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ABSTRACT

Software issue localization, the task of identifying the precise code locations (files,
classes, or functions) relevant to a natural language issue description (e.g., bug
report, feature request), is a critical yet time-consuming aspect of software devel-
opment. While recent LLM-based agentic approaches demonstrate promise, they
often incur significant latency and cost due to complex multi-step reasoning and
relying on closed-source LLMs. Alternatively, traditional code ranking models,
typically optimized for query-to-code or code-to-code retrieval, struggle with the
verbose and failure-descriptive nature of issue localization queries. To bridge this
gap, we introduce SWERANK, an efficient and effective retrieve-and-rerank frame-
work for software issue localization. To facilitate training, we construct SWELOC,
a large-scale dataset curated from public GitHub repositories, featuring real-world
issue descriptions paired with corresponding code modifications. Empirical results
on SWE-Bench-Lite and LocBench show that SWERANK achieves state-of-the-art
performance, outperforming both prior ranking models and costly agent-based
systems using closed-source LLMs like Claude-3.5. Further, we demonstrate SWE-
Loc’s utility in enhancing various existing retriever and reranker models for issue
localization, establishing the dataset as a valuable resource for the community.

1 INTRODUCTION

The scale and complexity of modern software systems continue to grow exponentially, with a
significant portion of development effort dedicated to identifying and resolving software issues. This
has fueled growth in automated software issue fixing (Cognition Al 2024), with recent LLM-based
patch generation (Yang et al., | 2024a; Gauthier, 2024) solving real-world issues on benchmarks such
as SWE-Bench (Jimenez et al., [2023)), and commercial copilots integrating “one-click” quick-fix
suggestions directly into IDEs (Microsoft, 2023} |Cursor, 2025; Windsurf, 2025). Central to the
process of fixing software issues is the task of issue localization: accurately identifying where in the
codebase the necessary changes should be made. This involves pinpointing the specific files, classes,
or functions relevant to a given issue description, typically provided in natural language (e.g., a bug
report). Effective localization is critical; without correctly identifying the relevant code segments,
any subsequent attempt at automated repair is likely to fail or, worse, introduce new faults.

Given the importance of localization, recent work treats it as an agentic reasoning problem (Yao
et al., |2023) and has investigated the use of sophisticated LLM-based agents (Yang et al., |2024b;
Yu et al., 2025} |Chen et al., 2025)) that issue commands such as ‘read-file’, ‘grep’ and ‘traverse-
graph’ to iteratively explore codebases, navigate file structures, search for code patterns, and analyze
dependencies. While powerful, these agent-based compound systems often involve multiple rounds
of interaction (=7-10 on average) with large models and complex reasoning processes, which can
incur considerable API costs ($0.66 per example with Claude-3.5) at high latency. Moreover, agent
traces are brittle: they rely on temperature sampling and require complex tool orchestration.

An alternative, more efficient strategy is to frame issue localization as an information retrieval
problem, specifically using code ranking models (Yue et al., 2021 [Zhang et al.| 2024} |Suresh
et al., 2024). Such models can directly rank candidate code snippets (e.g., functions or files)
based on their relevance to a given natural language query, and quickly score and sort potential
locations within a large codebase. However, prior code ranking models are still inferior in per-
formance as they have predominantly been optimized for tasks distinct from issue localization.
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These typically include query-to-code retrieval (Li et al.l [2024a)), which aims to find code im-
plementing a described functionality, and code-to-code retrieval (Wang et al.l |2023a; |Li et al.,
2024b), focused on identifying semantically similar code fragments. The task of issue localiza-
tion presents unique characteristics; input queries (issue descriptions) are often substantially more
verbose than typical NL-to-code queries{]_-] and, more crucially, issues tend to describe observed
erroneous behavior or system failures rather than specifying desired functionality. This fundamental
difference in query nature and intent suggests that models trained on conventional code retrieval
data (Husain et al., [2019; |Suresh et al.| |2024) may not be optimally suited for issue localization.

To brldge thls gap’ we lntroduce SWERANK’ a Code SWE-Bench-Lite Localization Performance vs. Cost
ranking framework trained specifically for software %0 <

. . . Reranker (SweRankLLM-328) b

issue localization. SWERANK employs a standard Retanker (SweRankLLI70) Rernker GIT4D

Retriever (SweRankEmbed-78)

yet effective retrieve-and-rerank architecture, compris-
ing two core components: (1) SWERANKEMBED, a
bi-encoder embedding model serving as the code re-
triever; and (2) SWERANKLLM, an instruction-tuned
LLM serving as a code reranker. To train SWERANK,
we construct SWELOC, a new large-scale issue local-
ization dataset curated from public Github repositories,
providing realistic training examples. SWERANKEM- e agent
BED is trained using a contrastive objective, where the = o il =
issue descriptions serve as queries, the known local- Costper nstance (cents) - Log Scale

ized functions act as positive examples, and carefully Figure 1: Comparison of localization perfor-
mined code snippets from the same repository func- mance versus cost per instance on SWE-Bench-
tion as hard negatives. Subsequently, SWERANKLLM Lite. Our proposed SWERANKEMBED retriever
is trained as a list-wise reranker (Reddy et al,[2024); and SWERANKLLM reranker models achieve su-
it takes as input the issue description alongside the Perior accuracy at a significantly lower cost com-
top- K candidates retrieved by SWERANKEMBED and pared to agent-based localization methods.
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Empirical results demonstrate that SWERANK achieves state-of-the-art performance for file, module
and function-level localization on Swe-Bench-Lite (Jimenez et al.,|2023)) and LocBench (Chen et al.,
2025)). Further, we show that SWERANK, built on open-source models, has a considerably better
performance to cost ratio compared to agent-based approaches that employ closed-source LLMs like
Claude-3.5 (Anthropicl [2023), as illustrated in Figure|l| Finally, we demonstrate the effectiveness of
our SWELOC data by showing that it consistently improves localization performance when used for
finetuning a variety of text and code-pretrained retriever and reranker models.

