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Abstract
Rare event sampling in dynamical systems is a
fundamental problem arising in the natural sci-
ences, which poses significant computational chal-
lenges due to an exponentially large space of tra-
jectories. For settings where the dynamical sys-
tem of interest follows a Brownian motion with
known drift, the question of conditioning the pro-
cess to reach a given endpoint or desired rare event
is definitively answered by Doob’s h-transform.
However, the naive simulation of this transform is
infeasible, as it requires sufficiently many forward
trajectories to estimate rare event probabilities. In
this work, we propose a variational formulation of
Doob’s h-transform — an optimization problem
over trajectories between a given initial point and
the desired ending point. To solve this optimiza-
tion, we propose a simulation-free training objec-
tive with a model parameterization that imposes
the desired boundary conditions by design. Our
approach significantly reduces the search space
over trajectories and avoids expensive trajectory
simulation and inefficient importance sampling
estimators which are required in existing methods.
We demonstrate the ability of our method to find
feasible transition paths on real-world molecular
simulation and protein folding tasks.

1. Introduction
Conditioning a stochastic process to obey a particular end-
point distribution, satisfy desired terminal conditions, or
observe a rare event is a problem with a long history
(Schrödinger, 1932; Doob, 1957) and wide-ranging appli-
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Figure 1: Given reference dynamics, transition path sampling
seeks to capture the conditional or posterior distribution over paths
which reach a terminal set xT ∈ B. However, simulating the refer-
ence dynamics (blue) can be wasteful since we rarely obtain paths
(orange) which reach (the vicinity) of the terminal set B. This is
a major challenge for techniques based on importance sampling
or Monte Carlo estimation, even when adding a control term to
the reference dynamics. By contrast, our approach optimizes a
tractable variational distribution over transition paths with a pa-
rameterization satisfying initial and terminal conditions by design.

cations from generative modeling (De Bortoli et al., 2021;
Chen et al., 2021a; Liu et al., 2022; 2023c; Somnath et al.,
2023) to molecular simulation (Anderson, 2007; Wu et al.,
2022; Plainer et al., 2023; Holdijk et al., 2024), drug discov-
ery (Kirmizialtin et al., 2012; 2015; Dickson, 2018), and
materials science (Xi et al., 2013; Selli et al., 2016).

Transition Path Sampling. In this work, we take a par-
ticular interest in the problem of transition path sampling
(TPS) in computational chemistry (Dellago et al., 2002;
Weinan and Vanden-Eijnden, 2010), which attempts to de-
scribe how molecules transition between local energy min-
ima or metastable states under random fluctuations or the
influence of external forces. Understanding such transi-
tions has numerous applications for combustion, catalysis,
battery, material design, and protein folding (Zeng et al.,
2020; Klucznik et al., 2024; Blau et al., 2021; Noé et al.,
2009; Escobedo et al., 2009). While the TPS problem is
often framed as finding the ‘most probable path’ transition-
ing between states (Dürr and Bach, 1978; Vanden-Eijnden
and Heymann, 2008), we draw explicit connections to the
Doob’s h-transform and seek to match the full posterior
distribution over conditioned processes.

Doob’s h-Transform. For Brownian motion diffusion pro-
cesses, conditioning is known to be achieved by Doob’s
h-transform (Doob, 1957; Särkkä and Solin, 2019). How-
ever, solving this problem amounts to estimating rare event
probabilities or matching a complex target distribution. Ap-
proaches which involve simulation of trajectories to con-
struct Monte Carlo expectations or importance sampling



estimators (Papaspiliopoulos and Roberts, 2012; Schauer
et al., 2017; Holdijk et al., 2024) can be extremely inefficient
if the target event is rare or endpoint distribution is difficult
to match. Recent methods based on score matching (Heng
et al., 2021) or nonlinear Feynman-Kac (Chopin et al., 2023)
still require simulation within an inner optimization loop.

Variational Formulation of Doob’s h-Transform. In this
work, we propose a variational formulation of Doob’s h-
transform as the solution to an optimization on the space
of paths of probability distributions (Thm. 1). We focus on
solving for the Doob transform conditioning on a particular
terminal point, which is natural in the TPS setting (see
Fig. 1). Taking inspiration from recent bridge matching
methods (Peluchetti, 2021; 2023; Liu et al., 2022; Lipman
et al., 2022; Shi et al., 2023; Liu et al., 2023a), we propose
a parameterization with the following attractive features.

1. Every Sample Matters. In contrast to most exist-
ing approaches, our method is simulation-free, thereby
avoiding computationally wasteful simulation methods
to estimate rare-event probabilities and inefficient im-
portance or rejection sampling. We thus refer to our
approach as being sample-efficient.

2. Optimization over Sampling. To approximate the
conditioned process, we propose an expressive varia-
tional family which is tractable to sample and can be
optimized end-to-end using neural networks.

3. Problem-Informed Parameterization. Our parame-
terization enforces the boundary conditions by design,
thereby reducing the search space for optimization and
efficiently making use of the conditioning information.

2. Background
2.1. Transition Path Sampling
Consider a forward or reference stochastic process with
states xt and transition probability ρ(xt+dt = y |xt = x).
Starting from an initial x0 = A, the density of the path is

ρ(xT , . . . , xdt |x0 = A) =

T−dt∏
t=dt

ρ(xt+dt |xt) · ρ(xdt |x0 = A)

The problem of rare event sampling aims to condition this
reference stochastic process on some event at time T , for
example, that the final state belongs to a particular set xT ∈
B. We are interested in sampling from the entire transition
path, i.e. the posterior distribution over intermediate states

ρ(xT−dt, . . . , xdt |x0 = A, xT ∈ B) = ρ(xT∈B,xT−dt...,xdt | x0=A)

ρ(xT∈B | x0=A)
.

Moving to continuous time, we focus on the transition path
sampling problem in the case where the reference process
is given by a Brownian motion. In particular, we are moti-
vated by applications in computational chemistry (Dellago

et al., 2002; Weinan and Vanden-Eijnden, 2010), where the
reference process is given by molecular dynamics following
either overdamped Langevin dynamics,

dxt = −(γM)−1∇xU(xt) · dt+ (γM)−
1/2
√
2kBT · dWt , (1)

or the second-order Langevin dynamics with spatial coordi-
nates x̄t and velocities v̄t,

dx̄t = v̄t · dt , (2)
dv̄t =

(
−M−1∇xU(x̄t)− γM−1v̄t

)
· dt+M−1/2

√
2γkBT · dWt .

whereWt denotes the Wiener process. Note, U is a potential
energy, kBT is the Boltzman constant times temperature,
M is the mass matrix, and γ is the friction coefficient.

2.2. Doob’s h-transform
Doob’s h-transform addresses the question of conditioning
a reference Brownian motion to satisfy a terminal condition
such as xT ∈ B, thereby providing an avenue to solve the
transition path sampling problem described above. Without
loss of generality, and to provide a unified treatment of the
dynamics in (1)–(2), we consider the forward or reference
stochastic differential equation (SDE),

Pref
0:T : dxt = bt(xt) · dt+ Ξt dWt , x0 ∼ ρ0(x) , (3)

with drift bt : RN → RN and diffusion matrix Ξt ∈ RN×N

such that Gt :=
1
2ΞtΞ

T
t is positive definite.1 We denote the

induced path measure as Pref
0:T ∈ P(C([0, T ]→ RN )).

Remarkably, Doob’s h-transform (Doob, 1957; Särkkä and
Solin, 2019, Sec. 7.5) shows that conditioning the reference
process (3) on xT ∈ B yields another Brownian motion.
Proposition 1. [Jamison (1975, Thm. 2)] Let h(x, t) :=
ρ(xT ∈ B |xt = x) denote the conditional transition den-
sity with respect to the reference process in (3). Letting
Gt :=

1
2ΞtΞ

T
t , the SDE

dxt|0,T =
(
bt(xt|0,T ) + 2Gt∇x log h(xt|0,T , t)

)
· dt+ Ξt dWt (4)

is associated with the following transition probabilities

ρ(xt = y |xs = x, xT ∈ B) = h(y, s)

h(x, t)
ρ(xt = y |xs = x), (5)

for s < t < T , where we omit the dependence of h(x, t) on
B for simplicity of notation.

