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Abstract
This paper studies the theoretical guarantees of
the classical projected gradient and conditional
gradient methods applied to constrained optimiza-
tion problems with biased relative-error gradient
oracles. These oracles are used in various set-
tings, such as distributed optimization systems
or derivative-free optimization, and are particu-
larly common when gradients are compressed,
quantized, or estimated via finite differences com-
putations. Several settings are investigated: Opti-
mization over the box with a coordinate-wise erro-
neous gradient oracle, optimization over a general
compact convex set, and three more specific sce-
narios. Convergence guarantees are established
with respect to the relative-error magnitude, and
in particular, we show that the conditional gra-
dient is invariant to relative-error when applied
over the box with a coordinate-wise erroneous
gradient oracle, and the projected gradient main-
tains its convergence guarantees when optimizing
a nonconvex objective function.

1. Introduction
1.1. Problem formulation

This paper studies the optimization process in which the
goal is to minimize a smooth function over a closed and
convex set using a first-order relative-error erroneous oracle.
Formally, we seek to solve the problem

min f(x)

s.t. x ∈ C,
(P)

where
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• f : Rn → R is continuously differentiable function;

• ∇f : Rn → Rn is Lipschitz continuous, i.e.,
∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2 for any x, y ∈ C;

• C ⊆ Rn is closed, convex, and bounded, inducing
the bounds: R := maxx,y∈C ∥x − y∥2, fopt :=
minx∈C f(x), and M := maxx∈C ∥∇f(x)∥2.

In this study, we investigate the performance of the two
classical methodologies, the Conditional Gradient (CG) and
the Projected Gradient (PG), when utilized to solve (P) using
a biased erroneous gradient. We assume that the gradient is
obtained via an Erroneous Oracle (EO), denoted by O(·, ·),
such that for any x ∈ C and ĝ ← O(x, ε)

∥ĝ −∇f(x)∥ ≤ ε∥∇f(x)∥, (EO), (1)

where ε ∈ [0, 1) is the relative-error parameter.

Condition (1), sometimes referred to as the norm condi-
tion (Bollapragada et al., 2018; Conn et al., 2000; Berahas
et al., 2022), was first introduced by (Polyak, 1987; Carter,
1991) in the context of Trust-Region methods, and in recent
years acts as a central assumption in many settings involving
gradient approximation schemes such as gradient compres-
sion in distributed optimization (Ajalloeian & Stich, 2020;
Beznosikov et al., 2020; Richtárik et al., 2021; Condat et al.,
2022), derivative-free methods (Cartis & Scheinberg, 2018;
Berahas et al., 2019; 2022), gradient quantization (Chmiel
et al., 2021), generalized finite difference gradient approxi-
mations (Cartis & Scheinberg, 2018; Paquette & Scheinberg,
2020), adaptive sampling optimization methods (Byrd et al.,
2012; Bollapragada et al., 2018), and is also used in (Hin-
termüller & Vicente, 2005) which studies optimal control
for nonlinear partial differential equations.

The norm condition (1) defining the EO can sometimes be
refined coordinate-wise to obtain a Coordinate-Wise Erro-
neous Oracle (CWEO). The CWEO will also be denoted by
O(·, ·), and we will indicate when we assume that the EO
is a CWEO. The CWEO satisfies that for any x ∈ C and
ĝ ← O(x, ε), it holds that

|ĝi −∇f(x)i| ≤ ε|∇f(x)i|, ∀i ∈ [n] (CWEO) . (2)

The EO and CWEO are formally defined in Section 2.

1



A Study of First-Order Methods with a Deterministic Relative-Error Gradient Oracle

A straightforward intuitive example for CWEO is the use of
a coordinate-wise gradient floating-point based quantization,
as demonstrated by Example 1.1 – see e.g., Section 5 in
(Chmiel et al., 2021).

Example 1.1 (gradient quantization using floating-point).
Floating-point representations exploit formulaic forms to
approximately capture a wide range of numbers in the pur-
pose of facilitating fast processing times in systems with
very large or small numbers; see for example (Chmiel
et al., 2021). A number u ∈ R+ is decomposed as
u = 2lnu = 2lnu−⌊lnu⌋ · 2⌊lnu⌋ = r · 2E , where r ∈ [1, 2)
and E ∈ Z. The quantized floating-point number uq of u is
built by allocating bits for r and E, and the error between
uq and u is measured relatively. The optimizer may deter-
mine ε by tuning the number of bits used for r and E to
guarantee that (2) holds true when quantizing the gradient.

Another example is the gradient estimation via standard
finite differences studied in the derivative-free methodol-
ogy, see for example (Berahas et al., 2022) and references
therein.

Example 1.2 (gradient approximation using standard finite
differences). Gradient approximations via central finite
differences (cf. Section 2.1 in (Berahas et al., 2022)) are
based on the sample set S =

⋃
i∈[n]{x+σei}∪

⋃
i∈[n]{x−

σei} so that ĝi =
f(x+σei)−f(x−σei)

2σ for any i ∈ [n]. These
approximations are guaranteed to satisfy the norm condition
(1), as established by (Berahas et al., 2022).

Many first-order methods rely on a gradient oracle to pro-
vide the exact, or an approximate, gradient for f(·) as a
part of their optimization process, so that upon querying
this oracle with x ∈ C, it outputs ĝ = O(x; ε) such that
ĝ ≈ ∇f(x) having some error bound guarantee. Among
the class of gradient oracles, the family of unbiased oracles
dominates the literature, see for example the seminal paper
(Nemirovski et al., 2009) and related.

In comparison, the literature on biased oracles is consider-
ably more limited, and in particular, the theoretical perfor-
mance of methods tackling constrained optimization with
relative-error gradient oracles satisfying (1) are still not
well-understood.

In the gradient compression distributed optimization set-
tings, meaningful guarantees are restricted to unconstrained
problems (Ajalloeian & Stich, 2020; Beznosikov et al.,
2020; Richtárik et al., 2021), or require the Polyak-
Lojasiewicz (PL) or the Kurdyka-Lojasiewicz (KL) con-
ditions (Condat et al., 2022). The derivative-free method-
ology that explicitly assumes (1) is mainly devoted to un-
constrained optimization (Conn et al., 2009; Berahas et al.,
2022; Cartis & Scheinberg, 2018; Byrd et al., 2012), and
as such, does not provide meaningful results for our con-
strained model. In general, the derivative-free approach

tackles constraints in manners that are substantially differ-
ent from the techniques in our work, and to the best of our
knowledge, these do not (at least explicitly) rely on (1).

Indeed, this work focuses on the PG and CG utilizing oracles
satisfying (1) applied to constrained problems without any
special structural assumptions such as the aforementioned
PL, KL, or strong convexity conditions. To demonstrate
the difficulty in employing an optimization method with an
EO to solve (P), let us consider the following trivial convex
problem.

Example 1.3. Let f(x) = −x1 − x2, C = {x ∈ R2 :
∥x∥2 ≤ 1}, and set ε ∈ (0, 1). The optimal solution is
x∗
1 = x∗

2 = 1/
√
2, but by setting a persistent relative error

of (1+ ε) for the first component and (1− ε) for the second,
due to the EO, the optimizer may not be able to determine
that the point xerror

1 = 1+ε√
2+2ε2

, xerror
2 = 1−ε√

2+2ε2
is not

optimal. Moreover, if not given the function itself, it is
impossible for any optimizer to determine based on the
oracle whether the true function is either f(x) or f̃(x) =
−(1 + ε)x1 − (1 − ε)x1, or something in-between. Thus,
in general, it is impossible to ensure convergence without a
vanishing error. Specifically, if the PG or CG methods are
initiated at x0 = x∗, then they will diverge from the optimal
solution of f(·), and will rather converge to xerror.

To shortly summarize the contributions of this work:

• We show that for nonconvex optimization over box con-
straints with a CWEO, the CG and PG maintain their
theoretical convergence guarantees. Moreover, the CG
method maintains its guarantees when the objective
function is convex.

• For general nonconvex constrained optimization with
a general EO we derive convergence guarantees that
are dependent on the relative-error parameter for both
the PG and CG methods. We do the same for general
convex constrained optimization with a general EO
for the CG method; theoretical convergence guarantees
of the PG remain unestablished.

• We develop two special instants for the CG framework
where the first one may only access the sign of the
elements of the gradient and optimizes over the box
set; and the second is tailored for handling convex
optimization when the feasible set is the Euclidean ball
with a general EO, or when it belongs to a general class
of sets, that contains the ℓp-norm balls (p ≥ 1), with a
CWEO.

Our results in particular produce an interesting insight that
the theoretical performance of the CG method is much less
sensitive to the EO compared to that of the PG, motivating
further research of this phenomenon.
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Outline. The general purpose Erroneous Conditional Gra-
dient (ECG) and Erroneous Projected Gradient (EPG) meth-
ods are described in Section 3.1 and Section 3.2 respectively.
The more specific Sign Conditional gradient (SCG) and
Rescaled Erroneous Conditional Gradient (RECG) methods
are described in Section 6. Table 1 summarizes the com-
plexity part of our results and their respective locations (a
larger version appears in Appendix A).

Table 1. Complexity results and their respective settings and lo-
cations; subsequence convergence guarantees do not appear in
the table. When the relative error does not affect the theoretical
guarantees, we say that these guarantees are ’preserved’.

Oracle Set Alg. Function Type Guarantee Section

CWEO Box
ECG Convex/Nonconvex Preserved Sec.

