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Abstract

Existing interpolation methods use pre-trained video diffusion priors to generate
intermediate frames between sparsely sampled keyframes. In the absence of 3D ge-
ometric guidance, these methods struggle to produce plausible results for complex,
articulated human motions and offer limited control over the synthesized dynamics.
In this paper, we introduce PoseFuse3D Keyframe Interpolator (PoseFuse3D-KI), a
novel framework that integrates 3D human guidance signals into the diffusion pro-
cess for Controllable Human-centric Keyframe Interpolation (CHKI). To provide
rich spatial and structural cues for interpolation, our PoseFuse3D, a 3D-informed
control model, features a novel SMPL-X encoder that transforms 3D geometry
and shape into the 2D latent conditioning space, alongside a fusion network that
integrates these 3D cues with 2D pose embeddings. For evaluation, we build
CHKI-Video, a new dataset annotated with both 2D poses and 3D SMPL-X pa-
rameters. We show that PoseFuse3D-KI consistently outperforms state-of-the-art
baselines on CHKI-Video, achieving a 9% improvement in PSNR and a 38% reduc-
tion in LPIPS. Comprehensive ablations demonstrate that our PoseFuse3D model
improves interpolation fidelity.

1 Introduction

Frame interpolation aims to generate new frames between two consecutive video frames to improve
temporal smoothness. Traditional interpolation methods [12, 46, 17] assume small, simple motion
over short time spans. These methods are challenged when the input frames are widely separated,
known as keyframe interpolation or generative inbetweening [56, 47, 41, 11], where the motion
between them becomes complex and ambiguous. This challenge is magnified in human-centric videos,
where articulated body movements encompass diverse poses and shapes. With human subjects being
prevalent in today’s video content, there is a growing need for interpolation methods to handle large
temporal gaps and intricate human motion while offering plausible results.

Human-centric keyframe interpolation remains challenging for current methods. Recent ap-
proaches [11, 47, 41] leverage generative priors from image-to-video (I2V) models to bridge the
temporal gap. These methods condition the interpolation solely on the input keyframes without inter-
mediate guidance. Consequently, they often struggle to resolve motion ambiguities and accurately
capture the complex articulated dynamics of human motion. For instance, when keyframes involve
large occlusions or non-rigid joint movements, these methods often produce implausible or distorted
interpolations (Figure 1(a)) due to insufficient intermediate guidance. FCVG [56] has explored
interpolation keyframes with 2D skeletons as control signals for human subjects. However, 2D lines
cannot convey full body shape and geometry, leading to unrealistic results (see Figure 1(b)). These
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Figure 1: Keyframe Interpolation with Different Strategies. (a) Interpolation using I2V models
without intermediate guidance often yields implausible or distorted frames, especially under large
motion or occlusion. (b) Skeleton-guided interpolation offers structural cues but lacks geometric
detail, resulting in unrealistic body shape and appearance. (c) Our PoseFuse3D-KI employs dense
human-centric guidance, enabling temporally coherent and visually plausible interpolations.

methods lack fine-grained control over the interpolation process, limiting their ability to produce
flexible, high-fidelity human-centric interpolations.

In this study, we investigate the integration of 3D human conditions into the human-centric keyframe
interpolation pipeline. Drawing inspiration from recent advances in human animation [55, 54], we
propose to integrate 2D human poses [48] with 3D SMPL-X models [30] as intermediate control
signals. These signals provide precise guidance for complex articulated motions: 2D poses offer
concise representations of human joint poses, while 3D models capture rich spatial geometry. How-
ever, effectively processing these control signals poses challenges. First, common practice renders
3D human models into 2D proxies (e.g., colored surface, normals, depth maps) before encoding,
leading to substantial loss of spatial information in occluded regions. Therefore, we need to develop
a dedicated encoder that preserves occluded 3D details when converting models into control signals.
Second, fusing signals with different information content and granularity is nontrivial. This necessi-
tates designing appropriate neural architectures that can accurately extract 3D cues and harmonize
them with 2D poses into a unified, informative control input.

To this end, we introduce PoseFuse3D Keyframe Interpolator, termed as PoseFuse3D-KI, a novel
pose-control framework for controllable human-centric keyframe interpolation (Figure 1(c)). Our
framework is unique in its 3D-informed control model PoseFuse3D, which comprises three jointly
trained modules. The first derives control features from visualized conditions; the second encodes and
aggregates 3D body geometry into 2D image conditioning features; and the third combines outputs
from the first two modules into a unified control signal for interpolation. In contrast to Champ [55],
which fuses 3D features from rendered visualizations, our encoder processes features directly in 3D
and integrates projected features through feature aggregation.

To evaluate the proposed PoseFuse3D-KI, we have also built a high-quality video dataset for Control-
lable Human-centric Keyframe Interpolation (CHKI). Most existing interpolation datasets, such as
SportsSlomo [6], target small temporal gaps, lack annotations for 2D poses or 3D human models, and
offer limited human-centric motion diversity. Therefore, we introduce CHKI-Video, a new dataset for
a systematic evaluation of CHKI algorithms. CHKI-Video comprises 2,614 high-quality video clips
of over 180K frames sourced from SportsSlomo [6] and Pexels [1] website that hosts high-quality
stock videos. Each frame is carefully annotated with bounding boxes, segmentation masks, 2D
human poses, and SMPL-X parameters, using state-of-the-art tools [4, 20, 25, 34, 43] supplemented
by manual verification. From this collection, we derive a benchmark specifically for the CHKI task.
We hope this benchmark will help improve controlled keyframe interpolation techniques with its
high-quality videos and diverse examples.

Our contributions are threefold: (i) We present PoseFuse3D-KI, an effective interpolation framework
for human-centric keyframe interpolation, characterized by a novel pose-control model, PoseFuse3D.
It effectively extracts control signals from 3D SMPL-X and fuses 2D signals, allowing precise
and informative control. (ii) For evaluation, we construct CHKI-Video, a benchmark dataset with
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comprehensive human-centric annotations, which are absent in existing interpolation benchmarks.
(iii) Through extensive experiments, we demonstrate that PoseFuse3D-KI delivers state-of-the-art
performance on our CHKI-Video benchmark with an improvement of 1.85 dB in PSNR and a
reduction of 0.0796 in LPIPS.