See App. C.1 for proof. The conditioned transition probabil-
ities in (5) allow us to directly construct the transition path
in Sec. 2.1. Using Bayes rule, we have

ρ(xT−dt, . . . , xdt |x0 = A, xT ∈ B)
ρ(xT−dt . . . , xdt |x0 = A)

=
h(xT−dt, T − dt)

h(A, 0)

Thus, we can solve the TPS problem by exactly solving for
the h-function and simulating the SDE in (4).

1See (19) in App. B.1 to write (2) in the form of (3).



Theorem 1. The following Lagrangian action minimization has a unique solution which matches Doob’s h-transform in
Prop. 1, where the optimal q∗t|0,T (x) and v∗t|0,T (x) = ∇x log h(x, t) satisfy the PDEs in App. C.1 Prop. 3,

S = min
q

t|0,T

,v
t|0,T

∫ T

0

dt

∫
dx qt|0,T (x)

〈
vt|0,T (x), Gt vt|0,T (x)

〉
, (6a)

s.t.
∂qt|0,T (x)

∂t
= −

〈
∇x, qt|0,T (x)

(
bt(x) + 2Gt vt|0,T (x)

)〉
+

∑
ij
(Gt)ij

∂2

∂xi∂xj
qt|0,T (x), (6b)

q0(x) = δ(x−A), qT (x) = δ(x−B) . (6c)

Finally, the h-process and marginal density of the condi-
tioned process satisfy a set of forward and backward Kol-
mogorov equations. These are crucial for deriving our varia-
tional objective, but deferred to App. A.1 Prop. 3 for space.

3. Method
3.1. Doob’s Lagrangian
Consider reference dynamics in the form of either (1) or (2),
with known drift bt or energy U . We restrict our attention
to conditioning on a terminal rare event of reaching a given
endpoint xT = B, along with an initial point x0 = A.
We approach finding Doob’s h-transform via a least action
principle where, in the Thm. 1, we define a Lagrangian
action whose minimization yields the optimal q∗t|0,T (x) =
ρt|0,T (x) and v∗t|0,T (x) = ∇x log h(x, t) from Prop. 1.

This objective will form the basis for our computational
approach, with proof of Thm. 1 deferred to App. C.2. We
provide additional analysis of our objective in App. C.1.

Challenges of Optimizing (6a). We highlight several
distinctive features of our problem which inform the devel-
opment of computational methods in Sec. 3.2.

1. First, (6a) requires that we are able to efficiently sample
from the conditioned process in (13) or qt|0,T . This
appears challenging due to the nonlinearity of both the
reference and variational drifts, bt and vt|0,T .

2. For a given qt|0,T , it can be difficult to solve for vt|0,T
which satisfies the Fokker-Planck equation in (6b).

3. Finally, we would like to strictly enforce the boundary
constraints on qt|0,T or Qv

0:T to avoid simulating or
wasting computation on trajectories for which xT ̸= B.

Our parameterization of qt|0,T will avoid simulation of the
SDE (13) (Challenge 1), provide analytic solutions for vt|0,T
satisfying (6b) with given qt|0,T (Challenge 2), and enforce
the boundary constraints by design (Challenge 3).

3.2. Computational Approach
We now propose a family of Gaussian (mixture) path pa-
rameterizations qt|0,T which overcome the aforementioned

computational challenges, while still maintaining expressiv-
ity. We present all aspects of our proposed method in the
context of the first-order dynamics and defer extensions to
mixture paths and second-order dynamics to App. B.

Tractable Drift vt|0,T for Variational Doob Objective.
Consider modifying the Fokker-Planck constraint in (6b), to
absorb all drift terms into a single vector field ut|0,T ,

∂qt|0,T (x)

∂t
= −

〈
∇x, qt|0,T (x) ut|0,T (x)

〉
+

∑
ij(Gt)ij

∂2

∂xi∂xj
qt|0,T (x). (7)

To address Challenge 2, we restrict attention to variational
families of qt|0,T ∈ Q where it is analytically tractable to
calculate a vector field u(q)t|0,T which satisfies (7). We first
consider the family of Gaussian pathsQG, in similar fashion
to flow matching methods (Lipman et al., 2022; Tong et al.,
2023; Liu et al., 2023a), with proof in App. B.

Proposition 2. For the family of endpoint-conditioned
marginals qt|0,T (x) = N (x |µt|0,T ,Σt|0,T ),

u
(q)
t|0,T (x) :=

∂µ
t|0,T

∂t +
[
1
2
∂Σ

t|0,T

∂t Σ
−1
t|0,T −Gt Σ

−1
t|0,T

](
x− µt|0,T

)
(8)

satisfies the Fokker-Planck equation (7) for qt|0,T and diffu-
sion coefficients Gt =

1
2ΞtΞ

T
t .

Given u(q)t|0,T corresponding to qt|0,T , we can simply solve
for the vt|0,T satisfying the Fokker-Planck euqation in (6b)
in our variational Doob objective (Thm. 1). Since Gt was
assumed to be invertible and the base drift bt is known,

v
(q)
t|0,T (x) =

1

2
(Gt)

−1
(
u
(q)
t|0,T (x)− bt(x)

)
, (9)

We may now evaluate terms involving vt|0,T in our La-
grangian objective in (6) using (9) directly, without solving
an inner minimization over vt|0,T (addressing Challenge 2).

Optimization over qt|0,T satisfying (6c). Given the ability
to evaluate v(q)t|0,T for a given qt|0,T ∈ QG as above, our
variational Doob objective in (6a) reduces to a single opti-
mization over the marginals qt|0,T of a conditioned process
which satisfies the boundary conditions (6c).

We consider parameterizing the mean µt|0,T and covariance
Σt|0,T of our Gaussian path qt|0,T using a neural network.
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Figure 2: Comparing path histograms of TPS using fixed-length
two-way shooting and comparing it with our variational approach.

(a) Single Gaussian (b) Mixture of Gaussians

Figure 3: Expressivity of Gaussian vs. mixture of Gaussian paths
on a symmetric potential with two transition path modes.

For simplicity, we consider a diagonal parameterization
Σt|0,T = diag({σ2

t|0,T ,d}
D
d=1). We parameterize a neural

network NNETθ : [0, T ] × RD × RD → RD × RD which
inputs (t, A,B). Its output is used to construct

xt|0,T = µ
(θ)

t|0,T +Σ
(θ)

t|0,T ϵ, where ϵ ∼ N (0, ID). (10)

µ
(θ)

t|0,T = (1− t)A+ t B + t(1− t)NNETθ(t, A,B)[:D]

Σ
(θ)

t|0,T = t(1− t)diag
(

NNETθ(t, A,B)[D:]

)
+ σ2

minI.

Crucially, our Gaussian parameterization addresses Chal-
lenge 1, in that we can easily draw samples xt|0,T ∼ qt|0,T
from our variational conditioned process (6b) without simu-
lating the corresponding SDE with nonlinear drift (13). Fur-
ther, t(1− t) coefficients in (10) ensure that the (smoothed)
boundary conditions are satisfied by design (Challenge 3).
We add σ2

min to ensure invertibilty of Σt|0,T (see (8)) as t→
0 or t → T , but preserve q0(x0) = N (x0 |A, σ2

minID) ≈
δ(x0−A) and qT (xT ) = N (xT |B, σ2

minID) ≈ δ(xT −B).

Reparameterization Gradients. Since we have now shown
that our parameterization satisfies the constraints (6b)-(6c)
by design, we can finally optimize our variational Doob
objective with respect to qt|0,T ∈ QG using the reparame-
terization trick (Kingma and Welling, 2013; Rezende et al.,
2014). In particular, for the expectation at each t in (6a),

∇θEq (θ)

t|0,T

(x)

[〈
v
(q,θ)

t|0,T (x), Gt v
(q,θ)

t|0,T (x)
〉]

(11)

= EN (ϵ|0,I
D

)

[
∇θ

〈
v
(q,θ)

t|0,T
(
(g(t, ϵ; θ)

)
, Gt v

(q,θ)

t|0,T
(
(g(t, ϵ; θ)

)〉]
where x = g(t, ϵ; θ) is the parameterized map in (10) and
v
(q,θ)
t|0,T depends on θ via µ(θ)

t|0,T , Σ(θ)
t|0,T in (8)–(9). In practice,

we approximate gradients using a single sample of ϵ at
uniformly sampled discrete time points 0 ≤ t ≤ T which
represent physical time (e.g., femtoseconds).

