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Abstract
The primary goal of online change detection
(OCD) is to promptly identify changes in the data
stream. OCD problem find a wide variety of ap-
plications in diverse areas, e.g., security detection
in smart grids and intrusion detection in commu-
nication networks. Prior research usually assumes
precise knowledge of the system parameters. Nev-
ertheless, this presumption often proves unattain-
able in practical scenarios due to factors such as
estimation errors, system updates, etc. This paper
aims to take the first attempt to develop a triadic-
OCD framework with certifiable robustness, prov-
able optimality, and guaranteed convergence. In
addition, the proposed triadic-OCD algorithm can
be realized in a fully asynchronous distributed
manner, easing the necessity of transmitting the
data to a single server. This asynchronous mecha-
nism could also mitigate the straggler issue that
faced by traditional synchronous algorithm. More-
over, the non-asymptotic convergence property of
Triadic-OCD is theoretically analyzed, and its it-
eration complexity to achieve an ϵ-optimal point
is derived. Extensive experiments have been con-
ducted to elucidate the effectiveness of the pro-
posed method.

1. Introduction
Detecting distribution changes as quickly as possible while
controlling the false alarm rate is the fundamental objective
of OCD. And this problem is frequently encountered in a
diverse range of fields such as econometrics, climate mod-
eling, and system security (Andersson et al., 2006; Barnett
et al., 2001; Tartakovsky et al., 2006; Yang et al., 2016; Dou
et al., 2019; Huang et al., 2011; Li et al., 2014; Huang et al.,
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2014; Kurt et al., 2018b). In contrast to general detection
problems, OCD problem in dynamic systems are partic-
ularly challenging because changes in the distribution of
observed data can be caused by the dynamics of the system
itself, even without external changes. Although extensive
research has been conducted on this problem, existing stud-
ies still face critical issues. The primary challenge is that
the parameters associated with systems are assumed to be
perfectly estimated. In practice, however, this is often not
the case due to factors such as estimation errors, system
updates, etc. For instance, the investigated OCD problem
within dynamic systems subsumes the false data injection
attacks (FDIA) detection problem in smart grids and the
blockage detection in MIMO systems —both critical issues
that have received extensive attention (Huang et al., 2011;
Nishimori et al., 2011). In smart grids, fluctuations in the en-
vironment can lead to changes in line admittances, causing
inaccuracies in system matrix (Li et al., 2014). Similarly,
in MIMO systems, factors such as estimation error, aging,
and quantization often prevent the perfect estimation of the
channel matrix (Weber et al., 2006). Furthermore, current
research focuses on centralized setting, which may incur
privacy breaches (Subramanya & Riggio, 2021) and high
communication costs. Additionally, the synchronous dis-
tributed approach often encounters straggler issues (Jiao
et al., 2022) which can cause significant delays in the de-
tection process. Therefore, in this paper, we aim to address
these issues, and our contributions are summarized as fol-
lows:

• Certified Robustness: As opposed to existing works
in the literature, Triadic-OCD provides a high degree of
confidence across a broad spectrum of system param-
eter uncertainties. This certifiable robustness assures
the reliability of change point detection in real-world
applications.

• Asynchronous Updating: In order to address con-
cerns related to potential privacy breaches, elevated
communication costs, and straggler issues, we propose
a novel asynchronous distributed algorithm to effec-
tively address the detection problem in the presence
of parameter uncertainties. In addition, the proposed
approach goes beyond empirical performance by offer-
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ing theoretical proofs that establish the optimality of
Triadic-OCD under certain conditions. This represents
a theoretic advancement in ensuring the algorithm’s
efficiency and effectiveness.

• Non-asympotic Convergence Analysis: We not only
proves that Triadic-OCD is guaranteed to converge, but
also undertake non-asymptotic convergence analysis
to establish an upper bound to the iteration complexity
of the proposed asynchronous algorithm to attain an
ϵ-optimal solution.

2. Related Work
There have been numerous studies that address the OCD
problem with uncertain pre- and post-change distributions.
(Hare et al., 2021) proposes the Uncertain Likelihood Ra-
tio (ULR) test statistic to tackle the parameters within pre-
and post-change distributions, which are completely un-
known, or known with limited prior knowledge. On the
basis of that, (Hare & Kaplan, 2022) develops a more ef-
ficient method called the Windowed Uncertain Likelihood
Ratio (W-ULR) test. (Unnikrishnan et al., 2011) consider
the OCD problem when the pre-change and post-change
distributions belong to known uncertainty sets. It provides a
condition under which the detection rule based on the least
favorable distributions (LFDs) are minimax robust. (Mol-
loy & Ford, 2017) relaxes this condition and provides the
new performance guarantee of misspecified CUSUM rules.
(Xie, 2022) proposes a non-parametric method based on
Wasserstein uncertainty sets. However, there’s a significant
distinction between these works and our paper. The general
OCD methods considering uncertain distributions assume
that the distribution before and after the change remains con-
stant over time, which is completely inconsistent with our
problem due to the system’s inherent dynamics. As a result,
general OCD methods are not applicable to our problem.

The OCD problem in dynamic system has attracted increas-
ing attention recently. Both (Huang et al., 2011) and (Li
et al., 2014) proposed CUSUM-type algorithms with prior
assumptions on the state variables of the systems. And the
method proposed in (Huang et al., 2011) is inefficient for
large or negative attacking vectors injected into the system.
In contrast, our approach makes no assumptions for the
state variables of the system and imposes no restrictions
on the sign of the attacking vectors. (Huang et al., 2014)
proposes a real-time detection method based on residuals
and constructs the decision statistic with the Rao test statis-
tic. However, in some cases, the decision statistic cannot be
evaluated due to the covariance singularity of the residuals.
All the methods mentioned above, as well as (Zhang, 2019;
Zhang & Wang, 2021), assume that the system parameters
can be perfectly determined, which is often impractical in
reality. In addition, some recent work has studied the OCD

in certain dynamic systems in the distributed setting. A dis-
tributed algorithm based on the Kalman filter is proposed in
(Kurt et al., 2018a). And (Li et al., 2014) propose distributed
sequential detectors based on the generalized likelihood ra-
tio. However, these methods are synchronously distributed
and may suffer from straggler problems, which could incur
significant delays during the detection. As opposed to all
previous methods, this paper proposes an asynchronous dis-
tributed algorithm to solve the OCD problem in the presence
of parameter uncertainties.

3. Problem Statement
In this section, we provide a detailed explanation of the
OCD problem with parameter uncertainties. The system of
interest can be expressed as follow,

y(t) = f̄(θ(t) | H) + n(t),H ∈ U (1)

where y(t) ∈ RM represents the known observation vec-
tor and θ(t) ∈ RN represents the unknown time-varying
system states. f̄ models the relationship within the sys-
tem and the matrix H ∈ RM×N incorporates the system
parameters. In contrast to previous work, the system ma-
trix is assumed to belong to an uncertainty set U instead
of being perfectly known, i.e. H ∈ U . When t ≥ ta, the
time-varying attack vector a(t) is injected into the system
which alters the distribution of y(t). Our goal is to detect the
injected vector as soon as possible. Note that the complexity
of this problem is formidable, and its practical applications
remain somewhat under-explored. However, in numerous
real-world scenarios, including the FDIA detection in smart
grids and the blockage detection in MIMO systems, the
function f̄ degenerates into a linear form. In such case, pre-
vailing methodologies typically rely on precise knowledge
of the system parameters, which often proves unattainable
in practical settings. To address this limitation, we pro-
pose an asynchronous OCD method capable of robust and
high-performance detection.

Given that the system states θ(t) and the injected anomaly
vector a(t) are unknown, we estimate them using their maxi-
mum likelihood estimates (MLE) (Tartakovsky et al., 2014).
This leads to the generalized CUSUM detector for our prob-
lem, which can be written as follows.

TG = min{J : max
1≤j≤J

Λ
(J)
j ≥ ζ}. (2)

where ζ is the predefined threshold. Λ
(J)
j is given in (3),

where x(t) represent the component of a(t) orthogonal to
the column space of H. And ρH is the upper bound for the
absolute value of each component of x(t). Based on (2), let
VJ represents max1≤j≤J Λ

(J)
j , we can obtain that,
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Λ
(J)
j ≜ sup

H∈U
ln

sup
θ(t),a(t):−ρU1≤x(t)≤ρU1,Hx(t)=0

∏j−1
t=1 fp

(
y(t) | θ(t),H

)∏J
t=j fq

(
y(t) | θ(t),a(t),H

)
sup
θ(t)

∏J
t=1 fp

(
y(t) | θ(t),H

) . (3)

VJ ≜ max
1≤j≤J

Λ
(J)
j = max

1≤j≤J

∑J

t=j

vt
2σ2

n

=max {VJ−1, 0}+
vt
2σ2

n

, with V0 = 0,
(4)

where the value of vt can be obtained by solving problem (5).
The detailed derivation can be found in Appendix B. It can
be seen from (2) and (4) that the change is declared when
VJ surpasses ζ. And VJ can be calculated in a recursive
way, with the primary challenge being to obtain the value of
vt.

vt ≜ sup
H∈U

sup
−ρU1≤x(t)≤ρU1,HTx(t)=0

{
[
2(x(t))Ty(t) − ∥x(t)∥22

]}
.

(5)

Note that the inherent uncertainties associated with H makes
the constraint HTx(t) = 0 in (5) unattainable, which greatly
exacerbates the complexity of the problem.

4. Nested Optimization
In this section, we elaborate on the uncertainty of the system
matrix and reformulate the problem (5) under the distributed
setup as a nested optimization problem.

To address the challenges posed by the inherent uncer-
tainty of H, we adopt the constraint-wise uncertainty model,
which decouples the uncertainties between different rows
in the matrix. This versatile approach is applicable to a
wide range of practical problems (Yang et al., 2014; Liu
et al., 2021b). We first represent hi as the i-th column of H,
each hi lies in the uncertainty set Ui. Denote the i-th nom-
inal column as h̄i . Subsequently, we relax the constraint
HTx(t) = 0 with HT ∈ U as follows,

h̄T
i x

(t) + pi(x
(t)) ≤ δi, 1 ≤ i ≤ 2N, (6)

where

pi(x
(t)) = max

hi∈Ui

(hi − h̄i)
Tx(t), 1 ≤ i ≤ N

pi(x
(t)) = max

−hi∈Ui

(hi − h̄i)
Tx(t), N + 1 ≤ i ≤ 2N

(7)

are the protection functions. For i = N + 1, · · · , 2N , h̄i =
h̄i−N , Ui = Ui−N , and δi = δi−N .

The choice of different forms for Ui will yield distinct pro-
tection functions pi(x(t)), consequently affecting the trade-
off between robustness and detection performance. In this

paper, we examine a highly versatile uncertain set. Specif-
ically, the uncertainty set Ui corresponding to each hi is
assumed to be characterized by Ui differentiable functions,
that is,

ciu(hi) ≤ 0, 1 ≤ u ≤ Ui. (8)

Our framework offers the flexibility to customize the uncer-
tainty set chosen in practical applications based on specific
requirements, addressing diverse needs related to complex-
ity and performance.

Now we consider the model (1) in a distributed setting,
where the system comprises numerous sub-regions (work-
ers) geographically dispersed across a wide area. Each sub-
region collects and manages local observation data before
communicating with the master node to facilitate collab-
orative detection. Suppose there are L sub-regions in the
system, we rewrite (1) for each sub-region as follows,

y
(t)
l = Hlθ

(t)
l + n

(t)
l , (9)

where we utilize the subscript l to denote the local compo-
nents within the l-th sub-region. Given that the state vectors
of neighboring sub-regions may share certain parameters,
the variable θl for different l may therefore partially overlap.
For clarity, we denote the x(t) within the l-th sub-region
as µ

(t)
l . Therefore, we have µ

(t)
l = Blx

(t), 1 ≤ l ≤ L ,
where Bl is the matrix projecting global attacking vector to
the local attacking vector on worker l. Below we omit the
time superscript (t) for notational simplicity. On the basis
of (6)-(9), the problem (5) can be formulated as

min
∑L

l=1
{ ∥µl∥22 − 2yl

Tµl }

s.t. − ρU1 ≤ µl ≤ ρU1, 1 ≤ l ≤ L

µl = Bix, 1 ≤ l ≤ L

h̄T
i x+ pi(x) ≤ δi, 1 ≤ i ≤ 2N

var. {µl}, {hi},x,

(10)

5. Asynchronous Distributed Method
In this section, we provide a detailed explanation of the
proposed algorithm named Triadic-OCD, capable of solving
our problem in an asynchronous distributed manner while
ensuring robustness, and optimality. Triadic-OCD employs
a set of cutting planes to approximate the feasible region
constrained by (6), leveraging their flexibility in adaptation
to problem complexity and efficiency in exploration (Boyd
& Vandenberghe, 2007; Franc et al., 2011; Yang et al., 2014).
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Subsequently, variables undergo asynchronous distributed
updates. These two steps iteratively alternate in the pro-
posed algorithm. The cutting planes continuously refine the
approximation, while variable updates on the basis of the
newly updated cutting plane sets.

