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ABSTRACT

Graph pooling has gained attention for its ability to obtain effective node and
graph representations for various downstream tasks. Despite the recent surge in
graph pooling approaches, there is a lack of standardized experimental settings
and fair benchmarks to evaluate their performance. To address this issue, we have
constructed a comprehensive benchmark that includes 17 graph pooling methods
and 28 different graph datasets. This benchmark systematically assesses the per-
formance of graph pooling methods in three dimensions, i.e., effectiveness, robust-
ness, and generalizability. We first evaluate the performance of these graph pool-
ing approaches across different tasks including graph classification, graph regres-
sion and node classification. Then, we investigate their performance under poten-
tial noise attacks and out-of-distribution shifts in real-world scenarios. We also in-
volve detailed efficiency analysis, backbone analysis, parameter analysis and visu-
alization to provide more evidence. Extensive experiments validate the strong ca-
pability and applicability of graph pooling approaches in various scenarios, which
can provide valuable insights and guidance for deep geometric learning research.
The source code of our benchmark is available at https://anonymous.
4open.science/r/Graph_Pooling_Benchmark-8EDD.

1 INTRODUCTION

Recently, graph neural networks (GNNs) have garnered significant attention with extensive bench-
marks (Tan et al., 2023; Li et al., 2024; Hu et al., 2020a) due to their remarkable ability to process
graph-structured data across various domains including social networks (Wu et al., 2020a; Yang
et al., 2021; Zhang et al., 2022), rumor detection (Bian et al., 2020; Zhang et al., 2023), biological
networks (Wu et al., 2018; Choi et al., 2020), recommender systems (Ma et al., 2020a) and com-
munity detection (Alsentzer et al., 2020; Sun et al., 2022). Graph pooling approaches play a crucial
role in GNNs by enabling the hierarchical reduction of graph representations, which is essential for
capturing multi-scale structures and long-range dependencies (Liu et al., 2022a; Wu et al., 2022b;
Dwivedi et al., 2023). They can preserve crucial topological semantics and relationships, which have
shown effective for tasks including graph classification, node clustering, and graph generation (Liu
et al., 2022a; 2020; Grattarola et al., 2022a; Li et al., 2024). In addition, by aggregating nodes and
edges, graph pooling can also simplify large-scale graphs, facilitating the application of GNNs in
real-world problems (Defferrard et al., 2016; Ying et al., 2018b; Mesquita et al., 2020; Zhang et al.,
2020b; Tsitsulin et al., 2023b). Therefore, understanding and enhancing graph pooling approaches
is the key to increasing GNN performance, driving the progress of deep geometric learning.

In literature, existing graph pooling approaches can be roughly divided into two categories (Bianchi
& Lachi, 2024; Liu et al., 2022a), i.e., node dropping pooling (Knyazev et al., 2019; Lee et al.,
2019; Ranjan et al., 2020; Ma et al., 2020b; Zhang et al., 2020a; Zhou et al., 2022; Pang et al., 2021;
Bacciu et al., 2023; Zhang et al., 2020a; 2019; Song et al., 2024) and node clustering pooling ap-
proaches (Ying et al., 2018a; Bianchi et al., 2020; Duval & Malliaros, 2022; Wu et al., 2022a; Hansen
& Bianchi, 2023; Tsitsulin et al., 2023a; Bianchi, 2022), based on the strategies used to simplify the
graph. node dropping pooling utilizes a learnable scoring function to remove nodes with relatively
low significance scores, resulting in lower computational costs, while node clustering pooling ap-
proaches typically treat graph pooling as a node clustering problem, where clusters are considered
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as new nodes for the coarsened graph (Liu et al., 2022b; Bianchi & Lachi, 2024). Even though graph
pooling research is becoming increasingly popular, there is still no standardized benchmark that al-
lows for an impartial and consistent comparison of various graph pooling methods. Furthermore, due
to the diversity and complexity of graph datasets, numerous experimental settings have been used
in previous studies, such as varied proportions of training data and train/validation/test splits (Bian
et al., 2020; Hansen & Bianchi, 2023; Dwivedi et al., 2023; Xu et al., 2024b). As a result, a com-
prehensive and publicly available benchmark of graph pooling approaches is highly expected that
can facilitate the evaluation and comparison of different approaches, ensuring the reproducibility of
results and further advancing the area of graph machine learning.

Towards this end, we present a comprehensive graph pooling benchmark, which includes 17 graph
pooling methods and 28 datasets across different graph machine learning problems. In particular,
we extensively investigate graph pooling approaches across three key perspectives, i.e., effective-
ness, robustness, and generalizability. To begin, we provide a fair and thorough effectiveness com-
parison of existing graph pooling approaches across graph classification, graph regression and node
classification. Then, we evaluate the robustness of graph pooling approaches under both noise at-
tacks on graph structures and node attributes. In addition, we study the generalizability of different
approaches under out-of-distribution shifts from both size and density levels. Finally, we include
efficiency comparison, parameter analysis and backbone analysis for completeness.

Based on extensive experimental results, we have made the following observations: (1) Node clus-
tering pooling methods outperform node dropping pooling methods in terms of robustness, gener-
alizability, and performance on graph regression tasks. (2) Node clustering pooling methods incur
higher computational costs, and both approaches exhibit comparable performance on graph clas-
sification tasks. (3) AsymCheegerCutPool and ParsPool demonstrate strong performance in graph
classification tasks. (4) As the scale of graph data decreases, the performance gap between dif-
ferent graph pooling methods in node classification tasks increases, with KMISPool and ParsPool
exhibiting outstanding performance. (5) Most graph pooling approaches experience significant per-
formance degradation due to distribution shifts and are also challenged by class imbalance issues,
but the extent of this impact varies across different datasets. (6) Node clustering pooling is relatively
superior to node dropping pooling in terms of robustness and generalizability, while KMISPool
demonstrates relatively better robustness and generalizability in node dropping pooling methods.

The main contributions of this paper are as follows:

• Comprehensive Benchmark. We present a comprehensive graph pooling benchmark, which incorpo-
rates 17 state-of-the-art graph pooling approaches and 28 diverse datasets across graph classification,
graph regression, and node classification.

• Extensive Analysis. To investigate the pros and cons of graph pooling approaches, we thoroughly
evaluate current approaches from three perspectives, i.e., effectiveness, robustness, and generaliz-
ability, which can serve as guidance for researchers in different applications.

• Open-source Material. We have made our benchmark of all these graph pooling approaches avail-
able and reproducible, and we believe our benchmark can benefit researchers in both graph machine
learning and interdisciplinary fields.

2 PRELIMINARIES

Notations. Consider a graph G characterized by a vertex set V and an edge set E. The features
associated with each vertex are represented by the matrix X ∈ R|V |×d, where |V | denotes the
number of vertices, and d signifies the dimensionality of the attribute vectors. The adjacency re-
lationships within the graph are encapsulated by the adjacency matrix A ∈ {0, 1}|V |×|V |, where
an entry A[i, j] = 1 indicates the presence of an edge between vertex vi and vertex vj ; otherwise,
A[i, j] = 0.

Graph Pooling (Liu et al., 2022b; Grattarola et al., 2022b; Bianchi & Lachi, 2024). The aim of
graph pooling is to reduce the spatial size of feature maps while preserving essential semantics,
which thereby decreases computational complexity and memory usage. In this work, we focus on
hierarchical pooling approaches (Ying et al., 2018b). Let POOL denote a graph pooling function
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Figure 1: Overview of our hierarchical backbone for graph classification and graph regression.

which maps G to a graph G′ = (V ′, E′) with the reduced size:

G′ = POOL(G) , (1)

where |V ′| < |V |. the process has two main principal components, i.e., reduction, and connec-
tion (Grattarola et al., 2022b). In particular, the reduction component aims to generate pooled nodes
and their attributes in G′ during the connection. The connection component computes the edges E′

among the V ′ nodes.

Graph Classification and Regression (Knyazev et al., 2019; Chen et al., 2019; Grattarola et al.,
2022b). The two primary graph-level tasks are graph regression and graph classification. Here, a
graph dataset G is provided as a set of graph-label pairs (Gi, yi), where yi denotes the label for
graph Gi. The objective is to train a powerful discriminative model f that predicts the correct label
yi given an input graph Gi. In graph classification, yi are categorical labels 1, · · · ,K with K as
the number of classes, while in graph regression, yi are continuous values. A well-trained graph
classification model should output labels that closely match the true labels, and similarly, a graph
regression model should predict values that are nearly identical to the ground truth values. In these
tasks, graph pooling always accompanies graph convolutional operators. In formulation, the basic
updating rule is written as follows:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) , (2)

where H(l) denotes the node feature matrix at layer l, W (l) denotes the weight matrix at the corre-
sponding layer, Ã = A + I is the adjacency matrix A plus the identity matrix I , D̃ is the degree
matrix of Ã, and σ is a nonlinear activation function (Kipf & Welling, 2016a). The pooling layers
can be formulated as:

H(pool) = POOL(H(L)) , (3)

where H(pool) is the node feature matrix after pooling We iteratively conduct graph convolution
and graph pooling operators and adopt a readout function to output the graph representation for
downstream tasks. The overview of the basic hierarchical backbone can be found in Figure 1.

Node Classification (Kipf & Welling, 2016a; Veličković et al., 2018; Perozzi et al., 2014). The aim
of node classification is to assign semantic labels to nodes in a graph according to their attributes
and relationships with different nodes. Each dataset involves a graph G, consisting of nodes vi and
their corresponding labels yi. |V | is divided into a labeled set V l and a unlabeled set V u. We are
required to train a graph neural network model that can predict the missing labels of nodes in V u

using the attributes of other nodes. U-Net framework (Ronneberger et al., 2015) is widely used
to incorporate pooling operations for node classification. In the encoder part, U-Net progressively
applies pooling and graph convolution to downsample the graphs and extract multi-scale features.
The decoder part of U-Net utilizes upsampling and graph convolution to gradually upsample the
low-resolution feature maps back to the original graph size. Residual connections are employed
to directly transfer the feature maps from the encoder to the decoder, facilitating the preservation
of fine-grained semantics during upsampling (Ronneberger et al., 2015; Ibtehaz & Rahman, 2020;
Leng et al., 2018). For more information about the U-Net, please refer to Appendix B.
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Table 1: Overview of experimental details of graph pooling research. These papers utilize different
settings, which validates the necessity of building a comprehensive and fair benchmark.