4. Experiments
We investigate the capabilities of our approach across a
variety of different settings. We first illustrate features of
our method on toy examples before continuing to real-world
molecular systems, including a commonly-used benchmark
system, alanine dipeptide, and a small protein, Chignolin.
The code behind our method is available at the following
link. Before diving into the experiments, we introduce the
evaluation procedure and baseline methods.

Evaluation metrics. In our evaluation, we emphasize two
key quantities: accuracy and efficiency. Efficiency is evalu-
ated by the number of calls to the potential energy function,
which requires extensive computation and dominates the
runtime of larger molecules. For accuracy, we evaluate the
log-likelihood of each sampled path and the maximum en-
ergy point (saddle point/transition state) along each sampled
path. A good method samples many probable paths (i.e.,
high log-likelihood) and an accurate transition state (i.e.,
small maximum energy). See App. E for further details.

Baselines. We compare our approach against the Markov
Chain Monte Carlo (MCMC)-based two-way shooting
method with uniform point selection with variable or fixed
length trajectories. We found that two-way shooting pro-
duced the most diverse path ensembles among possible base-
lines, although the acceptance probability can be relatively
low for systems dominated by diffusive dynamics (Brotza-
kis and Bolhuis, 2016) and might be improved by learning
shooting point selection. This baseline gives theoretical
guarantees about the ensemble and thus can be considered
as a proxy for the ground truth.

4.1. Synthetic Datasets

Müller-Brown Potential. The Müller-Brown potential is
a popular benchmark to study transition path sampling be-
tween metastable states. It consists of three local minima,
and we aim to sample transition paths connecting state A
and state B with a circular state definition. In Fig. 2, we
visualize the potential and the sampled paths and can see
that the same ensemble is sampled for both our method and
two-way shooting. Our method exhibits a slightly reduced
variance for unlikely transitions. In Table 1, we can observe
that MCMC-based methods require many potential evalu-
ations to achieve a good result, which comes from the low
acceptance rate (especially when fixing the lengths of tra-
jectories). Our method requires fewer energy evaluations (1
million vs. 1 billion) while finding paths with similar energy
and likelihood. Note, the likelihood for variable approaches
has been omitted, as it is governed by the number of steps
in the trajectory and cannot be compared directly.

Gaussian Mixture. We further consider a potential in which
the states are separated by a symmetric high-energy barrier

https://anonymous.4open.science/r/TPS-Doob-843E
https://anonymous.4open.science/r/TPS-Doob-843E


Method # Evalss (↓) Max Energy (↓) MinMax Energy (↓) Log-Lkd (↑) Max Log-Lkd (↑)
MCMC (variable) 3.53M -13.77 ± 16.43 -40.75 - -
MCMC 1.03B -17.80 ± 14.77 -40.21 866.56 ± 17.00 907.15
Ours 1.28M -14.81 ± 13.73 -40.56 858.50 ± 17.61 909.74

Table 1: Transition path sampling experiment for Müller-Brown
potential. We report the number of potential evaluations needed
to sample 1,000 paths, as well as the maximum energy and the
likelihood of each path (including mean and standard deviation).
MinMax energy reports the lowest maximum energy of all paths.

Method States # Evaluations (↓) Max Energy (↓) MinMax Energy (↓)
MCMC (variable length) CV 25.82M 1,212.81 ± 19,444.46 28.67
MCMC* CV 1.29B 288.46 ± 128.31 60.52

MCMC (variable length) relaxed 80.23M 269.16 ± 248.51 39.11
MCMC relaxed N/A N/A N/A

MCMC (variable length) exact N/A N/A N/A
MCMC exact N/A N/A N/A
Ours (Cartesian) exact 38.40M 804.24 ± 0.20 803.62
Ours (Cartesian, 2 Mixtures) exact 51.20M 828.77 ± 27.34 803.44
Ours (Internal) exact 51.20M 352.20 ± 0.04 352.08
Ours (Internal, 2 Mixtures) exact 51.20M 371.16 ± 82.88 239.66

Table 2: Transition path sampling for alanine dipeptide. For
MCMC methods, we compare different state definitions of A,B:
‘CV’ uses ϕ, ψ angles. ‘Exact’ uses a very small threshold of
aligned root-mean-square deviation (RMSD) around reference
states A,B (as in Ours). ‘Relaxed’ uses a larger threshold of
RMSD around A,B. The method marked with a * only samples
100 paths due to computational limitations, while others sample
1,000. Fields with N/A are intractable as they require significantly
more than 1 billion potential evaluations.

that allows for two distinct reaction channels. In Fig. 3, we
observe that a single Gaussian path cannot model a system
with multiple modes of transition paths. Nevertheless, this
issue can be resolved using a mixture of Gaussian paths,
with slightly increased computational cost.

4.2. Second-order Dynamics and Molecular Systems

Experiment Setup. We evaluate our methods on real-
world high-dimensional molecular systems governed by
the second-order dynamics (2): alanine dipeptide and Chig-
nolin. Alanine dipeptide is a well-studied system of 22
atoms (66 total degrees of freedom), where the molecule
can be described by two collective variables (CV): the di-
hedral angles ϕ, ψ. Chignolin is a larger system consist-
ing of 10 residues with 138 atoms (414 total degrees of
freedom) that cannot be summarized as easily. We use an
AMBER14 forcefield (Maier et al., 2015) implemented in
OpenMM (Eastman et al., 2017) but use DMFF (Wang et al.,
2023) to backpropagate through the energy evaluations.

Alanine Dipeptide. In Table 2, we report results for four
variants of our models, which either predict Cartesian coor-
dinates or internal coordinates in the form of bond lengths
and dihedral angles (compare App. E), either with or with-
out Gaussian mixture. For our method, operating in internal
coordinates takes more iterations to converge but gener-
ates better results compared to Cartesian coordinates, where
internal coordinates have nicely distributed input and our
network does need not learn equivariances (Du et al., 2022).
Similarly, Gaussian mixture paths perform slightly better

U(x)

T

Figure 4: Transition path for the protein Chignolin. The energy
plot demonstrates that the conformation goes through a high energy
barrier in a total of T = 1, 000fs, with the highest energy state
reached at 567fs.

than a single Gaussian path due to the extra expressiveness.
We note that paths sampled with Gaussian mixture exhibit
a larger variance in max energy as they represent multiple
reaction channels.

We find that prior-informed definitions of the desired initial
and target states (i.e., CV) are necessary for MCMC to work
efficiently with fixed-length trajectories. Finding these CVs
in practice is challenging and only possible in this instance
because the molecule is small and well-studied. For the
larger system size in Table 2, it becomes intractable to use
MCMC for reaching precise states A,B (‘exact’) instead
of larger regions (‘relaxed’), or for computing fixed-length
trajectories. Variable length MCMC with relaxed endpoint
conditions and fixed-length MCMC with CV perform well
on this task, but our method is competitive using fewer
evaluations and more strict boundary conditions.

Chignolin. The folding dynamics of Chignolin already pose
a challenge and have not yet been well-studied compared to
alanine dipeptide. We illustrate the qualitative experimental
results for this system in Fig. 4. Operating in Cartesian
space, our model samples a feasible transition within 12.8M
potential energy evaluation calls and a transition with a
duration of T = 1ps, which is faster compared to T =
0.6µs in Lindorff-Larsen et al. (2011).

5. Conclusion, Limitations and Future Work
In this paper, we propose an efficient computational frame-
work for transition path sampling with Brownian dynamics.
We formulate the transition path sampling problem by us-
ing Doob’s h-transform to condition a reference stochastic
process, and propose a variational formulation for efficient
optimization. Specifically, we propose a simulation-free
training objective and model parameterization that imposes
boundary conditions as hard constraints. We compare our
methods with MCMC-based baselines and show comparable
accuracy with lower computational costs on both synthetic
datasets and real-world molecular systems. Finally, our
method might be improved or extended by (1) accounting
for conditioning on a set of terminal events, (2) amortiz-
ing over many state pairs or systems and finally learning
an unconditioned process, and (3) accommodating variable
length paths.
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A. Doob’s h-Transform and its Variational Formulation
A.1. Forward-Backward Kolmogorov Equations for Doob’s h-Transform

Proposition 3. The following PDEs are obeyed by (a) the marginal density of the conditioned process ρt|0,T (x) = ρ(xt =
x |x0 = A, xT ∈ B) and (b) the h-function h(x, t) (which implicitly depends on B),

∂ρt|0,T (x)

∂t
+
〈
∇x, ρt|0,T (x)

(
bt(x) + 2Gt∇x log h(x, t)

)〉
−
∑
ij

(Gt)ij
∂2

∂xi∂xj
ρt|0,T (x) = 0 , (12a)

∂h(x, t)

∂t
+
〈
∇xh(x, t), bt(x)

〉
+
∑
ij

(Gt)ij
∂2

∂xi∂xj
h(x, t) = 0 . (12b)

Reparameterizing (12b) in terms of s(x, t) := log h(x, t), we can also write

∂s(x, t)

∂t
+
〈
∇s(x, t), Gt∇s(x, t)

〉
+
〈
∇s(x, t), bt(xt)

〉
+

∑
ij

(Gt)ij
∂2

∂xi∂xj
s(x, t) = 0. (12c)

We provide proof of this proposition in App. C.1. We recall the simple example of the Brownian bridge, although our
methods will handle the case of nonlinear reference processes as in (1)-(2).