4.1

EPG Nonconvex Preserved (neglecting constants) Sec.
4.2

SCG Convex/Nonconvex Preserved Sec.
6.1

Sign-
Preserving RECG Convex f(w̄T )− θfopt ≤ 8L(R2/θ)

T+1

Sec.
6.2.2

EO General ECG Nonconvex mind∈C⟨∇f(w∗), d − w∗⟩ ≥
− 2ε

1−εMR
Sec.
5.1

Convex f(wt)− fopt ≤ 2εMR+ 4LR2

t+2

Sec.
5.1

EPG Nonconvex
mint∈[T ] ∥qt+1+∇f(wt+1)∥2 ≤
8L(f0−fopt)

T + ϵ

Sec.
5.2

ℓ2-Ball RECG Convex f(w̄T )− θfopt ≤ 8L(R2/θ)
T+1

Sec.
6.2

Literature. Mathematical optimization methods with ap-
proximate value/gradient estimates are ubiquitous in large-
scale models, and in particular, in machine learning appli-
cations. This work focuses on constrained optimization
with inexact gradient information deterministically satisfy-
ing the so-called norm condition in (1). The condition (1)
was first introduced by (Polyak, 1987; Carter, 1991) in the
context of Trust-Region methods, and since then, has played
a significant role in the field of derivative-free optimization
and optimization involving inexact gradient approximations
– see for example the aforementioned papers and books
and references therein. In recent years, it has also gained
increased interest among the distributed optimization com-
munity, see e.g. (Ajalloeian & Stich, 2020; Richtárik et al.,
2021; Condat et al., 2022), as it can capture the elemental
bias that arises due the use s gradient compression schemes.

Unlike the vast and extensive literature on unbiased stochas-
tic gradient methods, the volume of works on biased gradi-
ent estimators is quite limited. The seminal book (Bertsekas,
2003) discusses steepest descent methods under various gra-
dient error scenarios in unconstrained problems with classi-
cal convergence guarantees depending on the scenario, see
also references therein. Biased stochastic gradient estima-
tors are further studied for unconstrained problems in the
contemporary works (Ajalloeian & Stich, 2020; Richtárik
et al., 2021; Condat et al., 2022). Previous works on bi-
ased oracles roughly divide into two: (i) assuming a gra-
dient/value oracles with a fixed additive bias δ > 0, i.e.,
O(xt) = ∇f(xt) + bt where ∥bt∥ ≤ δ (alternatively it is

assumed that the gradient oracle fulfills the decent lemma,
cf. Lemma 1.1, up to a fixed bias δ > 0); and, (ii) as-
suming a gradient oracle with a multiplicative bias, i.e.,
O(xt) = ∇f(xt) + bt where ∥bt∥ ≤ ρ∥∇f(xt)∥ for some
ρ ∈ [0, 1). Our work falls under the latter category.

In works assuming fixed additive bias (d’Aspremont, 2008;
Devolder et al., 2014; Dvurechensky & Gasnikov, 2016;
Dvurechensky, 2017; Stonyakin et al., 2019), it is shown
both for convex and nonconvex functions that one cannot
obtain an arbitrarily small error (or gradient norm) but rather
that we can only reduce the error (or gradient norm) to a
fixed value that depends on the bias.

Conversely, under the assumption of a multiplicative error, it
was demonstrated in (Ajalloeian & Stich, 2020) that one can
obtain meaningful guarantees in two cases: (i) For objectives
f(·) that satisfy the Polyak-Łojasiewicz (PL) condition, it
was shown that one can obtain an arbitrarily small error
at a linear rate. (ii) For nonconvex smooth objectives, it
was shown that one can obtain an arbitrarily small gradient
norm, at the standard rate of O(1/T ) where T is the total
number of gradient computations. Nevertheless, there do
not exist guarantees for the general convex smooth case
(either constrained or unconstrained), nor for the nonconvex
constrained case. The works of Richtárik et al. (2021);
Condat et al. (2022) have also studied such oracles with
multiplicative error, but have mainly focused on utilizing
them in the context of unconstrained federated learning.

To the best of our knowledge, the only work studying a
notion of relative error in gradient approximation when min-
imizing constrained problems is the very recent (Condat
et al., 2022). However, the model studied in (Condat et al.,
2022) is that of a convex function minimization satisfying
the PL property, and the optimization framework utilizes
a proximal gradient -based approach. We consider both
convex and nonconvex models, and do not assume any error-
bound type property, especially we do not assume the PL
property.

Notation. We use standard notation throughout, in par-
ticular, ∥ · ∥ stands for the Euclidean norm and [n] :=
{1, 2, . . . , n}. Whenever the affiliation of ∇f(x) and
O(x, ε) are clear from context, we will just write ĝ ∈
O(x, ε) and g = ∇f(x) respectively.

1.2. Mathematical preliminaries

The smoothness of f(·) facilitates the descent lemma.

Lemma 1.1 (descent lemma (Bertsekas, 2003)). For any
x, y ∈ C it holds that f(x) ≤ f(y) + ⟨∇f(x), y − x⟩ +
L
2 ∥y − x∥22.

Box constraints are ubiquitous in mathematical modeling of
problems in science and engineering.
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Definition 1.2 (box set). A set C ⊆ Rn is called a box if
C = {x ∈ Rn : xi ∈ [li, ui]} where l, u ∈ Rn and li ≤ ui

for any i ∈ [n].

In our analysis we use standard measures of (sub)-optimality.
When analyzing the ECG or the EPG for convex problems,
we simply use standard sub-optimality criteria which com-
pares against the optimal value fopt.

When analyzing the ECG for nonconvex problems, we use
the optimality measure associated with the CG method
sometimes called the optimality gap (Jaggi, 2013) or the
Conditional Gradient Norm (Beck, 2017). It is defined at a
point w∗ ∈ C that satisfies mind∈C⟨∇f(w∗), d− w∗⟩ ≥ 0.

For the EPG approach in the nonconvex case we also use the
above standard stationarity condition, but do so via an equiv-
alent normal cone formulation in the purpose of simplifying
the analysis. This is possible since the subdifferential of the
indicator function of a closed and convex set is equal to a
respective normal cone; see. e.g., Example 3.74 in (Beck,
2017) establishing that w∗ ∈ C is stationary if and only if
−∇f(w∗) ∈ ∂δC(w

∗) = NC(w
∗), where NC(w

∗) is the
normal cone w.r.t C at w∗.

The relationship between stationarity and the normal cone
formulation also implies that the bound on ∥q +∇F (w∗)∥,
where q ∈ ∂δC(w

∗), can be translated to approximate sta-
tionarity.

Lemma 1.3. Let w∗ ∈ C such that there exist q ∈ ∂δC(w
∗)

and ρ > 0 satisfying that ∥∇f(w∗) + q∥ ≤ ρ. Then for any
d ∈ C it holds that ⟨∇f(w∗), d− w∗, ⟩ ≥ −ρR.

Proof. Note that ∥∇f(w∗) + q∥ ≤ ρ implies that for any
u ∈ Rd, it holds that ⟨u,∇f(w∗) + q⟩ ≥ −ρ∥u∥. Now,
pick u := d − w∗ for some d ∈ C. Since q ∈ δC(w

∗) =
NC(w

∗), −⟨d − w∗, q⟩ ≥ 0, plugging this back into the
above equation and using the boundedness of C yields,

⟨d−w∗,∇f(w∗)⟩ ≥ −⟨d−w∗, q⟩ − ρ∥d−w∗∥ ≥ −ρR.

The theorem holds since the above applies for any d ∈ C. □

2. The Erroneous Oracle
The Erroneous Oracle (EO) is formally defined as follows.

Erroneous Oracles. Let ε ∈ [0, 1) be the relative-error
parameter, and let x ∈ C. The oracle O(·; ε) is called an
erroneous oracle (EO) with respect to a function f : C 7→ R,
if for any vector x ∈ C it returns ĝ = O(x; ε) ∈ Rn which
satisfies

∥ĝ −∇f(x)∥ ≤ ε∥∇f(x)∥. (3)

If for any x ∈ C it returns ĝ = O(x; ε) ∈ Rn which satisfies

|ĝi −∇f(x)i| ≤ ε|∇f(x)i|, ∀i ∈ [n]. (4)

Then it is called a coordinate-wise erroneous oracle
(CWEO).

Remark 2.1. We implicitly allow for the relative error to
vary for any new access to the oracle, i.e., for ĝ1, ĝ2 ←
O(x, ε) we may have that ĝ1 ̸= ĝ2. Consequently, the
oracle can capture a wide range of oracle error regimes
such as adversarial, biased or unbiased stochastic, etc. We
emphasize that no additional assumptions or limitations on
the oracle will be imposed in the sequel.

The definition of the EO implies the next useful bounds (see
Appendix B).

Lemma 2.2 (EO bounds). Let x ∈ C, ε ∈ [0, 1), and
ĝ ← O(x; ε). Then

1. (1− ε)∥∇f(x)∥ ≤ ∥ĝ∥ ≤ (1 + ε)∥∇f(x)∥.

2. ∥ĝ∥
1+ε ≤ ∥∇f(x)∥ ≤

∥ĝ∥
1−ε .

3. ⟨∇f(x), ĝ⟩ ≥ (1− ε)∥∇f(x)∥2.

When a CWEO is applied, we have the coordinate-wise
properties detailed in Lemma 2.3; due to the technicality of
the result, the proof is deferred to Appendix B.