2 RELATED WORK

2.1 SOFTWARE ISSUE LOCALIZATION

Software issue localization or Fault Localization (FL) aims to identify the specific code locations
responsible for reported bugs. Traditional fault localization methods (Wong et al., |2016) can be
grouped into spectrum-based and program-analysis approaches. Spectrum-based fault localization
(SFL) (de Souza et al.l 20165 |Amario de Souza et al., [2024]) statistically associates test outcomes
with executed code elements to rank statements or functions by their ‘suspiciousness’ based on
passing and failing test coverage. Complementary static and dynamic analyses exploit program
structure—through call-graph traversal (Adhiselvam et al.,|2015), dependency analysis (Elsaka, 2017),
or program slicing (Soremekun et al., 202 1))—to constrain the search space of potential bug locations.
While these methods provide a statistical basis for finding faults, they require precise program models
and cannot leverage the rich natural language context in bug reports.

Modern approaches instead use LLM-based agent frameworks that treat bug localization as a planning
and searching problem. AgentFL (Qin et al.,[2024) incorporates a multi-agent system with a three step
procedure involving interpreting the bug context, traversing the codebase and verifying the suspected
fault. OpenHands (Wang et al., 2025) and SWE-Agent (Yang et al., 2024b)) use bash commands

! 460 tokens in SWE-Bench (Jimenez et al.| 2023) issues vs 12 tokens in CSN (Li et al.,[2024a) queries.
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Figure 2: Overview of SWELOC data construction pipeline, illustrating the three main stages.

or custom interfaces to navigate repositories and access files. Other agentic systems combine IR
with tool use: MoatlessTools (Orwall, [2024) integrates a semantic code search engine into an agent’s
loop to guide it to relevant files. More recently, LocAgent (Chen et al., 2025) constructs a graph
of the codebase for an LLM agent to do multi-hop reasoning over code dependencies. While these
agent-driven approaches have achieved impressive results, they incur substantial costs and have high
latency. Agent-based methods must orchestrate multiple steps of reasoning and tool use, which makes
them brittle; a single failure in the chain (e.g., a misleading intermediate query or an incomplete
code observation) can derail the entire localization process. SWERANK instead formulates issue
localization as a single-shot ranking problem, which is highly efficient and cost-effective.

2.2 CODE RANKING

Transformer-based code ranking models (Wang et al.l 2023c}; Zhang et al., 2024; |Giinther et al., 2023;
Suresh et al.,2024) have set state-of-the-art on a variety of code retrieval tasks (Li et al., 2024aib) by
learning joint embeddings of text and code.|Wang et al.|(2023c) and Zhang et al.|(2024) learn improved
code representations by incorporating a mix of training objectives, such as span denoising, text-code
matching and causal LM pretraining, over large-scale code corpora such as CodeSearchNet (Husain
et al., 2019) and The Stack (Kocetkov et al., [2022). |Suresh et al.[ (2024) improve the contrastive
training process between function snippets and associated doc-strings with better consistency filtering
and harder negative mining. |Liu et al.[|(2024b) incorporate multi-task contrastive data that includes
code contest generation (Billah et al., [2024), code summarization (Sontakke et al., 2022)), code
completion (Liu et al.l 2024a)), code translation (Pan et al.2024) and code agent conversation (Jin
et al., [2024). However, prior code ranking models rarely include error logs in their training data and
are not optimized for issue localization, where queries are verbose bug reports rather than precise
functionality requests. In contrast, SWERANK is explicitly trained on SWELOC, a new automatically
collected set of real-world issue reports paired with known buggy functions. By optimizing a bi-
encoder retriever and a listwise LLM reranker on this task-specific data, SWERANK directly aligns
verbose bug descriptions with faulty code, thereby improving localization accuracy.

3 SwWELOC: ISSUE LOCALIZATION DATA

Existing code retrieval datasets (Husain et al., 2019; Suresh et al., 2024)) are generally valuable for
tasks like NL-to-code search which mainly requires functionality matching. However, they are sub-
optimal for training models aimed at software issue localization. The nature of software issues—often
detailed descriptions of failures rather than concise functional specifications—necessitates a dataset that
accurately reflects this challenge of precisely identifying the problematic functions. To address this
gap and provide a suitable training ground for our SWERANK framework, we constructed SWELOC,
a novel large-scale dataset specifically curated for the task of localizing code snippets relevant to
software issues. SWELOC is derived from real-world software development activities captured in
public GitHub repositories. Our methodology comprises three main phases: (1) identifying and
filtering relevant pull requests (PRs) from popular Python repositories (§3.1), (2) processing these
PRs to extract issue descriptions paired with their corresponding code modifications (§3.2)), and (3)
applying consistency filtering and hard-negative mining to enhance the quality of training instances
(§3.3). An overview of this process is shown in Figure 2]
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Figure 3: (Left) Distribution of query lengths in the SWELOC dataset. The red dashed line indicates a mean
query length of 382.56 tokens, underscoring the detailed nature typical of issue reports. (Right) Distribution of
the number of (a) files, (b) modules, and (c) functions modified per GitHub issue. This highlights that while many
localizations are concentrated, a significant number span multiple code units, particularly at finer granularities.