Example 1 (Brownian Bridge). Consider a reference process dxt = dWt. Conditioning on xT = B for a particular value
of B, the Doob h-transform amounts to a Gaussian transition kernel h(x, t) := ρ(xT = B |xt = x) = N (xT | xt, T − t).
Plugging the log gradient ∇x log h(x, t) into (4) yields the conditioned SDE known as the Brownian bridge, dxt|0,T =
(xT − xt|0,T )/(T − t)dt+ dWt.

A.2. Analysis of the Variational Objective in Thm. 1

Unconstrained Dual Objective. Introducing Lagrange multipliers to enforce the constraints in (6b)–(6c) and eliminating
vt|0,T , we obtain an alternative, unconstrained version of (6a).
Corollary 1. The Lagrangian objective in Thm. 1 which solves Doob’s h-transform is equivalent to

S = min
qt|0,T

max
s

s(B, 1)− s(A, 0)−
∫ 1

0

dt

∫
dx qt|0,T

(
∂s

∂t
+

〈
∇s,Gt∇s

〉
+

〈
∇s, bt

〉
+

〈
∇, Gt∇s

〉)
if qt|0,T satisfies (6c). Note vt|0,T (x) = ∇xs(x, t), with s∗(x, t) = log h(x, t) at optimality.2

This objective is similar to the objectives optimized by Action Matching methods (Neklyudov et al., 2023; 2024). Notably,
the objective in Cor. 1 is expressed directly in terms of the (log) of the h-function for fixed conditioning information xT = B.
We also note that the Hamilton Jacobi-style quantity, whose expectation appears in the final term, is zero at optimality in
(12c) of Prop. 3.

Path Measure Perspective. We next interpret our variational objective in Thm. 1 as minimizing a KL divergence over path
measures. Let Pref

0:T denote the law of the reference SDE in (3) with fixed Pref
0 = δ(x0 −A). Let Qv

0:T denote the law of a
controlled process similar to (4), but with a variational vt|0,T in place of ∇x log h,

Qv
0:T : dxt =

(
bt(xt) + 2Gt vt|0,T (xt|0,T )

)
· dt+ Ξt dWt , x0 = A. (13)

Note that the density qt|0,T of Qv
0:T satisfies the Fokker-Planck equation in (6b) (Särkkä and Solin, 2019, Sec. 5.2) Using

the Girsanov Theorem, the objective in (6a) can then be viewed as a KL divergence minimization over path measures Qv
0:T

which satisfy the boundary constraints.

Corollary 2. The Lagrangian objective in Thm. 1 is equivalent to the following optimization of Qv
0:T

S := min
Qv

0:T s.t. Qv
0=δA,Qv

T=δB
DKL[Qv

0:T : Pref
0:T ] (14)

where the minimizing argument recovers the path measure P∗
0:T associated with the SDE in (4).

2Again, note that we omit the dependence of s(x, t) and h(x, t) on the conditioning information B.



Our Lagrangian action minimization thus solves a Schrödinger Bridge (SB) problem (Schrödinger, 1932; Léonard, 2014)
with Dirac delta functions as the endpoint measures. Our objective in (6a) particularly resembles optimal control formulations
of SB (Chen et al., 2016; 2021b). While it is well-known that the Doob h-transforms (and large deviations more generally)
play a role in the solution to SB problems (e.g. Jamison (1975); Léonard (2014)), our interest in the transition path sampling
problem leads to specific computational decisions below. See App. D for further discussion.

B. Gaussian Path Parameterizations
We begin by proving Prop. 2 in the main text, before discussing how our algorithm extends to second order dynamics
(App. B.1) and mixtures of Gaussians (App. B.2).

Proposition. 3. For the family of endpoint-conditioned marginals qt|0,T (x) = N (x |µt|0,T ,Σt|0,T ),

u
(q)
t|0,T (x) :=

∂µt|0,T

∂t
+

[
1

2

∂Σt|0,T

∂t
Σ−1

t|0,T −Gt Σ
−1
t|0,T

](
x− µt|0,T

)
(15)

satisfies the Fokker-Planck equation (7) for qt|0,T and diffusion coefficients Gt =
1
2ΞtΞ

T
t .

Proof. Consider the following identities for the Gaussian family of marginals qt(x) = N (x|µt,Σt), where we omit
conditioning qt ← qt|0,T for simplicity of notation,

log qt(x) = −
1

2
(x− µt)

TΣ−1
t (x− µt)−

d

2
log(2π)− 1

2
log detΣt , (16a)

∇x log qt(x) = −Σ−1
t (x− µt) , (16b)

∂

∂t
log qt(x) = (x− µt)

TΣ−1
t

∂µt

∂t
+

1

2
(x− µt)

TΣ−1
t

∂Σt

∂t
Σ−1

t (x− µt)−
1

2
tr
(
Σ−1

t

∂Σt

∂t

)
(16c)

We begin by solving for a vector field uo
t(x) that satisfies the continuity equation (where uo

t denotes the drift of an ODE)

∂qt
∂t

= −
〈
∇x, qtu

o
t

〉
= −qt

〈
∇x, u

o
t

〉
+

〈
∇xqt,∇xu

o
t

〉
=⇒ ∂

∂t
log qt = −

〈
∇x, u

o
t

〉
−

〈
∇x log qt, u

o
t

〉
(17)

The vector field satisfying this equation is

uo
t(x) =

∂µt

∂t
+

1

2

∂Σt

∂t
Σ−1

t (x− µt) (18)

which we can confirm using the identities in (16). Indeed, for the terms on the RHS of Eq. (17),

−
〈
∇x, u

o
t

〉
= − 1

2
tr
(
Σ−1

t

∂Σt

∂t

)
,

−
〈
∇x log qt, u

o
t

〉
=

〈
Σ−1

t (x− µt),
∂µt

∂t

〉
+

1

2
(x− µt)

TΣ−1
t

∂Σt

∂t
Σ−1

t (x− µt) .

Putting these terms and the time derivative from (16c) into Eq. (17) we conclude the proof.

However, we are eventually interested in finding the formula for the drift ut that satisfies the Fokker-Planck equation in (7).
That is, to describe the same evolution of density ∂qt(x)

∂t , the relationship between ut and uo
t is as follows

∂qt(x)

∂t
= −

〈
∇x, qtu

o
t

〉
= −

〈
∇x, qt ut

〉
+

〈
∇x, Gt∇xqt

〉
= −

〈
∇x, qt ut

〉
+

〈
∇x, Gtqt∇x log qt

〉
= −

〈
∇x, qt (ut −Gt∇x log qt)︸ ︷︷ ︸

uo
t

〉



Finally, we use the identities in (16) to obtain

ut = uo
t +Gt∇x log qt =

∂µt

∂t
+

1

2

∂Σt

∂t
Σ−1

t (x− µt)−GtΣ
−1
t (x− µt)

=⇒ ut =
∂µt

∂t
+

[
1

2

∂Σt

∂t
Σ−1

t −GtΣ
−1
t

]
(x− µt)

B.1. Second-Order Dynamics
To handle the case of the second-order dynamics in (2), we can adapt our recipe from the previous section with minimal
modifications by extending the state space x ∈ RD to include velocities v̄, with x = (x̄, v̄) ∈ R2D. However, note that
the dynamics in (2) are no longer stochastic in the spatial coordinates x̄. To ensure invertibility of Gt and existence of the
h-transform, we add a small nonzero diffusion coefficient in the coordinate space x̄, so that the reference process in Eq. (3)
is given by

xt =

[
x̄t
v̄t

]
, bt(xt) =

[
v̄t

−M−1∇xU(x̄t)− γM−1v̄t

]
, Ξt =

[
ξminID 0

0 M−1/2√2γkBT

]
. (19)

All steps in our algorithm proceed in similar fashion to Sec. 3.2. We now parameterize qt|0,T (x̄, v̄) using NNETθ :
[0, T ]×R2D×R2D → R2D×R2D, which outputs mean perturbations and per-dimension variances to calculate µx̄

t|0,T , µ
v̄
t|0,T

and Σx̄
t|0,T ,Σ

v̄
t|0,T and sample (x̄, v̄), as in (10). Note that we parameterize Σx̄

t|0,T ,Σ
v̄
t|0,T separately, matching the block

diagonal form of (19). We calculate v(q)t|0,T (x̄, v̄) := [v
x̄(q)
t|0,T , v

v̄(q)
t|0,T ] from u

(q)
t|0,T (x̄, v̄) = [u

x̄(q)
t|0,T , u

v̄(q)
t|0,T ] as in (8)–(9), with

G−1
t = ( 12ΞtΞ

T
t )

−1 given by (19). The Lagrangian objective in (6) minimizes the norm of the concatenated vector
v
(q)
t|0,T (x̄, v̄), which depends on the reference drift bt(x̄, v̄) in (19).