Lemma 2.3 (CWEO properties). Let x, d ∈ Rn, ε ∈ [0, 1),
and ĝ ← O(x; ε), where the EO is a CWEO. Then

1. Sign preservation property: sign(ĝi) = sign(∇f(x)i)
for any i ∈ [n];

2. Relative coordinate-wise error: for any i ∈ [n] it holds
that (1 − ε)|∇f(x)i| ≤ |ĝi| ≤ (1 + ε)|∇f(x)i| and
1

1+ε |ĝi| ≤ |∇f(x)i| ≤
1

1−ε |ĝi|.

3. Direction error bound: Suppose that x, d ∈ C. It holds
that

1

1− ε2
(⟨ĝ, d⟩ − ε(1 + ε)MR) ≤ ⟨g, d⟩

1

1− ε2
(⟨ĝ, d⟩+ ε(1 + ε)MR) ≥ ⟨g, d⟩.

(5)
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3. Methods
3.1. The Erroneous Conditional Gradient

The Erroneous Conditional Gradient (ECG) method de-
scribed by Algorithm 1 is a variation of the classical CG
method (Frank & Wolfe, 1956) obtained by replacing the
gradient with an output of the EO. Accordingly, it deter-
mines the update direction by invoking the so-called linear
minimization oracle (LMO) which, given a vector d ∈ Rn,
returns a solution to the optimization problem:

LMO(d) := argmin
z
{⟨d, z⟩ : z ∈ C}. (6)

Since C is closed convex and bounded, the LMO (6) is a
well-defined single valued operation.

Algorithm 1: Erroneous Conditional gradient (ECG)

Input: w0 ∈ C, ε ≥ 0 .
1 for any t ≥ 0 do
2 retrieve ĝt ← O(∇f(wt), ε) ;
3 compute pt+1 ← LMO(ĝt)− wt;
4 choose ηt ∈ [0, 1] and set wt+1 ← wt + ηtp

t+1;
5 end

In the next section we study the effect of relative error gra-
dient feedback on the convergence guarantees of the CG
by analyzing the ECG, and in particular, prove that CG is
fully robust to the relative error. This outstanding property
of the CG allows for example to use low precision gradi-
ents throughout the entire optimization process without any
influence on the theoretical guarantees. It also suggests
that the CG algorithmic framework may be more suited for
models with intrinsic multiplicative gradient error, such as
distributed optimization, than the PG algorithmic frame-
work, motivating further research in this direction.

3.2. The Erroneous Projected Gradient

The Projected Gradient (PG) method essentially amounts
to repeatedly executing the projection of the gradient step,
wt+1 = PC(w

t − η∇f(wt)) where η > 0 is the step-size
and PC(x) := argmin

z∈C
∥z − x∥2 is the orthogonal projec-

tion operator onto the set C. Given an erroneous gradi-
ent, we obtain the erroneous version of the PG described
by Algorithm 2. To control the change in the function
value, two update conditions are considered: (i) Descent:
h(wt, wt+1) = f(wt) − f(wt+1); (ii) Sufficient descent:
h(wt, wt+1) = ∥η−1(wt+1−wt)∥2− 2ε

1−LηMR. The first
condition only requires access to the function. In the context
of the EO, this is suited for gradient approximations via stan-
dard finite differences or linear interpolation for example
(cf. (Berahas et al., 2022)). The second condition requires
some knowledge on the parameters of the problem at hand –

the diameter of the feasible set and bounds on the Lipschitz
constant and the norm of the gradient over the feasible set.

Algorithm 2: Erroneous Projected gradient (EPG)

Input: w0 ∈ C, ε ∈ [0, 1), η ∈
(
0, 1

L(1+ε)

)
.

1 for any t ≥ 0 do
2 retrieve ĝt ← O(∇f(wt), ε) ;
3 set wt+1 = PC(w

t − ηĝt);
4 if h(wt, wt+1) > 0 then
5 set wt+1 ← wt;
6 end
7 end

Remark 3.1 (update formula). Note that the update wt+1 =
PC(w

t − ηĝt) can be equivalently written as wt+1 =

argmin
w∈C

⟨ĝt, w − wt⟩ + 1

2η
∥w − wt∥2, which immediately

implies that ⟨ĝt, wt+1 − wt⟩+ 1
2η∥w

t+1 − wt∥2 ≤ 0.

4. Robustness with CWEO on the box set
In this section we analyze the ECG and EPG when applied
to the box set using a CWEO.

Assumption 4.1. The set C is the box and the EO used by
Algorithm 1 and Algorithm 2 is a CWEO.

4.1. ECG

When C is the box, the LMO in (6) is a separable problem
whose solution z∗ ∈ LMO(d) can be expressed equivalently
component-wise by

z∗i = argmin
z
{di · zi : zi ∈ Ci}, ∀i ∈ [n]. (7)

Using this fact, we now establish that the trajectory of points
generated by the ECG method is independent of the value
of ε. This is correct if the LMO, which determines the
trajectory, returns the same vector for both the gradient and
its erroneous counterpart.

Theorem 4.2 (CG is robust under separability). Suppose
that Assumption 4.1 holds true. Then for any ε ≥ 0, Algo-
rithm 1 generates that same sequence of points.

Proof. We establish that any element in the sequence
{pt+1}t≥0 generated by Algorithm 1 satisfies that
LMO(ĝt) = LMO(∇f(wt)), which readily implies the re-
quired. Indeed, denote gt = ∇f(wt), and let αi ∈ [0, 1+ε]
be the parameter satisfying that ĝti = αt

ig
t
i for each i ∈ [n].

Note that: (i) the sign preservation property of the EO
(cf. Lemma 2.3) guarantees that αt

i > 0 if ĝti ̸= 0; (ii)
the CWEO definition guarantees that αt

i ≤ 1 + ε. Thus,
due to the separability of C we have for any i ∈ [n] that
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argmin
z
{ĝi · z : z ∈ Ci} ≡ argmin

z
{αt

i ĝi · z : z ∈ Ci} ≡

argmin
z
{gi · z : z ∈ Ci}, as claimed. □

Obviously, Theorem 4.2 implies that any result and guaran-
tee that holds true for the CG method with no relative-error
oracle (ε = 0), holds true for the ECG with a relative-error
oracle (ε ∈ (0, 1)).

Corollary 4.3 (informal). Suppose that Assumption 4.1
holds true. Then any theoretical guarantee satisfied for the
CG holds true for the ECG with any ε ∈ [0, 1].

Remark 4.4 (on the CG with a relative-error gradient). Al-
though simple, the proof of Theorem 4.2 provides a signif-
icant insight, that under the common settings of Assump-
tion 4.1, the magnitude of the error is irrelevant and can
actually have any value (even larger than one) without impli-
cations to the theoretical guarantees of the CG optimization
scheme.

4.2. EPG

Unlike the CG method, we only establish that the guaran-
tees of the PG method are robust to relative error gradients
in nonconvex minimization over the box set; the proof is
deferred to Appendix C.

Theorem 4.5 (EPG robustness in nonconvex over the box).
Suppose that Assumption 4.1 holds true. Let {wt}t≥0 be
a sequence generated by Algorithm 2. Then for any η ∈
(0, 1

(1+ε)L ), it holds that:

1. For any T ≥ 0 it holds that

min
t∈[T ]

∥qt+1 +∇f(wt+1)∥2 ≤ f(w0)− fopt
Tc(η, ε, L)

,

where qt+1 ∈ ∂δC(w
t+1) and c(η, ε, L) =

η(1−ε)2

2(1+ε)
1−Lη(1+ε)

(1+Lη(1−ε))2 > 0. Consequently, for η =
1

2(1+ε)L the EPG achieves

min
t∈[T ]

∥qt+1+∇f(wt+1)∥2 ≤ 2L(3 + ε)2(f(w0)− fopt)

(1− ε)2T
.

(8)

2. Any accumulation point of {wt}t≥0 is a stationary
point of (P), and is in particular the optimal solution
of (P) if f is convex.

Remark 4.6 (convergence guarantees for convex problems).
Improved rates of the classical PG method applied to con-
vex problems under our general settings, i.e. without any
error-bound type assumption, remains an open question.
However, under the PL property, improved rates for biased
gradient compression were established for unconstrained
convex problems in (Ajalloeian & Stich, 2020; Richtárik

et al., 2021), and for constrained convex problems (with the
appropriate version of the PL) by the very recent (Condat
et al., 2022).

5. General Analysis
This section studies the ECG and EPG with a general EO.

5.1. ECG with General EO

To establish the theoretical guarantees of the ECG in the
nonconvex setting, we require a descending property; all the
proofs of this subsection are given in Appendix D.

Lemma 5.1 (ECG descending property). Let {(wt, ĝt, pt)}
be a sequence generated by Algorithm 1 with ε ∈ [0, 1/2)
and step-size ηt defined by: ηt = 0 when γt ≤ 0, ηt =
γt when γt ∈ [0, 1], and ηt = 1 when γt ≥ 1, where

γt := −
⟨ĝt,pt+1⟩+ ε

1−ε∥ĝ
t∥∥pt+1∥

L∥pt+1∥2 for pt+1 ̸= 0 and γt = 0

otherwise. Then

f t − f t+1 ≥ 1

2
L∥pt+1∥2η2t . (9)

Consequently, for any t ≥ 0 satisfying that −⟨ĝt, pt+1⟩ >
ε

1−ε∥ĝ
t∥∥pt+1∥ we have that f t > f t+1.

