
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SWERANK: SOFTWARE ISSUE LOCALIZATION
WITH CODE RANKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Software issue localization, the task of identifying the precise code locations (files,
classes, or functions) relevant to a natural language issue description (e.g., bug
report, feature request), is a critical yet time-consuming aspect of software devel-
opment. While recent LLM-based agentic approaches demonstrate promise, they
often incur significant latency and cost due to complex multi-step reasoning and
relying on closed-source LLMs. Alternatively, traditional code ranking models,
typically optimized for query-to-code or code-to-code retrieval, struggle with the
verbose and failure-descriptive nature of issue localization queries. To bridge this
gap, we introduce SWERANK, an efficient and effective retrieve-and-rerank frame-
work for software issue localization. To facilitate training, we construct SWELOC,
a large-scale dataset curated from public GitHub repositories, featuring real-world
issue descriptions paired with corresponding code modifications. Empirical results
on SWE-Bench-Lite and LocBench show that SWERANK achieves state-of-the-art
performance, outperforming both prior ranking models and costly agent-based
systems using closed-source LLMs like Claude-3.5. Further, we demonstrate SWE-
LOC’s utility in enhancing various existing retriever and reranker models for issue
localization, establishing the dataset as a valuable resource for the community.

1 INTRODUCTION

The scale and complexity of modern software systems continue to grow exponentially, with a
significant portion of development effort dedicated to identifying and resolving software issues. This
has fueled growth in automated software issue fixing (Cognition AI, 2024), with recent LLM-based
patch generation (Yang et al., 2024a; Gauthier, 2024) solving real-world issues on benchmarks such
as SWE-Bench (Jimenez et al., 2023), and commercial copilots integrating “one-click” quick-fix
suggestions directly into IDEs (Microsoft, 2023; Cursor, 2025; Windsurf, 2025). Central to the
process of fixing software issues is the task of issue localization: accurately identifying where in the
codebase the necessary changes should be made. This involves pinpointing the specific files, classes,
or functions relevant to a given issue description, typically provided in natural language (e.g., a bug
report). Effective localization is critical; without correctly identifying the relevant code segments,
any subsequent attempt at automated repair is likely to fail or, worse, introduce new faults.

Given the importance of localization, recent work treats it as an agentic reasoning problem (Yao
et al., 2023) and has investigated the use of sophisticated LLM-based agents (Yang et al., 2024b;
Yu et al., 2025; Chen et al., 2025) that issue commands such as ‘read-file’, ‘grep’ and ‘traverse-
graph’ to iteratively explore codebases, navigate file structures, search for code patterns, and analyze
dependencies. While powerful, these agent-based compound systems often involve multiple rounds
of interaction (≈7–10 on average) with large models and complex reasoning processes, which can
incur considerable API costs (≈$0.66 per example with Claude-3.5) at high latency. Moreover, agent
traces are brittle: they rely on temperature sampling and require complex tool orchestration.

An alternative, more efficient strategy is to frame issue localization as an information retrieval
problem, specifically using code ranking models (Yue et al., 2021; Zhang et al., 2024; Suresh
et al., 2024). Such models can directly rank candidate code snippets (e.g., functions or files)
based on their relevance to a given natural language query, and quickly score and sort potential
locations within a large codebase. However, prior code ranking models are still inferior in per-
formance as they have predominantly been optimized for tasks distinct from issue localization.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

These typically include query-to-code retrieval (Li et al., 2024a), which aims to find code im-
plementing a described functionality, and code-to-code retrieval (Wang et al., 2023a; Li et al.,
2024b), focused on identifying semantically similar code fragments. The task of issue localiza-
tion presents unique characteristics; input queries (issue descriptions) are often substantially more
verbose than typical NL-to-code queries1 and, more crucially, issues tend to describe observed
erroneous behavior or system failures rather than specifying desired functionality. This fundamental
difference in query nature and intent suggests that models trained on conventional code retrieval
data (Husain et al., 2019; Suresh et al., 2024) may not be optimally suited for issue localization.

Figure 1: Comparison of localization perfor-
mance versus cost per instance on SWE-Bench-
Lite. Our proposed SWERANKEMBED retriever
and SWERANKLLM reranker models achieve su-
perior accuracy at a significantly lower cost com-
pared to agent-based localization methods.

To bridge this gap, we introduce SWERANK, a code
ranking framework trained specifically for software
issue localization. SWERANK employs a standard
yet effective retrieve-and-rerank architecture, compris-
ing two core components: (1) SWERANKEMBED, a
bi-encoder embedding model serving as the code re-
triever; and (2) SWERANKLLM, an instruction-tuned
LLM serving as a code reranker. To train SWERANK,
we construct SWELOC, a new large-scale issue local-
ization dataset curated from public Github repositories,
providing realistic training examples. SWERANKEM-
BED is trained using a contrastive objective, where the
issue descriptions serve as queries, the known local-
ized functions act as positive examples, and carefully
mined code snippets from the same repository func-
tion as hard negatives. Subsequently, SWERANKLLM
is trained as a list-wise reranker (Reddy et al., 2024);
it takes as input the issue description alongside the
top-K candidates retrieved by SWERANKEMBED and
predicts an improved ranking permutation, thereby enhancing the final localization.

Empirical results demonstrate that SWERANK achieves state-of-the-art performance for file, module
and function-level localization on Swe-Bench-Lite (Jimenez et al., 2023) and LocBench (Chen et al.,
2025). Further, we show that SWERANK, built on open-source models, has a considerably better
performance to cost ratio compared to agent-based approaches that employ closed-source LLMs like
Claude-3.5 (Anthropic, 2023), as illustrated in Figure 1. Finally, we demonstrate the effectiveness of
our SWELOC data by showing that it consistently improves localization performance when used for
finetuning a variety of text and code-pretrained retriever and reranker models.

2 RELATED WORK

2.1 SOFTWARE ISSUE LOCALIZATION

Software issue localization or Fault Localization (FL) aims to identify the specific code locations
responsible for reported bugs. Traditional fault localization methods (Wong et al., 2016) can be
grouped into spectrum-based and program-analysis approaches. Spectrum-based fault localization
(SFL) (de Souza et al., 2016; Amario de Souza et al., 2024) statistically associates test outcomes
with executed code elements to rank statements or functions by their ‘suspiciousness’ based on
passing and failing test coverage. Complementary static and dynamic analyses exploit program
structure–through call-graph traversal (Adhiselvam et al., 2015), dependency analysis (Elsaka, 2017),
or program slicing (Soremekun et al., 2021)–to constrain the search space of potential bug locations.
While these methods provide a statistical basis for finding faults, they require precise program models
and cannot leverage the rich natural language context in bug reports.

