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Abstract
This paper introduces the new and challenging001
TempVS benchmark, which focuses on tem-002
poral grounding and reasoning capabilities of003
Multimodal Large Language Models (MLLMs)004
in image sequences. TempVS consists of three005
main tests (i.e., event relation inference, sen-006
tence ordering and image ordering), each ac-007
companied with a basic grounding test, yield-008
ing a total of 2,085 annotated image sequences009
and 15k multiple-choice questions. TempVS010
requires MLLMs to rely on both visual and011
linguistic modalities to understand the tempo-012
ral order of events. We extensively evaluate013
38 state-of-the-art MLLMs, demonstrating that014
models struggle to solve TempVS. Our analysis015
reveals a substantial performance gap between016
current MLLMs and human capabilities, ac-017
companied by fine-grained insights that suggest018
promising directions for future research.019

1 Introduction020

Multimodal Large Language Models (MLLMs)021

(Achiam et al., 2023; Gemini et al., 2024; Liu022

et al., 2024a) have demonstrated remarkable per-023

formance in various vision and language tasks. At024

the same time, the need for standardized evalua-025

tion frameworks has become increasingly critical in026

systematically assessing and comparing MLLMs’027

performance across different tasks, domains and028

settings. Most existing benchmarks focus on set-029

tings involving a single image (Fu et al., 2023; Li030

et al., 2024b; Yue et al., 2024; Liu et al., 2024c;031

Lu et al., 2024). While some also consider multi-032

image settings (Jiang et al., 2024; Fu et al., 2024;033

Ying et al., 2024; Li et al., 2024b), they mainly fo-034

cus on cross-image recognition and reference. To035

date, relatively little attention has been paid to more036

complex tasks, such as temporal understanding and037

reasoning in multiple images.038

Some recent studies have assessed MLLMs’ tem-039

poral comprehension across multiple images, but040

certain limitations remain. First, some tasks can be 041

resolved by relying on a single image rather than 042

a sequence (Liu et al., 2024b; Ying et al., 2024). 043

For example, determining whether “pulling a wind- 044

up toy so it continues moving forward or quickly 045

stops” could be answered only based on the final 046

image. Second, some tasks depend heavily on com- 047

monsense or world knowledge (Wang et al., 2025; 048

Meng et al., 2025), such as rearranging a set of shuf- 049

fled images into the correct sequence of cooking 050

steps. Third, some benchmarks (Song et al., 2024) 051

use distractor options absent from the images, al- 052

lowing the models to infer ground-truth answers 053

based on the presence of objects. These factors 054

may result in the benchmarks failing to truly assess 055

the model’s understanding of temporal sequences. 056

In addition, none of the existing benchmarks are de- 057

signed for multi-event scenarios, making them inad- 058

equate for evaluating complex temporal sequences 059

and relations in MLLMs. 060

As a result, a question arises: Do existing 061

MLLMs really understand time by accurately align- 062

ing the order of events in language and image se- 063

quences? To address this, we propose TempVS, 064

a benchmark for multi-event Temporal grounding 065

and reasoning in Visual Story image sequences. 066

TempVS contains 2,085 image sequences (9,803 067

images) across cartoon animations, movies and 068

daily-life albums, with 15,192 multiple-choice 069

questions. TempVS features three temporal un- 070

derstanding and reasoning tasks: event relation in- 071

ference, sentence ordering, and image ordering (as 072

shown in Figure 1). These tasks are accompanied 073

by grounding tasks to check whether the model can 074

match the exact image consistent with a single text 075

description. We select image sequences making up 076

visual stories, each containing several events that 077

are temporally related yet relatively independent, 078

in the sense that no event could easily be predicted 079

from preceding events. This makes it hard to re- 080

solve the tasks without considering both linguistic 081
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Two-event Relation Inference

True: Eddy opened the door of the house after Rody waved to Eddy from his green 
four-wheel bike.
False: Rody waved to Eddy from his green four-wheel bike after Eddy opened the 
door of the house.

Three-event Relation Inference

True: First, Anne cooked a meal in her kitchen. Second, Anne made a call on her 
phone. Third, Anne protected her hands with a towel to hold the pot.
False: First, Anne made a call on her phone. Second, Anne protected her hands 
with a towel to hold the pot. Third, Anne cooked a meal in her kitchen.

Sentence Ordering

Sentence a: On the last day of our trip, Grandpa teaches the little boy some 
swimming tricks. 
Sentence b: Grandpa is turning the hot dogs. On low flame, he says, "Dinner will be 
ready in an hour." 
Sentence c: Hot marshmallows are fun to eat. 
Sentence d: Mom, Dad, and the little boy are getting the fire started. 
Sentence e: The kangaroos are amazing. The little boy tries to pet one, but it jumps 
and runs away. 
Answer: Sentence d -> Sentence b -> Sentence e -> Sentence c -> Sentence a 

Image Ordering

Fred leaned in the doorway while talking. 
Wilma was sitting in the living room, crocheting something pink. 
Fred put water in his yard. 
A purple elephant drank from a pool in the yard. 
The man with the purple shirt got wet in the lawn chair.
Answer: Image d -> Image e -> Image c -> Image a -> Image b

Figure 1: Illustrative examples from the main tests of TempVS benchmark. Additional examples are provided in
Appendix E.

and visual modalities. TempVS challenges models082

to reason about event order in the image sequence083

and text (e.g., a sentence describing two events084

using before or after, or a story) and integrate both.085

We extensively evaluate 38 MLLMs, including086

open-source models ranging from 0.5B to 78B (e.g.,087

LLaVA-OneVision, InternVL2.5, Qwen2-VL, Phi-088

3.5-vision, DeepSeek-vl2, LLaVA-NeXT-Video)089

and the closed-source GPT-4o. We show that Tem-090

pVS is highly challenging for SOTA models, es-091

pecially on event relation inference and image or-092

dering tasks. In particular, while models can accu-093

rately ground events to images, their performance094

on the main tasks, which require multimodal rea-095

soning with sequences, remains unsatisfactory. We096

further analyze the impact of the choice of linguis-097

tic structure, distance between events, and Chain-098

of-Thought prompting. Our analysis sheds light on099

future directions for improvement in architectural100

design, training objectives, and/or post-training101

methods to enhance temporal reasoning.102

Contributions. (1) We introduce a new bench-103

mark TempVS, for evaluating multi-event tempo-104

ral grounding and reasoning ability in image se-105

quences for MLLMs. (2) We extensively evalu-106

ate 38 MLLMs from different model families and107

sizes, highlighting the performance gap compared108

to human annotators. (3) Our findings in evaluation109

results and fine-grained analysis suggest potential110

pathways for future improvements.111

2 Related Work 112

Multimodal Large Language Models Progress 113

in large language models (LLMs) (Achiam et al., 114

2023; AI@Meta, 2024; Touvron et al., 2023; Gem- 115

ini et al., 2024) has provided impetus to the devel- 116

opment of multimodal LLMs which process both 117

visual and textual information. State-of-the-art 118

MLLMs (Achiam et al., 2023; Dai et al., 2023; 119

Gemini et al., 2024; Liu et al., 2024a; Abdin et al., 120

2024; Wang et al., 2024a; Chen et al., 2024) are 121

built upon LLMs with an integrated visual en- 122

coder and a connection module. These models sur- 123

pass the earlier generation of multimodal models, 124

which were typically based on BERT-type archi- 125

tectures, on many downstream tasks (Bugliarello 126

et al., 2023). While some studies have focused 127

on training MLLMs to interpret multiple images 128

using interleaved image-text datasets (Jiang et al., 129

2024; Huang et al., 2024; Li et al., 2024a,c), their 130

capability to understand and reason about multi- 131

event temporal relationships in sequential visual 132

data remains largely unexplored. 133

Multi-image Benchmarks Multi-image under- 134

standing requires MLLMs to compare, analyze and 135

interpret relationships across multiple images (Li 136

et al., 2024d). Benchmarks such as NLVR2 (Suhr 137

et al., 2019), BLINK (Fu et al., 2024), SEED- 138

Bench-2 (Li et al., 2024b), Mantis-Eval (Jiang et al., 139

2024) and MMT-Bench (Ying et al., 2024) cover a 140

subset of multi-image tasks focusing on assessing 141
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models’ ability to identify similarities and varia-142

tions across multiple images. DEMON (Li et al.,143

2024e) evaluates the demonstrative instruction-144

following abilities of MLLMs. Mementos (Wang145

et al., 2024b) aims to detect object and behav-146

ior hallucinations in descriptive text generated147

for sequential images. MileBench (Song et al.,148

2024) evaluates MLLMs’ performance in long149

contexts. MIBench (Liu et al., 2024b) assesses150

MLLM’s ability in multi-image instruction, multi-151

modal knowledge-seeking and in-context learning.152

MuirBench (Wang et al., 2025) is a comprehen-153

sive multi-image understanding benchmark with154

unanswerable counterparts to test the robustness of155

MLLMs. MMIU (Meng et al., 2025) incorporates a156

large number of test questions that cover a diverse157

array of multi-image tasks and relationships. We158

propose TempVS, the first benchmark specifically159

designed for multi-event temporal understanding160

and reasoning in image sequences. In particular, it161

is designed to avoid shortcuts such as reliance on162

single images/frames and commonsense reasoning163

to bypass full integration of the temporal informa-164

tion in both text and images.165

3 The TempVS Benchmark166

TempVS evaluates models’ ability to understand167

and reason about temporal relations by evaluating168

the consistency between textual descriptions of tem-169

porally related events and the visual event order170

in an image sequence. To achieve this, we create171

three main tests (MT): event relation inference,172

sentence ordering, and image ordering. Addi-173

tionally, to investigate whether a model’s difficulty174

arises from challenges in temporal understanding175

or from more basic grounding issues, we create176

a corresponding grounding test (GT) (§3.1) for177

main tests. We present the task curation process178

and statistics of TempVS benchmark in §3.2.179

TempVS is built from existing datasets pairing
image sequences with narrative captions. Since
captions may vary in their level of detail, we use
both the original captions in the source data, and
simplified versions in which the main event is ex-
tracted from the caption (we describe this process
in §3.2). In what follows, we denote an image
sequence S consisting of n images, their corre-
sponding captions, and extracted events as:

S = [(I1, C1, E1), (I2, C2, E2), . . . , (In, Cn, En)],

where Ii denotes the i-th image, Ci its associated180

caption, and Ei the extracted event.181

Statement Template (i < j < k in image sequence)

Two-event Pos: Ej after Ei Neg: Ei after Ej

Pos: Ei before Ej Neg: Ej before Ei

Pos: Ej . Earlier, Ei Neg: Ei. Ealier, Ej

Pos: Ei. Then, Ej Neg: Ej . Then, Ei

Pos: Ei. Ej . Neg: Ej . Ei.