2 Related Work

Frame Interpolation. Traditional frame interpolation methods are primarily designed for temporally
adjacent frames and rely on either direct synthesis using convolutional networks [8, 19], or motion
representations such as dynamic kernels [28, 29, 32, 7, 9, 22] and optical flows [16, 23, 21, 37, 14,
2, 12, 17, 44, 50]. Recent advances [11, 47, 41] extend this task to more challenging keyframe
interpolation scenarios by leveraging the generative priors of image-to-video diffusion models [3, 39,
35, 13]. These methods combine temporal forward and reverse denoising predictions in a unified
process to enable interpolation. However, such approaches struggle when faced with complex
articulated motions or ambiguous transitions from human keyframes. To alleviate motion ambiguity
in interpolation, FCVG [56] introduces 2D matched lines as control signals. However, this control
signal lacks the 3D geometric context required for plausible human-centric interpolation, resulting in
unrealistic body shape and appearance.

Pose-Guided Human Animation. Recent advances in pose-guided human animation [54, 55, 15,
33, 51, 45, 40] harness the power of diffusion models and have achieved remarkable success in
generating videos from a single reference image. These methods offer flexible and precise control by
incorporating enriched conditioning signals and increasingly sophisticated control mechanisms. 2D
human poses, such as OpenPose [5] and DWPose [48], are widely used in existing works [55, 54,
33, 51], but they are limited in capturing fine-grained geometry and motion dynamics. To address
this, recent works [55, 54] integrate 3D human parametric models [27, 30], which offer realistic body
representation through blend shapes and skinning, resulting in more accurate and expressive human
animations. Specifically, Champ [55] renders 3D human models into 2D proxies (e.g., normals, depth,
and semantic maps) and combines them with 2D pose visualizations as control input. It operates
directly on these visualizations and unifies them using a simple summation operation. To incorporate
control signals into diffusion models, many approaches [40, 45, 51, 54] adapt ControlNet [51] for
their customized control networks. Some methods [55, 15] introduce task-specific pose guiders but
often require retraining the majority of denoiser parameters. ControlNeXt [33] improves control
efficiency by encoding conditions with a lightweight convolutional network and injecting them via
cross-normalization after the first denoising block, tuning only a minimal subset of parameters. This
efficient mechanism enables robust conditioning over large-scale pre-trained video generators [39, 3].

In this paper, we demonstrate the advantage of combining 2D poses (DWPose [48]) with 3D human
models (SMPL-X [30]) through comprehensive experiments. We present a novel pose control model
that extracts unified, 3D-informed control features to provide precise guidance. Instead of relying on
rendered normals and depth maps, the model directly extracts explicit 3D information from human
models in 3D space, preserving richer control signals. It adopts a ControlNeXt-inspired strategy to
control video diffusion models for keyframe interpolation.

3 Method

Given a human-centric keyframe-pair I0, IN ∈ RH×W×3 with timesteps {0, N}, Controllable
Human-centric Keyframe Interpolation (CHKI) is formulated as:

{Îi}N−1
i=1 = G(I0, IN , {C}Ni=0), (1)

where G denotes an interpolation model guided by control signals {Ci}. In this work, we aim to
address CHKI by proposing an effective controllable interpolation framework, PoseFuse3D-KI. This
framework integrates 3D-aware human-centric signals into a pre-trained Video Diffusion Model
(VDM) through our 3D-informed control model PoseFuse3D, as illustrated in Figure 2(a).

3.1 PoseFuse3D

PoseFuse3D is a 3D-informed control model that provides 3D human structure and geometry guidance
for plausible human interpolation. This 3D-informed guidance is injected into the base diffusion
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Figure 2: Model Architecture. Our PoseFuse3D-KI framework, as shown in (a), comprises a video
diffusion model (VDM) and a novel control model, PoseFuse3D. The PoseFuse3D model extracts rich
features from both 3D and 2D control signals and fuses them into a unified representation to guide
the VDM. The key component of PoseFuse3D is the SMPL-X encoder as illustrated in (b), which
provides explicit 3D signal features. Specifically, the SMPL-X encoder first extracts 3D information
from the SMPL-X model with 2D correspondences via projection. The 3D and 2D information is
then encoded in parallel. With features of 2D correspondences, 3D information is aggregated onto
the 2D image plane using attention mechanisms. The aggregated features are subsequently processed
to produce the final feature S3D.

model after the first denoising block via cross-normalization [33]. Internally, PoseFuse3D comprises
three jointly trained components: a visual encoding module that derives control features from 3D
SMPL-X [30] renderings and 2D DWPose [48] visualizations; a SMPL-X encoder that directly
embeds 3D humans and aggregates them into image conditioning maps; and a fusion module that
integrates encoding streams into a unified control tensor to guide interpolation in the base VDM.

Visual Encoding. This visual encoding module extracts conditional features from visualized control
images, maintaining natural pixel-level alignment with the controlled video latents. To enhance the
control signals, we incorporate visualizations from both DWPose and SMPL-X. While SMPL-X
renderings provide rich human surface details, their keypoint information is indirect, mixed with other
vertices and mesh faces. Therefore, we add DWPose visualizations to emphasize the skeletal keypoint
layout for robust pose understanding. This combination was also demonstrated to be effective in prior
work [55]. Specifically, our visual encoding module employs two parallel convolutional encoders to
capture comprehensive pose information. One encoder processes DWPose visualizations to capture
compact pose information, while the other handles SMPL-X renderings that retain 3D cues such
as occlusion boundaries and projected shapes. Notably, to enrich semantic detail, we use SMPL-X
Colored Surface [54] during rendering, which assigns a unique color to each vertex. The resulting
feature maps, E2D and E3D, are then passed to the fusion module for unified conditioning.