Methods Datasets Tasks
Node Dropping Pooling

TopKPool NIPS’19 MNIST, COLLAB, PROTEINS, D&D Graph Classification
SAGPool ICML’19 D&D, PROTEINS, NCI1, NCI109, FRANKENSTEIN Graph Classification
ASAPool AAAI’20 D&D, PROTEINS, NCI1, NCI109, FRANKENSTEIN Graph Classification
PANPool NIPS’20 PROTEINS, PROTEINS FULL, NCI1, AIDS, MUTAGENCITY Graph Classification
COPool ECMLPKDD’22 BZR, AIDS, NCI1, NCI109, PROTEINS, QM7, IMDB-M Graph Classification, Graph Regression
CGIPool SIGIR’22 NCI1, NCI109, MUTAG, IMDB-B, IMDB-M, COLLAB, PROTEINS Graph Classification
KMISPool AAAI’23 D&D, REDDIT-B, REDDIT-5K, REDDIT-12K, Github Graph Classification, Node Classification
GSAPool WWW’20 D&D, NCI1, NCI109, MUTAG Graph Classification
HGPSLPool Arxiv’19 D&D, PROTEINS, NCI1, NCI109, ENZYMES, MUTAG Graph Classification

Node Clustering Pooling

AsymCheegerCutPool ICML’23 Cora, Citeseer, Pubmed, DBLP Node Classification
DiffPool NIPS’18 D&D, PROTEINS, COLLAB, ENZYMES, REDDIT-MULTI Graph Classification
MincutPool ICML’20 D&D, PROTEINS, COLLAB, REDDIT-B, MUTAG, QM9 Graph Classification, Graph Regression
DMoNPool JMLR’23 Cora, Citeseer Pubmed, Coauthor Node Classification
HoscPool CIKM’22 Cora, Citeseer Pubmed, Coauthor, DBLP, Email-EU Node Classification
JustBalancePool Arxiv’22 Cora, Citeseer, Pubmed, DBLP Node Classification
SEPool ICML’22 IMDB-B, IMDB-M, COLLAB, MUTAG, Cora, Citeseer, Pubmed Graph Classification, Node Classification
ParsPool ICLR’24 D&D, PROTEINS, NCI1, NCI109, Ogbg-molpcba, Cora, Citeseer, Pubmed Graph Classification, Node Classification

3 GRAPH POOLING BENCHMARK

3.1 GRAPH POOLING APPROACHES

Our benchmark contains 17 state-of-the-art graph pooling approaches (detailed in Table 1): Top-
KPool (Knyazev et al., 2019), SAGPool (Lee et al., 2019), ASAPool (Ranjan et al., 2020),
PANPool (Ma et al., 2020b), COPool (Zhou et al., 2022), CGIPool (Pang et al., 2021), KMIS-
Pool (Bacciu et al., 2023), GSAPool (Zhang et al., 2020a), HGPSLPool (Zhang et al., 2019), Asym-
CheegerCutPool (Hansen & Bianchi, 2023), DiffPool (Ying et al., 2018a), MincutPool (Bianchi
et al., 2020), DMoNPool (Tsitsulin et al., 2023a), HoscPool (Duval & Malliaros, 2022), JustBalan-
cePool (Bianchi, 2022), SEPool (Wu et al., 2022a), and ParsPool (Song et al., 2024). More infor-
mation related to the selected pooling methods can be found in the Appendix C.

3.2 DATASETS

To systematically evaluate graph pooling methods, we integrate 28 datasets from different domains.
For graph classification, we select eleven publicly available datasets from TUDataset (Morris et al.,
2020), including seven molecules datasets, i.e., MUTAG (Debnath et al., 1991), NCI1 (Wale et al.,
2008), NCI109 (Wale et al., 2008), COX2 Sutherland et al. (2003), AIDS Riesen & Bunke (2008),
FRANKENSTEIN Orsini et al. (2015), and Mutagenicity Debnath et al. (1991), four bioinformat-
ics datasets, i.e. D&D (Shervashidze et al., 2011), PROTEINS (Borgwardt et al., 2005), PRO-
TEINS FULL (Borgwardt et al., 2005), and ENZYMES (Schomburg et al., 2004), three social net-
work dataset, i.e., IMDB-BINARY (IMDB-B) (Cai & Wang, 2018), IMDB-MULTI (IMDB-M) (Cai
& Wang, 2018), and COLLAB (Cai & Wang, 2018). We also include a large-scale graph classifi-
cation dataset, Ogbg-molpcba, from the Open Graph Benchmark (OGB) (Hu et al., 2020b). For
graph regression, we choose six datasets from MoleculeNet (Wu et al., 2018) including QM7, QM8,
BACE, ESOL, FreeSolv, and Lipophilicity. For node classification, we utilize three citation net-
works, i.e., Cora, Citeseer, and Pubmed (Yang et al., 2016), three website networks, i.e., Cornell,
Texas, and Wisconsin (Pei et al., 2020), and the GitHub dataset (Rozemberczki et al., 2021). We
also obtain a large-scale dataset, Ogbn-arxiv, from OGB (Hu et al., 2020b). More information about
the summary statistics and description of the datasets are detailed in the Appendix D.

3.3 EVALUATION PROTOCOLS

Our benchmark evaluation encompasses three key aspects, i.e., effectiveness, robustness, and gen-
eralizability. We perform a hyperparameter search for all pooling methods; detailed information
can be found in Appendix E. Firstly, we conduct a performance comparison of graph pooling ap-
proaches across three tasks including graph classification, graph regression, and node classification.
For graph and node classification tasks, we employ average precision for Ogbg-molpcba, and ac-
curacy for remaining datasets as the evaluation metric. For graph regression, we use root mean
square error (RMSE) for ESOL, FreeSolv, and Lipophilicity (Wu et al., 2018). Following previous
research (Xu et al., 2024b), we use the area under the receiver operating characteristic (AUROC)
curve to evaluate BACE, and mean absolute error (MAE) for QM7 and QM8. Secondly, our bench-
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Table 2: Results of graph classification for different graph pooling methods. The mean and variance
of average precision (Ogbg-molpcba) and accuracy (remaining datasets) are reported. The best and
2nd best are noted in bold font and underlined, respectively. OOM denotes out of GPU memory,
and OOT denotes cannot be computed within 24 hours.

Methods Ogbg-molpcba PROTEINS NCI1 NCI109 MUTAG D&D IMDB-B IMDB-M COLLAB Avg. Rank

Node Drop Pooling

TopKPool 15.79±0.42 70.83±1.25 70.34±1.80 69.65±1.61 82.76±4.88 69.07±5.52 74.44±3.71 48.44±3.46 75.38±1.13 70.11 12.44
SAGPool 21.08±2.19 74.64±1.53 73.10±1.21 71.29±0.82 81.61±5.86 73.27±1.12 75.33±3.31 48.74±3.09 77.91±2.22 71.99 8.06
ASAPool OOT 73.69±1.48 73.48±1.03 70.45±0.84 72.41±10.15 OOT 71.56±3.46 46.96±3.72 OOT 68.09 13.56
PANPool 21.81±0.99 70.60±1.67 73.29±1.07 70.84±1.23 78.16±8.60 73.27±4.05 73.33±3.57 47.70±3.58 78.40±2.80 70.70 11.00
COPool 25.50±2.46 75.24±2.46 74.10±1.06 71.35±1.05 83.91±3.25 73.57±0.42 74.44±4.40 48.89±3.82 81.33±1.15 72.85 5.28
CGIPool 23.78±6.71 73.57±1.49 75.72±1.65 73.81±0.42 86.21±4.88 72.07±1.47 74.22±3.62 46.22±2.02 80.40±1.71 72.78 8.22
KMISPool 26.85±0.28 70.63±1.01 73.15±2.19 73.17±1.10 80.46±4.30 70.57±1.70 72.89±3.62 46.96±2.47 80.71±0.49 71.07 9.83
GSAPool 26.95±1.36 72.14±1.09 71.12±1.33 70.65±1.45 87.36±1.63 72.97±1.27 74.67±3.93 46.37±4.13 76.84±2.11 71.52 9.28
HGPSLPool 22.78±0.51 72.02±1.73 72.22±0.42 70.35±1.31 71.26±12.70 73.27±2.78 72.89±4.37 46.81±2.19 79.24±0.80 69.76 12.17

Node Clustering Pooling

AsymCheegerCutPool 24.82±0.60 74.60±1.96 75.90±1.69 73.98±1.88 89.66±2.82 74.47±2.36 74.89±3.14 48.30±3.63 80.62±1.06 74.05 4.72
DiffPool 25.21±0.42 74.80±1.71 74.72±1.82 75.16±0.35 80.46±5.86 73.57±1.85 74.44±0.63 47.70±4.01 78.89±0.55 72.47 6.50
MincutPool 24.97±0.41 72.42±1.71 75.53±1.15 74.30±1.33 85.06±1.63 71.77±2.12 73.78±3.94 45.93±2.55 76.53±1.60 71.91 9.56
DMoNPool 24.75±0.67 68.45±4.79 72.45±0.15 71.18±1.66 75.86±5.63 75.38±0.42 73.33±3.81 47.26±1.68 77.07±0.44 70.12 11.17
HoscPool 24.63±0.37 72.42±0.74 76.88±0.61 76.13±1.97 85.06±1.63 71.77±2.12 74.67±1.96 45.93±2.77 78.18±1.69 72.63 8.06
JustBalancePool 25.19±0.42 68.85±2.97 76.34±0.46 76.34±1.51 81.61±1.63 71.77±2.12 74.89±4.09 45.93±5.08 77.87±1.26 71.70 8.67
SEPool OOT 62.25±4.57 62.77±2.25 63.74±2.30 67.22±8.41 80.26±3.04 77.00±4.05 54.13±3.71 75.64±2.04 67.88 11.39
ParsPool 26.63±0.30 75.02±0.64 77.07±0.23 76.20±0.44 79.31±5.63 76.10±0.80 75.11±2.20 49.48±0.91 83.60±0.50 73.99 3.11

mark evaluates the robustness of graph pooling approaches in both graph-level and node-level tasks
across two perspectives: structural robustness and feature robustness (Li & Wang, 2018). In par-
ticular, we add and drop edges of graphs to study structural robustness and mask node features to
investigate feature robustness. Thirdly, we employ size-based and density-based distribution shifts
to evaluate the generalizability of different pooling methods in graph-level tasks under real-world
scenarios (Gui et al., 2022). We also use degree-based and closeness-based distribution shifts to as-
sess the generalizability of different pooling methods in node-level tasks. In addition to these three
views, we conduct a further analysis of these graph pooling approaches including the comparison of
efficiency, visualization, and different backbone parameter choices.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

All graph pooling methods in our benchmark are implemented by PyTorch (Paszke et al., 2019).
Graph convolutional networks serve as the default encoders for all algorithms. The experimen-
tal setup includes a Linux server equipped with NVIDIA A100 GPUs, with an Intel Xeon Gold
6354 CPU. The software stack comprises PyTorch 1.11.0, PyTorch-geometric 2.1.0 (Fey & Lenssen,
2019), and Python 3.9.16. More details about experimental settings can be found in Appendix E.