Three-event Pos: Ei before Ej , and after that, Ek

Neg: Ek before Ei, and after that, Ej

Pos: Ei. Later, Ej .Finally, Ek.
Neg: Ej . Later, Ei.Finally, Ek.

Pos: First, Ei. Second, Ej .Third, Ek.
Neg: First, Ei. Second, Ek.Third, Ej .

Pos: Ei. Ej . Ek. Neg: Ek. Ej . Ei.

Table 1: Templates of positive (Pos) and negative (Neg)
statements used for MT1 event relation inference.

3.1 Main Tests and Grounding Test 182

MT1: Event Relation Inference MT1 evaluates 183

a model’s understanding of the chronological order 184

of events based on an image sequence and a tex- 185

tual description. The text describes the temporal 186

relation of the events either explicitly through ad- 187

verbial markers such as after or before, or implicitly 188

through the natural order of sentences. From an im- 189

age sequence of length n, we select either (1) two 190

pairs {(Ii, Ei), (Ij , Ej)} where i < j ≤ n, ensur- 191

ing that Ii appears before Ij and Ei occurs before 192

Ej ; or (2) three pairs {(Ii, Ei), (Ij , Ej), (Ik, Ek)} 193

where i < j < k ≤ n, following the same order- 194

ing constraints. These event-image pairs are not 195

necessarily adjacent in the sequence, resulting in 196

varying distances between them. We then generate 197

positive and negative statements by applying the 198

templates in Table 1 to describe the temporal rela- 199

tions between these events. The negative statement 200

retains the same event clauses and the temporal 201

conjunction as the positive statement, while swap- 202

ping the positions of these clauses, such that the 203

text expresses a different temporal order.1 Finally, 204

we derive triples comprising an original image se- 205

quence, a positive or negative statement and the 206

corresponding answer (True or False). 207

MT2: Sentence Ordering This task evaluates 208

whether models can correctly reorder a shuffled 209

set of sentences based on the temporal order of 210

events in a given image sequence. Thus, MT2 211

1For the negative statements with three events, we ran-
domly select one from the five combinations that is not the
same as the positive statement.
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requires not only an understanding of temporal re-212

lations between events but also consideration of the213

text’s coherence and fluency. Models are tasked to214

select the correct sentence order from five given215

options, based on an ordered image sequence and216

a set of shuffled event descriptions. We create ver-217

sions with both the original captions (C) and the218

extracted events (E).219

MT3: Image Ordering This task adopts the con-220

jugate form of MT2, requiring models to rearrange221

a set of shuffled images into the correct temporal222

order based on the given textual description. Sim-223

ilar to MT2, we also examine whether different224

text styles (i.e., original captions or extracted event225

descriptions) could affect the model’s ability to226

determine the correct order.227

GT: Grounding Test As a prerequisite for solv-228

ing one of the main tests, we assume that MLLMs229

should be able to match an event description with230

the corresponding image in a multi-image sequence.231

Specifically, given an event description Ei or a cap-232

tion Ci and image sequence [I1, I2, . . . , In], mod-233

els are required to identify the index of the image234

(i.e., Ii) that best corresponds to the given textual235

description. The motivation for conducting ground-236

ing tests is as follows: If a model passes the ground-237

ing tests but fails the corresponding main tests, it238

indicates that the model struggles with understand-239

ing temporal order, even if it can accurately recog-240

nize and associate visual and linguistic elements.241

In contrast, if a model performs well on the main242

tests but fails the corresponding grounding tests,243

it may suggest that its success stems not from the244

true temporal grounding or reasoning but rather245

from leveraging statistical patterns, correlations, or246

systematic biases learned during training.247

3.2 Benchmark Curation and Statistics248

Data Source Given our objective of evaluating249

whether models understand the chronological order250

of events across image sequences and language, we251

require data containing multiple images that form252

a temporal sequence presenting events. We choose253

four visual story datasets: FlintstonesSV (Gupta254

et al., 2018), PororoSV (Li et al., 2019), VIST255

(Huang et al., 2016) and VWP (Hong et al., 2023).256

FlintstonesSV and PororoSV, designed for story vi-257

sualization, contain annotated frames from cartoon258

animations.2 VIST, built for visual storytelling,259

2For the major characters in FlintstonesSV and PororoSV,
we provide descriptions of their appearances to match them

originates from Flickr albums with user-uploaded 260

daily-life photos. VWP features movie scene se- 261

quences paired with aligned synopses. This col- 262

lection with rich styles and diverse domains plays 263

a crucial role in assessing MLLMs’ multi-event 264

temporal grounding and reasoning capabilities. 265

Dataset Filtering To ensure that each image se- 266

quence contains a sufficient number of character- 267

centered visual events, we use Detectron23 to de- 268

tect and retain image sequences where PERSON can 269

be detected in at least 60% of the images. To avoid 270

temporal overlap between any two events, we re- 271

move any image sequence whose captions contain 272

stative verbs such as ‘belong’, ‘love’ and ‘exist’. To 273

minimize ambiguity, we remove captions starting 274

with pronouns and compute the BERTScore (Zhang 275

et al., 2020) between captions, omitting sequences 276

with highly similar captions. Similarly, we re- 277

move image sequences with highly similar im- 278

ages based on the cosine similarity between their 279

CLIP (Radford et al., 2021) embeddings. Simple 280

events (E) are extracted from the original captions 281

(C) using GPT-4 (Achiam et al., 2023); any se- 282

quences with captions from which no event can 283

be extracted are removed. To ensure that each 284

image-text pair in {(Ii, Ei), (Ij , Ej)} remains dis- 285

tinct, we use CLIP to compute cross-modality sim- 286

ilarity between different image-text combinations. 287

Ambiguous pairs are filtered based on a threshold, 288

ensuring that within-pair similarity is significantly 289

higher than cross-pair similarity.4 A similar pro- 290

cess is applied to sets of three image-event pairs 291

{(Ii, Ei), (Ij , Ej), (Ik, Ek)}. In Appendix A, we 292

provide the details of stative verbs list, the similar- 293

ity thresholds and statistics of the dataset after each 294

filtering step. 295

Prompt and Option Generation After filtering 296

the datasets, we create the positive and negative 297

statements by concatenating the events with the 298

templates shown in Table 1 for MT1. We sequen- 299

tially apply each template to its corresponding tem- 300

poral relation group in the dataset, ensuring an even 301

distribution of statement types. Moreover, we use 302

ChatGPT(OpenAI, 2022) to generate variations of 303

different prompt components for different tasks in- 304

cluding task instructions, answer requirements and 305

with their names.
3https://ai.meta.com/tools/detectron2/
4That is, we guarantee that sim(Ii, Ei) > sim(Ii, Ej)

and sim(Ii, Ei) > sim(Ij , Ei) and sim(Ij , Ej) >
sim(Ii, Ej) and sim(Ij , Ej) > sim(Ij , Ei).
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MT1
(two)

MT1
(three)

MT2
(event)

MT2
(caption) MT3

FlintstonesSV 2,104 916 501 485 565
PororoSV 864 172 320 326 395
VWP 850 208 274 256 316
VIST 3,742 830 708 551 809

TempVS 7,560 2,126 1,803 1,618 2,085

Table 2: TempVS benchmark statistics: In MT1, the
number indicates the total statements; in MT2, the num-
ber of image sequences and corresponding shuffled sen-
tence sets; in MT3, the number of textual events or
captions and their associated shuffled image sets.

