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ABSTRACT

Despite the significant advances in supervised person re-identification (ReID)
methods, these models exhibit performance degradation in unseen domains. Do-
main generalization (DG) is applied to alleviate this issue, but most existing DG
methods assume consistent class spaces between source and target domains. We
propose Adaptive Adversarial Augmentation (AAA), a Heterogeneous Domain
Generalization (HDG) approach tailored for single-source cross-dataset ReID.
AAA jointly trains a feature extractor alongside a Domain Adversarial Network
(DAN) and a Class Adversarial Network (CAN) to enhance the feature extractor’s
robustness to both domain shifts and class space changes. Additionally, we pro-
pose a diversity-based perturbation impact factor, dynamically tuning the pertur-
bation influence aligned with the diversity of learned embeddings, thus providing a
flexible augmentation strategy. Experimental results demonstrate that our method
surpasses state-of-the-art methods on large-scale cross-dataset ReID benchmarks.

1 INTRODUCTION

Person re-identification (ReID) aims to match persons of the same identity across non-overlapping
cameras under various viewpoints and locations. Notable advancements have been achieved in the
supervised setting, where training (source domain) and testing sets (target domain) are distinct parti-
tions of the same dataset (Zhou et al., 2020a; Zhang et al., 2020; Chen et al., 2020; Liu et al., 2020).
However, this supervised paradigm is hardly applicable since it suffers significant performance de-
terioration on unseen target domains (cross-dataset ReID) due to domain shifts (Pan & Yang, 2009).
As shown in Figure 1, compared to the supervised ReID, the cross-dataset ReID is more challenging
since the target domains have distinct domain distribution and class spaces. Unsupervised Domain
Adaptation (UDA) methods (Liu et al., 2019; Zhai et al., 2020; Wang et al., 2020) have been pro-
posed for cross-dataset ReID by training models on labelled source domains and adapting the model
to unlabelled target domains. Although UDA presents a more feasible approach than the supervised
one, it still requires data collection and model adaptation for each new target domain. Domain Gen-
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Figure 1: In the supervised setting, target domains derive from the same dataset as source domains,
potentially sharing domain and identity spaces. Conversely, in the cross-dataset setting, target do-
mains are drawn from distinct datasets, leading to entirely disjoint domain and identity spaces.

1



Under review as a conference paper at ICLR 2024

eralization (DG) offers a solution without the need for target domain data (Wang et al., 2022; Zhou
et al., 2022). Nonetheless, most DG approaches assume consistent class space across the source and
target domains (Muandet et al., 2013; Sun et al., 2022; Arpit et al., 2022), limiting their applicability
in the cross-dataset ReID problem, where the class spaces are inherently disjoint. The seminal work
of Li et al. (2019) paves the way by introducing the Heterogeneous Domain Generalization (HDG),
embracing both domain shifts and disjoint class spaces, and Zhou et al. (2020b) extended HDG to
cross-dataset ReID. However, existing HDG methods primarily focus on meta-learning (Zhao et al.,
2021; Choi et al., 2021) or domain invariant representations (Song et al., 2019; Jin et al., 2020; Zhou
et al., 2021a), which face the challenge of overfitting source domain data since the source domain
data remains unchanged (Zhou et al., 2020b;c; 2022).

This paper proposes Adaptive Adversarial Augmentation (AAA), a Heterogeneous Domain Gen-
eralization approach for single-source cross-dataset ReID, without access to target domain data.
Single-source cross-dataset ReID represents the most challenging setting in ReID tasks, aiming to
train a model on one source dataset to generalize across multiple unseen target datasets. Existing
works focus on improving the feature extractor’s robustness to domain shifts by augmenting source
domain data with perturbations generated from a concurrently trained Domain Adversarial Network
(DAN) (Shankar et al., 2018; Zhou et al., 2020b). Beyond that, we propose a Class Adversarial
Network (CAN), jointly trained with the feature extractor and DAN, to enhance the feature ex-
tractor’s robustness to the changes in class space. In contrast to existing methods utilizing a static
perturbation impact factor (Shankar et al., 2018; Zhou et al., 2020b; Sun et al., 2022), we propose
a diversity-based perturbation impact factor that dynamically modulates the perturbation influence
according to the diversity of learned embeddings, thereby offering a flexible augmentation strategy.

To evaluate the effectiveness of AAA, we conduct experiments on three benchmark datasets for
single-source cross-dataset person re-identification: CUHK03 (Li et al., 2014), Market1501 (Zheng
et al., 2015), and MSMT17 (Wei et al., 2018). These datasets encompass a range of ReID tasks
and include multiple camera domains. The experimental results demonstrate that AAA surpasses
the state-of-the-art DG and HDG methods on the evaluated datasets. We perform ablation studies to
demonstrate the effectiveness of each component within AAA. Furthermore, we visualize the gener-
ated images and feature embeddings, offering insights into the underlying mechanisms contributing
to the proposed approach. The code is available in https://anonymous.4open.science/r/HDG-776E/.

2 RELATED WORK

Cross-Dataset Person Re-Identification. Significant progress has been made in fully-supervised
person ReID in the past decade, particularly with deep learning-based approaches (Qian et al., 2018;
Zhang et al., 2019; Tay et al., 2019; Zhou et al., 2019; Zhong et al., 2020). These methods demon-
strate impressive performance when the training and test sets share similar distributions. However,
they generalize poorly to previously unseen domains (datasets) due to distribution shifts across do-
mains. When the target domain data is accessible, even without annotations, it can be leveraged
through Unsupervised Domain Adaptation (UDA) techniques. UDA-based ReID methods can be
broadly categorized into three groups: style transfer (Chen et al., 2019; Liu et al., 2019), attribute
recognition (Qi et al., 2019), and target-domain pseudo-label estimation (Zhong et al., 2019; Wang
& Zhang, 2020). While the UDA methods are effective for cross-dataset person ReID, they still
require data collection and model adaptation for each new target domain. In practice, acquiring
target domain data can often prove impractical, underscoring the need for domain generalization
techniques. For example, obtaining data encompassing all identities under various conditions, such
as camera brands, camera views, and weather conditions, is infeasible (Yue et al., 2019).