The convergence guarantees of ECG are stated in Theo-
rem 5.2, where in its third part, we establish a bound on the
CG optimality measure known as the optimality gap (Jaggi,
2013) or the Conditional Gradient Norm (Beck, 2017).

Theorem 5.2 (ECG nonconvex convergence properties).
Let {(wt, ĝt, pt)} be a sequence generated by Algorithm 1
with ε ∈ [0, 1/2) and step-size as defined in Lemma 5.1.
Then

1. The sequence {f t}t≥0 is monotonic non-ascending,
and thus converges to some f∗ ≤ f t for any t ≥ 0.

2. limt→∞

(
⟨ĝt, pt+1⟩+ ε

1−ε∥ĝ
t∥∥pt+1∥

)
≥ 0.

3. Any accumulation point w∗ of {wt}t≥0 satisfies that

min
d∈C
⟨∇f(w∗), d− w∗⟩ ≥ − 2ε

1− ε
MR. (10)

To establish the guarantees of the ECG in the convex sce-
nario, we first derive a relation between the optimal function
value, the error, and the erroneous descent term; the proof
is given in Appendix D.

Lemma 5.3. Suppose that f is convex. Let w∗ ∈ C be
the optimal solution of (P) and {(wt, ĝt, pt)} be a sequence
generated by Algorithm 1. Then ⟨ĝt, pt+1⟩ ≤ fopt−f(wt)+
εRM.

We can now establish the rate result.

6
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Theorem 5.4 (ECG rate for convex objectives). Suppose
that f is convex and let w∗ ∈ C be the optimal solution
of (P). Let {(wt, ĝt, pt)} be the sequence generated by

Algorithm 1 with step-size ηt = min
{
1, 2

t+2

}
for any t ≥ 0.

Then

f(wt)− fopt ≤ 2εMR+
4LR2

t+ 2
. (11)

5.2. EPG with General EO

To establish the EPG convergence properties for a noncon-
vex objective with a general EO, we first establish a de-
scent property. Due to space limitations, the proofs of both
Lemma 5.5 and Theorem 5.6 are detailed in Appendix E.

Lemma 5.5 (EPG descent property). Let {(wt, ĝt, pt)} be
a sequence generated by Algorithm 2. Then

f t − f t+1 ≥ 1− Lη

2
∥η−1(wt+1 − wt)∥2 − εMR. (12)

Consequently, for any t ≥ 0 in which

∥η−1(wt+1 − wt)∥2 >
2ε

1− Lη
MR, (13)

we have a descent in the function value, i.e., f t > f t+1.

The EPG convergence guarantees below comprise a rate
result bound to ϵ-stationarity and a subsequence con-
vergence guarantee to a ϵ-stationary point where ϵ =

2εM
(

8R
η(1−Lη) + εM

)
.

Theorem 5.6 (EPG convergence properties). Let
{(wt, ĝt, pt)} be a sequence generated by Algorithm 2.
Then

1. For any T ≥ 0 it holds that

min
t∈[T ]

∥qt+1+∇f(wt+1)∥2 ≤ 4(1 + Lη)2(f0 − fopt)

Tη(1− Lη)
+ϵ,

where qt+1 ∈ ∂δC(w
t+1) and ϵ =

2εM
(

8R
η(1−Lη) + εM

)
. In particular for η = 1/3L

we obtain that

min
t∈[T ]

∥qt+1 +∇f(wt+1)∥2 ≤ 8L(f0 − fopt)

T
+ ϵ.

2. Any accumulation point w∗ of {wt}t≥0 is an ϵ-
stationary point of (P). That is, there exists q∗ ∈
∂δC(w

∗) such that

∥q∗ +∇f(w∗)∥2 ≤ ϵ = 2εM

(
8R

η(1− Lη)
+ εM

)
.

6. Special scenarios
This section investigates methods tailored for specific set-
tings. In Section 6.1 we show that for the CG scheme the
magnitude of the relative error is in fact irrelevant when
optimizing over the box set – only the sign matters; We do
so via the Sign-CG method.

Section 6.2 develops the Rescaled Erroneous Conditional
Gradient method specially devised for optimization of a con-
vex function over sets satisfying a sign-preservation prop-
erty which include any ℓp-norm ball (p ≥ 1). Results for
a general sign-preserving set requires a CWEO, while the
guarantees specifically for ℓ2-norm ball only require a gen-
eral EO.

6.1. The Sign Conditional Gradient

In this section we utilize the proof of Theorem 4.2 to develop
the Sign Conditional Gradient (SCG) scheme described in
Algorithm 3 and to establish that its theoretical guarantees
are the same as that of the ECG when the feasible set is the
box; the proof is deferred to Appendix F.1.

Algorithm 3: Sign Conditional gradient (SCG)

Input: w0 ∈ C, ε ≥ 0 .
1 for any t ≥ 0 do
2 retrieve ĝt ← sign(∇f(x)) ;
3 compute pt+1 ← LMO(ĝt)− wt;
4 choose ηt ∈ [0, 1] and set wt+1 ← wt + ηtp

t+1;
5 end

Theorem 6.1 (CG is robust under separability). Suppose
that C is the box set. Then Algorithm 3 generates that same
sequence of points as that of ECG using CWEO with ε = 0.

Corollary 6.2 (informal). Suppose that C is the box set.
Then any theoretical guarantee satisfied for the CG holds
true for the SCG.

6.2. The Rescaled Erroneous Conditional Gradient

So-far we have explored two settings for the CG approach
that, to some extent, are on two opposing sides of the spec-
trum of structural assumptions. The first is the RCG applied
over the box with a CWEO, and the other is the RCG applied
over general (compact) convex sets with a general EO. For
the former we showed that the relative-error does not affect
the theoretical guarantees, while for the latter we obtained
an additive error dependency.

This section introduces a rescaling CG approach that can be
positioned between these two ends that exploits structural
properties of a class of sets to derive a relative guarantee
with respect to the optimal value independent of M . The
method implementing this is called the Rescaled Erroneous

7
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Conditional Gradient (RECG), and is described by Algo-
rithm 4.

Here as-well we investigate two cases: (i) Minimization over
the Euclidean ball, B[0, R] := {x ∈ Rn : ∥x∥ ≤ R}, with
a general EO; and, (ii) Minimization over sign-preserving
sets (cf. Definition 6.5 below) with a CWEO. Note that
any ℓp-norm ball (p ≥ 1) is a sign-preserving set, which
implies that the second case contains the first when the EO
is a CWEO.

The relative guarantee is defined with respect to a multiplica-
tive baseline θfopt, where θ := (1 − ε)/(1 + ε) ∈ [0, 1],
and, as usual, ε is the error parameter of the gradient oracle.
Note that θfopt is a reasonable baseline only when fopt ≤ 0.
Indeed, in this case we have fopt ≤ θfopt, implying that
we relax the baseline compared to the standard case where
ε = 0.

Algorithm 4: Rescaled Erroneous Conditional Gradient
(RECG)
Input: w0 ∈ C, C ε, θ ∈ [0, 1), Oracle O(·, ε)

1 for any t ≥ 0 do
2 retrieve ĝt ← O(wt, ε) ;
3 set p̂t ← LMO(ĝt);
4 choose ηt ∈ [0, 1] and set

wt+1 ← (1− ηt)wt + ηtp̂t/θ;
5 end
6 Output: w̄T = θwT

Remark. Note that as we prove below, the iterates wt , t ∈
[T ] that are computed by Algorithm 4 belong to the ball or
radius R/θ around the origin. Therefore, in the last step of
the algorithm we re-scale w̄T = θwT to make sure that the
output w̄T resides in B[0, R].

6.2.1. EUCLIDEAN BALL WITH A GENERAL EO

Before proceeding, we state concisely the setting of this
subsection: (i) f is convex, and for simplicity of the analysis,
maxx∈C f(x) ≤ 0; (ii) C = B[0, R]; (iii) a general EO is
used with ε ∈ [0, 1); and establish the following technical
result detailed in Appendix F.2.

Lemma 6.3. Let r > 0, and let {δt}Tt=1 be a sequence of
non-negative real numbers such that δ1 ≤ r and

δt+1 ≤ (1− ηt)δt + r(ηt)2 ∀t ≥ 1,

where ηt = 2/(t+ 1). Then δt ≤ 2r
t+1 for any t ≥ 1.

Theorem 6.4 shows that the RECG achieves a θ = (1 −
ε)/(1 + ε) relative-error guarantee on the sequence of func-
tion values with respect to the optimal value; when ε = 0,
we indeed recover the standard convergence result. The
proof is given in Appendix F.2.

Theorem 6.4. Assume that f is convex, C = B[0, R], and
maxx∈C f(x) ≤ 0, also assume that O(·, ε) is a general
(EO) with parameter ε ∈ [0, 1). Set θ = (1 − ε)/(1 + ε)
and ηt = 2/(t+ 1). Then after T ≥ 1 iterations the RECG
generates a point w̄T = θwT satisfying,

w̄T ∈ B[0, R] and f(w̄T )− θfopt ≤
8L(R2/θ)

T + 1
.

6.2.2. SIGN-PRESERVING SETS WITH A CWEO

In this section we show that by using a CWEO (cf. (2)),
instead of the general EO, we can establish similar results
as in Theorem 6.4 for a larger class of sets we call Sign-
Preserving Sets.