Modern approaches instead use LLM-based agent frameworks that treat bug localization as a planning
and searching problem. AgentFL (Qin et al., 2024) incorporates a multi-agent system with a three step
procedure involving interpreting the bug context, traversing the codebase and verifying the suspected
fault. OpenHands (Wang et al., 2025) and SWE-Agent (Yang et al., 2024b) use bash commands

1 460 tokens in SWE-Bench (Jimenez et al., 2023) issues vs 12 tokens in CSN (Li et al., 2024a) queries.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Overview of SWELOC data construction pipeline, illustrating the three main stages.

or custom interfaces to navigate repositories and access files. Other agentic systems combine IR
with tool use: MoatlessTools (Örwall, 2024) integrates a semantic code search engine into an agent’s
loop to guide it to relevant files. More recently, LocAgent (Chen et al., 2025) constructs a graph
of the codebase for an LLM agent to do multi-hop reasoning over code dependencies. While these
agent-driven approaches have achieved impressive results, they incur substantial costs and have high
latency. Agent-based methods must orchestrate multiple steps of reasoning and tool use, which makes
them brittle; a single failure in the chain (e.g., a misleading intermediate query or an incomplete
code observation) can derail the entire localization process. SWERANK instead formulates issue
localization as a single-shot ranking problem, which is highly efficient and cost-effective.

2.2 CODE RANKING

Transformer-based code ranking models (Wang et al., 2023c; Zhang et al., 2024; Günther et al., 2023;
Suresh et al., 2024) have set state-of-the-art on a variety of code retrieval tasks (Li et al., 2024a;b) by
learning joint embeddings of text and code. Wang et al. (2023c) and Zhang et al. (2024) learn improved
code representations by incorporating a mix of training objectives, such as span denoising, text-code
matching and causal LM pretraining, over large-scale code corpora such as CodeSearchNet (Husain
et al., 2019) and The Stack (Kocetkov et al., 2022). Suresh et al. (2024) improve the contrastive
training process between function snippets and associated doc-strings with better consistency filtering
and harder negative mining. Liu et al. (2024b) incorporate multi-task contrastive data that includes
code contest generation (Billah et al., 2024), code summarization (Sontakke et al., 2022), code
completion (Liu et al., 2024a), code translation (Pan et al., 2024) and code agent conversation (Jin
et al., 2024). However, prior code ranking models rarely include error logs in their training data and
are not optimized for issue localization, where queries are verbose bug reports rather than precise
functionality requests. In contrast, SWERANK is explicitly trained on SWELOC, a new automatically
collected set of real-world issue reports paired with known buggy functions. By optimizing a bi-
encoder retriever and a listwise LLM reranker on this task-specific data, SWERANK directly aligns
verbose bug descriptions with faulty code, thereby improving localization accuracy.

3 SWELOC: ISSUE LOCALIZATION DATA

Existing code retrieval datasets (Husain et al., 2019; Suresh et al., 2024) are generally valuable for
tasks like NL-to-code search which mainly requires functionality matching. However, they are sub-
optimal for training models aimed at software issue localization. The nature of software issues–often
detailed descriptions of failures rather than concise functional specifications–necessitates a dataset that
accurately reflects this challenge of precisely identifying the problematic functions. To address this
gap and provide a suitable training ground for our SWERANK framework, we constructed SWELOC,
a novel large-scale dataset specifically curated for the task of localizing code snippets relevant to
software issues. SWELOC is derived from real-world software development activities captured in
public GitHub repositories. Our methodology comprises three main phases: (1) identifying and
filtering relevant pull requests (PRs) from popular Python repositories (§3.1), (2) processing these
PRs to extract issue descriptions paired with their corresponding code modifications (§3.2), and (3)
applying consistency filtering and hard-negative mining to enhance the quality of training instances
(§3.3). An overview of this process is shown in Figure 2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: (Left) Distribution of query lengths in the SWELOC dataset. The red dashed line indicates a mean
query length of 382.56 tokens, underscoring the detailed nature typical of issue reports. (Right) Distribution of
the number of (a) files, (b) modules, and (c) functions modified per GitHub issue. This highlights that while many
localizations are concentrated, a significant number span multiple code units, particularly at finer granularities.

3.1 IDENTIFYING RELEVANT PRS

Our data collection involves selecting the repositories associated with the top 11,000 PyPI packages
on GitHub. To ensure repository quality and relevance to our task, we apply several filtering criteria.
Repositories are required to contain at least 80% Python code. To prevent data leakage and overlap
with existing benchmarks, we exclude repositories already present in SWE-Bench (Jimenez et al.,
2023) and LocBench (Chen et al., 2025). Finally, we perform deduplication based on source code
overlap to remove near-identical repositories. This process results in a curated set of 3387 repositories.

Following the SWE-Bench methodology, we identify pull requests (PRs) within these repositories
that (1) resolve a linked GitHub issue and (2) include modifications to test files, indicating the issue
resolution was verified. For each such PR, we collect the issue description and the codebase snapshot
at the PR’s base commit. This procedure results in 67,341 initial (PR, codebase) pairs. Figure 3
provides further details on the dataset’s composition, including query and repository edit distributions.

3.2 LOCALIZATION PROCESSING

Using the collected (PR, codebase) pairs, we create contrastive training data in the form of ⟨query,
positive, negatives⟩ tuples. For each tuple, the issue description serves as the query. Each function
modified within the PR is designated as a positive example, corresponding to a distinct training
instance. Thus, a PR modifying N functions yields N training instances. The negatives for each
instance come from the unmodified functions within the corresponding codebase. This initial set of
instances are further refined via consistency filtering and hard-negative mining, as described next.

3.3 CONSISTENCY FILTERING AND HARD NEGATIVES

The quality of ⟨query, positive, negatives⟩ tuples used for training significantly impacts the ranking
model performance (Suresh et al., 2024). Effective contrastive learning requires relevant positives
and challenging negatives (semantically similar to the positive but irrelevant to the query). However,
issue descriptions in open-source repositories can be vague, leading to noisy signals for relevance
between the issue descriptions and associated code modifications when directly used for training.

To mitigate this, we employ filtering and mining techniques following recent work (Günther et al.,
2023; Suresh et al., 2024). First, we apply top-K consistency filtering (Suresh et al., 2024) to retain
only instances where the positive code snippet is semantically close to the query relative to other code
snippets in the repository. Formally, given an instance i with issue description ti, a positive function
ci, and the set of other unrelated functions Fi in the repository, we use a pre-trained embedding model
(CODERANKEMBED (Suresh et al., 2024)) to compute similarities between ti, ci and all functions in
Fi. Instance i is retained only if ci ranks within the top K functions in Fi, based on similarity to ti.
We set K = 20, with ablation studies in §5.3.1.