3.1 IDENTIFYING RELEVANT PRS

Our data collection involves selecting the repositories associated with the top 11,000 PyPI packages
on GitHub. To ensure repository quality and relevance to our task, we apply several filtering criteria.
Repositories are required to contain at least 80% Python code. To prevent data leakage and overlap
with existing benchmarks, we exclude repositories already present in SWE-Bench (Jimenez et al.}
2023)) and LocBench (Chen et al., [2025). Finally, we perform deduplication based on source code
overlap to remove near-identical repositories. This process results in a curated set of 3387 repositories.

Following the SWE-Bench methodology, we identify pull requests (PRs) within these repositories
that (1) resolve a linked GitHub issue and (2) include modifications to test files, indicating the issue
resolution was verified. For each such PR, we collect the issue description and the codebase snapshot
at the PR’s base commit. This procedure results in 67,341 initial (PR, codebase) pairs. Figure
provides further details on the dataset’s composition, including query and repository edit distributions.

3.2 LOCALIZATION PROCESSING

Using the collected (PR, codebase) pairs, we create contrastive training data in the form of {query,
positive, negatives) tuples. For each tuple, the issue description serves as the query. Each function
modified within the PR is designated as a positive example, corresponding to a distinct training
instance. Thus, a PR modifying IV functions yields N training instances. The negatives for each
instance come from the unmodified functions within the corresponding codebase. This initial set of
instances are further refined via consistency filtering and hard-negative mining, as described next.

3.3 CONSISTENCY FILTERING AND HARD NEGATIVES

The quality of (query, positive, negatives) tuples used for training significantly impacts the ranking
model performance (Suresh et al.,[2024)). Effective contrastive learning requires relevant positives
and challenging negatives (semantically similar to the positive but irrelevant to the query). However,
issue descriptions in open-source repositories can be vague, leading to noisy signals for relevance
between the issue descriptions and associated code modifications when directly used for training.

To mitigate this, we employ filtering and mining techniques following recent work (Giinther et al.,
2023} Suresh et al., [2024)). First, we apply top-K consistency filtering (Suresh et al.,[2024) to retain
only instances where the positive code snippet is semantically close to the query relative to other code
snippets in the repository. Formally, given an instance ¢ with issue description ¢;, a positive function
¢;, and the set of other unrelated functions F; in the repository, we use a pre-trained embedding model
(CODERANKEMBED (Suresh et al.|[2024)) to compute similarities between ¢;, ¢; and all functions in
F;. Instance ¢ is retained only if ¢; ranks within the top K functions in F;, based on similarity to ;.
We set K = 20, with ablation studies in §5.3.1]

Beyond filtering for relevance of positive pairs, incorporating challenging negatives is crucial for
enabling the model to distinguish between semantically similar instances (Moreira et al., 2024).
To this end, we employ a hard negative mining strategy that leverages the previously computed
similarities to select a set of hard negatives B; = {c_ };‘il for each instance ¢. These negatives ¢
are chosen from F; such that they are among the top M (=15) most similar functions to the query ;.
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4 SWERANK METHODOLOGY

In this section, we present our proposed ranking framework for software issue localization. SWERANK
adopts a two-stage retrieve-and-rerank approach with two key components: (1) SWERANKEMBED, a
bi-encoder retriever that efficiently narrows down candidate code snippets from large codebases; and
(2) SWERANKLLM, a listwise LLM reranker that refines these initial results for improved localization
accuracy. Next, we elaborate on the architecture and training objectives for these components.

4.1 SWERANKEMBED

The retriever component, SWERANKEMBED, utilizes a bi-encoder architecture (Reimers & Gurevych,
2019) to generate dense vector representations for GitHub issues and code functions within a shared
embedding space. Let (¢;, c:r) represent a positive pair from the SWELOC dataset, consisting of an

issue t; and the corresponding code function modified c . The bi-encoder maps these to embeddings
(hl, hi"), derived from the last hidden layer of the encoder For a training batch of size NV, let

= {h; "}, denote the set of positive code embeddings. Let Hp = |J;_, {k; J} 1 be the set of
embeddmgs for the M hard negatives mined for each issue ¢; in the batch (as described in

SWERANKEMBED is trained using an InfoNCE contrastive loss (Oord et al., [2018)). The objectlve
encourages the embedding h; of an issue to have a higher similarity with its corresponding positive
code embedding k", compared to its similarity with all other h; embeddings (k # i) and all hard

negative embeddings h, ; within the batch. The loss for a single positive pair (hs, hj) is
exp(h; - h*)
the(HBuH) eXp(hi : hk)

The denominator sums over the positive embedding A" itself and N (M + 1) — 1 negative embeddings
relative to h;. During inference, candidate code functions for a given issue description are ranked
based on the cosine similarity between their respective embeddings and the issue embedding.