Definition 6.5 (sign-preserving set). A set B ⊂ Rn is a
sign-preserving set if it is closed, convex, contains the origin
(i.e. 0 ∈ B), and satisfies that for any g ∈ Rn it holds that

−gi · pi ≥ 0 , ∀i ∈ [n],

where p = LMO(g) ≡ argmin
d∈B

g⊤d.

It is not hard to show that any closed and convex set B
satisfying that zeroing a component in x ∈ B keeps it in
the feasible set, i.e., x ∈ B ⇒ ∀i ∈ [n], x− xiei ∈ B, is a
sign-preserving set; this property is fundamental in sparse
optimization for example, as the ability to zero components
is essential. In particular, any ℓp-norm ball with p ≥ 1 is a
sign-preserving set.

Before proceeding, we state concisely the setting of this
section: (i) f is convex, and for simplicity of the analy-
sis, maxx∈C f(x) ≤ 0; (ii) C is a sign-preserving set; (iii)
and we assume the availability of CWEO with parameter
ε ∈ [0, 1). We also note that in-spite of the similarity in tech-
niques of the following results and those in Section 6.2.1,
we prove them separately for simplicity and ease of reading.
The proofs of this subsection are located in Appendix F.3.

We are now ready to state and establish our main theorem.

Theorem 6.6. Assume that f is convex, C is a sign-
preserving set, and maxx∈C f(x) ≤ 0, also assume that
O(·, ε) is a CWEO with parameter ε ∈ [0, 1). Set θ =
(1− ε)/(1 + ε) and ηt = 2/(t+ 1). Then after T ≥ 1 iter-
ations the RECG generates a point w̄T = θwT satisfying,

w̄T ∈ C and f(w̄T )− θfopt ≤
8L(R2/θ)

T + 1
.

7. Conclusions and Future Work
This work investigates optimization procedures with a deter-
ministic EO in a variety of constrained settings, establishing
convergence guarantees with or without dependency on the
relative-error under different structural assumptions. We
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showed that it is possible to obtain meaningful guarantees
that go beyond what is known for the setting of a general
and coordinate-wise erroneous gradient oracles, laying foun-
dations for new strategies to handle erroneous gradients.

Two main veins of research stem from our work: (i) Study-
ing random EOs appearing in both the derivative-free lit-
erature and in the distributed optimization literature, see
(Berahas et al., 2022) and (Condat et al., 2022) and ref-
erences therein, respectively; (ii) Extending the results to
weaker types of EO such as the one associated with the
inner-product test in (Bollapragada et al., 2018). Another
interesting research direction is to incorporate acceleration
mechanisms (à la Nesterov) with such an oracle at hand.
Finally, the guarantees of the projected gradient scheme for
convex constrained problems without the PL assumption
remains an open question that calls for further study.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Condat, L., Yi, K., and Richtárik, P. Ef-bv: A unified theory
of error feedback and variance reduction mechanisms for
biased and unbiased compression in distributed optimiza-
tion. arXiv preprint arXiv:2205.04180, 2022.

Conn, A. R., Gould, N. I., and Toint, P. L. Trust region
methods. SIAM, 2000.

Conn, A. R., Scheinberg, K., and Vicente, L. N. Introduction
to derivative-free optimization. SIAM, 2009.

d’Aspremont, A. Smooth optimization with approximate
gradient. SIAM Journal on Optimization, 19(3):1171–
1183, 2008.

Devolder, O., Glineur, F., and Nesterov, Y. First-order
methods of smooth convex optimization with inexact
oracle. Mathematical Programming, 146(1):37–75, 2014.

Dvurechensky, P. Gradient method with inexact oracle
for composite non-convex optimization. arXiv preprint
arXiv:1703.09180, 2017.

Dvurechensky, P. and Gasnikov, A. Stochastic intermedi-
ate gradient method for convex problems with stochastic
inexact oracle. Journal of Optimization Theory and Ap-
plications, 171(1):121–145, 2016.

Frank, M. and Wolfe, P. An algorithm for quadratic pro-
gramming. Naval research logistics quarterly, 3(1-2):
95–110, 1956.

Hintermüller, M. and Vicente, L. N. Space mapping for
optimal control of partial differential equations. SIAM
Journal on Optimization, 15(4):1002–1025, 2005.

Jaggi, M. Revisiting frank-wolfe: Projection-free sparse
convex optimization. In International Conference on
Machine Learning, pp. 427–435. PMLR, 2013.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. Ro-
bust stochastic approximation approach to stochastic pro-
gramming. SIAM Journal on optimization, 19(4):1574–
1609, 2009.

Paquette, C. and Scheinberg, K. A stochastic line search
method with expected complexity analysis. SIAM Journal
on Optimization, 30(1):349–376, 2020.

Polyak, B. T. Introduction to optimization. 1987.
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A. Supplementals
Table 2 below serves as a more convenient quick guide to the content of this paper than Table 1 in the body of the text.

Table 2. Complexity results and their respective settings and locations; subsequence convergence guarantees do not appear in the table.
When the relative error does not affect the theoretical guarantees, we say that these guarantees are ’preserved’.

Oracle Set Alg. fun. Guarantee Section

CWEO box
ECG convex/nonconvex preserved Section 4.1
EPG nonconvex preserved Section 4.2
SCG convex/nonconvex preserved Section 6.1

sign-preserving RECG convex f(w̄T )− θfopt ≤ 8L(R2/θ)
T+1 Section 6.2.2

EO general ECG nonconvex mind∈C⟨∇f(w∗), d− w∗⟩ ≥ − 2ε
1−εMR Section 5.1

convex f(wt)− fopt ≤ 2εMR+ 4LR2

t+2 Section 5.1

EPG nonconvex mint∈[T ] ∥qt+1 +∇f(wt+1)∥2 ≤ 8L(f0−fopt)
T + ϵ Section 5.2

ℓ2-ball RECG convex f(w̄T )− θfopt ≤ 8L(R2/θ)
T+1 Section 6.2

B. Proofs for Claims in Section 2
Proof of Lemma 2.2. The first and second relations follow from the triangle inequality together with the error bound of the
EO. The third relation follows from combining the Cauchy-Schwartz inequality with the first relation. □

Proof of Lemma 2.3. The first and second claims follow straightly from the coordinate-wise bound, |ĝi − ∇f(x)i| ≤
ε|∇f(x)i|. For the first claim, note that the CWEO condition implies that ∀i ∈ [n],

∇f(x)i − ε|∇f(x)i| ≤ ĝi ≤ ∇f(x)i + ε|∇f(x)i| .

Thus, if ∇f(x)i ≤ 0 then ĝi ≤ ∇f(x)i + ε|∇f(x)i| = (1 − ε)∇f(x)i ≤ 0. Similarly, if ∇f(x)i ≥ 0 then ĝi ≥
∇f(x)i − ε|∇f(x)i| = (1− ε)∇f(x)i ≥ 0. Which establishes the first part.

The second claim is derived by applying the triangle inequality and simple manipulations,

max{|ĝi| − |∇f(x)i|, |∇f(x)i| − |ĝi|} ≤ |ĝi −∇f(x)i| ≤ ε|∇f(x)i|.

We will now prove the third claim. Set g := ∇f(x). From the first claim we have that sign(gi · di) = sign(ĝi · di) for any
i ∈ [n]. Thus, from the second claim we have that

gi · di = sign(gi · di)|gi · di| = sign(ĝi · di)|gi · di| ≥

{
− |ĝi||di|

1−ε , gi · di ≤ 0,
|ĝi||di|
1+ε , gi · di > 0,

and

gi · di = sign(gi · di)|gi · di| = sign(ĝi · di)|gi · di| ≤

{
− |ĝi||di|

1+ε , gi · di ≤ 0,
|ĝi||di|
1−ε , gi · di > 0.

Utilizing the above we deduce that

⟨g, d⟩ =
∑

i:gidi>0

|gi||di| −
∑

i:gidi<0

|gi||di| ≥
1

1 + ε

∑
i:gidi>0

|ĝi||di| −
1

1− ε

∑
i:gidi<0

|ĝi||di|

=
1

1− ε2
(⟨ĝ, d⟩ − ε⟨|ĝ|, |d|⟩)

and

⟨g, d⟩ =
∑

i:gidi>0

|gi||di| −
∑

i:gidi<0

|gi||di| ≤
1

1− ε

∑
i:gidi>0

|ĝi||di| −
1

1 + ε

∑
i:gidi<0

|ĝi||di|

=
1

1− ε2
(⟨ĝ, d⟩+ ε⟨|ĝ|, |d|⟩) .

11
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The boundedness of C together with the second claim then yield that

⟨|ĝ|, |d|⟩ ≤ ∥ĝ∥∥d∥ ≤ (1 + ε)MR,

−⟨|ĝ|, |d|⟩ ≥ −∥ĝ∥∥d∥ ≥ −(1 + ε)MR.

Plugging these bounds to the former ones results with the required relations. □

C. Proofs for Claims in Section 4.2
Proof of Theorem 4.5. Since C is separable, updating wt+1 is equivalent to applying the coordinate-wise update for any
i ∈ [n]

wt+1
i = argminz∈Ci

{
ĝti(z − wt

i) +
1

2η
(z − wt

i)
2

}
. (14)

Due to the sign preservation property and the relative coordinate-wise error bounds of the CWEO established in Lemma 2.3,
there exists αt

i ∈ [1− ε, 1 + ε] for any i ∈ [n] and t ≥ 0 such that

wt+1
i = argminz∈Ci

{
αt
ig

t
i · (zi − wt

i) +
1

2η
(zi − wt

i)
2

}
.