Given that computing the exact value of {hi} for updat-
ing outer-level variables at each iteration is unnecessary
and inefficient in terms of time and memory usage (Gould
et al., 2016; Yang et al., 2021), we opt to employ the es-
timates of {hi} instead of their precise values during al-
gorithm execution. Based on existing methods (Ji et al.,
2021; Liu et al., 2021a; Jiao et al., 2022), Triadic-OCD uses
D iterations of gradient descent to approximate the opti-
mal value of {hi} for the inner-level optimization problem
(7). We first present the augmented Lagrangian function for
each protection function pi, i = 1, · · · , N as follows. For
pi, i = N + 1, · · · , 2N , the results are similar.

Lσ (x,hi, {ϕiu}) = (hi − h̄i)
Tx

+
σ

2

∑Ui

u=1

(
max

{
ϕiu

σ
+ ciu(hi), 0

}2

− ϕ2
iu

σ2

)
(11)

where ϕiu ∈ R is the dual variable, and σ > 0 is the
penalty parameter. In the (d+ 1)th iteration, the variables
are updated as follows,

hi,d+1 = hi,d − ηh∇hiLσ(x,hi,d, {ϕiu,d}),
ϕiu,d+1 = (ϕiu,d + ηϕciu(hi,d+1))

+, (12)

where (·)+ = max{0, ·}, and ηh, ηϕ are step-sizes. We use
the results after D iterations of gradient descent to obtain
the estimate of hi, i.e.,

hi,D = hi,0 −
D−1∑
d=0

ηh∇hi
Lσ(x,hi,d, {ϕiu,d}). (13)

Based on the estimated solution, we define,

gi(x) = (hi,0 −
D−1∑
d=0

ηh∇hiLσ(x,hi,d, {ϕiu,d}))Tx.

(14)
As such, the problem (10) can be written as

min
∑L

l=1
{ ∥µl∥22 − 2yl

Tµl }

s.t. − ρU1 ≤ µl ≤ ρU1, 1 ≤ l ≤ L

µl = Bix, 1 ≤ l ≤ L

gi(x) ≤ δi, 1 ≤ i ≤ 2N

var. {µl},x.

(15)

Since the protection functions are convex (Yang et al., 2014),
we employ a set of cutting planes to approximate the feasible

region defined by the constraint gi(x) ≤ δi, 1 ≤ i ≤ 2N .
In the (k + 1)th iteration, let Pk denote the feasible region
respect to the set of cutting planes, i.e,

Pk = {bT
s x+ κs ≤ 0, s = 1, · · ·, |Pk|}, (16)

where |Pk| denotes the number of cutting planes in the
(k + 1)th iteration. And bs ∈ RM and κs ∈ R represents
the parameters in the sth cutting plane. Therefore, in the (k+
1)th iteration, the approximation problem can be formulated
as follows :

min
∑L

l=1
{ ∥µl∥22 − 2yl

Tµl }

s.t. − µl − ρU1+ rl ◦ rl = 0, 1 ≤ l ≤ L

µl − ρU1+ pl ◦ pl = 0, 1 ≤ l ≤ L

µl = Bix, 1 ≤ l ≤ L

bT
s x+ κs + q2s = 0, s = 1, · · ·, |Pk|

var. {µl},x, {rl}, {pl}, {qs},

(17)

where rl,pl,qs are introduced slack variables. qs ∈ R and
rl, pl have the same dimensions as µl. Notation ◦ repre-
sents the Hadamard product. As the algorithm iterates, the
set of cutting planes will be continuously updated to better
approximate the original feasible region. In Triadic-OCD,
we update the set of cutting planes every w iterations to im-
prove the approximation of the original feasible region when
k < K1. K1 and w are the pre-defined positive integers
that can be adjusted. If (k + 1) mod w = 0, we compute
the value of gi(xk+1) for each i according to (14). And
subsequently, we check if gi(xk+1) ≤ δi. If gi(xk+1) > δi,
a new cutting plane will be generated to separate the point
from the feasible region defined by gi(x) ≤ δi. Following
(Boyd & Vandenberghe, 2007), the generated cutting plane
cpk+1 can be written as,

gi(x
k+1) +

(
∂gi(x

k+1)

∂x

)T

(x− xk+1) ≤ δi. (18)

And the set of cutting planes will be updated as follows,

Pk+1 =

{
Pk ∪ {cpk+1}, if gi(xk+1) > δi
Pk, otherwise

. (19)

After the new cutting plane is added, its corresponding
dual variable set and slack variable set will be updated
accordingly,

{
qk+1

}
=

{
{qk} ∪ qk+1

|Pk|+1
, if gi(xk+1) > δi{

qk
}
, otherwise

, (20)

{
γk+1

}
=

{ {
γk
}
∪ γk+1

|Pk|+1
, if gi(xk+1) > δi{

γk
}
, otherwise

.

(21)
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µk+1
l =

{
µk

l − ηµ∇µl
L̃p({µk̂l

l }, {rk̂l

l }, {pk̂l

l }, {qk̂l
s },xk̂l , {λk̂l

l }, {αk̂l

l }, {βk̂l

l }, {γk̂l
s }), l ∈ Qk+1

µk
l , l /∈ Qk+1

, (24)

rk+1
l =

{
rkl − ηr∇rlL̃p({µk̂l

l }, {rk̂l

l }, {pk̂l

l }, {qk̂l
s },xk̂l , {λk̂l

l }, {αk̂l

l }, {βk̂l

l }, {γk̂l
s }), l ∈ Qk+1

rkl , l /∈ Qk+1
, (25)

pk+1
l =

{
pk
l − ηp∇pl

L̃p({µk̂l

l }, {rk̂l

l }, {pk̂l

l }, {qk̂l
s },xk̂l , {λk̂l

l }, {αk̂l

l }, {βk̂l

l }, {γk̂l
s }), l ∈ Qk+1

pk
l , l /∈ Qk+1

, (26)

qk+1
s = qks − ηq∇qsL̃p({µk+1

l }, {rk+1
l }, {pk+1

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s }), (27)

xk+1 = xk − ηx∇xL̃p({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s }), (28)

λk+1
l =

{
(λk

l + ηλ∇λl
L̃p({µk+1

l }, {rk+1
l }, {pk+1

l }, {qk+1
s },xk+1, {λk

l }, {αk
l }, {β

k
l }, {γk

s }))+, l ∈ Qk+1

λk
l , l /∈ Qk+1

, (29)

αk+1
l =

{
(αk

l + ηα∇αl
L̃p({µk+1

l }, {rk+1
l }, {pk+1

l }, {qk+1
s },xk+1, {λk+1

l }, {αk
l }, {β

k
l }, {γk

s }))+, l ∈ Qk+1

αk
l , l /∈ Qk+1

,

(30)

βk+1
l =

{
(βk

l + ηβ∇βl
L̃p({µk+1

l }, {rk+1
l }, {pk+1

l }, {qk+1
s },xk+1, {λk+1

l }, {αk+1
l }, {βk

l }, {γk
s }))+, l ∈ Qk+1

βk
l , l /∈ Qk+1 ,

(31)

γk+1
s = (γk

s + ηγ∇γs
L̃p({µk+1

l }, {rk+1
l }, {pk+1

l }, {qk+1
s },xk+1, {λk+1

l }, {αk+1
l }, {βk+1

l }, {γk
s }))+. (32)

Based on the newly refined cutting plane sets, Triadic-OCD
solves the nested optimization problem in an asynchronous
distributed way. We first provide the Lagrangian function
of (17) as follows,

Lp({µl}, {rl}, {pl}, {qs},x, {λl}, {αl}, {βl}, {γs})

=

L∑
l=1

{∥µl∥22 − 2yl
Tµl}+

L∑
l=1

λT
l (−µl − ρU1+ rl ◦ rl)

+

L∑
l=1

αT
l (µl − ρU1+ pl ◦ pl) +

L∑
l=1

βT
l (µl −Bix)

+

|Pk|∑
s=1

γs(b
⊤
s x+ κs + q2s), (22)

where λl, αl, βl, γs are dual variables. γs ∈ R and λl, αl,
βl have the same dimensions as µl. Simplify the Lagrangian
function of (17) as Lp, we next give the regularized version
(Xu et al., 2023a) of Lp as follows,

L̃p({µl}, {rl}, {pl}, {qs},x, {λl}, {αl}, {βl}, {γs}) = Lp−
L∑

l=1

ckλ
2
∥λl∥2 −

L∑
l=1

ckα
2
∥αl∥2 −

L∑
l=1

ckβ
2
∥βl∥2 −

|Pk|∑
s=1

ckγ
2
∥γs∥2,

(23)
where ckλ, ckα, ckβ , ckγ denote the regularization terms in the
(k + 1)th iteration. We represent the upper bound of |Pk|
as P . Following the settings in (Zhang & Kwok, 2014), in
each iteration, we update the variables in the master once

it receives the local variables from S active workers. And
we require every worker to communicate with the master
at least once every τ iterations. Let Qk+1 denote the set
of indexes of active workers in the (k + 1)th iteration, the
variables in Triadic-OCD are updated as follows,

(1) Local variables in workers are updated according to (24),
(25), (26). Notations ηµ, ηr and ηp are step-sizes. And k̂l
denotes the last iteration in which worker l was active.

(2) After receiving the updates from active workers, the
master updates the variables according to (27), (28), (29),
(30), (31), (32). Notations ηq, ηx, ηλ, ηα, ηβ, ηγ are step-
sizes.

The whole process of Triadic-OCD is summarized in Algo-
rithm 1.

6. Theoretical Analysis
Theorem 6.1. As the set of cutting planes is continuously
updated, the optimal objective value of the approximation
problem (17) converges monotonically.

The complete proof is provided in Appendix D.

Let ∇Gk denote the gradient of Lp in the k-th iteration.
According to (Boyd & Vandenberghe, 2004), we know
that ({µk

l }, {rkl }, {pk
l }, {qks }, xk, {λk

l }, {αk
l }, {βk

l },
{γk

s }) is the optimal solution of problem (17) if and only if
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K(ϵ) ∼ O

(
max

{
(16(

Mw2
λ

η2λ
+

Mw2
α

η2α
+

Mw2
β

η2β
+

Pw2
γ

η2γ
)2

1

ϵ2
, (
d9(d7 + kdτ)(τ − 1)d8

ϵ
+ (K1 + 2)

1
2 )2

} )
. (34)

∥∇Gk∥2 = 0.

Definition 6.2. ({µk
l }, {rkl }, {pk

l }, {qks }, xk, {λk
l }, {αk

l },
{βk

l }, {γk
s }) is an ϵ-optimal point of (17) if ∥∇Gk∥2 ≤ ϵ.

Define K(ϵ) as the first iteration index such that ∥∇Gk∥2 ≤
ϵ, i.e., K(ϵ) = min{k | |∥∇Gk∥2 ≤ ϵ}.

Assumption 6.3. Following (Jiao et al., 2022; Qian et al.,
2019), we assume that variables are bounded, i.e., ∥µl∥∞ ≤
wµ, ∥rl∥∞ ≤ wr, ∥pl∥∞ ≤ wp, ∥qs∥∞ ≤ wq, ∥λl∥∞ ≤
wλ, ∥αl∥∞ ≤ wα, ∥βl∥∞ ≤ wβ, ∥γs∥∞ ≤ wγ . Before
obtaining the ϵ-optimal point, we assume variable x satisfies
that ∥xk+1 − xk∥2 ≥ ϑ, where ϑ > 0 is a small constant.
And the change of the x is upper bounded within τ iterations,
i.e., ∥xk − xk−τ∥2 ≤ τk1ϑ,where k1 > 0 is a constant.

