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Abstract

The National Comprehensive Cancer Network (NCCN) provides evidence-based
guidelines for cancer treatment. Translating complex patient presentations into
guideline-compliant treatment recommendations is time-intensive, requires spe-
cialized expertise, and is prone to error. Advances in large language model (LLM)
capabilities promise to reduce the time required to generate treatment recom-
mendations and improve accuracy. We present an LLM agent-based approach
to automatically generate guideline-concordant treatment trajectories for patients
with non-small cell lung cancer (NSCLC). Our contributions are threefold. First,
we construct a novel longitudinal dataset of 121 cases of NSCLC patients that
includes clinical encounters, diagnostic results, and medical histories, each expertly
annotated with the corresponding NCCN guideline trajectories by board-certified
oncologists. Second, we demonstrate that existing LLMs possess domain-specific
knowledge that enables high-quality proxy benchmark generation for both model
development and evaluation, achieving strong correlation (Spearman coefficient
r = 0.88, RMSE = 0.08) with expert-annotated benchmarks. Third, we develop a
hybrid approach combining expensive human annotations with model consistency
information to create both the agent framework that predicts the relevant guidelines
for a patient, as well as a meta-classifier that verifies prediction accuracy with
calibrated confidence scores for treatment recommendations (AUROC=0.804). Cal-
ibrated confidence scoring is a critical capability for communicating the accuracy
of outputs, custom-tailoring tradeoffs in performance, and supporting regulatory
compliance. This work establishes a framework for clinically viable LLM-based
guideline adherence systems that balance accuracy, interpretability, and regulatory
requirements while reducing annotation costs, providing a scalable pathway toward
automated clinical decision support. Code and synthetic patient data are made
available here: CancerGUIDE repository.

1 Introduction

Cancer treatment decisions require oncologists to synthesize complex patient histories with evolving
clinical guidelines to recommend the appropriate next treatments. The National Comprehensive
Cancer Network (NCCN) guidelines provide evidence- and consensus-based recommendations for
cancer diagnosis, treatment, and management [1]], with adherence promoting higher quality and
consistent care between providers [2; [3; 4]. However, guideline navigation presents significant
challenges: the guidelines are extensive, frequently updated as new research emerges, and require
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Figure 1: CancerGUIDE framework. (1) Clinicians derive patient pathways (labelg,.) from NCCN
guidelines and real notes. These serve as gold-standard references to compare with LLM-derived
pathways (labelrrar), producing a reference accuracy score (Score,). (2) NCCN guidelines and
both synthetic and real clinical notes are used to generate weak labels (labelgyn:n). LLM predictions
(labelr,nr) are compared to these proxy labels to compute proxy performance scores (Score,),
enabling evaluation of how well synthetic supervision approximates expert annotations. (3) Model
consistency features (Feature Sets) and Score,, are used to train a logistic regression meta-classifier
that predicts whether a treatment recommendation is likely correct. This classifier is fit on labelled
data from step 1 and unlabelled features from step 2. The classifier is applied at test time to accept or
reject LLM-generated recommendations, supporting confidence estimation and threshold selection
for clinical deployment.

time-intensive review of complex patient documentation [4]. These factors contribute to variability in
guideline adherence and treatment recommendations, particularly in resource-constrained settings
where specialist expertise is limited [55 6.

Large language models (LLMs) offer promising potential to address these challenges by automatically
processing clinical notes and recommending guideline-concordant treatment plans [7} 18; (95 [10].
However, deploying LLMs for clinical decision support requires rigorous evaluation to ensure
accuracy and safety. The complexity of clinical reasoning, combined with the high stakes of treatment
decisions, demands robust validation methods that can assess model performance at scale while
maintaining clinical safety standards. In addition, current FDA guidelines for evaluation of Al systems
recommend ROC curve measurement as a part of comprehensive clinical performance assessment
endpoints [[11]], which is challenging to produce from generative outputs that are not associated with
semantically aligned confidence scores.

Despite growing interest in clinical LLMs, rigorous evaluation remains a fundamental bottleneck due
to the scarcity of expert-annotated datasets. High-quality ground truth labels for complex clinical
reasoning tasks require substantial investment in specialist time and expertise, limiting the scale at
which models can be validated [12}13]. Common evaluation approaches face significant limitations:
synthetic data generation often fails to capture clinical complexity and is vulnerable to distributional
shift [[14; 15 [165 [17], while using actual patient treatments as ground truth is problematic, since
real-world decisions frequently incorporate factors exogenous to guideline recommendations, such as
patient preferences, drug availability, institutional protocols, and physician experience [185[19].

This evaluation challenge is particularly acute for guideline adherence tasks, where the gold standard
requires expert oncologists to determine whether complex, multi-step clinical reasoning aligns with
evidence-based recommendations. The resulting annotation bottleneck creates a critical gap: while
LLMs show promise for clinical decision support, practitioners lack scalable methods to assess model
reliability before deployment in high-stakes healthcare settings.