Domain Generalization. Domain Generalization (DG) was first introduced by Blanchard et al.
(2011) and later formalized by Muandet et al. (2013). DG aims to train models capable of general-
izing to unseen domains without requiring target domain data (Zhou et al., 2022; Wang et al., 2022).
However, most existing DG methods focus on closed-set tasks (Muandet et al., 2013; Li et al., 2018;
Qiao et al., 2020), assuming consistent class spaces across source and target domains, which con-
flicts with the disjoint class space case in cross-dataset ReID. Li et al. (2019) pioneered addressing
this gap by introducing the Heterogeneous Domain Generalization (HDG) paradigm, which accom-
modates both domain shifts and disjoint class spaces. Yet, their meta-learning-based approach for
HDG is framed within zero-shot learning, limiting its applicability to the ReID challenge. Subse-
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quently, Zhou et al. (2020b) explored a data augmentation strategy for HDG tailored to cross-dataset
ReID. They augment source domain data with perturbations generated from a domain adversarial
network, improving the feature extractor’s robustness to domain shifts. In this work, we build upon
the idea of the domain adversarial network, aiming to improve the feature extractor’s robustness to
class space changes by the proposed class adversarial network.

Generalizable Person Re-Identification. DG methods for cross-dataset ReID can be categorized
into two groups based on their use of source datasets (Choi et al., 2021). In the multi-source setting,
multiple-source datasets are utilized to develop a generalizable model. Song et al. (2019) intro-
duced a Domain-Invariant Mapping Network (DIMN) to establish a mapping between a person’s
image and its ID classifier. Jia et al. (2019) proposed the DualNorm approach, which combines
Batch Normalization (Ioffe & Szegedy, 2015) and Instance Normalization (Ulyanov et al., 2016) to
mitigate domain shift. The single-source setting is more challenging since only one source dataset
is utilized. SNR (Jin et al., 2020) disentangles identity-relevant and identity-irrelevant features to
reconstruct more generalizable features. DDAIG (Zhou et al., 2020b) augments source domain data
with a domain adversarial network to increase training data quantity and diversity. MixStyle (Zhou
et al., 2021b) mixes the feature statistics of instances to synthesize novel domains.

3 METHODOLOGY

3.1 PRELIMINARIES

Heterogeneous Domain Generalization. Let X denote an input feature space with dimension d and
Y a target class space. A domain is composed of data sampled from a distribution D, where D =
(xi, yi)

n
i=1 ∼ P(X,Y ), x ∈ X ⊂ Rd, y ∈ Y ⊂ R and n is the number of data in the domain. Here,

P(X,Y ) denotes the joint distribution of the input sample and class label, where X and Y denote the
corresponding random variables. For the task of heterogeneous domain generalization, the input is
N source domains, S =

{
Di | i = 1, · · · , N

}
, where Di =

{(
xij , y

i
j

)}ni

j=1
denotes the ith domain

and Yi denotes the class space of the ith domain. Note that P (i)
(X,Y ) ̸= P

(i′)
(X,Y ),Y

i = Yi′ , i ̸= i′

and i, i′ ∈ {1, · · · , N}. The goal of HDG is to learn a generalizable feature extractor f(·) from the
N source domains to achieve a minimum recognition error on an unseen target domain T , where T
cannot be accessed during training and P (T )

(X,Y ) ̸= P
(i)
(X,Y ),Y

T ̸= Yi for i ∈ {1, · · · , N}.

HDG on Cross-Dataset ReID. A dataset can encompass multiple domains in both single-source
or multi-source settings. Within the ReID context, domains correspond to the data sampled from
different cameras.

Domain Adversarial Network (DAN). The adversarial generation of domain perturbations has
shown efficacy in addressing conventional DG challenges (Shankar et al., 2018; Zhou et al., 2020b).
These methods enhance the feature extractor’s robustness to domain shifts by augmenting source
domain data with perturbations generated by domain generators. Figure 2 illustrates the structure
of DAN, where the goal of the domain generator is to transform the input data in a manner that
remains recognizable to the feature extractor while being misleading to the domain discriminator.
In contrast, the domain discriminator aims to accurately classify the domains to which the original
data and its domain-augmented version belong.

Let Tθ denote the domain generator, Equation 1 illustrates the generation of domain augmented data,
denoted as x̂, by combining the original input data x with the domain perturbation generated by Tθ.
The perturbation weight, λ, controls the influence of domain perturbations.

x̂ = x+ λTθ(x) (1)

The objective function for Tθ is expressed in Equation 2. Here, fϕ denotes the feature extractor, fφ
denotes the domain discriminator, ℓ̂D denotes the cross-entropy loss of fφ for domain classification,
and ℓ̂F denotes the cross-entropy loss of fϕ for category classification.

min
θ
ℓ̂F (fϕ(x̂), y)− ℓ̂D(fφ(x̂), d) (2)
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The domain discriminator is specifically designed to capture domain-discriminative features. Its
learning objective is to minimize the domain classification loss for x and x̂ with respect to φ,

min
φ
ℓ̂D(fφ(x̂), d) + ℓD(fφ(x), d). (3)

In DG, the architecture of the domain adversarial network differs slightly from the traditional GAN
framework. Firstly, while the traditional GAN discriminator performs binary classification to verify
whether the generated data is real or synthetic, the domain discriminator performs multi-class classi-
fication to identify the data domain, forcing the generator to synthesize data across multiple domain
distributions instead of mapping the data to a singular domain distribution (Zhou et al., 2020b). Sec-
ondly, whereas the traditional GAN generator solely maximizes the classification loss determined
by the discriminator, the domain generator additionally minimizes the classification loss determined
by the feature extractor to ensure the synthetic data is semantically meaningful (Zhou et al., 2020b).
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Figure 2: The domain generator maximizes the domain classification loss determined by the domain
discriminator while minimizing the class classification loss determined by the feature extractor. Con-
versely, the domain discriminator minimizes the domain classification loss for both the original input
data and its domain-augmented version.