Beyond filtering for relevance of positive pairs, incorporating challenging negatives is crucial for
enabling the model to distinguish between semantically similar instances (Moreira et al., 2024).
To this end, we employ a hard negative mining strategy that leverages the previously computed
similarities to select a set of hard negatives Bi = {c−j }Mj=1 for each instance i. These negatives c−j
are chosen from Fi such that they are among the top M (=15) most similar functions to the query ti.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 SWERANK METHODOLOGY

In this section, we present our proposed ranking framework for software issue localization. SWERANK
adopts a two-stage retrieve-and-rerank approach with two key components: (1) SWERANKEMBED, a
bi-encoder retriever that efficiently narrows down candidate code snippets from large codebases; and
(2) SWERANKLLM, a listwise LLM reranker that refines these initial results for improved localization
accuracy. Next, we elaborate on the architecture and training objectives for these components.

4.1 SWERANKEMBED

The retriever component, SWERANKEMBED, utilizes a bi-encoder architecture (Reimers & Gurevych,
2019) to generate dense vector representations for GitHub issues and code functions within a shared
embedding space. Let (ti, c+i) represent a positive pair from the SWELOC dataset, consisting of an
issue ti and the corresponding code function modified c+i . The bi-encoder maps these to embeddings
(hi, h

+
i), derived from the last hidden layer of the encoder. For a training batch of size N , let

H = {h+
i }Ni=1 denote the set of positive code embeddings. Let HB =

⋃n
i=1{h

−
ij}Mj=1 be the set of

embeddings for the M hard negatives mined for each issue ti in the batch (as described in §3.3).

SWERANKEMBED is trained using an InfoNCE contrastive loss (Oord et al., 2018). The objective
encourages the embedding hi of an issue to have a higher similarity with its corresponding positive
code embedding h+

i , compared to its similarity with all other h+
k embeddings (k ̸= i) and all hard

negative embeddings h−
kj within the batch. The loss for a single positive pair (hi, h

+
i) is:

LCL = − log

(
exp(hi · h+

i)∑
hk∈(HB∪H) exp(hi · hk)

)
(1)

The denominator sums over the positive embedding h+
i itself and N(M+1)−1 negative embeddings

relative to hi. During inference, candidate code functions for a given issue description are ranked
based on the cosine similarity between their respective embeddings and the issue embedding.

4.2 SWERANKLLM

For the reranking stage, we employ SWERANKLLM, an instruction-tuned LLM for reranking.
SWERANKLLM adopts a listwise ranking approach (Pradeep et al., 2023b), which offers better
performance than pointwise methods by considering the relative relevance of candidates. Typically,
listwise LLM rerankers are trained to process an input consisting of the query and a set of candidate
documents, each associated with a unique identifier. The model’s training objective is then to generate
the full sequence of identifiers, ordered from most to least relevant according to the ground-truth
ranking. However, since SWELOC does not provide a ground-truth ranking among the negative
functions for the issue ti, generating a complete target permutation for training is not feasible.

To adapt listwise reranking training to our setting where only the positive is known, we modify
the training objective. Formally, let D := {di}|D|

i=1 be a training dataset of triplets, where each
sample di := (ti, c

+
i , {c

−
i,j}Mj=1) includes a GitHub issue ti, a relevant positive code c+i , and a set

of M irrelevant negative codes {c−i,j}Mj=1. We first assign a unique numerical identifier from 1 to
M+1) to each function in the set c+i ∪ {c−i,j}Mj=1. Let I+i be the identifier assigned to the positive
function c+i . Instead of training the model to predict the full ranked list of identifiers, we train it
to correctly generate the identifier corresponding to the single positive function, I+i . Thereby, the
training objective for a given sample di is thus simplified to maximizing the likelihood of the first
generated (i.e. top-ranked) identifier:

LLM = − log(Pθ(I
+
i |x)) (2)

where x is the input prompt constructed from the issue ti and the set of candidate functions c+i ∪
{c−i,j}Mj=1 along with their assigned identifiers, and Pθ represents the listwise LLM reranker.

During training, we omit the end-of-sequence token after predicting I+i to retain the model’s capability
to generate full ranked lists for inference, as required by the listwise format. As we show later in our
experiments in §5.3.2, our approach enables finetuning any listwise reranker for the software issue
localization task, without needing the full candidate ranking ordering for training supervision.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Type Method Model File (%) Module (%) Function (%)

Acc@1 Acc@3 Acc@5 Acc@5 Acc@10 Acc@5 Acc@10

Agent

MoatlessTools
Örwall (2024)

GPT-4o 73.36 84.31 85.04 74.82 76.28 57.30 59.49
Claude-3.5 72.63 85.77 86.13 76.28 76.28 64.60 64.96

SWE-agent
Yang et al. (2024b)

GPT-4o 57.30 64.96 68.98 58.03 58.03 45.99 46.35
Claude-3.5 77.37 87.23 90.15 77.74 78.10 64.23 64.60

Openhands
Wang et al. (2025)

GPT-4o 60.95 71.90 73.72 62.41 63.87 49.64 50.36
Claude-3.5 76.28 89.78 90.15 83.21 83.58 68.25 70.07

LocAgent
Chen et al. (2025)

Qwen2.5-7B(ft) 70.80 84.67 88.32 81.02 82.85 64.23 71.53
Qwen2.5-32B(ft) 75.91 90.51 92.70 85.77 87.23 71.90 77.01
Claude-3.5 77.74 91.97 94.16 86.50 87.59 73.36 77.37

Retriever

BM25 (Robertson et al., 1994) 38.69 51.82 61.68 45.26 52.92 31.75 36.86
Jina-Code-v2 (161M) (Günther et al., 2023) 43.43 71.17 80.29 63.50 72.63 42.34 52.19
Codesage-large-v2 (1.3B) (Zhang et al., 2024) 47.81 69.34 78.10 60.58 69.71 33.94 44.53
CodeRankEmbed (137M) (Suresh et al., 2024) 52.55 77.74 84.67 71.90 78.83 51.82 58.76
SFR-Embedding-2 (7B) (Meng et al., 2024) 58.03 80.29 83.94 70.07 79.20 56.20 64.23
GTE-Qwen2-7B-Instruct (7B) (Li et al., 2023) 65.33 82.85 89.78 76.28 83.58 63.14 70.44
SWERANKEMBED-SMALL (137M) (Ours) 66.42 86.50 90.88 79.56 85.04 63.14 74.45
SWERANKEMBED-LARGE (7B) (Ours) 72.63 91.24 94.16 84.31 89.78 71.90 82.12

+ Reranker

CodeRankLLM (7B) (Suresh et al., 2024) 72.99 89.78 93.80 85.04 90.88 71.90 83.58
GPT-4.1 82.12 95.62 97.08 93.07 93.43 81.75 87.96
SWERANKLLM-SMALL (7B) (Ours) 78.10 92.34 94.53 89.05 92.70 79.56 86.13
SWERANKLLM-LARGE (32B) (Ours) 83.21 94.89 95.99 90.88 93.43 81.39 88.69

Table 1: Performance (in %) on SWE-Bench-Lite. The rerankers use SWERANKEMBED-LARGE as the retriever.
Gray corresponds to results with closed-source models. Best retriever numbers are in blue, while best overall

numbers (except GPT-4.1) are in bold.