Theorem 6.4. (Iteration complexity) Suppose Assumption
6.3 holds, set

ckλ =
1

ηλ(k + 1)
1
4

≥ cλ, ckα =
1

ηα(k + 1)
1
4

≥ cα,

ckβ =
1

ηβ(k + 1)
1
4

≥ cβ, ckγ =
1

ηγ(k + 1)
1
4

≥ cγ ,

ηµ =
1

8ξ
ηλ(cλ)2 + 8ξ

ηα(cα)2 + 8ξ
ηβ(cβ)2

,

ηx =
1

8ξ
ηβ(cβ)2 + 8ξν

ηγ(cγ)2

,

ηr =
ηλ(cλ)

2

32w2
rξ

, ηp =
ηα(cα)

2

32w2
pξ

, ηq =
ηγ(cγ)

2

32w2
qξ

.

(33)
cλ ≥ 0, cα ≥ 0, cβ ≥ 0, cγ ≥ 0 represent the lower bound
of ckλ, ckα, ckβ, ckγ , respectively. For any prescribed ϵ, the
iteration complexity of Triadic-OCD to converge to the ϵ-
optimal point is shown in (34). Notation ξ, ν, d7, d8, d9 and
kd are all constants.

Due to lack of space, we relegate the complete proof to the
Appendix C.

7. Experiment
As discussed before, the problem considered in this paper
subsumes the detection of FDIA in smart grids. Therefore,
we conduct extensive experiments to show the effective-
ness of Triadic-OCD for the FDIA detection task. In this
section, we first briefly introduce the background of the
smart grid, followed by a presentation of the comprehensive
experimental results.

Algorithm 1 Triadic-OCD
Input: Iteration variable k = 0. Initialize {µ0

l }, {r0l },
{p0

l }, {q0s}, x0, {λ0
l }, {α0

l }, {β0
l }, {γ0

s}.
repeat

for workers do
updates local variables µk+1

l ,rk+1
l ,pk+1

l according
to (24), (25) and (26);

end
µk+1

l , rk+1
l , pk+1

l in active workers are transmitted to
master;

for master do
updates variables {qk+1

s }, xk+1, {λk+1
l }, {αk+1

l },
{βk+1

l }, {γk+1
s } according to (27), (28), (29),

(30), (31) and (32);
end
master broadcasts {qk+1

s }, xk+1, {λk+1
l }, {αk+1

l },
{βk+1

l }, {γk+1
s } to active workers;

if (k + 1) mod w = 0 and k ≤ K1 then
master computes gi(xk+1) according to (14);
master updates Pk+1, {qk+1} and {γk+1} accord-
ing to (19), (20), (21) and broadcasts them to all
workers;

end
k = k + 1;

until termination;
Output: {µk

l }, {rkl }, {pk
l }, {qks }, xk, {λk

l }, {αk
l }, {βk

l },
{γk

s }

7.1. Dateset

A smart grid is an advanced electrical system that integrates
information and communication technology to optimize en-
ergy supply, demand, and distribution. Given the potential
for cyber-attacks to cause catastrophic consequences, the
detection of false data injection attacks (FDIA) in smart
grids is an important and extensively studied problem (Ko-
sut et al., 2011; Cui et al., 2012). In the context of a smart
grid system comprising (N + 1) buses and M meters, the
dynamic DC power flow model of the system can be exactly
expressed as equation (1), where θ(t) ∈ RN represents the
phase angles (one reference angle) and y(t) ∈ RM repre-
sents the meter readings. H ∈ RM×N is the measurement
matrix that is determined by the topology of the system and
the admittance of each transmission line. In wide-area mon-
itoring, the power grid is divided into multiple sub-regions,
with each having limited access to its own meter measure-
ments and communicating with other sub-regions and the
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Figure 1. Performance comparison of different detection algo-
rithms.
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Figure 2. Performance of Triadic-OCD under various uncertainty
Sets.

control center through the wireless medium. The centralized
setup may not be feasible due to power and bandwidth con-
straints, leading to a growing interest in distributed detection
to minimize communication overhead.

In our experiments, we utilized the measurement data gen-
erated from the IEEE-14 bus power system, which can be
regarded as a benchmark dataset in current research studies.
The IEEE 14-bus system as well as the system matrix can be
divided into four sub-regions (Li et al., 2014). In our experi-
ment, we assume that the system matrix can be accurately
determined in all areas except for the 4th area. Suppose at-
tackers utilize a sequence of randomly generated fabricated
vectors to compromise the meter reading y(t) from the time
instant ta. The generation process of the injected attacks is
as follows,

a(t) = P⊥
Hu, ui ∼ U(0.1, 1), (35)

where P⊥
H ≜ I−H

(
HTH

)−1
HT . Given the fluctuations

in admittance caused by factors like environmental distur-
bances, the detection algorithms employed in the experiment
utilize imprecise estimates of H to identify anomaly vectors
injected into smart grid systems. We provide the inaccurate
estimates of H in Appendix A, as well as the corresponding
detailed settings of various uncertainty sets.

7.2. Numerical Results

As discussed in Section 2, we emphasized that the conven-
tional OCD methods are built upon various assumptions,
such as the assumption of constant distributions before and
after the change, as well as the requirement for the system
state to adhere to specific conditions. As a result, these
methods are unsuitable for the problem considered in this
paper and we implemented the Adaptive CUSUM algo-
rithm (Huang et al., 2011) to exemplify this fact. Addi-
tionally, we conducted a performance comparison between

our algorithm and two others: the method proposed in (Li
et al., 2014) and the RGCUSUM algorithm (Zhang & Wang,
2021), which is claimed to be the state-of-the-art detector
for the FDIA detection in smart grids. For simplicity, we
name the wide-area cyber-attack detection method proposed
in (Li et al., 2014) as WCD.

The experimental results after 500 runs are shown in Fig-
ure 1. For a fair comparison, we adhere to the conventional
metric for OCD task, that is, we compare the average de-
tection delay of different algorithms under the same False
Alarm Periods (FAP). FAP refers to the detector’s stopping
time when no change occurs, serving as a measure to assess
the risk of false alarms. From Figure 1, it is evident that
our method consistently exhibit a smaller average detection
delay for any given FAP. This observation underscores the
superior performance achieved by Triadic-OCD. The adap-
tive CUCUM exhibits the worst performance, primarily due
to the inconsistency of its assumptions with the problem
of interest. Adaptive CUCUM presupposes the Gaussian
distribution of θ(t), which does not hold in our problem. In
our experiment, both RGUCUSM and WCD demonstrate
inferior performance compared to Triadic-OCD. This is in
line with our expectations since they can achieve commend-
able performance only when the system matrix H can be
precisely determined. The imperfect knowledge about H
leads to a rapid degradation of their detection performance.
In contrast, Triadic-OCD effectively handles uncertainties
within the system matrix. We also conduct experiments to
show the performance of Triadic-OCD when the system
matrix H is assumed to belong to different uncertainty sets.
The uncertainty sets we consider are commonly used in
practical applications, including ellipsoid uncertainty set, D-
norm uncertainty set, and polyhedron uncertainty set (Yang
et al., 2014). The number of Monte Carlo runs is 500. As de-
picted in Figure 2, Triadic-OCD consistently demonstrates
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Figure 3. Successful detection rate versus the corresponding upper
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Figure 4. Convergence speed comparison between Triadic-OCD
and its synchronous counterpart.

superior performance across diverse uncertainty sets, high-
lighting its generalization ability.

Furthermore, to demonstrate the robustness of Triadic-OCD
against various attacking vectors, we generated 103 in-
stances of attacking vectors randomly to encompass a wide
array of attack behaviors according to (35). We calculate
the success rate of different detectors under varying upper
bounds on the detection delay. Specifically, the success rate
refers to the proportion of attack vectors that can be suc-
cessfully detected within the specified upper bound on the
detection delay. We then plot the success rate corresponding
to different upper bounds on detection delay in Figure 3. It
can be seen from Figure 3 that as the upper bound increases,
the successful detection rates of all detectors increase as
expected. The proposed detector consistently outperforms
RGCUSUM and WCD in successful detection rate, thus
underscoring the robustness of Triadic-OCD against diverse
attacking vectors.

Additionally, we also compare the convergence rate of
Triadic-OCD under asynchronous and synchronous con-
ditions to highlight the benefits of asynchronous variable
updates in problem-solving. Following (Cohen et al., 2021),
the delay of each worker is assumed to obey log-normal
distribution LN(1, 0.5). Recall that S denotes the number of
active workers required for updating the master node, and
τ represents the maximum iteration interval for the com-
munication between each worker and the master. For the
asynchronous setting, we set S = 10 and τ = 10. In the
synchronous setup, the master can update its variables only
after receiving updates from all workers. As shown in Fig-
ure 4, Triadic-OCD exhibits significantly faster convergence
in the asynchronous mode compared to its synchronous
counterpart. This is attributed to asynchronous variable
updates, which prevent the algorithm from being hindered
by the workers with high delays during each iteration, thus

demonstrating the efficiency of our approach.

8. Conclusion
Existing studies often conduct online change detection with
perfect knowledge of system parameters—a presumption
that proves unfeasible in practical scenarios. Moreover,
these studies typically focus on either centralized or syn-
chronously distributed settings, which can lead to privacy
breaches, straggler issues, and high communication costs.
As a remedy, we develop an asynchronous framework for
OCD with provable robustness, optimality, and convergence.
To our best knowledge, this work represents the first step
that tackles OCD with parameter uncertainties in an asyn-
chronous setting. We also provide non-asymptotic theoret-
ical analysis for the convergence property of triadic-OCD.
Extensive experiments have been further conducted to eluci-
date the efficiency and effectiveness of the proposed algo-
rithm.
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A. Experimental Settings
The IEEE 14-bus system as well as the system matrix can be divided into four sub-regions . The true system matrix for the
4th area is as follows (Li et al., 2014),

H4 =


−1 3 −1
0 −1 0
0 0 −1
0 −1 1
0 −1 2

 . (36)

In our experiment, we assume that the system matrix can be accurately determined in all areas except for the 4th area.

The polyhedron uncertainty of H4 is set to be Dihi ≤ ci, ∀i, where hi represents the i-th column of H4. D1, D2 and D3

are set to be

D1 = D2 = D3 =

[
I

−I

]
,

where I represents the 5× 5 identity matrix. c1, c2 and c3 are set to be

c1 = [−0.5, 0.5, 0.5, 0.5, 0.5, 1.5, 0.5, 0.5, 0.5, 0.5]T ,

c2 = [3.5,−0.5, 0.5,−0.5,−0.5,−2.5, 1.5, 0.5, 1.5, 1.5]T ,

c3 = [−0.5, 0.5,−0.5, 1.5, 2.5, 1.5, 0.5, 1.5,−0.5,−1.5]T .

As for the ellipsoid uncertainty set, the uncertainty of each hi is described as follows,

hi ∈ {hi + u | ∥u∥2 ≤ 0.36}, ∀i,

where hi is estimate of the i-th column of Ht. In our experiment, hi are set to be

h1 = [−1.0, 0.1, 0.3,−0.2, 0.0]T ,

h2 = [3.0,−0.7, 0.2,−1.3,−0.9]T ,

h3 = [−1.1, 0.2,−0.6, 0.7, 2.0]T .

For any vector belonging to the D-norm uncertain set, it is assumed that the vector has at most Γ uncertain components, and
each component falls within the error interval determined by û (Yang et al., 2014). For all the hi in our experiment, the
parameter Γ and û are set to be 4 and 0.5, respectively.
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B. Derivation of (5)

Since n(t) i.i.d.∼ N
(
0, σ2

nIM
)

, according to (1) we have that,

fp

(
y(t)

∣∣∣θ(t),H
)
=

1

(2πσ2
n)

M
2

exp

[
− 1

2σ2
n

(
y(t) −Hθ(t)

)T (
y(t) −Hθ(t)

)]
, (37)

fq

(
y(t)

∣∣∣θ(t),a(t),H
)
=

1

(2πσ2
n)

M
2

exp

[
− 1

2σ2
n

(
y(t) −Hθ(t) − a(t)

)T (
y(t) −Hθ(t) − a(t)

)]
. (38)

According to the definition of Λ(J)
j in (3), we can obtain that,

Λ
(J)
j = sup

H∈U

J∑
t=j

{
sup

θ(t),a(t):−ρU1≤x(t)≤ρU1,Hx(t)=0

ln fq

(
y(t) | θ(t),a(t),H

)
− sup

θ(t)

ln fp

(
y(t) | θ(t),H

)}
(39)

Let ỹ(t) represents the component of y(t) orthogonal to the column space of H, i.e.,

ỹ(t) = P⊥
Hy(t). (40)

Recall that P⊥
H ≜ I−H

(
HTH

)−1
HT . Plugging (37) and (38) into (39), we have that,

Λ
(J)
j = sup

H∈U

J∑
t=j

{
sup

a(t):−ρU1≤x(t)≤ρU1,Hx(t)=0

[
− 1

2σ2
n

×
(
ỹ(t) − x(t)

)T (
ỹ(t) − x(t)

)]
+

1

2σ2
n

∥ỹ(t)∥2
}

(41)

= sup
H∈U

J∑
t=j

sup
−ρU1≤x(t)≤ρU1,Hx(t)=0

[
1

2σ2
n

{
2(x(t))T ỹ(t) − ∥x(t)∥22

}]
(42)

=

J∑
t=j

vt
2σ2

, (43)

where

vt ≜ sup
H∈U

sup
−ρU1≤x(t)≤ρU1,Hx(t)=0

[
1

2σ2
n

{
2(x(t))T ỹ(t) − ∥x(t)∥22

}]
. (44)

Since Hx(t) = 0 and ỹ(t) represents the component of y(t) orthogonal to the column space of H, (44) is equivalent to (5).
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C. Complete Proof of Theorem 6.4
In this section, we provide the comprehensive proof of Theorem 6.4. We will start by introducing several definitions.
Following that, three lemmas are presented, which are crucial components in the proof of Theorem 6.4. Finally, we provide
the complete proof of Theorem 6.4.