3.2 ADAPTIVE ADVERSARIAL AUGMENTATION

To address the inconsistent class space challenges in applying DG methods to ReID tasks, we pro-
pose an HDG approach, Adaptive Adversarial Augmentation (AAA), for single-source cross-dataset
ReID. Figure 3 illustrates the core concepts of AAA, contrasting it with the existing DAN-based ap-
proach. Unlike existing methods that solely perturb domain spaces, AAA concurrently trains the
feature extractor alongside a DAN and a Class Adversarial Network (CAN). Beyond domain pertur-
bation, CAN adversarially generates class perturbations to augment source domain data, improving
the feature extractor’s robustness to class space changes. Additionally, diverging from existing meth-
ods that apply a fixed perturbation impact factor, AAA adopts a diversity-based perturbation impact
factor that dynamically adjusts the perturbation’s effect based on the diversity of learned embed-
dings, thus providing a flexible augmentation strategy. Lastly, while existing methods only adopt
cross-entropy loss to optimize the feature extractor (Zhou et al., 2020b), AAA also encompasses
triplet loss (Schroff et al., 2015), which optimizes the embedding space such that data points with
the same class are closer to each other than those with different classes (Hermans et al., 2017).

Feature Extractor. The feature extractor fϕ is designed to capture domain and class invariant
representations by optimizing the cross-entropy and triplet loss for the input data x and its domain-
class augmented variant, x̃. Equation 4 delineates the generation of x̃. Here, Tθ and Tϑ represent
the domain and class generators, and λ indicates the perturbation impact factor.

x̃ = x+ λTθ(x) + λTϑ(x) (4)

Let x and x̃ denote the anchor data, with examples sharing the same class label as x and x̃ serving
as positive samples, denoted as xp and x̃p, and examples possessing different class labels serving
as negative samples, denoted as xn and x̃n. Beyond minimizing cross-entropy loss, the feature ex-
tractor also minimizes the distance between the anchor data and positive samples while maximizing
the distance between the anchor data and negative samples. Equation 5 presents the computation
of the triplet loss, where τ is a margin hyperparameter that prevents trivial solutions by enforcing a
minimum separation between positive and negative pairs.

Ltriplet (x, xp, xn) = max
(
0, ∥f(x)− f (xp)∥2 − ∥f(x)− f (xn)∥2 + τ

)
(5)
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Figure 3: Comparison between Vanilla DAN-based methods and AAA. Here, Tθ(x) denotes the
domain perturbation generated by DAN, Tϑ(x) denotes the class perturbation generated by CAN,
λ denotes the perturbation impact factor, x̄ denotes the domain-augmented data generated by the
vanilla methods, and x̃ denotes the domain-class-augmented data generated by AAA.

Equation 6 presents the loss function of the feature extractor. Here, α represents a balance weight
hyperparameter that controls the weight of the augmented data loss, whereas ℓF and ℓ̃F represent
the aggregate of cross-entropy and triplet loss for x and x̃, respectively.

min
ϕ

αℓF (fϕ(x), y, fϕ(xp), fϕ(xn)) +

(1− α)ℓ̃F (fϕ(x̃), y, fϕ(x̃p), fϕ(x̃n))
(6)

Class Adversarial Network (CAN). Equation 7 presents the generation of class augmented data,
denoted as x̄, by combining the original input x with the class perturbation Tϑ(x), where λ controls
the influence of class perturbations.

x̄ = x+ λTϑ(x) (7)
The objective function for Tϑ is expressed in Equation 8. Here, fψ denotes the class discriminator
parameterized by ψ, ℓ̄C and ℓ̄F denote the cross-entropy loss of the class discriminator and feature
extractor for class classification, respectively.

min
ϑ
ℓ̄F (fϕ(x̄), y)− ℓ̄C(fψ(x̄), y) (8)

The class discriminator, fψ , is designed to capture class-discriminative features. Its learning objec-
tive is to minimize the class classification loss for x and x̄ with respect to ψ,

min
ψ
ℓ̄C(fψ(x̄), y) + ℓC(fψ(x), y). (9)

Diversity-based Perturbation Impact Factor (DPIF). As detailed in previous sections, our ap-
proach generates augmented data by combining original input x with generated perturbations mod-
ulated by perturbation impact factors. Unlike existing methods that utilize a static perturbation
impact factor, we introduce a diversity-based perturbation impact factor. DPIF quantifies the em-
bedding diversity within each training batch and adjusts the perturbation impact factor accordingly,
offering a more adaptive augmentation strategy.

Specifically, we observe that embeddings with high diversity indicate a sufficiently diverse dataset,
where a large perturbation impact factor could be detrimental by over-perturbing model training and
potentially hampering its generalization performance. Conversely, embeddings with low diversity
suggest the need for a greater perturbation impact to enrich synthetic data diversity. DPIF measures
the diversity of embeddings with the Gini coefficient, presented in Equation 10.

G =

∑n
i=1

∑n
j=1 |fϕ(xi)− fϕ(xj)|

2n2 1
n

∑n
i=1 fϕ(xi)

(10)
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Then, we calculate the base perturbation impact factor as 1 − G. This is subsequently normalized
into a range k, where k is a diversity normalization factor hyperparameter constrained to (0, 1]. The
computation of the diversity-based λ is presented in Equation 11.