That is, (14) can equivalently be written as

wt+1
i = argminz∈Ci

{
gti · (zi − wt

i) +
1

2ηαt
i

(zi − wt
i)

2

}
. (15)

Equation (15) implies two results:

0 ≥ gti · (wt+1
i − wt

i) +
1

2ηαt
i

(wt+1
i − wt

i)
2, (16)

0 ∈ ∂δCi
(wt+1

i ) + gti +
1

ηαt
i

(wt+1
i − wt

i), (17)

where the former follows from the optimality of wt+1
i and the fact that wt

i ∈ Ci, and the latter from the first-order optimality
conditions associated with the problem in (15).

From (16) and the fact that αt
i ∈ [1− ε, 1 + ε], we obtain

− 1

2η(1 + ε)
(wt+1

i − wt
i)

2 ≥ − 1

2ηαt
i

(wt+1
i − wt

i)
2

≥ gti · (wt+1
i − wt

i).

(18)

Plugging (18) to the descent lemma (cf. Lemma 1.1) then yields f(wt+1)− f(wt) ≤ ⟨gt, wt+1−wt⟩+ L
2 ∥w

t+1−wt∥2 ≤(
L
2 −

1
2η(1+ε)

)
∥wt+1 − wt∥2, which implies the sufficient decrease property

f(wt)− f(wt+1) ≥ 1− Lη(1 + ε)

2η(1 + ε)
∥wt+1 − wt∥2. (19)

From (17) we obtain that there exists qt+1 ∈ ∂δC(w
t+1) such that for any i ∈ [n]

qt+1
i + gt+1

i + (gti − gt+1
i ) +

1

ηαt
i

(wt+1
i − wt

i) = 0. (20)

Thus, using the triangle inequality and the Lipschitz continuity of the gradient, we obtain that

1

η(1− ε)
∥wt+1 − wt∥ ≥ max

i∈[n]

{
1

ηαt
i

}
· ∥wt+1 − wt∥

≥ ∥qt+1 + gt+1∥ − L∥wt − wt+1∥,
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and subsequently,
1 + Lη(1− ε)

η(1− ε)
∥wt+1 − wt∥ ≥ ∥qt+1 + gt+1∥. (21)

Plugging (21) to (19) yields

f(wt)− f(wt+1) ≥ 1− Lη(1 + ε)

2η(1 + ε)
∥wt+1 − wt∥2

≥ η(1− ε)2

2(1 + ε)

1− Lη(1 + ε)

(1 + Lη(1− ε))2
∥qt+1 + gt+1∥2

= c(η, ε, L)∥qt+1 + gt+1∥2. (22)

Summing (22) from t = 0 to t = T − 1 and the minimal element in the summation results with

f(w0)− fopt ≥ c(η, ε, L)T min
t=1,...,T−1

∥qt+1 + gt+1∥2. (23)

Thus, ∥qt+1 + gt+1∥ → 0 as t→∞ and

min
t=1,...,T−1

∥qt+1 + gt+1∥2 ≤ f(w0)− fopt
c(η, ε, L)T

.

Plugging η = 1
2(1+ε)L yields the required (8).

Let {wtj}j≥0 be a subsequence of {wt}t≥0 converging to w∗. Since f is lower bounded and monotonic decreasing in the
sequence {wt}t≥0 due to the boundedness of C and (19), the sequence {f(wt)}t≥0 converges to a limit point f∗. Moreover,
the continuity of f guarantees that f∗ = f(w∗). Then by taking a limit for the elements in the converging subsequence we
obtain using the fact that ∥qtj+1 + gtj+1∥ → 0 as j →∞, and by utilizing the closeness of the graph of the subdifferential
and the continuity of the gradient, that

0 ∈ ∂δC(w
∗) +∇f(w∗), ∀i ∈ [n], (24)

meaning that w∗ is a stationary point of (P). If the objective function is in addition convex, then this guarantees that w∗ is an
optimal solution due to the sufficiency of the stationarity conditions in convex problems. □

D. Proofs for Claims in Section 5.1
Proof of Lemma 5.1. By Lemma 1.1, the properties of the EO together with Lemma 2.2, and the triangle inequality,

f t+1 − f t ≤ ηt⟨gt, pt+1⟩+ Lη2t
2
∥pt+1∥2 = ηt

(
⟨ĝt, pt+1⟩+ ⟨gt − ĝt, pt+1⟩

)
+

Lη2t
2
∥pt+1∥2

≤ ηt
(
⟨ĝt, pt+1⟩+ ∥gt − ĝt∥∥pt+1∥

)
+

Lη2t
2
∥pt+1∥2

≤ ηt

(
⟨ĝt, pt+1⟩+ ε

1− ε
∥ĝt∥∥pt+1∥

)
+

Lη2t
2
∥pt+1∥2.

If ηt = γt = −
⟨ĝt,pt+1⟩+ ε

1−ε∥ĝ
t∥∥pt+1∥

L∥pt+1∥2 . Then f t+1 − f t ≤ −η2tL∥pt+1∥2 + Lη2
t

2 ∥p
t+1∥2 = − 1

2L∥p
t+1∥2η2t . Otherwise,

assume that ηt = 1, which requires that

γt = −
⟨ĝt, pt+1⟩+ ε

1−ε∥ĝ
t∥∥pt+1∥

L∥pt+1∥2
≥ 1.

Then

f t+1 − f t ≤ ηt

(
⟨ĝt, pt+1⟩+ ε

1− ε
∥ĝt∥∥pt+1∥

)
+

Lη2t
2
∥pt+1∥2 ≤ −L∥pt+1∥2

2
.

13
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Hence,

f t − f t+1 ≥ 1

2
L∥pt+1∥2 min{1, η2t } ≥

1

2
L∥pt+1∥2η2t .

which concludes the correctness of (9).

The descending property then follows from (9) together with the definition of the step-size. □

Proof of Theorem 5.2. 1. Lemma 5.1 implies that {f t}t≥0 is monotonic non-ascending. Since f is bounded below over
C, this implies that {f t}t≥0 converges to a limit point, say f∗.

2. Consider the three possible range of values for γt for any t ≥ 0: (i) γt < 0, (ii) γt = 0, (iii) γt > 0.

For any t ≥ 0, γt < 0 implies that ⟨ĝt, pt+1⟩ + ε
1−ε∥ĝ

t∥∥pt+1∥ > 0, and γt = 0 implies that ⟨ĝt, pt+1⟩ +
ε

1−ε∥ĝ
t∥∥pt+1∥ = 0. Hence, for any t ≥ 0 for which γt ≤ 0 we have that ⟨ĝt, pt+1⟩+ ε

1−ε∥ĝ
t∥∥pt+1∥ ≥ 0.

Now consider t ≥ 0 in which γt > 0 and set J := {t ≥ 0 : γt > 0}. By the definition of γt, its positiveness implies
that ∥pt+1∥, ηt > 0 for any t ∈ J . Due to the first part of this theorem, taking the limit t→∞ in relation (9) yields
that ∥pt+1∥ηt → 0. This is true in particular for any t ∈ J for which ∥pt+1∥ηt > 0. Consequently, either J is finite
(implying the correctness of the claim) or at least one of these terms must converge to zero (recall that both are positive).
Obviously, if ∥pt+1∥ → 0 then limt→∞

(
⟨ĝt, pt+1⟩+ ε

1−ε∥ĝ
t∥∥pt+1∥

)
= 0.

Suppose that ηt → 0. Then there exists K0 > 0 such that ηt < 1 for any t > K0. Without loss of generality, assume
that J is a subsequence for which t > K0 and γt > 0; note that we already established that for any t > K0, t /∈ J , it
holds that ⟨ĝt, pt+1⟩+ ε

1−ε∥ĝ
t∥∥pt+1∥ ≥ 0. Subsequently, by the definition of ηt, for any t ∈ J we have that ηt = γt.

Therefore, from the assumption that ηt → 0, we conclude that limt∈J,t→∞

(
⟨ĝt, pt+1⟩+ ε

1−ε∥ĝ
t∥∥pt+1∥

)
= 0.

Finally, from combining the two deductions above: ⟨ĝt, pt+1⟩+ ε
1−ε∥ĝ

t∥∥pt+1∥ ≥ 0 for any t ≥ K0 such that γt ≤ 0,

and limt→∞

(
⟨ĝt, pt+1⟩+ ε

1−ε∥ĝ
t∥∥pt+1∥

)
= 0 for any t ≥ K0 such that γt > 0, we obtain the required relation.

3. From the definition of pt+1 and the property of the EO we have that for any d ∈ C

⟨gt, d− wt⟩ = ⟨ĝt, d− wt⟩+ ⟨gt − ĝt, d− wt⟩
≥ ⟨ĝt, pt+1⟩ − ε∥gt∥∥d− wt∥
≥ ⟨ĝt, pt+1⟩ − εMR.

Thus, from Lemma 2.2, for any d ∈ C it holds that

⟨gt, d− wt⟩+ ε(1 + ε)

1− ε
MR

≥ ⟨gt, d− wt⟩+ ε

1− ε
∥ĝt∥∥pt+1∥

≥ ⟨ĝt, pt+1⟩ − εMR+
ε

1− ε
∥ĝt∥∥pt+1∥.

Taking a limit over the converging subsequence while invoking the previous part and rearranging terms finally yields
(10).