We address this evaluation bottleneck through two complementary approaches that enable scalable
assessment of LLM performance on guideline adherence without extensive expert annotation. First,
we evaluate models across six different proxy-benchmark generation methods: two synthetically
generated datasets and four based on real clinical notes with consistency-derived labels. This analysis
enables model selection and preliminary capability assessment without ground-truth labels. Second,



we demonstrate that self- and cross-model consistency (the degree to which a model agrees with itself
and other models) serve as reliable predictors of accuracy on expert-annotated cases.

To validate these approaches, we construct the first benchmark for NCCN guideline adherence on
non-small cell lung cancer (NSCLC) by eliciting 13 oncologists to annotate 121 complete patient
pathways, representing 130+ hours of specialist expertise. This expert-validated dataset enables us
to systematically evaluate six different proxy benchmarking methods and quantify the relationship
between model consistency and clinical accuracy across multiple frontier LLMs. We then develop
a meta-classifier framework that combines these weak supervision signals to classify individual
prediction correctness, achieving robust performance while requiring minimal expert validation

(Figurel[T).

Our evaluation highlights the role of synthetic data and consistency-based data in proxy benchmarking,
with these approaches achieving high Spearman correlation coefficients (r=0.88) and low RMSE
values (RMSE=0.08). We demonstrate that model consistency can also serve as a reliable accuracy
predictor, enabling our meta-learning framework to achieve an average of 0.804 AUROC in classifying
individual prediction accuracy across all models, while unsupervised clustering using consistency
signals alone achieves 0.666 F1 at separating correct from incorrect predictions.

Our primary contributions are as follows:

1. NCCN guideline-adherent dataset and task formalization: The first rigorous ML problem
formulation for clinical guideline adherence, with an expert-annotated dataset of 121 patient
pathways and benchmarking across eight frontier LLMs.

2. Proxy benchmark to validate performance in zero-label settings: A systematic evaluation
that identifies which proxy methods best predict clinical performance without expert labels.

3. Consistency framework for reliable treatment prediction: A hybrid agent and meta-
classifier framework that generates relevant guideline paths and produces confidence values
correlated with accuracy, enabling ROC curve calculation to clearly convey performance to
clinicians and ensure compliance with regulatory standards [[11]].

2 Related Work

2.1 Guideline Adherent Treatment Recommendations

Guideline-adherent treatments have consistently been associated with improved clinical outcomes,
such as overall survival [20; 21;22]]. Clinical decision-support systems have the ability to translate
clinical guidelines into point-of-care recommendations. Several studies have demonstrated the use of
Al-driven systems in predicting guideline-adherent treatment recommendations in oncology [23; 24].
Emerging work has also explored the utility of LLMs; for example, preliminary investigations suggest
that ChatGPT can effectively summarize guideline content [9]] and exhibits partial concordance
in identifying guideline-adherent treatments [[L0]. Furthermore, recent benchmarking efforts have
systematically evaluated the alignment of LLMs with established medical guidelines, underscoring
both their potential utility and the current limitations imposed by the relatively small number of
verified clinical cases available [7]].

2.2 Synthetic Generation of Clinical Data

Synthetic data generation is a promising strategy to address the challenges of privacy and data scarcity
in healthcare. Past works have focused on generating high-fidelity electronic health records (EHRs)
using generative models, such as generative adversarial networks, variational autoencoders and
autoregressive models [255 265 27; 1285 |29]]. More recent frameworks have used LLMs to generate
synthetic data and have shown improvements in privacy guarantees and scalability [30; 315 (325 33]].
In parallel, standardized evaluation metrics and scorecards have been proposed to assess the fidelity,
privacy, and clinical utility of synthetic health data, providing a foundation for more rigorous
benchmarking and deployment [[145 (1551165 |34)]. In addition, synthetic cohorts have been developed
to model guideline-adherent treatment pathways, such as synthetic stroke registries for adherence
benchmarking [35] and synthetic EHR modules that embed clinical practice guidelines and protocols
[36]. Previous work has explored guideline-following capability across frontier models on synthetic
clinical data[37/]. These efforts demonstrate the potential of synthetic data for adherence-focused



tasks. However, significant challenges remain in generating high-fidelity, guideline-adherent cases
while maintaining performance on downstream evaluation tasks.

2.3 Weak Supervision and Consistency

Weak supervision and consistency-driven learning have emerged as key strategies for training models
when labeled data is limited or noisy. Weak supervision techniques, such as programmatic labeling
and distant supervision, integrate heterogeneous, partially labeled sources to produce probabilistic
labels for downstream predictive tasks [38539; 140; 1415 142]. Consistency-based methods encourage
models to produce stable predictions under input perturbations, data augmentations, or repeated
evaluations, helping to regularize training and improve generalization [43} |44} 1455 146l]. Pseudo-
labeling, a related strategy, generates labels for unlabeled or partially labeled data by treating
confident model predictions as additional supervised training data, enhancing model performance by
expanding the training set with its own high-confidence predictions [47; 48} |45]]. Within healthcare,
pseudo-labeling has shown to improve the reliability of EHR phenotyping and imaging tasks under
label scarcity [49;150; 51]]. Together, these techniques provide a framework for leveraging limited
labeled data while maintaining prediction stability and adherence to domain-specific constraints,
which is particularly relevant for guideline-adherent treatment modeling.