5 EXPERIMENTS

The experiments compare SWERANK’s performance against state-of-the-art agent-based localization
methods, and other code ranking models (§5.2). Furthermore, we investigate the impact of our
SWELOC dataset, analyzing how its quality controls (such as consistency filtering) and size influence
model performance (§5.3.1), and examining its generalizability by evaluating effectiveness in fine-
tuning various pre-existing retriever and reranker models for the issue localization task (§5.3.2).

5.1 SETUP

Model Training: We train the SWERANK models in two sizes: small and large. All models
are finetuned using our SWELOC dataset. SWERANKEMBED-SMALL is initialized with CodeR-
ankEmbed (Suresh et al., 2024), a SOTA 137M code embedding model, while the large variant is
initialized with GTE-Qwen2-7B-Instruct (Li et al., 2023), a 7B parameter text embedding model
employing Qwen2-7B-Instruct as its encoder. The small version of SWERANKLLM is initialized
with CODERANKLLM (Suresh et al., 2024), a 7B parameter code-pretrained listwise reranker. The
large version is initialized with Qwen-2.5-32B-Instruct that is pretrained using text listwise reranking
data (Pradeep et al., 2023b). More details in Appendix A.

Baselines: Our primary comparison is against prior agent-based localization methods. Specifically,
we include OpenHands (Wang et al., 2025), SWE-Agent (Yang et al., 2024b), MoatlessTools (Örwall,
2024) and LocAgent (Chen et al., 2025), the current SOTA agent-based approach. Notably, these
methods predominantly use closed-source models, with LocAgent also finetuning open-source models
for this task. For the retrieve-and-rerank framework, we compare SWERANKEMBED-SMALL against
BM25 (Robertson et al., 1994) and several code embedding models of comparable size, including Jina-
Code-v2 (Günther et al., 2023), Codesage-large-v2 (Zhang et al., 2024), and CodeRankEmbed (Suresh
et al., 2024). For the 7B parameter embedding model comparison, we include GTE-Qwen2-7B-
Instruct, which ranks third on the MTEB leaderboard (Muennighoff et al., 2023) at the time of
evaluation. For the reranker comparison, we include CODERANKLLM and other closed source-
models such as GPT-4.1. Due to the larger size of LocBench, comparisons on this benchmark are
limited to a subset of the best-performing baselines.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Method Loc Model File (%) Module (%) Function (%)

Acc@5 Acc@10 Acc@10 Acc@15 Acc@10 Acc@15

Agentless Claude-3.5 67.50 67.50 53.39 53.39 42.68 42.68
OpenHands Claude-3.5 79.82 80.00 68.93 69.11 59.11 59.29
SWE-agent Claude-3.5 77.68 77.68 63.57 63.75 51.96 51.96

LocAgent
Qwen2.5-7B(ft) 78.57 79.64 63.04 63.04 51.43 51.79
Claude-3.5 83.39 86.07 70.89 71.07 59.29 60.71

Retriever

CodeRankEmbed (137M) 74.29 80.36 63.93 67.86 47.86 50.89
GTE-Qwen2-7B-Instruct (7B) 75.54 82.50 67.14 71.61 51.79 57.14

SWERANKEMBED-SMALL (137M) 80.36 84.82 71.43 75.00 58.57 63.39
SWERANKEMBED-LARGE (7B) 82.14 86.96 75.54 78.93 63.21 67.32

+ Reranker

CodeRankLLM (7B) 83.93 88.21 76.96 80.89 64.64 69.29
GPT-4.1 85.89 88.75 79.64 82.50 71.61 74.64

SWERANKLLM-SMALL (7B) 85.54 88.39 79.11 82.14 69.46 74.46
SWERANKLLM-LARGE (32B) 86.61 89.82 81.07 83.21 71.25 76.25

Table 2: Performance (in %) on LocBench. The rerankers use SWERANKEMBED-LARGE as the retriever.
Gray correspond to results with closed-source models. Best retriever model numbers are in blue, while best

overall numbers (except GPT-4.1) are in bold.

Datasets & Metrics: We evaluate on SWE-Bench-Lite (Jimenez et al., 2023) and LocBench (Chen
et al., 2025). Following Suresh et al. (2024), we exclude examples from SWE-Bench-Lite where no
existing functions were modified by the patch, resulting in 274 retained examples out of 300. While
SWE-Bench-Lite primarily consists of bug reports and feature requests, LocBench (560 examples)
also includes security and performance issues. Consistent with Chen et al. (2025), we measure
localization performance at three granularities: file, module (class) and function, with Accuracy at
k (Acc@k) as the evaluation metric. This metric deems localization successful if all relevant code
locations are correctly identified within the top-k results. The relevance score for a specific file or
module is determined by the maximum score of any function contained within that file or module.

5.2 LOCALIZATION RESULTS

Table 1 compares performance of different localization methods on the SWE-Bench-Lite benchmark.
The results indicate that our SWERANK models surpasses the performance of all evaluated agent-
based methods. Furthermore, the SWERANKEMBED-SMALL model, despite its relatively small
size of 137M parameters, demonstrates highly competitive performance, outperforming prior 7B
parameter embedding models. Notably, SWERANKEMBED-LARGE achieves higher Acc@10 for
function localization than LocAgent with Claude-3.5. Employing the SWERANKLLM reranker
subsequently enhances the retriever’s output, establishing a new SOTA for localization performance
on this benchmark across all granularities. Qualitative examples are provided in Appendix D.

Figure 4: Localization performance across different
categories within LocBench. SWERANK considerably
outperforms Agent-based methods using Claude-3.5.

Table 2 shows results on LocBench. A sim-
ilar trend is observed, with the large variants
of SWERANKEMBED and SWERANKLLM set-
ting new SOTA performance. Figure 4 pro-
vides a detailed breakdown of localization ac-
curacy across the four distinct difficulty cate-
gories within LocBench. Despite being primar-
ily trained with bug reports in SWELOC, the
SWERANK models demonstrate impressive gen-
eralizability across other categories.