SMPL-X Encoder. Although 3D model renderings offer aligned image maps for conditioning in
VDMs, the rendering operation discards parts of 3D information, particularly in occluded regions.
This results in implausible interpolation for keyframes of large human motion. For example, in
the first case of Figure 3, all variants relying solely on rendered controls fail to interpolate the
occluded arms with correct spatial position. To enhance controllability with direct 3D information,
we introduce a SMPL-X encoder (Figure 2(b)) that processes the SMPL-X model in 3D space
and transforms it into an image conditioning feature S3D. Specifically, a SMPL-X model [30] is
parameterized with (θ, β, ψ), corresponding to pose, shape, and expression. We obtain structural
information by forwarding these parameters into the SMPL-X model to generate vertex and joint
coordinates P 3D, J3D in 3D space and obtain their corresponding 2D coordinates P 2D, J2D through

4



projection:

P 3D, J3D = SMPLX(θ, β, ψ), (2)

P 2D, J2D = Projection(P 3D, J3D), (3)

where the joint coordinates J3D, J2D correspond to the pose parameter θ that indicates joint rotations.
Notably, the projection step establishes a correspondence between the 3D space and the 2D image
plane, making it possible to retain 3D spatial structure while producing image conditioning maps.
Next, the raw 3D coordinates are processed using an MLP to produce point-wise vertex features V P

and joint features. These joint features are refined through a temporal residual block that fuses them
with pose information into expressive joint-level representations V J . To aggregate these 3D features
into 2D image control maps for joints and vertices, we employ separate attention mechanisms:

OJ = JointAttn(Q,KJ , V J), (4)

OP = VertexAttn(Q,KP , V P ), (5)

where Q ∈ RB×HW×d is the flattened d-dimension feature of a standard 2D meshgrid extracted by
a convolutional encoder. Finally, the outputs OJ and OP are concatenated and passed through a
downsampling block to produce the final SMPL-X control representation S3D, which serves as an
informative and compact image embedding of the underlying 3D human structure.

Condition Fusion. The condition fusion module combines control features from both 2D and 3D
signals into a unified representation to guide keyframe interpolation. For robust feature representation,
we introduce a coarse-to-fine fusion strategy that progressively integrates rich geometric information
from the 3D features into the compact 2D pose features. Specifically, we adopt two attention-
based fusion blocks to perform this integration, where each block contains three attention layers
for progressive refinement. The first layer is a self-attention module that processes the 3D features
by operating on the sum of rendering encoding E3D and SMPL-X features S3D. The second layer
performs cross-attention, aligning the 3D features with the 2D encoding E2D through a spatially
localized interaction scheme. Notably, we adapt the shifted window-partition strategy [26, 50] to
restrict attention computation to adjacent regions, enhancing local alignment. The third layer applies
temporal self-attention to capture temporal dynamic correlations in the fused representation. We use
the second fusion block output as the final control signal, which is injected into the base interpolation
engine to provide fine-grained, structure-aware guidance during synthesis.

3.2 VDMs as Base Interpolation Engine

To supply generative priors for human-centric keyframe interpolation, we adapt pre-trained Video
Diffusion Models (VDMs) under the latent diffusion framework [35]. VDMs perform the diffusion
process in a VAE-encoded latent space, conditioning video synthesis on input frames. Our main
experiments investigate Wan2.1 [39] as the base model for keyframe interpolation.

Wan2.1 consists of a scaled-up DiT-based denoiser [31] and a causal 3D-VAE that performs spa-
tiotemporal compression. It employs the flow matching strategy [24, 10] for the diffusion process. It
formulates the forward diffusion process as a linear interpolation between the clean video latent z
and the noise ϵ, which adds the noise by: zt = (1− t)z + tϵ. In the backward process, the denoiser
fθ iteratively refines zt conditioned on the first frame I0. The training objective is formulated as:

L = Ez,t,I0,ϵ∼N (0,I)[||fθ(zt, I0, t)− y||22], (6)

where the target objective y is dzt
dt = ϵ− z. Since the latent space is unevenly compressed in time,

noise fusion strategies [11, 56] that combine temporally forward and reverse denoising paths are
ineffective. Instead, we adapt Wan2.1 for keyframe interpolation in one unified denoising process.
Specifically, we condition Wan2.1 on both endpoint frames I0, IN , and apply LoRA tuning to its
input patch embeddings. Additional details are provided in the supplementary material.

4 The CHKI-Video Dataset

Existing interpolation datasets [46, 8, 6, 36, 38], which are designed for interpolating temporally
adjacent frames, are not suitable for the CHKI task. To address this gap, we built the CHKI-Video
dataset in three consecutive stages. More details can be found in the supplementary material.
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Stage 1: Dataset Collection. To create a dataset with challenging and diverse human motion, we
curate video clips from SportSlomo [6] and Pexels [1]. While SportsSlomo provides challenging
human-centric videos, its exclusive focus on sports limits the diversity of activities. To enhance
diversity versus the reality [49], we compile a list of keywords, spanning everyday activities to
high-intensity actions. We use these keywords to retrieve videos from Pexels, complementing the
sports videos. The curated videos are then downsampled to eliminate frame redundancy unnecessary
for keyframe interpolation.

Stage 2: Pre-annotation Processing. We first perform general filtering for the low-quality videos
according to brightness changes and assessed scores [43]. Then, we use Grounding-DINO [25] and
SAM2 [34] to detect, segment, and track human instances in each video. We discard any video of
more than three people or that is shorter than 20 consecutive frames to ensure a sufficient temporal
span for keyframe interpolation. After automated processing, we manually review and filter detections
in complex sports scenarios.

Stage 3: Human-centric Annotation. Building on the accurate human detections obtained in Stage 2,
we annotate each clip for precise human-centric information. First, we employ Sapiens [20] to extract
2D human keypoints and perform whole-body detection to filter out clips with incomplete human
figures. This ensures our dataset remains strictly human-centric. Finally, we apply SMPLer-X [4],
leveraging its high re-projection accuracy to fit detailed SMPL-X models for human images and
produce reliable 3D body parameters for each frame.

As a result, CHKI-Video comprises 2,614 video clips of over 180K frames, carefully annotated with
human bounding boxes, masks, 2D keypoints and 3D parametric models. To prepare the train and
test split, we follow the original division for SportsSlomo [6] videos and distribute the Pexels videos
according to their keyword frequencies to maintain balanced coverage of all motion categories.

5 Experiments

We present quantitative and qualitative results in Sec. 5.1 to validate the effectiveness of our 3D
control strategy in PoseFuse3D. We compare our interpolation performance against state-of-the-art
methods in Sec. 5.2 and analyze the scalability across temporal gaps in Sec. 5.3. We further assess the
in-the-wild interpolation capability in Sec. 5.4, where ground-truth control signals are not available.
Finally, Sec. 5.5 provides a detailed ablation study to justify our model design.