2.4 Non-Verifiable Task Evaluation

Evaluating LL.Ms on open-ended or non-verifiable tasks, such as treatment recommendation pre-
diction, is challenging due to the scarcity of ground truth labels. Traditional metrics like accuracy
or BLEU are insufficient in zero-label settings, prompting the use of human-aligned and/or proxy
evaluation frameworks [52;153;54]]. Further, studies have shown that consistency-derived benchmarks
provide improved predictive fidelity relative to ground-truth outcomes [55556]]. Proxy frameworks
and consistency-derived benchmarks offer partial solutions, but their alignment with expert judgment
remains imperfect, motivating the continued development of hybrid evaluation strategies.

3 Methods

3.1 Guideline-Compliance Task Formalization

We formalize guideline-compliant treatment prediction as a structured prediction problem. Let x € X
denote patient notes and y € )Y the corresponding guideline-compliant pathway, where ) is the
space of decision graphs with nodes as clinical decisions and terminal nodes as treatments. An LLM
f:+ X — Y produces predictions § = f(x).

To ground this formalization in clinical practice, we leveraged 03’s vision capabilities [S7] to extract
the NCCN NSCLC guideline decision tree [1] and curated an expert-annotated dataset. Oncologists
traced patient notes through the decision tree, recording node sequences and assessing guideline
adherence for each case. Further details on annotation procedures, participant recruitment, and quality
control measures are provided in Appendix

Since gold-standard pairs (x, y) are difficult to obtain, direct supervision is not scalable as X grows.
To address this, we first introduce proxy benchmarking methods that act as substitutes for direct
supervision. We define synthetic inputs & and corresponding predicted pathways ¢, forming two
primary classes of proxy evaluations:

1. Proxy using synthetic inputs: (%, ), where & represents synthetic patient notes gener-
ated conditionally on guideline paths. This allows assessment of model reliability under
controlled perturbations or alternative representations of patient data.

2. Proxy using real inputs: (z, ), where the model prediction 4 is generated multiple times
by f and the (z, ) pair is kept only if minimum self-consistency is reached.

These proxy-based evaluations provide measurable signals of model performance, enabling ranking
of models or detection of likely errors in zero-label settings. We learn a surrogate evaluator g that
predicts whether ¢ is guideline-compliant. Concretely, we define a feature mapping

¢: (X, Y, f) > R?



that extracts signals such as (i) model self-consistency across rollouts, (ii) agreement across models,
and (iii) alignment with proxy benchmarks. The evaluator is then trained as a binary classifier

Our objective is to minimize the expected classification loss

mgin E(m,y)wD [‘C(g((b(x? g7 f))7 1{?) = y})}a

where D denotes the distribution over patients and L is standard loss. This formulation enables
evaluation of f in settings with limited or no access to human-labeled (x, y) pairs, by leveraging model
agreement, self-consistency, and benchmark proxy-derived features as signals for meta-classification.

3.1.1 Evaluation Preliminaries
To evaluate model performance, we employ two complementary metrics:

1. Path Overlap: Measures the proportion of nodes in predicted paths that are repeated,
relative to the total nodes in all compared paths. This captures consistency of decision
sequences with the full derivation in Appendix

2. Treatment Match: A binary score indicating whether the final predicted treatment matches
the ground truth when available. In settings without ground truth, it is computed as the
proportion of repeated final treatments across multiple predictions, with full derivation in

Appendix [A.3]
3.2 Zero-Label Benchmark Generation

To approximate (z, y) pairs for evaluation, we introduce two complementary approaches (synthetic
supervision and consistency-based pseudo-labeling), with a total of six proxy benchmarking
methods for zero-label performance estimation contributed.

3.2.1 Synthetic Supervision

We generate high-fidelity synthetic patient notes & paired with generated guideline paths 3 to simulate
real clinical cases. The goal is to maximize fidelity to realistic patient notes while ensuring the target
guideline path is accurate. Our multi-step pipeline separates the generation of & and the selection of
9 to filter incorrect labels from the benchmark, while still maintaining meaningfully realistic patient
cases.

Generating & Two complementary strategies are used: Structured Generation fills empty struc-
tured fields conditioned on the generated path and full clinical guidelines, performs consistency
checks by reconstructing implied paths (discarding mismatched cases), then generates unstructured
notes from structured data, target path, guidelines, and real clinical note examples. Unstructured
Generation bypasses structured fields, generating synthetic notes directly from target paths, guide-
lines, and clinical note examples. Synthetic datasets were generated with GPT-4.1, except for those
used to evaluate GPT-4.1, which were produced by GPT-5 under minimal-reasoning conditions.

Selecting § via LLM Preference Once 2 is generated, we obtain ¢ by having the LLM generate
the path from Z. If the prediction matches the target path, we accept the pair directly. Otherwise, the
LLM chooses between predicted and target paths in position-agnostic format, and we retain only
cases where the target path is selected.