response formats (see Appendix C), which results306

in a total of 328 possible prompt variations. By307

incorporating sufficient diversity in prompts, we308

mitigate the risk of results being influenced by a309

specific prompt formulation (Sclar et al., 2024). All310

tests are formed as multiple-choice questions. In311

MT1, the options are “True” and “False” with po-312

sitions alternated across samples (e.g., A. True; B.313

False. and A. False; B. True.) to prevent position314

bias (Zheng et al., 2024). In MT2 and MT3, one315

correct sequence is presented alongside four ran-316

domly shuffled incorrect sequences with options317

labeled “A” to “E”. The Grounding Test uses image318

indices as answer choices. To ensure fair evalua-319

tion, correct answers are evenly distributed across320

options throughout the benchmark.321

Quality Control To discourage “blind” mod-322

els that leverage language biases, we filter exam-323

ples in the benchmark that could be easily solved324

based only on the linguistic modality. We apply325

three unimodal LLMs Phi-3.5-mini-instruct [4B]326

(Abdin et al., 2024), Llama-3 [8B] (AI@Meta,327

2024) and Qwen-2.5-instruct [72B] (QwenTeam,328

2024), which are popular LLM backbones in cur-329

rent MLLMs. In MT1 and MT2, we discard a sam-330

ple if at least two LLMs can answer the question331

correctly without visual inputs. A manual check332

was performed by the authors to exclude ambigu-333

ous images, grammatically incorrect and/or seman-334

tically implausible statements, and cases where335

image sequences did not match the text.336

Benchmark Statistics TempVS consists of337

2,085 distinct image sequences with correspond-338

ing original captions and extracted events. Table 2339

shows the statistics of each task from each data340

source in TempVS. Most image sequences in the341

benchmark contain 5 images each, except for 61342

sequences from VWP, which have 6 to 9 images.343

4 Experiments 344

4.1 Experimental Setup 345

Models We evaluate a diverse family of state-of- 346

the-art models with various sizes (ranging from 347

0.5B to 78B) and different vision and LLM 348

backbones. We select DeepSeek-vl2 [3B/16B] 349

(Wu et al., 2024), InternVL2.5 [1B/8B/26B/78B] 350

(Chen et al., 2024), Janus-Pro [1B/7B](Chen et al., 351

2025), LLaVA-NeXT-Interleave [0.5B/7B] (Li 352

et al., 2024c), LLaVA-OneVision [0.5B/7B/72B] 353

(Li et al., 2024a), LLaVA-NeXT-Video [7B/34B] 354

(Zhang et al., 2024b), LongVA [7B] (Zhang et al., 355

2024a), Mantis[8B] (Jiang et al., 2024), Phi-3- 356

vision [4B], Phi-3.5-vision [4B] (Abdin et al., 357

2024), and Qwen2-VL [2B/7B/72B] (Wang et al., 358

2024a). We also evaluate GPT-4o [2024-11-20]. 359

The implementation details are provided in Ap- 360

pendix D.1. 361

Evaluation Metrics For multiple-choice ques- 362

tions, we benchmark MLLMs’ performance us- 363

ing accuracy as the metric for predicted options. 364

Accuracy scores are reported for both the main 365

tests (MT) and their corresponding grounding tests 366

(GT). In MT1, where each question relates to ei- 367

ther two or three events, there is a GT for each 368

separate event. In MT2 and MT3, each question 369

corresponds to a number of grounding tests equal 370

to the number of images in the sequence. Addi- 371

tionally, we introduce a stricter metric, GTstrict, 372

which assesses the number of image sequences 373

where a model passes all corresponding grounding 374

tests.5 To examine the relationship between main 375

test and grounding test performance, we further 376

report MT|GTstrict, where a model’s success on a 377

main test is considered valid only if it passes all 378

corresponding grounding tests. 379

4.2 Main Results 380

Results for 21 state-of-the-art MLLMs are shown 381

in Table 3. For the full quantitative results of all 382

tested 38 MLLMs, we refer to Appendix D.2. Our 383

main observations of the empirical results are as 384

follows: 385

TempVS is challenging even for SOTA MLLMs 386

InternVL2.5-26B-MPO achieves the highest perfor- 387

mance on the two-event relation inference, while 388

GPT-4o leads in the three-event relation inference. 389

5Appendix D.2 provides overall grounding test results,
showing models’ ability to precisely locate the correct image
within a sequence based on textual input in general.
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Two-event Relation (MT1) Three-event Relation (MT1) Sentence Ordering - event (MT2) Sentence Ordering - caption (MT2) Image Ordering - event (MT3) Image Ordering - caption (MT3)
GTs MT MT|GTs GTs MT MT|GTs GTs MT MT|GTs GTs MT MT|GTs MT MT|GTs MT MT|GTs

Random 4 50 0.6 50 0.032 20 0.032 20 20 20
DeepSeek-vl2 3B 20.8 49.7 49.7 10.5 49.8 50.6 0.8 19.5 25.0 1.5 18.2 17.9 20.4 42.9 20.7 12.5

16B 14.2 43.1 42.2 6.7 44.4 44.4 0.4 15.7 14.3 0.6 17.1 18.2 16.6 0.0 15.5 0.0
InternVL2.5 26B 46.0 57.1 58.4 39.6 58.4 60.2 10.2 56.7 73.6 13.1 63.0 76.9 26.7 27.3 31.7 35.9

26B-MPO 51.3 60.3 62.1 46.0 62.1 64.7 12.6 69.9 90.8 17.0 76.9 87.3 34.4 39.7 39.5 43.7
78B 51.6 54.2 55.3 47.3 56.8 57.0 13.6 67.0 84.9 18.5 71.1 83.9 31.1 40.0 38.5 47.1

78B-MPO 58.8 58.5 59.9 56.5 61.4 62.6 18.4 79.8 96.6 25.9 86.3 96.4 41.0 48.8 53.8 69.7
Janus-Pro 1B 2.7 48.3 48.1 0.7 46.5 42.6 0.0 18.6 - 0.1 19.8 0.0 22.5 0.1 22.3 0.0

7B 4.3 35.1 34.1 0.4 32.9 39.3 0.0 17.1 - 0.0 15.3 - 20.9 - 21.0 -
LLaVA-NeXT-Interleave 0.5B 2.5 49.8 47.8 0.2 50.4 50.0 0.0 20.7 - 0.0 20.7 - 20.2 - 20.8 -

7B 13.0 51.6 52.4 7.2 50.1 49.8 0.3 25.1 16.7 0.4 27.0 0.0 20.9 16.7 20.0 22.2
LLaVA-OneVision-ov 0.5B 8.6 45.3 45.5 2.9 48.1 47.6 0.1 18.8 0.0 0.1 18.4 0.0 19.4 100.0 19.0 0.0

7B 32.8 56.0 58.0 26.0 57.5 59.8 4.5 44.2 41.2 6.8 46.9 47.6 21.3 14.3 21.6 19.8
72B 46.4 59.3 62.1 40.5 61.5 63.5 9.8 65.2 81.8 14.0 75.1 86.6 27.6 31.8 29.1 36.5

LLaVA-NeXT-Video 7B 5.8 46.0 46.0 1.4 44.9 47.0 0.0 19.0 - 0.0 18.2 - 21.0 - 21.3 -
34B 6.5 58.5 58.4 1.6 59.5 57.6 0.1 31.8 100.0 0.0 33.4 - 19.8 - 20.0 -

LongVA 7B 8.7 54.7 56.1 2.1 56.0 61.7 0.2 34.2 66.7 0.2 35.3 50.0 19.5 0.1 19.0 -
Mantis-Idefics 8B 12.2 51.9 53.3 4.1 52.0 51.6 0.1 22.2 0.0 0.2 20.8 0.0 18.6 0.0 19.2 50.0
Phi-3.5-vision 3.4B 4.0 49.0 47.7 0.8 48.8 48.3 0.0 23.1 - 0.0 25.4 - 19.2 - 18.3 -

Qwen2-VL-Instruct 7B 32.4 54.0 55.4 21.2 53.6 55.3 3.4 42.5 64.6 4.4 44.6 61.3 23.1 20.4 24.6 35.9
72B 31.7 54.0 56.4 20.6 55.6 60.6 3.7 46.3 64.3 5.0 55.1 70.0 26.5 47.3 28.1 47.4

GPT-4o API 60.3 58.3 60.1 57.0 64.5 66.4 18.6 53.4 53.9 28.6 61.5 55.3 22.6 23.5 23.0 23.5

Table 3: Zero-shot average accuracy performance of 11 popular MLLMs families with 21 variants on TempVS
benchmark on strict grounding test (GTs), main test (MT) and the main test when all corresponding grounding tests
pass (MT|GTs). Best models per metric are marked in boldface and the second best models are underlined.

InternVL2.5-78B-MPO outperforms other models390

in both sentence ordering and image ordering tasks.391

However, most models with parameters less than392

or equal to 7B exhibit random chance accuracies393

of approximately 50% (for MT1) and 20% (for394

MT2 and MT3). Most MLLMs perform similarly395

on two-event and three-event relation inference396

tasks, while for the strongest models (such as In-397

ternVL2.5[26B/78B], LLaVA-OneVision-ov-72B398

and GPT-4o), their performance is even slightly399

better on the understanding three-event statements.400

In addition, sentence ordering is a relatively simple401

task (with the highest accuracy at 86.3%), while402

image ordering is a significantly more challeng-403

ing task (with the highest accuracy only at 53.8%).404

GPT-4o performs substantially worse than several405

of the best-performing open-source models in both406

sentence and image ordering tasks. In terms of407

language type, we find that sentence and image408

ordering are easier with original captions than with409

extracted events. This may indicate that models410

might leverage additional contextual details and411

temporal cues from the original captions, which412

are unavailable in the simpler extracted event de-413

scriptions.414

Both scale and post-training help As shown in415

Figure 2, accuracy generally improves with model416

size. However, the marginal gains diminish as mod-417

els get larger. In the two-event and three-event418

relation inference, this effect is more evident, with419

smaller models (7B or 26B) already attaining com-420

petitive and in some cases higher accuracy com-421

pared to larger models ( > 70B). Additionally, the422

two ordering tasks exhibit larger performance gaps423

between smaller and larger models, which can be424

attributed to the superior long-range reasoning ca-425

pabilities of the more powerful LLM backbones 426

in larger MLLMs. Surprisingly, DeepSeek-VL2 427

[3B/16B] and Janus-Pro [1B/7B] are exceptions, as 428

their smaller models outperform the larger ones in 429

most cases. 430

Our results also highlight the importance of 431

high-quality post-training: under the same model 432

sizes, InternVL2.5-MPO consistently outperforms 433

InternVL2.5 across all evaluated tasks, especially 434

when the model parameters exceed 7B. These re- 435

sults indicate that Mixed Preference Optimization 436

(MPO) (Chen et al., 2024) effectively enhances the 437

overall multimodal temporal understanding and rea- 438

soning capabilities. Similarly, models fine-tuned 439

using Direct Preference Optimization (DPO) are 440

consistently better than their SFT-only counterparts. 441

Other results comparing LLaVA-NeXT-Video and 442

LongVA families are provided in Appendix D.2. 443

We also see a positive impact of instruction tuning 444

on complex reasoning tasks such as image ordering 445

(e.g., Qwen2-VL-Instruct outperforms Qwen2-VL 446

across all tasks). 447

Event grounding does not guarantee under- 448

standing of temporal relations In MT1, we 449

observe a slight difference between MT and 450

MT|GTstrict. This suggests that even if a model 451

can accurately identify the image corresponding to 452

every single event within a sequence, it may still 453

lack the ability to understand the chronological or- 454

der of events in text. In short, grounding textual 455

descriptions and reasoning about their temporal re- 456

lations require different capabilities. Among all 457

grounding tests, GPT-4o performs the best, but it 458

lags significantly behind top-tier open-source mod- 459

els like InternVL2.5-MPO[26B/78B] especially in 460

the two ordering tasks (MT2 and MT3). In MT2 461
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Figure 2: Illustrative TempSV benchmark results of selected models with different number of parameters.