Implementation Details. We fine-tune PoseFuse3D-KI on the CHKI-Video training split for 70k
iterations. Specifically, we fine-tune our 3D-informed control model PoseFuse3D, and employ LoRA
on the input patch embeddings, as well as the value and output projections of the VDM’s attention
modules. During training, we randomly sample 25 consecutive frames from video clips and process
them to a resolution of 512× 320. To maximize human-centric content, we crop each clip around its
largest annotated human bounding box. Given the ratio from the target input size, we first crop the
maximum scale of the image with the largest box as the center. The cropped image is then resized to
match the target resolution. More implementation details are provided in the supplementary material.

Evaluation Protocols. Unless otherwise noted, all methods are evaluated on the CHKI-Video test set
using ground-truth annotations for controllable interpolation. With motion ambiguity limited by
the ground truth controls, we adopt the standard interpolation metrics of PSNR and LPIPS computed
on the whole images for evaluation. To quantify performance specifically on human regions, we
further leverage the annotated human boxes and masks, yielding PSNRbbox, LPIPSbbox, PSNRmask,
and LPIPSmask metrics. Notably, we apply binary dilation to expand and smooth the masks before
computing the metrics, preventing potential artifacts along mask boundaries.

5.1 3D Control Strategy in PoseFuse3D

Setup. We evaluate the effectiveness of the 3D-informed control design in PoseFuse3D via compar-
isons among 3D control strategies, including ‘VE’, ‘VE+DN’ and ‘VE+SE’. Specifically, VE refers
to the visual encoding on the SMPL-X colored surface rendering, removing the SMPL-X encoder
from the full design of our control model. VE+DN extends VE by incorporating depth and normal
renderings, using two additional encoders identical to the one used in VE. VE+SE represents our
proposed strategy in PoseFuse3D that directly encodes 3D information via the SMPL-X encoder
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Table 1: Comparisons of 3D Control Strategies. This table presents quantitative results of different
3D control strategies. The PSNR and LPIPS metrics are calculated for the whole image, as well as
for the human-centric parts via annotated boxes or masks. Best results are highlighted with boldface.

Method Backbone 3D Control Strategy Evaluation Metrics

PSNR↑ PSNRbbox↑ PSNRmask↑ LPIPS↓ LPIPSbbox↓ LPIPSmask↓
FCVG SVD N.A. 20.42 18.05 16.91 0.2100 0.0899 0.0606
PoseFuse3D SVD VE-SVD 20.96 18.56 17.47 0.1975 0.0835 0.0553

PoseFuse3D Wan2.1-I2V VE 21.91 19.13 17.87 0.1400 0.0682 0.0484
PoseFuse3D Wan2.1-I2V VE+DN 22.07 19.12 17.80 0.1363 0.0667 0.0473
PoseFuse3D Wan2.1-I2V VE+SE (Ours) 22.14 19.30 18.01 0.1330 0.0653 0.0464

Figure 3: Qualitative Results of Different 3D Control Strategies. We use red circles to highlight
regions where the 3D controls and our strategy significantly improve the interpolation quality.

and integrates it with VE. Experiments for these strategies use Wan2.1-I2V [39] as the interpolation
backbone. For efficiency, they are trained for 40K iterations.

To assess the necessity of 3D information, we compare against FCVG [56], which is conditioned
solely on 2D signals. For fair comparison, we create a variant of VE by replacing the backbone with
SVD [3]. We adapt SVD for interpolation with the temporal forward and reverse denoising path
fusion strategy used in FCVG. This variant is referred to as VE-SVD for ease of analysis.

Results. We provide quantitative comparisons of 3D control strategies in Table 1. In comparisons
between FCVG and VE-SVD, we find that adding 3D control improves the interpolation performance.
VE-SVD outperforms FCVG across metrics with a more than 0.50 dB increase on all the PSNRs,
indicating the improvements on both whole-image and human-centric levels. Moreover, our study
highlights the importance of explicit 3D information. VE+DN and VE+SE, which incorporate depth
and normal maps or direct SMPL-X information, outperform the simpler strategy VE. VE+DN and
VE+SE show clear improvements in perceptual quality as reflected by the LPIPS metrics. Notably,
our VE+SE strategy, which directly encodes information in 3D space, delivers the best performance,
achieving the lowest LPIPSbbox of 0.0653 and the highest PSNR of 22.14 dB.

Visualizations. Besides our quantitative analysis, we perform a qualitative comparison of the 3D
control strategies, as shown in Figure 3. We find that incorporating 3D controls better preserves
human shape during interpolation. Take the Tennis case in Figure 3 for example, methods with 3D
control strategies interpolate the player’s body close to the ground truth, whereas FCVG exhibits
noticeable distortion. Moreover, our VE+SE, which directly encodes 3D information from SMPL-X,
proves effective in handling occluded human motion. In both the Skateboarding (1st row) and
Jumping (2nd row) cases in Figure 3, we can observe that our VE+SE strategy produces plausible
results for the occluded arms, demonstrating its advantage in complex scenarios.
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Table 2: Comparisons with State-of-the-art Interpolation Methods.

Methods Metrics

PSNR↑ PSNRbbox↑ PSNRmask↑ LPIPS↓ LPIPSbbox↓ LPIPSmask↓ HA↑
GIMM-VFI [12] 20.29 16.36 14.93 0.1954 0.1187 0.0860 0.9146

GI [41] 15.81 13.04 12.03 0.3364 0.1672 0.1146 0.8954
Wan2.1-KI (Ours) 19.53 15.96 14.62 0.2081 0.1208 0.0868 0.9180

FCVG [56] 20.42 18.05 16.91 0.2100 0.0899 0.0606 0.9187
PoseFuse3D-KI (Ours) 22.27 19.49 18.24 0.1304 0.0636 0.0450 0.9189

Table 3: Results across Temporal Gaps.