The final dataset is then composed of (Z, ) pairs which the generation model either correctly
regenerated § from & or was able to select ¢ from a pair of available (§*, §), with §* being the path
prediction generated for . This captures examples where direct generation fails but verification
remains feasible (e.g., generating the correct path is difficult, but identifying it is easier) [58;42].

3.2.2 Consistency-Based Pseudo-Labeling

We propose a consistency-based pseudo-labeling strategy to construct proxy benchmarks that approx-
imate model performance on treatment prediction and guideline path generation. Consistency-based



pseudo-labels are derived from two sources: (i) Self-consistency, which leverages agreement within
repeated predictions of a single model, and (ii) Cross-Model Consistency, which relies on agreement
across different models. For each source, we define two benchmarks based on whether consistency
is measured with respect to the path overlap metric or the treatment match metric, yielding four
benchmarks in total.

Self-Consistency For real clinical notes, pseudo-labels are generated using model self-consistency.
Specifically, we sample k independent predictions f(x) = g1,..., 9, from the same model m
across X questions. Agreement among these predictions is assessed along two axes: path overlap
(structural alignment) and treatment match (final treatment concordance). Notes with agreement
above a threshold § = 0.9 on the target metric are retained, while inconsistent cases are assigned a
score of 0. The retained (z, ) pairs are then used to evaluate model m, where ¢ corresponds to the
most frequent prediction among f(x). Performance is computed as accuracy over the retained subset
of X, counting inconsistent answers as incorrect.

Cross-Model Consistency We further assign pseudo-labels by comparing predictions across the
whole set of models, M. For a note z, if two or more models converge on the same pseudo-label
after k£ independent samples, we define this as the aggregated label. Convergence in this setting is
exact path match. Inconsistent cases are simply excluded rather than penalized in contrast to the
Self-Consistency method. We obtain the subset of (x, ) pairs with the aggregated labels and evaluate
all models in M on this proxy benchmark.

3.3 Final Treatment Accuracy Prediction

Supervised Accuracy Classification We use consistency signals and model performance on proxy
benchmarks to predict accuracy of a generated final treatment prediction. We train a meta-classifier
using features derived from self-consistency metrics (k-rollout path overlap and treatment match),
cross-model consistency (fraction of models with the same generated path), and proxy benchmark
scores (synthetic and consistency-derived).

Unsupervised Performance for Accuracy Classification and Error Identification To demon-
strate label-free evaluation capabilities, we apply unsupervised methods to both accuracy classification
and error identification. Clustering self- and cross-model consistency features naturally separates
high-confidence correct from low-confidence incorrect predictions. For error identification, we
tabulate inconsistencies across k rollouts for each model m on patient p. This approach leverages
consistency signals to detect potential errors without relying on human labels.

4 Results

4.1 Expert-Annotated Dataset

To evaluate LLM performance on guideline-concordant treatment prediction, we constructed a
high-quality expert-annotated dataset.

Annotation Details A total of 13 oncologists annotated 121 patient notes, averaging 46.5 minutes
per patient note with a cost of $500 per US Board certified clinician hour. To assess inter-annotator
reliability, 11 examples were dually annotated, showing an average of 0.636 treatment match and
0.692 path overlap score, with further disagreement analysis present in Appendix [A.8] Notes were
on average 54755 characters long and contained 82 distinct paths through the NCCN decision tree
and 48 distinct final treatment recommendations. We use this annotation as ground truth for both
evaluating model performance and validating proxy benchmarking approaches. By establishing a
high-quality reference standard, we can interpret LLM performance, detect systematic errors, and
calibrate models in high-stakes medical settings without relying exclusively on expensive ongoing
human annotation.

Model Performance on Human-Annotated Benchmark Table|I|illustrates the results of eight
frontier models on the expert-annotated dataset. We report performance on GPT-5 [59], GPT-4.1 [60],
03 [57], o4-mini [61], DeepSeek-R1 [62]], and LLaMA-3.3-70B-Instruct [63]. We evaluate GPT-5



Model

Path Overlap Treatment Match

GPT-5-High 0.455 £0.035  0.339 £ 0.043
GPT-5-Medium 0.483 £0.036  0.364 + 0.044
GPT-5-Minimal 0441 £0.032  0.322 +0.043
GPT-4.1 0.388 £0.035  0.298 + 0.042
03 0.477 £0.038  0.364 £ 0.044
04-mini 0.433 £0.037  0.339 4+ 0.043
Deepseek-R1 0.419 +£0.038  0.355 +£ 0.044
LLaMA-3.3-70B-Instr. 0.174 £0.022  0.112 £+ 0.029

Table 1: Model performance on Expert-Annotated Data.

with varying reasoning efforts (minimal, medium, and high) to directly assess the impact of reasoning
on performance. All models are evaluated with default temperature 1.0. We measured two clinically
relevant metrics: (i) path overlap, measuring structural agreement with the annotated guideline
path, and (ii) treatment match, indicating whether the recommended treatment node matches expert
annotation.