# Image seqs Accuracy Fleiss’ kappa

Two-event Relation 60 82.5 0.728
Three-event Relation 60 81.6 0.689
Sentence Ordering (event) 40 81.2 0.751
Sentence Ordering (caption) 40 89.3 0.764
Image Ordering (event) 40 79.1 0.827
Image Ordering (caption) 40 77.9 0.742

Table 4: Results of human evaluation on all main tests.

and MT3, MT|GTstrict accuracy improves substan-462

tially over MT for most large MLLMs, confirming463

the fundamental role of visual grounding in sen-464

tence or image ordering tasks. For instance, the465

MT|GTstrict accuracy scores of InternVL2.5-78B-466

MPO are higher than MT by 16.8% (event) and467

10.1% (caption) in MT2, and by 7.8% (event) and468

15.9% (caption) in MT3. Meanwhile, for small469

models like DeepSeek-vl2[3B], MT|GTstrict accu-470

racy is sometimes even smaller than MT accuracy.471

This indicates some dependency of these models’472

reasoning abilities on their grounding capability,473

though this is unlikely to be the only factor affect-474

ing performance.475

Gap with human performance To evaluate the476

quality and estimate the difficulty of TempVS, we477

perform a human assessment on 280 randomly se-478

lected image sequences, covering all fine-grained479

statement types of MT1 as well as both language480

types (C and E) for MT2 and MT3. We recruited481

36 annotators on the Prolific platform and collected482

three responses for each image sequence, yielding483

840 responses collected in total. Further details are484

provided in Appendix B.485

There is a large gap between human average per-486

formance (Table 4) and SOTA MLLMs. For the487

tasks of two-event and three-event relation infer-488

ence and image ordering, there remains plenty of489

room for improvement. However, for the sentence490

ordering task, the strongest model InternVL2.5-491

78B-MPO is already close to human performance.492

Humans exhibit substantial agreement among them-493

selves on the main tasks, with Fleiss’ kappa (Landis 494

and Koch, 1977) above 0.68 across the board. 495

4.3 Further Analysis 496

Impact of temporal expressions We further an- 497

alyze how the models understand and reason about 498

different types of statements in the two-event and 499

three-event relation inference tasks (MT1). We se- 500

lect the top five models on these two tasks for com- 501

parison (Table 5). When comparing explicit and 502

implicit temporal event statements (cf. Table 1), 503

we observe that models consistently perform better 504

on the former. This could be because the presence 505

of temporal adverbs or conjunctions in a sentence 506

helps clarify the order in which events happen. The 507

top five models always achieve higher accuracy on 508

positive examples than on negative ones. Despite 509

the even distribution of “True” and “False” across 510

options “A” and “B” in our benchmark, models ex- 511

hibit a tendency to predict “True” more frequently. 512

By incorporating adversarial samples, our TempVS 513

benchmark effectively reveals MLLMs’ biases to- 514

ward certain answers, providing a robust assess- 515

ment of their compositional temporal reasoning 516

capabilities. 517

We also observe the better performance of mod- 518

els on explicitly marked temporal relations involv- 519

ing before (resp. after) and on then (resp. earlier). 520

The key difference between these pairs of comple- 521

mentary temporal adverbials is that with before and 522

then, the order of events in text mirrors their order 523

in the image sequence, whereas this is not the case 524

with after/earlier. We therefore see some evidence 525

of an iconicity effect: temporal relations are easier 526

for models when the surface order of events mir- 527

rors their actual order (in the visual modality). This 528

echoes similar findings in the discourse processing 529

and psycholinguistic literature on narrative com- 530

prehension (Zwaan and Radvansky, 1998; Smith, 531

2003). It also points to an important avenue for 532

future research in fine-grained multimodal bench- 533
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Models InternVL2.5-26B-MPO InternVL2.5-78B-MPO llava-onevision-72b-ov LLaVA-NeXT-Video-34B GPT-4o Top-5 Average
Tasks

Statement Type Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Both

after 59.9 62.9 70.7 49.1 71.4 50.6 77.9 37.1 56.2 60.4 67.2 52.0 59.6
before 66.4 66.7 71.6 57.9 70.6 59.0 77.1 41.4 53.3 73.4 67.8 59.7 63.8
earlier 70.8 47.0 74.3 36.8 74.1 41.5 85.9 28.8 69.1 38.5 74.8 38.5 56.7
then 65.5 59.3 73.3 44.8 71.3 50.0 86.4 35.2 61.0 63.1 71.5 50.5 61.0

Two-event
Relation

implict 65.3 38.7 74.4 31.6 74.4 30.1 86.4 28.3 64.0 43.4 72.9 34.4 53.6

before/after 66.7 72.3 70.7 64.0 77.7 54.6 71.2 72.0 55.7 78.2 65.1 67.2 66.2
first/second/third 55.2 70.4 65.4 67.5 76.5 45.9 68.4 64.1 50.4 78.9 60.4 65.5 63.0

later/finally 75.2 56.3 87.5 32.5 77.4 52.8 100.0 0.1 69.4 68.3 79.8 43.1 61.5
Three-event

Relation
implict 73.3 27.1 82.6 20.3 78.7 28.4 100.0 0.3 70.3 43.7 76.3 28.4 52.4

Table 5: Fine-grained accuracy of different statement types in the two-event and three-event relation inference
tasks. “Pos” denotes positive examples, while “Neg” represents negative examples. The higher accuracy score is
highlighted in gray for each pair of positive and negative statements.

1 2 3 4
Distance between two events

InternVL2.5-26B
InternVL2.5-26B-MPO

InternVL2.5-78B
InternVL2.5-78B-MPO

llava-interleave-7b
llava-onevision-7b-ov

llava-onevision-72b-ov
LLaVA-NeXT-Video-34B

LongVA-7B
Mantis-8B-Idefics2

Qwen2-VL-7B-Instruct
Qwen2-VL-72B-Instruct

GPT-4o
Average

55.1 57.2 58.7 60.5
56.9 61.2 62.5 64.6
52.7 54.2 55.5 57.4
56.3 58.1 60.8 61.8
50.9 51.8 52.5 52.0
52.3 56.8 59.0 60.7
56.2 59.6 61.8 64.1
58.0 58.5 58.4 59.7
54.3 54.7 55.0 55.7
51.2 52.1 52.4 53.0
52.6 54.0 55.3 55.8
52.0 54.3 55.6 56.3
56.9 57.9 59.3 61.6
54.3 56.2 57.4 58.7

Figure 3: Accuracy of the two-event relation inference
task with different distances between the two events in
a sequence.

marking, namely, in cases where surface character-534

istics in two modalities are not perfectly aligned.535

Distance between two events Figure 3 presents536

the accuracy of the two-event relation inference537

task as the distance between events in the origi-538

nal sequence increases from one to four. Nearly539

all models improve in performance as the distance540

increases. On the one hand, more distant visual541

events in the dataset are typically more visually542

distinct. On the other hand, the models may fail543

to effectively separate two closely spaced images,544

even though separators were inserted between im-545

ages in the input.6546

Prompting with Chain-of-Thought Chain-of-547

Thought (CoT, Wei et al., 2022) is a widely used548

approach to enhance models’ reasoning ability, by549

6In our experiments, we combine sequential images into
one picture. In our preliminary experiments, we attempted to
input the images into the model sequentially, one at a time, and
observed little difference in performance compared to merging
them into a single input. To mitigate the risk of exceeding
the context length in some MLLMs, we chose to merge the
images.

InternVL2.5-78B GPT-4o
w/o. CoT w. CoT ∆ w/o. CoT w. CoT ∆

Two-event relation (MT1) 54.23 56.13 +1.90 58.27 60.43 +2.16
Three-event relation (MT1) 56.79 57.20 +0.41 64.52 63.38 -1.14
Sentence Ordering (MT2) 71.09 85.42 +14.33 61.50 81.41 +19.91

Image Ordering (MT3) 38.49 47.54 +9.05 22.97 33.77 +10.80

Table 6: Model performance comparison with and with-
out Chain of Thought (CoT).

allowing models to generate intermediate reason- 550

ing steps before producing the final answer. It 551

may thus also enhance models’ temporal reasoning 552

skills on TempVS. We conduct CoT experiments 553

using InternVL2.5-78B and GPT-4o. The detailed 554

prompts are listed in Appendix C. As shown in 555

Table 6, CoT yields large gains on sentence and 556

image ordering, but limited improvement for event 557

relation inference (MT1). This indicates the po- 558

tential of step-by-step reasoning for ordering tasks. 559

However, simple CoT does not help event relation 560

inference. We leave the investigation of methods 561

to enhance models’ understanding of this complex 562

task and improve its temporal reasoning capabili- 563

ties for future work. 564

5 Conclusion 565

In this paper, we present a novel and challeng- 566

ing benchmark TempVS, designed to assess mul- 567

timodal, multi-event temporal reasoning abilities 568

of MLLMs in image sequences. After evaluating 569

38 advanced MLLMs, we find that current models 570

typically struggle with reasoning about temporal 571

relations and rearranging shuffled images to the 572

correct order based on a narrative. Further analysis 573

of linguistic structures, event distance, and Chain- 574

of-Thought reasoning has shed light on promising 575

avenues for future work. Our study contributes to 576

MLLM development by uncovering weaknesses in 577

multi-event temporal reasoning in multi-image sce- 578

narios, while TempVS provides a valuable resource 579

for further research. 580
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Limitations Despite a careful examination of581

publicly available repositories, technical reports582

and papers, we find no evidence that the evalu-583

ated MLLMs were trained on the data included in584

TempVS. However, for models (such as GPT-4o)585

that have not fully disclosed or explicitly stated586

their training data, the possibility of data leakage587

and contamination remains unclear. This could588

potentially lead to an overestimation of their advan-589

tages. Additionally, we focus on multiple-choice590

questions to ensure structured evaluation and clear591

correctness criteria. However, other question types,592

such as open-ended questions, particularly the eval-593

uation of open-ended generation in multi-image594

temporal understanding and reasoning, are also595

worth exploring. We leave these for future work.596

Ethical Considerations In this study, we employ597

published datasets and pretrained multimodal large598

language models, with no known significant ethical599

concerns regarding their usage. However, we ac-600

knowledge that biases in the original image-caption601

data may influence both the models and their eval-602

uations. Our research has received approval from603

our institution’s Ethics Board, ensuring compliance604

with ethical guidelines for human annotation pro-605

cess. Additionally, all collected human-annotated606

data has been deidentified to protect participants’607

data privacy and security.608
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A Details in Data Filtering871