λ = k × (1−G) (11)

In addition to the Gini coefficient, we explore an alternative method for assessing embedding di-
versity. Utilizing the K-means (Lloyd, 1982) clustering algorithm, we identify the centroid of the
embeddings in the current training batch. We then compute distances between individual points and
this centroid using metrics such as the Euclidean distance or Cosine similarity. The average of these
distances serves as an indicator of embedding diversity. Further details are in Appendix A.4.

Architecture Design. Our framework utilizes ResNet-18 (He et al., 2016) as the backbone for
the discriminators and the feature extractor. However, any network architecture suitable for the
given problem can be utilized. To construct the generators, we leverage a Fully Convolutional
Network (FCN) (Long et al., 2015) as it allows us to generate data efficiently, considering the high
dimensionality of the data (Zhou et al., 2020b). The full algorithm is illustrated in Algorithm 1, and
Appendix A.1 illustrates the training details of the feature extractor and class adversarial network.

Algorithm 1 Adaptive Adversarial Augmentation

1: Input: D: training set; Ne: maximum number of epochs.
2: Output: fϕ: feature extractor.
3: for i = 1 to Ne do
4: Sample a batch of data, (x, y, d) ∼ D.
5: Compute diversity-based perturbation impact factor with Eq. 11.
6: Train domain adversarial network with Eq. 1, 2, 3.
7: Train class adversarial network with Eq. 7, 8, 9.
8: Generate domain-class augmented data with Eq. 4.
9: Update feature extractor with Eq. 6.

10: end for

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

Datasets. The proposed framework is evaluated on three widely used person ReID benchmark
datasets. (1) The CUHK03 dataset (Li et al., 2014) comprises 14,096 images captured from five
pairs of camera views. It includes 7,368 training images (767 identities), 1,400 query images (700
identities), and 5,328 gallery images. (2) The Market1501 dataset (Zheng et al., 2015) consists of
32,668 images captured from six cameras. It comprises 12,936 training images (751 identities),
3,368 query images (750 identities), and 19,732 gallery images. (3) The MSMT17 dataset (Wei
et al., 2018) is a large-scale collection of images captured from 12 outdoor and three indoor cameras.
It contains 126,441 training images (3,060 identities), 11,659 query images (3,060 identities), and
82,161 gallery images.

Baselines. We compare our framework with several state-of-the-art DG methods. These methods
are CrossGrad (Shankar et al., 2018), DDAIG (Zhou et al., 2020b), MixStyle (Zhou et al., 2021b),
DomainMix (Sun et al., 2022), and EFDMix (Zhang et al., 2022). We also evaluate classical data
augmentation methods such as RandomErasing, RandomRotation, and ColorJitter. Furthermore, we
include a baseline approach called Empirical Risk Minimization (ERM), which directly combines
data from all source domains without employing DG techniques. Note that DDAIG and MixStyle
are also designed for HDG.

Evaluation Metrics. We employ the single-source cross-dataset ReID evaluation strategy by follow-
ing prior works (Zhou et al., 2020b;c; 2021b). Specifically, we designate one dataset as the source
training set and evaluate the model using the query and gallery sets from the remaining datasets.
We utilize two commonly used metrics in ReID tasks: mean Average Precision (mAP) and Top-k
accuracy. mAP evaluates the retrieval performance by calculating the average precision across all
queries. Top-k accuracy measures the model’s ability to correctly identify the match within the top-k
retrieved results. In our evaluation, we report the top-1, top-5 and top-10 accuracy.

6



Under review as a conference paper at ICLR 2024

Network Structure. Images in each dataset are resized to 256 × 128 (Zhou et al., 2020b). We
utilize the ResNet18 model pretrained on the ImageNet dataset as the backbone. During the testing
phase, embeddings extracted from models are used to compute the Euclidean distance for image
matching (Park & Ham, 2020). Section 7 presents the details of reproducibility.

4.2 EXPERIMENTAL RESULTS

This section presents the evaluation results on benchmark datasets, emphasising the best and second-
best results, indicated by bolding and underlining, respectively. All experiments are run ten times,
and the average results and standard deviation are reported.

Evaluation on CUHK03. Table 1 demonstrates the superior performance of AAA, surpassing
both conventional data augmentation techniques and state-of-the-art DG methods. AAA consistently
outperforms the second-best method across all target datasets, exhibiting substantial improvements
in mAP, top-1, top-5, and top-10 accuracies. These evaluation results serve as compelling evidence
of the effectiveness of synthetic data, which enhances the diversity of the source domain data.

Table 1: Evaluation on CUHK03.

Method Market1501 MSMT17
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

ERM 7.45 ± 0.44 19.93 ± 0.51 37.48 ± 0.69 46.42 ± 0.73 0.84 ± 0.10 3.15 ± 0.39 7.29 ± 0.77 10.06 ± 0.82
Erasing 8.49 ± 0.50 22.15 ± 0.51 40.14 ± 0.29 48.65 ± 0.21 0.88 ± 0.09 3.28 ± 0.28 7.56 ± 0.64 10.47 ± 0.80
Rotation 5.42 ± 0.38 15.93 ± 0.17 31.21 ± 0.32 39.40 ± 0.47 0.64 ± 0.10 2.39 ± 0.33 5.65 ± 0.67 7.90 ± 0.76
ColorJitter 2.15 ± 0.35 7.36 ± 0.38 16.64 ± 0.50 22.74 ± 0.66 0.20 ± 0.03 0.70 ± 0.19 1.92 ± 0.35 2.99 ± 0.46
CrossGrad 7.04 ± 0.43 19.34 ± 0.29 36.36 ± 0.27 44.99 ± 0.46 0.78 ± 0.11 2.98 ± 0.57 6.82 ± 0.62 9.48 ± 0.66
DDAIG 7.31 ± 0.44 19.89 ± 0.80 37.65 ± 0.96 46.35 ± 0.52 0.84 ± 0.15 3.33 ± 0.66 7.31 ± 0.55 10.16 ± 0.28
MixStyle 7.03 ± 0.73 19.06 ± 0.66 36.12 ± 0.27 44.81 ± 0.86 1.18 ± 0.04 4.91 ± 0.37 10.39 ± 0.48 13.98 ± 0.37
DomainMix 1.18 ± 0.13 4.17 ± 0.41 10.30 ± 0.39 15.01 ± 0.28 0.16 ± 0.01 0.58 ± 0.06 1.62 ± 0.19 2.46 ± 0.26
EFDMix 5.53 ± 0.71 16.16 ± 0.24 30.74 ± 0.26 38.50 ± 0.61 0.83 ± 0.14 3.43 ± 0.69 7.62 ± 0.97 10.26 ± 0.80