4.2 Proxy Benchmarks Enable Model Evaluation in Zero-Label Settings

We evaluated six proxy benchmarks for assessing LLM performance without human labels (Figure J2).
Among synthetic approaches, adding structure to the generation pipeline substantially increased error
(RMSE rising from 0.11 in Synthetic Unstructured to 0.43 in Synthetic Structured) while yielding only
a marginal correlation gain (Spearman r: 0.86 — 0.90). For consistency-based methods, thresholding
by treatment match outperformed path overlap, likely because treatment match reflects a more
generalizable prediction goal, whereas path overlap penalizes minor deviations that have little effect
on downstream treatment accuracy. Aggregating outputs across models in cross-model consistency
failed to improve correlations and instead increased RMSE. Overall, synthetic benchmarks are
appealing for their robustness to variation in model consistency, while consistency-based benchmarks
are strong in domains where accuracy and consistency are correlated. In this setting, self-consistency is
aligned with model accuracy (Figure[3)), and per-model Pearson correlations reported in Appendix [A.5]
further confirm that consistency reliably indicates instance-level accuracy.

Proxy Benchmarks vs Ground Truth: Proxy Benchmarks vs Ground Truth:

Spearman Correlation

Synthetic
Unstructured 0.11 0.12

Synthetic
Unstructured - 0.48

Synthetic _ Synthetic
Structured 0.43 0.43 Structured g 0.50

Self-Consistency
(Path Overlap Threshold)

Self-Consistency
-0.30 (Path Overlap Threshold)

RMSE
°
S
Correlation

Self-Consistency 0.25 Self-Consistency
(Treatment Match Threshold) . . (Treatment Match Threshold)

Cross-Model Consistency
(Path Overlap Threshold) | 0.32 0.47

Cross-Model Consistency
(Path Overlap Threshold) | 0.60 0.32

Cross-Model Consistency
(Treatment Match Threshold) 0.21 0.35

Cross-Model Consi 1C)
(Treatment Match Thre - 0.74

Path Overlap  Treatment Match Path Overlap  Treatment Match

Figure 2: Self-consistency pseudo-labels provide a robust proxy for benchmarking. Six ap-
proaches are evaluated: synthetic data (structured and unstructured), self-consistency pseudo-labeling
(with varying acceptance criteria), and cross-model consistency pseudo-labeling. Correlation is mea-
sured using Spearman coefficients as well as root mean-squared error with color intensity indicating
magnitude.

4.3 Predicting Treatment Accuracy Using Model Self-Consistency

We develop a meta-classifier to predict when treatment recommendations are correct, using features
from model consistency patterns and benchmark performance. Our approach achieves 0.804 AUROC
by leveraging inference-time signals to predict accuracy without requiring ground truth labels at test
time. We evaluate five feature sets to identify which signals contribute most to performance (Table [2)).



Iteration Consistency vs Treatment Prediction
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Figure 3: Model accuracy increases with self-consistency across prediction runs. Higher consis-
tency (fraction of runs producing identical paths) correlates with improved performance for treatment
matching.

We stratify train and test sets of the human annotated benchmark by models and patient IDs with a
70/30 split. Performance generalizes across models and patients, enabling downstream classification
with minimal human supervision.

Feature Self- Synthetic  Consistency Cross-
Set Consistency* Benchmarks Benchmarks Consistency*

Base v

Internal v v v

Agg. v

Base+Agg. v v

All v v v v

Agg. = Aggregated.
*Self-consistency and Cross-Consistency features are computed per
sample.

Table 2: Feature sets for predicting treatment recommendation accuracy

We find in Figure ffa that Base_aggregated, Aggregated_only, and All outperform other feature
sets, indicating cross-model consistency provides the strongest signal for accuracy classification. We
see minimal gain from proxy benchmark performance, suggesting consistency-based approaches
are better for real-time analysis of model outputs than synthetic data. Even without cross-model
information (Base and Internal), we see high AUROC scores, showing model self-consistency
is a strong signal for classification in isolation. Figure 4] shows intra-model variability of the
classifier trained using Base_aggregated features, with Internal features reported in Appendix [A7]
to highlight that even where consistency and accuracy are not strongly correlated, e.g., DeepSeek-R1,
these features still provide signal for accuracy classification with an AUROC of 0.582. The strong
classification performance of LLaMA-3.3-70B-Instruct outputs highlights a key issue with including
lower-quality models: its NCCN task performance is lower than other models, arbitrarily inflating
AUROC as the meta-classifier’s confidence task becomes easier. Besides LLaMA-3.3-70B-Instruct,
GPT-4.1 has the highest AUROC and Deepseek-R1 the lowest, indicating GPT-4.1’s consistency
better correlates with accuracy.

Furthermore, in a fully unsupervised setting, we can separate accurate from inaccurate predictions
with an F1 score of 0.666, showing consistency signals carry meaningful information for error
detection without labels. Notably, 40.42% of model errors on human-labeled data can be detected
without any human labels (detailed analysis in Appendix [A.4). These results indicate consistency
signals alone provide structure to distinguish accurate from inaccurate predictions and identify failure
modes, enabling model developers to detect potential issues before deployment and support iterative
refinement of clinical decision support systems.
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(a) ROC curves by feature set, averaged over all mod- (b) ROC curves across models for the
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Figure 4: Using signals from self- and cross-model consistency provides high AUC for accuracy
classification. Proxy benchmark results do not provide significant prediction signal compared to
consistency. Model AUCs range from 0.703 to 0.981, indicating strong prediction capability. LLaMA-
3.3-70B-Instruct’s high AUC can be attributed to its low performance on the given task, creating an
arbitrary classification problem and highlighting limitations of including lower-performing models in
analyses.