B.2. Gaussian Mixture Paths
Note that the true Doob h-transform may not yield marginals which follow the unimodal Gaussian distributions in the
previous sections. To increase the expressivity of our variational family of conditioned processes, we consider extending
our parameterization to mixtures of Gaussians, qt|0,T ∈ QK

MoG. For a given set of K mixture weights wk and component
Gaussian paths qkt|0,T , the following identity allows us to recover the drift u(q)t|0,T of the corresponding mixture distribution
qt|0,T .

Proposition 4. Given a set of processes qkt|0,T (x) and mixtures weights wk, the vector field satisfying the Fokker-Planck
equation in (7) for the mixture qt|0,T (x) =

∑
k w

kqkt|0,T (x) is given by

u
(q)
t|0,T (x) =

K∑
k=1

wkqkt|0,T (x)∑K
j=1 w

jqjt|0,T (x)
u
(q,k)
t|0,T (x) , (20)

where u(q,k)t|0,T (x) satisfies the Fokker-Planck equation in (7) for qkt|0,T (x). This identity holds for both first order dynamics in
spatial coordinates only or second-order dynamics in x = (x̄, v̄).

Proof. See Peluchetti (2023) Theorem 1 and its proof in their App. C.

Finally, we can calculate v(q)t|0,T (x) by comparing u(q)t|0,T (x) for the mixture of Gaussian path qt|0,T ∈ QK
MoG to the reference

drift bt(x) as in (9), and proceed to minimize its norm as in (6). We use Gumbel softmax reparamerization gradients
(Maddison et al., 2016; Jang et al., 2017) to optimize the mixture weights {wk}Kk=1 alongside the neural network parameters
{θk}Kk=1 for each Gaussian component {µ(θ k)

t|0,T ,Σ
(θ k)
t|0,T }

K
k=1 and either first- or second-order dynamics.

C. Proofs
C.1. Proofs from Sec. 2.2 (Doob’s h-Transform Background)

Proposition. 2.[Jamison (1975, Thm. 2)] Let h(x, t) := ρ(xT ∈ B |xt = x) denote the conditional transition density with



respect to the reference process in (3). Letting Gt :=
1
2ΞtΞ

T
t , the SDE

dxt|0,T =
(
bt(xt|0,T ) + 2Gt∇x log h(xt|0,T , t)

)
· dt+ Ξt dWt (21)

is associated with the following transition probabilities

ρ(xt = y |xs = x, xT ∈ B) =
h(y, s)

h(x, t)
ρ(xt = y |xs = x), (22)

for s < t < T , where we omit the dependence of h(x, t) on B for simplicity of notation.

Proof. See Jamison (1975) for a simple proof based on Ito’s Lemma, assuming smoothness and strict positivity of h.

Proposition 3. The following PDEs are obeyed by (a) the marginal density of the conditioned process ρt|0,T (x) = ρ(xt =
x |x0 = A, xT ∈ B) and (b) the h-function h(x, t) (which implicitly depends on B),

∂ρt|0,T (x)

∂t
+
〈
∇x, ρt|0,T (x)

(
bt(x) + 2Gt∇x log h(x, t)

)〉
−
∑
ij

(Gt)ij
∂2

∂xi∂xj
ρt|0,T (x) = 0 , (12a)

∂h(x, t)

∂t
+
〈
∇xh(x, t), bt(x)

〉
+
∑
ij

(Gt)ij
∂2

∂xi∂xj
h(x, t) = 0 . (12b)

Reparameterizing (12b) in terms of s(x, t) := log h(x, t), we can also write

∂s(x, t)

∂t
+
〈
∇s(x, t), Gt∇s(x, t)

〉
+
〈
∇s(x, t), bt(xt)

〉
+

∑
ij

(Gt)ij
∂2

∂xi∂xj
s(x, t) = 0. (12c)

Proof. Let p(xt+s = y |xt = x) denote the transition probability of a reference diffusion process

∂

∂s
p(xt+s = y |xt = x) = −

〈
∇y, p(xt+s = y |xt = x)bt+s(y)

〉
+

∑
ij

(Gt)ij
∂2

∂yi∂yj
p(xt+s = y |xt = x), (23)

where (Gt)ij =
1
2Ξt+sΞ

T
t+s.

Now we condition the process on the end-point value xT ∈ B, and we get another kernel, i.e.

p(xt+s = y |xt = x, xT ∈ B) =
p(xT ∈ B |xt+s = y)

p(xT ∈ B |xt = x)
p(xt+s = y |xt = x) , (24)

We let h(x, t) = p(xT ∈ B |xt = x) denote the conditional probability over the desired endpoint condition given xt = x.
According to laws of conditional probability, we can describe how h(x, t) changes in time using the unconditioned transition
probability

p(xT ∈ B |xt = x)︸ ︷︷ ︸
h(x,t)

=

∫
dy p(xT ∈ B |xt+s = y)︸ ︷︷ ︸

h(y,t+s)

p(xt+s = y |xt = x) , (25)

we take the derivative ∂
∂s on both sides, and we get

0 =

∫
dy

[
p(xt+s = y |xt = x)

∂h(y, t+ s)

∂s
+
∂p(xt+s = y |xt = x)

∂s
h(y, t+ s)

]
. (26)

Using the FP equation for the transition probability and integrating by parts, we have

0 =

∫
dy p(xt+s = y |xt = x)

∂h(y, t+ s)

∂s
+

〈
∇yh(y, t+ s), bt(y)

〉
+

∑
ij

(Gt)ij
∂2

∂yi∂yj
h(y, t+ s)

 .



Note that this holds ∀x, hence, we have

∂h(y, t+ s)

∂s
+
〈
∇yh(y, t+ s), bt+s(y)

〉
+
∑
ij

(Gt)ij
∂2

∂yi∂yj
h(y, t+ s) = 0 ,

without any loss of generality we can set t = 0

∂h(y, s)

∂s
+
〈
∇yh(y, s), bs(y)

〉
+

∑
ij

(Gt)ij
∂2

∂yi∂yj
h(y, s) = 0 . (27)

as desired to prove the optimality condition in (12b).

To prove (12a), denote p(y, s) = p(xs = y |x0 = x) and differentiate p(xs = y |x0 = x, xT ∈ B) = h(y,s)
h(x,0)p(y, s) as

∂

∂s
p(xs = y |x0 = x, xT ∈ B)

=
1

h(x, 0)

[
p(y, s)

∂h(y, s)

∂s
+ h(y, s)

∂p(y, s)

∂s

]
=

1

h(x, 0)

[
−
〈
∇yh(y, s), p(y, s)bs(y)

〉
− p(y, s)

∑
ij

(Gt)ij
∂2

∂yi∂yj
h(y, s)

− h(y, s)
〈
∇y, p(y, s)bs(y)

〉
+ h(y, s)

∑
ij

(Gt)ij
∂2

∂yi∂yj
p(y, s)

]

= −
〈
∇y,

h(y, s)

h(x, 0)
p(y, s)bs(y)

〉
− p(y, s)

〈
∇y, 2D∇y

h(y, s)

h(x, 0)

〉
±
〈
∇yp(y, s), 2D∇y

h(y, s)

h(x, 0)

〉
+
∑
ij

(Gt)ij
∂2

∂yi∂yj

(
h(y, s)

h(x, 0)
p(y, s)

)
,

Note that h(x, 0) can be pulled outside the differential operator because it is a function of x. The PDE for the new kernel
p(y, s |B) = p(xs = y |x0 = x, xT ∈ B) (conditioned on the end-point) becomes

∂

∂s
p(y, s |B) = −

〈
∇y, p(y, s |B)(bs(y) + 2D∇y log h(y, s))

〉
+

∑
ij

(Gt)ij
∂2

∂yi∂yj
p(y, s |B) . (28)

which matches the desired PDE in (12a) thereby proving the first two parts of Prop. 3.