Lcr = —log < ()

4.2 SWERANKLLM

For the reranking stage, we employ SWERANKLLM, an instruction-tuned LLLM for reranking.
SWERANKLLM adopts a listwise ranking approach (Pradeep et al. [2023b)), which offers better
performance than pointwise methods by considering the relative relevance of candidates. Typically,
listwise LLM rerankers are trained to process an input consisting of the query and a set of candidate
documents, each associated with a unique identifier. The model’s training objective is then to generate
the full sequence of identifiers, ordered from most to least relevant according to the ground-truth
ranking. However, since SWELOC does not provide a ground-truth ranking among the negative
functions for the issue ¢;, generating a complete target permutation for training is not feasible.

To adapt listwise reranking training to our setting where only the positive is known, we modify
the training objective Formally, let D := {d; } be a training dataset of triplets, Where each
sample d; = (t;, ¢, {¢; ;}}L,) includes a GltHub issue t;, a relevant positive code c;, and a set
of M irrelevant negative codes {ei. j }jj‘il We first assign a unique numerical identifier from 1 to
M+1) to each function in the set ¢; U {c; ;}2,. Let I} be the identifier assigned to the positive
function c;r. Instead of training the model to predict the full ranked list of identifiers, we train it
to correctly generate the identifier corresponding to the single positive function, I f . Thereby, the

training objective for a given sample d; is thus simplified to maximizing the likelihood of the first
generated (i.e. top-ranked) identifier:

Loy = —log(Py(I}7|x)) ©)
where 7 is the input prompt constructed from the issue ¢; and the set of candidate functions ¢;” U
{eist j”il along with their assigned identifiers, and Py represents the listwise LLM reranker.

During training, we omit the end-of-sequence token after predicting 1, ;“ to retain the model’s capability
to generate full ranked lists for inference, as required by the listwise format. As we show later in our
experiments in §5.3.2] our approach enables finetuning any listwise reranker for the software issue
localization task, without needing the full candidate ranking ordering for training supervision.
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H [y (¥ 1 (¥
Type ‘ Method Model File (%) Module (%) Function (%)

‘ Acc@1 Acc@3 Acc@5 Acc@5 Acc@10 Acc@5 Acc@10
MoatlessTools GPT-40 73.36 84.31 85.04 74.82 76.28 57.30 59.49
Orwall|(2024) Claude-3.5 72.63 85.77 86.13 76.28 76.28 64.60 64.96
SWE-agent GPT-40 57.30 64.96 68.98 58.03 58.03 45.99 46.35

Acent Yang et al.|(2024b)  Claude-3.5 71.37 87.23 90.15 77.74 78.10 64.23 64.60

gen

Openhands GPT-40 60.95 71.90 73.72 62.41 63.87 49.64 50.36

Wang et al.|(2025)  Claude-3.5 76.28 89.78 90.15 83.21 83.58 68.25 70.07

LocAsent Qwen2.5-7B(ft) 70.80 84.67 88.32 81.02 82.85 64.23 71.53

ocAgen _

Chen etal|(2005]  Qwen2.5-328(Ft) 75.91 90.51 92.70 85.77 87.23 71.90 77.01

Claude-3.5 71.74 91.97 94.16 86.50 87.59 73.36 71.37

BM25 (Robertson et al.|[1994) 38.69 51.82 61.68 4526 52.92 31.75 36.86

Jina-Code-v2 (161M) (Giinther et al.|[2023) 43.43 71.17 80.29 63.50 72.63 42.34 52.19

Codesage-large-v2 (1.3B) (Zhang et al.}2024) 47.81 69.34 78.10 60.58 69.71 33.94 44.53
Retriever CodeRankEmbed (137M) (Suresh et al.[|2024)  52.55 71.74 84.67 71.90 78.83 51.82 58.76
SFR-Embedding-2 (7B) (Meng et al.|[2024) 58.03 80.29 83.94 70.07 79.20 56.20 64.23
GTE-Qwen2-7B-Instruct (7B) (Li et al.|[2023) 65.33 82.85 89.78 76.28 83.58 63.14 70.44

SWERANKEMBED-SMALL (137M) (Ours) 66.42 86.50 90.88 79.56 85.04 63.14 74.45

SWERANKEMBED-LARGE (7B) (Ours) 7263 9124 9416 8431 8978 7190 8212
CodeRankLLM (7B) (Suresh et al.| 2024} 7299 8978 9380 8504 9088 7190  83.58

LG Galn SR OSSR SRS BT IS |
+Reranker | SWERANKLLM-SMALL (7B) (Ours) 7810 0234 9433 8905 9270 7956  86.13
SWERANKLLM-LARGE (32B) (Ours) 8321 9489 9599  90.88 9343 8139  88.69

Table 1: Performance (in %) on SWE-Bench-Lite. The rerankers use SWERANKEMBED-LARGE as the retriever.
Gray corresponds to results with closed-source models. Best retriever numbers are in blue, while best overall
numbers (except GPT-4.1) are in bold.

5 EXPERIMENTS

The experiments compare SWERANK’s performance against state-of-the-art agent-based localization
methods, and other code ranking models (§5.2). Furthermore, we investigate the impact of our
SWELOC dataset, analyzing how its quality controls (such as consistency filtering) and size influence
model performance (§5.3.1)), and examining its generalizability by evaluating effectiveness in fine-
tuning various pre-existing retriever and reranker models for the issue localization task (§5.3.2).