□

Proof of Lemma 5.3. Set ut+1 = argmind∈C⟨gt, d− wt⟩ − wt. Then from the convexity of f , the choice of pt+1, and the
definition of the EO,

f(wt)− f(w∗) ≤ ⟨gt, wt − w∗⟩ ≤ −min
d∈C
⟨gt, d− wt⟩ = −⟨ĝt, pt+1⟩+ ⟨ĝt, pt+1⟩ − ⟨gt, ut+1⟩

≤ −⟨ĝt, pt+1⟩+ ⟨ĝt − gt, ut+1⟩
≤ −⟨ĝt, pt+1⟩+ ∥ĝt − gt∥∥ut+1∥
≤ −⟨ĝt, pt+1⟩+ ε∥gt∥∥ut+1∥.

Finally, the bound follows from the boundedness of the feasible set ∥gt∥∥ut+1∥ ≤ RM . □

14
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Proof of Theorem 5.4. For convenience we denote f t := f(wt) and c = 4LR2; note that fopt = f(w∗). By the descent
lemma (cf. Lemma 1.1) together with the boundedness of C and the step-size regime,

f t+1 − fopt ≤ f t − fopt + ηt⟨gt, pt+1⟩+ Lη2t
2
∥pt+1∥2

≤ f t − fopt +
2

t+ 2
⟨gt, pt+1⟩+ 4LR2

(t+ 2)2

= f t − fopt +
2

t+ 2
⟨gt, pt+1⟩+ c

(t+ 2)2
. (25)

Using the properties of the EO together with Lemma 5.3, we obtain ⟨gt, pt+1⟩ = ⟨ĝt, pt+1⟩ + ⟨gt − ĝt, pt+1⟩ ≤ fopt −
f t + εMR+ ∥gt − ĝt∥∥pt+1∥ ≤ fopt − f t + εMR+ ε∥gt∥∥pt+1∥ ≤ fopt − f t + 2εMR. Plugging this to (25) yields

f t+1 − fopt ≤ f t − fopt +
2

t+ 2
⟨gt, pt+1⟩+ c

(t+ 2)2

≤ f t − fopt +
2

t+ 2

(
fopt − f t + 2εMR

)
+

c

(t+ 2)2

=
t

t+ 2
(f t − fopt) +

4εMR

t+ 2
+

c

(t+ 2)2
. (26)

We will now use induction to conclude the claimed. For t = 0 we indeed have from the above that f1−fopt ≤ 4εMR
2 + c

4 ≤
2εMR+ c

2 . Assume that

f t − fopt ≤ 2εMR+
c

t+ 2
. (27)

We will show that (11) holds true for t+ 1. Using the relation (26) and the assumption of the induction in (27),

f t+1 − fopt ≤
t

t+ 2
(f t − fopt) +

4εMR

t+ 2
+

c

(t+ 2)2

≤ t

t+ 2

(
2εMR+

c

t+ 2

)
+

4εMR

t+ 2
+

c

(t+ 2)2

= 2εMR+
t+ 1

(t+ 2)2
c.

The required follows from the fact that t+1
(t+2)2 c ≤

c
t+3 . □

E. Technical Proofs for Claims in Section 5.2
Proof of Lemma 5.5. By the descent lemma (Lemma 1.1), Cauchy-Schwartz inequality, properties of the EO, and the update
procedure of Algorithm 2 (cf. Remark 3.1),

f t+1 − f t ≤ ⟨gt, wt+1 − wt⟩+ L

2
∥wt+1 − wt∥2

= ⟨ĝt, wt+1 − wt⟩+ ⟨gt − ĝt, wt+1 − wt⟩+ L

2
∥wt+1 − wt∥2

≤ ∥gt − ĝt∥∥wt+1 − wt∥+ Lη − 1

2η
∥wt+1 − wt∥2

≤ ε∥gt∥R+
Lη − 1

2η
∥wt+1 − wt∥2

≤ εMR+
Lη − 1

2η
∥wt+1 − wt∥2.

Thus,

f t − f t+1 ≥ (1− Lη)η

2
∥η−1(wt+1 − wt)∥2 − εMR,

and the required follows. □

15
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Proof of Theorem 5.6. By the update procedure of wt+1,

wt+1 = argminz∈C

{
⟨ĝt, z − wt⟩+ 1

2η
∥z − wt∥2

}
,

we have from the first-order optimality conditions that there exists qt+1 ∈ ∂δC(w
t+1) such that

qt+1 + ĝt +
1

η
(wt+1 − wt) = 0.

Thus, using the triangle inequality, the EO definition, and the Lipschitz continuity of the gradient, we have that

1

η
∥wt+1 − wt∥ = ∥qt+1 + ĝt∥ = ∥qt+1 + gt+1 + gt − gt+1 + ĝt − gt∥

≥ ∥qt+1 + gt+1∥ − ∥gt − gt+1∥ − ∥ĝt − gt∥
≥ ∥qt+1 + gt+1∥ − L∥wt+1 − wt∥ − ε∥gt∥
≥ ∥qt+1 + gt+1∥ − L∥wt+1 − wt∥ − εM.

That is,

(1 + ηL)

(
∥η−1(wt+1 − wt)∥+ 1

1 + ηL
εM

)
≥ ∥qt+1 + gt+1∥.

Subsequently, using Young’s inequality

2(εM)2

(1 + Lη)2
+ 2∥η−1(wt+1 − wt)∥2 ≥

(
εM

1 + Lη
+ ∥η−1(wt+1 − wt)∥

)2

≥ 1

(1 + Lη)2
∥qt+1 + gt+1∥2.

(28)

Plugging (28) to Lemma 5.5 yields that

f t − f t+1 ≥ (1− Lη)η

2
∥η−1(wt+1 − wt)∥2 − εMR

≥ (1− Lη)η

4(1 + Lη)2
(
∥qt+1 + gt+1∥2 − 2(εM)2

)
− εMR

=
(1− Lη)η

4(1 + Lη)2
∥qt+1 + gt+1∥2 − εM

(
R+

εMη(1− Lη)

2(1 + Lη)2

)
. (29)

Summing (29) from t = 0 to t = T − 1 yields

f0 − fopt ≥ f0 − fT ≥ (1− Lη)η

4(1 + Lη)2

T−1∑
t=0

∥qt+1 + gt+1∥2 − TεM

(
R+

εMη(1− Lη)

2(1 + Lη)2

)
≥ T

(
(1− Lη)η

4(1 + Lη)2
min

t=0,...,T−1
∥qt+1 + gt+1∥2 − εM

(
R+

εMη(1− Lη)

2(1 + Lη)2

))
.

Thus, using the fact that ηL < 1,

4(1 + Lη)2(f0 − fopt)

Tη(1− Lη)
≥ min

t=0,...,T−1
∥qt+1 + gt+1∥2 − 2εM

(
2R(1 + Lη)2

η(1− Lη)
+ εM

)
≥ min

t=0,...,T−1
∥qt+1 + gt+1∥2 − 2εM

(
8R

η(1− Lη)
+ εM

)
which establishes the rate result bound.
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To establish the subsequence convergence result, note that from Lemma 5.5 and the update criteria of EPG (the condition on
h in Algorithm 2) we have that the sequence {f t}t≥0 is monotonic non-ascending, and thus converges to some value fopt.
Moreover, this implies that

lim
t→∞

{
∥η−1(wt+1 − wt)∥2 − 2εMR

η(1− Lη)

}
= 0.

Let w∗ be an accumulation point of the generated sequence where wtj+1 → w∗ as j → ∞. By taking a limit over the
converging subsequence in (28) we obtain that

lim
j→∞
∥qtj+1 + gtj+1∥2

≤ 2(εM)2 + 2(1 + Lη)2 lim
j→∞

∥η−1(wtj+1 − wtj )∥2

= 2(εM)2 + (1 + Lη)2
4εMR

η(1− Lη)

≤ 2(εM)2 +
16εMR

η(1− Lη)
,

where the last inequality follows from the step-size regime ηL < 1. Thus, by the closeness of the graph of the subdifferential
∂δC(·) and the continuity of the gradient∇f(·), we have that there exists q∗ ∈ ∂δC(w

∗) such that

∥q∗ +∇f(w∗)∥2 ≤ ϵ = 2εM

(
εM +

8R

η(1− Lη)

)
as required. □

F. Proofs of Section 6
F.1. Proofs for claims in Section 6.1

Proof of Theorem 6.1. We establish that any element in the sequence {pt+1}t≥0 generated by Algorithm 1 satisfies that
LMO(ĝt) = LMO(∇f(wt)), which readily implies the required. Denote gt = ∇f(wt), and note that due to the separability
of C we have that the LMO is a separable problem whose solution can be expressed equivalently component-wise as we did
in (7).

Thus, due to the separability of C and the positive homogeneity of the optimization problem we have for any i ∈ [n] that
argmin

z
{ĝi · z : z ∈ Ci} ≡ argmin

z
{ĝi · |gi| · z : z ∈ Ci} ≡ argmin

z
{gi · z : z ∈ Ci}, as claimed. □

F.2. Proofs for claims in Section 6.2.1

Proof of Lemma 6.3. We will prove by induction. The base case holds since δ1 ≤ r = 2r
1+1 . Now, for the induction step,

assume that the claim holds true for δt−1 (where t > 1), and we will show that this implies that it holds true for δt. Indeed,
using the relation between δt, δt−1 we have,

δt ≤
(
1− 2

t

)
δt−1 +

r

2

4

t2
≤ t− 2

t

2r

t
+

2r

t2
≤ 2r

t+ 1
.

where we have used the induction hypothesis as well as t−1
t2 ≤

1
t+1 which holds for t > 1. This concludes the proof. □

Proof of Theorem 6.4. We prove the assertion in three parts.