4.2 EFFECTIVENESS ANALYSIS

Performance on Graph Classification. To begin, we investigate the performance of different graph
pooling approaches on graph classification. The results of compared approaches on seven popular
datasets are recorded in Table 2. Firstly, in general, ParsPool, AsymCheegerCutPool, and COPool
are the three best-performing pooling models, and the performance of all 17 pooling methods varies
significantly across different datasets. No single pooling method consistently outperforms the oth-
ers across all datasets. Secondly, it is noteworthy that SEPool achieves significant advantages on
D&D, IMDB-B, and IMDB-M. This is because SEPool’s coding tree structure, and these datasets
are characterized by high clustering coefficients Watts & Strogatz (1998), which benefits the cod-
ing tree method because the hierarchical nature of the tree can better capture and represent these
localized, highly connected substructures (Wu et al., 2022a). However, SEPool also implies greater
computational resource overhead, which presents challenges when processing large-scale graph data
such as Ogbg-molpcba. Thirdly, the methods with the highest average accuracy are ParsPool and
AsymCheegerCutPool. ParsPool can capture a personalized pooling structure for each individual
graph, while AsymCheegerCutPool calculates cluster assignments based on a tighter relaxation in
terms of Graph Total Variation (GTV) (Song et al., 2024; Hansen & Bianchi, 2023). These methods
are flexible, and the datasets differ significantly in diameter, degree, and clustering coefficients.
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Table 3: Results of graph regression for different pooling methods. The mean and variance of MAE
(QM7, QM8), AUROC (BACE), RMSE (ESOL, FreeSolv, Lipophilicity) are reported. - denotes
cannot converge.

Methods QM7 QM8 BACE ESOL FreeSolv Lipophilicity Rank
Node Drop Pooling

TopKPool 63.39±9.66 0.021±0.001 0.85±0.02 0.96±0.06 1.92±0.37 0.80±0.02 8.1
SAGPool 97.69±11.19 0.023±0.001 0.84±0.01 1.16±0.07 2.31±0.66 0.93±0.06 13.1
ASAPool 56.79±6.17 0.029±0.008 0.85±0.02 0.92±0.03 1.92±0.37 0.78±0.05 8.2
PANPool 53.04±1.20 0.015±0.000 0.83±0.02 1.01±0.03 1.80±0.10 0.84±0.01 9.7
COPool 84.22±3.28 0.020±0.001 0.85±0.01 0.98±0.07 1.85±0.24 0.85±0.02 8.5
CGIPool 97.41±16.25 0.020±0.001 0.84±0.03 1.59±0.62 2.49±0.97 0.83±0.07 11.7
KMISPool 80.51±21.34 0.017±0.001 0.85±0.02 0.95±0.04 1.29±0.18 0.81±0.03 5.9
GSAPool 106.72±22.90 0.021±0.001 0.85±0.02 0.96±0.08 1.95±0.26 0.82±0.03 8.8
HGPSLPool 47.88±0.83 0.015±0.000 0.84±0.01 1.02±0.06 1.62±0.09 0.76±0.01 7.8

Node Clustering Pooling

AsymCheegerCutPool 64.91±8.30 0.031 ± 0.005 0.84 ± 0.01 0.99 ± 0.12 2.00 ± 0.18 0.95 ± 0.11 12.9
DiffPool 54.98±3.44 0.037 ± 0.010 0.84 ± 0.02 0.81 ± 0.05 1.20 ± 0.09 0.73 ± 0.03 8.0
MincutPool - 0.020 ± 0.001 0.85 ± 0.02 0.76 ± 0.02 1.19 ± 0.18 0.73 ± 0.02 4.3
DMoNPool - 0.021 ± 0.001 0.85 ± 0.02 0.68 ± 0.02 1.16 ± 0.15 0.69 ± 0.02 3.5
HoscPool 59.44±21.48 0.019 ± 0.002 0.84 ± 0.01 0.76 ± 0.02 1.14 ± 0.13 0.72 ± 0.02 4.6
JustBalancePool - 0.022 ± 0.004 0.85 ± 0.02 0.74 ± 0.03 1.26 ± 0.16 0.70 ± 0.01 4.9

Table 4: Results of node classification for different pooling methods. No Pooling denotes without
pooling layers.

Methods Ogbn-arxiv Cora Citeseer Pubmed Cornell Texas Wisconsin Github Avg. Rank
TopKPool 53.36±0.03 88.91±0.93 77.56±0.85 86.13±0.34 49.09±2.57 54.18±4.80 51.58±3.05 86.95±0.20 67.91 8.00
SAGPool 53.39±0.02 89.18±0.65 77.56±0.81 86.07±0.70 81.09±3.74 55.64±2.95 51.32±3.53 86.99±0.22 73.48 5.33
ASAPool OOM 89.10±0.86 77.76±1.01 85.74±0.18 79.64±2.91 54.55±4.74 50.79±3.49 OOM 72.93 6.83
PANPool OOM 89.05±0.96 77.20±0.98 85.88±0.11 78.91±2.47 56.36±5.14 50.53±3.18 OOM 72.99 8.00
COPool OOM 89.00±0.70 77.26±0.89 85.27±0.27 77.82±3.13 56.36±5.98 52.37±2.68 86.68±0.20 73.01 7.50
CGIPool 53.60±0.39 89.15±0.84 77.40±0.81 85.92±0.66 81.82±4.30 54.55±4.15 51.05±3.85 86.88±0.22 73.32 6.33
KMISPool 53.38±0.08 89.74±0.02 77.75±0.01 87.80±0.01 79.56±1.31 81.42±1.64 82.31±0.50 87.09±0.04 83.10 2.50
GSAPool 53.76±0.11 89.05±0.77 77.16±0.92 86.21±0.73 80.36±3.71 54.18±3.88 51.84±4.29 87.12±0.09 73.13 6.67
HGPSLPool OOM 89.08±0.83 77.84±0.67 OOM 58.55±3.71 55.27±3.37 51.58±1.75 OOM 69.71 6.33
SEPool OOT 83.17±0.00 70.47±0.00 79.33±0.80 51.35±0.00 66.66±6.50 57.51±0.85 OOT 68.08 8.67
ParsPool OOM 84.51±0.35 74.27±0.38 89.20±0.00 72.07±6.49 81.98±6.49 82.35±17.94 OOM 80.73 5.50

No Pooling 53.61±0.07 89.48±0.27 77.69±0.24 86.10±0.06 48.83±1.24 56.50±1.11 54.43±1.54 86.46±0.02 68.84 5.17

Performance on Graph Regression. We further explore the performance of different pooling meth-
ods through graph-level regression tasks. As shown in Table 3, we can observe that: Firstly, overall,
node clustering pooling methods outperform node dropping pooling methods, with DMoNPool and
MincutPool showing the best performance. The possible reason is that in graph regression tasks, the
model’s objective is to predict a continuous numerical output. Such tasks typically require capturing
global structural features and continuity within the graph. Compared to node clustering pooling,
node dropping pooling tends to lose more global information (Tsitsulin et al., 2023a; Bianchi et al.,
2020). DMoNPool and MincutPool are more inclined to maintain the global characteristics of the
graph rather than emphasizing the representation of locally important structures, which may result
in their performance being inferior to that of ParsPool, AsymCheegerCutPool, and COPool in graph
classification tasks. Secondly, in the BACE dataset, the performance of most pooling methods tends
to be consistent, whereas in other datasets, there is a greater variance in performance. The possible
reason is that although the graphs in the BACE dataset are relatively large, the average diameter
is relatively small, so different pooling methods face fewer challenges in summarizing the global
structural information of the graphs, which may lead to more consistent performance.

Performance on Node Classification. Table 4 presents the performance of various pooling methods
in node classification tasks. We observe the following: Firstly, KMISPool and ParsPool demonstrate
the best overall performance, significantly outperforming other methods on small-scale datasets
such as Cornell, Texas, and Wisconsin. Secondly, node classification models without pooling layers
achieve comparable results to most pooling methods across the majority of datasets. A potential rea-
son for this is that pooling operations tend to lose substantial node information, which consequently
weakens performance in node classification tasks. Thirdly, the scalability of ASAPool, PANPool,
HGPSLPool, SEPool, and ParsPool still requires improvement, as they face memory/runtime bot-
tlenecks, making it cannot complete training on larger datasets such as Ogbn-arxiv or GitHub.
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Table 5: Results of graph classification under random noise attack for different pooling methods.
Dataset Ptb Method TopKPool SAGPool ASAPool PANPool KMISPool DiffPool MincutPool JustBalancePool

PROTEINS
ADD 73.58±5.77 72.76±3.87 74.59±3.74 39.63±42.27 71.14±0.57 73.78±2.59 72.36±2.92 75.00±1.49
DROP 71.95±2.28 73.58±2.55 72.76±1.88 38.62±42.97 71.34±1.32 71.34±1.80 71.75±2.07 73.37±1.25
MASK 72.56±3.11 73.78±3.45 71.14±2.55 72.88±4.71 72.97±2.24 72.97±0.29 72.36±3.24 70.12±2.28

NCI1
ADD 65.91±0.65 67.53±2.25 71.42±1.53 66.29±0.40 72.66±1.40 72.66±0.20 70.77±1.80 73.96±0.08
DROP 63.16±1.52 61.64±1.46 64.07±0.73 65.53±1.31 73.58±3.00 66.18±2.22 65.05±0.73 64.18±1.61
MASK 63.86±1.39 63.16±2.10 66.94±0.87 66.18±0.61 65.15±2.30 68.23±2.73 67.10±2.07 67.91±1.98