5.1 SETUP

Model Training: We train the SWERANK models in two sizes: small and large. All models
are finetuned using our SWELOC dataset. SWERANKEMBED-SMALL is initialized with CodeR-
ankEmbed (Suresh et al.} [2024), a SOTA 137M code embedding model, while the large variant is
initialized with GTE-Qwen2-7B-Instruct (Li et al., [2023)), a 7B parameter text embedding model
employing Qwen2-7B-Instruct as its encoder. The small version of SWERANKLLM is initialized
with CODERANKLLM (Suresh et al.,|2024), a 7B parameter code-pretrained listwise reranker. The
large version is initialized with Qwen-2.5-32B-Instruct that is pretrained using text listwise reranking
data (Pradeep et al.|[2023b). More details in Appendix

Baselines: Our primary comparison is against prior agent-based localization methods. Specifically,
we include OpenHands (Wang et al., [2025)), SWE-Agent (Yang et al.,|2024b)), MoatlessTools (Orwall,
2024) and LocAgent (Chen et al., [2025), the current SOTA agent-based approach. Notably, these
methods predominantly use closed-source models, with LocAgent also finetuning open-source models
for this task. For the retrieve-and-rerank framework, we compare SWERANKEMBED-SMALL against
BM25 (Robertson et al.,|1994) and several code embedding models of comparable size, including Jina-
Code-v2 (Giinther et al.}[2023)), Codesage-large-v2 (Zhang et al.}[2024)), and CodeRankEmbed (Suresh
et al.| [2024). For the 7B parameter embedding model comparison, we include GTE-Qwen2-7B-
Instruct, which ranks third on the MTEB leaderboard (Muennighoff et al., |2023) at the time of
evaluation. For the reranker comparison, we include CODERANKLLM and other closed source-
models such as GPT-4.1. Due to the larger size of LocBench, comparisons on this benchmark are
limited to a subset of the best-performing baselines.
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Method \ Loc Model File (%) Module (%) Function (%)
‘ Acc@5 Acc@10 Acc@10 Acc@15 Acc@10 Acc@15
Agentless Claude-3.5 67.50 67.50 53.39 53.39 42.68 42.68
OpenHands Claude-3.5 79.82 80.00 68.93 69.11 59.11 59.29
SWE-agent Claude-3.5 77.68 77.68 63.57 63.75 51.96 51.96
Qwen2.5-7B(ft) 78.57 79.64 63.04 63.04 51.43 51.79
LocAgent
Claude-3.5 83.39 86.07 70.89 71.07 59.29 60.71
CodeRankEmbed (137M) 74.29 80.36 63.93 67.86 47.86 50.89
Retriever | — - OnE-Qwen2-7B-Instruct (7B) 7554 8250 67.14 7161 5179 5714

SWERANKEMBED-SMALL (137M)  80.36 84.82 71.43 75.00 58.57 63.39
SWERANKEMBED-LARGE (7B) 82.14 86.96 75.54 78.93 63.21 67.32

CodeRankLLM (7B) 8393 8821 7696 8089 6464 6929
I o ol TN I L
+Reranker | SWERANKLLM-SMALL (7B) 8554 8839  70.11 8204  69.46  74.46

SWERANKLLM-LARGE (32B) 86.61 89.82 81.07 83.21 71.25 76.25

Table 2: Performance (in %) on LocBench. The rerankers use SWERANKEMBED-LARGE as the retriever.
Gray correspond to results with closed-source models. Best retriever model numbers are in blue, while best
overall numbers (except GPT-4.1) are in bold.

Datasets & Metrics: We evaluate on SWE-Bench-Lite (Jimenez et al.,[2023) and LocBench (Chen
et al.| 2025). Following |Suresh et al.| (2024), we exclude examples from SWE-Bench-Lite where no
existing functions were modified by the patch, resulting in 274 retained examples out of 300. While
SWE-Bench-Lite primarily consists of bug reports and feature requests, LocBench ( 560 examples)
also includes security and performance issues. Consistent with |Chen et al.| (2025)), we measure
localization performance at three granularities: file, module (class) and function, with Accuracy at
k (Acc@Xk) as the evaluation metric. This metric deems localization successful if all relevant code
locations are correctly identified within the top-k results. The relevance score for a specific file or
module is determined by the maximum score of any function contained within that file or module.

5.2 LOCALIZATION RESULTS

Table [T compares performance of different localization methods on the SWE-Bench-Lite benchmark.
The results indicate that our SWERANK models surpasses the performance of all evaluated agent-
based methods. Furthermore, the SWERANKEMBED-SMALL model, despite its relatively small
size of 137M parameters, demonstrates highly competitive performance, outperforming prior 7B
parameter embedding models. Notably, SWERANKEMBED-LARGE achieves higher Acc@10 for
function localization than LocAgent with Claude-3.5. Employing the SWERANKLLM reranker
subsequently enhances the retriever’s output, establishing a new SOTA for localization performance
on this benchmark across all granularities. Qualitative examples are provided in Appendix

Table [2| shows results on LocBench. A sim-
ilar trend is observed, with the large variants = oarn o 29
of SWERANKEMBED and SWERANKLLM set-
ting new SOTA performance. Figure [] pro-
vides a detailed breakdown of localization ac-

curacy across the four distinct difficulty cate- | | I I I I I I I I
0.

gories within LocBench. Despite being primar- oug Repon FeaureReqest peromance Secunty
ily trained with bug reports in SWELOC, the Figure 4: Localization performance across different

SWERANK models demonstrate impressive gen- categories within LocBench. SWERANK considerably
eralizability across other categories. outperforms Agent-based methods using Claude-3.5.