Finally, to show (12c), we index time using t in Eq. (27) and change variables h(x, t) = es(x,t),

∂es(x,t)

∂t
+
〈
∇xe

s(x,t), bt(x)
〉
+

∑
ij

(Gt)ij
∂2

∂xi∂xj
es(x,t) = 0 .

es(x,t)
∂s(x, t)

∂t
+ es(x,t)

〈
∇xs(x, t), bt(x)

〉
+

〈
∇, Gt∇es(x,t)

〉
= 0

Next, we simplify
〈
∇, Gt∇es(x,t)

〉
=

〈
∇, Gte

s(x,t)∇s(x, t)
〉
=

〈
∇es(x,t), Gt∇s(x, t)

〉
+ es(x,t)

〈
∇, Gt∇s(x, t)

〉
=

es(x,t)
〈
∇s(x, t), Gt∇s(x, t)

〉
+ es(x,t)

〈
∇, Gt∇s(x, t)

〉
to finally write

es(x,t)

∂s(x, t)

∂t
+
〈
∇xs(x, t), bt(x)

〉
+
〈
∇s(x, t), Gt∇s(x, t)

〉
+
∑
ij

(Gt)ij
∂2

∂xi∂xj
s(x, t)

 = 0

which demonstrates (12c) since the inner term must be zero.



C.2. Proofs from Sec. 3.1 (Lagrangian Action Minimization for Doob’s h-Transform)

We begin by proving Cor. 1, whose proof actually contains the initial steps needed to prove our main theorem Thm. 1. In
both proofs, we omit conditioning notation qt ← qt|0,T for simplicity and assume qt(x)st(x)→ 0 vanishes at the boundary
x→ ±∞, which is used when integrating by parts in x.

Corollary 1. The Lagrangian objective in Thm. 1 which solves Doob’s h-transform is equivalent to

S = min
q

t|0,T

max
s

s(B, 1)− s(A, 0)−
∫ 1

0

dt

∫
dx qt|0,T

(
∂s

∂t
+

〈
∇s,Gt∇s

〉
+

〈
∇s, bt

〉
+

〈
∇, Gt∇s

〉)

if qt|0,T satisfies (6c). Note vt|0,T (x) = ∇xs(x, t), with s∗(x, t) = log h(x, t) at optimality.3

Proof. Consider the following action functional

S = min
q

t

,v
t

∫
dt

∫
dx qt(x)

〈
vt(x), Gtvt(x)

〉
,

s.t.
∂qt(x)

∂t
= −

〈
∇x, qt(x)(bt(x) + 2Gtvt(x))

〉
+

∑
ij

(Gt)ij
∂2

∂xi∂xj
qt(x) ,

q0(x) = δ(x−A), q1(x) = δ(x−B) .

The Lagrangian of this optimization problem is

L =

∫ 1

0

dt

∫
dx

qt〈vt, Gtvt
〉
+ st

∂qt
∂t

+
〈
∇, qt(bt + 2Gtvt)

〉
−
∑
ij

(Gt)ij
∂2

∂xi∂xj
qt

 ,
where st is the dual variable and we omit the optimization arguments, with S = minq

t

,v
t

maxs
t

L. Swapping the order of
optimizations under strong duality, we take the variation with respect to vt in an arbitrary direction ht. Using Gt = GT

t , we
obtain

δL
δvt

[ht] = qt
〈
(Gt +GT

t )vt, ht
〉
− qt

〈
2GT

t ∇st, ht
〉
= 0

=⇒ vt = ∇st , (29)

Substituting into the above, we have

L =

∫ 1

0

dt

∫
dx

[
st
∂qt
∂t
− qt

〈
∇st, Gt∇st

〉
+ st

〈
∇, qtbt

〉
− st

〈
∇, Gt∇qt

〉]
. (30)

Integrating by parts in t and in x, assuming that qt(x)st(x)→ 0 as x→ ±∞, yields

L =

∫
dx q1s1 −

∫
dx q0s0 +

∫ 1

0

dt

∫
dx

[
−qt

∂st
∂t

− qt
〈
∇st, Gt∇st

〉
− qt

〈
∇st, bt

〉
+

〈
∇st, Gt∇qt

〉]
=

∫
dx q1s1 −

∫
dx q0s0 +

∫ 1

0

dt

∫
dx

[
−qt

∂st
∂t

− qt
〈
∇st, Gt∇st

〉
− qt

〈
∇st, bt

〉
− qt

〈
∇, Gt∇st

〉]
=

∫
dx q1s1 −

∫
dx q0s0 −

∫ 1

0

dt

∫
dx qt

[
∂st
∂t

+
〈
∇st, Gt∇st

〉
+

〈
∇st, bt

〉
+

〈
∇, Gt∇st

〉]
(31)

where in the second line, we integrate by parts in x again. Enforcing q1(x) = δ(x−B) and q0(x) = δ(x−A) and recalling
S = minq

t

maxs
t

L after eliminating vt, we recover the optimization in the statement of the corollary.
3Again, note that we omit the dependence of s(x, t) and h(x, t) on the conditioning information B.



Theorem. 1. The following Lagrangian action functional has a unique solution which matches the Doob h-transform in
Prop. 3,

S = min
q

t|0,T

,v
t|0,T

∫ T

0

dt

∫
dx qt|0,T (x)

〈
vt|0,T (x), Gt vt|0,T (x)

〉
, (32a)

s.t.
∂qt|0,T (x)

∂t
= −

〈
∇x, qt|0,T (x)

(
bt(x) + 2Gt vt|0,T (x)

)〉
+

∑
ij

(Gt)ij
∂2

∂xi∂xj
qt|0,T (x), (32b)

q0(x) = δ(x−A), qT (x) = δ(x−B) . (32c)

Namely, the optimal q∗t|0,T (x) obeys (12a) and the optimal v∗t|0,T (x) = ∇x log h(x, t) = ∇xs(x, t) follows (12b) or (12c).

Proof. The proof proceeds from (30) above,

S = min
q

t

max
s

t

L = min
q

t

max
s

t

∫ 1

0
dt

∫
dx

[
st

∂q
t

∂t − qt
〈
∇st, Gt∇st

〉
+ st

〈
∇, qtbt

〉
− st

〈
∇, Gt∇qt

〉]
. (33)

We first show that the optimality condition with respect to st yields the Fokker-Planck equation for qt in Prop. 3 (12a),
before deriving the PDE in (12b) as the optimality condition with respect to qt.

Optimality Condition for (32) recovers Prop. 3 (12a): The variation with respect to st of (33) is simple, apart from the
intermediate term. For a perturbation direction ht, we seek∫

dx
δ(•)

δst
ht =

d

dε

[
−
∫
dx qt

〈
∇(st + εht), Gt∇(st + εht)

〉]∣∣∣
ε=0

,

where • indicates the functional on the right hand side. Proceeding to differentiate with respect to ε, we use linearity to pull
d
dε inside the integral and apply it first to obtain d

dε (st + εht) = ht. Using the product rule, recognizing the symmetry of
terms, and evaluating at ε = 0, we are left with∫

dx
δ(•)

δst
ht =

[
−2

∫
dx qt

〈
∇ht, Gt∇st

〉] (i)
=

[∫
dx ht

(
2
〈
∇, qtGt∇st

〉)]
(34)

where in (i) we integrate by parts x.

We are now ready to set the variation of (33) with respect to st (in an arbitrary direction ht) equal to zero. Using (34), we
have

δL
δst

[ht] = 0 =
∂qt
∂t

+ 2
〈
∇, qtGt∇st

〉
+
〈
∇, qtbt

〉
−
〈
∇, Gt∇qt

〉
=⇒ 0 =

∂qt
∂t

+
〈
∇, qt

(
bt + 2Gt∇st

)〉
−
〈
∇, Gt∇qt

〉
(35)

which matches the desired optimality condition for the conditioned process in Prop. 3 (12a).