Temporal Gap Metrics

PSNR↑ PSNRbbox↑ PSNRmask↑ LPIPS↓ LPIPSbbox↓ LPIPSmask↓
24-frame 23.86 21.64 20.70 0.1144 0.0508 0.0332
48-frame 21.46 19.48 18.57 0.1566 0.0644 0.0432
64-frame 20.37 18.34 17.45 0.1882 0.0755 0.0514
96-frame 19.44 17.50 16.66 0.2208 0.0836 0.0577

5.2 Benchmark Results

Setup. We compare PoseFuse3D-KI against several advanced interpolation methods on our CHKI-
Video dataset. The main comparison is with FCVG [56], which also enables intermediate control
during interpolation. For broader coverage, we also include the keyframe interpolation method GI [41]
and the traditional video frame interpolation method GIMM-VFI [12]. We also include Wan2.1-KI,
an adaptation of Wan2.1 [39] for keyframe interpolation, following the strategy in Sec. 3.2. Since not
all baselines support ground truth controls, we additionally compute the Human Anatomy (HA) [53]
score to assess the quality of human synthesis and support fair comparison.

Results. We report quantitative results of PoseFuse3D-KI on the CHKI-Video benchmark in Table 2.
Our method delivers state-of-the-art performance on human-centric keyframe interpolation. On
whole-image metrics, it boosts PSNR by 1.85 dB and lowers LPIPS by 0.0796 in comparison with
the state-of-the-art method FCVG [56]. Crucially, it also outperforms on human-centric metrics
compared with other methods, achieving a PSNRbbox of 19.49 dB, an LPIPSmask of 0.045, and an HA
score of 0.9189. This indicates that our method produces plausible, high-fidelity human interpolations
that closely follow the ground-truth dynamics, demonstrating the effectiveness of our method.

Visualizations. For qualitative evaluation, we qualitatively compare PoseFuse3D-KI with other
advanced methods, as illustrated in Figure 4. Our approach delivers more accurate human inter-
polations, faithfully following real-world motions and preserving body shape. For example, in the
2nd ‘Fencing’ case and 4th ‘Stunt Bike’ case, only PoseFuse3D-KI correctly interpolates leg and
arm movements while maintaining consistent shapes. Moreover, our method naturally handles the
occluded human motion well with 3D-informed control. We observe that our method interpolates
correct spatial positions for the occluded legs (1st case) and arms (3nd case), achieving significant
improvements over FCVG. Furthermore, although the control-free keyframe interpolation methods
GI and Wan2.1-KI occasionally generate undistorted humans, they often generate implausible motion
that violates real-world dynamics, as observed in 1st, 2nd, and 4th cases.

5.3 Scalability Across Temporal Gaps

Setup. We evaluate the scalability of PoseFuse3D-KI in interpolating frames across different temporal
gaps. The temporal gap is defined as the number of frames between the input keyframes, ranging
from 24 to 96 frames. Evaluations are conducted on the CHKI-Video test set using PSNR and LPIPS
as quantitative metrics.

Results. We provide quantitative results of PoseFuse3D-KI across different temporal gaps in Table 3.
As a common trend observed in most interpolation methods, the interpolation performance gradually
declines as the interval between keyframes increases. Nevertheless, PoseFuse3D-KI maintains strong
performance over a wide range of temporal settings. Notably, it achieves a PSNR of 23.86 dB
and an LPIPS of 0.1144 at 24 frames, and a PSNR of 21.46 dB and an LPIPS of 0.1566 at 48
frames. Even at a large gap of 96 frames, where the task becomes substantially more challenging,
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Figure 4: Qualitative Comparisons with State-of-The-Art Methods.

PoseFuse3D-KI remains competitive, achieving a PSNR of 19.44 dB and an LPIPS of 0.2208. These
results demonstrate the robustness of PoseFuse3D-KI under long-range controllable interpolation.

5.4 In-the-wild Interpolation Results

Our PoseFuse3D-KI framework can be readily applied to interpolate in-the-wild human-centric
keyframes without ground-truth control signals.

Setup. We assess the in-the-wild interpolation capability of PoseFuse3D-KI on the CHKI-Video
dataset by discarding the ground-truth annotations. The comparison is conducted against the state-of-
the-art method FCVG [56]. Since ground-truth controls are unavailable in this setting, we employ a
simple strategy that linearly interpolates human body joints to generate intermediate control signals.
Details of this pipeline are provided in the supplementary material. For performance measurement,
we compute the same metrics as described in Sec. 5.2.

Results. We report quantitative results of PoseFuse3D-KI under the in-the-wild interpolation setting
in Table 4. Our method achieves state-of-the-art performance and delivers significant improvements
over FCVG [56]. On whole-image metrics, it boosts PSNR by 4.5% and reduces LPIPS by 22.1%
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Table 4: Comparisons with FCVG on In-the-wild Interpolation.

Methods Metrics

PSNR↑ PSNRbbox↑ PSNRmask↑ LPIPS↓ LPIPSbbox↓ LPIPSmask↓ HA↑
FCVG [56] 18.47 15.31 14.08 0.2607 0.1321 0.0921 0.9284
PoseFuse3D-KI (Ours) 19.30 15.75 14.46 0.2031 0.1194 0.0859 0.9289

Table 5: Ablation Study on Visual Encoding and Fusion Module.

Model Variants Evaluation Metrics

Visual Encoding Fusion Module PSNR PSNRbbox↑ PSNRmask↑ LPIPS↓ LPIPSbbox↓ LPIPSmask↓
Conv-Enc (2D) N.A. 20.29 16.94 16.10 0.1990 0.1096 0.0836
Dual Conv-Enc Sum 20.50 17.20 16.36 0.1953 0.1059 0.0806
Dual Conv-Enc Non-TSA 20.30 16.96 16.12 0.1956 0.1053 0.0790
Dual Conv-Enc Non-WP 20.46 17.19 16.37 0.1938 0.1038 0.0775
Dual Conv-Enc Full 20.55 17.30 16.48 0.1927 0.1031 0.0773

compared with FCVG. More importantly, PoseFuse3D-KI attains the best results on perceptual
human-centric metrics, with an LPIPSmask of 0.0859 and an HA score of 0.9289. These results
demonstrate that PoseFuse3D-KI effectively handles in-the-wild interpolation.

5.5 Ablation Study

In this section, we ablate the visual encoding and fusion modules of PoseFuse3D in Table 5. For
efficiency, we use SVD as the backbone and process video clips into 9 consecutive frames of 256×256.
We use 3× temporally downsampled videos from the CHKI-Video test set for evaluation.