NCI109
ADD 66.18±0.73 68.55±1.13 69.62±2.11 64.84±2.74 75.32±0.99 73.33±0.97 71.34±2.89 71.29±2.79
DROP 63.59±1.40 64.61±1.49 64.24±1.86 65.64±1.26 73.85±2.95 66.18±2.22 65.05±0.73 64.18±1.61
MASK 65.22±1.97 66.61±0.92 65.65±1.08 66.29±0.91 66.34±1.85 66.99±2.71 68.23±0.47 66.61±3.43

MUTAG
ADD 86.21±5.63 79.31±2.82 75.86±10.15 68.97±4.88 80.46±4.30 72.41±9.75 78.16±4.30 68.97±4.88
DROP 87.36±4.30 63.22±13.9 72.41±14.90 68.97±2.82 80.46±4.30 78.16±1.63 74.71±9.89 75.86±11.26
MASK 78.16±16.26 64.37±9.05 60.92±7.09 71.26±3.25 83.91±8.13 78.16±4.30 77.01±3.25 70.11±4.30

Table 6: Results of node classification under random noise attack for different pooling methods.
Dataset Ptb Method TopKPool SAGPool ASAPool PANPool COPool CGIPool KMISPool GSAPool HGPSLPool

Cora
ADD 73.90±0.24 74.41±0.12 OOM 75.75±0.14 69.52±0.58 70.01±0.24 75.64±0.03 74.29±0.15 75.58±0.14
DROP 85.01±0.09 85.45±0.36 85.40±0.19 85.11±0.20 85.06±0.13 85.04±0.23 85.83±0.21 85.30±0.33 85.60±0.19
MASK 87.70±0.16 87.75±0.18 87.94±0.12 87.48±0.24 86.88±0.26 87.42±0.03 87.81±0.17 87.83±0.37 87.59±0.24

Citeseer
ADD 62.64±0.19 62.47±0.41 63.43±0.14 63.38±0.37 62.62±0.21 61.94±0.29 63.52±0.20 62.69±0.23 63.42±0.21
DROP 75.31±0.26 75.50±0.19 75.81±0.04 75.52±0.10 75.18±0.46 75.34±0.12 76.54±0.32 75.32±0.29 76.00±0.21
MASK 73.29±0.27 73.41±0.25 73.57±0.17 73.42±0.20 73.54±0.44 73.28±0.49 73.63±0.10 73.45±0.20 73.30±0.24

Pubmed
ADD 71.06±0.25 70.75±0.41 OOM 70.62±0.12 68.21±0.11 67.92±0.45 71.59±0.01 70.83±0.17 OOM
DROP 85.46±0.09 86.03±0.12 OOM 85.55±0.04 85.68±0.04 85.59±0.13 85.30±0.06 85.59±0.06 OOM
MASK 84.24±0.04 84.34±0.06 OOM 83.75±0.06 83.31±0.07 83.78±0.17 83.83±0.02 84.36±0.11 OOM

4.3 ROBUSTNESS ANALYSIS

The compared performance for three types of random noise on eight graph pooling methods on the
PROTEINS, NCI1, NCI109, and MUTAG datasets are shown in Table 5. With a probability of 50%,
edges of the graph are randomly removed or added, and node features are randomly masked. We
can observe that: Firstly, overall, node clustering pooling demonstrates better robustness against
three types of attacks compared to node dropping pooling. Secondly, among node dropping pooling
methods, KMISPool generally performs the best. However, for small datasets such as MUTAG, Top-
KPool achieves the highest performance under noise attacks, because its node selection mechanism
is less sensitive to local noise variations (Knyazev et al., 2019). Thirdly, noise attacking increases
the performance fluctuations of pooling methods, making their prediction results more unstable.
Fourthly, in larger datasets such as PROTEINS, NCI1, and NIC109, dropping edges has a greater
impact on performance, whereas for MUTAG, masking node features has a more significant effect.

Table 6 presents the results of the robustness analysis for node-level tasks. From Table 6, we observe
the following: Firstly, random attacks on the graph lead to a decrease in performance on node clas-
sification tasks, with different types of attacks causing varying degrees of performance degradation.
Randomly adding edges has the most negative impact on performance, while randomly deleting
edges has the least impact. Secondly, for larger graphs such as Cora, Citeseer, and Pubmed, KMIS-
Pool performs the best, whereas for smaller graphs such as Cornell, Texas, and Wisconsin, ASAPool
performs better. Appendix F.1 provides results for the robustness analysis of node-level tasks.

As depicted in As shown in Figure 2, the model’s performance generally declines as the noise in-
tensity increases. It is observed that, at the same level of noise, the impact on accuracy is more
pronounced on smaller datasets Cora and CiteSeer, while it is relatively minor on larger dataset
Pubmed. Among the three types of noise, although the accuracy of nearly all methods decreases
amidst fluctuations, KMISPool and PANPool exhibit the strongest robustness, while COPool per-
forms relatively poorly, despite the fact that most pooling methods show very similar performance.

4.4 GENERALIZABILITY ANALYSIS

Table 7 and Table 8 presents the performance of different graph pooling methods under out-of-
distribution shifts. For the graph-level datasets D&D and NCI1, we implement two types of distri-
bution shifts. The first type is based on the number of nodes, where the smallest 50% of graphs by
node count are used as the training set, and the largest 20% as the test set, with the remainder serving
as the validation set (Bevilacqua et al., 2021; Chen et al., 2022). Following the same criteria, the
second type of out-of-distribution shifts are generated based on graph density (Chen et al., 2022).
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Figure 2: Performance of different approaches w.r.t. different rates of random noise.

Table 7: Results of graph classification under distribution shifts. Size and density denote two
types of shifts across training and test datasets. Micro-F1 and Macro-F1 metrics are provided for
each shift type.

Method
D&D NCI1

Size Density Size Density
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Node Drop Pooling

TopKPool 68.08±1.60 63.69±1.13 31.98±15.37 29.43±15.16 25.89±0.46 24.98±0.43 53.48±2.11 51.02±3.14
SAGPool 81.36±2.49 74.47±1.48 55.37±0.89 50.14±0.97 25.08±2.39 23.90±2.95 47.00±3.60 45.86±3.49
ASAPool OOT OOT OOT OOT 26.29±3.66 25.29±4.42 53.17±1.85 51.34±1.18
PANPool 77.68±8.37 71.44±6.50 41.92±10.72 40.36±10.05 25.00±0.00 23.74±0.08 52.08±2.24 49.14±0.66
COPool 64.41±5.66 60.37±3.74 47.91±2.51 44.30±1.81 27.99±3.86 27.17±4.48 54.67±2.22 53.09±2.35
CGIPool 75.99±6.65 69.62±5.58 56.38±1.76 51.10±1.45 28.16±5.18 27.26±5.81 56.20±0.86 53.93±1.12
KMISPool 80.23±5.24 73.30±4.04 54.58±5.26 49.81±3.62 50.97±9.51 49.02±7.87 55.42±1.47 51.27±0.30
GSAPool 58.19±26.99 53.06±25.69 33.79±20.93 29.39±19.01 26.21±1.24 25.19±1.56 50.31±3.39 49.32±2.65
HGPSLPool 85.59±1.20 78.34±1.66 52.43±2.25 49.59±1.89 19.66±0.52 17.52±0.66 56.95±1.64 51.93±1.14

Node Clustering Pooling

AsymCheegerCutPool 74.47±0.06 73.60±0.06 86.13±0.00 50.86±0.01 48.87±3.06 45.42±1.65 70.01±0.00 46.95±0.00
DiffPool 73.87±0.02 73.35±0.02 86.49±0.02 47.44±0.01 19.50±0.00 16.63±0.01 69.53±0.00 50.87±0.15
MincutPool 69.97±0.17 67.95±0.17 87.39±0.00 46.63±0.00 19.58±0.00 16.69±0.00 68.64±0.00 50.31±0.09
DMoNPool 72.67±0.11 72.25±0.13 82.52±0.00 54.21±0.00 79.29±0.04 64.30±0.00 68.92±0.00 48.76±0.02
HoscPool 70.27±0.01 69.20±0.00 87.39±0.00 46.63±0.00 24.60±0.27 23.39±0.36 70.48±0.01 56.55±0.35
JustBalancePool 68.77±0.00 67.82±0.02 87.39±0.00 46.63±0.00 19.98±0.00 17.28±0.01 68.64±0.00 50.31±0.09
ParsPool 68.36±1.60 62.50±1.76 63.06±4.84 48.35±0.86 52.59±4.46 49.95±3.32 56.27±1.97 52.96±0.88

For the node-level datasets Cora and Citeseer, the first type of out-of-distribution shift is the top
50% of nodes with the highest degrees as the training set, the bottom 25% with the lowest degrees
as the test set, and the remaining nodes as the validation set. The second type is based on closeness
centrality (the reciprocal of the sum of the shortest path lengths from a node to all other nodes).
We use the 50% of nodes with the lowest closeness as the training set, the 25% with the highest
closeness as the test set, and the remaining nodes as the validation set. For further details and more
experiments for the generalizability analysis, please refer to the Appendix D.4 and Appendix F.2.

From Tables 7 and 8, we have the following observations. Firstly, node-level out-of-distribution
shifts also reduce the performance of pooling models, but the extent of this reduction is smaller
compared to out-of-distribution shifts in graph classification tasks. The potential reason is that, in
node-level tasks, the propagation of information are usually confined to the local neighborhood of
nodes, whereas graph-level tasks require handling information spread over a larger scope. Secondly,
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Table 8: Results of node classification under distribution shifts. Degree and closeness denote two
types of shifts across training and test datasets.

Method
Cora Citeseer

Degree Closeness Degree Closeness
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

TopKPool 83.65±0.50 82.29±0.47 83.21±0.18 81.98±0.31 67.27±0.35 63.60±0.26 72.28±0.67 65.64±1.00
SAGPool 84.19±0.12 82.73±0.27 81.68±1.54 80.34±1.55 65.46±0.61 62.22±0.49 72.28±1.10 66.35±1.87
ASAPool 83.16±0.00 82.24±0.13 84.10±0.37 82.97±0.32 67.47±0.23 63.94±0.31 72.84±0.49 65.27±1.74
PANPool 84.00±0.37 82.83±0.37 84.44±0.30 83.44±0.36 67.63±0.26 63.85±0.28 73.45±0.86 67.48±1.75
COPool 83.90±0.12 82.62±0.13 81.14±1.72 80.00±1.01 66.43±0.59 62.93±0.42 72.80±0.00 67.14±0.42
CGIPool 83.21±0.77 82.24±0.82 82.27±0.55 80.91±0.80 65.66±1.34 62.14±1.46 72.36±0.46 66.80±0.91
KMISPool 84.00±0.18 82.57±0.15 83.55±0.39 82.36±0.41 67.35±0.15 63.69±0.14 72.72±0.30 66.51±0.39
GSAPool 83.70±0.07 82.19±0.27 83.16±0.32 81.89±0.37 67.07±0.49 63.56±0.42 72.84±0.44 66.33±0.37
HGPSLPool 84.19±0.00 82.83±0.04 83.46±0.79 82.32±0.89 67.67±0.15 64.13±0.16 73.20±0.46 67.95±0.40

Figure 3: Comparison of performance, training time, and memory usage across different approaches.