Definition C.1. Based on the definition of ∇Gk, we further define :

(∇Gk)µl
= ∇µl

Lp({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s }),
(∇Gk)rl = ∇rlLp({µk

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s }),
(∇Gk)pl

= ∇pl
Lp({µk

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s }),
(∇Gk)qs = ∇qsLp({µk

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s }),
(∇Gk)x = ∇xLp({µk

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s }),
(∇Gk)λl

= ∇λl
Lp({µk

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s }),
(∇Gk)αl

= ∇αl
Lp({µk

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s }),
(∇Gk)βl

= ∇βl
Lp({µk

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s }),
(∇Gk)γs

= ∇γs
Lp({µk

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s }).

(45)

Definition C.2. Similar to the definition of ∇Gk, Denote ∇G̃k as the gradient of L̃p in the k-th iteration, i.e.,

∇G̃k =



{∇µl
L̃p({µk

l }, {rkl }, {pk
l },xk, {qks }, {λ

k
l }, {αk

l }, {β
k
l }, {γk

s })}
{∇rlL̃p({µk

l }, {rkl }, {pk
l },xk, {qks }, {λ

k
l }, {αk

l }, {β
k
l }, {γk

s })}
{∇pl

L̃p({µk
l }, {rkl }, {pk

l },xk, {qks }, {λ
k
l }, {αk

l }, {β
k
l }, {γk

s })}
{∇qsL̃p({µk

l }, {rkl }, {pk
l },xk, {qks }, {λ

k
l }, {αk

l }, {β
k
l }, {γk

s })}
∇xL̃p({µk

l }, {rkl }, {pk
l },xk, {qks }, {λ

k
l }, {αk

l }, {β
k
l }, {γk

s })
{∇λl

L̃p({µk
l }, {rkl }, {pk

l },xk, {qks }, {λ
k
l }, {αk

l }, {β
k
l }, {γk

s })}
{∇αl

L̃p({µk
l }, {rkl }, {pk

l },xk, {qks }, {λ
k
l }, {αk

l }, {β
k
l }, {γk

s })}
{∇βl

L̃p({µk
l }, {rkl }, {pk

l },xk, {qks }, {λ
k
l }, {αk

l }, {β
k
l }, {γk

s })}
{∇γs

L̃p({µk
l }, {rkl }, {pk

l },xk, {qks }, {λ
k
l }, {αk

l }, {β
k
l }, {γk

s })}


, (46)

with
(∇G̃k)µl

= ∇µl
L̃p({µk

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s }),

(∇G̃k)rl = ∇rlL̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s }),

(∇G̃k)pl
= ∇pl

L̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s }),

(∇G̃k)qs = ∇qsL̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s }),

(∇G̃k)x = ∇xL̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s }),

(∇G̃k)λl
= ∇λl

L̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s }),

(∇G̃k)αl
= ∇αl

L̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s }),

(∇G̃k)βl
= ∇βl

L̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s }),

(∇G̃k)γs
= ∇γs

L̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s }).

(47)

Definition C.3. In the kth iteration of our algorithm, we define the last iteration in which the lth worker was active as k̂l,
and the next iteration in which the lth worker will be active as kl. Furthermore, we represent the set of iteration indices in
which the lth worker is active during the K1 +K + τ iteration as Vl(K). And the jth element in Vl(K) is represented as
v̂l(j).

Based on the above definitions, we next provide the proof of Lemma C.4, Lemma C.5 and Lemma C.6.
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Lemma C.4. According to Eq. (22), function Lp has Lipschitz continuous Hessian and let Lw denote the Lipschitz constant.
Based on definition of ηµ, ηx, ηr, ηp and ηq , we set ηkµ, ηkx , ηkr , ηkp and ηkq to be:

ηkµ =
1

8ξ
ηλ(ckλ)2

+ 8ξ
ηα(ckα)2

+ 8ξ
ηβ(ckβ)2

, ηkx =
1

8ξ
ηβ(ckβ)2

+ 8ξ
ηγ(ckγ)

2

∑|Pk|
s=1 ∥bs∥2

,

ηkr =
ηλ(c

k
λ)

2

32w2
rξ

, ηkp =
ηα(c

k
α)

2

32w2
pξ

, ηkq =
ηγ(c

k
γ)

2

32w2
qξ

.

(48)

We can obtain that,

Lp({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk+1, {λk
l }, {αk

l }, {β
k
l }, {γk

s })
− Lp({µk

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s }) (49)

≤ (
wµLwM

1
2

3
+ 1− 1

ηkµ
)

L∑
l=1

∥µk+1
l − µk

l ∥2 + (− 1

ηkr
+

wrLwM
1
2

3
+ wλ)

L∑
l=1

∥rk+1
l − rkl ∥2

+ (− 1

ηkp
+

wpLwM
1
2

3
+ wα)

L∑
l=1

||pk+1
l − pk

l ||2 + (− 1

ηkq
+

wqLw

3
+ wγ)

|Pk|∑
s=1

||qk+1
s − qks ||2

+ (
Lw

6
− 1

ηkx
)∥xk+1 − xk∥2.

Proof. According to the Lipschitz property of Lp, we can obtain that,

Lp({µk+1
l }, {rkl }, {pk

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s })
− Lp({µk

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s })

≤
L∑

l=1

(〈
∇µl

Lp({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s }),µk+1
l − µk

l

〉
+

Lw

6
||µk+1

l − µk
l ||3
)

(50)

+
1

2

L∑
l=1

〈
∇2

µl
Lp({µk

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s })(µk+1
l − µk

l ),µ
k+1
l − µk

l

〉
.

By employing (24), since ηµ ≤ ηkµ for ∀k, we have that,〈
∇µl

Lp({µk̂l

l }, {rk̂l

l }, {pk̂l

l }, {qk̂l
s },xk̂l , {λk̂l

l }, {αk̂l

l }, {βk̂l

l }, {γk̂l
s }),µk+1

l − µk
l

〉
≤ − 1

ηkµ
||µk+1

l − µk
l ||2. (51)

Given that µk
l = µk̂l

l , λk
l = λk̂l

l , αk
l = αk̂l

l , and βk
l = βk̂l

l , according to the function Lp provided in (22), we have〈
∇µl

Lp({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s }),µk+1
l − µk

l

〉
≤ − 1

ηkµ
||µk+1

l − µk
l ||2. (52)

It can also be seen from (22) that

1
2

〈
∇2

µl
Lp({µk

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s })(µk+1
l − µk

l ),µ
k+1
l − µk

l

〉
= ∥µk+1

l − µk
l ∥2. (53)

Based on the upper bound of ∥µl∥∞ provided in Assumption 6.3, by employing trigonometric inequality, we have

Lw

6

L∑
l=1

||µk+1
l − µk

l ||3 ≤ wµLwM
1
2

3

L∑
l=1

||µk+1
l − µk

l ||2. (54)

Combining (50), (52), (53) with (54), we can obtain that,

Lp({µk+1
l }, {rkl }, {pk

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s })
− Lp({µk

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s })

≤ (− 1

ηkµ
+

wµLwM
1
2

3
+ 1)

L∑
l=1

(
||µk+1

l − µk
l ||2
)
. (55)
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According to the Lipschitz property of Lp, we can obtain that,

Lp({µk+1
l }, {rk+1

l }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s })}
− Lp({µk+1

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s })}

≤
L∑

l=1

〈
∇rlLp({µk+1

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s }), rk+1
l − rkl

〉
+

Lw

6

L∑
l=1

||rk+1
l − rkl ||3 (56)

+
1

2

L∑
l=1

〈
∇2

rl
Lp({µk+1

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s })(rk+1
l − rkl ), r

k+1
l − rkl

〉
,

Similar to (51)-(52), we have〈
∇rlLp({µk+1

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s }), rk+1
l − rkl

〉
≤ − 1

ηkr
||rk+1

l − rkl ||2. (57)

Based on Assumption 6.3, we can obtain that,

1
2

(〈
∇2

rl
Lp({µk+1

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s })(rk+1
l − rkl ), r

k+1
l − rkl

〉)
≤ wλ||rk+1

l − rkl ||2. (58)

By employing trigonometric inequality, we have that,

Lw

6

L∑
l=1

||rk+1
l − rkl ||3 ≤ wrLwM

1
2

3

L∑
l=1

||rk+1
l − rkl ||2. (59)

Following (56)-(59), we can obtain that,

Lp({µk+1
l }, {rk+1

l }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s })
− Lp({µk+1

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s })

≤ (− 1

ηkr
+

wrLwM
1
2

3
+ wλ)

L∑
l=1

||rk+1
l − rkl ||2. (60)

Likewise, similar results can be obtained for the variable pl and qs.

Lp({µk+1
l }, {rk+1

l }, {pk+1
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s })
− Lp({µk+1

l }, {rk+1
l }, {pk

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s })

≤ (− 1

ηkp
+

wpLwM
1
2

3
+ wα)

L∑
l=1

||pk+1
l − pk

l ||2. (61)

Lp({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s })
− Lp({µk+1

l }, {rk+1
l }, {pk+1

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s })

≤ (− 1

ηkq
+

wqLw

3
+ wγ)

|Pk|∑
s=1

||qk+1
s − qks ||2. (62)

For the variable x, define a constant ν such that ν ≥
∑|Pk|

s=1 ∥bs∥2. Consequently, we have ηx ≤ ηkx for all k. Similarly to
(56)-(59), we can obtain that,

Lp({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk+1, {λk
l }, {αk

l }, {β
k
l }, {γk

s })
− Lp({µk+1

l }, {rk+1
l }, {pk+1

l }, {qk+1
s },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s })

≤ (− 1

ηkx
+

Lw

6
)||xk+1 − xk||2. (63)

Combining (55), (60), (61), (62) and (63), we conclude the proof of Lemma C.4.
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Lemma C.5. ∀k ≥ K1, we have

Lp({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk+1, {λk+1
l }, {αk+1

l }, {βk+1
l }, {γk+1

s })
− Lp({µk

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s })

≤ (
1

a1
+

1

a2
+

1

a3
+

wµLwM
1
2

3
+ 1− 1

ηkµ
)

L∑
l=1

∥µk+1
l − µk

l ∥2

+ (
4w2

r

a1
+

wrLwM
1
2

3
+ wλ − 1

ηkr
)

L∑
l=1

∥rk+1
l − rkl ∥2

+ (
4w2

p

a2
+

wpLwM
1
2

3
+ wα − 1

ηkp
)

L∑
l=1

∥pk+1
l − pk

l ∥2

+ (
4w2

q

a4
+

wqLw

3
+ wγ − 1

ηkq
)

|Pk|∑
s=1

∥qk+1
s − qks ∥2

+ (− 1

ηkx
+

Lw

6
)||xk+1 − xk||2 + 1

a3

L∑
l=1

∥Blx
k+1 −Blx

k∥2 + 1

a4

|Pk|∑
s=1

∥bs∥2∥xk+1 − xk∥2

+ (
a1
2

−
ck−1
λ − ckλ

2
+

1

2ηλ
)

L∑
l=1

∥λk+1
l − λk

l ∥2 +
ck−1
λ

2

L∑
l=1

(∥λk+1
l ∥2 − ∥λk

l ∥2)

+ (
a2
2

− ck−1
α − ckα

2
+

1

2ηα
)

L∑
l=1

∥αk+1
l −αk

l ∥2 +
ck−1
α

2

L∑
l=1

(∥αk+1
l ∥2 − ∥αk

l ∥2)

+ (
a3
2

−
ck−1
β − ckβ

2
+

1

2ηβ
)

L∑
l=1

∥βk+1
l − βk

l ∥2 +
ck−1
β

2

L∑
l=1

(∥βk+1
l ∥2 − ∥βk

l ∥2)

+ (
a4
2

−
ck−1
γ − ckγ

2
+

1

2ηγ
)

|Pk|∑
s=1

∥γk+1
s − γk

s ∥2 +
ck−1
γ

2

|Pk|∑
s=1

(∥γk+1
s ∥2 − ∥γk

s ∥2)

+
1

2ηλ

L∑
l=1

∥λk
l − λk−1

l ∥2 + 1

2ηα

L∑
l=1

∥αk
l −αk−1

l ∥2

+
1

2ηβ

L∑
l=1

∥βk
l − βk−1

l ∥2 + 1

2ηγ

|Pk|∑
s=1

∥γk
s − γk−1

s ∥2, (64)

where a1, a2, a3 and a4 are positive constants.