3D Visual Encoding. Our visual encoding module includes two convolutional encoders for 2D
and 3D control maps, respectively. We denote the variant including this entire module as ‘Dual
Conv-Enc’, and the one using only the 2D encoder as ‘Conv-Enc (2D)’. Removing the 3D visual
encoding leads to a performance drop of 0.26 dB on both PSNRbbox and PSNRmask, highlighting the
importance of 3D visual encoding.

Fusion Module. In PoseFuse3D, condition features are fused through a carefully designed fusion
module. To validate its effectiveness, we replace it with a simple summation operation [55], denoted
as ‘Sum’ in Table 5. This change leads to a significant performance drop, particularly in perceptual
quality, with an increase of 0.0033 in LPIPSmask. These results demonstrate the fusion module’s
contribution to providing informative control for high-quality interpolation.

Window-Partition Strategy. PoseFuse3D employs a cross-attention layer with a shifted window-
partition strategy to fuse features across neighboring windows. To validate this design, we remove the
window partitioning, denoted as Non-WP. This results in notable drops of 0.11 dB in both PSNRbbox
and PSNRmask, indicating that the window-partition strategy enhances controlled interpolation.

Temporal Attention in Fusion Module. To justify the efficacy of the temporal self-attention (TSA)
layer in the fusion module, we conduct experiments excluding the TSA layer (Non-TSA). This removal
causes increases of 0.0022 and 0.0017 in LPIPSbbox and LPIPSmask, demonstrating the crucial role of
the temporal self-attention layers in the fusion module.

6 Conclusion

We propose PoseFuse3D-KI, a controllable human-centric keyframe interpolation framework powered
by our novel 3D-informed control model, PoseFuse3D. PoseFuse3D embeds rich spatial geometry
from 3D human signals together with 2D poses into a unified control feature, enabling the generation
of more plausible and realistic intermediate frames. For evaluation, we construct a CHKI-Video
dataset with comprehensive human-centric annotations. Extensive experiments on the benchmark
demonstrate that PoseFuse3D-KI outperforms previous interpolation methods with a 9% improvement
in PSNR and a 38% reduction in LPIPS.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have made clear claims in the abstract and introduction that accurately
reflect our paper’s contributions to the studied problem. Please refer to the abstract and
introduction for more detailed information.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: We have discussions on the limitations in the supplementary materials.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our work does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the implementation details in the main text and training hyperpa-
rameters in the supplementary materials.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We are unable to provide our code upon submission, but releasing the code to
the public in the future is our plan.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the general training information and evaluation settings in the
main text. The full implementation details and training hyperparameters are presented in the
supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: This paper does not report error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the type and the number of GPUs used in our experiments.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We carefully follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential impacts in the supplementary materials.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In our paper, we have cited the related papers and dataset sources.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: Upon submission, we do not provide the source code and the dataset. But we
will make them public in the future after acceptance.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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7 Appendix

In this section, as referenced in the main text, we first provide detailed descriptions of our method and
dataset in Sec. 7.1, Sec. 7.2, and Sec. 7.3. We then present additional experiments on our approach,
including in-the-wild interpolation results(Sec. 7.4), extended benchmarking on the FCVG [56] test
set (Sec. 7.5), user study 7.6, and ablation studies on the control signals (Sec. 7.7). as well as the
SMPL encoder (Sec. 7.8). We also provide supplementary visualizations in Sec. 7.9 and analyze
model runtime in Sec. 7.10. Finally, we discuss the limitations and broader impact of our method in
Sec. 7.11 and Sec. 7.12.

7.1 Wan2.1 for Keyframe Interpolation

We adapt the Wan2.1 [39] Image-to-Video model (14B, 480P) as the keyframe interpolator Wan2.1-KI
along a single temporal forward diffusion path. Specifically, we insert zero-padding between the
input keyframes to construct a full-length video sequence. This sequence is then encoded into latents
using the VAE encoder of Wan2.1. The resulting latent representation is concatenated with a noisy
latent and a latent mask, and passed to the denoising network for prediction. In parallel, the input
keyframes are encoded using the image CLIP encoder to produce condition tokens, which guide
the denoising process through cross-attention mechanisms. To accommodate changes in both the
latent inputs and attention layer inputs, we perform parameter-efficient LoRA fine-tuning on the input
embedding layer and on the value and output projection matrices of the attention layers.

7.2 CHKI-Video: Detailed Construction Stages

Our dataset is specifically designed for the Controllable Human-centric Keyframe Interpolation
(CHKI) task, emphasizing complex human motions, human-centric annotations, and distant keyframe
inputs. To this end, we carefully control the data collection and annotation process, sourcing videos
from task-relevant datasets [6] or the internet using specifically curated keywords, rather than relying
on large-scale collections [18, 42] that may include irrelevant content.

Stage 1: Dataset Collection. We begin by collecting video clips from SportSlomo [6], which are
temporally downsampled to 60 fps due to the large motions typically present in sports scenarios,
making them more challenging for keyframe interpolation. To enhance dataset diversity versus
reality [49], we additionally crawl high-quality stock videos from the Pexels website. We compile a list
of keywords representing fundamental human movements such as ‘Walking’, ‘Kicking’, ‘Throwing’,
‘Catching’, and ‘Climbing’, to cover a broad range of human activities. For each keyword, we collect
100 unique videos with resolutions above 720p and durations under 30 seconds. These keywords are
grouped into three motion categories: arm motion, leg motion, and general motion, ensuring balanced
labels for subsequent train-test splitting. To match the motion characteristics of the SportSlomo
videos, we downsample the collected stock videos based on their optical flow scores, ensuring the
flow score distributions are aligned.

Stage 2: Pre-annotation Processing. To ensure the quality of the collected videos, we use
DOVER [43] to obtain both technical and overall quality scores, and compute brightness change
scores between adjacent frames. Videos falling below the bottom 5th percentile in any of these
metrics are filtered out. Given the importance of accurate human detection for downstream keypoint
and SMPL-X annotation, we design a robust detection pipeline. We combine Grounding-DINO [25]
with SAM2 [34] to achieve reliable human detection. For challenging sports scenes, we prioritize
videos with prominent foreground humans and relatively static or blurred backgrounds, striking a
balance between annotation complexity and scenario diversity. Additionally, we exclude videos
containing more than three people or fewer than 20 frames to maintain clean motion patterns and
ensure sufficient temporal coverage. All sports videos are manually reviewed to verify compliance
with these criteria and to confirm the accuracy of the human detections.

