Ram et al., 2023), a prompting technique that enhances the non-retrieval baseline by pro-
viding the model with relevant documents; and ❷ In-context Learning (ICL), which uses ground-
truth question-answer pairs from the training set as demonstrations, and ❸ Zero-shot Prompting,
which directly queries LLMs for the answer.

4.3 RETRIEVAL SETUP

Following Self-RAG (Asai et al., 2023b) and InstructRAG (Wei et al., 2024), we perform retrieval
from documents in the Wikipedia dump in DPR (Karpukhin et al., 2020) for all datasets. Moreover,
each document is a separate text extracted from Wikipedia articles, containing up to 100 words.
Regarding the specific retrievers, we employ Contriever-MS MARCO for PopQA and TriviaQA and
DPR for Natural Questions. For datasets ASQA and 2WikiMultiHopQA, we use GTR and BM25,
respectively. By default, we retrieve the top 50 documents for all tasks. For the dense retrievers,
we utilize their official weights. For the sparse retriever BM25, we implement it using Pyserini (Lin
et al., 2021).

4.4 INFERENCE DETAILS

Our experiments are all conducted on four Nvidia A100 GPUs, each with 80GB of memory. To
facilitate the inference process, we utilize the vLLM pacakge (Kwon et al., 2023). Greedy seconding
is applied for inference. We set K = 10 for our framework and the maximum token length for all
models as 4096. For the critic LLM, we use the same model as the agents. For ICL and InstructRAG-
ICL, we follow InstructRAG and set the number of demonstrations as 2. Our code is provided at
https://anonymous.4open.science/r/WinnowRAG-09B2/README.md.
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4.5 COMPARATIVE RESULTS

In this subsection, we study the comparative results of our framework and other state-of-the-art
RAG methods with and without training (or fine-tuning). Particularly, we present the results for
RAG baselines without training using Llama-3-Instruct-8B and Llama-3-Instruct-70B. For RAG
methods with training, we consider Llama-3-Instruct-8B, as the fine-tuning results on Llama-3-
Instruct-70B are difficult to obtain and not reported in existing works. The results are presented
in Table 2. Comparing the results of RAG baselines without training, we can observe that ❶
Parameter Size Matters. All methods present better results with a larger model parameter size,
which increases from 8B to 70B. This demonstrates that when not fine-tuned, a larger LM could
potentially provide better reasoning capability to utilize the retrieved documents for answering. No-
tably, WinnowRAG achieves superior performance even with the smaller model Llama-3-Instruct-
8B. This indicates that WinnowRAG does not require powerful LLMs to function, thereby leading
to better practicability. ❷ Retrieval Helps. In-context RALM, ICL, and InstructRAG-ICL gen-
erally outperform the zero-shot prompting method, which does not involve any retrieval. This
indicates that for such open-domain question-answering tasks, the involvement of retrieved doc-
uments is crucial. ❸ Outstanding Performance. Our framework consistently outperforms all other
training-free baselines across various datasets. Particularly, WinnowRAG is particularly supe-
rior on datasets PopQA and NQ with lower Recall@20 in comparison to TriviaQA and ASQA.
This demonstrates WinnowRAG’s ability to effectively filter and refine retrieved documents, even
in scenarios where the correct information may be distributed across multiple noisy sources. ❹
Model-Agnostic Capabilities. One of the key insights from these experiments is the model-agnostic
nature of WinnowRAG. Despite the use of smaller models like Llama-3-8B-Instruct, our framework
demonstrates the ability to achieve better performance compared to larger fine-tuned models on four
datasets. This adaptability makes WinnowRAG, a training-free framework, highly practical for de-
ployment in scenarios where computational resources are limited, or where large-scale fine-tuning
is not feasible. The fact that WinnowRAG achieves superior results without requiring task-specific
training further underscores its flexibility and broad applicability.

4.6 ABLATION STUDY

PopQA TriviaQA NQ MHQA ASQA
Dataset
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Figure 3: The ablation study results of Win-
nowRAG on five datasets.