5 Discussion

As LLMs become increasingly capable across tasks, understanding their limitations and quantifying
accuracy for specific applications is critical for deployment [64]. This work makes three main
contributions in the high-stakes medical domain. First, we formalize guideline-concordant treatment
recommendation generation and introduce a dataset of 121 patient cases annotated by board-certified
oncologists. Second, we compare synthetic supervision and consistency-based supervision for
benchmarking models on tasks lacking human annotations, finding that consistency-based benchmarks
best approximate human judgments (Spearman r = 0.88, RMSE=0.08). Third, we develop a hybrid
agent and meta-classifier trained using unsupervised features, achieving an average of 0.804 AUC
on held-out models and producing confidence scores that support ROC analysis, error trade-off
optimization, and regulatory compliance [11]. ROC curves let clinicians or developers adjust
thresholds to balance sensitivity and specificity, aligning with FDA guidance. Calibrated confidence
scores from our meta-classifier provide interpretable reliability indicators, supporting informed
decisions in high-stakes settings. Consistency signals reveal model failure modes—Ilike guideline
non-compliance or TNM staging errors—even without extensive human annotation, highlighting
opportunities for targeted improvement. Feature analysis shows self- and cross-model consistency
are the strongest predictors of recommendation accuracy, enabling error detection and confidence
calibration in a label-free setting.

Several promising directions emerge from this work. Expanding the dataset to other cancer types
and guidelines would help characterize the generalizability of our consistency-based benchmarking
approach, potentially enabling cross-domain accuracy prediction [65; 66]]. Further evaluation of
self- and cross-model consistency as a signal for accuracy classification across broader model sizes
and architectures could deepen understanding of this method’s robustness. Increasing both the
size of the human-annotated dataset and the number of dually annotated samples would strengthen
confidence in ground-truth labels. Since clinicians exhibit variability in path selection, future work
should also explore ways to explicitly model and incorporate human uncertainty into evaluation.
Adaptive learning approaches that account for uncertainty across clinical scenarios may further
improve sensitivity of proxy metrics [67;|68]]. Finally, investigating how proxy benchmark data can
be leveraged for alignment with downstream human preferences could help mitigate data bottlenecks
that limit current methods [69; [70].
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A Appendix

A.1 Annotation Details

We begin by extracting the decision tree pages from the NCCN NSCLC guidelines [1] and creating a
JSON-based representation where each decision point is labeled as a “node." Terminal nodes with
“recommendation" labels contain final treatment recommendations for clinicians, while intermediate
nodes represent decision points requiring additional clinical information.

To evaluate model capability in mapping these guidelines onto real clinical data, we created a human-
annotated dataset for guideline-adherent reasoning in NSCLC. Expert annotators traced patient
notes through the NCCN guideline decision tree, recording the ordered sequence of page—node
identifiers (e.g., NSCL-1-1 — NSCL-2-1 — ... — terminal). Each annotation aimed to reach
either the appropriate “recommendation” node when sufficient clinical information was available, or
the furthest node that could be accurately determined given the available patient data. Annotators
additionally marked whether the observed care was guideline-compliant and provided brief rationales
for any identified as non-compliance. Non-compliance is treated as a valid “path” and evaluates
model’s capacity to identify patient treatment trajectories as non-compliant with given guidelines.

Thirteen physicians performed the annotations: twelve board-certified oncologists and one hema-
tology—oncology fellow, averaging 13 years of clinical experience. Participants were recruited
through data vendors, screened for oncology knowledge and rubric literacy, and verified via official
certification registries. All physicians were compensated, and annotation instructions are provided.

A subset of cases was double-annotated, and disagreements were resolved through adjudication
meetings, with all decisions documented for consistency. A strict no-Al-use policy was enforced via
Insightful time-tracking with periodic screenshot audits [71]]. Annotation time averaged 46.5 minutes
per case. All cases were fully de-identified and contained no protected health information, so the
study did not constitute human-subjects research and no IRB was required.
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You are helping us understand how a synthetic patient progressed through the NCCN guide-
lines for non-small cell lung cancer (NSCLC), based on information in their clinical note.
Your task is to carefully read the clinical note and determine which steps in the NCCN
guideline the patient appears to have gone through. Using your clinical judgment and the
structure of the guideline, trace the path the patient has followed so far.

Path Format: You will identify the treatment path in the following format:

NSCL-x-y — NSCL-a-b — ... — Final Treatment Node

Each step should include the full node ID from the guideline (e.g., NSCL-1-1). Do not skip
any nodes, even if some are broader or less specific than others. The final step should be a
terminal node—a node that includes a clear treatment recommendation.