Proof. According to (29), in the (k + 1)th iteration, for ∀λ and ∀l ∈ Qk+1 it follows that,〈
λk+1
l − λk

l − ηλ∇λl
L̃p({µk+1

l }, {rk+1
l }, {pk+1

l }, {qk+1
s },xk+1, {λk

l }, {αk
l }, {β

k
l }, {γk

s }),λ− λk+1
l

〉
≥ 0. (65)

Let λ = λk
l , we can obtain,〈

∇λl
L̃p({µk+1

l }, {rk+1
l }, {pk+1

l }, {qk+1
s },xk+1, {λk

l }, {αk
l }, {β

k
l }, {γk

s })−
1

ηλ
(λk+1

l − λk
l ),λ

k
l − λk+1

l

〉
≤ 0.

(66)
Likewise, in the kth iteration, we have that,〈

∇λl
L̃p({µk

l }, {rkl }, {pk
l }, {qks },xk, {λk−1

l }, {αk−1
l }, {βk−1

l }, {γk−1
s })− 1

ηλ
(λk

l − λk−1
l ),λk+1

l − λk
l

〉
≤ 0. (67)

Since λk+1
l − λk

l = 0, l /∈ Qk+1, inequality (67) holds for l. It can be seen from (23) that L̃p is concave with respect to λl.
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Therefore, we can obtain that,

L̃p({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk+1, {λk+1
l }, {αk

l }, {β
k
l }, {γk

s })

− L̃p({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk+1, {λk
l }, {αk

l }, {β
k
l }, {γk

s })

≤
L∑

l=1

〈
∇λl

L̃p({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk+1, {λk
l }, {αk

l }, {β
k
l }, {γk

s }),λ
k+1
l − λk

l

〉
≤

L∑
l=1

( 〈
∇λl

L̃p({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk+1, {λk
l }, {αk

l }, {β
k
l }, {γk

s },λ
k+1
l − λk

l

〉
+

1

ηλ

〈
λk
l − λk−1

l ,λk+1
l − λk

l

〉)
−

L∑
l=1

( 〈
∇λl

L̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk−1
l }, {αk−1

l }, {βk−1
l }, {γk−1

s },λk+1
l − λk

l

〉
. (68)

We have that,〈
∇λl

L̃p({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk+1, {λk
l }, {αk

l }, {β
k
l }, {γk

s },λ
k+1
l − λk

l

〉
−
〈
∇λl

L̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk−1
l }, {αk−1

l }, {βk−1
l }, {γk−1

s },λk+1
l − λk

l

〉
=
〈
∇λl

L̃p({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk+1, {λk
l }, {αk

l }, {β
k
l }, {γk

s },λ
k+1
l − λk

l

〉
−
〈
∇λl

L̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s },λ
k+1
l − λk

l

〉
+
〈
∇λl

L̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s },λ
k+1
l − λk

l − (λk
l − λk−1

l )
〉

−
〈
∇λl

L̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk−1
l }, {αk−1

l }, {βk−1
l }, {γk−1

s },λk+1
l − λk

l − (λk
l − λk−1

l )
〉

+
〈
∇λl

L̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s },λ
k
l − λk−1

l

〉
−
〈
∇λl

L̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk−1
l }, {αk−1

l }, {βk−1
l }, {γk−1

s },λk
l − λk−1

l

〉
.

(69)

According to the definition of L̃p provided in (23) and Cauchy-Schwarz inequality, we can obtain that,〈
∇λl

L̃p({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk+1, {λk
l }, {αk

l }, {β
k
l }, {γk

s },λ
k+1
l − λk

l

〉
−
〈
∇λl

L̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s },λ
k+1
l − λk

l

〉
=
〈
∇λl

Lp({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk+1, {λk
l }, {αk

l }, {β
k
l }, {γk

s },λ
k+1
l − λk

l

〉
−
〈
∇λl

Lp({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s },λ
k+1
l − λk

l

〉
+

ck−1
λ − ckλ

2
(||λk+1

l ||2 − ||λk
l ||2)−

ck−1
λ − ckλ

2
||λk+1

l − λk
l ||2

≤ a1
2
∥λk+1

l − λk
l ∥+

1

a1
∥µk+1

l − µk
l ∥2 +

1

a1
∥rk+1

l ◦ rk+1
l − rkl ◦ rkl ∥2 +

ck−1
λ − ckλ

2
(||λk+1

l ||2 − ||λk
l ||2)

−
ck−1
λ − ckλ

2
||λk+1

l − λk
l ||2, (70)

where a1 > 0 is a constant. From the definition of L̃p, with Cauchy-Schwarz inequality, we also have that,〈
∇λl

L̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s },λ
k+1
l − λk

l − (λk
l − λk−1

l )
〉

−
〈
∇λl

L̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk−1
l }, {αk−1

l }, {βk−1
l }, {γk−1

s },λk+1
l − λk

l − (λk
l − λk−1

l )
〉

≤ 1

2ηλ
∥λk+1

l − λk
l − (λk

l − λk−1
l )∥2 + ηλ

2
∥ck−1

λ (λk
l − λk−1

l )∥2.

(71)

17



Triadic-OCD: Asynchronous Online Change Detection with Provable Robustness, Optimality, and Convergence

Following (Xu et al., 2023b), since L̃p is strong concave with respect to λ, we have〈
∇λl

L̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk
l }, {αk

l }, {β
k
l }, {γk

s },λ
k
l − λk−1

l

〉
−
〈
∇λl

L̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk−1
l }, {αk−1

l }, {βk−1
l }, {γk−1

s },λk
l − λk−1

l

〉
≤ − 1

2ck−1
λ

∥ck−1
λ (λk

l − λk−1
l )∥2 −

ck−1
λ

2
∥λk

l − λk−1
l ∥2.

(72)

Since ηλ

2 ≤ 1

2ck−1
λ

, by employing (69)-(72), we have that,〈
∇λl

L̃p({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk+1, {λk
l }, {αk

l }, {β
k
l }, {γk

s },λ
k+1
l − λk

l

〉
−
〈
∇λl

L̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk−1
l }, {αk−1

l }, {βk−1
l }, {γk−1

s },λk+1
l − λk

l

〉
≤ a1

2
∥λk+1

l − λk
l ∥2 +

1

a1
∥µk+1

l − µk
l ∥2 +

1

a1
∥rk+1

l ◦ rk+1
l − rkl ◦ rkl ∥2 +

ck−1
λ − ckλ

2
(||λk+1

l ||2 − ||λk
l ||2)

−
ck−1
λ − ckλ

2
||λk+1

l − λk
l ||2 +

1

2ηλ
∥λk+1

l − λk
l − (λk

l − λk−1
l )∥2 −

ck−1
λ

2
∥λk

l − λk−1
l ∥2. (73)

It can be seen from Assumption 6.3 that,

1

a1
∥rk+1

l ◦ rk+1
l − rkl ◦ rkl ∥2 ≤ 4w2

r

a1
∥rk+1

l − rkl ∥2. (74)

In addition, the following equality can be obtained,
1

ηλ

〈
λk
l − λk−1

l ,λk+1
l − λk

l

〉
=

1

2ηλ
||λk+1

l −λk
l ||2 +

1

2ηλ
||λk

l −λk−1
l ||2 − 1

2ηλ
∥λk+1

l −λk
l − (λk

l −λk−1
l )∥2. (75)

Combining (68), (73), (74) with (75), we can obtain,

Lp({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk+1, {λk+1
l }, {αk

l }, {β
k
l }, {γk

s })
− Lp({µk+1

l }, {rk+1
l }, {pk+1

l }, {qk+1
s },xk+1, {λk

l }, {αk
l }, {β

k
l }, {γk

s })

≤ 1

a1

L∑
l=1

∥µk+1
l − µk

l ∥2 +
4w2

r

a1

L∑
l=1

∥rk+1
l − rkl ∥2 + (

a1
2

−
ck−1
λ − ckλ

2
+

1

2ηλ
)

L∑
l=1

∥λk+1
l − λk

l ∥2

+
ck−1
λ

2

L∑
l=1

(∥λk+1
l ∥2 − ∥λk

l ∥2) +
1

2ηλ

L∑
l=1

∥λk
l − λk−1

l ∥2.

(76)

Likewise, similar results can be obtained for other variables :

Lp({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk+1, {λk+1
l }, {αk+1

l }, {βk
l }, {γk

s })
− Lp({µk+1

l }, {rk+1
l }, {pk+1

l }, {qk+1
s },xk+1, {λk+1

l }, {αk
l }, {β

k
l }, {γk

s })

≤ 1

a2

L∑
l=1

∥µk+1
l − µk

l ∥2 +
4w2

p

a2

L∑
l=1

∥pk+1
l − pk

l ∥2 + (
a2
2

− ck−1
α − ckα

2
+

1

2ηα
)

L∑
l=1

∥αk+1
l −αk

l ∥2

+
ck−1
α

2

L∑
l=1

(∥αk+1
l ∥2 − ∥αk

l ∥2) +
1

2ηα

L∑
l=1

∥αk
l −αk−1

l ∥2,

(77)

Lp({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk+1, {λk+1
l }, {αk+1

l }, {βk+1
l }, {γk

s })
− Lp({µk+1

l }, {rk+1
l }, {pk+1

l }, {qk+1
s },xk+1, {λk+1

l }, {αk+1
l }, {βk

l }, {γk
s })

≤ 1

a3

L∑
l=1

∥µk+1
l − µk

l ∥2 +
1

a3

L∑
l=1

∥Blx
k+1 −Blx

k∥2 + (
a3
2

−
ck−1
β − ckβ

2
+

1

2ηβ
)

L∑
l=1

∥βk+1
l − βk

l ∥2

+
ck−1
β

2

L∑
l=1

(∥βk+1
l ∥2 − ∥βk

l ∥2) +
1

2ηβ

L∑
l=1

∥βk
l − βk−1

l ∥2,

(78)
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Lp({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk+1, {λk+1
l }, {αk+1

l }, {βk+1
l }, {γk+1

s })
− Lp({µk+1

l }, {rk+1
l }, {pk+1

l }, {qk+1
s },xk+1, {λk+1

l }, {αk+1
l }, {βk+1

l }, {γk
s })

≤ 1

a4

|Pk|∑
s=1

∥bs∥2∥xk+1 − xk∥2 +
4w2

q

a4

|Pk|∑
s=1

∥qk+1
s − qks ∥2 + (

a4
2

−
ck−1
γ − ckγ

2
+

1

2ηγ
)

|Pk|∑
s=1

∥γk+1
s − γk

s ∥2

+
ck−1
γ

2

|Pk|∑
s=1

(∥γk+1
s ∥2 − ∥γk

s ∥2) +
1

2ηγ

|Pk|∑
s=1

∥γk
s − γk−1

s ∥2,

(79)

where a2 > 0, a3 > 0 and a4 > 0 are constant. Combining Lemma C.4 with (76), (77), (78) and (79), we can obtain that,

Lp({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk+1, {λk+1
l }, {αk+1

l }, {βk+1
l }, {γk+1

s })
− Lp({µk

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s })

≤ (
1

a1
+

1

a2
+

1

a3
+

wµLwM
1
2

3
+ 1− 1

ηkµ
)