Stage 3: Human-centric Annotation. We perform frame-wise human-centric annotations for all
video clips based on the detections in the previous stage. First, we use Sapiens [20] to estimate
whole-body keypoints. To ensure the dataset remains strictly human-centric, we perform whole-body
detection based on these keypoints. Specifically, we extract the keypoints into DWPose to better
define the human figure. We merge all head keypoints into a single point, as significant motion rarely
occurs in that region. A whole-body detection is considered valid if it contains fewer than three
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Figure 5: Qualitative Results of In-the-wild Control and Keyframe Interpolation.

invalid keypoints, using a keypoint score threshold of 0.3. We further filter video clips to retain only
those with more than 20 consecutive valid frames. Finally, we apply SMPLer-X [4], which provides
high re-projection accuracy, to fit detailed SMPL-X models to each frame and generate reliable 3D
body parameters.

7.3 Implementation Details

We fine-tune the entire PoseFuse3D-KI framework in an end-to-end manner using the AdamW
optimizer with a learning rate of 8× 10−5. The fine-tuning is applied to our 3D-informed control
model, PoseFuse3D, with additional LoRA adaptation on the input patch embeddings, as well as the
value and output projections of the VDM’s attention modules. Both the LoRA rank and LoRA alpha
are set to 32. For implementation, we leverage Fully Sharded Data Parallel (FSDP) across 4 GPUs.

7.4 In-the-wild Interpolation

Our PoseFuse3D-KI framework can be readily applied to interpolate in-the-wild human-centric
keyframes. In this subsection, we present a simple pipeline that uses linear interpolation for human
body joints. Given a human-centric keyframe pair I0, IN , we first employ a 3D human model
estimator, such as SMPLer-X [4], to fit SMPL-X models [30] for each keyframe input. Leveraging the
strong human body priors from SMPL-X, we linearly interpolate the SMPL-X parameters to generate
intermediate 3D human models, which serve as control signals for interpolation. We then extract 2D
DWPose keypoints from the 2D projections of the interpolated SMPL-X models. With these steps,
all necessary guidance inputs for PoseFuse3D-KI are prepared and can be directly used for keyframe
interpolation. Figure 5 shows the results of the interpolated SMPL-X models and the corresponding
video frames. While this pipeline offers a straightforward and efficient approach for generating
intermediate poses, it is limited in its ability to handle complex human motion. In particular, it
struggles to capture realistic dynamics such as acceleration or multi-step actions. To address these
limitations, we could explore text-to-motion models [52] as part of future work, which generate
intermediate SMPL-X models from textual descriptions, offering a more flexible and semantically
rich alternative to linear interpolation.
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Table 6: Benchmark Results on FCVG-Test-HC.

Methods Metrics

PSNR↑ PSNRbbox↑ PSNRmask↑ LPIPS↓ LPIPSbbox↓ LPIPSmask↓ HA↑
GIMM-VFI [12] 23.61 21.25 20.28 0.1324 0.0759 0.0587 0.9459

GI [41] 17.21 15.20 14.36 0.2701 0.1422 0.1045 0.9438
Wan2.1-KI (Ours) 21.50 19.03 18.17 0.1553 0.0915 0.0704 0.9312

FCVG [56] 22.49 21.03 20.69 0.1738 0.0734 0.0493 0.9241
PoseFuse3D-KI (Ours) 24.84 22.97 22.26 0.0915 0.0460 0.0340 0.9245
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Figure 6: Qualitative Comparisons on FCVG-Test-HC.

7.5 Evaluation on Additional Benchmark

Setup. We conduct an additional evaluation on the test set from FCVG [56]. We first perform human
detection and extract human-centric video clips from the test set. The extracted videos are then
annotated using the same processing pipeline detailed in Sec. 7.2. This results in FCVG-Test-HC,
a curated human-centric subset of 54 clips suitable for CHKI benchmarking. The FCVG-Test-
HC benchmark is relatively easier than CHKI-Video, primarily consisting of human-centric clips
with limited motion rather than more challenging scenarios such as sports and dancing. Other
benchmarking settings follow those described in the main paper.

Results. We present quantitative comparisons on the FCVG-Test-HC benchmark in Table 6. Our
PoseFuse3D-KI outperforms other methods for human-centric keyframe interpolation. Compared
with the previous state-of-the-art method FCVG [56], our method achieves a 7.6% improvement in
PSNRmask and a 31% reduction in LPIPSmask. We observe that all methods achieve higher PSNR
and lower LPIPS scores on the FCVG-Test-HC benchmark compared to the CHKI-Video dataset,
indicating that FCVG-Test-HC is an easier benchmark for interpolation. This aligns with our earlier
observation during dataset construction, where FCVG-Test-HC primarily consists of human-centric
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Table 7: User Study.

Methods GIMM-VFI [12] GI [41] FCVG [56] PoseFuse3D-KI (Ours)

User Preference (%) 1.75 5.13 6.63 86.50

Table 8: Ablation on the Visual Encoding.

Model Variant Evaluation Metrics

PSNR↑ PSNRbbox↑ PSNRmask↑ LPIPS↓ LPIPSbbox↓ LPIPSmask↓
Non-Vis 19.63 16.02 14.69 0.2097 0.1232 0.0889
Non-2D 21.71 18.65 17.28 0.1438 0.0738 0.0531
Full 22.14 19.30 18.01 0.1330 0.0653 0.0464

clips with limited motion. Interestingly, methods with fewer learned priors tend to achieve higher
HA scores in this setting. For instance, the traditional interpolation method GIMM-VFI [12] records
the highest Human Anatomy (HA) score. This is likely because such methods rely more heavily on
the input keyframes. While this reliance leads to motion artifacts under large movement, it better
preserves human textures from inputs when the motion between keyframes is small.

Visualizations. We qualitatively compare PoseFuse3D-KI with other advanced methods on the
FCVG-Test-HC benchmark, as shown in Figure 6. Consistent with our findings in the Benchmark
Results section of the main paper, our method achieves robust human-centric interpolation, accurately
follows real-world dynamics, and effectively preserves human body shape. For instance, our method
generates plausible interpolations of complex body movements while maintaining the correct leg
structure and posture in the last ‘Breaking Dance’ case.