If the patient’s treatment has not reached a terminal node, you should provide the recom-
mended pathway to the next terminal node, as permitted by the information in the note.
Compliance Assessment: There is a box to check if the patient’s path complies with the
NCCN guidelines. If you believe the patient’s path does not align with the NCCN guideline,
please do not check the box. In this case, you will also include a brief explanation of why
the treatment path doesn’t match the guidelines. Only include a “reason” if the path is not
compliant. If the path is guideline-compliant, just provide the full treatment path.
Important Notes:

* You do not need to speculate beyond what is described in the note

* You do not need to assume the patient has already received the final treatment—just
determine the most appropriate next step or current position in the guideline

* In some cases, the NSCLC Guidelines may not apply. For these cases, please note
that the guidelines do not apply and proceed to the next task

Materials Provided:
* A clinical note (the patient’s case)
¢ The full NCCN guideline (for reference)

Tips and Tricks: We recommend utilizing “Command + £ (Mac) or “Ctrl+f” (Windows) to
find key terms and parts of the note/guideline tree that are relevant. The guidelines consist of
many “pages” (i.e. NSCLC-1, NSCLC-2) which contain further questions that will bring you
to other pages.

Example Workflow:

Step 1: REDACTED DUE TO NCCN LICENSING REGULATIONS

Step 2: Using Ctrl+F (Command+F on Mac), proceed to the next step based on the patient’s
clinical notes.

Per the example above, search “NSCL-2" to skip to the section beginning: ‘‘NSCL-2"’: {
‘“‘page_id’’: ‘‘NSCL-2”’

Under NSCL-2, you see “nodes” and then a numbered list of different criteria. Begin with
node 1 and follow the branching guidance from there.

At each step, confirm that the treatment outlined in the patient’s clinical note is in accordance
with the NCCN Guidelines. If the treatment diverges from the path outlined by the guidelines,
it would be considered noncompliant. The treatment path you provide should be the treatment
path that was followed in the patient’s care. If this differs from the path recommended by the
NCCN Guidelines, indicate that the path was noncompliant.

A.2 Path Overlap Score

Let P = {Py, Py, ..., P} be a collection of k predicted paths, where

Pi:(pi,17pi,27--~7pi,ni)7 i:17"'7ka
and p; ; denotes the j-th node in path P;.

Define the node set of path P; as
Vi =A{pi1,pi2s s Pini }s
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and the union and intersection of all paths as
k k
U=JVi, I=\Vi
i=1 i=1

The Path Overlap Score (corresponding to path_match_fraction in code) is defined as the
Jaccard similarity:

Overlap(P) = {léh’ 1> 0,
1, |U| = 0.
Properties

* Overlap(P) € [0, 1].
* Overlap(P) = 1 if and only if all paths share exactly the same set of nodes.
» Higher scores indicate greater similarity in node coverage across paths.
e Symmetric with respect to path ordering.
* Sensitive only to node membership, not ordering or repetition.

A.3 Treatment Match
Final Treatment Consistency Score

Let P = {Py, P,,..., P} be a set of k predicted treatment paths for a given patient, where each
path P, = (p;.1,Pi2, .. ,Din,) terminates with a final treatment recommendation f; = p; .

Case 1: Ground Truth Available

When ground truth final treatment f* is available, the score is computed as the indicator function:

1 if fi=f*
Li=pr = {

0 otherwise

This returns whether there was an exact match between the ground truth and the prediction final
treatment.

Case 2: No Ground Truth Available

In the absence of ground truth, we measure internal consistency by computing the proportion of
repeated final treatments:

t
Sina(P) = maxtETTc()

where:
k = total rollouts

k
c(t) =Y Lgp—n
=1

The numerator max;cr ¢(t) counts the total number of “repeated" final treatment occurrences (i.e.,
how many times each treatment appears beyond its first occurrence) and returns the frequency of the
mode treatment selection. For all models £ = 10.

Properties
* Shnal(P) € [0, 1] for both cases
* Higher scores indicate better accuracy (Case 1) or higher consensus (Case 2)

» Case 2: Score of 0 indicates complete disagreement; score approaching 1 indicates strong
consensus
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A.4 Error Analysis

We find that 40.42% of all errors made by models on human-annotated clinical text are flagged within
the top 5 points of confusion by the model itself during its internal rollouts. This enables practitioners
to refine instructions, perform fine-tuning, or apply other interventions to address these frequent
errors—without relying on human annotations to detect them. Figure [5]shows the overlap between
errors identified by model consistency vs. the true errors made by the model against human annotated
data. Discrepancies mostly arise around guideline compliance and tumor staging, indicating that
models struggle to differentiate between non-compliant and compliant cases with high accuracy as
well as are unable to leverage parametric knowledge to perform tumor staging. Potential interventions
could be training a model specifically for either task or providing additional context with clear
instructions regarding clinical expectations.