5.3 ANALYSIS

Our analysis presented in this section aims to demonstrate the following key points: 1) the impact of
SWELOC data quality and size on final model performance (§5.3.1); 2) the utility of SWELOC for
finetuning various retriever and reranker models (§5.3.2; and 3) the cost-effectiveness of the proposed
SWERANK framework (§5.3.3). Unless otherwise mentioned, the results are on SWE-Bench-Lite.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) While accuracy improves from doing consistency filtering,
i.e. discarding instances where the positive’s rank among
negatives is >K, no filtering (K=None) hurts performance.

(b) All metrics show a general upward trend as
the percentage of training data (K=20) increases.

Figure 6: Impact of (a) training data filtering and (b) data size on SWERANKEMBED-SMALL performance.

5.3.1 DATA QUALITY AND SIZE

Public GitHub repositories, as a source for contrastive data, often contain noisy instances. This
study first examines the effectiveness of consistency filtering (§3.3), specifically the influence of
the positive-rank threshold, K. This parameter dictates the minimum rank of the instance’s positive
(relative to negatives, based on similarity with the issue description) for inclusion of the instance in
the training set. Increasing K relaxes the filtering, yielding more training instances but potentially
introducing more noise. As shown in Figure 6a, finetuning SWERANKEMBED-SMALL with SWELOC
data filtered by different K values reveals that optimal performance is achieved with a moderate K
(e.g., K=20), striking a balance between instance quality and dataset size. The absence of filtering
(K=None) proves detrimental as performance drops after finetuning compared to pre-trained model.

Figure 5: Plot showing SWERANKEM-
BED performance against increasingly
hard negatives in SWELOC. Finetuned
models notably improve from an addi-
tional iteration of negative mining.

Controlling for data quality (by fixing K=20), the impact of
dataset size is investigated. Figure 6b illustrates that training
with varying proportions of the filtered data yields consider-
able performance improvements, even with only 5% of the
data. Generally, larger dataset sizes correspond to further
performance gains. These experiments underscore the signif-
icance of both data quality and quantity, demonstrating that
merely increasing data volume without quality control can
be detrimental. Further, the impact of negative hardness on
SWERANKEMBED performance is examined. Figure 5 shows
localization accuracy for Large and Small variants (finetuned
and pretrained) with increasingly hard negatives. In an itera-
tive mining approach, 1st iteration negatives are mined using
the small pretrained model, and 2nd iteration negatives use the
small model from 1st iteration. Results indicate that finetuning with random negatives yields smaller
gains, while using 2nd iteration negatives yields notably improves performance over the 1st iteration.

5.3.2 CHOICE OF RETRIEVER AND RERANKER

Base Retriever Pretrain Func. Acc@10 (%)

CodeRankEmbed English+Code 59.5→72.3 (+12.8)
Arctic-Embed English 53.7→71.9 (+17.4)
Arctic-Embed-v2.0 Multilingual 62.0→70.1 (+8.1)

Table 3: Accuracy (Before→After) from fine-
tuning different retrievers with SWELOC data.

Here, we demonstrate the effectiveness of SWELOC
by showing improvements for a variety of retriever
and reranker models from finetuning. First, the follow-
ing embedding models, pre-trained on different data
types, are finetuned for one epoch on SWELOC: Arctic-
Embed (Merrick et al., 2024), primarily pre-trained
on English text retrieval data; CodeRankEmbed, pre-
trained on 22 million NL-to-Code examples (Suresh
et al., 2024); and Arctic-Embed-v2.0 (Yu et al., 2024), pre-trained on a mix of English and multi-
lingual data. From Table 3, we see all models showing significant performance improvement from
finetuning. Notably, models that initially performed weaker (e.g., Arctic-Embed) showed greater
gains. This outcome validates that SWELOC can substantially improve the performance of any
embedding model for software issue localization.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Base LLM Reranker Func. Acc@5 (%) Func. Acc@10 (%)

Qwen-2.5-Text (32B) 77.0→81.4 (+4.4) 82.5 →86.1 (+3.6)
Qwen-2.5-Code (32B) 76.3→79.9 (+3.6) 81.8 →84.7 (+2.9)
Qwen-2.5-Text (7B) 75.2→75.6 (+0.4) 81.4 →82.5 (+1.1)
Qwen-2.5-Code (7B) 75.5→75.9 (+0.4) 81.0 →83.6 (+2.6)
Qwen-2.5-Text (3B) 68.3→73.7 (+4.6) 76.6→82.5 (+5.9)
Qwen-2.5-Code (3B) 71.2→71.9 (+0.7) 80.3→81.0 (+0.7)

Table 4: Localization accuracy (Before→After) from
finetuning different listwise rerankers with SWELOC.

Next, text- and code-instruction-tuned LLMs of
different sizes from the Qwen2.5 family (Yang
et al., 2024c; Hui et al., 2024) are finetuned as
listwise LLM rerankers using SWELOC data.
Since we only apply loss on the first genera-
tion token, to ensure compatibility with the list-
wise output format, all models were initially pre-
trained on listwise text reranking data (Pradeep
et al., 2023b), which provides the full ranking
order to use for supervision. The results, shown
in Table 4, indicate that rerankers across differ-
ent model sizes universally benefit from finetuning on SWELOC. An interesting observation is that the
code-pretrained model performs marginally better at the 7B scale, while the text-pretrained models
achieve better results at the 3B and 32B scales. Results with finetuning Llama-3.1 are in Appendix B.

5.3.3 INFERENCE COST ANALYSIS

Method Model Cost($) ↓ Acc@10
Cost

↑

SWE-agent
GPT-4o 0.46 0.8
Claude-3.5 0.67 1.0

Openhands
GPT-4o 0.83 0.6
Claude-3.5 0.79 0.9

LocAgent
Claude-3.5 0.66 1.2
Qwen2.5-7B(ft) 0.05 13.2
Qwen2.5-32B(ft) 0.09 8.6

Reranker
GPT-4.1 0.16 5.9
SWERANKLLM (7B) 0.011 79.0
SWERANKLLM (32B) 0.015 57.5

Table 5: SWERANKLLM has considerably
better inference cost-efficiency than agent-
based methods while being more performant.

Agent-based localization approaches typically involve
multiple iterations, each requiring extensive chain-of-
thought generation (Wang et al., 2023b), incurring consid-
erable cost at inference. In contrast, SWERANK offers sig-
nificant cost-effectiveness as the SWERANKLLM reranker
only needs to generate output candidate identifiers to deter-
mine the ranking order. Furthermore, the SWERANKEM-
BED output embeddings can be pre-computed, resulting
in negligible extra cost. Table 5 compares the inference
costs of SWERANKLLM with other agent-based meth-
ods. Clearly, agent-based approaches, often relying on
closed-source models for better performance, are highly
cost-intensive. SWERANK is substantially cheaper while
providing significantly better performance, with up to 6X
better performance-cost tradeoffs compared to LocAgent.

