
Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

RL-STAR: THEORETICAL ANALYSIS OF REINFORCE-
MENT LEARNING FRAMEWORKS FOR SELF-TAUGHT
REASONER

Fu-Chieh Chang∗
MediaTek Research, Taipei, Taiwan
Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan
d09942015@ntu.edu.tw

Yu-Ting Lee∗
Department of Mathematical Sciences, National Chengchi University, Taipei, Taiwan
110308056@g.nccu.edu.tw

Hui-Ying Shih
Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan
huiyingshih0228@gmail.com

Yi Hsuan Tseng
Department of Psychology, National Taiwan University, Taipei, Taiwan
r12227115@ntu.edu.tw

Pei-Yuan Wu
Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan
peiyuanwu@ntu.edu.tw

ABSTRACT

The reasoning abilities of large language models (LLMs) have improved with
chain-of-thought (CoT) prompting, allowing models to solve complex tasks step-
wise. However, training CoT capabilities requires detailed reasoning data, which is
often scarce. The self-taught reasoner (STaR) framework addresses this by using
reinforcement learning to automatically generate reasoning steps, reducing reliance
on human-labeled data. Although STaR and its variants have demonstrated em-
pirical success, a theoretical foundation explaining these improvements is lacking.
This work provides a theoretical framework for understanding the effectiveness
of reinforcement learning on CoT reasoning and STaR. Our contributions are: (1)
criteria for the quality of pre-trained models necessary to initiate effective reasoning
improvement; (2) an analysis of policy improvement, showing why LLM reason-
ing improves iteratively with STaR; (3) conditions for convergence to an optimal
reasoning policy; and (4) an examination of STaR’s robustness, explaining how it
can improve reasoning even when incorporating occasional incorrect steps; This
framework aims to bridge empirical findings with theoretical insights, advancing
reinforcement learning approaches for reasoning in LLMs.

1 INTRODUCTION

With the advancement of large language models (LLMs), their reasoning capabilities have become
crucial to their success. This progress is mainly attributed to chain-of-thought (CoT) prompting Wei
et al. (2022), which allows LLMs to go beyond pattern matching and handle more complex reasoning

∗equal contribution

1

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

problems by providing step-by-step guidance. GPT4-o1 OpenAI (2024) exemplifies this success,
achieving high scores on various mathematical and programming benchmarks.

However, to train models with CoT capabilities, training data must include detailed reasoning
steps Malach (2024); Prystawski et al. (2024); Xiao & Liu (2024), which are often absent. To
address this challenge, the self-taught reasoner (STaR) approach Zelikman et al. (2022) was proposed,
leveraging reinforcement learning to automatically discover reasoning steps. Numerous improvements
to STaR have since been introduced Hosseini et al. (2024); Zelikman et al. (2024); Lin et al. (2024);
Andukuri et al. (2024); Xiang et al. (2025), demonstrating empirically that LLMs can effectively
learn reasoning steps via reinforcement learning without human intervention.

Although some theoretical research exists on CoT techniques (e.g., Prystawski et al. (2024); Malach
(2024); Feng et al. (2024); Xiao & Liu (2024); Hu et al. (2024)), these studies are primarily focused
on supervised and auto-regressive learning settings that require detailed reasoning steps included
in training data. They do not show how reinforcement techniques can enhance reasoning steps.
Furthermore, while there are existing reinforcement learning frameworks for theoretical analysis
(e.g., Jin et al. (2018); Ayoub et al. (2020); Jin et al. (2021; 2020); Bhandari & Russo (2021); Chen
et al. (2022); Yeh et al. (2023); Lai et al. (2024)), none are designed to analyze the self-improvement
of LLMs through reinforcement learning. As a result, no theoretical framework explains how LLMs
can enhance their reasoning capabilities via reinforcement learning. A detailed literature review is
shown in Sec. A.1.

1.1 OUR CONTRIBUTIONS

In this research, we propose a theoretical framework to analyze the effectiveness of reinforcement
learning in Chain-of-Thought (CoT) reasoning and Self-Taught Reasoner (STaR), addressing the
following questions:

Q1. Conditions of Pre-trained Models for STaR: How competent does the pre-trained LLM
need to be to bootstrap the discovery of reasoning steps in the first iteration? We show
that a pre-trained LLM can initiate effective reasoning improvement if one of the following
holds when inferencing on the problems in STaR’s training set.

• The pre-trained LLM performs better than a randomly initialized model at each rea-
soning step (i.e., its probability of producing the correct step exceeds that of random
guessing).

• The pre-trained LLM is on par with a randomly initialized model at exactly one
reasoning step but exceeds it at all other steps.

Q2. Policy Improvement: Can LLMs improve their reasoning capabilities iteratively through
STaR? We demonstrate that if the pre-trained model satisfies the conditions we mentioned
previously, within each iteration of the STaR algorithm, LLMs can consistently improve the
correctness of their reasoning trajectories.

Q3. Convergence to the Optimal Policy: If an optimal reasoning model exists, can STaR
eventually find this optimal reasoner? Given sufficient iterations, we prove that if the
pre-trained model satisfies the previously mentioned conditions, LLMs can converge to
the optimal reasoner, achieving the highest probability of generating correct reasoning
trajectories that lead to correct answers.

Q4. Existence of Incorrect Reasoning Steps in STaR: Is it possible for a sub-optimal model
which would generate incorrect reasoning steps included in the next iteration of training,
while still arriving at the correct final answer? We show that even when incorrect reasoning
steps are included in the training data for a given iteration, the probability of these incorrect
reasoning steps being included in the training data will diminish with the increasing iteration
of STaR.

To the best of our knowledge, this is the first theoretical analysis to guarantee how LLMs can improve
their reasoning capabilities through reinforcement learning.

2

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

2 THEORETICAL FRAMEWORKS

2.1 PROBLEM FORMULATION

In our problem formulation, we consider a chain of thought (CoT) reasoning process composed of N
steps where N > 1. Let s0 denote the initial input string, and sn represent the resulting string after
the n-th CoT step, where 1 ≤ n ≤ N . We assume that the chain-of-thought steps satisfy the Markov
property: each string sn contains sufficient information to derive the next string sn+1, without relying
on information from any the preceding string si where 0 ≤ i < n. For instance, in the addition
problem 1 + 2 + 3 + 4, the chain-of-thought steps can be expressed as:

s0 = 1+2+3+4⇒ s1 = 3+3+4 ⇒ s2 = 6+4⇒ s3 = 10.

In this example, obtaining s2 = 6+4 requires only the information in s1 = 3+3+4 and does not
depend on s0 = 1+2+3+4. Under this Markov assumption, the chain-of-thought (CoT) process can
naturally be cast as a Reinforcement Learning (RL) problem, which can be described by a Markov
decision process (MDP). Formally, letM = (S,A, N, r,P) represents the MDP, where:

• S is the space of all possible initial inputs, CoT steps, and final answers, denoted {si | 0 ≤
i ≤ N}. In this formulation, s0 is the CoT input, s1, . . . , sN−1 are the subsequent reasoning
steps, and sN is the final answer.

• A is the action space. Because each action corresponds uniquely to selecting the next state,
we identify A with S. That is, choosing a is equivalent to setting sn+1 as the unique next
step associated with a.

• P is the transition function. Given that an action a uniquely determines the next state sn+1,
this transition is deterministic:

P
(
Sn+1 = sn+1

∣∣A = sn+1, Sn = sn
)
= 1.

• r(s0, sN) is the reward function, yielding a nonzero reward solely at the final step if sN
matches the correct answer. Concretely, consider a dataset D composed of question-answer
pairs. For each instance (s0, s

⋆
N) ∈ D, where s0 represents the question and s⋆N the correct

final answer, define

r(s0, sN) =

{
1, if sN = s⋆N and (s0, s

⋆
N) ∈ D,

0, otherwise.

Thus, the agent earns a reward of 1 exclusively when it terminates on s⋆N , and 0 otherwise.
Note that we fixed the number of CoT steps to be N ; intermediate states sn (for 1 ≤ n < N)
do not produce any positive reward.

Given the RL formulation above, a policy π(A | Sn = sn) specifies how the next action A = sn+1 is
selected based on the current state Sn = sn. Although the transition P

(
Sn+1 | A = sn+1, Sn = sn

)
is deterministic (that is, once A = sn+1 is chosen, Sn+1 = sn+1 is uniquely determined), the policy
π(A | Sn = sn) itself can be stochastic if there is uncertainty about which next step to choose given
Sn = sn. To streamline notations, we define a stochastic transition P (Sn+1 | Sn) by combining the
stochastic policy π(A | Sn) with the deterministic transition P(Sn+1 | A,Sn):

P
(
Sn+1 | Sn

)
= P

(
Sn+1 | π(A | Sn), Sn

)
.

In this setup, the LLM serves as the transition function P (Sn+1 | Sn), producing the subsequent CoT
step sn+1 based on the current CoT step sn. After the final step sN is reached, the reward function
r(s0, sN) measures correctness by comparing sN to the ground truth answer s⋆N .

To guide LLMs toward selecting a final state sN that maximizes the reward upon completing CoT, we
use a modified version of STaR Zelikman et al. (2022), termed RL-STaR, as outlined in Algorithm 1.
This algorithm takes a training dataset D and a pre-trained LLM as transition P0 as input, and outputs
a trained LLM as transition PT , where D consists of K instances. In each iteration t, we repeat
the following procedure L times: we uniformly sample a pair

(
s
(ℓ)
0 , s

⋆(ℓ)
N

)
from D and generate a

trajectory τ (ℓ) by sequentially sampling states from the current transition Pt−1. Specifically, starting
from s

(ℓ)
0 , we iteratively draw s

(ℓ)
n ∼ Pt−1

(
Sn |Sn−1 = s

(ℓ)
n−1

)
for n = 1, . . . , N . If the final state

3

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Algorithm 1 RL-STaR

Input: A datasets D = {(s(k)0 , s
⋆(k)
N)|k ∈ [K]}, a pre-trained LLM as transition P0.

Output: A trained LLM as transition PT .
for t = 1 to T do
Repeat the following procedure for L times where L≫ K.
for ℓ = 1 to L do(

s
(ℓ)
0 s

⋆(ℓ)
N

)
∼ D. # Uniformly sample a pair

(
s
(ℓ)
0 , s

⋆(ℓ)
N

)
from D.