A.5 Consistency-Accuracy Correlation

We show that for both Path Overlap metric and Treatment Match metrics, consistency of a prediction
is correlated with accuracy (Table . We do see, however, that there are different levels of correlation,
indicating that consistency-based approaches inherently are more accurate for some model families
than others. We note that DeepSeek-R1 has an outlier correlation coefficient value, being negative for
Path Overlap score and extremely low for Treatment Match score’s correlation with accuracy. This
highlights the robustness of the meta-classification pipeline to varying model internal consistencies.
Despite the lack of direct correlation between self-consistency and accuracy for this model, we are
still able to classify accuracy with high fidelity.

Path Treatment

Model Overlap Match
GPT-5-High 0.477 0.472
GPT-4.1 0.812 0.923
GPT-5-Minimal 0.925 0.866
03 0.700 0.795
04-mini 0.566 0.491
GPT-5-Medium 0.794 0.935
DeepSeek-R1 -0.647 0.129
LLaMA-3.3-70B-Instr. 0.688 0.789
Mean + SEM 0.540 £0.179 0.675 £ 0.103

Table 3: Iteration consistency vs. accuracy correlation (r) for path overlap score and treatment match
score. Mean correlation values across all models & SEM are reported at the bottom.

A.6 Unsupervised clustering performance

We cluster on features related to self- and cross-model consistency (Figure [6). We are able to
distinguish between True Negatives and False Negatives with high accuracy, and are able to derive
some signal regarding the True Positives. This indicates that consistency alone can be used as
a baseline in an unsupervised method to identify accuracy of prediction. The performance is
below supervised approaches, as to be expected, but is promising for further applications in which
supervision is not viable or possible. F1 score is .666, indicating potential of unsupervised methods
in conjunction with consistency approaches to evaluate model performance in zero-label settings.

A.7 Meta-Classifier Performance on Internal Features

We report the performance of our meta-classifier using internal features only for training, as shown
in Figure [/l This enables us to disaggregate classification performance between cross-model and
self consistency. We see here that the AUROC scores for each model is lower than when we include
cross-model information, but it is still significantly above random, indicating that while cross-model
consistency is a useful feature, it is not the only feature that allows for insight into model performance.
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Figure 5: Identification of most common discrepancies between human annotations and model
annotations compared to most common discrepancies between k& model rollouts of path prediction.
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Figure 6: Confusion Matrix for K-means clustering over consistency-derived features.

AUROC Across All Models: Internal Features
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Figure 7: ROCs disaggregated by model for classification of treatment prediction accuracy using
exclusively internal features during training.

A.8 Model Information

For supervised classification, we trained a logistic regression classifier with L2 regularization (C=0.1),
optimized using LBFGS with up to 10,000 iterations, and applied class-balanced weighting to account
for label imbalance. Table [ reports further API details.
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Model Provider API Version

DeepSeek-R1 Azure Al 2024-05-01-preview
LLaMA-3.3-70B-Instr. ~ Azure OpenAl 5 (Model release: 2024-12-06)
GPT-4.1 Azure OpenAl 2024-12-01-preview
GPT-5 Azure OpenAl 2024-12-01-preview
04-mini Azure OpenAl 2024-12-01-preview
03 Azure OpenAl 2024-12-01-preview

Table 4: Model release dates and API versions.

A.9 Human Annotation Disagreement Analysis

Of the 11 dually annotated records:
1. 7 were agreed upon by all physicians.
2. 4 required adjudication

3. 2involved disagreements about whether the patient’s history complied with guidelines (these
cases are excluded from our benchmark).

4. 1 involved assumptions regarding the patient’s history; after clarification to rely strictly on
the provided record, both clinicians agreed.

5. 1 involved a TNM staging error by one clinician, resolved upon discussion.

After removing non-compliant cases, agreement across the benchmark was 7/9. This reflects the
inherent difficulty and nuance of the task, setting a realistic upper bound for LLM performance in
clinical decision support scenarios.

A.10 NCCN Tree Generation

To construct the clinical decision tree, we first manually structured a subset of sample guideline pages
into a JSON-based hierarchical format representing decision nodes and treatment branches. These
manually curated examples served as few-shot demonstrations for prompting the language model to
generate additional decision trees for the remaining guideline sections. The generated JSON outputs
were automatically validated to ensure structural integrity and adherence to the required schema.
While this process provided an initial level of validation, the resulting trees were not independently
verified by clinical experts, and thus may contain minor inconsistencies or omissions relative to
expert-curated guideline representations. The generated NCCN tree for NSCLC has 3,302 nodes,
3,301 edges, and a max depth of 8.

A.11 Clinical Data Details

The patient data used for analysis comprised approximately 2,900 patients diagnosed with breast
and lung cancer at various stages, drawn from two U.S. health systems: a community-based system
and a large nonprofit health system, each spanning multiple hospital locations. The dataset included
electronic medical records, radiology reports, pathology reports, and other clinical documents
such as next-generation sequencing (NGS) reports. Tumor registry data were obtained from three
complementary sources: (1) the hospitals’ internal registries, (2) registry submissions to the state (for
one system), and (3) manually labeled registry data extracted by over 30 registered oncology nurses.
All data were de-identified by the vendor prior to delivery, following HIPA A-compliant procedures
that included redaction of all PHI, date shifting relative to the date of birth, and removal of DICOM
headers and pathology metadata containing identifiers.
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