Openhands = SweRankEmbed (137M)

[

5

5.3 ANALYSIS

Our analysis presented in this section aims to demonstrate the following key points: 1) the impact of
SWELOC data quality and size on final model performance (§5.3.1); 2) the utility of SWELOC for
finetuning various retriever and reranker models (§5.3.2} and 3) the cost-effectiveness of the proposed
SWERANK framework (§5.3.3). Unless otherwise mentioned, the results are on SWE-Bench-Lite.
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(a) While accuracy improves from doing consistency filtering, % of Training Data

i.e. discarding instances where the positive’s rank among (b) All metrics show a general upward trend as
negatives is > K, no filtering (K =None) hurts performance. the percentage of training data (K=20) increases.

Figure 6: Impact of (a) training data filtering and (b) data size on SWERANKEMBED-SMALL performance.

5.3.1 DATA QUALITY AND SIZE

Public GitHub repositories, as a source for contrastive data, often contain noisy instances. This
study first examines the effectiveness of consistency filtering (§3.3), specifically the influence of
the positive-rank threshold, K. This parameter dictates the minimum rank of the instance’s positive
(relative to negatives, based on similarity with the issue description) for inclusion of the instance in
the training set. Increasing K relaxes the filtering, yielding more training instances but potentially
introducing more noise. As shown in Figure[6a] finetuning SWERANKEMBED-SMALL with SWELOC
data filtered by different K values reveals that optimal performance is achieved with a moderate K
(e.g., K=20), striking a balance between instance quality and dataset size. The absence of filtering
(K=None) proves detrimental as performance drops after finetuning compared to pre-trained model.

-@- Large Finetuned
--- Large Pretrained

Small Finetuned
Small Pretrained

Controlling for data quality (by fixing K'=20), the impact of
dataset size is investigated. Figure [6b]illustrates that training
with varying proportions of the filtered data yields consider-
able performance improvements, even with only 5% of the
data. Generally, larger dataset sizes correspond to further
performance gains. These experiments underscore the signif-
icance of both data quality and quantity, demonstrating that = ; ;
merely increasing data volume without quality control can Neapties Regotues’ “Regatves”
be detrimental. Further, the impact of negative hardness on .
SWERANKEMBED performance is examined. Figure[5]shows Figure 5: Plot showing SWERANKEM-
localization accuracy for Large and Small variants (finetuned E ED performance against increasingly
. L. . . . ard negatives in SWELOC. Finetuned
a.nd pr.et'ralned) with 1ncre.as1ng.ly hard negatives. I.n an itera- o el notably improve from an addi-
tive mining approach, 1st iteration negatives are mined using  ional iteration of negative mining.
the small pretrained model, and 2nd iteration negatives use the
small model from 1st iteration. Results indicate that finetuning with random negatives yields smaller
gains, while using 2nd iteration negatives yields notably improves performance over the 1st iteration.

@
3

N
@

-
S

Function Acc@10 (%)
o
&

5.3.2 CHOICE OF RETRIEVER AND RERANKER

Here, we demonstrate the effectiveness of SWELOC
by showing improvements for a variety of retriever
and reranker models from finetuning. First, the follow- CodeRankEmbed —English+Code 59.5—72.3 (+12.8)
ing embedding models, pre-trained on different data  Arctic-Embed English  53.7—71.9 (+17.4)
types, are finetuned for one epoch on SWELOC: Arctic-  Arctic-Embed-v2.0 Multilingual =~ 62.0—70.1 (+8.1)
Embed (Merrick et al. [2024)), primarily pre-trained
on English text retrieval data; CodeRankEmbed, pre-
trained on 22 million NL-to-Code examples (Suresh
et al.,[2024); and Arctic-Embed-v2.0 (Yu et al.l2024), pre-trained on a mix of English and multi-
lingual data. From Table 3] we see all models showing significant performance improvement from
finetuning. Notably, models that initially performed weaker (e.g., Arctic-Embed) showed greater
gains. This outcome validates that SWELOC can substantially improve the performance of any
embedding model for software issue localization.

Base Retriever Pretrain  Func. Acc@10 (%)

Table 3: Accuracy (Before— After) from fine-
tuning different retrievers with SWELOC data.
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Next, text- and code-instruction-tuned LLMs of
different sizes from the Qwen2.5 family (Yang
et al.l |2024c; |Hui et al., |2024) are finetuned as
listwise LLM rerankers using SWELOC data.
Since we only apply loss on the first genera-
tion token, to ensure compatibility with the list-
wise output format, all models were initially pre-
trained on listwise text reranking data (Pradeep

Base LLM Reranker

Func. Acc@5 (%)

Func. Acc@10 (%)

Qwen-2.5-Text (32B)
Qwen-2.5-Code (32B)
Qwen-2.5-Text (7B)
Qwen-2.5-Code (7B)
Qwen-2.5-Text (3B)
Qwen-2.5-Code (3B)