7.6 User Study

Setup. To further assess the perceptual quality of our controllable human-centric interpolation, we
conducted a user study involving 20 interpolation scenarios sampled from both the CHKI-Video
test set and FCVG-Test-HC. We compared PoseFuse-KI with three representative state-of-the-art
methods: GIMM-VFI [12], GI [41], and FCVG [56]. A total of 40 participants were invited to take
part in the study, where each participant was asked to select their preferred interpolation result.

Results. We report the user preference of the study in Table 7. Our method received a strong
majority of user preferences (86.5%), consistently outperforming all baselines. These results further
demonstrate the perceptual effectiveness of PoseFuse3D-KI.

7.7 Ablation Study on Visual Encoding

The core of our framework is the control module, PoseFuse3D. As detailed in the Method section
of the main paper, it includes encoding visualizations from both SMPL-X and DWPose [48]. To
evaluate the importance of encoding these visualizations and explore whether 2D visual cues can be
omitted, we conduct an ablation study on the visual encoding component of PoseFuse3D.

Necessity of Encoding Visualizations. In PoseFuse3D, we encode visualizations of control signals.
Since they preserve natural pixel-level alignment with the video latent, thereby providing direct
control signals on the pixel plane. To assess its necessity, we ablate all visual encoding components
in PoseFuse3D and rely solely on the SMPL-X encoded information as the control representation.
We refer to this variant as ‘Non-Vis’. In Table 8, this modification results in a significant performance
degradation, with a 4.32 dB drop in PSNRmask and a 0.0425 increase in LPIPSmask, underscoring the
critical role of encoding visualizations in achieving high-fidelity results.

Importance of Encoding 2D Visualization. The visual encoding module of PoseFuse3D integrates
2D DWPose visualizations with rendered SMPL-X images. The 2D DWPose visualizations emphasize
skeletal keypoint layouts, contributing to robust pose understanding. To assess its importance, we
exclude the encoding of 2D visualizations, denoting this variant as ‘Non-2D’. This leads to a drop of
0.65 dB in PSNRbbox and a 13% increase in LPIPSbbox, demonstrating the significance of encoding
2D visualizations in the visual encoding module.
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Table 9: Ablation on SMPL-X Encoder.

Model Variant Evaluation Metrics

PSNR↑ PSNRbbox↑ PSNRmask↑ LPIPS↓ LPIPSbbox↓ LPIPSmask↓
Non-JA 22.07 19.24 17.95 0.1348 0.0659 0.0466
Non-VA 22.15 19.27 17.99 0.1374 0.0667 0.0470
Full 22.14 19.30 18.01 0.1330 0.0653 0.0464
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Figure 7: Additional Qualitative Results on CHKI-Video.

7.8 Ablation on SMPL-X Encoder

We conduct an additional ablation study on the SMPL-X encoder to justify our design.

Joint Aggregation. The SMPL-X encoder extracts joint motion and position features from 3D space
and projects them onto the 2D image plane via an attention mechanism, providing spatial human body
motion cues. To assess the impact of this design, we remove the joint aggregation module, denoted
as ‘Non-JA’. As shown in Table 9, this leads to a 0.06 dB drop in both PSNRbbox and PSNRmask,
emphasizing the importance of 3D joint aggregation for accurate body control representation.

Vertex Aggregation. We also apply a separate attention mechanism to aggregate vertex information
into the 2D image plane. To examine its necessity, we remove the vertex attention module. We denote
this variant as ‘Non-VA’. As reported in Table 9, this leads to a noticeable degradation in performance
across all LPIPS scores, including a 0.0040 rise in LPIPS and a 0.0014 increase in LPIPSbbox. These
results demonstrate the significance of incorporating 3D vertex information for effective control
representation from SMPL-X.

7.9 Supplementary Visualizations

Additional Qualitative Comparisons. We present additional qualitative comparisons with other
interpolation methods in Figure 7. Our PoseFuse3D-KI framework consistently produces more
plausible interpolations, closely capturing real-world dynamics observed in the ground truth.

Robustness across Corner Cases. PoseFuse3D-KI exhibits robust interpolation performance across
diverse corner cases. As shown in Figure 8, we evaluate scenarios such as off-center subjects, camera
motion, multiple persons, virtual animation, and robotics videos. Our method consistently produces
controllable interpolations with plausible and temporally coherent motion.
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Table 10: Runtime Comparison.

Methods GI [41] FCVG [56] PoseFuse3D-KI (Ours)

Runtime (s) 975 523 212

Start Keyframe  End Keyframe 

(e)

Interpolated Keyframes 

(d)

(c)

(b)

(a)

Figure 8: Qualitative Results on Corner Cases. (a) Person off-center. (b) Camera motion. (c)
Multiple persons. (d) Virtual animation. (e) Robotics video.

7.10 Runtime Comparison

To assess computational efficiency, we compare the runtime of PoseFuse3D-KI with existing diffusion-
based baselines. The comparison measures the time required to interpolate 25 frames at a resolution
of 1024 × 576, using the same GPU equipped with 80 GB memory. As summarized in Table 10,
PoseFuse3D-KI exhibits the shortest runtime, confirming its efficiency advantage over competing
methods.

7.11 Limitations

There are several known limitations to our method. First, PoseFuse3D-KI relies on accurate SMPL-X
estimations to generate reliable 3D control signals. Therefore, it inherits the limitations of the 3D
human model estimators, where inaccurate predictions can degrade the quality of interpolated results.
Additionally, our method, while offering strong control via 3D and 2D fusion, still depends on the
base diffusion model’s generative priors. As a result, output quality is influenced by the model’s
learned behavior and inherits its high GPU memory demands. Finally, our method does not explicitly
model human-object interactions, which may lead to artifacts or misaligned object motion in scenarios
involving close interaction with external objects.

7.12 Broader Impacts

Our proposed method, PoseFuse3D-KI, enables accurate and controllable human-centric keyframe
interpolation, with applications in areas such as human animation and video generation. By integrating
explicit 3D information from human models and 2D pose cues, our framework supports 3D-informed
and semantically meaningful guidance for interpolating realistic human motion across frames. This
technique not only enriches creative workflows but also opens new opportunities for research in
human motion understanding and video synthesis. While powerful, our method shares common
limitations of generative models and may pose risks if misused to produce manipulated or deceptive
human videos, highlighting the importance of responsible use and ethical safeguards.
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