Part 1: Note that since C = B[0, R] then for any v ∈ Rd we have LMO(v) = −R · v/∥v∥. Using this, we can bound the
inner product between gt and p̂t. Indeed,

⟨gt, p̂t⟩ = − R

∥ĝt∥
⟨gt, ĝt⟩ ≤ −(1− ε)

R

∥ĝt∥
∥gt∥2

≤ −1− ε

1 + ε

R

∥gt∥
∥gt∥2 = θ · min

v∈B[0,R]
⟨gt, v⟩,

(30)

17
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where we used the definition of p̂t, as well as Lemma 2.2, and the fact that minv∈B[0,R]⟨gt, v⟩ = −R∥gt∥; we also used
argmin
v∈B[0,R]

⟨gt, v⟩ = −Rgt/∥gt∥, and θ := (1− ε)/(1 + ε).

Part 2: We now prove that the iterates wt are bounded. Using induction, we show that ∥wt∥ ≤ R/θ , ∀t ≥ 0. For the base
case, note that w0 ∈ B[0, R] and therefore ∥w0∥ ≤ R ≤ R/θ (recall that θ ∈ (0, 1]). Now, for the induction step, assume
that ∥wt∥ ≤ R/θ, and let us show that this implies ∥wt+1∥ ≤ R/θ. Indeed, by definition, wt+1 is a convex combination of
two vectors wt and p̂t/θ, since these two vectors belong the the ball of radius R/θ, so is their convex combination wt+1.
This establishes the induction step.

Part 3: Let x∗ be an optimal solution of (P), i.e., f(x∗) = fopt = minx∈B[0,R] f(x). From the update rule of Algorithm 4
we have wt+1 − wt = ηt(p̂t/θ − wt) . Using the above together with the smoothness of f implies,

f(wt+1)− f(wt) ≤ ⟨gt, (wt+1 − wt)⟩+ L

2
∥wt+1 − wt∥2

= ηt⟨gt, (p̂t/θ − wt)⟩+ L(ηt)2

2
∥p̂t/θ − wt∥2

≤ ηt min
v∈B[0,R]

⟨gt, (v − wt)⟩+ L(ηt)2

2
∥p̂t/θ − wt∥2

≤ ηt⟨gt, (x∗ − wt)⟩+ L(ηt)2

2
∥p̂t/θ − wt∥2

≤ ηt(f(x∗)− f(wt)) + 2L(ηt)2(R/θ)2,

where the second inequality uses (30), and the third inequality uses the fact that x∗ ∈ B[0, R]. The last line uses the gradient
inequality, and the fact that p̂t/θ and wt belong to the ball of radius R/θ (see Part 2 of this proof).
Now, denoting δt = f(wt)− f(x∗) = f(wt)− fopt and rearranging the above equation yields,

δt+1 ≤ (1− ηt)δt + 2L(R/θ)2(ηt)2.

We will now use the Lemma 6.3 to bound δt. Recalling that w0 ∈ B[0, R], the smoothness of f implies that,

δ1 := f(w0)− f(x∗) ≤ L∥x− x∗∥2

2
≤ LR2/2 ≤ 4L(R/θ)2,

where we used the fact that θ ∈ (0, 1]. Thus, applying Lemma 6.3 and taking r := 4L(R/θ)2 implies that for any t ≥ 0,

δt := f(wt)− fopt ≤
8L(R/θ)2

t+ 1
. (31)

Finally,

f(w̄T )− θfopt = f(θwT + (1− θ) · 0)− θfopt

≤ θf(wT ) + (1− θ)f(0)− θfopt

≤ θ
(
f(wT )− fopt

)
≤ 8L(R2/θ)

T + 1
,

where the first inequality uses the Jensen inequality together with the fact that θ ∈ (0, 1), the second inequality uses
f(0) ≤ maxx∈B[0,R] f(x) ≤ 0, and the last inequality uses (31). □

F.3. Proofs for claims in Section 6.2.2

The next lemma is a key element in establishing Theorem 6.6.

Lemma F.1. Assume that f is convex, C is a sign-preserving set, and maxx∈C f(x) ≤ 0, also assume that O(·, ε) is a
CWEO with parameter ε ∈ [0, 1). Set θ = (1− ε)/(1+ ε). Then for any x ∈ C, ĝ = O(x, ε), and p̂ = LMO(ĝ) it holds that

⟨∇f(x), p̂⟩ ≤ θ ·min
v∈C
⟨g, v⟩ .
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Proof of Lemma F.1. Denote g = ∇f(x) and p = LMO(g). From Lemma 2.3 for the CWEO, we have that for any i ∈ [n]
there exists εi ∈ (−ε, ε) such that ĝi = (1 + εi)gi, and therefore gi =

1
1+εi

ĝi. Consequently,

⟨g, p̂⟩ =
n∑

i=1

gi · p̂i =
n∑

i=1

1

1 + εi
ĝi · p̂i ≤

1

1 + ε

n∑
i=1

ĝi · p̂i ≤
1

1 + ε

n∑
i=1

ĝi · pi =
1

1 + ε

n∑
i=1

(1 + εi)ĝi · pi

≤ 1− ε

1 + ε

n∑
i=1

ĝi · pi = θ ·min
v∈C
⟨g, v⟩, (32)

where: (i) The first inequality follows from the sign-preservation of C, and due to the fact that εi ∈ (−ε, ε) ⊆ (−1, 1); (ii)
The second inequality follows since p̂ = LMO(ĝ) implies that ⟨ĝ, p̂⟩ ≤ ⟨g, p⟩; (iii) The last inequality uses (1+εi) ≥ (1−ε)
together with the fact that gi · pi ≤ 0 for all i ∈ [n] (since C is sign-preserving); (iv) Lastly, we use the definition of θ and
the fact that p = LMO(g). □

The proof goes along the same lines as the proof of Theorem 6.4, for completeness we provide the full proof.

Proof of Theorem 6.6. We prove the assertion in three parts.

Part 1: Recall that due to Lemma F.1, the following property holds for any t ∈ [T ],

⟨gt, p̂t⟩ ≤ θ ·min
v∈C
⟨gt, v⟩, (33)

Part 2: We now prove that the iterates wt are bounded. Using induction, we show that ∥wt∥ ≤ θ−1 · C ,∀t ≥ 0. For the
base case, note that w0 ∈ C and therefore w0 ∈ C ⊆ θ−1 · C, this holds since θ ∈ (0, 1] and since 0 ∈ C (see Def. 6.5). Now,
for the induction step, assume that wt ∈ θ−1 · C, and let us show that this implies wt+1 ∈ θ−1 · C. Indeed, by definition,
wt+1 is a convex combination of two vectors wt and p̂t/θ, since these two vectors belong the set θ−1 · C, so is their convex
combination wt+1. This establishes the induction step.

Part 3: Let x∗ be an optimal solution of (P), i.e., f(x∗) = fopt = minx∈C f(x). From the update rule of Algorithm 4 we
have wt+1 − wt = ηt(p̂t/θ − wt) . Using the above together with the smoothness of f implies,

f(wt+1)− f(wt) ≤ ⟨gt, (wt+1 − wt)⟩+ L

2
∥wt+1 − wt∥2

= ηt⟨gt, (p̂t/θ − wt)⟩+ L(ηt)2

2
∥p̂t/θ − wt∥2

≤ ηt min
v∈C
⟨gt, (v − wt)⟩+ L(ηt)2

2
∥p̂t/θ − wt∥2

≤ ηt⟨gt, (x∗ − wt)⟩+ L(ηt)2

2
∥p̂t/θ − wt∥2

≤ ηt(f(x∗)− f(wt)) + 2L(ηt)2(R/θ)2,

where the second inequality uses (33), and the third inequality uses the fact that x∗ ∈ C. The last line uses the gradient
inequality, and the fact that p̂t/θ and wt belong the set θ−1 · C (see Part 2 of this proof) together with the diameter bound R.
Now, denoting δt = f(wt)− f(x∗) = f(wt)− fopt and rearranging the above equation yields,

δt+1 ≤ (1− ηt)δt + 2L(R/θ)2(ηt)2.

We will now use the Lemma 6.3 to bound δt. Recalling that w0 ∈ B[0, R], the smoothness of f implies that,

δ1 := f(w0)− f(x∗) ≤ L∥x− x∗∥2

2
≤ LR2/2 ≤ 4L(R/θ)2,

where we used the fact that θ ∈ (0, 1]. Thus, applying Lemma 6.3 and taking r := 4L(R/θ)2 implies that for any t ≥ 0,

δt := f(wt)− fopt ≤
8L(R/θ)2

t+ 1
. (34)
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Finally using the fact that 0 ∈ C,

f(w̄T )− θfopt = f(θwT + (1− θ) · 0)− θfopt

≤ θf(wT ) + (1− θ)f(0)− θfopt

≤ θ
(
f(wT )− fopt

)
≤ 8L(R2/θ)

T + 1
,

where the first inequality uses the Jensen inequality together with the fact that θ ∈ (0, 1), the second inequality uses
f(0) ≤ maxx∈B[0,R] f(x) ≤ 0, and the last inequality uses (34). □
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