77.0—81.4 (+4.4)
76.3—79.9 (+3.6)
75.2-375.6 (+0.4)
75.5—75.9 (+0.4)
68.3—73.7 (+4.6)
71.2—71.9 (+0.7)

82.5 —86.1 (+3.6)
81.8 —84.7 (+2.9)
81.4 —82.5 (+1.1)
81.0 —83.6 (+2.6)
76.6—82.5 (+5.9)
80.3—81.0 (+0.7)

et al., 2023b)), which provides the full ranking
order to use for supervision. The results, shown
in Table 4] indicate that rerankers across differ-
ent model sizes universally benefit from finetuning on SWELOC. An interesting observation is that the
code-pretrained model performs marginally better at the 7B scale, while the text-pretrained models
achieve better results at the 3B and 32B scales. Results with finetuning Llama-3.1 are in Appendix [B]

Table 4: Localization accuracy (Before— After) from
finetuning different listwise rerankers with SWELOC.

5.3.3 INFERENCE COST ANALYSIS
Agent-based localization approaches typically involve Acc@10
multiple iterations, each requiring extensive chain-of- Mt Medel Cost® L "o
thought generation (Wang et al.| [2023b)), incurring consid- SWE-agent 774 0.46 08
erable cost at inference. In contrast, SWERANK offers sig- Claude-3.5 0.67 10
nificant cost-effectiveness as the SWERANKLLM reranker Openhands T~ 0.83 0.6
only needs to generate output candidate identifiers to deter- Claude-3.5 0.79 0.9
mine the ranking order. Furthermore, the SWERANKEM- Claude-3.5 0.66 12
BED output embeddings can be pre-computed, resulting  LocAgent  Quen2.5-78(ft) 0.05 132
in negligible extra cost. Table[5]compares the inference Quen2.5-328(Ft) 009 86
costs of SWERANKLLM with other agent-based meth- GPT-4.1 0.16 59
ods. Clearly, agent-based approaches, often relying on ~ Rernker  SWERANKLLM(7B) 0011 79.0
SWERANKLLM (32B)  0.015 575

closed-source models for better performance, are highly
cost-intensive. SWERANK is substantially cheaper while
providing significantly better performance, with up to 6X
better performance-cost tradeoffs compared to LocAgent.

Table 5: SWERANKLLM has considerably
better inference cost-efficiency than agent-
based methods while being more performant.

5.3.4 IMPACT ON DOWNSTREAM ISSUE RESOLUTION

This section analyzes the impact of improved localization on

downstream code repair performance. To evaluate issue res- Localization File Acc@l Repair Pass@1

olution, we utilize SWE-Fixer (Xie et al.l 2025)), a two-step SWE-Fixer 69.7 21.0
pipeline consisting of code file retrieval (localization) followed LocAgent 78.5 22.6
by code editing. We compare the repair outcomes when em- swERank 83.2 24.5
ploying different localization methods: the native localization (.o 100 759

mechanism of SWE-Fixer, LocAgent (with Claude-3.5), our
SWERANK (large variant), and an oracle. The oracle simu-
lates perfect localization by using the ground-truth edited file,
thereby providing an upper bound for the repair framework. For code editing, we use the SWE-Fixer-
72B model. Repair performance is measured by Pass@1 on SWE-Bench-Lite. From Table [6] we see
that better localization provided by SWERANK yields improved issue resolution, with oracle results
showing that repair performance is currently constrained by the code editing model.

Table 6: Impact of localization accu-
racy on downstream issue resolution.

6 CONCLUSION

This paper frames software issue localization as a specialized ranking task and introduces SWERANK,
a highly performant and cost-effective retrieve-and-rerank framework. To effectively train SWERANK
models, we construct SWELOC, a large-scale contrastive training dataset derived from real-world
GitHub issues, employing consistency filtering and hard-negative mining for quality. Empirical evalu-
ations on SWE-Bench-Lite and LocBench demonstrate state-of-the-art localization performance using
SWERANK, significantly outperforming costly closed-source agent-based systems. The introduction
of SWELOC dataset provides a valuable resource for advancing research in this domain.
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REPRODUCIBILITY STATEMENT

We plan to release the dataset publicly for the benefit of the community. The supplementary material
attached provides scripts for model training, in addition to the dataset construction process. More
details about model training necessary for reproducing experiments are provided in Appendix
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A TRAINING DETAILS

A.1 SWERANKEMBED

Our data filtering, negative mining, and model finetuning are implemented using the contrastors
package (Nussbaum et al.,[2024)). The SWERANKEMBED-SMALL encoder uses CODERANKEMBED,
which was initialized with Arctic-Embed-M (Merrick et al 2024), a text encoder supporting an
extended context length of 8,192 tokens and pretrained on large-scale web query- document pairs,
along with public text retrieval datasets (Yang et al.,|2018; Kwiatkowski et al.,|2019; [Thorne et al.}
2018)). The encoder supports a query prefix “Represent this query for searching relevant code: ”, as
set by (Suresh et al., 2024). The model is finetuned using 8 GH200 GPUs for two epochs with a
learning rate of 2e-5, a batch size of 64 and 15 hard negatives per example.

The SWERANKEMBED-LARGE encoder uses GTE-Qwen2-7B-Instruct (Li et al.| 2023)), which was
pretrained on a large corpora of text retrieval data. For this model, we use a custom query prefix
“Instruct: Given a github issue, identify the code that needs to be changed to fix the issue. Query: ”.
The model is finetuned using 8 GH200 GPUs for 1 epoch with a learning rate of 8e-6, a batch size of
64 and 7 hard negatives per example.