In this subsection, we conduct experiments
while removing specific modules of our frame-
work to separately study their effects on the
performance. Particularly, we consider the fol-
lowing variants of our frameworks: ❶ We re-
move the query-aware clustering during Stage
I and replace it with random splitting. We re-
fer to this variant as WinnowRAG\Q. ❷ We re-
move the strategic merging techniques during
Stage II. In this variant, when merging agents
with the same answers, we randomly keep half
of the documents of both agents and combine
them into one agent. When merging agents
with different answers, we directly discard all
documents of the agent with a wrong answer.
We refer to this variant as WinnowRAG\S. ❸ We remove the entire multi-agent winnowing mod-
ule, i.e., Stage II, and directly select one answer from responses of all clusters using the critic
LLM. We refer to this variant as WinnowRAG\W. From the results presented in Fig. 3, we can ob-
tain the following observations: ❶ WinnowRAG\Q results in a moderate drop in performance.
This can be attributed to the loss of grouping based on document content, which un-
dermines the framework’s ability to effectively cluster related information. Random split-
ting leads to a less coherent selection of documents, increasing the noise in agent re-
sponses and reducing the critic’s ability to accurately assess the outcome of each clus-
ter. ❷ WinnowRAG\S shows that the strategic merging techniques are critical, particularly in
datasets with a high recall rate like NQ and TriviaQA. Without merging strategies, the framework
struggles to retain useful documents. Randomly discarding documents or entirely removing those
from agents introduces more noise and leads to suboptimal performance, as relevant information
may be inadvertently lost. ❸ WinnowRAG\W, results in the largest performance drop. This
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suggests that the multi-agent winnowing process plays a fundamental role in our framework. The
absence of iterative winnowing leads to a lack of thorough evaluation of the agents’ responses, and
the critic LLM alone is insufficient to make optimal selections from a large set of noisy or conflicting
responses. This variant highlights how crucial multi-agent winnowing is in ensuring that only the
most relevant and accurate documents contribute to the final answer.

4.7 PARAMETER SENSITIVITY

In this subsection, we explore the sensitivity of our proposed framework WinnowRAG to several
key parameters. These experiments aim to understand the impact on the final model performance
by varying ❶ the rounds of winnowing, ❷ the number of retrieved documents, and ❸ the number of
query-aware clusters. We choose to adjust these parameters can as they can affect both the quality
and efficiency of the retrieval-augmented generation process.

Table 3: Performance of WinnowRAG with dif-
ferent rounds of winnowing.

Dataset PopQA TriviaQA NQ MHQA ASQA
M = 1 62.5 74.2 60.3 50.1 43.2
M = 2 65.7 78.9 63.4 53.2 44.9
M = 3 68.1 79.3 66.8 56.3 47.9
M = 4 69.2 79.5 67.4 57.0 47.7
M = 5 68.5 79.4 67.2 56.8 46.8

Rounds of Winnowing. An essential aspect
of our framework is the number of winnow-
ing rounds used in the multi-agent winnowing
process. During each round, super-agents en-
gage in a structured discussion, iteratively refin-
ing their responses and converging towards the
most accurate answer, with noisy or incorrect
agents gradually being filtered out. To under-
stand the sensitivity of performance to the num-
ber of winnowing rounds, we conduct experi-
ments where the winnowing process was termi-
nated at different rounds, observing the effects on the final output. From the results presented in
Table 3, we can observe several trends: ❶ Early stopping yields suboptimal results. Terminating
the winnowing process after just 1 or 2 rounds leads to suboptimal answers. This is because the early
rounds of winnowing often do not provide sufficient time for the agents to fully resolve conflicts or
eliminate noisy contributions. In these early rounds, agents may still involve irrelevant documents,
which hinders the ability of the critic LLM to derive a well-informed final answer. ❷ More rounds
may not always help. While additional rounds of winnowing help improve the accuracy by pro-
gressively refining the answers, our results show that after a certain threshold, further iterations lead
to decreasing performance. Beyond this point, the performance slightly degrades. This decline can
be attributed to the unnecessary complexity introduced by excessively extending the winnowing pro-
cess. As the winnowing continues, the growing complexity can make it more difficult for the critic
LLM to track critical information. Misinterpretations or misunderstandings may occur, leading to
degraded decision-making or incorrect conclusions. ❸ Optimal numbers of rounds may differ.
The results suggest that there is an optimal number of winnowing rounds where the balance be-
tween refinement and complexity is achieved. In this case, the framework has effectively filtered out
noisy agents and converged on the most relevant information without incurring the risks of filtering
out useful documents. Notably, determining this optimal number is task-dependent. For example,
the performance on dataset TriviaQA stabilizes earlier, due to its simplicity, while other datasets
generally require more rounds.
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Figure 4: The accuracy improvement (over using
one retrieved document) results of WinnowRAG
with different numbers of retrieved documents.