AAA 9.70 ± 0.31 25.83 ± 0.37 44.86 ± 0.31 53.33 ± 0.57 1.41 ± 0.11 5.70 ± 0.15 11.85 ± 0.22 15.77 ± 0.20

Evaluation on Market1501. The results presented in Table 2 reveal that both ERM and classi-
cal data augmentation methods surpass the performance of most DG methods. Figure 4 illustrates
that the notable diversity inherent in the Market1501 dataset contributes to the superior performance
achieved by classical methods. Among the DG methods evaluated, only AAA consistently achieves
outstanding results across all target datasets. These findings in Table 2 indicate that existing DG
methods may over-perturb the trained model, potentially compromising their generalization ability.
Conversely, our diversity-based perturbation impact factor facilitates the modulation of perturba-
tion magnitude in accordance with the diversity of learned embeddings, thereby enabling a more
adaptable augmentation strategy and enhanced generalization performance.

Table 2: Evaluation on Market1501.

Method CUHK03 MSMT17
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

ERM 2.78 ± 0.50 2.21 ± 0.58 6.55 ± 0.68 10.01 ± 0.73 0.91 ± 0.10 3.15 ± 0.42 7.15 ± 0.74 9.89 ± 0.67
Erasing 3.33 ± 0.29 2.52 ± 0.35 7.24 ± 0.59 10.96 ± 0.71 1.07 ± 0.07 3.68 ± 0.34 8.03 ± 0.51 10.91 ± 0.72
Rotation 2.31 ± 0.72 1.51 ± 0.56 4.89 ± 0.78 7.66 ± 0.35 0.97 ± 0.06 3.39 ± 0.16 7.51 ± 0.62 10.20 ± 0.65
ColorJitter 0.39 ± 0.06 0.18 ± 0.06 0.81 ± 0.22 1.37 ± 0.31 0.23 ± 0.05 0.86 ± 0.24 2.26 ± 0.42 3.51 ± 0.64
CrossGrad 2.62 ± 0.24 1.95 ± 0.31 5.94 ± 0.42 9.06 ± 0.57 0.96 ± 0.14 3.39 ± 0.59 7.39 ± 0.90 10.21 ± 0.43
DDAIG 2.13 ± 0.32 1.69 ± 0.45 4.87 ± 0.59 7.76 ± 0.95 0.87 ± 0.12 3.19 ± 0.40 6.97 ± 0.82 9.45 ± 0.63
MixStyle 1.70 ± 0.37 1.30 ± 0.17 3.54 ± 0.26 5.87 ± 0.25 1.20 ± 0.31 4.56 ± 0.73 9.32 ± 0.75 12.45 ± 0.78
DomainMix 0.23 ± 0.03 0.05 ± 0.05 0.21 ± 0.15 0.57 ± 0.23 0.13 ± 0.01 0.43 ± 0.10 1.33 ± 0.22 2.13 ± 0.33
EFDMix 0.62 ± 0.31 0.27 ± 0.22 1.21 ± 0.78 2.07 ± 0.38 0.60 ± 0.25 2.45 ± 0.56 5.67 ± 0.96 7.94 ± 0.43

AAA 3.60 ± 0.46 3.00 ± 0.39 8.93 ± 0.12 13.57 ± 0.77 1.47 ± 0.24 5.10 ± 0.32 10.88 ± 0.61 14.25 ± 0.59

Evaluation on MSMT17. As shown in Table 3, AAA surpasses all baselines by a large margin
across all target datasets. Notably, when the source dataset consists of a large number of domains
and identities, AAA achieves a substantial performance improvement, nearly doubling the perfor-
mance of the second-best model (CrossGrad). These results highlight the effectiveness of AAA in
addressing the challenges posed by diverse and complex datasets.
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Table 3: Evaluation on MSMT17.

Method CUHK03 Market1501
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

ERM 0.28 ± 0.07 0.12 ± 0.12 0.36 ± 0.12 0.69 ± 0.26 1.16 ± 0.30 3.55 ± 0.19 9.56 ± 0.26 14.21 ± 0.13
Erasing 0.26 ± 0.03 0.09 ± 0.07 0.33 ± 0.15 0.69 ± 0.17 1.10 ± 0.30 3.29 ± 0.58 8.91 ± 0.57 13.42 ± 0.23
Rotation 0.27 ± 0.03 0.09 ± 0.08 0.36 ± 0.11 0.93 ± 0.27 0.95 ± 0.08 2.77 ± 0.20 7.83 ± 0.62 11.89 ± 0.68
ColorJitter 0.24 ± 0.03 0.06 ± 0.03 0.38 ± 0.14 0.57 ± 0.18 0.66 ± 0.09 1.88 ± 0.31 5.64 ± 0.57 8.50 ± 0.42
CrossGrad 0.28 ± 0.05 0.07 ± 0.06 0.47 ± 0.28 0.87 ± 0.34 1.27 ± 0.31 3.83 ± 0.14 10.13 ± 0.61 14.89 ± 0.16
DDAIG 0.24 ± 0.02 0.01 ± 0.03 0.32 ± 0.12 0.67 ± 0.27 0.89 ± 0.12 2.81 ± 0.53 7.45 ± 0.87 11.14 ± 0.52
MixStyle 0.22 ± 0.03 0.02 ± 0.03 0.27 ± 0.21 0.50 ± 0.19 0.86 ± 0.21 2.56 ± 0.76 7.46 ± 0.75 11.37 ± 0.55
DomainMix 0.21 ± 0.03 0.01 ± 0.03 0.26 ± 0.17 0.48 ± 0.28 0.66 ± 0.09 1.91 ± 0.42 5.37 ± 0.78 8.32 ± 0.62
EFDMix 0.23 ± 0.03 0.05 ± 0.05 0.28 ± 0.14 0.47 ± 0.28 0.90 ± 0.22 2.74 ± 0.86 7.80 ± 0.89 11.66 ± 0.53