A.2 SWERANKLLM

Training data: For each <query, positive, negatives> tuple from SWELOC, we randomly sample
9 negative codes to fit the listwise reranking window size of 10 along with the positive code. To
prevent the positional bias from affecting the reranker and ensure model robustness (Pradeep et al.,
2023a), we shuffle the order of candidate codes for each training example. Since the combined length
of a GitHub issue and corresponding candidate codes may exceed the model’s maximum embedding
size, we set the maximum length per candidate code to 1024 and the total length limit to 16348.
For overlong prompts, we truncate the query to reach the maximum total length. This preserves
meaningful context for issue localization as much as possible within the limited context window
size for effective model training. The rerankers are all first pretrained with text listwise reranking
data (Pradeep et al.||2023b)) to teach the model to follow the listwise output format.

Hyperparameters: For the LLM reranker training, with both text reranking and SWELOC data, we
trained for one epoch with a global batch size of 128, an initial learning rate of Se-6 with 50 warmup
steps, cosine learning rate scheduler, bfloat16 precision, and noisy embeddings (Jain et al., [2023)
with a noise scale o = 5. For efficient long-context, multi-gpu training, we used DeepSpeed (Rasley
et al.,[2020) ZeRO stage 3 with 16 GH200 GPUs.

B EXPERIMENTS WITH MORE RERANKER MODELS

To demonstrate the broader applicability of our
dataset, we conduct experiments with finetun-  Method Type
ing Llama-3.1 8B Instruct (Grattafiori et al.} Acc@5 Acc@10 Acc@5 Acc@10
2024) as a listwise reranker. The models are
first pre-trained on general text reranking data ~ Zeroshot Reranker - 60.22 8139 61.96  69.11
from RankZephyr (Pradeep et al.,[2023b) and RankZephyr finetune 72.99  80.29  64.11  70.00
subsequently finetuned on our SWELOC dataset. + SWELOC finetune ~ 77.01  85.77  68.04  73.04
Results, shown in Table [/} demonstrate signif-
icant performance gains on both SWE-Bench-
Lite and LocBench after fine-tuning on SWE-
Loc. This confirms that our dataset is a valuable resource for improving the issue localization
capabilities of various LLM families, not just Qwen 2.5.

SWE-Bench-Lite LocBench

Table 7: Function localization accuracy of Llama-
3.1 8B Instruct as a listwise LLM reranker.
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C DIVERSITY OF ISSUE ToOPICS IN SWELOC

To provide more insight into the variety and complexity of issue topics in SWELOC, we analyze

the distribution of topics for 10k randomly sampled instances. We use Nomic Atla

a popular

unstructured text visualization tool, that employs a cluster-based keyword identification algorithm
and leverages a language model to generate topics. Figure[7]shows the frequency of top-15 topics.
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Figure 7: Top-15 issue topics and their frequencies from a randomly sampled subset of SWELOC.

D QUALITATIVE EXAMPLES

Figure [8|presents qualitative examples from SWE-Bench-Lite where SWERANK correctly localizes
the function to edit while LocAgent is unable to. In both instances, LocAgent incorrectly identifies
functions that likely correspond to where the problem manifests rather than where it originates.

GitHub Issue

GitHub Issue

Title: Django Translation System Check Issue

Description: translation.E004 shouldn't be raised on sublanguages when a base
language is available.

)

Title: Sci-kit-learn Data Transform Issue

Description: ColumnTransformer with pandas output can't
handle transformers with no feature

J

LocAgent Localization Top 1

LocAgent Localization Top 1

File Path: django/utils/translation/trans_real.py x

File Path: sklearn/compose/_column_transformer.py x

def (lang_code, strict=False):

possible_lang_codes = get_possible_lang_codes(lang_code)
code = find_supported_code(possible_lang_codes, get_languages())
if code: return code
if not strict:

variant = find_variant_match(lang_code, get_languages())

if variant:

return variant

raise LookupError(lang_code)

SWERank Localization Top 1

File Path: django/core/checks/translation.py <

def check_language_settings_consistent(app_configs, *xkwargs):
"""Epror if language settings are not consistent with each other."""
available_tags = {i for i, _ in settings.LANGUAGES} | {'en-us'}
if settings.LANGUAGE_CODE not in available_tags:
return [E004]
return []

def _iter(self, fitted, replace_strings, col_as_strings):

transformers = self._get_transformers(fitted,
replace_strings)
get_weight = (self.transformer_weights or {}).get
for name, trans, columns in transformers:
if (trans := self._process_transformer(name,
trans, columns, replace_strings, col_as_strings)):
yield (name, trans, columns, get_weight(name))

SWERank Localization Top 1

File Path: sklearn/compose/_column_transformer.py L4

def (self, Xs):
if self.sparse_output_:
converted_Xs =
[_validate_sparse_input(X) for X in Xs]
return sparse.hstack(converted_Xs).tocsr()
elses:
processed_Xs =
return

_prepare_dense_arrays(Xs)
_handle_output_format(self, processed_Xs)

Figure 8: Examples from SWE-Bench-Lite where LocAgent mislocalizes the function, while our
SWERank framework does function localization correctly

Zhttps://atlas.nomic.ai/
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