Number of Retrieved Documents. The num-
ber of documents retrieved for each query is
critical, as more documents can provide ad-
ditional relevant information but may also in-
troduce noise. In Fig. 4, we present the re-
sults by varying the number of retrieved doc-
uments. We observe that: ❶ Retrieving fewer
documents (e.g., 10 or fewer) may result in the
model missing important information, as the
necessary knowledge for answering the ques-
tion may not be sufficiently covered. This could
lead to a lower accuracy due to insufficient ev-
idence available to the agents. ❷ Increasing
the number of retrieved documents can improve
the quality of the answer by providing a richer
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knowledge source and increasing the chances of capturing relevant information. However, retriev-
ing too many documents could overwhelm the system with irrelevant information, introducing more
noise and potentially harming the performance. Nevertheless, our framework exhibits further im-
proved performance, demonstrating the robustness of our design against noise.
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Figure 5: The results of WinnowRAG on dataset
NaturalQ with varying numbers of query-aware
clusters and retrieved documents.

Number of Query-Aware Clusters. The
number of query-aware clusters in Stage I,
i.e., K, plays a significant role in the frame-
work’s ability to cover diverse perspectives or
sets of information from the retrieved docu-
ments, as each agent could provide a poten-
tially unique answer based on its assigned clus-
ter of documents. Since the result of vary-
ing K is tightly associated with the number
of retrieved documents N , we hereby study
the joint impact of both K and N . Particu-
larly, we conduct experiments by varying both
of them on the dataset NatrualQ. It is note-
worthy that N ≤ K, otherwise the cluster-
ing becomes infeasible. From the results pre-
sented in Fig. 5. The key observations include:
❶ Fewer clusters lead to poor performance.
When the number of clusters (K) is too small,
the framework’s ability to cover diverse per-
spectives is significantly hindered. For example, the results with K = 5 are generally worse than
the results with k = 10. Notably, with fewer clusters, each agent is forced to handle a broader range
of documents, many of which may contain conflicting or irrelevant information. This reduces the
precision of the generated answers, and thus the critic LLM struggles to resolve these conflicts, lead-
ing to suboptimal performance. This effect is particularly noticeable when the number of retrieved
documents is large, as the few clusters cannot adequately filter and partition the information. ❷
Too many clusters can also be detrimental. Conversely, increasing the number of clusters beyond
a certain point also results in performance degradation. For example, when the number of retrieved
documents is 25 or 50, enlarging the number of clusters K to 25 or 50 could impact the performance
when compared to the results with K = 10. While more clusters allow agents to specialize in nar-
rower sets of documents, excessive partitioning dilutes the amount of relevant information available
to each agent, causing the loss of useful context. Additionally, when K is high, the critic LLM
must process a larger number of agents, adding unnecessary complexity to the winnowing process
without corresponding gains in accuracy. ❸ More retrieved documents require more clusters. As
the number of retrieved documents increases, the optimal number of clusters also needs to increase.
For example, the best performance with N = 25 and N = 50 is achieved when K = 10 and
K = 25, respectively. This is because when more documents are retrieved, they are likely to contain
a wider range of information, both relevant and irrelevant. If the number of clusters remains small
while the number of retrieved documents increases, the framework becomes overwhelmed by noise,
reducing the accuracy of the final answers. Nevertheless, when the number of clusters K is appro-
priately scaled with the number of retrieved documents, the agents can more effectively handle the
information, leading to better overall performance.