τ (ℓ) ← (s
(ℓ)
0 ,) # Set s(ℓ)0 as the initial state of the trajectory τ (ℓ).

for n = 1 to N do
s
(ℓ)
n ∼ Pt−1(Sn|Sn−1 = s

(ℓ)
n−1) # Randomly sample s

(ℓ)
n with probability Pt−1(Sn =

s
(ℓ)
n |Sn−1 = s

(ℓ)
n−1).

τ (ℓ) ← (τ
(ℓ)
1:n−1, s

(ℓ)
n) # Append s

(ℓ)
n to τ (ℓ).

end for
end for
Dt ←

{
τ (ℓ) | ℓ ∈ [L] ∧ s

(ℓ)
N = s

⋆(ℓ)
N

}
Add the trajectories whose final state s

(ℓ)
N matches

s
⋆(ℓ)
N to Dt.
Pt ← Train (Pt−1,Dt) # Use Dt to update the transition.

end for

s
(ℓ)
N matches the ground truth s

⋆(ℓ)
N , we add the entire trajectory τ (ℓ) to Dt. After completing these

L samplings, we update Pt−1 to Pt by retraining on Dt. In particular, Train(Pt−1,Dt) adjusts the
transition probabilities Pt−1(Sn = sn |Sn−1 = sn−1) to better align with the transitions observed in
the successful trajectories within Dt. After T iterations, this procedure outputs the final transition
model PT . In Sec. 3, we will show that RL-STaR aims to maximize the total expected return J(Pt),
defined by

J(Pt) = E(s0,s⋆N)∼DE(s1,··· ,sN)∼Pt(τ |S0=s0)r(s0, sN),

where Pt(τ |S0 = s0) = Pt(S1 = s1|S0 = s0)(Π
N
n=2Pt(Sn = sn|Sn−1 = sn−1)).

To demonstrate this, we use the following setup.

2.2 SETTINGS OF OUR THEORETICAL ANALYSIS

Markov Assumption of Language Models’ Input: For simplicity in analyzing the RL-STaR
algorithm, we impose the Markov assumption by allowing the LLM to accept only the current step
sn−1 as input, rather than the complete history

(
s0, s1, . . . , sn−2

)
. This differs from standard CoT

approaches, which incorporate all prior strings into the context. Nonetheless, our simplification
mirrors the method in Zekri et al. (2024), where a small context window is used to achieve Markov
properties for tractable theoretical analysis.

Simplification of STaR Algorithm: For simplicity in our theoretical analysis, we exclude the
rationalization from STaR—that is, we do not correct an LLM’s incorrect outputs using hints derived
from the final answer. As noted in Zelikman et al. (2022), omitting rationalization can substantially
reduce STaR’s performance. Nonetheless, we accept this trade-off here since our focus lies on
preliminary theoretical examination rather than achieving state-of-the-art performance on reasoning
benchmarks.

Assumption of the Ground-Truth Reasoner π̄: We assume that a ground-truth transition
P̄ (Sn+1|Sn) exists, which produces the correct sequence s1, . . . , sN−1 leading to sN = s⋆N given s0
for every instance (s0, s

⋆
N) in D. This property enables us to apply the analysis of RL-STaR which

approximate P̄ (Sn+1|Sn) with an estimated transition PT (sn+1|Sn). It is clear that if an estimated
transition PT can perfectly match the ground-truth reasoning step transitions P̄ , it would be the
optimal estimated transition P ⋆ which maximizes J(P ⋆), namely,

P ⋆(Sn+1 = sn+1|Sn = sn) = P̄ (Sn+1 = sn+1|Sn = sn),

for all (sn+1, sn) ∈ support (Sn+1)× support (Sn), and for all n ∈ {0, 1, . . . , N − 1}.

4

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

3 THEORETICAL RESULTS

In this section, we present our theoretical analysis addressing the questions outlined in Sec. 1.1. We
outline conditions under which the RL-STaR algorithm can effectively train an LLM to approximate
the optimal estimated transition P ⋆. For clarity, the notations are defined in Sec A.3.

3.1 A TOY EXAMPLE

We first illustrate our theoretical results with a toy example. In this scenario, we consider a CoT
process with two reasoning steps (i.e., N = 2), and each step has two possible states (i.e., M = 2).
Here, S0 is a random variable representing the initial state, S1 the intermediate state, and S2 the
final state. We assume their supports are support(S0) = {s0,1, s0,2}, support(S1) = {s1,1, s1,2},
and support(S2) = {s2,1, s2,2}. The ground-truth reasoning trajectories are defined as τ⋆0 =
(s0,1, s1,1, s2,1) and τ⋆1 = (s0,2, s1,2, s2,2), giving the ground-truth transition P̄n(Sn|Sn−1) at step
1 ≤ n ≤ 2 as

P̄n(Sn|Sn−1) =

{
1 if (Sn, Sn−1) = (sn,m, sn−1,m) for all n,m ∈ [2],

0 otherwise.

We define Pu,n as a uniform distribution such that

Pu,n(Sn|Sn−1) =
{

1
2 if (Sn, Sn−1) = (sn,m′ , sn−1,m) for all n,m,m′ ∈ [2].

With these assumptions in place, we turn to the questions outlined in Sec. 1.1. Regarding the first
question, Theorem 3.1 demonstrates that conditions for the pre-trained models to bootstrap the
RL-STaR algorithm are that the pre-trained LLM captures certain critical features of the ground-truth
transition, thus enabling it to surpass a randomly initialized model. The following theory subsequently
verifies this condition.
Theorem 3.1 (Sufficient Conditions for Pre-trained Models). Given the toy example defined in
the previous paragraph, in the RL-STaR algorithm, for every CoT step n ∈ [2], we assume that P0,n

represents the state transition estimated by a pre-trained LLM at this step, which is an interpolation
between P̄n and Pu,n with a coefficient 0 ≤ δ0,n < 1. Specifically, we have

P0,n(Sn|Sn−1) =


1+δ0,n

2 if (Sn, Sn−1) = (sn,m, sn−1,m)

for all n,m ∈ [2],
1−δ0,n

2 otherwise.

In the RL-STaR algorithm, we assume that the training dataset is D = {(s0,1, s2,1), (s0,2, s2,2)}. We
assume that before RL-STaR iterations t, for every step n ∈ [2], there exists 0 ≤ δt−1,n < 1 such that
Pt−1,n satisfies the following transition probabilities

Pt−1,n(Sn|Sn−1) =


1+δt−1,n

2 if (Sn, Sn−1) = (sn,m, sn−1,m)

for all n,m ∈ [2],
1−δt−1,n

2 otherwise,

and assume that after Train(Pt−1,Dt) in RL-STaR, Pt,n can perfectly match the conditional transi-
tion P (Sn,m|sn−1,m) based on the probabilities of (sn−1,m, sn,m) in τ ∼ Dt, and (sn−1,msn,m′ ̸=m)
in τ ′ ∼ Dt. Then, for every step n ∈ [2], Pt,n satisfies

Pt,n(Sn|Sn−1) =


1+δt,n

2 if (Sn, Sn−1) = (sn,m, sn−1,m)

for all m ∈ [2],
1−δt,n

2 otherwise,

where
0 ≤ δt,1 = δt,2 =

δt−1,1 + δt−1,2

δt−1,1δt−1,2 + 1
< 1.

Besides, conditions on the values of δ0,1 and δ0,2 can be listed as follows:

(a) If 0 < δ0,1 and 0 < δ0,2, then for all t ≥ 1,

δt−1,1 < δt,1 and δt−1,2 < δt,2.

5

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

(b) If exactly one of δ0,1 or δ0,2 is zero—meaning there exist n, n′ ∈ {1, 2} with δ0,n = 0 but
δ0,n′ > 0—then

δ1,n = δ1,n′ = δ0,n′ > 0,

and for all t > 1,
δt−1,1 < δt,1 and δt−1,2 < δt,2.

(c) If both δ0,1 = 0 and δ0,2 = 0, then for all t ≥ 1,

δt,1 = δt,2 = 0.

Proof. The proof can be found in Sec. A.5.1.

Building upon the preceding theorem, we can establish the convergence rate of δt,n. This result
is presented in Theorem A.1. We also address the remaining questions about the STaR algorithm
outlined in Sec. 1.1 for this toy example, as detailed in Sec. A.4.1. We move on to a more general
case in the next section.

3.2 MAIN THEOREM

After introducing a toy example, we now present our main theorem, which can be applied to an
arbitrary number of reasoning steps N and an arbitrary number of states M for each step. In
this scenario, S0 is a random variable that represents the initial state, S1, . . . , SN−1 represent the
intermediate states of steps 1 to N − 1 respectively, and SN represents the final state. Each step
n ∈ [N] contains M possible states, so support(Sn) = {sn,1, sn,2, . . . , sn,M}. Assuming there are
M ground-truth reasoning trajectories, we denote these trajectories as {τm|m ∈ [M]} where each
trajectory τm has the form of (s0,m, s1,m, . . . , sN,m). The transition function for step n, denoted as
P̄n(Sn|Sn−1), is defined as

P̄n(Sn|Sn−1) =

{
1 if (Sn, Sn−1) = (sn,m, sn−1,m) for all m ∈ [M],

0 if (Sn, Sn−1) = (sn,m′ ̸=m, sn−1,m) for all m,m′ ∈ [M],

and the uniform transition at step n, denoted as Pu,n(Sn|Sn−1), is defined as

Pu,n(Sn|Sn−1) =
1

M
for all m ∈ [M].

We now address the questions listed in Sec. 1.1. In response to the first question, Theorem 3.2
indicates that a condition for the pre-trained models to bootstrap the RL-STaR algorithm is that the
pre-trained LLM outperforms a randomly initialized model at every reasoning step.

Theorem 3.2 (Conditions of Pre-trained Models). Given the scenario defined in the previous
paragraph, we assume that for every CoT step n ∈ [N], there is a transition probability P0,n which
is learned by pre-trained LLMs and it is an interpolation between P̄u,n and Pu,n with a coefficient
0 ≤ δ0,n < 1, such that

P0,n(Sn|Sn−1) =

{
1+(M−1)δ0,n

M if (Sn, Sn−1) = (sn,m, sn−1,m),
1−δ0,n

M if (Sn, Sn−1) = (sn,m′ ̸=m, sn−1,m) ,

for all m,m′ ∈ [M].