Macro-F1 is generally lower than Micro-F1, which indicates that the model has weaker recognition
capabilities for minority classes. Thirdly, node clustering pooling exhibits better generalizability
than node dropping pooling in graph classification tasks. Fourthly, HGPSLPool and PANPool ex-
hibit the best performance, potentially due to the fact that HGPSLPool combines graph convolution
with spectral clustering, enabling it to better capture higher-order relationships and local topological
structures, which is advantageous in node-level tasks. Meanwhile, PANPool utilizes an adaptive
pooling strategy that adjusts the pooling method to suit different node feature distributions, enhanc-
ing the model’s robustness and generalization capability under out-of-distribution conditions.

TopKPool (Ratio: 0.1) TopKPool (Ratio: 0.9) SAGPool (Ratio: 0.1) SAGPool (Ratio: 0.9)

Figure 4: The t-SNE visualization w.r.t. different pooling ratios of TopKPool and SAGPool.

4.5 FURTHER ANALYSIS

Efficiency Comparison. In this part, we conduct an efficiency analysis of graph pooling methods
on the MUTAG, IMDB-MULTI, and COLLAB datasets. We calculate the time of the algorithms by
measuring the duration needed to complete 200 epochs of training with the 512 batch size. For space
efficiency, we compute the GPU memory utilization during the training process. From Figure 3, it
can be observed that ASAPool, DiffPool, MincutPool, and JustBalancePool exhibit significantly
higher time and space costs. In contrast, node dropping pooling methods such as TopKPool, SAG-
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Figure 5: Performance w.r.t. graph convolution backbones for different pooling methods.

Figure 6: Performance w.r.t. different pooling ratios for four pooling methods.

Pool, and KMISPool demonstrate lower time and space costs. The underlying reason is that node
clustering pooling methods require converting graph data into an adjacency matrix form and simpli-
fying the graph through clustering rather than directly removing nodes.

Visualization. Figure 4 shows the t-SNE visualization for TopKPool and SAGPool under different
pooling ratios. From the results, we observe that as the pooling ratio increases from 0.1 to 0.9, the
different classes form more distinct clusters in the t-SNE plot when the pooling ratio is low. As the
pooling ratio increases, the model retains more nodes, leading to a greater overlap between nodes of
different classes and a reduction in inter-class separability. Moreover, when the pooling ratio is 0.9,
SAGPool shows a higher degree of class separability compared to TopKPool.

Backbone Analysis. Figure 5 presents the performance of four pooling methods based on GCN-
Conv (Kipf & Welling, 2016b), GATConv (Veličković et al., 2017), SAGEConv (Hamilton et al.,
2017), and GraphConv (Morris et al., 2019) on four datasets, NCI1, NCI109, PROTEINS, and
PROTEINS FULL. On average, as the backbone models change, most pooling methods exhibit sig-
nificant performance fluctuations, and no single backbone model consistently maintains a leading
position. Except for the PROTEINS FULL, the performance of GraphConv is relatively better.

Parameter Analysis. Figure 6 shows the performance of four pooling methods on the COX2, AIDS,
FRANKENSTEIN, and Mutagenicity datasets. From the results, we observe that as the pooling rate
increases from 0.1 to 0.9, the performance increases before reaching saturation in most cases. The
performance variation among different pooling methods is significant as the pooling ratio changes,
it is necessary to adjust the pooling ratio when employing pooling methods.

5 CONCLUSION

In this paper, we construct the first graph pooling benchmark that includes 17 state-of-the-art ap-
proaches and 28 different graph datasets across graph classification, graph regression, and node
classification. We find that node clustering pooling methods outperform node dropping pooling
methods in terms of robustness and generalizability, but at the cost of higher computational ex-
penses. This benchmark systematically analyzes the effectiveness, robustness, and generalizability
of graph pooling methods. We also make our benchmark publically available to advance the fields
of graph machine learning and applications. One limitation of our benchmark is the lack of more
complicated settings under label scarcity. In future works, we would extend our graph pooling
benchmark to more realistic settings such as semi-supervised learning and few-shot learning.
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APPENDIX

A RELATED WORK

A.1 GRAPH CLASSIFICATION AND GRAPH REGRESSION

Graphs provide an effective tool to represent interaction among different objects (Wu et al., 2020b).
Graph classification (Baek et al., 2021) is a fundamental graph machine learning problem, which
aims to classify each graph into its corresponding category. The majority of current works adopt
message passing mechanisms (Wu et al., 2020b), where each node receives information from its
neighbors in a recursive manner. Then, a graph readout function is adopted to summarize all node
representations into a graph-level representation for downstream classification. Graph classification
has extensive applications in various domains such as molecular property prediction (Wieder et al.,
2020) and protein function analysis (Mills et al., 2018). Graph regression (Qin et al., 2023) is close
to graph classification which maps graph-level data into continuous vectors. Researchers usually
utilize graph regression to formulate molecular property predictions (Mqawass & Popov, 2024).
Graph pooling has been an important topic in graph-level tasks (Knyazev et al., 2019; Lee et al.,
2019; Ranjan et al., 2020; Ma et al., 2020b; Zhou et al., 2022; Pang et al., 2021; Bacciu et al., 2023;
Zhang et al., 2020a; 2019; Hansen & Bianchi, 2023; Ying et al., 2018a; Bianchi et al., 2020; Tsitsulin
et al., 2023a; Duval & Malliaros, 2022; Bianchi, 2022), which generally utilize a hierarchical way
to refine the graph structures (Bianchi & Lachi, 2024; Liu et al., 2022b). In this work, we generally
study the performance of graph pooling on graph-level tasks and validate the effectiveness of graph
pooling approaches in most cases.

A.2 NODE CLASSIFICATION

Node classification aims to classify each node in a graph based on its attributes and relationship with
the other nodes (Xiao et al., 2022; Ju et al., 2024). Node classification has various applications in the
real world, including social network analysis (Camacho et al., 2020), knowledge graphs (Ye et al.,
2022), bioinformatics (Bhagat et al., 2011) and online commerce services (Yu et al., 2023). Graph
neural networks have been widely utilized to solve the problem by learning semantics information
across nodes by neighborhood propagation. Since graph pooling would reduce the number of nodes,
recent works utilize a U-Net architecture (Gao & Ji, 2019), which involves down-sampling and
up-sampling with residue connections. In this work, we systematically evaluate the performance
of graph pooling on node classification and observe that graph pooling has limited improvement
compared with basic graph neural network architectures.

A.3 PREVIOUS BENCHMARK RESEARCH

Previous studies have built benchmark for graph-related tasks (Errica et al., 2019; Hu et al., 2020b).
In particular, Errica et al. (2019) is a benchmark including six different GNN models across nine
commonly used TUDataset datasets. Open Graph Benchmark (OGB) (Hu et al., 2020b) evaluate dif-
fernet graph neural network approaches experiments on graph classification, graph regression, and
node classification. Errica et al. (2019) only involve one graph pooling method and Hu et al. (2020b)
does not involve any graph pooling methods. In comparison, our method focuses on graph pooling
techniques rather than graph neural networks. Moroever, our benchmark explores the robustness of
these methods by introducing noise attacks in both graph classification and node classification tasks
and investigate their generalizability through out-of-distribution shifts.

B DETAILS OF U-NET BASED NODE CLASSIFICATION

Most existing studies that combine node classification with pooling have utilized the U-Net archi-
tecture (Wu et al., 2022a; Song et al., 2024; Zhang et al., 2021). Figure A.1 shows the overview
of the U-Net framework. Pooling plays a crucial role in the U-Net structure, as it progressively re-
duces the graph size in the downsampling path to extract important global features while preserving
essential local information. In the upsampling path, pooling facilitates the fusion of features from
the downsampling path with those being progressively recovered in the upsampling path through
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Figure A.1: Overview of the graph U-Net framework for node classification.

skip connections, thereby assisting the model in accurately performing graph node classification or
other tasks. Pooling not only simplifies the graph’s complexity but also provides the model with
multi-scale feature representation capabilities.

In the downsampling path, the input feature matrix is first subjected to graph convolution, where the
product of the adjacency matrix and the feature matrix, along with the weighted sum of the weight
matrix and the bias term, yields the activated feature matrix H(l+1). Next, a pooling operation is
applied, reducing the number of nodes by selecting those with higher scores, thereby transforming
the original feature matrix (H(l+1) and adjacency matrix A(l) into a smaller feature matrix H′(l+1)

and a corresponding adjacency matrix A′(l+1). In the upsampling path, the pooled feature matrix
H′(l+1) is first upsampled to restore the original number of nodes, generating a new feature matrix
H′′(l+1). Then, the restored feature matrix is concatenated with the corresponding feature matrix
H(l) from the downsampling path, forming the merged feature matrix H

(l+1)
merged. Finally, the merged

feature matrix undergoes another graph convolution, resulting in the output feature matrix H(l+2).

C DETAILS OF SELECTED POOLING METHODS

C.1 NODE DROPPING POOLING

TopKPool (Knyazev et al., 2019). TopKPool utilizes the attention mechanism to learn the scores of
different nodes and then selects the nodes with top scores, which can learn important local portions
from original graphs.

SAGPool (Lee et al., 2019). SAGPool utilizes a different graph neural network to learn importance
scores, which can guide the pooling process effectively.

ASAPool (Ranjan et al., 2020). ASAPool considers the neighboring subgraphs to represent nodes
and then adopts the attention mechanism to generate subgraph representations. The importance
nodes are selected by a graph neural networks with local extremum information.

PANPool (Ma et al., 2020b). PANPool constructs the maximal entropy transition (MET) matrix
based on graph Laplacian, which can generate importance scores for different nodes.