L∑
l=1

∥µk+1
l − µk

l ∥2 + (
4w2

r

a1
+

wrLwM
1
2

3
+ wλ − 1

ηkr
)

L∑
l=1

∥rk+1
l − rkl ∥2

+ (
4w2

p

a2
+

wpLwM
1
2

3
+ wα − 1

ηkp
)

L∑
l=1

∥pk+1
l − pk

l ∥2 + (
4w2

q

a4
+

wqLw

3
+ wγ − 1

ηkq
)

|Pk|∑
s=1

∥qk+1
s − qks ∥2

+ (− 1

ηkx
+

Lw

6
)||xk+1 − xk||2 + 1

a3

L∑
l=1

∥Blx
k+1 −Blx

k∥2 + 1

a4

|Pk|∑
s=1

∥bs∥2∥xk+1 − xk∥2

+ (
a1
2

−
ck−1
λ − ckλ

2
+

1

2ηλ
)

L∑
l=1

∥λk+1
l − λk

l ∥2 +
ck−1
λ

2

L∑
l=1

(∥λk+1
l ∥2 − ∥λk

l ∥2) +
1

2ηλ

L∑
l=1

∥λk
l − λk−1

l ∥2

+ (
a2
2

− ck−1
α − ckα

2
+

1

2ηα
)

L∑
l=1

∥αk+1
l −αk

l ∥2 +
ck−1
α

2

L∑
l=1

(∥αk+1
l ∥2 − ∥αk

l ∥2) +
1

2ηα

L∑
l=1

∥αk
l −αk−1

l ∥2

+ (
a3
2

−
ck−1
β − ckβ

2
+

1

2ηβ
)

L∑
l=1

∥βk+1
l − βk

l ∥2 +
ck−1
β

2

L∑
l=1

(∥βk+1
l ∥2 − ∥βk

l ∥2) +
1

2ηβ

L∑
l=1

∥βk
l − βk−1

l ∥2

+ (
a4
2

−
ck−1
γ − ckγ

2
+

1

2ηγ
)

|Pk|∑
s=1

∥γk+1
s − γk

s ∥2 +
ck−1
γ

2

|Pk|∑
s=1

(∥γk+1
s ∥2 − ∥γk

s ∥2) +
1

2ηγ

|Pk|∑
s=1

∥γk
s − γk−1

s ∥2, (80)

which concludes the proof of Lemma C.5.

Lemma C.6. Define Sk+1
1 , Sk+1

2 , Sk+1
3 , Sk+1

4 , F k+1 and a5 as :

Sk+1
1 =

4

η2λc
k+1
λ

L∑
l=1

||λk+1
l − λk

l ||2 −
4

ηλ
(
ck−1
λ

ckλ
− 1)

L∑
l=1

||λk+1
l ||2,

Sk+1
2 =

4

ηα2ck+1
α

L∑
l=1

||αk+1 − αk||2 − 4

ηα
(
ck−1
α

ckα
− 1)

L∑
l=1

||αk+1
l ||2,

Sk+1
3 =

4

η2βc
k+1
β

L∑
l=1

||βk+1 − βk||2 − 4

ηβ
(
ck−1
β

ckβ
− 1)

L∑
l=1

||βk+1
l ||2,

Sk+1
4 =

4

η2γc
k+1
γ

|Pk|∑
s=1

||γk+1
s − γk

s ||2 −
4

ηγ
(
ck−1
γ

ckγ
− 1)

L∑
l=1

||γk+1
s ||2.

(81)
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F k+1 = Lp({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk+1, {λk+1
l }, {αk+1

l }, {βk+1
l }, {γk+1

s })

+ Sk+1
1 + Sk+1

2 + Sk+1
3 + Sk+1

4

− 7

2ηλ

L∑
l=1

||λk+1
l − λk

l ||2 −
ckλ
2

L∑
l=1

||λk+1
l ||2

− 7

2ηα

L∑
l=1

||αk+1
l −αk

l ||2 −
ckα
2

L∑
l=1

||αk+1
l ||2

− 7

2ηβ

L∑
l=1

||βk+1
l − βk

l ||2 −
ckβ
2

L∑
l=1

||βk+1
l ||2

− 7

2ηγ

|Pk|∑
s=1

||γk+1
s − γk

s ||2 −
ckγ
2

|Pk|∑
s=1

||γk+1
s ||2.

(82)

a5 =max

{
ηλ + ηα + ηβ +

wµLwM
1
2

3
+ 1, 4w2

rηλ +
wrLwM

1
2

3
+ wλ,

4w2
pηα +

wpLwM
1
2

3
+ wα, 4w

2
qηγ +

wqLw

3
+ wγ , ηβ +

Lw

6
+ ηγ

|Pk|∑
s=1

∥bs∥2
}
.

(83)

And then ∀k ≥ K1, we have that,

F k+1 − F k ≤(a5 −
1

ηkµ
+

16

ηλ(ckλ)
2
+

16

ηα(ckα)
2
+

16

ηβ(ckβ)
2
)

L∑
l=1

∥µk+1
l − µk

l ∥2

+ (a5 −
1

ηkr
+

64w2
r

ηλ(ckλ)
2
)

L∑
l=1

∥rk+1
l − rkl ∥2

+ (a5 −
1

ηkp
+

64w2
p

ηα(ckα)
2
)

L∑
l=1

∥pk+1
l − pk

l ∥2

+ (a5 −
1

ηkq
+

64w2
q

ηγ(ckγ)
2
)

|Pk|∑
s=1

∥qk+1
s − qks ∥2

+ (a5 −
1

ηkx
+

16

ηβ(ckβ)
2
+

16

ηγ(ckγ)
2

|Pk|∑
s=1

∥bs∥2)∥xk+1 − xk∥2

− 1

10ηλ

L∑
l=1

||λk+1
l − λk

l ||2 +
ck−1
λ − ckλ

2

L∑
l=1

||λk+1
l ||2

− 1

10ηα

L∑
l=1

||αk+1
l −αk

l ||2 +
ck−1
α − ckα

2

L∑
l=1

||αk+1
l ||2

− 1

10ηβ

L∑
l=1

||βk+1
l − βk

l ||2 +
ck−1
β − ckβ

2

L∑
l=1

||βk+1
l ||2

− 1

10ηγ

∑|Pk|

s=1
||γk+1

s − γk
s ||2 +

ck−1
γ − ckγ

2

∑|Pk|

s=1
||γk+1

s ||2

+
4

ηλ
(
ck−2
λ

ck−1
λ

−
ck−1
λ

ckλ
)

L∑
l=1

||λk
l ||2 +

4

ηα
(
ck−2
α

ck−1
α

− ck−1
α

ckα
)

L∑
l=1

||αk
l ||2

+
4

ηβ
(
ck−2
β

ck−1
β

−
ck−1
β

ckβ
)

L∑
l=1

||βk
l ||2 +

4

ηγ
(
ck−2
γ

ck−1
γ

−
ck−1
γ

ckγ
)

|Pk|∑
s=1

||γk
s ||2.

(84)
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Proof. Let a1 = 1
ηλ

, a2 = 1
ηα

, a3 = 1
ηβ

, a4 = 1
ηγ
, and substitute them into the Lemma C.5, ∀k ≥ K1, we have,

Lp({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk+1, {λk+1
l }, {αk+1

l }, {βk+1
l }, {γk+1

s })
− Lp({µk

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s })

≤ (ηλ + ηα + ηβ +
wµLwM

1
2

3
+ 1− 1

ηkµ
)

L∑
l=1

∥µk+1
l − µk

l ∥2 + (4w2
rηλ +

wrLwM
1
2

3
+ wλ − 1

ηkr
)

L∑
l=1

∥rk+1
l − rkl ∥2

+ (4w2
pηα +

wpLwM
1
2

3
+ wα − 1

ηkp
)

L∑
l=1

∥pk+1
l − pk

l ∥2 + (4w2
qηγ +

wqLw

3
+ wγ − 1

ηkq
)

|Pk|∑
s=1

∥qk+1
s − qks ∥2

+ (− 1

ηkx
+

Lw

6
)||xk+1 − xk||2 + ηβ

L∑
l=1

∥Blx
k+1 −Blx

k∥2 + ηγ

|Pk|∑
s=1

∥bs∥2∥xk+1 − xk∥2

+ (−
ck−1
λ − ckλ

2
+

1

ηλ
)

L∑
l=1

∥λk+1
l − λk

l ∥2 +
ck−1
λ

2

L∑
l=1

(∥λk+1
l ∥2 − ∥λk

l ∥2) +
1

2ηλ

L∑
l=1

∥λk
l − λk−1

l ∥2

+ (−ck−1
α − ckα

2
+

1

ηα
)

L∑
l=1

∥αk+1
l −αk

l ∥2 +
ck−1
α

2

L∑
l=1

(∥αk+1
l ∥2 − ∥αk

l ∥2) +
1

2ηα

L∑
l=1

∥αk
l −αk−1

l ∥2

+ (−
ck−1
β − ckβ

2
+

1

ηβ
)

L∑
l=1

∥βk+1
l − βk

l ∥2 +
ck−1
β

2

L∑
l=1

(∥βk+1
l ∥2 − ∥βk

l ∥2) +
1

2ηβ

L∑
l=1

∥βk
l − βk−1

l ∥2

+ (−
ck−1
γ − ckγ

2
+

1

ηγ
)

|Pk|∑
s=1

∥γk+1
s − γk

s ∥2 +
ck−1
γ

2

|Pk|∑
s=1

(∥γk+1
s ∥2 − ∥γk

s ∥2) +
1

2ηγ

|Pk|∑
s=1

∥γk
s − γk−1

s ∥2.

(85)
According to (66) ,(67) and (73), in the (k + 1)

th iteration, we can obtain,

1

ηλ

〈
λk+1
l − λk

l − (λk
l − λk−1

l ),λk+1
l − λk

l

〉
≤
〈
∇λl

L̃p({µk+1
l }, {rk+1

l }, {pk+1
l }, {qk+1

s },xk+1, {λk
l }, {αk

l }, {β
k
l }, {γk

s },λ
k+1
l − λk

l

〉
−
〈
∇λl

L̃p({µk
l }, {rkl }, {pk

l }, {qks },xk, {λk−1
l }, {αk−1

l }, {βk−1
l }, {γk−1

s },λk+1
l − λk

l

〉
≤ 1

bk1
∥µk+1

l − µk
l ∥2 +

4w2
r

bk1
∥rk+1

l − rkl ∥2 +
bk1
2
∥λk+1

l − λk
l ∥2 +

ck−1
λ − ckλ

2
(||λk+1

l ||2 − ||λk
l ||2)

−
ck−1
λ − ckλ

2
||λk+1

l − λk
l ||2 +

1

2ηλ
∥λk+1

l − λk
l − (λk

l − λk−1
l )∥2 −

ck−1
λ

2
∥λk

l − λk−1
l ∥2.

(86)

where bk1 > 0. And we have,

1

ηλ

〈
λk+1
l −λk

l −(λk
l −λk−1

l ),λk+1
l −λk

l

〉
=

1

2ηλ
||λk+1

l −λk
l ||2−

1

2ηλ
||λk

l −λk−1
l ||2+ 1

2ηλ
∥λk+1

l −λk
l −(λk

l −λk−1
l )∥2.

(87)
Combining (86) with (87), we have

1

2ηλ
||λk+1

l − λk
l ||2 −

1

2ηλ
||λk

l − λk−1
l ||2 ≤ 1

bk1
∥µk+1

l − µk
l ∥2 +

4w2
r

bk1
∥rk+1

l − rkl ∥2 +
bk1
2
∥λk+1

l − λk
l ∥2

+
ck−1
λ − ckλ

2
(||λk+1

l ||2 − ||λk
l ||2)−

ck−1
λ − ckλ

2
||λk+1

l − λk
l ||2 −

ck−1
λ

2
∥λk

l − λk−1
l ∥2.

(88)
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Multiplying both sides of by 8
ηλckλ

, we have,

4

η2λc
k
λ

||λk+1
l − λk

l ||2 −
4

ηλ
(
ck−1
λ − ckλ

ckλ
)||λk+1

l ||2

≤ 4

η2λc
k
λ

||λk
l − λk−1

l ||2 − 4

ηλ
(
ck−1
λ − ckλ

ckλ
)||λk

l ||2

+
4bk1
ηλckλ

||λk+1
l − λk

l ||2 −
4

ηλ
||λk

l − λk−1
l ||2

+
8

bk1ηλc
k
λ

∥µk+1
l − µk

l ∥2 +
32w2

r

bk1ηλc
k
λ

∥rk+1
l − rkl ∥2.