A.1 Stative Verbs872

We filter out the samples where any form of a sta-873

tive verb exists (as displayed in Table 7) in the874

captions to avoid describing a state. In contrast,875

we only keep the examples with dynamic verbs to876

describe actions.877

Base Form Present Participle 3rd Person Singular Past Tense Past Participle
wish wishing wishes wished wished
equal equaling equals equaled equaled
signify signifying signifies signified signified
feel feeling feels felt felt
involve involving involves involved involved
sense sensing senses sensed sensed
sound sounding sounds sounded sounded
detest detesting detests detested detested
want wanting wants wanted wanted
see seeing sees saw seen
forget forgetting forgets forgot forgot
matter mattering matters mattered mattered
contain containing contains contained contained
own owning owns owned owned
taste tasting tastes tasted tasted
dislike disliking dislikes disliked disliked
remember remembering remembers remembered remembered
suppose supposing supposes supposed supposed
resemble resembling resembles resembled resembled
think thinking thinks thought thought
envy envying envies envied envied
depend depending depends depended depended
hate hating hates hated hated
know knowing knows knew known
require requiring requires required required
love loving loves loved loved
appreciate appreciating appreciates appreciated appreciated
need needing needs needed needed
concern concerning concerns concerned concerned
span spanning spans spanned spanned
appear appearing appears appeared appeared
owe owing owes owed owed
weigh weighing weighs weighed weighed
disagree disagreeing disagrees disagreed disagreed
become becoming becomes became become
fear fearing fears feared feared
measure measuring measures measured measured
possess possessing possesses possessed possessed
like liking likes liked liked
look looking looks looked looked
imagine imagining imagines imagined imagined
mind minding minds minded minded
belong belonging belongs belonged belonged
loathe loathing loathes loathed loathed
lack lacking lacks lacked lacked
deserve deserving deserves deserved deserved
mean meaning means meant meant
promise promising promises promised promised
believe believing believes believed believed
prefer preferring prefers preferred preferred
cost costing costs costed costed
hope hoping hopes hoped hoped
recognize recognizing recognizes recognized recognized
include including includes included included
support supporting supports supported supported
understand understanding understands understood understood
comprise comprising comprises comprised comprised
agree agreeing agrees agreed agreed
realize realizing realizes realized realized
value valuing values valued valued
seem seeming seems seemed seemed
hear hearing hears heard heard
doubt doubting doubts doubted doubted
consist consisting consists consisted consisted
smell smelling smells smelled smelled

Table 7: Full list of stative verbs.

A.2 Threshold Values878

Due to the differences in image and text styles879

across datasets caused by their respective domains,880

we determined the threshold values for text similar-881

ity and image similarity for each dataset through882

BERTScore CLIP Similarity

precision recall f1
FlintstonesSV <0.98 <0.98 <0.96 <0.94

PororoSV <0.96 <0.96 <0.95 <0.90
VWP <0.98 <0.98 <0.97 <0.95
VIST <0.92 <0.92 <0.90 <0.88

Table 8: The similarity threshold values used in data
filtering.

manual inspection and empirical tuning, as shown 883

in the Table 8. For example, in FlintstonesSV, for 884

text similarity, two texts are considered dissimilar 885

if their BERTScore precision and recall are both 886

below 0.98, and their F1 score is below 0.96. Sim- 887

ilarly, for image similarity, two images are con- 888

sidered dissimilar if their CLIP similarity score is 889

below 0.94. 890

A.3 Data Statistics after Each Filtering Step 891

In Table 9, we show the statistics of image se- 892

quences left after each data filtering step.

FlintstonesSV PororoSV VWP VIST

Original image sequences 24,433 11,444 12,627 49,700
No stative verbs 10,378 3,114 1,995 20,294

No starting pronoun 10,105 2,952 914 12,216
No similar text 3,092 1,952 815 2,906

No similar image 636 644 809 2,315
No ambiguous image-text 633 535 686 2,284

No repetitive image sequences 633 535 498 1,880
Without No_EVENT 612 535 417 1,292

Final image sequences
after manual check

565 395 316 809

Final two-event groups 2104 864 850 3742
Final three-event groups 916 172 208 830

Table 9: The number of image sequences of each step
in data filtering process.

893

B Human Performance Survey 894

We designed three questionnaires for the human 895

performance survey, corresponding to the three 896

main tasks: event relation inference, sentence or- 897

dering, and image ordering. To ensure that partici- 898

pants fully understand the tasks, we provided task 899

instructions and two sample questions at the begin- 900

ning of each questionnaire (as shown in Figure 4). 901

Additionally, Figure 5 presents sample questions 902

that participants were required to answer. We ran- 903

domly selected 280 image sequences from Tem- 904

pVS benchmark and collected three responses for 905

each sequence from different annotators. Partici- 906

pants in MT1 were required to complete 30 ques- 907

tions, while participants in the other two ordering 908

tasks completed 20 questions each. The median 909
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completion time was approximately 20 minutes,910

ensuring that long-time focus did not negatively911

impact participants’ judgment. We recruited 36912

annotators (18 females, 18 males) via Prolific, all913

of whom were proficient in English and had at least914

a college-level education.915

Figure 4: An example of task instruction and example
question shown in the beginning of human questionnaire

C Prompts916

Prompt Template The prompt examples we917

used for each task are shown below. Our prompt918

consists of Character Description (only for im-919

age sequences from FlintstonesVS and PororoVS),920

Task Instruction, Question Text, Response Format921

and Options (only for main tests), and a prefix indi-922

cating the beginning of the answer.923

Figure 5: Example question interface used by the human
annotators

GT: Grounding Test
User:
[Character Description] Description of
character appearance in the images: Fred
is chubby, has black hair, a large nose and
wears an orange and black spotted short-
sleeved loincloth with a blue scarf. Bar-
ney is short, has yellow hair, oval eyes and
wears a brown loincloth with a black X-
shaped shoelace on the top.
[Task Instruction] Pick the image from the
image sequence that accurately represents
the event. When making the choice, focus
on the evidence presented in the sequence
of images from left to right.
[Question Text] The event is: Fred was
sitting in a room on a stool.
[Response Format] Submit the right num-
ber of the image in the sequence as your
answer only without additional reasoning
or repetition of the instructions.
The answer is:

924
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MT1: Event Relation Inference
[Character Description] Description of
character appearance in the images: Pororo
is a gentoo penguin with an orange-yellow
beak wearing a tan aviator’s helmet and or-
ange goggles.
[Task Instruction] Is the statement com-
pletely accurate and consistent with the con-
tent in the sequence of images? When mak-
ing the choice, focus on the evidence pre-
sented in the sequence of images from left
to right.
[Question Text] The statement is: A snow-
ball dropped down a small snow hill after
Pororo threw a snowball.
[Response Format] Submit only the right
option letter as your answer, e.g., Option
[Letter].
[Options] Options are: A. True; B. False.
The answer is:

925

MT2: Sentence Ordering
[Task Instruction] You are given an or-
dered image sequence and several sentences
in a random order. Your task is to analyze
the content of the sequence of images from
left to right and rearrange the sentences into
the correct chronological or logical order.
Read the image sequence from left to right.
Use the images’ content to guide your sen-
tence ordering. Avoid assumptions not sup-
ported by the image sequence or sentences.
[Question Text] The shuffled sentences are:
Sentence a: John prepares to shoot again
and fires.
Sentence b: The shadowy figure is hit with
the rifle blast.
Sentence c: John takes aim at a shadowy
figure up above.
Sentence d: Ken stops the horses and pre-
pares to leave the stagecoach.
Sentence e: Ken is approaching a house out
on the prairie on his stagecoach with his two
horses.
[Response Format] Do not provide ex-
planations or repeat the prompt. Select
from the following options and your answer
should only be in the format: Option [Let-
ter].
[Options]
A. Sentence c -> Sentence b -> Sentence a
-> Sentence e -> Sentence d;
B. Sentence b -> Sentence e -> Sentence d
-> Sentence a -> Sentence c;
C. Sentence e -> Sentence b -> Sentence c
-> Sentence d -> Sentence a;
D. Sentence c -> Sentence a -> Sentence e
-> Sentence d -> Sentence b;
E. Sentence d -> Sentence c -> Sentence e
-> Sentence b -> Sentence a.
The answer is:

926
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MT3: Image Ordering
[Task Instruction] The text narrates a
story or event sequence. Use your vision-
language reasoning to reorder the images
to reflect the narrative structure. Carefully
read the provided text. Focus on the events,
actions, and details described to reorder the
images logically.The images are labeled in
order as Image a, Image b, Image c, Image
d, and Image e, and so on if there are more
photos.
[Question Text] The events are: Some peo-
ple came for the family gathering today.
The girls enjoyed some fruit. We played on
the swings. The boys lounged in the chair.
Grandpa put his grandson on his knee.
[Response Format] Select from the follow-
ing options and your answer should be in
the format: ’Option [Letter]’. Respond with
the correct option only, avoiding any expla-
nations or repetition.
[Options]
A. Image b -> Image c -> Image d -> Image
a -> Image e;
B. Image e -> Image d -> Image c -> Image
b -> Image a;
C. Image b -> Image e -> Image d -> Image
a -> Image c;
D. Image a -> Image c -> Image e -> Image
b -> Image d;
E. Image c -> Image b -> Image a -> Image
e -> Image d.
The answer is:

927

Variations of Each Prompt Component For928

each component in the prompt, we generate multi-929

ple variations (as listed in Table 10). By combining930

different components, we ultimately generate 328931

distinct prompts.932
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Chain-of-Thought Prompts933

Task CoT Prompt
MT1 Analyze the provided image sequence to determine whether the following statement is

True or False. When making the choice, carefully examine the evidence presented in
the sequence of images from left to right. First, describe the key details and changes
observed in each image. Then, explain how these details support or contradict the
given statement. Finally, based on your step-by-step reasoning, conclude whether the
statement is True or False. Ensure your response follows this format: the reasoning
process should be enclosed within <think> and </think> tags, and the final answer
should be enclosed within <answer> and </answer> tags.

MT2 You are presented with an ordered image sequence and several sentences in random
order. Your task is to determine the correct order of the sentences based on the context,
events, or details observable in the images. Multiple-choice options are provided,
with each option representing a possible sequence of the sentences. Think step by
step, using the content of the images to guide your reasoning. Avoid assumptions not
supported by the image sequence or the sentences.
Format your response as follows: Enclose your step-by-step reasoning process within
<think> and </think> tags. Enclose the selected option (e.g., Option A, Option B)
within <answer> and </answer> tags.

MT3 Order the following images in the correct sequence based on the content of the story.
Compare each image with the text description, carefully analyzing the sequence of
events to determine the proper order of the unordered images.
Response should be in this format:
<think> First, examine the text description to identify key events and their chrono-
logical order. Next, analyze each image to match it with the corresponding event
described in the text. Consider visual cues, actions, and details in the images that
indicate the progression of the story. Arrange the images accordingly to reflect the
correct sequence of events. </think>
<answer> Option [Your Choice] </answer>

Table 11: Chain-of-Thought prompts for different tasks.