COPool (Zhou et al., 2022). COPool learns pooled representations from the complimentary edge
and node views. The edge view comes from high-order semantics information while the node view
stems from importance scores from the cut proximity matrix.

CGIPool (Pang et al., 2021). CGIPool incorporates mutual information optimization into graph
pooling, which can enhance the graph-level relationships between the original graph and the pooled
graph.

KMISPool (Bacciu et al., 2023). KMISPool incorporates the Maximal k-Independent Sets (k-MIS)
into graph pooling, which can detect the important nodes in the graph with topological preserved.
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GSAPool (Zhang et al., 2020a). GSAPool integrates both structural and attribute information in
different components. These scores from different components are then fused to guide the graph
pooling process.

HGPSLPool (Zhang et al., 2019). HGPSLPool not only utilizes graph pooling to determine im-
portant nodes from the original graph, but also leverages graph structure learning to explore the
topological information in the pooled graph.

C.2 NODE CLUSTERING POOLING

AsymCheegerCutPool (Hansen & Bianchi, 2023). AsymCheegerCutPool conducts graph cluster-
ing to generate the assignment of each node according to graph total variation (GTV). Each cluster
is aggregated in a hierarchical manner during graph pooling.

DiffPool (Ying et al., 2018a). DiffPool introduces a learnable soft assignment of each node during
graph clustering, and then maps each cluster into the coarsened nodes in the pooling graph.

MincutPool (Bianchi et al., 2020). MincutPool relaxes the classic normalized mincut problem
into a continuous fashion, and then optimizes a graph neural network to achieve this. The graph
clustering results are adopted to guide the graph pooling process.

DMoNPool (Tsitsulin et al., 2023a). DMoNPool introduces an objective based on modularity for
graph clustering and then adds a regularization term to avoid trivial solutions during optimization.
Similarly, graph clustering results are leveraged for graph pooling.

HoscPool (Duval & Malliaros, 2022). HoscPool combines higher-order relationships in the graph
with graph pooling based on motif conductance. It minimizes a relaxed motif spectral clustering
objective and involves multiple motifs to learn hierarchical semantics.

JustBalancePool (Bianchi, 2022). JustBalancePool consists of two components. On the one hand,
it aims to reduce the local quadratic variation during graph clustering. On the other hand, it involves
a balanced term to reduce the risk of degenerate solutions.

SEPool (Wu et al., 2022a). SEPool generates a clustering assignment matrix in one go through a
global optimization algorithm, avoiding the suboptimality associated with layer-by-layer pooling.

ParsPool (Song et al., 2024). ParsPool is characterized by the introduction of a graph parsing
algorithm that adaptively learns a personalized pooling structure for each graph. ParsPool is inspired
by bottom-up grammar induction and can generate a flexible pooling tree structure for each graph.

D DETAILED DESCRIPTION OF DATASETS

D.1 GRAPH CLASSIFICATION

Table A.1 provides descriptive statistics of the selected datasets, revealing that our chosen datasets
encompass graph data of varying scales and features. This diversity establishes a robust foundation
for benchmarking. The following are detailed descriptions of these datasets:

Ogbg-molpcba comprises a collection of 437,929 molecules, each represented as a graph where
nodes are atoms and edges indicate chemical bonds between atoms. Each node is associated with
features such as atom type, valence, and charge. The dataset involves 128 biological activity labels,
each representing a binary classification task that indicates whether a molecule exhibits a specific
biological activity (Hu et al., 2020b).

PROTEINS represents protein structures; nodes denote secondary structure elements (SSEs) and
the edges indicate the relationships between these SSEs that are in close proximity. The primary
goal of this dataset is to assist in the classification of proteins into different structural classes based
on their amino acid sequences and structure— structural characteristics. Each graph’s label is the
protein class, so the dataset covers diverse protein structures (Borgwardt et al., 2005).

PROTEINS FULL is an extended version of PROTEINS. Each graph directly represents a protein
structure: nodes correspond to SSEs like alpha helices and beta sheets (Borgwardt et al., 2005).
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NCI1 is a collection of chemical compound graphs. Originating from the National Cancer Institute
(NCI) database, each graph sample is a compound in which nodes represent atoms and edges repre-
sent the bonds between them. The dataset is binary-class labeled, indicating biological activity via
compounds’ anti-cancer activity against specific cell lines (Wale et al., 2008).

NCI109 is also a collection of chemical compound graphs derived from NCI. Similarly, each node
in the graph denotes an atom and each edge denotes a bond. The two classes in NCI109 are about
compounds’ ability to inhibit or interact with the specified cancer cell line (Wale et al., 2008).

MUTAG consists of 188 chemical molecule graphs, where each node represents an atom. The nodes
have different atomic types, such as carbon, nitrogen, oxygen, etc. Edges represent chemical bonds
between atoms, such as single or double bonds, indicating their connections in the molecule. The
objective is to predict whether each molecule is mutagenic, with positive labels indicating mutagenic
molecules and negative labels indicating non-mutagenic molecules (Morris et al., 2020).

D&D is a dataset of protein structure graphs for graph classification. Each graph in this dataset
represents a protein, with nodes corresponding to amino acids and edges corresponding to the spatial
or sequential proximity between these amino acids. The primary objective of the D&D dataset is to
classify proteins into one of two categories: enzymes or non-enzymes (Shervashidze et al., 2011).

IMDB-B is a collection of social network graphs derived from the Internet Movie Database (IMDB).
Each graph is about a collaboration network from movies whereby nodes stand for actors or actresses
and edges indicate that the two actors appeared in the same movie — this dataset comprises two
classes reflecting the movie genres (Cai & Wang, 2018).

IMDB-M, similar to IMDB-B, represents each movie as a graph where the nodes represent actors
and the edges represent co-appearances of actors in the same movie. However, the nodes in IMDB-
M are categorized into three classes, and it includes a larger number of actors (Cai & Wang, 2018).

COLLAB consists of 5,000 graphs, each representing a collaboration network of a group of authors
in different research fields. In each graph, nodes represent authors, and edges represent collabora-
tions between authors, indicating that the connected authors have co-authored at least one paper. The
graphs have three classes, each corresponding to an academic research field. (Morris et al., 2020).

COX2 consists of 467 graphs, where each graph corresponds to a molecule. The nodes represent
atoms, and the edges represent chemical bonds, and the graph label indicates whether the molecule
is a COX-2 inhibitor (Sutherland et al., 2003).

AIDS consists of 2,000 graphs. Each graph corresponds to a molecule, where the nodes represent
individual atoms and the edges represent chemical bonds between these atoms. The goal is to predict
the inhibitory effect of molecules on HIV based on their structure. (Riesen & Bunke, 2008).

FRANKENSTEIN consists of 4,337 graphs. Each graph in this dataset represents a chemical com-
pound, where the nodes correspond to atoms, and the edges represent the bonds between them. The
graph labels indicate whether the molecule is considered an active compound (Orsini et al., 2015).

Mutagenicity contains 4,337 molecular graphs. In Mutagenicity, each graph represents a molecule,
where the nodes are atoms and the edges denote chemical bonds between the nodes. The classifica-
tion goal is to predict whether a molecule is mutagenic or not (Debnath et al., 1991).

D.2 GRAPH REGRESSION

Table A.2 provides an overview of the selected datasets in terms of their tasks, compounds and their
features, recommended splits, and metrics. A more detailed description is provided below.

QM7 and QM8 are benchmark datasets in computational chemistry, designed to facilitate the devel-
opment and evaluation of machine learning approaches for quantum mechanical property prediction.
It contains approximately 7,165 (QM7) and 21,786 (QM8) molecular structures, each characterized
by their calculated properties using quantum chemistry methods, specifically focusing on electronic
spectra (Wu et al., 2018; Montavon et al., 2013).

BACE is a collection of biochemical data used to evaluate computational methods for drug discov-
ery. The dataset includes a total of 1,522 compounds, each annotated with their binding affinities,
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Table A.1: Summary statistics of datasets for graph classification. CC denotes the clustering coef-
ficient, and Diameter representing the maximum value of the shortest path between any two nodes
in the graph.

Datasets Graphs Classes Avg. Nodes Avg. Edges Node Attr. Avg. Diameter Avg. Degree Avg. CC

Ogbg-molpcba 437,929 2*128 26.00 27.50 - 12.00 2.20 0.00
PROTEINS 1,113 2 39.06 72.82 + (1) 11.14 3.73 0.51
PROTEINS full 1,113 2 39.06 72.82 + (29) 11.14 3.73 0.51
NCI1 4,110 2 29.87 32.30 - 11.45 2.16 0.00
NCI109 4,127 2 29.68 32.13 - 11.21 2.16 0.00
MUTAG 188 2 17.90 39.60 + (7) 8.22 2.19 0.00
D&D 1,178 2 284.32 715.66 - 16.45 4.92 0.48
IMDB-B 1,000 2 19.77 96.53 - 1.86 8.89 0.95
IMDB-M 1,500 3 13.00 65.94 - 1.47 8.10 0.97
COLLAB 5,000 3 74.49 2457.22 - 1.86 37.36 0.89
COX2 467 2 41.22 43.45 + (3) 13.79 2.11 0.00
AIDS 2,000 2 15.69 16.20 + (4) 6.56 2.01 0.01
FRANKENSTEIN 4,337 2 16.90 17.88 + (780) 7.86 2.06 0.01
Mutagenicity 4,337 2 30.32 30.77 - 9.10 2.04 0.00

Table A.2: Details of datasets for graph regression.
Datasets Tasks Compounds Split Avg. Nodes Avg. Edges Avg. Diameter Avg. Degree Avg. CC

QM7 1 7,165 Scaffold 6.79 6.44 4.21 1.89 0.06
QM8 12 21,786 Random 7.77 8.09 4.35 2.08 0.09
BACE 1 1,522 Scaffold 34.09 36.86 4.35 2.08 0.01
ESOL 1 1,128 Random 13.30 13.69 7.02 1.98 0.00
FreeSolv 1 643 Random 8.76 8.43 5.06 1.84 0.00
Lipophilicity 1 4,200 Random 27.04 29.50 13.85 2.18 0.00

as well as molecular descriptors and fingerprints to facilitate the development and assessment of
machine learning modelsa (Wu et al., 2018; Ciordia et al., 2016).