We also assume D = {(s0,1, sN,1), (s0,2, sN,2), · · · , (s0,M , sN,M)}. Before iterations t of RL-STaR,
if for every CoT step n ∈ [N], there exist 0 ≤ δt−1,n < 1 such that Pt−1,n are the following transition
probabilities

Pt−1,n(Sn|Sn−1) =

{
1+(M−1)δt−1,n

M if (Sn, Sn−1) = (sn,m, sn−1,m),
1−δt−1,n

M if (Sn, Sn−1) = (sn,m′ ̸=m, sn−1,m),

for all m,m′ ∈ [M],

and assume that after Train(Pt−1,Dt) in RL-STaR, Pt,n can perfectly match the conditional transi-
tion P (Sn,m|sn−1,m) based on the probabilities of (sn−1,m, sn,m) in τ ∼ Dt, and (sn−1,msn,m′ ̸=m)

6

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

in τ ′ ∼ Dt. Then, for all n ∈ [N], Pt,n satisfies

Pt,n(Sn|Sn−1) =

{
1+(M−1)δt,n

M if (Sn, Sn−1) = (sn,m, sn−1,m),
1−δt,n

M if (Sn, Sn−1) = (sn,m′ ̸=m, sn−1,m),

for all m,m′ ∈ [M],

and

δt,n =
(M − 2)

∏N
k=1 δt−1,k +

∏
k ̸=n δt−1,k + δt−1,n

(M − 1)
∏N

k=1 δt−1,k + 1
.

Besides, based on the values of δ0,n, we have the following cases:

(a) If 0 < δ0,n < 1 for each n ∈ [N], then for all t ≥ 1,

δt−1,n < δt,n < 1.

(b) If there exists a step n ∈ [N] satisfying δ0,n = 0 and for any other n′ ̸= n, n′ ∈ [N] we
have δ0,n′ > 0, then when t = 1,

δ1,n =
∏
n′ ̸=n

δ0,n′ > 0 and δ1,n′ = δ0,n′ > 0,

and for all t > 1,
δt−1,n < δt,n < 1. for all n ∈ [N].

(c) If there exist two distinct steps n, n′ ∈ [N] such that δ0,n = 0 = δ0,n′ , then for all t ≥ 1,

δt,n = δt−1,n for all n ∈ [N].

Proof. The proof can be found in Sec. A.6.2.

The above theorem establishes three key points:

(a) If δ0,n > 0 for all n ∈ [N], then δt,n is strictly increasing in t.

(b) There can be at most one step n with δ0,n = 0. After the first iteration of RL-STaR, we have
δ1,n > 0 for all n ∈ [N], and hence by (a), δt,k > 0 will be strictly increasing in t for all
t > 1 and k ∈ [N].

(c) Conversely, if more than one step satisfies δ0,n = 0, then δt,k remains unchanged for all
t ≥ 1.

In conclusion, the conditions of a pre-trained model to improve itself through RL-STaR are to satisfy
(a) or at least (b). The following theorem establishes the convergence speed of δt,n toward 1.

Theorem 3.3 (Convergence Speed of δt,n). Given the scenario defined in Theorem 3.2 (a) or (b),
denote

γ =


1−

∏N
k=1 δ0,k

(M−1)
∏N

k=1 δ0,k+1
if (a) is satisfied,

1−
∏N

k=1 δ1,k
(M−1)

∏N
k=1 δ1,k+1

if (b) is satisfied.

Then for any ε ∈
(
0, M

N(M+1)

)
, it holds that

δt,n > 1− ε, ∀t ≥


log M+1

Mγ + log
(
N −

∑N
k=1 δ0,k

)
log(1/γ)


+

+

⌈
log2

(
logM + log 1−Nε

Nε

log (M+1)−Mγ
γ

)⌉
+

+

⌊
1−

N∏
k=1

δ0,k

⌋
+

for every n ∈ [N].

7

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

0 2 4

0

0.5

1

t

J
(P

t
)

δ0 = 0.2

0 2 4

0

0.5

1

t

J
(P

t
)

δ0 = 0.1

Figure 1: The first two figures on the left illustrate the comparison between theoretical values (blue
dotted line) and experimental values (red dashed line) of J(Pt), with the first figure corresponding to
δ0 = 0.2 and the second figure corresponding to δ0 = 0.1. The remaining two figures on the right
depict the comparison of transitions P (S1|S0), directly extracted from dataset D1 (third figure), and
the transitions P1,1(S1|S0) learned by LLMs during the RL-STaR algorithm (fourth figure).

Proof. The proof can be found in Sec. A.6.3.

The remaining questions in Sec. 1.1 are answered by the subsequent corollaries.

Corollary 3.4 (Policy Improvement). Suppose the assumptions of Theorem 3.2 (a) or (b) hold. Let
Pt = {Pt,n}Nn=1 represent the estimated transition by the model in the t-th iteration of RL-STaR
training. Then the training process improves J(Pt). Specifically, J(Pt+1) ≥ J(Pt).

Proof. The proof can be found in Sec. A.6.4.

Corollary 3.5 (Convergence to the Optimal Policy). Suppose the assumptions of Theorem 3.2 (a)
or (b) hold. If the optimal transition P ⋆ matches the M ×M identity transition IM in every CoT
step, when the training iteration t of RL-STaR approaches infinity, Pt = {Pt,n}Nn=1 will converge to
P ⋆. That is, limt→∞ ∥Pt,n − IM∥∞ = 0 for all n ∈ [N].

Proof. The proof can be found in Sec. A.6.5.

Corollary 3.6 (Diminishing of Incorrect Reasoning Trajectories). Suppose the assumptions of
Theorem 3.2 (a) or (b) hold. In iterations t of RL-STaR, denote τt,k to be a trajectory containing k
incorrect reasoning steps in Dt. Then, the probability that RL-CoT generates trajectories containing
incorrect reasoning steps will diminish as t increases. Specifically, limt→∞ p (

⋃
k τt,k) = 0.

Proof. The proof can be found in Sec. A.6.6

Remark 3.7. In this work, we focus on the scenario that δt,n is uniform within each reasoning step n
across states sn,m for all m ∈ [M]. Beyond this assumption, there may be additional scenarios under
which an pre-trained LLM would still converge via STaR, which will be discussed in Sec. 5.

4 EXPERIMENTS

We experiment to illustrate our theoretical analysis in Sec 3.2 . For the language model, we choose
GPT-2 Radford et al. (2019). We restrict the output of LLMs within M = 64 valid states within
each CoT step. To facilitate reproducibility, we have made our experimental code publicly available1.
We conducted an experiment to compare the theoretical and experimental values of J(Pt) under the
conditions of Theorem 3.2 (a), specifically the case where δ0,n > 0 for every n. The details of the
experiment are provided in Sec 4.1. Additionally, we perform further experiments to investigate the
convergence behavior of J(Pt) under conditions satisfying Theorem 3.2 (b). Detailed results are
provided in Section A.2.

1https://github.com/d09942015ntu/rl_star

8

https://github.com/d09942015ntu/rl_star

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

4.1 THEORETICAL VALUES OF J(Pt) VERSUS EXPERIMENTAL VALUES OF J(Pt)

In our first experiment, we focus on evaluating J(Pt) to compare its theoretically predicted values
with those observed in practice. The experimental settings are described below. To facilitate the
comparison between theory and practice, we select a straightforward example known as the zip
operator2. The results of this operator are demonstrated using binary strings of length three. An
example of this operation is as follows:

s0 = x:101,110⇒ s1 = x:10,11,y:10⇒ s2 = x:11,y:01,10⇒ s3 = y:11,01,10.

Here, the symbols x and y represent the input and output at each step, respectively. At each step, a
single token from x is paired with the output y. This example has the equal number of states M = 64
for each step sn, as there are 64 possible values of x at sn. The total number of reasoning steps
N = 3. For the value of δt,n, we set δt,3 = δt,2 = δt,1 = δt. where δt ∈ {0.1, 0.2}.

Theoretical Values: From Theorem 3.2, for the special case N = 3 and δt,n = δt for all n,

the value of δt satisfies: δt =
(M−2) δ3t−1+δ2t−1+δt−1

(M−1) δ3t−1+1
. To estimate J(Pt), it can be shown that

when N = 3, a direct calculation yields the closed-form solution: J(Pt) = eT1 Pt,3Pt,2Pt,1e1 =

α3
t + 3(M − 1)αtβ

2
t + (M − 1)(M − 2)β3

t where αt =
1+(M−1)δt

M and βt =
1−δt
M .

Experimental Values: We train large language models (LLMs) using the training dataset D by
the procedures described in Algorithm 1. In this experiment, the pre-trained LLM is obtained from
a pre-trained dataset comprising noisy trajectories whose transitions between sn and sn−1 in this
dataset match the transition probability P0(Sn = sn|Sn−1 = sn−1) referenced in Theorem 3.2.

Results: The results are presented in Fig. 1. These two figures demonstrate that our proposed
theory aligns approximately with the actual values obtained from training LLMs. Additionally, LLMs
exhibit faster convergence compared to the theoretical predictions. This discrepancy arises because
Theorem 3.2 assumes that the transitions learned by LLMs, denoted as Pt, perfectly match the
transitions in the dataset Dt. In practice, however, this assumption is not always valid. For example,
LLMs may put excessive probability mass on the instances that appear more frequently in the training
dataset. An example is provided in Fig. 1, which illustrates the difference between the transitions
from the dataset and learned by LLMs. The left-hand heatmap represents the transitions directly
derived from the dataset D1, while the right-hand heatmap depicts the transitions P1 learned by the
LLMs. Notably, the LLM-learned transitions’ diagonal elements exhibit higher probabilities than
those in the original dataset.

5 LIMITATIONS

In this section, we discuss our framework’s limits and its divergence from real-world scenarios. We
highlight constraints, propose improvements, and extend this theory for more practical applications.

Uniformity of δt,n within a Reasoning Step: Our analysis assumes uniform δt,n at each reasoning
step. However, as noted in Remark 3.7, dropping this requirement can permit other scenarios in
which a pre-trained LLM converges through STaR. For instance, consider the following example,
where the ground-truth trajectories are (s0,1, s1,1, s2,1) and (s0,2, s1,2, s2,2). The pre-trained model’s
transition probabilities (shown on each edge) still enable RL-STaR to discover the optimal policy:

s0,1 s1,1 s2,1

s0,2 s1,2 s2,2.