D Experiments934

D.1 Implementation Details935

We evaluate 38 existing MLLMs for multi-event temporal grounding and reasoning, including both936

proprietary and open-source models. All open-source models are assessed using their official pre-trained937

versions available on HuggingFace. Detailed configurations of the open-source models evaluated are938

listed in Table 12. To minimize randomness, we set the temperature to 0. Experiments on open-source939

models are conducted using a single NVIDIA H100 GPU. For models exceeding 70B parameters, we940

adopt the mixed precision (FP16), otherwise the full precision. Following Jiang et al. (2024) and Wang941

et al. (2025), we merge sequential images into a single input, separating them with a thin white band and942

labeling each with an index (e.g., “Image 1” when images are sequentially ordered, or “Image a” when943

images are shuffled). Initially, we tested sequentially inputting images one at a time but observed minimal944

performance differences compared to merging them.945
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Task Instruction - definition

MT1

- Is the statement completely accurate and consistent with the content in the sequence of images?
- Analyze the provided image sequence to determine whether the following statement is True or False.
- Review the sequential images and decide whether the provided statement is True or False.
- Is the statement entirely consistent and supported by the images in the sequence?
- Examine the visual evidence in the provided sequence of images to determine whether the statement is True or False.
- Does the statement fully match the information presented in the ordered images? Taking the content in the image seqeunce
into account, can you decide whether the statement is True or False?
- Given the multiple images provided in order, can you select the correct answer from True or False considering statement?

MT2

- You are given an ordered image sequence and several sentences in a random order. Your task is to analyze the content of the sequence of
images from left to right and rearrange the sentences into the correct chronological or logical order.
- Here is an left-to-right image seqeunce and some sentences in random order. Your goal is to determine the correct order of the sentences
based on the context, events, or details observable in the images. Consider the visual elements in the sequential images to infer the logical or temporal sequence.
- The images are presented in a correct order, but the sentences are not. Your task is to reorder the sentences to match the sequence of events or details
in the images from left to right.
- You are provided with a sequence of images and several randomly ordered sentences. Your task is to: 1. Understand the context of the image sequence;
2. Identify how each sentence relates to the image; 3. Rearrange the sentences to form a coherent order.
- Using your multimodal understanding and reasoning of the ordered image sequence and the randomly shuffled sentences , arrange the sentences
in the correct sequence to match the flow of events in the image seqeunce.
- Presented is an image sequence in the order from left to right along with several unordered sentences. Your task is to determine the correct sequence of the sentences
by analyzing the context, events, or details depicted in the images. Use the visual elements in the images to deduce the logical or chronological order.

MT3

- Rearrange the following images in the correct order based on content in the story.
- The provided paragraph describes a sequence of events. Arrange the images in the correct chronological order to match the story.
- The images are out of order compared to the text. Identify and reorder them to match the described sequence.
- The text narrates a story or event sequence. Use your vision-language reasoning to reorder the images to reflect the narrative structure.
- Using your understanding of the text and image content, arrange the images in the correct sequence to match the flow of events in the text.
- The paragraph describes events in a specific timeline. Use multimodal reasoning to reorder the images in the correct sequence.

GT

- Based on the event described, select the image that best matches it from the following options.
- Pick the image from the image sequence that accurately represents the event.
- Which is the most fitting image for the described event? Pick from the choices below.
- If you were to illustrate the event, which picture would you use?
- Find the image from the sequence of images that represents the event most precisely.
- Identify the picture that best represents the given event.

Task Instruction - requirement

MT1

- When making the choice, focus on the evidence presented in the sequence of images from left to right.
- Choose the correct option based on the content in the sequential images from left to right.
- Only use the left-to-right content of the image sequence to inform the decision.
- Evaluate the statement strictly based on the information shown in the sequence of images from left to right.

MT2

- Read the image sequence from left to right. Use the images’ content to guide your sentence ordering. Avoid assumptions not supported by the image seqeunce or sentences.
- Understand images from left to right in the order. Focus on the visual content of the images to determine the correct order of the sentences.
Make sure the reordered sentences form a clear and coherent narrative or description.
- Follow the sequence of images from left to right and use their content to determine the correct sentence order. Do not rely on assumptions that are not supported by the images or sentences.
- Interpret the images in their left-to-right order, focusing on their visual details to arrange the sentences correctly.
Ensure that the reordered sentences create a logical and coherent narrative or description.

MT3

- Carefully read the provided text. Focus on the events, actions, and details described to reorder the images logically.
- Focus on matching the actions and events shown in the images with the details described in the text.
- Identify key events and details from the text and use them to determine the proper order of the images.
- Compare the images with the text description, focusing on the sequence of events to arrange unordered images correctly.

GT

- Make your choice by considering the evidence shown in the sequence of images from left to right.
- Select the correct option using only the content presented in the sequential images from left to right.
- Rely on the left-to-right order of the image sequence to guide your decision.
- Assess the statement exclusively based on the information depicted in the sequence of images from left to right.

Response Format

MT1

- No need to give reasoning process. Submit only the right option letter as your answer, e.g., Option [Letter].
- Do not tell the reasons of your decision. Provide the most suitable choice letter in the format of ’Option [Letter]’ as your response only.
- Do not repeat the prompt or include reasons. Only return the correct option letter in the form of ’Option [Letter]’ as your response.
- Please exclude explanations in the response. Offer the most proper choice letter in the format of ’Option [Letter]’ as your answer only.

MT2
- Do not provide explanations or repeat the prompt. Select from the following options and your answer should only be in the format: Option [Letter].
- Provide your answer from the following choices only in the format: ’Option [Letter]’ without explanations or repeating the instructions.
- Choose the correct option from the choices provided below and output your answer only as ’Option [Letter]’, avoiding any explanations or repetition.

MT3
- Select from the following options and your answer should be in the format: ’Option [Letter]’. Respond with the correct option only, avoiding any explanations or repetition.
- Do not provide explanations or restate the question. Provide your answer from the following choices only in the format: Option [Letter].
- Choose the correct option from the choices provided below and submit your answer only as ’Option [Letter]’, without any justifications or repetition of the prompt.

GT
- Submit the right number of the image in the sequence as your answer only without additional reasoning or repetition of the instructions.
- Provide only the most suitable image number as your response, avoiding any explanations or repetition.
- Only return the correct image number in the provided sequence without additional reasoning details or repetition of the instructions.

Table 10: All variations of different components we used to generate the prompts.
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HuggingFace Model ID # Params Vision Backbone Base LLM

deepseek-ai/deepseek-vl2-tiny 3.4B SigLIP-SO400M-384 DeepSeekMoE
deepseek-ai/deepseek-vl2-small 16.1B SigLIP-SO400M-384 DeepSeekMoE

OpenGVLab/InternVL2_5-1B 0.9B InternViT-300M-448px-V2_5 Qwen2.5-0.5B-Instruct
OpenGVLab/InternVL2_5-1B-MPO 0.9B InternViT-300M-448px-V2_5 Qwen2.5-0.5B-Instruct
OpenGVLab/InternVL2_5-8B 8.1B InternViT-300M-448px-V2_5 internlm2_5-7b-chat
OpenGVLab/InternVL2_5-8B-MPO 8.1B InternViT-300M-448px-V2_5 internlm2_5-7b-chat
OpenGVLab/InternVL2_5-26B 25.5B InternViT-6B-448px-V2_5 internlm2_5-20b-chat
OpenGVLab/InternVL2_5-26B-MPO 25.5B InternViT-6B-448px-V2_5 internlm2_5-20b-chat
OpenGVLab/InternVL2_5-78B 78.4B InternViT-6B-448px-V2_5 Qwen2.5-72B-Instruct
OpenGVLab/InternVL2_5-78B-MPO 78.4B InternViT-6B-448px-V2_5 Qwen2.5-72B-Instruct

deepseek-ai/Janus-Pro-1B 1.0B ViT-L-16-SigLIP-384 DeepSeek-LLM-1.5b-base
deepseek-ai/Janus-Pro-7B 7.0B ViT-L-16-SigLIP-384 DeepSeek-LLM-7b-base

llava-hf/llava-interleave-qwen-0.5b-hf 0.9B SigLIP-400M Qwen1.5-0.5B-Chat
llava-hf/llava-interleave-qwen-7b-hf 8.1B SigLIP-400M Qwen1.5-7B-Chat
llava-hf/llava-interleave-qwen-7b-dpo-hf 8.1B SigLIP-400M Qwen1.5-7B-Chat

lmms-lab/llava-onevision-qwen2-0.5b-ov 0.9B siglip-so400m-patch14-384 Qwen2-0.5B
lmms-lab/llava-onevision-qwen2-0.5b-si 0.9B siglip-so400m-patch14-384 Qwen2-0.5B
lmms-lab/llava-onevision-qwen2-7b-ov 8.0B siglip-so400m-patch14-384 Qwen2-7B
lmms-lab/llava-onevision-qwen2-7b-si 8.0B siglip-so400m-patch14-384 Qwen2-7B
lmms-lab/llava-onevision-qwen2-72b-ov-sft 73.2B siglip-so400m-patch14-384 Qwen2-72B
lmms-lab/llava-onevision-qwen2-72b-si 73.2B siglip-so400m-patch14-384 Qwen2-72B

llava-hf/LLaVA-NeXT-Video-7B-hf 7.1B SigLIP-400M vicuna-7b-v1.5
llava-hf/LLaVA-NeXT-Video-7B-DPO-hf 7.1B SigLIP-400M vicuna-7b-v1.5
llava-hf/LLaVA-NeXT-Video-34B-hf 34.8B SigLIP-400M vicuna-33b-v1.3
llava-hf/LLaVA-NeXT-Video-34B-DPO-hf 34.8B SigLIP-400M vicuna-33b-v1.3

lmms-lab/LongVA-7B 7.9B SigLIP-400M Qwen2-7B-Instruct
lmms-lab/LongVA-7B-DPO 7.9B SigLIP-400M Qwen2-7B-Instruct