5 CONCLUSION

In this work, we propose WinnowRAG, a novel training-free framework that effectively addresses
the inherent challenges of utilizing a large number of retrieved documents in RAG systems. Specifi-
cally, with our designed stages of query-aware clustering and multi-agent winnowing, WinnowRAG
manages to filter out noisy information in retrieved documents while retaining useful documents. As
a result, WinnowRAG enhances the accuracy and relevance of generated responses without necessi-
tating model-specific fine-tuning. The strong performance exhibited in experiments underscores its
potential as a robust approach for integrating external knowledge into language models, providing
insights for more reliable and contextual knowledge-intensive applications in various domains.
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A IMPLEMENTAION DETAILS

In this section, we provide more details of our implementation. Specifically, we set K, the number
of clusters as 10, and the number of retrieved documents N as 50. Note that 50 is larger than the size
of retrieved documents in most existing works, such as 5 and 10 in InstructRAG (Wei et al., 2024).
We use vLLM (Kwon et al., 2023) to facilitate the inference of all models. We set the batch size
as 200, using 4 A100 GPUs, each with 80GB of memory. By default, we set the maximum round
of winnowing as 3, although the framework may terminate the winnowing process at earlier rounds.
For all LLMs, we set the temperature as 0 to keep consistency across runs.

B PROMPT TEMPLATES

In this section, we provide the detailed prompts in our implementation.

B.1 STAGE I AGENT RESPONSE GENERATION

Stage I Agent Response Generation

Input: You are given the following documents.
Document [1] (Title: · · · ): {contents}
· · ·
Based on the provided information, answer the following question: {question}. You are
strictly prohibited from generating the answer based on your own knowledge.

Directly output your answer without any additional explanation.

Output: {answer}

B.2 STAGE II SUPER-AGENT RESPONSE GENERATION

Stage II Super-Agent Response Generation

Input: You are given the following documents.
Document [1] (Title: · · · ): {contents}
· · ·
Based on the provided information, answer the following question: {question}. You are
strictly prohibited from generating the answer based on your own knowledge.

Your response should consist of three components:
1. Extract a portion of the provided documents that directly supports your answer to the
question. The extracted information should be concise and free from irrelevant details,
serving as the evidence for your answer.
2. Explain how the evidence supports your final answer.
3. Present your final answer.

Format your response as follows:

Evidence: [YOUR EVIDENCE]

Explanation: [YOUR EXPLANATION]

Answer: [YOUR FINAL ANSWER]

Output: {response}
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B.3 STAGE I CRITIC LLM AGENT ANSWER SUMMARIZATION

Stage I Critic LLM Agent Answer Summarization

Input: You are given the following answers from {K} agents to the question: {question}.
Answer [1]: Answer: {answer}
· · ·
Your task is to summarize the {K} answers and remove duplicates.

Your response should consist of two components:
1. Deduplicate the provided answers. Exact matching is not required; answers are consid-
ered duplicates if they have the same semantic meaning. Output a list of unique answers.
2. Explicitly indicate which answers are duplicates, along with their corresponding indices.

Format your response as follows:

Unique answers: [LIST OF UNIQUE ANSWERS]

Duplicate answers: [LIST OF DUPLICATE ANSWERS]

Output: {response}

B.4 STAGE II CRITIC LLM ANSWER JUDGEMENT

Stage II Critic LLM Answer Judgement

Input: You are provided with the following responses from {K ′} agents to the question:
{question}. Each response contains an answer, supporting evidence from the provided
documents, and an explanation of how the answer was derived.
Response [1]: Answer: {answer}; Evidence: {evidence}; Explanation: {explanation}
· · ·
Based on your knowledge and the provided information, you are tasked with the following:
1. Identify the misleading responses from the {K ′} that result in incorrect answers.
2. Determine whether a consistent answer can be derived from the remaining potentially
correct responses.

Your response should consist of three components:
1. The list of responses with incorrect answers. Output a list of response IDs.
2. Provide an explanation for why these responses are considered incorrect, and why the
remaining responses are considered correct.
3. Indicate yes or no, depending on whether a consistent answer can be derived from the
remaining responses. If yes, also provide the consistent answer.

Format your response as follows:

Incorrect answers: [LIST OF INCORRECT RESPONSE IDS]

Explanation: [YOUR EXPLANATION]

Consistent answer: [YOUR ANSWER, IF APPLICABLE]

Output: {response}
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