(89)

Setting bk1 =
ckλ
2 in (89) and combine it with the definition of Sk

1 , we have,

Sk+1
1 − Sk

1 ≤
L∑

l=1

4

ηλ
(
ck−2
λ

ck−1
λ

−
ck−1
λ

ckλ
)||λk

l ||2 +
L∑

l=1

(
2

ηλ
+

4

η2λ
(

1

ck+1
λ

− 1

ckλ
))||λk+1

l − λk
l ||2

−
L∑

l=1

4

ηλ
||λk

l − λk−1
l ||2 + 16

ηλ(ckλ)
2

L∑
l=1

∥µk+1
l − µk

l ∥2 +
64w2

r

ηλ(ckλ)
2

L∑
l=1

∥rk+1
l − rkl ∥2.

(90)

Similar results can be obtained for Sk
2 , Sk

3 , Sk
4 ,

Sk+1
2 − Sk

2 ≤
L∑

l=1

4

ηα
(
ck−2
α

ck−1
α

− ck−1
α

ckα
)||αk

l ||2 +
L∑

l=1

(
2

ηα
+

4

η2α
(

1

ck+1
α

− 1

ckα
))||αk+1

l −αk
l ||2

−
L∑

l=1

4

ηα
||αk

l −αk−1
l ||2 + 16

ηα(ckα)
2

L∑
l=1

∥µk+1
l − µk

l ∥2 +
64w2

p

ηα(ckα)
2

L∑
l=1

∥pk+1
l − pk

l ∥2.

(91)

Sk+1
3 − Sk

3 ≤
L∑

l=1

4

ηβ
(
ck−2
β

ck−1
β

−
ck−1
β

ckβ
)||βk

l ||2 +
L∑

l=1

(
2

ηβ
+

4

η2β
(

1

ck+1
β

− 1

ckβ
))||βk+1

l − βk
l ||2

−
L∑

l=1

4

ηβ
||βk

l − βk−1
l ||2 + 16

ηβ(ckβ)
2

L∑
l=1

∥µk+1
l − µk

l ∥2 +
16

ηβ(ckβ)
2

L∑
l=1

∥Blx
k+1 −Blx

k∥2.

(92)

Sk+1
4 − Sk

4 ≤
|Pk|∑
s=1

4

ηγ
(
ck−2
γ

ck−1
γ

−
ck−1
γ

ckγ
)||γk

s ||2 +
|Pk|∑
s=1

(
2

ηγ
+

4

η2γ
(

1

ck+1
γ

− 1

ckγ
))||γk+1

s − γk
s ||2

−
|Pk|∑
s=1

4

ηγ
||γk

s − γk−1
s ||2 + 16

ηγ(ckγ)
2

|Pk|∑
s=1

∥bs∥2∥xk+1
l − xk

l ∥2 +
64w2

q

ηγ(ckγ)
2

|Pk|∑
s=1

∥qk+1
s − qks ∥2.

(93)

Based on the setting of ckλ, ckα, ckβ and ckγ , we can obtain that, ηλ

10 ≥ 1

ck+1
λ

− 1
ckλ

, ηα

10 ≥ 1

ck+1
α

− 1
ckα

, ηβ

10 ≥ 1

ck+1
β

− 1
ckβ

,
ηγ

10 ≥ 1

ck+1
γ

− 1
ckγ

, ∀k ≥ K1. In addition, according to the definition of Bl, the following inequality can be obtained,

L∑
l=1

∥Blx
k+1 −Blx

k∥2 = ∥xk+1 − xk∥2. (94)
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According to the definition of a5, combining (90)-(94) with (85), we can obtain that,

F k+1 − F k ≤(a5 −
1

ηkµ
+

16

ηλ(ckλ)
2
+

16

ηα(ckα)
2
+

16

ηβ(ckβ)
2
)

L∑
l=1

∥µk+1
l − µk

l ∥2

+ (a5 −
1

ηkr
+

64w2
r

ηλ(ckλ)
2
)

L∑
l=1

∥rk+1
l − rkl ∥2

+ (a5 −
1

ηkp
+

64w2
p

ηα(ckα)
2
)

L∑
l=1

∥pk+1
l − pk

l ∥2

+ (a5 −
1

ηkq
+

64w2
q

ηγ(ckγ)
2
)

|Pk|∑
s=1

∥qk+1
s − qks ∥2

+ (a5 −
1

ηkx
+

16

ηβ(ckβ)
2
+

16

ηγ(ckγ)
2

|Pk|∑
s=1

∥bs∥2)∥xk+1 − xk∥2

− 1

10ηλ

L∑
l=1

||λk+1
l − λk

l ||2 +
ck−1
λ − ckλ

2

L∑
l=1

||λk+1
l ||2

− 1

10ηα

L∑
l=1

||αk+1
l −αk

l ||2 +
ck−1
α − ckα

2

L∑
l=1

||αk+1
l ||2

− 1

10ηβ

L∑
l=1

||βk+1
l − βk

l ||2 +
ck−1
β − ckβ

2

L∑
l=1

||βk+1
l ||2

− 1

10ηγ

|Pk|∑
s=1

||γk+1
s − γk

s ||2 +
ck−1
γ − ckγ

2

|Pk|∑
s=1

||γk+1
s ||2

+
4

ηλ
(
ck−2
λ

ck−1
λ

−
ck−1
λ

ckλ
)

L∑
l=1

||λk
l ||2 +

4

ηα
(
ck−2
α

ck−1
α

− ck−1
α

ckα
)

L∑
l=1

||αk
l ||2

+
4

ηβ
(
ck−2
β

ck−1
β

−
ck−1
β

ckβ
)

L∑
l=1

||βk
l ||2 +

4

ηγ
(
ck−2
γ

ck−1
γ

−
ck−1
γ

ckγ
)

|Pk|∑
s=1

||γk
s ||2.

(95)

which concludes the proof of Lemma C.6.
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Finally, based on Lemma C.4, Lemma C.5 and Lemma C.6, we provide the proof of Theorem 6.4.

Proof. First, we set

ak6 = min

{
16

ηλ(ckλ)
2
+

16

ηα(ckα)
2
+

16

ηβ(ckβ)
2
,

64w2
r

ηλ(ckλ)
2
,

64w2
p

ηα(ckα)
2
,

64w2
q

ηγ(ckγ)
2
,

16

ηβ(ckβ)
2
+

16

ηγ(ckγ)
2

|Pk|∑
s=1

∥bs∥2
}
ξ − 2

2
− a5.

(96)

where constant ξ > 2 and satisfies

min

{
16

ηλ(c0λ)
2
+

16

ηα(c0α)
2
+

16

ηβ(c0β)
2
,

64w2
r

ηλ(c0λ)
2
,

64w2
p

ηα(c0α)
2
,

64w2
q

ηγ(c0γ)
2
,

16

ηβ(c0β)
2
+

16

ηγ(c0γ)
2

|Pk|∑
s=1

∥bs∥2
}
ξ − 2

2
> a5.

(97)

Thus, we have ak6 > 0,∀k. According to the setting of ηkλ, ηkα, ηkβ, ηkγ and ckλ, ckα, ckβ, ckγ , we have,

a5 −
1

ηkµ
+

16

ηλ(ckλ)
2
+

16

ηα(ckα)
2
+

16

ηβ(ckβ)
2
≤ −ak6 ,

a5 −
1

ηkr
+

64w2
r

ηλ(ckλ)
2
≤ −ak6 ,

a5 −
1

ηkp
+

64w2
p

ηα(ckα)
2
≤ −ak6 ,

(a5 −
1

ηkq
+

64w2
q

ηγ(ckγ)
2
) ≤ −ak6 ,

a5 −
1

ηkx
+

16

ηβ(ckβ)
2
+

16

ηγ(ckγ)
2

|Pk|∑
s=1

∥bs∥2 ≤ −ak6 .

(98)

Combining it with Lemma C.6, ∀k ≥ K1, we can obtain that,

ak6

 L∑
l=1

∥µk+1
l − µk

l ∥2 +
L∑

l=1

∥rk+1
l − rkl ∥2 +

L∑
l=1

∥pk+1
l − pk

l ∥2 +
|Pk|∑
s=1

∥qk+1
s − qks ∥2 + ∥xk+1 − xk∥2


≤ F k − F k+1 − 1

10ηλ

L∑
l=1

||λk+1
l − λk

l ||2 +
ck−1
λ − ckλ

2

L∑
l=1

||λk+1
l ||2 + 4

ηλ
(
ck−2
λ

ck−1
λ

−
ck−1
λ

ckλ
)

L∑
l=1

||λk
l ||2

− 1

10ηα

L∑
l=1

||αk+1
l −αk

l ||2 +
ck−1
α − ckα

2

L∑
l=1

||αk+1
l ||2 + 4

ηα
(
ck−2
α

ck−1
α

− ck−1
α

ckα
)

L∑
l=1

||αk
l ||2

− 1

10ηβ

L∑
l=1

||βk+1
l − βk

l ||2 +
ck−1
β − ckβ

2

L∑
l=1

||βk+1
l ||2 + 4

ηβ
(
ck−2
β

ck−1
β

−
ck−1
β

ckβ
)

L∑
l=1

||βk
l ||2

− 1

10ηγ

|Pk|∑
s=1

||γk+1
s − γk

s ||2 +
ck−1
γ − ckγ

2

|Pk|∑
s=1

||γk+1
s ||2 + 4

ηγ
(
ck−2
γ

ck−1
γ

−
ck−1
γ

ckγ
)

|Pk|∑
s=1

||γk
s ||2.

(99)

Given the definition of ∇G̃k, we have that,

(∇G̃k)µl
=∇µl

L̃p({µk̂l

l }, {rk̂l

l }, {pk̂l

l }, {qk̂l
s },xk̂l , {λk̂

l }, {αk̂
l }, {β

k̂
l }, {γk̂

s })

+∇µl
L̃p({µk

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s })

−∇µl
L̃p({µk̂l

l }, {rk̂l

l }, {pk̂l

l }, {qk̂l
s },xk̂l , {λk̂

l }, {αk̂
l }, {β

k̂
l }, {γk̂

s }).

(100)
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Combining it with (51), we have that,

∥(∇G̃k)µl
∥2 ≤ 1

η2µ
∥µk̄l

l − µk
l ∥2. (101)

Similar results can be derived for other variables,

∥(∇G̃k)rl∥2 ≤ 1

η2r
∥rk̄l

l − rkl ∥2.

∥(∇G̃k)pl
∥2 ≤ 1

η2p
∥pk̄l

l − pk
l ∥2.

∥(∇G̃k)qs∥2 ≤ 1

η2q
∥qk+1

s − qks ∥2.

∥(∇G̃k)x∥2 ≤ 1

η2x
∥xk+1 − xk∥2.

(102)

According to the definition C.2, we have,

(∇G̃k)λl
=∇λl

L̃p({µk̄l

l }, {rk̄l

l }, {pk̄l

l }, {qk̄l
s },xk̄l , {λk

l }, {αk
l }, {β

k
l }, {γk

s })

+∇λl
L̃p({µk

l }, {rkl }, {pk
l }, {qks },xk, {λk

l }, {αk
l }, {β

k
l }, {γk

s })

−∇λl
L̃p({µk̄l

l }, {rk̄l

l }, {pk̄l

l }, {qk̄l
s },xk̄l , {λk

l }, {αk
l }, {β

k
l }, {γk

s }).

(103)

Combining trigonometric inequality, (29) with Assumption 6.3, we can obtain

∥(∇G̃k)λl
∥2 ≤3∥∇λl

L̃p({µk̄l

l }, {rk̄l

l }, {pk̄l

l }, {qk̄l
s },xk̄l , {λk

l }, {αk
l }, {β

k
l }, {γk

s })∥2

+3((ck̂l−1
λ )2 − (ck̄l−1

λ )2)||λk
l ||2 + 3∥µk̄

l − µk
l + rkl ◦ rkl − rk̄l ◦ rk̄l ∥2

≤ 3

η2λ
||λk̄l

l − λk
l ||2 + 3((ck̂l−1

λ )2 − (ck̄l−1
λ )2)||λk

l ||2

+6∥µk̄l

l − µk
l ∥2 + 24w2

r∥r
k̄l

l − rkl ∥2.