TIGER-Lab/Mantis-8B-Idefics2 8.4B idefics2-8b Mistral-7B-v0.1
TIGER-Lab/Mantis-8B-siglip-llama3 8.5B SigLIP LLaMA-3-8B

microsoft/Phi-3-vision-128k-instruct 3.8B CLIP ViT-L/14 Phi-3-mini-128k-instruct
microsoft/Phi-3.5-vision-instruct 4.2B CLIP ViT-L/14 Phi-3.5-mini-instruct

Qwen/Qwen2-VL-2B 2.2B CLIP ViT-L/14 Qwen2-1.5B
Qwen/Qwen2-VL-2B-Instruct 2.2B CLIP ViT-L/14 Qwen2-1.5B
Qwen/Qwen2-VL-7B 7.6B CLIP ViT-L/14 Qwen2-7B
Qwen/Qwen2-VL-7B-Instruct 7.6B CLIP ViT-L/14 Qwen2-7B
Qwen/Qwen2-VL-72B 72.7B CLIP ViT-L/14 Qwen2-72B
Qwen/Qwen2-VL-72B-Instruct 72.7B CLIP ViT-L/14 Qwen2-72B

Table 12: Details of all evaluated open-source MLLMs: HuggingFace model id, number of parameters, vision
backbone, base LLM.
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D.2 Evaluation Results of 38 MLLMs 946

In this section, we present the complete quantitative results of 38 state-of-the-art multimodal large language 947

models (MLLMs) on the TempVS benchmark. The results for the MT1 event relation reasoning task are 948

shown in Table 13, while Table 14 presents the results for the MT2 sentence ordering task and Table 15 949

reports the results for the MT3 image ordering task. It is important to note that GT represents the overall 950

grounding evaluation, which measures the number of events correctly matched to their corresponding 951

images across the entire benchmark. GTstrict denotes the strict grounding evaluation, which calculates 952

the number of image sequences in which every event within a sequence is correctly matched to its 953

corresponding image. 954

Two-event Relation Inference Three-event Relation Inference
GT GTstrict MT MT|GTstrict GT GTstrict MT MT|GTstrict

deepseek-vl2-tiny 0.4159 0.2082 0.4971 0.4965 0.4292 0.1052 0.4976 0.5064
deepseek-vl2-small 0.4116 0.1416 0.4311 0.4223 0.4306 0.0669 0.4436 0.4435
InternVL2_5-1B 0.3636 0.1702 0.4102 0.4073 0.3896 0.085 0.3895 0.4270
InternVL2_5-1B-MPO 0.3879 0.1881 0.3727 0.3709 0.4002 0.0953 0.3736 0.3569
InternVL2_5-8B 0.5655 0.3976 0.5426 0.5540 0.6246 0.3278 0.5438 0.5556
InternVL2_5-8B-MPO 0.6230 0.4697 0.5619 0.5736 0.6871 0.4118 0.558 0.5714
InternVL2_5-26B 0.6181 0.4604 0.5705 0.5843 0.6824 0.3958 0.5835 0.6022
InternVL2_5-26B-MPO 0.6521 0.5132 0.6032 0.6212 0.7096 0.4595 0.6212 0.6474
InternVL2_5-78B 0.6555 0.5157 0.5423 0.5532 0.7154 0.4733 0.5679 0.5698
InternVL2_5-78B-MPO 0.7046 0.5881 0.5847 0.5992 0.7771 0.5653 0.6139 0.6258
Janus-Pro-1B 0.2359 0.0273 0.4827 0.4814 0.2558 0.0073 0.4645 0.4259
Janus-Pro-7B 0.2399 0.0429 0.3509 0.3406 0.2555 0.0038 0.3287 0.3929
llava-interleave-qwen-0.5b-hf 0.2172 0.0245 0.4976 0.4779 0.2182 0.0019 0.5036 0.5012
llava-interleave-qwen-7b-hf 0.3521 0.1300 0.5161 0.5239 0.4112 0.0723 0.5007 0.4981
llava-interleave-qwen-7b-dpo-hf 0.3531 0.1358 0.5198 0.5357 0.4102 0.0845 0.5173 0.5319
llava-onevision-qwen2-0.5b-ov 0.304 0.0859 0.4528 0.4545 0.3343 0.0286 0.4807 0.4764
llava-onevision-qwen2-0.5b-si 0.2153 0.0235 0.4496 0.4429 0.2156 0.0013 0.3587 0.3731
llava-onevision-qwen2-7b-ov 0.5176 0.3278 0.5602 0.5804 0.578 0.2604 0.5753 0.5979
llava-onevision-qwen2-7b-si 0.4575 0.2505 0.5292 0.5419 0.4895 0.1403 0.5546 0.5654
llava-onevision-qwen2-72b-ov-sft 0.6215 0.4641 0.5928 0.6213 0.6844 0.405 0.6154 0.6349
llava-onevision-qwen2-72b-si 0.5418 0.3593 0.5296 0.5393 0.6015 0.2804 0.5248 0.5298
LLaVA-NeXT-Video-7B-hf 0.2731 0.0575 0.4603 0.4603 0.2972 0.0135 0.4486 0.4723
LLaVA-NeXT-Video-7B-DPO-hf 0.2718 0.0596 0.4672 0.466 0.2981 0.014 0.4520 0.4615
LLaVA-NeXT-Video-34B-hf 0.2742 0.0652 0.5847 0.5839 0.3053 0.0159 0.5947 0.5763
LLaVA-NeXT-Video-34B-DPO-hf 0.3028 0.0825 0.533 0.5386 0.3289 0.0205 0.5248 0.5263
LongVA-7B 0.3015 0.0874 0.5468 0.5613 0.3138 0.0208 0.5596 0.6169
LongVA-7B-DPO 0.3241 0.1132 0.5319 0.5582 0.3449 0.0386 0.5233 0.535
Mantis-8B-Idefics2 0.3452 0.1218 0.5193 0.533 0.3586 0.041 0.5197 0.5164
Mantis-8B-siglip-llama3 0.2444 0.0443 0.5238 0.5368 0.2392 0.0065 0.5251 0.5833
Phi-3-vision-128k-instruct 0.2226 0.0379 0.5196 0.5219 0.2332 0.0065 0.5132 0.4583
Phi-3.5-vision-instruct 0.2235 0.0400 0.4904 0.4774 0.2316 0.0078 0.4877 0.4828
Qwen2-VL-2B 0.3053 0.088 0.4935 0.4842 0.3188 0.0313 0.4717 0.4923
Qwen2-VL-2B-Instruct 0.3815 0.1738 0.5271 0.5314 0.4003 0.0777 0.5051 0.5052
Qwen2-VL-7B 0.4032 0.1664 0.5122 0.4982 0.4233 0.0899 0.4991 0.4603
Qwen2-VL-7B-Instruct 0.5144 0.3239 0.5397 0.5542 0.5415 0.2124 0.5358 0.5534
Qwen2-VL-72B 0.4906 0.2997 0.5461 0.5738 0.5167 0.1935 0.5429 0.5900
Qwen2-VL-72B-Instruct 0.5078 0.3167 0.5395 0.5643 0.5427 0.2059 0.5563 0.6062
GPT-4o 0.7043 0.6034 0.5827 0.6005 0.7807 0.5704 0.6452 0.6644

Table 13: Full results for MT1: event relation inference
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Ordering Sentences (events) Ordering Sentences (captions)
GT GTstrict MT MT| GTstrict GT GTstrict MT MT| GTstrict

deepseek-vl2-tiny 0.3701 0.0084 0.1953 0.25 0.4415 0.0154 0.1823 0.1786
deepseek-vl2-small 0.3021 0.0037 0.1574 0.1429 0.3735 0.0061 0.1707 0.1818

InternVL2_5-1B 0.3462 0.0089 0.2253 0.1176 0.3589 0.0105 0.2037 0.2105
InternVL2_5-1B-MPO 0.3636 0.0084 0.2168 0.4375 0.3833 0.0099 0.2032 0.3889

InternVL2_5-8B 0.5294 0.0711 0.4589 0.5778 0.5574 0.0765 0.5424 0.6259
InternVL2_5-8B-MPO 0.5747 0.0963 0.5663 0.7377 0.6183 0.1415 0.6289 0.7704

InternVL2_5-26B 0.5765 0.1016 0.5674 0.7358 0.6137 0.1311 0.63 0.7689
InternVL2_5-26B-MPO 0.6089 0.1258 0.6989 0.9079 0.6491 0.1696 0.7693 0.8734

InternVL2_5-78B 0.6121 0.1363 0.6695 0.8494 0.6536 0.1845 0.7109 0.8388
InternVL2_5-78B-MPO 0.6604 0.1842 0.7984 0.9657 0.7064 0.2594 0.8634 0.9639

Janus-Pro-1B 0.2344 0 0.1858 - 0.2497 0.0006 0.1982 0
Janus-Pro-7B 0.2409 0 0.1705 - 0.2623 0 0.1525 -

llava-interleave-qwen-0.5b-hf 0.2161 0 0.2068 - 0.2269 0 0.2065 -
llava-interleave-qwen-7b-hf 0.3363 0.0032 0.2505 0.1667 0.3477 0.0039 0.2704 0

llava-interleave-qwen-7b-dpo-hf 0.3332 0.0047 0.2679 0.3333 0.3409 0.0099 0.2996 0.3333
llava-onevision-qwen2-0.5b-ov 0.2931 0.0005 0.1884 0 0.3118 0.0006 0.1839 0
llava-onevision-qwen2-0.5b-si 0.2106 0 0.1895 - 0.2199 0 0.1944 -
llava-onevision-qwen2-7b-ov 0.4839 0.0447 0.4421 0.4118 0.5118 0.0683 0.4692 0.4758
llava-onevision-qwen2-7b-si 0.426 0.0168 0.4284 0.6875 0.4119 0.0116 0.4537 0.7619

llava-onevision-qwen2-72b-ov-sft 0.5838 0.0984 0.6516 0.8182 0.6179 0.1399 0.7506 0.8661
llava-onevision-qwen2-72b-si 0.5115 0.0411 0.61 0.8077 0.5464 0.0743 0.6691 0.7852
LLaVA-NeXT-Video-7B-hf 0.2645 0 0.1895 - 0.2742 0 0.1823 -

LLaVA-NeXT-Video-7B-DPO-hf 0.2666 0 0.1963 - 0.2736 0 0.1938 -
LLaVA-NeXT-Video-34B-hf 0.2646 0.0005 0.3184 1 0.2831 0 0.3343 -