AAA 0.35 ± 0.03 0.29 ± 0.05 0.71 ± 0.17 1.21 ± 0.22 1.93 ± 0.20 6.89 ± 0.52 16.30 ± 0.73 22.12 ± 0.33

4.3 ABLATION STUDY

Class Adversarial Network. Table 4 displays results from training on the CUHK03 dataset for
AAA, both with and without the Class Adversarial Network (CAN). The first row represents the
results of DDAIG, as it is equivalent to AAA when the perturbation impact factor is fixed and the
CAN module is removed. To ensure a fair comparison, we set λ = 0.3 by following (Zhou et al.,
2020b) configuration. Please refer to Appendix A.2 for the results of models trained on Market1501
and MSMT17 datasets. Table 4 shows the effectiveness of the CAN module, which effectively
improves the feature extractor’s robustness to changes in the class space.

Table 4: Ablation Experiment for Class Adversarial Network on CUHK03.

Method Market1501 MSMT17
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

DDAIG 7.31 ± 0.44 19.89 ± 0.80 37.65 ± 0.96 44.99 ± 0.46 0.78 ± 0.11 2.98 ± 0.57 6.82 ± 0.62 9.48 ± 0.66
AAA λ = 0.3 9.49 ± 0.31 24.73 ± 0.31 43.85 ± 0.53 52.76 ± 0.43 1.15 ± 0.05 4.87 ± 0.15 10.46 ± 0.39 13.90 ± 0.50

Diversity-based Perturbation Impact Factor. Table 5 presents the results obtained from training
on the CUHK03 dataset by varying values of λ, within the range of 0.1 to 0.5. The normalization
factor k is set to 0.2. Please refer to Appendix A.3 for results pertaining to models trained on Mar-
ket1501 and MSMT17 datasets. Table 5 illustrates that incorporating perturbations can improve the
model’s generalization ability. However, excessive perturbation can negatively impact the model’s
performance, while inadequate perturbation may not challenge the model sufficiently. Table 5 shows
that the optimal value of λ for CUHK03 lies between 0.1 and 0.3. Nonetheless, manual tuning of
λ is labour-intensive. By dynamically adjusting λ based on the diversity of learned embeddings,
AAA’s performance surpasses that achieved with a fixed λ value.

Table 5: Ablation Experiment for λ on CUHK03.

Method Market1501 MSMT17
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

λ = 0.1 9.64 ± 0.47 24.64 ± 0.13 43.05 ± 0.47 52.20 ± 0.51 1.35 ± 0.15 5.51 ± 0.23 11.25 ± 0.39 15.01 ± 0.26
λ = 0.3 9.49 ± 0.31 24.73 ± 0.31 43.85 ± 0.53 52.76 ± 0.43 1.15 ± 0.05 4.87 ± 0.15 10.46 ± 0.39 13.90 ± 0.50
λ = 0.5 7.35 ± 0.46 21.32 ± 0.44 38.33 ± 0.49 47.73 ± 0.67 1.01 ± 0.05 4.50 ± 0.27 9.76 ± 0.45 13.11 ± 0.58

Dynamic λ 9.70 ± 0.31 25.83 ± 0.37 44.86 ± 0.31 53.33 ± 0.57 1.41 ± 5.70 5.70 ± 0.15 11.85 ± 0.22 15.77 ± 0.20

4.4 FURTHER ANALYSIS

T-SNE Visualization. To gain insights into the effectiveness of AAA, we apply t-SNE (Van der
Maaten & Hinton, 2008) to visualize the feature embeddings in the domain space, as depicted in
Figure 4. It is evident that in datasets with small diversity, such as CUHK03 and MSMT17, the syn-
thetic data distributions filled previously unfilled spaces, exploring unseen domain and class spaces.
This results in the model learning more domain-class-agnostic representations, which explains the
superior performance of AAA on these datasets. On the other hand, in datasets with large diver-
sity, like Market1501, the synthetic data distributions overlap with existing data. Consequently,
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the synthetic data may over-perturb the model training procedure, leading to a potential decrease
in its generalization ability. This highlights the need for careful consideration of perturbation im-
pact factors when applying adversarial data generation methods. By incorporating a diversity-based
perturbation impact factor, AAA also achieves superior performance on the Market1501 dataset.

(a) CUHK03 (b) Market1501 (c) MSMT17

Figure 4: T-SNE Visualization for benchmark datasets. Coloured and grey points denote the original
and augmented data, respectively.

Perturbation Visualization. Figure 5 illustrates the impact of different perturbations on image
transformations. A comparison between the domain perturbation (2nd column) and class pertur-
bation (4th column) reveals distinct effects. The domain perturbation, Tθ(x), primarily perturbs
domain-related features such as the background. Conversely, class perturbation, Tϑ(x), mainly per-
turbs class-related features, such as clothing and the human body. By incorporating both domain
and class perturbations, the augmented images, x̃, exhibit intricate transformations for domain and
class-related features, facilitating the model in capturing domain invariant representations and en-
hancing its robustness to class space changes. Please refer to Appendix A.5 for the visualization of
Market1501 and MSMT17 datasets.