0.1

0.9

0.6

0.4

0.4

0.6

0.01

0.99

Analyzing non-uniform δt,n in general is significantly more challenging, so establishing the corre-
sponding conditions for pre-trained models in this settings remains future work.

2For more details about the zip operator, refer to https://www.w3schools.com/python/ref_
func_zip.asp

9

https://www.w3schools.com/python/ref_func_zip.asp
https://www.w3schools.com/python/ref_func_zip.asp

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Markov Properties of State Transitions: As noted in Sec. 2.2, in our setup, at CoT step n, the LLM
only receives the previous state Sn−1 = sn−1 and does not rely on earlier states s0, s1, . . . , sn−2.
This assumption grants Markov properties that simplify our RL-based analysis. However, this
approach diverges from typical CoT usage, where all prior states are available. Consequently, gaps
may exist between our theoretical framework and real-world LLM applications.

Determinism of Ground-Truth Reasoning Trajectories: In our analysis, we assume
each question-answer pair (s0,m, sN,m) has a single ground-truth reasoning trajectory τ =
(s0,m, s1,m, . . . , sN,m). While this simplifies our theoretical model, in reality, multiple ground-
truth reasoning trajectories may lead to the same correct answer. For example, in the arithmetic task
3× 2 + 5× 4, both

s0 = 3 * 2 + 5 * 4 ⇒ s1 = 6 + 5 * 4⇒ s2 = 6 + 20⇒ s3 = 26, and

s0 = 3 * 2 + 5 * 4 ⇒ s′1 = 3 * 2 + 20⇒ s2 = 6 + 20⇒ s3 = 26.

This example illustrates that multiple ground-truth reasoning trajectories yield the same final answer.

Fixed Number of Reasoning Steps N : We adopt a fixed number of CoT reasoning steps N , yet in
practice, LLMs can occasionally skip steps while still producing correct answers. For example, in the
arithmetic task 3× 2 + 5× 4, an LLM may proceed through intermediate steps or jump directly:

s0 = 3 * 2 + 5 * 4 ⇒ s1 = 6 + 5 * 4⇒ s2 = 6 + 20⇒ s3 = 26, and
s0 = 3 * 2 + 5 * 4 ⇒ s2 = 6 + 20⇒ s3 = 26.

Thus, although a fixed sequence length simplifies analysis, LLMs have the option to skip steps in
real-world settings.

Fixed Number of States M : In our framework, each reasoning step is limited to M possible states.
However, this assumption does not fully reflect real-world behavior since LLMs can generate any
string rather than being restricted to a predefined set. Consequently, actual LLM outputs may extend
beyond these M states, resulting in a broader and potentially less predictable range of responses in
real applications.

6 CONCLUSION

In this work, we introduce a theoretical framework, RL-STaR, to analyze the foundational properties
of the Self-Taught Reasoning (STaR) approach. With appropriately bootstrapped pre-trained models,
we show that the STaR algorithm can achieve policy improvement and convergence toward the
optimal policy, despite the wrong reasoning trajectories being included in the dataset. However, our
framework simplifies the complexities inherent in real-world LLM applications. In future work, we
plan to extend this framework to encompass more realistic and intricate settings.

ACKNOWLEDGMENT

This work was supported in part by the Asian Office of Aerospace Research & Development
(AOARD) under Grant NTU-112HT911020, National Science and Technology Council of Taiwan
under Grant NSTC-112-2221-E-002-204- and NSTC-113-2221-E-002-208-, Ministry of Education
(MOE) of Taiwan under Grant NTU-113L891406, and Ministry of Environment under Grant NTU-
113BT911001

REFERENCES

Chinmaya Andukuri, Jan-Philipp Fränken, Tobias Gerstenberg, and Noah Goodman. STar-GATE:
Teaching language models to ask clarifying questions. In First Conference on Language Modeling,
2024. URL https://openreview.net/forum?id=CrzAj0kZjR.

Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang. Model-based reinforcement
learning with value-targeted regression. In International Conference on Machine Learning, pp.
463–474. PMLR, 2020.

10

https://openreview.net/forum?id=CrzAj0kZjR

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Guangsheng Bao, Hongbo Zhang, Cunxiang Wang, Linyi Yang, and Yue Zhang. How likely do llms
with cot mimic human reasoning? In International Conference On Computational Linguistics,
2025. URL https://arxiv.org/abs/2402.16048.

Jalaj Bhandari and Daniel Russo. On the linear convergence of policy gradient methods for finite
mdps. In International Conference on Artificial Intelligence and Statistics, pp. 2386–2394. PMLR,
2021.

Jalaj Bhandari and Daniel Russo. Global optimality guarantees for policy gradient methods. Opera-
tions Research, 2024.

Xiaoyu Chen, Han Zhong, Zhuoran Yang, Zhaoran Wang, and Liwei Wang. Human-in-the-loop:
Provably efficient preference-based reinforcement learning with general function approximation.
In International Conference on Machine Learning, pp. 3773–3793. PMLR, 2022.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. Advances in Neural Information
Processing Systems, 36, 2024.

Jiafan He, Dongruo Zhou, and Quanquan Gu. Logarithmic regret for reinforcement learning with
linear function approximation. In International Conference on Machine Learning, pp. 4171–4180.
PMLR, 2021.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-STar: Training verifiers for self-taught reasoners. In First Conference on Language
Modeling, 2024. URL https://openreview.net/forum?id=stmqBSW2dV.

Hao Hu, Yiqin Yang, Qianchuan Zhao, and Chongjie Zhang. The provable benefit of unsupervised data
sharing for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=MTTPLcwvqTt.

Xinyang Hu, Fengzhuo Zhang, Siyu Chen, and Zhuoran Yang. Unveiling the statistical founda-
tions of chain-of-thought prompting methods, 2024. URL https://arxiv.org/abs/2408.
14511.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In The International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=IkmD3fKBPQ.

Zhuoxuan Jiang, Haoyuan Peng, Shanshan Feng, Fan Li, and Dongsheng Li. Llms can find mathe-
matical reasoning mistakes by pedagogical chain-of-thought. In International Joint Conference on
Artificial Intelligence, pp. 3439–3447, 2024. URL https://doi.org/10.24963/ijcai.
2024/381.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably effi-
cient? In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/
2018/file/d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforce-
ment learning with linear function approximation. In Jacob Abernethy and Shivani Agar-
wal (eds.), Proceedings of Thirty Third Conference on Learning Theory, volume 125 of Pro-
ceedings of Machine Learning Research, pp. 2137–2143. PMLR, 09–12 Jul 2020. URL
https://proceedings.mlr.press/v125/jin20a.html.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pp. 5084–5096. PMLR, 2021.

Juno Kim and Taiji Suzuki. Transformers provably solve parity efficiently with chain of thought,
2024. URL https://arxiv.org/abs/2410.08633.

11

https://arxiv.org/abs/2402.16048
https://openreview.net/forum?id=stmqBSW2dV
https://openreview.net/forum?id=MTTPLcwvqTt
https://arxiv.org/abs/2408.14511
https://arxiv.org/abs/2408.14511
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://doi.org/10.24963/ijcai.2024/381
https://doi.org/10.24963/ijcai.2024/381
https://proceedings.neurips.cc/paper_files/paper/2018/file/d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf
https://proceedings.mlr.press/v125/jin20a.html
https://arxiv.org/abs/2410.08633

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Dingwen Kong and Lin Yang. Provably feedback-efficient reinforcement learning via active reward
learning. Advances in Neural Information Processing Systems, 35:11063–11078, 2022.

Yen-Ru Lai, Fu-Chieh Chang, and Pei-Yuan Wu. Leveraging unlabeled data sharing through kernel
function approximation in offline reinforcement learning. arXiv preprint arXiv:2408.12307, 2024.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transform-
ers to solve inherently serial problems. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=3EWTEy9MTM.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=v8L0pN6EOi.

Haohan Lin, Zhiqing Sun, Yiming Yang, and Sean Welleck. Lean-star: Learning to interleave thinking
and proving. arXiv preprint arXiv:2407.10040, 2024.

Eran Malach. Auto-regressive next-token predictors are universal learners. In Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 34417–34431. PMLR, 21–27 Jul 2024.

OpenAI. Chatgpt. https://chatgpt.com/, 2024. Accessed: 2024-10-21.

Ian Osband and Benjamin Van Roy. Model-based reinforcement learning and the eluder dimension.
Advances in Neural Information Processing Systems, 27, 2014.

Ben Prystawski, Michael Li, and Noah Goodman. Why think step by step? reasoning emerges from
the locality of experience. Advances in Neural Information Processing Systems, 36, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. Technical report, OpenAI, 2019.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. In The Association for Computational Linguistics, pp. 2609–2634, 2023. URL https:
//aclanthology.org/2023.acl-long.147/.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Violet Xiang, Charlie Snell, Kanishk Gandhi, Alon Albalak, Anikait Singh, Chase Blagden, Duy
Phung, Rafael Rafailov, Nathan Lile, Dakota Mahan, et al. Towards system 2 reasoning in llms:
Learning how to think with meta chain-of-though. arXiv preprint arXiv:2501.04682, 2025.

Changnan Xiao and Bing Liu. A theory for length generalization in learning to reason. arXiv preprint
arXiv:2404.00560, 2024.

Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly additive features.
In International conference on machine learning, pp. 6995–7004. PMLR, 2019.

Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, and Michael I Jordan. On function approxi-
mation in reinforcement learning: Optimism in the face of large state spaces. Advances in Neural
Information Processing Systems, 2020, 2020.

Sing-Yuan Yeh, Fu-Chieh Chang, Chang-Wei Yueh, Pei-Yuan Wu, Alberto Bernacchia, and Sattar
Vakili. Sample complexity of kernel-based q-learning. In International Conference on Artificial
Intelligence and Statistics, pp. 453–469. PMLR, 2023.

12

https://openreview.net/forum?id=3EWTEy9MTM
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://chatgpt.com/
https://aclanthology.org/2023.acl-long.147/
https://aclanthology.org/2023.acl-long.147/
https://arxiv.org/abs/2201.11903

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Oussama Zekri, Ambroise Odonnat, Abdelhakim Benechehab, Linus Bleistein, Nicolas Boullé, and
Ievgen Redko. Large language models as markov chains, 2024. URL https://arxiv.org/
abs/2410.02724.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Eric Zelikman, Georges Raif Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah Good-
man. Quiet-STar: Language models can teach themselves to think before speaking. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
oRXPiSOGH9.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models, 2022. URL https://arxiv.org/abs/2210.03493.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In The International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=92gvk82DE-.