ESOL is a prominent resource in cheminformatics, designed for evaluating machine learning models
on the prediction of aqueous solubility of small molecules. The dataset, derived from the work
of Delaney, encompasses a diverse range of chemical compounds with experimentally determined
solubility values expressed in logS, where S is the solubility in mols per liter. It includes 1128
compounds, serving as a benchmark for solubility prediction tasks (Delaney, 2004; Wu et al., 2018).

FreeSolv is a dataset containing hydration-free energies for small molecules in an aqueous solution.
It comprises data for a wide range of organic molecules, providing both experimental values and
calculated predictions based on molecular simulations (Mobley & Guthrie, 2014; Wu et al., 2018).

Lipophilicity is primarily utilized for studying and evaluating molecular lipophilicity. This dataset
comprises 4,200 compounds sourced from the ChEMBL database, with experimentally measured
partition coefficient (logD) values that reflect the distribution behavior of compounds in a water-
octanol system (Lukashina et al., 2020; Wu et al., 2018).

D.3 NODE CLASSIFICATION

Table A.3 presents descriptive statistics of the seven datasets used for node classification. It is evi-
dent that there is a significant variance in the scale of the selected datasets, each possessing distinct
characteristics. Further background information and details about these datasets are provided below.

Ogbn-arxiv comprises a collection of 169,343 scientific publications classified into 40 distinct cat-
egories. Each paper is represented by a node with a 128-dimensional feature, which comes from
the average of word embeddings in the corresponding title and abstract. Edges indicate citation
relationships between papers (Hu et al., 2020b).

Cora comprises a collection of 2,708 scientific publications classified into seven distinct categories.
Each publication in the dataset is represented as a node in a citation network, where edges indicate
citation relationships between papers (Yang et al., 2016).
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Table A.3: Summary statistics of datasets for node classification.
Datasets Number of Nodes Number of Edges Number of Features Number of Classes Diameter Avg. Degree Avg. CC

Ogbn-arxiv 169,343 1,166,243 128 40 23 13.72 0.23
Cora 2,708 10,556 1,433 7 NA 3.90 0.24
CiteSeer 3,327 9,104 3,703 6 NA 2.74 0.14
PubMed 19,717 88,648 500 3 18 4.50 0.06
Cornell 183 298 1,703 5 8 3.06 0.17
Texas 183 325 1,703 5 8 3.22 0.20
Wisconsin 251 515 1,703 5 8 3.71 0.21
Github 37,700 578,006 0 2 7 15.33 0.01

CiteSeer is a widely used citation network dataset. It comprises scientific publications categorized
into six classes, with each publication represented by a 3,327-dimensional binary vector recording
the presence or absence of specific words (Yang et al., 2016).

PubMed consists of scientific publications from the PubMed database, categorized into three classes
based on their Medical Subject Headings (MeSH) terms. Each node has a sparse bag-of-words
vector derived from the content of the corresponding publication (Yang et al., 2016).

Cornell, Texas, and Wisconsin are made up of nodes that represent web pages and edges which de-
note hyperlinks between these pages. Each node has a class which denotes the topic of the web page;
this allows tasks including node classification and link prediction to be performed. The datasets dif-
fer in size: Cornell and Texas each have 183 nodes while Wisconsin has 251 nodes (Pei et al., 2020).

Github includes node attributes representing the features of developers, such as their interests, skills,
and contributions to various repositories. The edges within the network capture the interactions and
collaborations of developers, creating a multi-faceted graph structure (Rozemberczki et al., 2021).

D.4 OUT-OF-DISTRIBUTION SHIFTS

Size shifts. For the selected datasets, including NCI1, D&D, NCI109, and IMDB-B, we utilized
the data provided by the authors of size-invariant-GNNs (Bevilacqua et al., 2021). In this setup, the
graphs with the smallest 50% of nodes are used as the training set, those with the largest 20% of
nodes are used as the test set, and the remaining graphs were used as the validation set. The data can
be downloaded from https://www.dropbox.com/s/38eg3twe4dd1hbt/data.zip.

Density shifts. For the selected datasets, we divide the datasets based on graph density: the 50% of
graphs with the lowest density are used as the training set, the 20% with the highest density are used
as the test set, and the remaining graphs are used as the validation set. After applying density shifts,
the following densities are observed: for D&D, the training set density is 0.0274, the validation set
density is 0.0536, the test set density is 0.1142; for NCI1, the training set density is 0.1229, the
validation set density is 0.1920, the test set density is 0.2786; for NCI109, the training set density is
0.1248, the validation set density is 0.1943, the test set density is 0.2770; for IMDB-B, the training
set density is 0.6574, the validation set density is 1.1074, the test set density is 1.7427.

Degree shifts. For the selected datasets, we divide the datasets based on node degree: the 50%
of nodes with the highest degree are used as the training set, the 25% with the lowest degree are
used as the test set, and the remaining nodes are used as the validation set. After applying degree
shifts, we can observe that: for Cora, the training set average degree is 5.9431, the validation set
average degree is 2.4225, and the test set average degree is 1.2836; for Citeseer, the training set
average degree is 4.3313, the validation set average degree is 1.3430, and the test set average degree
is 0.9424; for Pubmed, the training set average degree is 7.9148, the validation set average degree
is 1.1552, and the test set average degree is 1.0000; for Cornell, the training set average degree is
3.2198, the validation set average degree is 0.1111, and the test set average degree is 0.0000; for
Texas, the training set average degree is 3.3626, the validation set average degree is 0.4222, and
the test set average degree is 0.0000; for Wisconsin, the training set average degree is 3.7600, the
validation set average degree is 0.7258, and the test set average degree is 0.0000.

Closeness shifts. For the selected datasets, we divide the datasets based on node closeness: the 50%
of nodes with the lowest closeness are used as the training set, the 25% with the highest closeness are
used as the test set, the remaining nodes used as the validation set. After applying closeness shifts,
we can observe that: for Cora, the training set average closeness is 0.1076, the validation set average

22

https://www.dropbox.com/s/38eg3twe4dd1hbt/data.zip


1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table A.4: Details of hyperparameter tuning for different pooling methods
Methods Hyperparameter space

Node Dropping Pooling

TopKPool NIPS’19 Pooling ratio: 0.1, 0.3, 0.5, 0.7, 0.9
SAGPool ICML’19 Pooling ratio: 0.1, 0.3, 0.5, 0.7, 0.9
ASAPool AAAI’20 Pooling ratio: 0.1, 0.3, 0.5, 0.7, 0.9
PANPool NIPS’20 Pooling ratio: 0.1, 0.3, 0.5, 0.7, 0.9
COPool ECMLPKDD’22 Pooling ratio: 0.1, 0.3, 0.5, 0.7, 0.9; K: 1, 2, 3
CGIPool SIGIR’22 Pooling ratio: 0.1, 0.3, 0.5, 0.7, 0.9
KMISPool AAAI’23 The independent sets K: 1, 2, 3, 4, 5
GSAPool WWW’20 Pooling ratio: 0.1, 0.3, 0.5, 0.7, 0.9; Alpha: 0.2, 0.4, 0.6, 0.8
HGPSLPool Arxiv’19 Pooling ratio: 0.1, 0.3, 0.5, 0.7, 0.9
ParsPool ICLR’24 Parsingnet layers: 1, 2, 3; Deepsets layers: 1, 2, 3

Node Clustering Pooling

AsymCheegerCutPool ICML’23 MLP layers: 1, 2; MLP hidden channels: 64, 128, 256
DiffPool NIPS’18 Not applicable
MincutPool ICML’20 Temperature: 1, 1.5, 1.8, 2.0
DMoNPool JMLR’23 Clusters: 2, 4, 6, 8, 10, 12
HoscPool CIKM’22 Mu: 0.2, 0.5, 0.8; Alpha: 0.2, 0.5, 0.8
JustBalancePool Arxiv’22 Not applicable
SEPool ICML’22 Tree depth: 1, 2, 3; Number of blocks: 1, 2, 3, 4

closeness is 0.1560, the test set average closeness is 0.1786; for Citeseer, the training set average
closeness is 0.0150, the validation set average closeness is 0.0679, the test set average closeness is
0.0832; for Pubmed, the training set average closeness is 0.1448, the validation set average closeness
is 0.1669, the test set average closeness is 0.1850; for Cornell, the training set average closeness is
0.2690, the validation set average closeness is 0.3754, the test set average closeness is 0.3896; for
Texas, the training set average closeness is 0.2899, the validation set average closeness is 0.3887,
the test set average closeness is 0.4047; for Wisconsin, the training set average closeness is 0.2630,
the validation set average closeness is 0.3686, the test set average closeness is 0.3855.

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 GRAPH CLASSIFICATION

The classification model comprises three primary components: GCNConv layers, pooling methods,
and a global average pooling layer. The hidden and output channels for this model are both set to 64.
Initially, the data passes through three GCNConv layers with ReLU activation functions, followed
by two pooling layers, before arriving at a global average pooling layer. The embedding output
from this global layer undergoes further processing through a linear layer with ReLU activation,
having dimensions (64, 32), followed by another linear layer without any activation function but
with dimensions (32, number of classes). The final output can be available after applying softmax
to the embedding output. All models use the Adam optimizer with a learning rate of 0.001 and
are trained for 200 epochs by minimizing the negative log-likelihood loss function. For Ogbg-
molpcba, the data is divided into training, validation, and test sets with an 80%, 10%, and 10% split,
respectively. The remaining datasets are divided into training, validation, and test sets with a 70%,
15%, and 15% split. Each trial is repeated multiple times with different random seeds.

E.2 GRAPH REGRESSION

We use a backbone network inspired by MESPool (Xu et al., 2024a) for graph regression. The model
mainly consists of three GINConv layers with ReLU activation functions and BatchNorm, along
with two pooling layers, followed by a global average pooling layer. All channels (both hidden and
output) are set to 64. The embedding output from the global average pooling layer passes through
another linear layer with ReLU activation, having dimensions (64, 32). All models use the Adam
optimizer with a learning rate of 0.001 and are trained for 200 epochs by minimizing the negative
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log-likelihood loss function. All data are processed using a 5-fold cross-validation and are run on
multiple different seeds.

E.3 NODE CLASSIFICATION

For node classification, we utilize a U-Net architecture, which we divide into a downsampling con-
volutional part and an upsampling convolutional part (Siddique et al., 2021). The downsampling
convolutional section includes two GCNConv layers with ReLU activation functions, with pooling
applied between these layers. In the upsampling convolutional section, we use the indices saved
during pooling for upsampling, restoring features to their pre-pooling size. The upsampled features
are then fused with the corresponding residual features from the downsampling path, either through
summation or concatenation. Finally, the fused features are processed and activated through a GCN-
Conv layer. All models employ the Adam optimizer with a learning rate set to 0.001 and are trained
for 200 epochs using cross-entropy loss. All data are processed using a 5-fold cross-validation and
are run on multiple different seeds.