5.3.4 IMPACT ON DOWNSTREAM ISSUE RESOLUTION

Localization File Acc@1 Repair Pass@1

SWE-Fixer 69.7 21.0
LocAgent 78.5 22.6
SWERank 83.2 24.5
Oracle 100 25.9

Table 6: Impact of localization accu-
racy on downstream issue resolution.

This section analyzes the impact of improved localization on
downstream code repair performance. To evaluate issue res-
olution, we utilize SWE-Fixer (Xie et al., 2025), a two-step
pipeline consisting of code file retrieval (localization) followed
by code editing. We compare the repair outcomes when em-
ploying different localization methods: the native localization
mechanism of SWE-Fixer, LocAgent (with Claude-3.5), our
SWERANK (large variant), and an oracle. The oracle simu-
lates perfect localization by using the ground-truth edited file,
thereby providing an upper bound for the repair framework. For code editing, we use the SWE-Fixer-
72B model. Repair performance is measured by Pass@1 on SWE-Bench-Lite. From Table 6, we see
that better localization provided by SWERANK yields improved issue resolution, with oracle results
showing that repair performance is currently constrained by the code editing model.

6 CONCLUSION

This paper frames software issue localization as a specialized ranking task and introduces SWERANK,
a highly performant and cost-effective retrieve-and-rerank framework. To effectively train SWERANK
models, we construct SWELOC, a large-scale contrastive training dataset derived from real-world
GitHub issues, employing consistency filtering and hard-negative mining for quality. Empirical evalu-
ations on SWE-Bench-Lite and LocBench demonstrate state-of-the-art localization performance using
SWERANK, significantly outperforming costly closed-source agent-based systems. The introduction
of SWELOC dataset provides a valuable resource for advancing research in this domain.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We plan to release the dataset publicly for the benefit of the community. The supplementary material
attached provides scripts for model training, in addition to the dataset construction process. More
details about model training necessary for reproducing experiments are provided in Appendix A.

REFERENCES

A Adhiselvam, E Kirubakaran, and R Sukumar. An enhanced approach for software bug localization
using map reduce technique based apriori (mrtba) algorithm. Indian Journal of Science and
Technology, 8:35, 2015. 2

Higor Amario de Souza, Marcelo de Souza Lauretto, Fabio Kon, and Marcos Lordello Chaim.
Understanding the use of spectrum-based fault localization. Journal of Software: Evolution and
Process, 36(6):e2622, 2024. 2

Anthropic. Claude: Conversational ai by anthropic, 2023. URL https://www.anthropic.com/
claude. Accessed: January 21, 2025. 2

Md Mustakim Billah, Palash Ranjan Roy, Zadia Codabux, and Banani Roy. Are large language
models a threat to programming platforms? an exploratory study. In Proceedings of the 18th
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, pp.
292–301, 2024. 3

Zhaoling Chen, Xiangru Tang, Gangda Deng, Fang Wu, Jialong Wu, Zhiwei Jiang, Viktor Prasanna,
Arman Cohan, and Xingyao Wang. Locagent: Graph-guided llm agents for code localization.
arXiv preprint arXiv:2503.09089, 2025. 1, 2, 3, 4, 6, 7

Cognition AI. Devin: The First AI Software Engineer. https://devin.ai/, 2024. Accessed:
2025-04-22. 1

Cursor. Cursor: The AI Code Editor. https://www.cursor.com/, 2025. Accessed: 2025-04-22. 1

Higor A de Souza, Marcos L Chaim, and Fabio Kon. Spectrum-based software fault localization: A
survey of techniques, advances, and challenges. arXiv preprint arXiv:1607.04347, 2016. 2

E. Elsaka. Chapter three - fault localization using hybrid static/dynamic analysis. volume 105 of
Advances in Computers, pp. 79–114. Elsevier, 2017. doi: https://doi.org/10.1016/bs.adcom.2016.12.
004. URL https://www.sciencedirect.com/science/article/pii/S0065245816300778. 2

Paul Gauthier. How aider scored sota 26.3% on swe bench lite — aider, 2024. URL https:
//aider.chat/2024/05/22/swe-bench-lite.html. Accessed: January 21, 2025. 1

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024. 15

Michael Günther, Georgios Mastrapas, Bo Wang, Han Xiao, and Jonathan Geuter. Jina embeddings:
A novel set of high-performance sentence embedding models. In Proceedings of the 3rd Workshop
for Natural Language Processing Open Source Software (NLP-OSS 2023), pp. 8–18, 2023. 4, 6

Michael Günther, Louis Milliken, Jonathan Geuter, Georgios Mastrapas, Bo Wang, and Han Xiao.
Jina embeddings: A novel set of high-performance sentence embedding models, 2023. URL
https://arxiv.org/abs/2307.11224. 3, 6

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang, Shanghaoran Quan, Xingzhang
Ren, Xuancheng Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report. ArXiv,
abs/2409.12186, 2024. URL https://api.semanticscholar.org/CorpusID:272707390. 9

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. Code-
searchnet challenge: Evaluating the state of semantic code search. arXiv preprint arXiv:1909.09436,
2019. 2, 3

10

https://www.anthropic.com/claude
https://www.anthropic.com/claude
https://devin.ai/
https://www.cursor.com/
https://www.sciencedirect.com/science/article/pii/S0065245816300778
https://aider.chat/2024/05/22/swe-bench-lite.html
https://aider.chat/2024/05/22/swe-bench-lite.html
https://arxiv.org/abs/2307.11224
https://api.semanticscholar.org/CorpusID:272707390

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Neel Jain, Ping yeh Chiang, Yuxin Wen, John Kirchenbauer, Hong-Min Chu, Gowthami Somepalli,
Brian R. Bartoldson, Bhavya Kailkhura, Avi Schwarzschild, Aniruddha Saha, Micah Goldblum,
Jonas Geiping, and Tom Goldstein. Neftune: Noisy embeddings improve instruction finetuning,
2023. URL https://arxiv.org/abs/2310.05914. 15

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023. 1, 2, 4, 7

Hyoungwook Jin, Seonghee Lee, Hyungyu Shin, and Juho Kim. Teach ai how to code: Using large
language models as teachable agents for programming education. In Proceedings of the 2024 CHI
Conference on Human Factors in Computing Systems, pp. 1–28, 2024. 3

Denis Kocetkov, Raymond Li, LI Jia, Chenghao Mou, Yacine Jernite, Margaret Mitchell, Car-
los Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, et al. The stack: 3 tb of
permissively licensed source code. Transactions on Machine Learning Research, 2022. 3

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019. 15

Xiangyang Li, Kuicai Dong, Yi Quan Lee, Wei Xia, Yichun Yin, Hao Zhang, Yong Liu, Yasheng
Wang, and Ruiming Tang. Csn: A comprehensive benchmark for code information retrieval models.
arXiv preprint arXiv:2407.02883, 2024a. 2, 3