(104)

Similar results can be derived for other variables as well,

∥(∇G̃k)αl
∥2 ≤ 3

η2α
||αk̄l

l −αk
l ||2 + 3((ck̂l−1

α )2 − (ck̄l−1
α )2)||αk

l ||2

+ 6∥µk̄l

l − µk
l ∥2 + 24w2

p∥p
k̄l

l − pk
l ∥2.

∥(∇G̃k)βl
∥2 ≤ 3

η2β
||βk̄l

l − βk
l ||2 + 3((ck̂l−1

β )2 − (ck̄l−1
β )2)||βk

l ||2

+ 6∥µk̄l

l − µk
l ∥2 + 6∥xk̄l − xk∥2.

∥(∇G̃k)γs
∥2 ≤ 3

η2γ
||γk+1

s − γk
s ||2 + 3((ck−1

γ )2 − (ckγ)
2)||γk

s ||2

+ 6∥bs∥2∥xk+1 − xk∥2 + 24w2
q∥qk+1

s − qks ∥2.

(105)

According to Assumption 6.3, we have,

∥xk̄l − xk∥2 ≤ τk1ϑ ≤ τk1∥xk+1 − xk∥2. (106)
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Combining it with (101)-(105), we can obtain that,

||∇G̃k||2 =

L∑
l=1

(||(∇G̃k)µl
||2 + ||(∇G̃k)rl ||2 + ||∇Gk)pl

||2 + ||∇G̃k)λl
||2 + ||(∇Gk)αl

||2 + ||(∇G̃k)βl
||2)

+

|Pk|∑
s=1

||(∇G̃k)qs ||2 + ||(∇G̃k)x||2 +
|Pk|∑
s=1

||(∇G̃k)γs ||2

≤ (
1

η2µ
+ 18)

L∑
l=1

∥µk̄l

l − µk
l ∥2 + (

1

η2r
+ 24w2

r)

L∑
l=1

∥rk̄l

l − rkl ∥2

+ (
1

η2p
+ 24w2

p)

L∑
l=1

∥pk̄l

l − pk
l ∥2

+ (
1

η2q
+ 24w2

q)

|Pk|∑
s=1

∥qk+1
s − qks ∥2

+ (
1

η2x
+

|Pk|∑
s=1

6∥bs∥2 + 6Lτk1)∥xk+1 − xk∥2

+
3

η2λ

L∑
l=1

||λk̄l

l − λk
l ||2 + 3

L∑
l=1

((ck̂l−1
λ )2 − (ck̄l−1

λ )2)||λk
l ||2

+
3

η2α

L∑
l=1

||αk̄l

l −αk
l ||2 + 3

L∑
l=1

((ck̂l−1
α )2 − (ck̄l−1

α )2)||αk
l ||2

+
3

η2β

L∑
l=1

||βk̄l

l − βk
l ||2 + 3

L∑
l=1

((ck̂l−1
β )2 − (ck̄l−1

β )2)||βk
l ||2

+
3

η2γ

|Pk|∑
s=1

||γk+1
s − γk

s ||2 + 3

|Pk|∑
s=1

((ck−1
γ )2 − (ckγ)

2)||γk
s ||2.

(107)

Let constant a6 denote the lower bound of ak6 (a6 > 0), and we set constants d1, d2, d3, d4, d5 that,

d1 =
kττ + 18kττη

2
µ

ηµ2(a6)2
≥

kττ + 18kττη
2
µ

ηµ2(ak6)
2

,

d2 =
kττ + 24w2

rkττηr
2

ηr2(a6)2
≥ kττ + 24w2

rkττηr
2

ηr2(ak6)
2

,

d3 =
kττ + 24w2

pkττηp
2

ηp2(a6)2
≥

kττ + 24w2
pkττηp

2

ηp2(ak6)
2

,

d4 =
1 + 24w2

qηq
2

ηq2(a6)2
≥

1 + 24w2
qηq

2

ηq2(ak6)
2

,

d5 =
1 + (

∑|Pk|
s=1 6∥bs∥2 + 6Lτk1)ηx

2

ηx2(a6)2
≥

1 + (
∑|Pk|

s=1 6∥bs∥2 + 6Lτk1)ηx
2

ηx2(ak6)
2

.

(108)

where kτ is a positive constant. By employing (107) and (108), we can obtain,
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||∇G̃k||2 ≤ (ak6)
2

(
d1

L∑
l=1

∥µk+1
l − µk

l ∥2 + d2

L∑
l=1

∥rk+1
l − rkl ∥2 + d3

L∑
l=1

∥pk+1
l − pk

l ∥2
)

+ (ak6)
2

d4

|Pk|∑
s=1

∥qk+1
s − qks ∥2 + d5∥xk+1 − xk∥2


+ (

1

η2µ
+ 18)

L∑
l=1

∥µk̄l

l − µk
l ∥2 − (

1

η2µ
+ 18)kττ

L∑
l=1

∥µk+1
l − µk

l ∥2

+ (
1

η2r
+ 24w2

r)

L∑
l=1

∥rk̄l

l − rkl ∥2 − (
1

η2r
+ 24w2

r)kττ

L∑
l=1

∥rk+1
l − rkl ∥2

+ (
1

η2p
+ 24w2

p)

L∑
l=1

∥pk̄l

l − pk
l ∥2 − (

1

η2p
+ 24w2

p)kττ

L∑
l=1

∥pk+1
l − pk

l ∥2

+
3

η2λ

L∑
l=1

||λk̄l

l − λk
l ||2 + 3

L∑
l=1

((ck̂l−1
λ )2 − (ck̄l−1

λ )2)||λk
l ||2

+
3

η2α

L∑
l=1

||αk̄l

l −αk
l ||2 + 3

L∑
l=1

((ck̂l−1
α )2 − (ck̄l−1

α )2)||αk
l ||2

+
3

η2β

L∑
l=1

||βk̄l

l − βk
l ||2 + 3

L∑
l=1

((ck̂l−1
β )2 − (ck̄l−1

β )2)||βk
l ||2

+
3

η2γ

∑|Pk|

s=1
||γk+1

s − γk
s ||2 + 3

∑|Pk|

s=1
((ck−1

γ )2 − (ckγ)
2)||γk

s ||2.

(109)

On the basis of (109), we can further obtain that,

dk6 ||∇G̃k||2 ≤ak6

 L∑
l=1

∥µk+1
l − µk

l ∥2 +
L∑

l=1

∥rk+1
l − rkl ∥2 +

L∑
l=1

∥pk+1
l − pk

l ∥2 +
|Pk|∑
s=1

∥qk+1
s − qks ∥2 + ∥xk+1 − xk∥2
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(110)
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where dk6 represents a nonnegative sequence, i.e,

dk6 =

(
max

{
d1a

k
6 , d2a

k
6 , d3a

k
6 , d4a

k
6 , d5a

k
6 ,

30τ

ηλ
,
30τ

ηα
,
30τ

ηβ
,
30

ηγ

})−1

. (111)

And the upper and lower bound of d6 is denoted as d6 and d6, respectively. According to Assumption 6.3 and combining
(99) with (110), we have,

dk6 ||∇G̃k||2 ≤ F k − F k+1

+ d6(
1
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β )2)||βk
l ||2

+ 3d6

|Pk|∑
s=1

((ck−1
γ )2 − (ckγ)

2)||γk
s ||2

+
ck−1
λ − ckλ

2
Mw2

λ +
ck−1
α − ckα

2
Mw2

α

+
ck−1
β − ckβ

2
Mw2

β +
ck−1
γ − ckγ

2
Pw2

γ

+
4

ηλ
(
ck−2
λ

ck−1
λ

−
ck−1
λ

ckλ
)

L∑
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(112)

Denoting K̃(ϵ) as K̃(ϵ) = min{k | ||∇G̃K1+k||2 ≤ ϵ
4 , k ≥ 2}. Summing up (112) from K1 + 2 to K1 + K̃(ϵ), we can
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obtain that,

K1+K̃(ϵ)∑
k=K1+2
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(113)
For each worker l, we have that kl − k̂l ≤ τ , thus,

3d6
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(114)

In our asynchronous algorithm, inactive workers do not update their variables in each master iteration, Thus, for any k

which satisfies v̂l(j − 1) ≤ k < v̂l(j), we have µk
l = µ

v̂l(j)−1
l . And for k /∈ Vl(K), we have ∥µk

l − µk−1
l ∥2 = 0. Since

v̂l(j)− v̂l(j − 1) ≤ τ , we can obtain
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µ. (115)
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Similarly, we can obtain
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(116)

We set the value of kτ to satisfy that,

kτ ≥ max

d6(
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+ 24w2
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 , (117)

where ηµ, ηr, and ηp are the upper bounds of ηkµ, ηkr , and ηkp, respectively. By employing (113), (114), (115) (116) and
(117), we can obtain
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(118)

where d7 and kd are constants. Set constant d8 as

d8 =

(
max

{
d1, d2, d3, d4, d5,

30τ

ηλa6
,
30τ

ηαa6
,
30τ

ηβa6
,

30

ηγa6

})
≥ 1

dk6a
k
6

. (119)

Thus, we can obtain that

K1+K̃(ϵ)∑
k=K1+2

1

d8ak6
∥∇G̃K1+K̃(ϵ)∥2 ≤

K1+K̃(ϵ)∑
k=K1+2

1

d8ak6
∥∇G̃k∥2 ≤
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dk6∥∇G̃k∥2 ≤ (d7 + kdτ)(τ − 1). (120)

We can further obtain

||∇G̃K1+K̃(ϵ)||2 ≤ (d7 + kdτ)(τ − 1)d8
K1+K̃∑

k=K1+2

1
ak
6

. (121)
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According to the setting of ckλ, ckα, ckβ and ckγ , we have,

1

ak6
≥ 1

8(ξ − 2)(k + 1)
1
2 min{ηλ + ηα + ηβ, 4w2

rηλ, 4w
2
pηα, 4w

2
qηγ , ηβ + ηγ

∑|Pk|
s=1 ∥bs∥2}

. (122)

Summing up ak6 from k = K1 + 2 to k = K1 + K̃, we have

K1+K̃(ϵ)∑
k=K1+2

1

ak6
≥ (K1 + K̃(ϵ))

1
2 − (K1 + 2)

1
2
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2
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2
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. (123)

Recall that K̃(ϵ) = min{k | ||∇G̃K1+k||2 ≤ ϵ
4 , k ≥ 2}. Therefore, by employing (123) and (121), when

K1 + K̃(ϵ) ≥ (
d9(d7 + kdτ)(τ − 1)d8

ϵ
+ (K1 + 2)

1
2 )2, (124)

the value of ||∇G̃K1+K̃(ϵ)||2 can be guaranteed to be smaller than ϵ
4 , where

d9 = 32(ξ − 2)min{ηλ + ηα + ηβ, 4w
2
rηλ, 4w

2
pηα, 4w

2
qηγ , ηγ + ηγ

L∑
s=1

∥bs∥2}. (125)

Combining the definition of ∇Gk and ∇G̃k with trigonometric inequality, we then get:

||∇Gk|| − ||∇G̃k|| ≤ ||∇Gk −∇G̃k|| ≤
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If k ≥ 16(
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Combining it with (124), we can conclude that

K(ϵ) ∼ O

(
max

{
(16(

Mw2
λ

η2λ
+

Mw2
α

η2α
+

Mw2
β

η2β
+

Pw2
γ

η2γ
)2

1
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, (
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ϵ
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1
2 )2

} )
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(128)
which concludes our proof.

D. Proof of Theorem 6.1
In Algorithm 1, cutting plane set are updated every w iteration, i.e.,

P0 ⊇ Pw ⊇ · · · ⊇ Pnw. (129)

The feasible region of problem (17) in the wth iteration is represented as Rw, while the feasible region of problem (15) is
represented as R∗. As such, we have

R0 ⊇ Rw ⊇ · · · ⊇ Rnw ⊇ R∗. (130)

Let Fw∗ represent the optimal objective value of the problem (17) in the wth iteration and let F ∗ ≤ 0 represent the optimal
objective value of the problem in (15). Based on (130), we can obtain

F 0∗ ≤ Fw∗ ≤ · · · ≤ Fnw∗ ≤ F ∗. (131)

Thus, we have
F ∗

F 0∗ ≤ F ∗

Fw∗ ≤ · · · ≤ F ∗

Fnw∗ ≤ Ω, (132)

where Ω ≤ 1. It can be seen from (132) that as the number of cutting planes increases, the sequence is monotonically
non-decreasing. When nw → ∞, F∗

Fnw∗ monotonically converges to Ω.
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