E.4 HYPERPARAMETER TUNING

Details of hyperparameter tuning for different pooling methods can be found in Table A.4. We
performed hyperparameter searches for each dataset in each task.

F ADDITIONAL EXPERIMENTS

F.1 ROBUSTNESS ANALYSIS

Table A.5 shows the additional robustness analysis on more node-level datasets. From Table A.5,
we observe the following: Firstly, for smaller node classification datasets such as Cornell, Texas,
and Wisconsin, masking node features results in the greatest performance loss, while edge deletion
leads to the smallest performance loss. The potential reason is that these smaller datasets inherently
possess higher local characteristics and structural sparsity, making node features more critical for the
model’s classification tasks. Secondly, consistent with the robustness analysis on Cora, Citeseer, and
Pubmed, ASAPool and KMISPool demonstrate superior performance, indicating that these pooling
methods exhibit stronger robustness in node classification tasks.

F.2 GENERALIZABILITY ANALYSIS

Table A.6 presents the results of size-based and density-based distribution shifts on NCI109 and
IMDB-B, respectively. From Table A.6, we obtain conclusions similar to those in the main text: for
the NCI109 dataset, node dropping pooling methods perform worse than node clustering pooling
methods, whereas on the IMDB-B dataset, node dropping pooling methods outperform node clus-
tering pooling methods. Overall, AsymCheegerCutPool, MinCutPool, and DMoNPool outperform
other pooling methods.

Table A.7 presents the results of degree-based and closeness-based distribution shifts on node clas-
sification tasks across four datasets: Pubmed, Cornell, Texas, and Wisconsin. We observe the fol-
lowing: Firstly, KMISPool and GSAPool generally perform the best, yet no single pooling method
consistently leads across all datasets. Secondly, the issue of class imbalance persists, and it is more
pronounced in smaller datasets such as Cornell, Texas, and Wisconsin. Thirdly, smaller datasets like
Cornell, Texas, and Wisconsin are more sensitive to distribution shifts compared to the larger dataset
Pubmed, resulting in more significant performance degradation.
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Table A.5: Results of node classification under random noise attack.
Dataset Ptb Method TopKPool SAGPool ASAPool PANPool COPool CGIPool KMISPool GSAPool HGPSLPool

Cornell
ADD 46.64±0.25 46.45±0.77 47.18±1.03 47.00±1.18 46.63±0.25 46.63±0.92 46.81±0.67 46.81±1.12 46.45±0.45
DROP 61.73±1.17 62.09±1.84 62.29±1.15 61.93±0.95 62.25±0.44 61.36±2.00 63.19±1.79 63.01±0.54 62.46±1.33
MASK 46.99±0.90 47.36±1.56 47.91±2.46 47.00±0.45 48.11±1.17 46.63±1.03 47.74±1.13 47.01±1.35 47.55±1.19

Texas
ADD 58.63±0.67 61.37±0.94 60.48±0.62 59.92±0.92 59.01±0.44 58.99±1.14 58.83±0.49 59.37±1.39 58.63±0.23
DROP 64.47±2.02 64.47±0.42 63.92±2.38 64.30±0.89 63.92±1.96 63.57±1.40 65.57±1.59 65.57±1.33 63.57±2.06
MASK 57.56±0.92 57.93±1.55 58.85±1.44 57.19±0.91 57.37±1.33 57.56±0.93 58.10±1.09 57.93±0.92 57.92±0.43

Wisconsin
ADD 54.46±0.99 53.66±0.98 56.18±1.49 55.52±0.21 55.78±0.98 55.78±1.30 54.99±0.34 54.73±0.48 53.65±0.37
DROP 61.23±1.23 60.55±1.15 60.29±1.68 59.76±1.72 60.43±1.79 59.36±0.87 60.16±0.66 60.43±0.95 61.36±1.17
MASK 47.02±0.55 47.94±0.18 49.80±0.86 48.60±1.14 52.59±0.01 48.35±0.49 49.53±1.15 48.20±1.11 48.08±0.96

Table A.6: Results of graph classification under distribution shifts.

Method
NCI109 IMDB-B

Size Density Size Density
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Node Dropping Pooling

TopKPool 25.10±0,81 22.90±1.01 55.92±2.57 54.88±1.42 56.00±1.22 53.34±2.26 72.00±5.94 68.13±5.78
SAGPool 24.07±1.29 21.64±1.58 53.31±1.74 51.46±0.98 67.67±5.10 67.44±4.97 74.27±3.92 67.13±5.78
ASAPool 22.57±0.70 19.42±1.04 58.42±2.73 57.09±2.02 73.83±12.43 73.70±12.36 80.80±4.94 78.70±4.15
PANPool 25.73±0.11 23.80±0.12 56.25±1.63 54.34±1.93 66.50±9.34 65.73±10.38 76.27±4.21 71.65±4.67
COPool 24.94±1.72 22.77±2.31 57.10±2.20 55.39±1.21 65.33±2.72 65.13±2.94 72.40±9.91 69.52±8.26
CGIPool 24.54±1.19 22.39±1.46 61.36±0.84 57.98±3.78 72.83±8.00 72.69±7.87 71.60±5.44 63.60±7.27
KMISPool 43.78±5.82 43.24±5.33 58.08±3.45 50.03±6.64 75.33±4.78 75.16±4.61 78.80±0.86 73.74±0.63
GSAPool 25.97±3.11 24.00±4.03 53.04±1.30 52.64±1.16 70.17±3.70 69.17±4.45 78.80±0.86 73.11±0.99
HGPSLPool 21.54±0.22 18.17±0.43 58.18±2.26 55.06±3.02 69.33±4.71 69.25±4.76 75.07±1.86 70.37±1.81
ParsPool 42.68±0.81 41.97±0.74 59.91±1.13 56.13±2.70 75.00±3.63 74.92±3.57 76.00±2.99 71.63±3.00

Node Clustering Pooling

AsymCheegerCutPool 79.18±0.00 49.92±0.12 68.53±0.00 44.29±0.00 71.50±0.60 71.45±0.60 78.80±0.00 73.75±0.00
DiffPool 21.38±0.00 17.61±0.00 69.47±0.00 48.65±0.02 69.17±0.70 67.31±0.83 65.20±1.10 62.72±0.76
MinCutPool 31.83±0.77 30.50±0.90 70.76±0.00 56.27±0.02 70.17±0.01 68.28±0.03 78.40±0.01 73.91±0.02
DMoNPool 79.41±0.01 55.84±0.01 67.44±0.05 55.80±0.13 74.33±1.59 73.85±1.61 77.33±0.13 72.56±0.20
HoscPool 33.73±2.35 30.58±2.13 69.54±0.05 54.41±0.03 72.83±0.09 72.37±0.10 77.20±0.04 73.43±0.05
JustBalancePool 58.43±4.14 44.15±1.17 71.26±0.00 58.08±0.01 76.17±0.17 74.69±0.35 78.40±0.01 73.91±0.02

Table A.7: Results of node classification under distribution shifts.

Method
Pubmed Cornell

Degree Closeness Degree Closeness
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

TopKPool 81.66±0.32 81.11±0.38 85.66±0.09 82.36±0.24 34.07±2.10 22.35±2.92 57.78±4.80 25.56±8.37
SAGPool 83.07±1.02 82.57±1.07 85.96±0.34 82.73±0.38 36.30±4.19 24.39±4.03 61.48±4.57 31.54±8.24
ASAPool 82.11±0.12 81.94±0.55 85.02±0.54 82.12±0.77 34.07±1.05 20.94±3.40 60.74±2.77 26.33±2.21
PANPool 81.65±0.12 81.15±0.11 85.55±0.03 82.16±0.20 35.56±0.00 23.55±0.90 54.07±2.10 18.58±3.28
COPool 80.42±0.14 79.82±0.20 84.99±0.35 81.81±0.29 35.56±1.81 22.64±3.21 49.63±6.87 21.09±3.44
CGIPool 80.35±1.33 79.69±1.32 84.97±0.75 81.74±0.90 36.30±4.19 25.34±4.15 60.00±1.81 27.48±3.60
KMISPool 83.41±0.02 82.92±0.03 85.66±0.07 82.50±0.12 34.81±1.05 22.99±2.00 58.52±5.54 24.70±8.45
GSAPool 83.15±0.81 82.61±0.83 85.83±0.32 82.70±0.50 35.56±1.81 23.23±1.21 62.22±1.81 30.06±4.20
HGPSLPool OOM OOM OOM OOM 34.07±1.05 21.39±1.41 57.78±1.81 23.63±1.61

Method
Texas Wisconsin

Degree Closeness Degree Closeness
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

TopKPool 40.74±2.10 27.06±2.71 61.48±1.05 19.39±0.07 26.88±1.52 19.88±1.97 17.74±2.28 15.34±1.55
SAGPool 39.26±1.05 23.52±0.35 62.22±1.81 19.44±0.35 27.42±1.32 25.32±0.98 18.28±0.76 14.85±0.25
ASAPool 40.74±2.77 23.87±0.67 62.96±1.05 19.58±0.20 29.03±3.48 20.17±1.42 15.59±2.74 11.63±4.27
PANPool 40.00±3.63 23.64±1.13 63.70±1.05 19.72±0.20 30.11±3.31 22.99±1.60 23.66±10.56 15.42±5.61
COPool 39.26±1.05 23.44±0.32 63.70±2.10 19.72±0.39 28.49±1.52 19.94±1.50 16.13±3.95 16.68±3.84
CGIPool 40.00±1.81 23.85±0.52 60.74±1.05 19.25±0.18 25.27±2.74 20.01±2.23 27.96±19.01 20.37±11.58
KMISPool 38.52±1.05 23.19±0.10 63.70±1.05 19.72±0.20 31.72±4.23 22.58±2.76 16.67±0.76 14.20±0.97
GSAPool 40.74±2.10 26.90±2.72 62.22±0.00 19.44±0.00 26.88±3.31 18.51±1.18 15.59±1.52 12.75±1.41
HGPSLPool 40.74±2.77 25.69±3.19 62.96±1.05 19.58±0.20 30.65±1.32 20.76±1.23 16.13±2.63 12.67±1.80
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