Xiangyang Li, Kuicai Dong, Yi Quan Lee, Wei Xia, Yichun Yin, Hao Zhang, Yong Liu, Yasheng
Wang, and Ruiming Tang. Coir: A comprehensive benchmark for code information retrieval
models. arXiv preprint arXiv:2407.02883, 2024b. 2, 3

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning. arXiv preprint arXiv:2308.03281,
2023. 6, 15

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems. In The Twelfth International Conference on Learning Representations,
2024a. 3

Ye Liu, Rui Meng, Shafiq Joty, Silvio Savarese, Caiming Xiong, Yingbo Zhou, and Semih Yavuz.
Codexembed: A generalist embedding model family for multiligual and multi-task code retrieval.
arXiv preprint arXiv:2411.12644, 2024b. 3

Rui Meng, Ye Liu, Shafiq Rayhan Jotya, Caiming Xiong, Yingbo Zhou, and Semih Yavuz.
Sfr-embedding-2: Advanced text embedding with multi-stage training, 2024. URL https:
//huggingface.co/Salesforce/SFR-Embedding-2 R. 6

Luke Merrick, Danmei Xu, Gaurav Nuti, and Daniel Campos. Arctic-embed: Scalable, efficient, and
accurate text embedding models. arXiv preprint arXiv:2405.05374, 2024. 8, 15

Microsoft. GitHub Copilot—Your AI pair programmer, 2023. URL https://github.com/
features/copilot. 1

Gabriel de Souza P Moreira, Radek Osmulski, Mengyao Xu, Ronay Ak, Benedikt Schifferer, and
Even Oldridge. Nv-retriever: Improving text embedding models with effective hard-negative
mining. arXiv preprint arXiv:2407.15831, 2024. 4

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. Mteb: Massive text embedding
benchmark. In Proceedings of the 17th Conference of the European Chapter of the Association for
Computational Linguistics, pp. 2014–2037, 2023. 6

Zach Nussbaum, John X. Morris, Brandon Duderstadt, and Andriy Mulyar. Nomic embed: Training
a reproducible long context text embedder, 2024. 15

11

https://arxiv.org/abs/2310.05914
https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://github.com/features/copilot
https://github.com/features/copilot

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. In Advances in Neural Information Processing Systems, pp. 10203–10213, 2018. 5

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lambert Pouguem Wassi, Michele
Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha, and Reyhaneh Jabbarvand. Lost in translation:
A study of bugs introduced by large language models while translating code. In Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering, pp. 1–13, 2024. 3

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. Rankvicuna: Zero-shot listwise document
reranking with open-source large language models, 2023a. URL https://arxiv.org/abs/2309.
15088. 15

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. Rankzephyr: Effective and robust
zero-shot listwise reranking is a breeze! arXiv preprint arXiv:2312.02724, 2023b. 5, 6, 9, 15

Yihao Qin, Shangwen Wang, Yiling Lou, Jinhao Dong, Kaixin Wang, Xiaoling Li, and Xiaoguang
Mao. Agentfl: Scaling llm-based fault localization to project-level context. arXiv preprint
arXiv:2403.16362, 2024. 2

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimiza-
tions enable training deep learning models with over 100 billion parameters. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
3505–3506, 2020. 15

Revanth Gangi Reddy, JaeHyeok Doo, Yifei Xu, Md Arafat Sultan, Deevya Swain, Avirup Sil, and
Heng Ji. First: Faster improved listwise reranking with single token decoding. In Proceedings
of the 2024 Conference on Empirical Methods in Natural Language Processing, pp. 8642–8652,
2024. 2

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992, Hong Kong,
China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1410.
URL https://aclanthology.org/D19-1410. 5

Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-Beaulieu, and Mike Gatford.
Okapi at trec-3. In Text Retrieval Conference, 1994. URL https://api.semanticscholar.org/
CorpusID:41563977. 6

Ankita Nandkishor Sontakke, Manasi Patwardhan, Lovekesh Vig, Raveendra Kumar Medicherla,
Ravindra Naik, and Gautam Shroff. Code summarization: Do transformers really understand code?
In Deep Learning for Code Workshop, 2022. 3

Ezekiel Soremekun, Lukas Kirschner, Marcel Böhme, and Andreas Zeller. Locating faults with
program slicing: an empirical analysis. Empirical Software Engineering, 26:1–45, 2021. 2

Tarun Suresh, Revanth Gangi Reddy, Yifei Xu, Zach Nussbaum, Andriy Mulyar, Brandon Duderstadt,
and Heng Ji. Cornstack: High-quality contrastive data for better code ranking. arXiv preprint
arXiv:2412.01007, 2024. 1, 2, 3, 4, 6, 7, 8, 15

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. FEVER: a large-
scale dataset for fact extraction and VERification. In NAACL-HLT, 2018. 15

Weishi Wang, Yue Wang, Shafiq Joty, and Steven C.H. Hoi. Rap-gen: Retrieval-augmented
patch generation with codet5 for automatic program repair. In Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering, ESEC/FSE 2023, pp. 146–158, New York, NY, USA, 2023a. Association
for Computing Machinery. ISBN 9798400703270. doi: 10.1145/3611643.3616256. URL
https://doi.org/10.1145/3611643.3616256. 2

12

https://arxiv.org/abs/2309.15088
https://arxiv.org/abs/2309.15088
https://aclanthology.org/D19-1410
https://api.semanticscholar.org/CorpusID:41563977
https://api.semanticscholar.org/CorpusID:41563977
https://doi.org/10.1145/3611643.3616256

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng, Bill
Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert Brennan,
Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for AI software developers
as generalist agents. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=OJd3ayDDoF. 2, 6

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023b. URL https://arxiv.org/abs/2203.11171. 9

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, and Steven C. H. Hoi.
Codet5+: Open code large language models for code understanding and generation, 2023c. URL
https://arxiv.org/abs/2305.07922. 3

Windsurf. Windsurf Editor: The AI-Native IDE. https://windsurf.com/editor, 2025. Accessed:
2025-04-22. 1

W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A survey on software fault
localization. IEEE Transactions on Software Engineering, 42(8):707–740, 2016. 2

Chengxing Xie, Bowen Li, Chang Gao, He Du, Wai Lam, Difan Zou, and Kai Chen. Swe-fixer:
Training open-source llms for effective and efficient github issue resolution. arXiv preprint
arXiv:2501.05040, 2025. 9

John Yang, Carlos Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024a. 1

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
arXiv preprint arXiv:2405.15793, 2024b. 1, 2, 6

Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian Yang, Jianhong
Tu, Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming
Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,
Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yi-
Chao Zhang, Yunyang Wan, Yuqi Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan,
and Zekun Wang. Qwen2.5 technical report. ArXiv, abs/2412.15115, 2024c. URL https:
//api.semanticscholar.org/CorpusID:274859421. 9