DukeMTMC 

CUHK03

Figure 5: Examples of transformed images from CUHK03. Here, x denotes the original image.
Tθ(x) and x̂ denote domain perturbation and domain augmented image. Tϑ(x) and x̄ denote class
perturbation and class augmented image. Tθ,ϑ(x) and x̃ denote combined perturbation and domain-
class augmented image.

5 CONCLUSION

We proposed an HDG approach, Adaptive Adversarial Augmentation, to address the single-source
cross-dataset person ReID problem. Unlike existing methods solely utilizing the domain adversarial
networks, AAA incorporates a class adversarial network to enhance the feature extractor’s adaptabil-
ity to class space variations and its ability to identify novel classes in unseen domains. Moreover, we
propose a diversity-based perturbation impact factor, yielding an adaptable augmentation strategy.
Experiments across three popular person ReID benchmarks demonstrated AAA’s superior effective-
ness, surpassing state-of-the-art methods. Ablation studies further validate the effectiveness of each
AAA component, and the visualization results deepened our understanding of AAA’s applicability
to the single-source cross-dataset ReID problem.
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6 ETHIC STATEMENTS

This research endeavours to address the Heterogeneous Domain Generalization (HDG) challenge in
the context of person re-identification (ReID), a field with many applications ranging from security
surveillance to wildlife monitoring. The data employed in our experiments encompass three pub-
licly available datasets, CUHK03, Market1501, and MSMT17, collected under ethical guidelines
and with appropriate permissions where required. Our work adheres to the ethical guidelines stipu-
lated by our institutions and the broader research community. We remain open to collaboration and
constructive feedback to ensure the responsible advancement of knowledge in this domain.

7 REPRODUCIBILITY STATEMENT

Code. Our code is available at https://anonymous.4open.science/r/HDG-776E/. The code in-
cludes data preprocessing scripts, model implementation, and evaluation scripts. The code is well-
commented, organized in a modular fashion, and accompanied by a README file explaining how
to execute the code to reproduce the paper’s results.

Data. Our experiments utilize the CUHK03, Market1501, and MSMT17 datasets, which are pub-
licly available. We provide scripts to download and preprocess these datasets to the required format
for our experiments.

Evaluation. The evaluation metrics and procedures are clearly defined in the paper. Our code will
include scripts to evaluate the models.

Dependencies. Our framework is implemented using the Pytorch and Dassl (Zhou et al., 2020b)
libraries.

Computational Resources. All experiments are conducted on NVIDIA Tesla A100 GPUs.

Hyperparameters. We use Stochastic Gradient Descent (SGD) as the optimizer with a momentum
of 0.9 and weight decay of 5e-4. The normalization range k for all datasets is set to 0.2. The balance
weight α is set to 0.5. The margin τ for triplet loss is set to 1.2. All models are trained for 200
epochs with five epochs warmup. For CUHK03 and MSMT17 datasets, the batch size is set to 256
(64 identities and four images for each identity). For Market1501, the batch size is set to 64 (16
identities and four images for each identity). The learning rate for CUHK03 and MSMT17 is set to
1e-4, and for Market1501, it is set to 2.5e-4.
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A APPENDIX

We present a detailed illustration of the training procedure for feature extractor and class adversarial
network in Appendix A.1, additional results of ablation studies for class adversarial network in
Appendix A.2, additional results of ablation studies for diversity-based perturbation impact factor in
Appendix A.3, evaluation results for different types of diversity measures in Appendix A.4, and the
perturbation visualization for Market1501 and MSMT17 datasets in Appendix A.5.

A.1 ILLUSTRATION OF TRAINING PROCEDURE

Triplet Loss

Cross-Entropy

Triplet Loss

Cross-Entropy

Figure 6: Training Feature Extractor fϕ. AAA first generates x̃ by augmenting the original input
x with domain and class perturbations. Subsequently, the feature extractor minimizes the class
classification cross-entropy loss and triplet loss for both x and x̃.
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(a) Training Class Generator Tφ

Cross-Entropy

Cross-Entropy

Cross-Entropy

Cross-Entropy

Cross-Entropy

Cross-Entropy

Cross-Entropy

Cross-Entropy

(b) Training Class Discriminator fψ

Figure 7: The class generator maximizes the class classification loss, ℓ̄C , as determined by the class
discriminator, while minimizing the class classification loss, ℓ̄F , determined by the feature extractor
to ensure generating semantically meaningful data. Conversely, the class discriminator minimizes
the class classification loss for both x and x̄.

A.2 CLASS ADVERSARIAL NETWORK

Tables 6 and 7 present results from training on the Market1501 and MSMT17 datasets with and with-
out the Class Adversarial Network (CAN). These findings are consistent with the results discussed
in the paper, further validating the effectiveness of CAN.

Table 6: Ablation Experiment for Class Adversarial Network on Market1501.

Method CUHK03 MSMT17
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

DDAIG 2.13 ± 0.32 1.69 ± 0.45 4.87 ± 0.59 7.76 ± 0.95 0.87 ± 0.12 3.19 ± 0.40 6.97 ± 0.82 9.45 ± 0.63
AAA λ = 0.3 2.92 ± 0.33 2.36 ± 0.39 7.21 ± 0.62 10.93 ± 0.77 1.30 ± 0.13 4.37 ± 0.16 8.91 ± 0.37 13.78 ± 0.52
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Table 7: Ablation Experiment for Class Adversarial Network on MSMT17.