Optimality Condition for (32) recovers Prop. 3 (12b): Starting again from (33), we take the variation with respect to qt.
First, we repeat identical steps (integrate by parts in both x and t) to reach (31),

L =

∫
dx q1s1 −

∫
dx q0s0 −

∫ 1

0

dt

∫
dx qt

[
∂st
∂t

+
〈
∇st, Gt∇st

〉
+
〈
∇st, bt

〉
+

〈
∇, Gt∇st

〉]
where it is now clear that taking the variation with respect to qt and setting equal to zero yields

δL
δqt

[ht] = 0 =
∂st
∂t

+
〈
∇st, Gt∇st

〉
+
〈
∇st, bt

〉
+

〈
∇, Gt∇st

〉
(36)

which is the desired PDE for s(x, t) = log h(x, t) in (12c). To obtain (12b), we note an identity used to simplify the last
term ∑

ij

(Gt)ij
∂2

∂xi∂xj
log ht =

〈
∇, Gt∇ log ht

〉
=

〈
∇, 1

ht
Gt∇ht

〉
= − 1

h2t

〈
∇ht, Gt∇ht

〉
+

1

ht

〈
∇, Gt∇ht

〉
.



Now, substituting s(x, t) = log h(x, t) into Eq. (36), we obtain

1

ht

∂ht
∂t

+
1

h2t

〈
∇ht, Gt∇ht

〉
+

1

ht

〈
∇ht, bt

〉
− 1

h2t

〈
∇ht, Gt∇ht

〉
+

1

ht

〈
∇, Gt∇ht

〉
= 0 ,

=⇒ ∂ht(x)

∂t
+

〈
∇ht(x), bt(x)

〉
+
〈
∇, Gt∇ht

〉
= 0, (37)

which matches (12b) as desired.

The last equation defines the backward Kolmogorov equation for the diffusion process with the drift bt(x) and covariance
matrix Gt, i.e. the function ht(x) defines the conditional density ht(x) = p(xT ∈ B′ |xt = x) for some set B′, which
agrees with the forward process with the same drift and covariance. The boundary condition qT (x) = δ(x−B) together
with the backward equation define the unique solution to this PDE. Since the PDEs and the boundary conditions are the
same as in Doob’s h-transform, we have ht(x) = p(xT = B |xt = x).

Corollary 2. The Lagrangian objective in Thm. 1 is equivalent to the following optimization of Qv
0:T

S := min
Qv

0:T

s.t. Qv

0

=δ
A

,Qv

T

=δ
B

DKL[Qv
0:T : Pref

0:T ] (14)

where the minimizing argument recovers the path measure P∗
0:T associated with the SDE in (4).

Proof. We use the Girsanov theorem (Särkkä and Solin, 2019, Sec. 7.3) to calculate the KL divergence between the
following two Brownian diffusions with fixed initial condition x0 = A,

Pref
0:T : dxt = bt(xt) · dt+ Ξt dWt , (38)

Qv
0:T : dxt =

(
bt(xt) + 2Gt vt|0,T (xt|0,T )

)
· dt+ Ξt dWt , (39)

In particular, noting the difference of drifts is bt(xt) + 2Gt vt|0,T (xt) − bt(xt) = 2Gt vt|0,T (xt), the likelihood ratio is
given by

dQv
0:T

dPref
0:T

=
qt|0,T (x0, ...xT )

ρ(x0, ...xT )
= exp

{
− 1

2

∫ T

0

〈
2Gt vt|0,T (xt), (Gt)

−1 2Gt vt|0,T (xt)
〉
dt (40)

−
∫

2
(
Gt vt|0,T (xt)

)T
G−1

t dWt

}
We finally calculate the KL divergence, noting that, after taking the log, the expectation of the integral

∫
(•)dWt in the final

term vanishes,

DKL[Qv
0:T : Pref

0:T ] = 2

∫ 1

0

dt

∫
dxt qt|0,T (xt)

〈
vt|0,T (xt), Gt vt|0,T (xt)

〉
, (41)

which matches (6a) up to a constant factor of 2 does not change the optimum. We finally compare to the constraints in
Thm. 1. First, it is clear that the diffusion in (39) satisfies the Fokker-Planck equation in (6b) (Särkkä and Solin, 2019, Sec.
5.2). We respect (6c) by optimizing over endpoint-constrained path measures, which yields

S = min
Qv

0:T

s.t. Qv

0

=δ
A

,Qv

T

=δ
B

DKL[Qv
0:T : Pref

0:T ] (42)

as desired.

D. Related Work
(Aligned) Schrödinger Bridge Matching Methods. Many existing ‘bridge matching’ approaches (Shi et al., 2023;
Peluchetti, 2021; 2023; Liu et al., 2022; Lipman et al., 2022; Liu et al., 2023b) for SB and generative modeling rely on
convenient properties of Brownian bridges and would require calculating h-transforms to simulate bridges for general
reference processes. Our conditional Gaussian path parameterization is similar to Liu et al. (2023a); Neklyudov et al. (2024),
where analytic bridges are not available for SB problems with nonlinear reference drift or general costs.



Somnath et al. (2023); Liu et al. (2023b) attempt to solve the SB problem given access to aligned data x0, xT ∼ qdata
0,T

assumed to be drawn from an optimal coupling. While the method in Somnath et al. (2023) involves approximating an
h-transform, their goal is to obtain an unconditioned vector field vt to simulate a Markov process. However, De Bortoli et al.
(2023) use Doob’s h-transform to argue the learned Markov process will not preserve the empirical coupling unless qdata

0,T is
the optimal coupling for the SB problem, and show that an ‘augmented’ v0,t which conditions on x0 can correct this issue.

After training on a dataset of x0, xT ∼ qdata
0,T pairs using our method, we could consider using an (augmented) bridge

matching objective (Shi et al., 2023; De Bortoli et al., 2023) to distill our learned v(q)t|0,T into a vector field vt or v0,t which
does not condition on the endpoint. Our use of a Gaussian path parameterization with samples from a fixed endpoint
coupling and no Markovization step corresponds to a simplified version of the conditional optimal control step in Liu et al.
(2023a).

Transition Path Sampling. We refer to the surveys of Dellago et al. (2002); Weinan and Vanden-Eijnden (2010); Bolhuis
and Swenson (2021) for an overview of the TPS problem. Least action principles for TPS have a long history, building upon
the Freidlin-Wentzell (Freidlin and Wentzell, 1998) and Onsager-Machlup (Onsager and Machlup, 1953; Dürr and Bach,
1978) Lagrangian functionals in the zero-noise limit and finite-noise cases. In particular, the Onsager-Machlup functional
relates maximum a posteriori estimators or ‘most probable (conditioned) paths’ to the minimizers of an action functional
similar to Thm. 1, where example algorithms include (Vanden-Eijnden and Heymann, 2008; Sheppard et al., 2008). By
contrast, our approach targets the entire posterior over transition paths using an expressive variational family. While Lu et al.
(2017) provide analysis for the Gaussian family, we draw connections with Doob’s h-transform and extend to mixtures of
Gaussians.

Shooting methods are among the most popular for sampling the posterior of transition paths. From a path that satisfies the
boundary conditions (obtained, e.g., using high-temperature simulations), shooting picks points and directions in which to
propose alterations, then simulates new trajectories and accepts or rejects using Metropolis-Hastings (MH) (Juraszek and
Bolhuis, 2008; Borrero and Dellago, 2016; Jung et al., 2017; Falkner et al., 2023; Jung et al., 2023). While the MCMC
corrections yield theoretical guarantees, shooting methods involve expensive molecular dynamics (MD) simulations and
need to balance high rejection rates with large changes in trajectories. One-way shooting methods sample paths efficiently
but yield highly correlated samples. Two-way shooting methods, which we compare against in Sec. 4, are more expensive
but typically sample diverse paths faster. Recent machine learning approaches such as Plainer et al. (2023); Lelièvre et al.
(2023) aim to reduce the need for MD. Holdijk et al. (2024) propose a stochastic optimal control method that simulates (13)
with a learned drift, but can be inefficient unless the terminal state is sampled frequently.

Machine Learning for Molecular Simulation.