13

https://arxiv.org/abs/2410.02724
https://arxiv.org/abs/2410.02724
https://openreview.net/forum?id=oRXPiSOGH9
https://openreview.net/forum?id=oRXPiSOGH9
https://arxiv.org/abs/2210.03493
https://openreview.net/forum?id=92gvk82DE-
https://openreview.net/forum?id=92gvk82DE-

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

A APPENDIX

A.1 RELATED WORKS

A.1.1 APPROACHES TO IMPROVE CHAIN-OF-THOUGHT

By encouraging models to generate intermediate reasoning steps, Chain-of-Thought (CoT) prompting
has been shown to significantly improve reasoning capabilities Wei et al. (2023). However, since
simply increasing the model size does not enhance its understanding of causal structures Bao
et al. (2025), selecting appropriate CoT prompts or identifying and rectifying flawed CoTs Jiang
et al. (2024) has become a key focus in recent research. Over the past two years, scholars have
explored various perspectives to address this issue, developing diverse improvement methods. For
instance, Zhang et al. (2022) uses Retrieval-Q-CoT, which classifies questions based on cosine
similarity, to select suitable CoT prompts for the model. Lightman et al. (2024) leveraged Process
Supervision to train more reliable reward models, thereby enhancing the stability of the reasoning
process. Zhou et al. (2023) explored methods for finding the most suitable instructions, further
enhancing the model’s adaptability to specific tasks. Additionally, to eliminate the manual effort,
Wang et al. (2023) introduced strategies specifically to improve Zero-Shot CoT. Notably, Huang
et al. (2024) demonstrated that models cannot perform self-correction in the absence of external
feedback, emphasizing the importance of feedback mechanisms. Consequently, leveraging feedback
mechanisms to strengthen LLM reasoning remains a crucial goal.

A.1.2 REINFORCEMENT LEARNING FOR BOOSTING CHAIN-OF-THOUGHT

To harness external feedback for autonomously improving LLM reasoning, the Self-Taught Reasoner
(STaR) framework Zelikman et al. (2022) applies a reinforcement learning strategy. STaR initially
generates reasoning steps through in-context learning to elicit chain-of-thought processes. Only the
reasoning steps that lead to correct answers are added to the training data, strengthening the model
iteratively as the LLM generates new reasoning paths and which are added to the training data in each
round. Several STaR extensions have been introduced to further enhance the framework. For instance,
Zelikman et al. (2024) proposed Quiet-STaR, a variant where language models produce token-level
rationales to justify upcoming text, refining their predictions. V-STaR, introduced in Hosseini et al.
(2024), trains a verifier using DPO that evaluates both correct and incorrect self-generated solutions
to improve answer verification. Lean-STaR Lin et al. (2024) guides models to generate informal
thought steps preceding each proof, boosting theorem-proving abilities. STaR-GATE Andukuri et al.
(2024) rewards models for generating insightful questions as part of a self-improvement process.
Finally, Meta-STaR Xiang et al. (2025) integrates meta-cognition (System 2 reasoning) into LLM by
leveraging self-generated meta-CoT. While these adaptations have demonstrated significant empirical
success, none has provided a theoretical explanation for why reinforcement learning enables LLMs
to enhance their reasoning capabilities independently.

A.1.3 THEORIES OF REINFORCEMENT LEARNING

The theory behind reinforcement learning seeks to explain how reinforcement learning algorithms
improve a policy and ultimately achieve optimal performance. In its simplest form, Tabular Q-
learning, the work of Jin et al. (2018) offers an analysis of the convergence of reinforcement learning
algorithms, demonstrating polynomial time and space convergence to the optimal policy. This
algorithm can be extended to more complex reinforcement learning scenarios, such as Q-learning
with linear reward and transition functions Jin et al. (2020); Yang & Wang (2019); He et al. (2021), and
Q-learning with kernel-based approximations of reward and transition functions Yang et al. (2020);
Yeh et al. (2023). Additionally, convergence to the optimal policy has been theoretically analyzed
for other reinforcement learning algorithms, including policy gradient methods Bhandari & Russo
(2021; 2024), human-in-the-loop reinforcement learning Chen et al. (2022); Kong & Yang (2022),
model-based reinforcement learning Osband & Van Roy (2014); Ayoub et al. (2020), and offline
reinforcement learning Hu et al. (2023); Jin et al. (2021); Lai et al. (2024). These theoretical analyses
provide valuable insights into various types of reinforcement learning algorithms. However, they do
not address the unique challenges that arise in the reasoning processes of LLMs. Consequently, there
is a need for a new theoretical framework to analyze reinforcement learning applications in LLM
reasoning steps.

14

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

A.1.4 THEORIES OF CHAIN-OF-THOUGHT

The Chain-of-Thought (CoT) techniques Wei et al. (2022) enable large language models (LLMs)
to tackle complex reasoning tasks by breaking down solutions into a series of sequential steps.
Beyond empirical success, some theoretical insights into CoT reasoning have emerged. For instance,
Prystawski et al. (2024) models the CoT process using Bayesian networks, where questions, answers,
and reasoning steps are nodes within the network. Providing a structured path of reasoning steps has
been shown to boost LLM performance. Additionally, Xiao & Liu (2024) introduces the concept
of length generalization, where LLMs can solve complex problems by generalizing patterns from
simpler training examples. In Malach (2024), the authors extend the PAC supervised learning
framework to a PAC auto-regressive framework, demonstrating that an auto-regressive learner can
learn linear threshold circuits when CoT steps are provided. Furthermore, Feng et al. (2024) shows
that with CoT, transformers can address problem classes solvable by dynamic programming, even
when problem sizes grow polynomially. Hu et al. (2024) examine CoT prompting through the
lens of statistical estimation, offering a detailed analysis of its sample complexity. Li et al. (2024)
theoretically analyze the effectiveness of CoT for decoder-only transformers, showing that it enhances
expressiveness by enabling inherently sequential computations, which are otherwise absent in shallow
transformers. Kim & Suzuki (2024) presents the first theoretical analysis of training transformers to
tackle complex problems by recursively generating intermediate states, akin to fine-tuning for CoT
reasoning. Although these works lay a theoretical foundation for CoT, they fall short of explaining
why reinforcement learning could enhance CoT capabilities in LLMs. Moreover, these studies
underscore the necessity of ample reasoning step examples in training data to develop strong CoT
abilities during inference. Uncovering the reasons behind CoT improvement through reinforcement
learning could suggest strategies to reduce labeling demands for CoT data in LLM pre-training.

A.2 ADDITIONAL EXPERIMENT

A.2.1 EXPERIMENT OF THE CONVERGENCE OF J(Pt) WITH ONE δ0,n = 0

In this experiment, we examine the convergence behavior of J(Pt) when one δ0,n = 0. We apply
the setting of (δ0,1, δ0,2, δ0,3) = (0, 0.2, 0.2). Except for the value of δ0,n, the other settings are the
same as described in the experimental part of Sec. 4.1.

0 2 4

0

0.5

1

t

J(Pt)

Pt,1(s1,m|s0,m)

Pt,2(s2,m|s1,m)

Pt,3(s3,m|s2,m)

Figure 2: Values of J(Pt) when (δ0,1, δ0,2, δ0,3) = (0, 0.2, 0.2).

Results: Fig. 2 presents the results. In this figure, only one δ0,n is zero, and J(Pt) converges to
nearly optimal value, roughly consistent with Theorem 3.2. Beside J(Pt), we show the probability of
pre-trained model Pt generating the correct transition (sn,m, sn−1,m) for each CoT step n, denoted by
Pt,n(sn,m|sn−1,m), across iterations t of RL-STaR. Notably, the probability of transition generated
by the pre-trained model P0,n(sn,m|sn−1,m) does not perfectly align with the distributions in the pre-
training dataset. For instance, P0,2(s2,m|s1,m) is lower than P0,3(s3,m|s2,m) even though δ0,2 and
δ0,3 share the same value in the pre-training dataset. Moreover, under the condition of Theorem 3.2(b),
the values of Pt,2(s2,m|s1,m) and Pt,3(s3,m|s2,m) should remain unchanged between t = 0 and t = 1.
In practice, however, they increase on the first iteration. These differences reflect the discrepancy
between the theoretical values and experiment values observed in the previous experiment.

A.3 NOTATIONS

Before presenting the additional theorems and proofs, we define the following notation for clarity:

15

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

• T : The number of RL-STaR iterations.

• N : The number of CoT steps.

• M : The number of states at each CoT step.

• sn,m′ ̸=m: A state sn,m′ where m′ ̸= m for some m′ ∈ [M].

• sn,m: The m-th state at the n-th CoT step.

• support(S): The support of a random variable S.

• [n]: The set {1, 2, . . . , n}.

• τ = (a, b, c): An ordered set containing elements a, b, c sequentially.

• (si, sk) ⋐ τ : Indicates that elements si and sk are both in the ordered set τ =
(si, sj , . . . , sk, sl), with si preceding sk in τ .

• (s)i: The i-th element of the vector s.

• ∥P∥∞: The maximum element in the matrix P .

• [P]i,j : The element with index (i, j) in matrix P .

• {xi}∞i=0: An infinite sequence x0, x1, . . . , xi,

• a ∧ b : min(a, b).

• a ∨ b : max(a, b).

• ⌈x⌉+ : min({n|n ∈ N and n ≥ x}).

• ⌊x⌋+ : max({n|n ∈ N and n ≤ x}).

• I{a = b} : I{a = b} = 1 if a = b; otherwise I{a = b} = 0.

A.4 ADDITIONAL THEOREMS AND PROOFS FOR TOY EXAMPLE

A.4.1 ADDITIONAL THEOREMS FOR TOY EXAMPLES

Theorem A.1 (Convergence Speed of δt). Given the toy example defined in Sec. 3.1, if δt,1 = δt,2 >

0 for all t ≥ 1, we define δt = δt,1 = δt,2. Then, δt =
((

δ−1
0 +1

δ−1
0 −1

)2t
− 1

)/((
δ−1
0 +1

δ−1
0 −1

)2t
+ 1

)
.