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2018. 15

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023. 1

Puxuan Yu, Luke Merrick, Gaurav Nuti, and Daniel Campos. Arctic-embed 2.0: Multilingual retrieval
without compromise. arXiv preprint arXiv:2412.04506, 2024. 8

Zhongming Yu, Hejia Zhang, Yujie Zhao, Hanxian Huang, Matrix Yao, Ke Ding, and Jishen
Zhao. Orcaloca: An llm agent framework for software issue localization. arXiv preprint
arXiv:2502.00350, 2025. 1

Wang Yue, Wang Weishi, Shafiq Joty, and Steven C.H. Hoi. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. In EMNLP, 2021. 1

13

https://openreview.net/forum?id=OJd3ayDDoF
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2305.07922
https://windsurf.com/editor
https://api.semanticscholar.org/CorpusID:274859421
https://api.semanticscholar.org/CorpusID:274859421

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Dejiao Zhang, Wasi Uddin Ahmad, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei
Ma, and Bing Xiang. CODE REPRESENTATION LEARNING AT SCALE. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=vfzRRjumpX. 1, 3, 6

Albert Örwall. Moatless tools, 2024. URL https://github.com/aorwall/moatless-tools. 3, 6

14

https://openreview.net/forum?id=vfzRRjumpX
https://openreview.net/forum?id=vfzRRjumpX
https://github.com/aorwall/moatless-tools

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A TRAINING DETAILS

A.1 SWERANKEMBED

Our data filtering, negative mining, and model finetuning are implemented using the contrastors
package (Nussbaum et al., 2024). The SWERANKEMBED-SMALL encoder uses CODERANKEMBED,
which was initialized with Arctic-Embed-M (Merrick et al., 2024), a text encoder supporting an
extended context length of 8,192 tokens and pretrained on large-scale web query- document pairs,
along with public text retrieval datasets (Yang et al., 2018; Kwiatkowski et al., 2019; Thorne et al.,
2018). The encoder supports a query prefix “Represent this query for searching relevant code: ”, as
set by (Suresh et al., 2024). The model is finetuned using 8 GH200 GPUs for two epochs with a
learning rate of 2e-5, a batch size of 64 and 15 hard negatives per example.

The SWERANKEMBED-LARGE encoder uses GTE-Qwen2-7B-Instruct (Li et al., 2023), which was
pretrained on a large corpora of text retrieval data. For this model, we use a custom query prefix
“Instruct: Given a github issue, identify the code that needs to be changed to fix the issue. Query: ”.
The model is finetuned using 8 GH200 GPUs for 1 epoch with a learning rate of 8e-6, a batch size of
64 and 7 hard negatives per example.

A.2 SWERANKLLM

Training data: For each <query, positive, negatives> tuple from SWELOC, we randomly sample
9 negative codes to fit the listwise reranking window size of 10 along with the positive code. To
prevent the positional bias from affecting the reranker and ensure model robustness (Pradeep et al.,
2023a), we shuffle the order of candidate codes for each training example. Since the combined length
of a GitHub issue and corresponding candidate codes may exceed the model’s maximum embedding
size, we set the maximum length per candidate code to 1024 and the total length limit to 16348.
For overlong prompts, we truncate the query to reach the maximum total length. This preserves
meaningful context for issue localization as much as possible within the limited context window
size for effective model training. The rerankers are all first pretrained with text listwise reranking
data (Pradeep et al., 2023b) to teach the model to follow the listwise output format.

Hyperparameters: For the LLM reranker training, with both text reranking and SWELOC data, we
trained for one epoch with a global batch size of 128, an initial learning rate of 5e-6 with 50 warmup
steps, cosine learning rate scheduler, bfloat16 precision, and noisy embeddings (Jain et al., 2023)
with a noise scale α = 5. For efficient long-context, multi-gpu training, we used DeepSpeed (Rasley
et al., 2020) ZeRO stage 3 with 16 GH200 GPUs.

B EXPERIMENTS WITH MORE RERANKER MODELS

Method Type
SWE-Bench-Lite LocBench

Acc@5 Acc@10 Acc@5 Acc@10

Zeroshot Reranker 60.22 81.39 61.96 69.11
RankZephyr finetune 72.99 80.29 64.11 70.00
+ SWELOC finetune 77.01 85.77 68.04 73.04

Table 7: Function localization accuracy of Llama-
3.1 8B Instruct as a listwise LLM reranker.

To demonstrate the broader applicability of our
dataset, we conduct experiments with finetun-
ing Llama-3.1 8B Instruct (Grattafiori et al.,
2024) as a listwise reranker. The models are
first pre-trained on general text reranking data
from RankZephyr (Pradeep et al., 2023b) and
subsequently finetuned on our SWELOC dataset.
Results, shown in Table 7, demonstrate signif-
icant performance gains on both SWE-Bench-
Lite and LocBench after fine-tuning on SWE-
Loc. This confirms that our dataset is a valuable resource for improving the issue localization
capabilities of various LLM families, not just Qwen 2.5.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C DIVERSITY OF ISSUE TOPICS IN SWELOC

To provide more insight into the variety and complexity of issue topics in SWELOC, we analyze
the distribution of topics for 10k randomly sampled instances. We use Nomic Atlas2, a popular
unstructured text visualization tool, that employs a cluster-based keyword identification algorithm
and leverages a language model to generate topics. Figure 7 shows the frequency of top-15 topics.

Figure 7: Top-15 issue topics and their frequencies from a randomly sampled subset of SWELOC.

D QUALITATIVE EXAMPLES

Figure 8 presents qualitative examples from SWE-Bench-Lite where SWERANK correctly localizes
the function to edit while LocAgent is unable to. In both instances, LocAgent incorrectly identifies
functions that likely correspond to where the problem manifests rather than where it originates.

Figure 8: Examples from SWE-Bench-Lite where LocAgent mislocalizes the function, while our
SWERank framework does function localization correctly

2https://atlas.nomic.ai/

16

https://atlas.nomic.ai/

	Introduction
	Related Work
	Software Issue Localization
	Code Ranking

	SweLoc: Issue Localization Data
	Identifying Relevant PRs
	Localization Processing
	Consistency Filtering and Hard Negatives

	SweRank Methodology
	SweRankEmbed
	SweRankLLM

	Experiments
	Setup
	Localization Results
	Analysis
	Data Quality and Size
	Choice of Retriever and Reranker
	Inference Cost Analysis
	Impact on Downstream Issue Resolution

	Conclusion
	Training Details
	SweRankEmbed
	SweRankLLM

	Experiments with More Reranker Models
	Diversity of Issue Topics in SweLoc
	Qualitative Examples