The main dilemma of molecular dynamics comes from the accuracy and efficiency trade-off—accurate simulation requires
solving the Schrödinger equation which is computationally intractable for large systems, while efficient simulation relies on
empirical force fields which is inaccurate. Recently, there has been a surge of work in applying machine learning approaches
to accelerate molecular simulation. One successful paradigm is machine learning force field (MLFF) which leverages the
transferability and efficiency of machine learning methods to fit force/energy prediction models on quantum mechanical
data and transfer across different atomic systems (Smith et al., 2017; Wang et al., 2018). More recently, increasing attention
has been focused on building atomic foundation models to encompass all types of molecular structures (Batatia et al., 2023;
Shoghi et al., 2023; Zhang et al., 2022).

Sampling is a classical problem in molecular dynamics to draw samples from the Boltzmann distribution of molecular
systems. Classical methods mainly rely on Markov chain Monte Carlo (MCMC) or MD which requires long mixing
time for multimodal distributions with high energy barriers (Rotskoff, 2024). Generative models in machine learning
demonstrate promises in alleviating this problem by learning to draw independent samples from the Boltzmann distribution
of molecular systems (known as Boltzmann generator) (Noé et al., 2019). Numerous methods have been developed to utilize
generative models as a proposal distribution for escaping local minima in running MCMC methods (Gabrié et al., 2022).
However, one critical issue is that generative models rely on training from samples. Although recent advances have been
developed to learn from unnormalized density (i.e., energy) function, the training inefficiency limits their applicability to
solve high-dimensional molecular dynamics problems. To circumvent the curse of dimensionality for the sampling problem,
another branch of work study to learn coarse-grained representation with neural networks (Sidky et al., 2020). For broader
literature of applying machine learning to enhanced sampling, we refer the reader to Mehdi et al. (2024).



E. Further Experimental Details
E.1. Evaluation Metrics

To assess the quality of our approach in terms of performance and physicalness of paths, we compare them under different
metrics to well-established TPS techniques. One important describing factor of a trajectory is the molecule’s highest
energy during the transition. These high-energy states are often referred as transition states and less likely to occur but they
determine importance factors during chemical reaction such as reaction rate. As such, we will look at the maximum energy
along the transition path and use it to compare the ensemble of trajectories more efficiently. The main goal is to show that
lower energy of the transition states can be sampled by the methods.

However, the maximum energy does not account for the fact that the transition path needs to be sequential, and each step
needs to be coherent based on the previous position and momentum. For this, we also compare the likelihood of the paths
(i.e., unnormalized density) by computing the probably of being in the start state ρ(x0) and multiplying it with the step
probability such that

L(x0, x1, . . . , xN−1) = ρ(x0) ·
N−2∏
i=0

π(xi+1 |xi) . (43)

For the step probability π, we solve the Langevin leap-frog implementation as implemented in OpenMM to solve
N (xi+1 |xi + dt · bt

i

(x), dtσ2
i ). As for the starting probability, we compute the unnormalized density of the Boltz-

mann distribution for our start state z and assume that the velocity v can be sampled independently (Castellan, 1983,
Sec. 4.6)

ρ(z, v) ∝ exp

(
−U(z)

kBT

)
· N

(
v | 0, kBT ·M−1

)
, (44)

with the Boltzmann constant kB and the diagonal matrix M containing the mass of each atom.

As for the performance, the number of energy evaluations will be the main determining factor of the runtime for larger
molecular systems, especially for proteins. We hence compare the use of the number of energy computations as a proxy for
hardware-independent relative measurements. In our tests, this number aligned with the relative runtime of these approaches.

E.2. Toy Potentials

The toy systems move according to the following integration scheme (first-order Euler)

xt+1 = xt − dt · ∇xU(xt) +
√
dt · diag(ξ) · ε, ε ∼ N (0, 1) , (45)

following the definition of our stochastic system in Sec. 2.2 with a time-independent Wiener process, where ξ is a constant
time-independent standard deviation for all dimensions.

Müller-Brown. The underlying Müller-Brown potential that has been used for our experiments can be written as

U(x, y) =− 200 · exp
(
−(x− 1)2 − 10y2

)
− 100 · exp

(
−x2 − 10 · (y − 0.5)2

)
− 170 · exp

(
−6.5 · (0.5 + x)2 + 11 · (x+ 0.5) · (y − 1.5)− 6.5 · (y − 1.5)2

)
+ 15 · exp

(
0.7 · (1 + x)2 + 0.6 · (x+ 1) · (y − 1) + 0.7 · (y − 1)2

)
.

(46)

We used a first-order Euler integration scheme to simulate transition paths with 275 steps and a dt of 10−4s. ξ was chosen
to be 5 and 1,000 transition paths were simulated. We have used an MLP with four layers and a hidden dimension of 128
each, with swish activations. It has been trained for 2,500 steps with a batch size of 512.

In Fig. 5a, we compare the likelihood of the sampled paths. We can see that one-way shooting takes time until the path is
decorrelated from the initial trajectory, which is shorter and thus has a higher likelihood. All MCMC methods exhibit this
behavior, which is typically alleviated by using a warmup period in which all paths are discarded. After that, all methods
exhibit similar likelihood, with our method having a slightly lower likelihood. Looking at the maximum energy on the
trajectory in Fig. 5b reveals that all methods have a similar quality of paths.
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(b) Maximum Energy

Figure 5: In a, we compare the log likelihood of sampled trajectories, where a higher likelihood is generally more favorable. The plot in b
shows the maximum energy of each individual trajectory. A high maximum energy means that the molecule needs to be in an excited state
during the transition, making it less likely to occur under lower temperatures.

Dual-Channel Double-Well. To demonstrate the advantage of mixtures, we have used the two-dimensional potential

U(x, y) = + 2 · exp
(
−(12x2 + 12y2)

)
− 1 · exp

(
−(12 · (x+ 0.5)2 + 12y2)

)
− 1 · exp

(
−(12 · (x− 0.5)2 + 12y2)

)
+ x6 + y6 .

(47)

In this case, we have used dt = 5 ∗ 10−4s with a transition time of T = 1s and ξ = 0.1. As for the MLP, we have used the
same structure as in the Müller-Brown example but trained it for 20,000 iterations. The corresponding weights to Prop. 4 are
w = [ 12 ,

1
2 ] and are fixed for this experiment and hence w ̸∈ θ.

E.3. Neural Network Parameterization

We parameterize our model with neural networks, a 5-layer MLP with ReLU activation function and 256/512 hidden units
for alanine dipeptide and Chignolin, respectively. The neural networks are trained using an Adam optimizer with learning
rate 10−4.

We represent the molecular system in two ways: (1) in Cartesian coordinates, which are the 3D coordinates of each atoms,
and with (2) internal coordinate which instead uses bond length, angle and dihedral angle along the molecule, where we use
the same parameterization as in (Noé et al., 2019).

Our state definition includes a variance parameter for the initial and target marginal distributions at t = 0 and t = T , we
choose the variance to be 10−8 which almost does not change the energy of the perturbed system.

E.4. Molecular Systems

To simulate molecular dynamics, we rely on the AMBER14 forcefield (amber14/protein.ff14SB (Maier et al., 2015)) without
a solvent, as implemented in OpenMM (Eastman et al., 2017). As OpenMM does not support auto-differentiation, we do not
use OpenMM for the simulations themselves, but utilize DMFF (Wang et al., 2023) which is a differentiable framework
implemented in JAX (Bradbury et al., 2018) for molecular simulation. This is needed because during training we compute
∇θU

(
xt|0,T ∼ N (µ

(θ)
t|0,T ,Σ

(θ)
t|0,T )

)
, where the concrete xt|0,T is sampled based on the parameters of the neural network.

For the concrete simulations, we ran them with the timestep dt = 1fs, with T = 1ps, γ = 1ps, and Temp = 300K. To
compute the MCMC two-way shooting baselines, we use the same settings and consider trajectories as failed, if they exceed
2,000 steps without reaching the target.

Visualization of transition for alanine dipeptide. In Fig. 6, we show a transition sampled without any noise from the
model with internal coordinates and 2 Gaussian mixtures.

E.5. Computational Resources

All our experiments involving training were conducted on a single NVIDIA A100 80GB. The baselines themselves were
computed on a M3 Pro 12-core CPU.



Figure 6: Transition path for the alanine dipeptide.

F. Societal Impact
Our research concerns the efficient sampling of transition paths which are crucial for a variety of tasks in biology, chemistry,
materials science and engineering. Our research could potentially benefit research areas from combustion, catalysis, protein
design to battery design. Nevertheless, we do not foresee special potential negative impacts to be discussed here.
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