Proof. Let f(x) = 2x
1+x2 . Using Taylor’s theorem to expand about x = 1, one has

f(δt)− 1 = f ′(1)(δt − 1) +
f ′′(1)

2!
(δt − 1)2 +

f (3)(ξt)

3!
(δt − 1)3,

for each t ≥ 0 and some ξt ∈ (δt, 1). It’s straightforward to see that f ′(1) = 0, f ′′(1) = −1 and

f (3)(x) = − 12(x4−6x2+1)
(x2+1)4

. Hence,

lim
t→∞

|δt+1 − 1|
|δt − 1|2

= 0.5,

which shows quadratic convergence.
To find its closed-form expression, put xt = δ−1

t and rewrite our recurrence as xt+1 = (1 + x2
t)/2xt.

Observe that

xt+1 + 1 =
(xt + 1)2

2xt
, and

xt+1 − 1 =
(xt − 1)2

2xt
.

16

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

One now sees that
xt + 1

xt − 1
=

(
x0 + 1

x0 − 1

)2t

.

Directly solving for xt and δt, we obtain

xt =

(
x0+1
x0−1

)2t
+ 1(

x0+1
x0−1

)2t
− 1

and δt =

(
δ−1
0 +1

δ−1
0 −1

)2t
− 1(

δ−1
0 +1

δ−1
0 −1

)2t
+ 1

.

Corollary A.2 (Policy Improvement in the Toy Example). Given the toy example defined in
Sec. 3.1, let Pt be the transition model at iteration t of RL-STaR training. If δt,1 = δt,2 > 0 for all
t ≥ 1, we define δt = δt,1 = δt,2. Then,

J(Pt) > J(Pt−1).

Proof. From Eq. equation 2, the reward J(P0) is the probability that p(τ) satisfies (s0,m, s2,m) ⋐ τ .
Hence,

J(P0) =

(
1 + δ0,1

2

)(
1 + δ0,2

2

)
+

(
1− δ0,1

2

)(
1− δ0,2

2

)
=

1 + δ0,1 δ0,2
2

.

This expression remains valid for all t ≥ 0. Moreover, since δt = δt,1 = δt,2 when t ≥ 1, and it is
obvious that J(Pt) is an increasing function. Therefore,

J(Pt) =
1 + δ2t

2
>

1 + δ2t−1

2
= J(Pt−1), for all t ≥ 1,

which completes the proof.

Corollary A.3 (Convergence to Optimal Policy in the Toy Example). Given the toy example
defined in Sec. 3.1, If δt,1 = δt,2 > 0 for all t ≥ 1, we define δt = δt,1 = δt,2. Define P ⋆ as the
optimal estimated transition, which maximizes the reward J(P ⋆). This maximum is achieved when

J(P ⋆) = lim
δ→1

(
1 + δ2

2

)
= 1.

Proof. We need to show that, for any 0 < δt < 1, the limit of δt approaches 1 as t tends to infinity.
Since 0 < δt < 1, we have (δ−1

0 + 1)
/
(δ−1

0 − 1) > 1. It is straightforward that by applying
Corollary A.1, we have

lim
t→∞

δt =

(
δ−1
0 +1

δ−1
0 −1

)2t
− 1(

δ−1
0 +1

δ−1
0 −1

)2t
+ 1

= 1.

Corollary A.4 (Diminishing of Incorrect Reasoning Trajectories). Given the toy example defined
in Sec. 3.1, If δt,1 = δt,2 > 0 for all t ≥ 1, we define δt = δt,1 = δt,2. Denote τ ′ as the incorrect
reasoning trajectories included in the dataset Dt. There are two types of τ ′ in this toy example:

τ ′ = (s0,1, s1,2, s2,1), and τ ′ = (s0,2, s1,1, s2,2).

When t increases, the probability of τ ′ ∈ D diminishes. Specifically,

lim
t→∞

p(τ ′ ∈ Dt) = 0.

Proof. Note that δt = δt,1 = δt,2 when t ≥ 1. Apply Eq.equation 3 and we have

p(τ ′ ∈ Dt) =
(1− δt)

2

4(1 + δ2t)
if τ = (s0,1, s1,2, s2,1) or τ = (s0,2, s1,1, s2,2). (1)

We complete the proof by applying Corollary A.1.

17

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

A.5 PROOF OF THEOREMS FOR TOY EXAMPLE

A.5.1 PROOF OF THEOREM 3.1

Proof. Without loss of generality, we prove the case when t = 1. This is the case of the first iteration
of RL-STaR Algorithm. First, we illustrate the transition probability of the pre-trained LLM P0,n as
follows

s0,1 s1,1 s2,1

s0,2 s1,2 s2,2.

P0,1(s1,1|s0,1)=
1+δ0,1

2

P0,1(s1,2|s0,1)=
1−δ0,1

2

P0,2(s2,1|s1,1)=
1+δ0,2

2

P0,2(s2,2|s1,1)=
1−δ0,2

2

P0,1(s1,1|s0,2)=
1−δ0,1

2

P0,1(s1,2|s0,2)=
1+δ0,1

2

P0,2(s2,1|s1,2)=
1−δ0,2

2

P0,2(s2,2|s1,2)=
1+δ0,2

2

To begin with, we have an equal probability of selecting either sample (s0,1, s2,1) or (s0,2, s2,2) from
D. Consequently, we obtain the trajectories τ from RL-CoT(s0,m, P0) for m ∈ {1, 2}, with the
following probabilities

p(τ) =



1
2

(
1+δ0,1

2

)(
1+δ0,2

2

)
if τ = (s0,1, s1,1, s2,1),

1
2

(
1+δ0,1

2

)(
1−δ0,2

2

)
if τ = (s0,1, s1,1, s2,2),

1
2

(
1−δ0,1

2

)(
1−δ0,2

2

)
if τ = (s0,1, s1,2, s2,1),

1
2

(
1−δ0,1

2

)(
1+δ0,2

2

)
if τ = (s0,1, s1,2, s2,2),

1
2

(
1−δ0,1

2

)(
1+δ0,2

2

)
if τ = (s0,2, s1,1, s2,1),

1
2

(
1−δ0,1

2

)(
1−δ0,2

2

)
if τ = (s0,2, s1,1, s2,2),

1
2

(
1+δ0,1

2

)(
1−δ0,2

2

)
if τ = (s0,2, s1,2, s2,1),

1
2

(
1+δ0,1

2

)(
1+δ0,2

2

)
if τ = (s0,2, s1,2, s2,2),

(2)

where m,n ∈ [2] and m ̸= m′. In the first iteration of the RL-STaR algorithm, the trajectories τ that
satisfy (s0,m, s2,m) ⋐ τ can be exclusively collected in the dataset D1. Therefore, the conditional
probability for τ such that τ ∈ D1 is

p(τ |τ ∈ D1) =



(1+δ0,1)(1+δ0,2)
4(1+δ0,1δ0,2)

if τ = (s0,1, s1,1, s2,1),
(1−δ0,1)(1−δ0,2)
4(1+δ0,1δ0,2)

if τ = (s0,1, s1,2, s2,1),
(1−δ0,1)(1−δ0,2)
4(1+δ0,1δ0,2)

if τ = (s0,2, s1,1, s2,2),
(1+δ0,1)(1+δ0,2)
4(1+δ0,1δ0,2)

if τ = (s0,2, s1,2, s2,2).

(3)

Based on this dataset, we assume that the LLMs can perfectly learn the conditional transition
P (Sn+1,m|sn,m) based on the probabilities of (sn,m, sn+1,m) ⋐ τ and (sn,m, sn+1,m′ ̸=m) ⋐ τ
from the τ ∼ p(τ |τ ∈ D1). For example, P (S1,1|s0,1) can be obtained from

P (s1,1|s0,1) =
p((s0,1, s1,1) ⋐ τ |τ ∈ D1)

p((s0,1, s1,1) ⋐ τ |τ ∈ D1) + p((s0,1, s1,2) ⋐ τ |τ ∈ D1)

=

(1+δ0,1)(1+δ0,2)
4(1+δ0,1δ0,2)

(1+δ0,1)(1+δ0,2)
4(1+δ0,1δ0,2)

+
(1−δ0,1)(1−δ0,2)
4(1+δ0,1δ0,2)

=
(1 + δ0,1)(1 + δ0,2)

2(1 + δ0,1δ0,2)
.

Hence, the transition P1 is

P1(Sn|Sn−1) =

{
(1+δ0,1)(1+δ0,2)
2(1+δ0,1δ0,2)

if Sn−1 = sn−1,m and Sn = sn,m for all n,m ∈ [2],
(1−δ0,1)(1−δ0,2)
2(1+δ0,1δ0,2)

if Sn−1 = sn−1,m and Sn = sn,m′ ̸=m for all n,m,m′ ∈ [2],

18

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

which can be shown as

s0,1 s1,1 s2,1

s0,2 s1,2 s2,2.

P1(s1,1|s0,1)=
(1+δ0,1)(1+δ0,2)

2(1+δ0,1δ0,2)

P1(s1,2|s0,1)=
(1−δ0,1)(1−δ0,2)

2(1+δ0,1δ0,2)

P1(s2,1|s1,1)=
(1+δ0,1)(1+δ0,2)

2(1+δ0,1δ0,2)

P1(s2,2|s1,1)=
(1−δ0,1)(1−δ0,2)

2(1+δ0,1δ0,2)

P1(s1,2|s0,2)=
(1−δ0,1)(1−δ0,2)

2(1+δ0,1δ0,2)

P1(s1,1|s0,2)=
(1+δ0,1)(1+δ0,2)

2(1+δ0,1δ0,2)

P1(s2,2|s1,2)=
(1−δ0,1)(1−δ0,2)

2(1+δ0,1δ0,2)

P1(s2,1|s1,2)=
(1+δ0,1)(1+δ0,2)

2(1+δ0,1δ0,2)

If RL-STaR improves the transition probabilities in each iteration, then the probabilities of transitions
matching the ground-truth trajectories will increase. Specifically, we have P1(Sn = sn,m|Sn−1 =
sn−1,m) > P1(Sn = sn,m′ ̸=m|Sn−1 = sn−1,m). Now we need to prove that

δt−1,m < δt,m < 1.