LLaVA-NeXT-Video-34B-DPO-hf 0.2882 0.0016 0.3095 0 0.2984 0.0006 0.3133 0
LongVA-7B 0.286 0.0016 0.3421 0.6667 0.2909 0.0022 0.353 0.5

LongVA-7B-DPO 0.3089 0.0026 0.3547 0.8 0.2997 0.0028 0.3618 0.6
Mantis-8B-Idefics2 0.3326 0.0011 0.2216 0 0.2868 0.0022 0.2081 0

Mantis-8B-siglip-llama3 0.2406 0.0005 0.2142 0 0.2461 0 0.2153 -
Phi-3-vision-128k-instruct 0.2243 0 0.2316 - 0.2214 0 0.2329 -

Phi-3.5-vision-instruct 0.2262 0 0.2311 - 0.2331 0 0.2539 -
Qwen2-VL-2B 0.2873 0.0004 0.1957 0 0.3274 0.0011 0.1995 0

Qwen2-VL-2B-Instruct 0.3638 0.0058 0.1658 0.0909 0.333 0.0015 0.2014 0.5
Qwen2-VL-7B 0.4592 0.0028 0.3097 0.25 0.4879 0.0076 0.3276 0.5455

Qwen2-VL-7B-Instruct 0.4813 0.0342 0.4253 0.6462 0.5098 0.0441 0.446 0.6125
Qwen2-VL-72B 0.4539 0.0258 0.4363 0.7143 0.4914 0.0435 0.5319 0.7215

Qwen2-VL-72B-Instruct 0.4756 0.0368 0.4632 0.6429 0.5085 0.0496 0.5507 0.7
GPT-4o 0.6708 0.1863 0.534 0.5389 0.7231 0.2357 0.615 0.5532

Table 14: Full results for MT2: sentence ordering with events/captions.
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Ordering Images (events) Ordering Images (captions)
MT MT| GTstrict MT MT| GTstrict

deepseek-vl2-tiny 0.2042 0.4286 0.2072 0.125
deepseek-vl2-small 0.1663 0 0.1553 0

InternVL2_5-1B 0.2107 0.1429 0.1997 0.0625
InternVL2_5-1B-MPO 0.2052 0.1538 0.2002 0.2667

InternVL2_5-8B 0.2766 0.2783 0.2651 0.4113
InternVL2_5-8B-MPO 0.2986 0.3841 0.318 0.3816

InternVL2_5-26B 0.2666 0.2727 0.3165 0.3589
InternVL2_5-26B-MPO 0.344 0.3971 0.3949 0.4369

InternVL2_5-78B 0.311 0.4 0.3849 0.4709
InternVL2_5-78B-MPO 0.4099 0.4883 0.5382 0.6966

Janus-Pro-1B 0.2247 - 0.2227 0
Janus-Pro-7B 0.2092 - 0.2097 -

llava-interleave-qwen-0.5b-hf 0.2017 - 0.2077 -
llava-interleave-qwen-7b-hf 0.2087 0.1667 0.1997 0.2222

llava-interleave-qwen-7b-dpo-hf 0.2167 0.3846 0.2127 0.1905
llava-onevision-qwen2-0.5b-ov 0.1942 1 0.2082 0
llava-onevision-qwen2-0.5b-si 0.2032 - 0.1902 -
llava-onevision-qwen2-7b-ov 0.2132 0.1429 0.2157 0.1983
llava-onevision-qwen2-7b-si 0.2077 0.35 0.2047 0.4375

llava-onevision-qwen2-72b-ov-sft 0.2756 0.3182 0.2906 0.3647
llava-onevision-qwen2-72b-si 0.2546 0.3553 0.2461 0.2677
LLaVA-NeXT-Video-7B-hf 0.2102 - 0.2132 -

LLaVA-NeXT-Video-7B-DPO-hf 0.2067 - 0.2082 -
LLaVA-NeXT-Video-34B-hf 0.1977 0 0.1997 -

LLaVA-NeXT-Video-34B-DPO-hf 0.1887 0.3333 0.1932 0
LongVA-7B 0.1952 - 0.1902 -

LongVA-7B-DPO 0.1962 1 0.1937 0
Mantis-8B-Idefics2 0.1862 0 0.1922 0.5

Mantis-8B-siglip-llama3 0.2002 0 0.1987 -
Phi-3-vision-128k-instruct 0.1857 - 0.1897 -

Phi-3.5-vision-instruct 0.1922 - 0.1832 -
Qwen2-VL-2B 0.1917 - 0.1859 0

Qwen2-VL-2B-Instruct 0.1438 0.125 0.1483 1
Qwen2-VL-7B 0.1917 0 0.2067 0.1818

Qwen2-VL-7B-Instruct 0.2312 0.2041 0.2456 0.3585
Qwen2-VL-72B 0.2416 0.3548 0.2406 0.4561

Qwen2-VL-72B-Instruct 0.2651 0.4727 0.2811 0.4737
GPT-4o 0.2257 0.2353 0.2297 0.2349

Table 15: Full results for MT3: image ordering with events/captions.
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E Additional Examples in TempVS955

We provide more examples in TempVS benchmark.956

Captions: Fred is in his car driving somewhere. Fred is holding groceries at a fence outside. 
He puts the groceries on the fence and then jumps over the gate. Fred is standing in the 
doorway with two bags of groceries and yelling someone in the house. Fred is in the kitchen. 
He is emptying a bag of groceries on the table. He is speaking to someone off-screen. 
Wilma is standing in the room. She is speaking while having her elbows bent.

Events: Fred drove in his car. Fred put the groceries on the fence. Fred stood in the doorway 
with two bags of groceries. Fred emptied a bag of groceries on the table. Wilma stood in the 
room and spoke to someone.

Correct image sequence: Image c -> Image e -> Image d -> Image a -> Image b

Captions: We had fun riding the black roller coaster at the fair. The lights lit up the night and 
the rides made us all dizzy. The dragon coaster was mom's favorite.  The arcade games had 
the funniest stuffed monkeys as prizes. We threw a million darts trying to win one!

Events: We took the black roller coaster. The lights lit up the night. Mom favored the dragon 
coaster. The arcade games had stuffed monkeys as prizes. We threw the darts.

Correct image sequence: Image c -> Image e -> Image d -> Image a -> Image b
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Event a: Eddy used a screwdriver on a green frog toy.
Event b: Loopy walked to a house.
Event c: Eddy turned around and waved to Loopy.
Event d: Loopy came in with a basket.
Event e: Loopy walked away from Crong and Pororo.

Caption a: Eddy is using a screwdriver on a green frog toy. 
Caption b: Loopy is walking to a house surrounded by snowed fields and trees.
Caption c: Eddy turns around and waves to Loopy. Rody, Eddy and Loopy are together in a 
room. 
Caption d: Loopy comes in with a basket. Loopy and Rody wave hands to each other.
Caption e: Loopy walks away and Crong and Pororo wave hands to loopy. 

Correct sentence sequence: Sentence e -> Sentence b -> Sentence d -> Sentence c -> 
Sentence a

Event a: Robert found many different shops and services inside the building.
Event b: Jon sat in his room planning his next move.
Event c: Amy and Robert came in their car to meet Jon.
Event d: Robert loaded his gun in the lift.
Event e: Robert entered the building.

Caption a: Robert finds many different shops and services inside building. He is confused.
Caption b: Jon is sitting in his room, planning his next move.
Caption c: Amy and Robert are coming in their car to meet Jon.
Caption d: Robert gets inside lift and loads his gun. He intends to kill Jon as soon as find 
him.
Caption e: Robert goes inside the building and begins to search for Jon.

Correct sentence sequence: Sentence b -> Sentence c -> Sentence e -> Sentence a -> 
Sentence d
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True: The King and his hunting party pursued the deer after the parents told Anna they were 
in the middle of the King's forest.
False: The parents told Anna they were in the middle of the King's forest after the King and 
his hunting party pursued the deer.

True: The King and his hunting party pursued the deer. Earlier, Anna sat with her parents 
beneath a large oak tree.
False: Anna sat with her parents beneath a large oak tree. Earlier, the King and his hunting 
party pursued the deer.

True: Anna sat with her parents beneath a large oak tree. Anna asked her parents where 
they were. The King and his hunting party pursued the deer.
False: The King and his hunting party pursued the deer. Anna sat with her parents beneath a 
large oak tree. Anna asked her parents where they were. 

True: Pororo kicked the ball high. Crong received a ball from Pororo.
False: Crong received a ball from Pororo. Pororo kicked the ball high.

True: Pororo kicked the ball high. Then, Loopy failed to kick the ball.
False: Loopy failed to kick the ball. Then, Pororo kicked the ball high. 

True: Pororo and Crong shouted to Loopy before Loopy failed to kick the ball, and after that, 
Eddy kicked the ball.
False: Eddy kicked the ball before Pororo and Crong shouted to Loopy, and after that, Loopy 
failed to kick the ball.
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True: Granpa made some last-minute repairs before the kids had a tickle fight in the family 
room.
False: The kids had a tickle fight in the family room before Granpa made some last-minute 
repairs.

True: The mother, father, and son listened to a story at dinner. Earlier, Granpa made some 
last-minute repairs.
False: Granpa made some last-minute repairs. Earlier, the mother, father, and son listened 
to a story at dinner.

True: First, Granpa made some last-minute repairs. Second, the kids had a tickle fight in the 
family room. Third, Nina took out a chocolate cake.
False: First, Nina took out a chocolate cake. Second, Granpa made some last-minute 
repairs. Third, The kids had a tickle fight in the family room.

True: Wilma and betty talked in the living room. Earlier, Fred sat at the kitchen table with a 
boy.
False: Fred sat at the kitchen table with a boy. Earlier, Wilma and Betty talked in the living 
room.

True: Fred and Barney talked to each other while driving in the car after Fred choked the 
men in the blue dress with a cap in the dining room.
False: Fred choked the men in the blue dress with a cap in the dining room after Fred and 
Barney talked to each other while driving in the car.

True: Fred choked the men in the blue dress with a cap in the dining room. Fred and Barney 
talked to each other while driving in the car. Wilma and Betty talked in the living room.
False: Fred and Barney talked to each other while driving in the car. Fred choked the men in 
the blue dress with a cap in the dining room. Wilma and Betty talked in the living room. 
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