Method CUHK03 Market1501
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

DDAIG 0.24 ± 0.02 0.01 ± 0.03 0.32 ± 0.12 0.67 ± 0.27 0.89 ± 0.21 2.81 ± 0.53 7.45 ± 0.87 11.14 ± 0.52
AAA λ = 0.3 0.30 ± 0.04 0.14 ± 0.05 0.61 ± 0.19 1.00 ± 0.28 1.44 ± 0.19 5.26 ± 0.33 12.92 ± 0.45 19.83 ± 0.83

A.3 DIVERSITY-BASED PERTURBATION IMPACT FACTOR

Tables 8 and 9 corroborate the efficacy of our proposed diversity-based perturbation impact factor,
aligning with the findings discussed in the paper.

Table 8: Ablation Experiment for λ on Market1501.

Method CUHK03 MSMT17
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

λ = 0.1 3.32 ± 0.26 2.79 ± 0.31 8.07 ± 0.48 11.79 ± 0.51 1.27 ± 0.16 5.02 ± 0.23 9.89 ± 0.56 12.88 ± 0.67
λ = 0.3 2.92 ± 0.33 2.36 ± 0.39 7.21 ± 0.62 10.93 ± 0.77 1.46 ± 0.21 5.08 ± 0.28 10.53 ± 0.44 14.08 ± 0.46
λ = 0.5 2.70 ± 0.42 2.21 ± 0.36 6.86 ± 0.20 8.89 ± 0.47 1.30 ± 0.13 4.37 ± 0.16 8.91 ± 0.37 13.78 ± 0.52

Dynamic λ 3.60 ± 0.46 3.00 ± 0.39 8.93 ± 0.12 13.57 ± 0.77 1.47 ± 0.24 5.10 ± 0.32 10.88 ± 0.61 14.25 ± 0.59

Table 9: Ablation Experiment for λ on MSMT17.

Method CUHK03 Market1501
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

λ = 0.1 0.33 ± 0.03 0.27 ± 0.10 0.64 ± 0.11 1.07 ± 0.15 1.63 ± 0.20 5.49 ± 0.29 13.27 ± 0.73 21.00 ± 0.56
λ = 0.3 0.30 ± 0.04 0.14 ± 0.05 0.61 ± 0.19 1.00 ± 0.28 1.44 ± 0.19 5.26 ± 0.33 12.92 ± 0.45 19.83 ± 0.83
λ = 0.5 0.27 ± 0.03 0.12 ± 0.07 0.43 ± 0.15 0.86 ± 0.23 1.38 ± 0.17 4.90 ± 0.47 12.08 ± 0.41 16.60 ± 0.80

Dynamic λ 0.35 ± 0.03 0.29 ± 0.05 0.71 ± 0.17 1.21 ± 0.22 1.93 ± 0.20 6.89 ± 0.52 16.30 ± 0.73 22.12 ± 0.33

A.4 OTHER DIVERSITY MEASURES

Tables 10, 11, 12 demonstrate the evaluation results of AAA with different diversity Measures.
These results further validate the effectiveness of the proposed adaptive approach.

Table 10: Different Diversity Measures on CUHK03

Method Market1501 MSMT17
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

Euclidean 9.66 ± 0.39 25.30 ± 0.73 43.97 ± 0.74 52.29 ± 0.57 1.35 ± 0.15 5.44 ± 0.51 11.63 ± 0.42 15.52 ± 0.36
Cosine 9.58 ± 0.46 24.91 ± 0.71 43.74 ± 0.64 52.08 ± 0.85 1.28 ± 0.14 5.19 ± 0.47 11.27 ± 0.51 14.33 ± 0.29
Gini 9.70 ± 0.31 25.83 ± 0.37 44.86 ± 0.31 53.33 ± 0.57 1.41 ± 0.11 5.70 ± 0.15 11.85 ± 0.22 15.77 ± 0.20

Table 11: Different Diversity Measures on Market1501

Method CUHK03 MSMT17
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

Euclidean 3.21 ± 0.23 2.64 ± 0.26 7.57 ± 0.42 11.64 ± 0.84 1.41 ± 0.22 4.96 ± 0.46 9.56 ± 0.70 13.17 ± 0.41
Cosine 3.18 ± 0.38 2.36 ± 0.22 7.50 ± 0.39 11.57 ± 0.79 1.35 ± 0.16 4.85 ± 0.31 9.69 ± 0.39 13.22 ± 0.44
Gini 3.60 ± 0.46 3.00 ± 0.39 8.93 ± 0.12 13.57 ± 0.77 1.47 ± 0.24 5.10 ± 0.32 10.88 ± 0.61 14.25 ± 0.59

Table 12: Different Diversity Measures on MSMT17

Method CUHK03 Market1501
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

Euclidean 0.33 ± 0.03 0.14 ± 0.08 0.64 ± 0.12 1.07 ± 0.17 1.77 ± 0.20 5.94 ± 0.77 13.42 ± 0.56 19.09 ± 0.59
Cosine 0.31 ± 0.03 0.14 ± 0.05 0.62 ± 0.13 1.17 ± 0.13 1.76 ± 0.24 6.06 ± 0.44 13.60 ± 0.69 18.26 ± 0.38
Gini 0.35 ± 0.03 0.29 ± 0.05 0.71 ± 0.17 1.21 ± 0.22 1.93 ± 0.20 6.89 ± 0.52 16.30 ± 0.73 22.12 ± 0.33
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A.5 PERTURBATION VISUALIZATION

DukeMTMC 

CUHK03

Figure 8: Examples of transformed images from Market1501 (1st row) and MSMT17 (2nd row).
Here, x denotes the original image. Tθ(x) and x̂ denote domain perturbation and domain augmented
image. Tϑ(x) and x̄ denote class perturbation and class augmented image. Tθ,ϑ(x) and x̃ denote
combined perturbation and final augmented image.
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