We can get δ1,1 =
δ0,1+δ0,2
1+δ0,1δ0,2

by

(1 + δ0,1)(1 + δ0,2)

2(1 + δ0,1δ0,2)
=

(1 + δ0,1δ0,2) + ((1 + δ0,1)(1 + δ0,2)− (1 + δ0,1δ0,2))

2(1 + δ0,1δ0,2)

=
1

2
+

(1 + δ0,1)(1 + δ0,2)− (1 + δ0,1δ0,2)

2(1 + δ0,1δ0,2)

=
1

2
+

δ0,1 + δ0,2
2(1 + δ0,1δ0,2)

=
1

2
+

δ1,1
2

.

We can also show that δ1,1 < 1, since

δ1,1 − 1 =
δ0,1 + δ0,2
1 + δ0,1δ0,2

− 1 =
(δ0,1 + δ0,2)− (1 + δ0,1δ0,2)

1 + δ0,1δ0,2
=
−(δ0,1 − 1)(δ0,2 − 1)

1 + δ0,1δ0,2
< 0.

Besides, it is straightforward that the above analysis is true if we replace δ0,1 by δt−1,1, or replace
δt−1,1 by δt−1,2.

Now we consider the three conditions on the values of δ0,1 and δ0,2 as follows.

(a) If both δ0,1 > 0 and δ0,2 > 0, we claim δ1,1 − δ0,1 > 0. Indeed,

δ1,1 − δ0,1 =
δ0,1 + δ0,2
1 + δ0,1 δ0,2

− δ0,1

=
δ0,1 + δ0,2
1 + δ0,1 δ0,2

−
δ0,1
(
1 + δ0,1 δ0,2

)
1 + δ0,1 δ0,2

=
δ0,2

(
1− δ20,1

)
1 + δ0,1 δ0,2

> 0,

because δ0,1, δ0,2 > 0 and 1− δ20,1 > 0 (note that δ0,1 < 1). A similar argument holds for
δ1,2 − δ0,2, ensuring δ1,2 > δ0,2 whenever δ0,1 > 0 and δ0,2 > 0.

(b) If exactly one of δ0,1 or δ0,2 is zero, we write δ0,n′ > 0 and δ0,n = 0. Then,

δ1,1 = δ1,2 =
0 + δ0,n′

0 + 1
= δ0,n′ > 0.

Thus, starting from t = 1, both δ1,1 and δ1,2 are strictly positive, reducing this scenario to
the first case above for all subsequent iterations that δt,1 > 0 and δt,2 > 0.

(c) If both δ0,1 = 0 and δ0,2 = 0, then

δt,1 = δt,2 =
0 + 0

0 + 1
= 0,

for all t > 0. In other words, once both δ0,1 and δ0,2 are zero, they remain zero for every
iteration t.

19

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

A.6 PROOF OF THEOREMS

A.6.1 PROPOSITIONS FOR PROVING THE MAIN THEOREM

Proposition A.5. Consider a non-homogeneous Markov sequence S = (Sn)
N
n=0 with state space

S = [M], initial distribution µ, and transition matrices Pn ∈ RM×M . More specifically, for each
n ∈ [N]

S0 ∼ µ, [Pn]i,j = P [Sn = j | Sn−1 = i] .

Denote T =
{
(sn)

N
n=0 ∈ SN+1 : s0 = sN

}
, µi = µ({i}), and

[
P̃n

]
i,j

= P [Sn = j | S ∈ T , Sn−1 = i] =

∑M
m=1 P [S0 = SN = m,Sn−1 = i, Sn = j]∑M

m=1 P [S0 = SN = m,Sn−1 = i]

=

∑M
m=1 µm

[∏n−1
k=1 Pk

]
m,i

[Pn]i,j

[∏N
k=n+1 Pk

]
j,m∑M

m=1 µm

[∏n−1
k=1 Pk

]
m,i

[∏N
k=n Pk

]
i,m

.

Suppose µ is uniform and that
[
Pn

]
i,j

= α (δn) I{i = j}+ β (δn) I{i ̸= j} with δn ∈ [0, 1] for each
n ∈ [N], where

α(δ) =
1 + (M − 1)δ

M
, β(δ) =

1− δ

M
.

Then
[
P̃n

]
i,j

= α(δ̃n)I{i = j}+ β(δ̃n)I{i ̸= j} satisfies

ϵ̃n =
1−

∏
k ̸=n δk

1 + (M − 1)
∏N

k=1 δk
ϵn, (4)

where ϵ̃n = 1− δ̃n and ϵn = 1− δn.

Proof. Let {um}Mm=1 be an orthonormal basis of RM where u1 = 1√
M
1. Then

Pn = δnIM+
1− δn
M

11⊤ = δn

M∑
m=1

umu⊤
m+(1− δn)u1u

⊤
1 = u1u

⊤
1 +δn

M∑
m=2

umu⊤
m = UΛnU

⊤,

where U = [u1 · · ·uM] and Λn = diag (1, δn, · · · , δn). Denote δk:l =
∏l

t=k δt and Λk:l =∏l
t=k Λt = δk:lIM + (1− δk:l) e1e

⊤
1 . One has

[
P̃n

]
i,j

= [Pn]i,j

∑M
m=1 µme⊤mUΛ1:n−1U

⊤eie
⊤
j UΛn+1:NU⊤em∑M

m=1 µme⊤mUΛ1:n−1U⊤eie⊤i UΛn:NU⊤em

= [Pn]i,j

∑M
m=1 e

⊤
m

(
δ1:n−1IM + (1− δ1:n−1)u1u

⊤
1

)
eie

⊤
j

(
δn+1:NIM + (1− δn+1:N)u1u

⊤
1

)
em∑M

m=1 e
⊤
m

(
δ1:n−1IM + (1− δ1:n−1)u1u⊤

1

)
eie⊤i

(
δn:NIM + (1− δn:N)u1u⊤

1

)
em

= [Pn]i,j

∑M
m=1

(
1−δ1:n−1

M + δ1:n−1e
⊤
mei

)(
1−δn+1:N

M + δn+1:Ne⊤j em

)
∑M

m=1

(
1−δ1:n−1

M + δ1:n−1e⊤mei

) (
1−δn:N

M + δn:Ne⊤i em
) .

(5)
Note that[
P̃n

]
i,j

= β (δn)
(M − 2)β (δ1:n−1)β (δn+1:N) + β (δ1:n−1)α (δn+1:N) + α (δ1:n−1)β (δn+1:N)

(M − 1)β (δ1:n−1)β (δn:N) + α (δ1:n−1)α (δn,N)
,

20

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

are identical for all i ̸= j. Hence there uniquely exists a δ̃n ∈ [0, 1] such that
[
P̃n

]
i,j

= β
(
δ̃n
)

and[
P̃n

]
i,i

= α
(
δ̃n
)

for all i ̸= j. Moreover, (cf. equation 5)

α
(
δ̃n
)
= α (δn)

(M − 1)β (δ1:n−1)β (δn+1:N) + α (δ1:n−1)α (δn+1,N)

(M − 1)β (δ1:n−1)β (δn:N) + α (δ1:n−1)α (δn,N)

= α (δn)
(1− α (δ1:n−1))β (δn+1:N) + α (δ1:n−1)α (δn+1,N)

(1− α (δ1:n−1))β (δn:N) + α (δ1:n−1)α (δn,N)

= α (δn)
β (δn+1:N) + α (δ1:n−1) δn+1:N

β (δn:N) + α (δ1:n−1) δn:N

= α (δn)
1 + (M − 1)δ1:n−1δn+1:N

1 + (M − 1)δ1:N
.

Hence,

(M − 1)β
(
δ̃n
)
= 1− (1− (M − 1)β (δn))

1 + (M − 1)δ1:n−1δn+1:N

1 + (M − 1)δ1:N

=
(M − 1) (δ1:N − δ1:n−1δn+1:N) + (M − 1)β (δn) (1 + (M − 1)δ1:n−1δn+1:N)

1 + (M − 1)δ1:N

=
(M − 1) (−Mβ (δn) δ1:n−1δn+1:N) + (M − 1)β (δn) (1 + (M − 1)δ1:n−1δn+1:N)

1 + (M − 1)δ1:N

= (M − 1)β (δn)
1− δ1:n−1δn+1:N

1 + (M − 1)δ1:N
.

Note that ϵn = Mβ (δn) and ϵ̃n = Mβ
(
δ̃n
)

yield Eq. equation 4.

Proposition A.6. Consider the scenario defined in Proposition A.5. Let (θt)
∞
t=0 , (ϑt)

∞
t=0 be two

non-negative non-increasing sequences satisfying ϑt ≤ θt, ϑ0 ∈ (0, 1), and

θt+1 ≤
ϑt

M − (M − 1)ϑt
θt.

We have the following:

(a) Denote θ =
∑N

k=1 1− δk and ϑ = 1−
∏N

k=1 δk. Then, ϑ ≤ θ.

(b) Following (a), if we further assume δn > 0 for all n, we have

N∑
k=1

ϵ̃k ≤
ϑθ

M − (M − 1)ϑ
.

(c) Denote γ = ϑ0

M−(M−1)ϑ0
∈ (0, 1). Then θt ≤ γtθ0. That is, for ε > 0, it holds that θt ≤ ε

whenever t ≥ log(θ0/ε)
log(1/γ) ∨ 0.

(d) If θ0 < M
M+1 , then

θt ≤
M (θ0)

2t

M (θ0)
2t

+ (M (1− θ0))
2t
.

Furthermore, for ε ∈
(
0, M

M+1

)
, it holds that

θt ≤ ε ∀t ≥ log2

(
logM + log 1−ε

ε

logM + log 1−θ0
θ0

)
∨ 0.

21

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

(e) For ε ∈
(
0, M

M+1

)
, we have

θt ≤ ε ∀t ≥

⌈
log M+1

Mγ + log (θ0)

log(1/γ)

⌉
+

+

⌈
log2

(
logM + log 1−ε

ε

log (M+1)−Mγ
γ

)⌉
+

.

Proof.

(a) Because 0 ≤ δk ≤ 1 for all k ∈ [N], we can use a probability space (Ω,F , µ) to show
ϑ ≤ θ. Let {E1, E2, . . . , EN} ⊂ F be events with µ(Ek) = δk. Then the complements Ec

k
satisfy µ(Ec

k) = 1− δk. We can define

ϑ = µ
(N⋃
k=1

Ec
k

)
and θ =

N∑
k=1

µ(Ec
k).

If Ec
1, E

c
2, . . . , E

c
N are disjoint, ϑ = θ by countable additivity. In general, Ec

k may overlap,
so

µ
(N⋃
k=1

Ec
k

)
<

N∑
k=1

µ(Ec
k),

implying ϑ < θ.

(b) From the proof of Proposition A.5, we can derive
N∑

k=1

ϵ̃k =
θ − δ1:N

∑N
k=1

ϵk
1−ϵk

1 + (M − 1)δ1:N
≤

θ − (1− ϑ) Nθ
N−θ

M − (M − 1)ϑ
= θ

(Nϑ− θ)/(N − θ)

M − (M − 1)ϑ
≤ ϑθ

M − (M − 1)ϑ
,

where the inequalities follow by noting that ϑ ≤ θ and

θ2 =

(
N∑

k=1

ϵk√
1− ϵk

·
√
1− ϵk

)2

≤

(
N∑

k=1

ϵ2k
1− ϵk

)(
N∑

k=1

(1− ϵk)

)
= (N − θ)

N∑
k=1

ϵ2k
1− ϵk

⇒
N∑

k=1

ϵk
1− ϵk

=

N∑
k=1

(
ϵk +

ϵ2k
1− ϵk

)
≥ θ +

θ2

N − θ
=

Nθ

N − θ
.

(c) Since ϑt ≤ ϑ0, it is clear that θt+1 ≤ γθt and the rest is trivial.

(d) Denote f : x ∈ [0, 1] 7→ x2

M−(M−1)x and g : x ∈ [0, 1) 7→
(
φ ◦ h ◦ φ−1

)
(x) where

φ : x ∈ [0,∞) 7→ Mx

Mx+ 1
, h : x ∈ [0,∞) 7→ x2, φ−1 : y ∈ [0, 1) 7→ y

M(1− y)
.

Note that

g(x) =
M
(

x
M(1−x)

)2
M
(

x
M(1−x)

)2
+ 1

=
x2

M − 2Mx+ (M + 1)x2
≥ x2

M − 2Mx+ (M + 1)x
= f(x),

for all x ∈ [0, 1). Since ϑt ≤ θt < 1, one has θt+1 ≤ f (θt) ≤ g (θt), which further implies
θt ≤ g(t) (θ0) due to g being monotonically increasing. Thus

θt ≤ g(t) (θ0) =
(
φ ◦ h(t) ◦ φ−1

)
(θ0) =

M
(

θ0
M(1−θ0)

)2t
M
(

θ0
M(1−θ0)

)2t
+ 1

.

We complete the proof by noting that (provided t ≥ 0)

g(t) (θ0) ≤ ε⇔
(
φ ◦ h(t) ◦ φ−1

)
(θ0) ≤ ε⇔

(
φ−1 (θ0)

)2t
=
(
h(t) ◦ φ−1

)
(θ0) ≤ φ−1(ε)

⇔ 2t log
(
1/φ−1 (θ0)

)
≥ log

(
1/φ−1(ε)

)
⇔ t ≥ log2

(
log
(
1/φ−1(ε)

)
log (1/φ−1 (θ0))

)
.

22

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

(e) Take τ1 =

⌈
log M+1

Mγ +log(θ0)

log(1/γ)

⌉
+

and τ2 =

⌈
log2

(
logM+log 1−ε

ε

log M+1−Mγ
γ

)⌉
+

. Then (a) implies

θτ1 ≤
Mγ
M+1 , and (b) further implies θτ1+τ2 ≤ ε.

A.6.2 PROOF OF THEOREM 3.2

Proof. The proof of this theorem is based primarily on Proposition A.5. Without loss of generality,
we assume that s0,m = s1,m = · · · = sN,m = m for every m ∈ [M] and only consider the first
iteration of RL-STaR (i.e., t = 1 and t − 1 = 0). We omit subscripts (0, n) and simply write
P0,n = Pn, δ0,n = δn, and S0,n = Sn, etc. Similarly, let P1,n = P̃n, δ1,n = δ̃n, ϵ̃n = 1 − δ1,n,
and ϵn = 1− δn, etc. Under this formulation, the scenario given in Theorem 3.2 can be seen as the
Markov process introduced in Proposition A.5. Applying Eq. equation 4, we have

δt,n =
(M − 2)

∏N
k=1 δt−1,k +

∏
k ̸=n δt−1,k + δt−1,n

1 + (M − 1)
∏N

k=1 δt−1,k

. (6)

We now examine the three cases with respect to the values of δt=1,n.

(a) If 0 < δ0,n < 1 for all n ∈ [N], it is obvious that 0 < ϵ̃n < ϵn and hence
δ1,n < δ0,n < 1.

It is straightforward that this inequality will hold for every subsequent iteration t > 1.

(b) Suppose there exists a n ∈ [n] such that δ0,n = 0 and for any other n′ ̸= n, n′ ∈ [N]

we have δ0,n > 0. Then,
∏N

k=1 δ0,k = 0,
∏

n′ ̸=n δ0,n′ > 0 and
∏

k ̸=n′ δ0,k = 0 for any
k ̸= n′, n′ ̸= n, k, n′ ∈ [N]. One now sees that

δ1,n =
0 +

∏
n′ ̸=n δ0,n′ + 0

1 + 0
=
∏
n′ ̸=n

δ0,n′ > 0, and δ1,n′ =
0 + 0 + δ0,n′

1 + 0
= δ0,n′ > 0.

After the first iteration, apply the analysis in (a).

(c) Suppose there exist two (or more than two) steps n, n′ ∈ [N] satisfying n′ ̸= n, δ0,n = 0

and δ0,n′ = 0. We have
∏N

k=1 δ0,k = 0, and
∏

k ̸=n δ0,k = 0 for any k ∈ [N]. Then

δ1,n =
0 + 0 + δ0,n

1 + 0
= δ0,n for all n ∈ [N].

It is obvious that above equation holds for every subsequent iteration t > 1.

A.6.3 PROOF OF THEOREM 3.3

Proof. For the case of δ0,n > 0 for all n ∈ [N], we can apply Proposition A.6, where we set

γ =
ϑ0

M − (M − 1)ϑ0
=

1−
∏N

k=1 δ0,k

(M − 1)
∏N

k=1 δ0,k + 1
,

and let ε = ε′

N for ε′ ∈
(
0, M

M+1

)
. Therefore, we have

max
k

δt,k ≥
∑K

n=1 δt,k
N

≥ 1− ε′

N
∀t ≥

⌈
log M+1

Mγ + log (θ0)

log(1/γ)

⌉
+

+

⌈
log2

(
logM + log 1−ε′

ε′

log (M+1)−Mγ
γ

)⌉
+

.

On the other hand, if there exists only one n ∈ [N] such that δ0,n = 0, an additional iteration t = 1
is needed to ensure δ1,n > 0. Once δ1,n becomes strictly positive for all n ∈ [N], we set

γ =
1−

∏N
k=1 δ1,k

(M − 1)
∏N

k=1 δ1,k + 1
,

and then the argument proceeds as before, completing the proof.

23

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

A.6.4 PROOF OF COROLLARY 3.4

Proof. By applying Proposition A.5 to the t-th iteration of RL-STaR, we abuse the notation of Pt,n

to denote the transition matrix in the t-th iteration of RL-STaR, at the n-th CoT step. Recall that

N∏
k=1

Pt,k = U

(
N∏

k=1

δt,kIM +
(
1−

N∏
k=1

δt,k
)
e1e

⊤
1

)
UT ,

where U = [u1, u2, . . . , uM], and u1 = 1√
M
1. One sees that

[N∏
k=1

Pt,k

]
i,i

=
[N∏
k=1

P(t,k)

]
1,1

=

N∏
k=1

δt,k +
1−

∏N
k=1 δt,k
M

.

Since the initial state is chosen uniformly, J(Pt) =
∑M

m=1
1
M

[∏N
k=1 P(t,k)

]
m,m

= 1
M +

(M−1
M)

∏N
k=1 δt,k. Assuming Theorem 3.2 (a) or (b) hold, we conclude as δ1,n ≥ δ0,n and

δt,n > δt−1,n for all t > 1 and n ∈ [N].

A.6.5 PROOF OF COROLLARY 3.5

Proof. Theorem 3.3 implies that

lim
t→∞

δt,n = 1 for all n ∈ [N].

By Proposition A.5, we know that Pt,n has diagonal elements α(δt,n) and off-diagonal elements
β(δt,n) such that

lim
t→∞

α(δt,n) = lim
t→∞

1 + (M − 1)δt,n
M

= 1 and lim
t→∞

β(δt,n) = lim
t→∞

1− δt,n
M

= 0 for all n ∈ [N].

Hence,
lim
t→∞

∥Pt,n − IM∥∞ = 0 for all n ∈ [N].

A.6.6 PROOF OF COROLLARY 3.6

Proof. This is a simple consequence of convergence to the optimal policy. Since the incorrect
reasoning steps may appear in any CoT steps, we see that

p(τt,k) =
1

M
(β(δt,n1

) · · · (β(δt,nk
))
∏

j ̸=ni∀i

α(δt,j)

where 2 ≤ k ≤ N , for some subsequence n1 < n2 < · · · < nk. Using limt→∞ α(δt,n) = 1 and
limt→∞ β(δt,n) = 0 for each n, we have 0 ≤ p(τt,k)

t→∞−−−→ 0. Because |
⋃

k τt,k| <∞, we obtain
the desired result.

24

	Introduction
	Our Contributions

	Theoretical Frameworks
	Problem Formulation
	Settings of Our Theoretical Analysis

	Theoretical Results
	A Toy Example
	Main Theorem

	Experiments
	Theoretical Values of J(Pt) Versus Experimental Values of J(Pt)

	Limitations
	Conclusion
	Appendix
	Related Works
	Approaches to Improve Chain-of-thought
	Reinforcement Learning for Boosting Chain-of-thought
	Theories of Reinforcement Learning
	Theories of Chain-of-thought

	Additional Experiment
	Experiment of the Convergence of J(Pt) with One 0,n=0

	Notations
	Additional Theorems and Proofs for Toy example
	Additional Theorems for Toy Examples

	Proof of Theorems for Toy example
	Proof of Theorem 3.1

	Proof of Theorems
	Propositions for Proving the Main Theorem
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Corollary 3.4
	Proof of Corollary 3.5
	Proof of Corollary 3.6

