SITUATED THINKER: GROUNDING LLM REASONING WITH REAL-WORLD THROUGH SITUATED THINKING

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) demonstrate their impressive reasoning capabilities. However, the reasoning confined to internal parametric space limits LLMs' access to real-time information and understanding of the physical world. To overcome this constraint, we introduce SITUATEDTHINKER, a novel framework that enables LLMs to ground their reasoning in real-world contexts through *situated thinking*, which adaptively combines both internal knowledge and external information with predefined interfaces. By utilizing reinforcement learning, SITUATEDTHINKER incentivizes deliberate reasoning with the real world to acquire information and feedback, allowing LLMs to surpass their knowledge boundaries and enhance reasoning. Experimental results demonstrate significant performance improvements on multi-hop question-answering and mathematical reasoning benchmarks. Furthermore, SITUATEDTHINKER demonstrates strong performance on unseen tasks, such as KBQA, TableQA, and text-based games, showcasing the generalizable real-world grounded reasoning capability.

1 Introduction

Recent advancements in large language models (LLMs) have been largely driven by their emergent reasoning capabilities in solving complex tasks (Ahn et al., 2024; Sun et al., 2023; Huang & Chang, 2023), representing a substantial leap toward artificial general intelligence (AGI). More recently, long-chain-of-thought (long-CoT) reasoning models, such as OpenAI-o1 (OpenAI, 2024), DeepSeek-R1 (DeepSeek-AI et al., 2025), have substantially improved LLM reasoning capabilities by generating a deliberate thinking process, involving extensive exploration and reflection before concluding the final answer (Chen et al., 2025b). These advancements are largely credited to reinforcement learning (RL) frameworks (Shao et al., 2024; Schulman et al., 2017), which incentivize LLMs to freely explore the reasoning steps solely given a final reward. This is positioned as a pathway to self-evolving LLMs with test-time scaling in reasoning (Muennighoff et al., 2025), potentially advancing the development of stronger intelligence (Snell et al., 2024).

Despite their success, current long-CoT reasoning remains confined to the internal parametric space of LLMs, limiting alignment with the external world. This closed-world reasoning restricts LLMs from accessing up-to-date information and adapting to the ever-evolving world, often leading to hallucinations and factual inconsistencies (Wu et al., 2024; Araya, 2025). Moreover, the absence of an internal world model impairs the ability to reason about physical dynamics (Wang et al., 2023), reducing performance on tasks requiring real-world understanding, such as path planning (Song et al., 2023) and robot control (Singh et al., 2023). These limitations pose significant obstacles to the goal of achieving AGI (Feng et al., 2024), underscoring the necessity for LLMs to interact with and ground their reasoning in the external world.

Existing attempts for aligning LLMs with the external world have primarily focused on using retrieval-augmented generation (RAG) (Wu et al., 2024) or tool-calling (Schick et al., 2023b) to inject external knowledge into LLM reasoning. While enhancing factual accuracy, they raise a fundamental challenge in determining the boundary between the LLMs' internal knowledge and externally retrieved information (Ren et al., 2025) (C.1). Over-reliance on either internal knowledge or external information may lead to brittle or suboptimal reasoning. Additionally, complex reasoning tasks often require deliberate, multi-step thinking processes (C.2). This necessitates LLMs to adaptively engage with the external world—querying, receiving feedback, incorporating new information, refining their

055

056

057

058

060

061

062

063

064

065

066

067 068

069

071

072

073

074

075

076

077

079

081

083

084

085

087 088

091

092

094 095 096

098

099

100

101

102

103 104

105

106

107

thinking through reflection and self-correction, instead of relying on a predefined workflow (Trivedi et al., 2023b). Moreover, the dynamic nature of the external world necessitates that LLMs adjust their thinking processes in response to evolving environments (**C.3**). This requires LLMs to develop generalizable real-world grounded reasoning capabilities rather than focusing solely on a specific task and tool, such as searching (Jin et al., 2025; Song et al., 2025; Jin et al., 2025).

To address these challenges, we propose a novel framework, SITUATEDTHINKER, which effectively grounds LLM reasoning with real-world contexts. Extending the internal reasoning of LLMs, we introduce a new paradigm of *situated thinking*, which allows LLMs to adaptively engage with external environments through predefined interfaces. These interfaces provide a unified description of the external world, such as knowledge, tools, and physics environment, allowing LLMs to access real-world information and feedback, facilitating a more accurate and context-aware thinking process. Situated thinking synergizes the internal reasoning of LLMs with situated reasoning in the external world, allowing LLMs to identify required information to surpass its knowledge boundaries, refine their thinking processes, and improve their overall performance in real-world tasks (to address C.1).

To facilitate deliberate situated thinking, we adopt the RL framework (Shao et al., 2024) to enable LLMs to reason with the external world and tackle complex tasks (to address C.2). During training, LLMs are prompted to use interfaces to gather necessary real-world information and explore their reasoning steps freely to reach a final conclusion. The model is then optimized for the accuracy of its conclusions using a straightforward rule-based reward function, avoiding complex intermediate supervision. To incentivize the generalizable situated thinking capability of LLMs, we train the model on two representative tasks (e.g., multi-hop QA and mathematical reasoning) and two fundamental interfaces (e.g., knowledge retrieval and code execution) to improve its adaptability to out-of-domain external worlds (addressing C.3). In general, the distinguishing characteristics of our work are as follows: • SITUATEDTHINKER integrates internal and external knowledge within single-turn thinking to effectively tackle real-world application tasks; ② SITUATEDTHINKER is not restricted to single external interfaces, such as code execution or web search, and demonstrates generalizability across tasks in diverse scenarios. Experimental results indicate that various LLMs trained with our SITUATED THINKER framework demonstrate significant performance improvements on multi-hop question-answering and mathematical reasoning benchmarks, outperforming prominent baselines. Furthermore, we evaluate the generalization capabilities of SITUATEDTHINKER across unseen tasks, including KBQA, TableQA, and text-based games, demonstrating strong situated thinking capability with new interfaces without further training. Moreover, the empirical analysis reveals that SITUATEDTHINKER can effectively perceive the boundaries of its own knowledge and conduct complex reasoning by appropriately invoking interfaces to reflect and verify uncertain thinking processes. The contributions of this work can be summarized as follows:

- We propose a novel framework, SITUATEDTHINKER, that enables LLMs to ground their reasoning in the external world to extend the capability of LLMs for real-world tasks.
- We introduce situated thinking, a new paradigm that allows LLMs to adaptively engage with external environments and incentivize deliberate reasoning processes with reinforcement learning.
- We conduct extensive experiments demonstrating the effectiveness of SITUATEDTHINKER and its
 generalizable situated thinking to new tasks and interfaces.

2 Approach

Figure 1 illustrates the overall framework of SITUATEDTHINKER. In this section, we first present the details of situated thinking, which is central to SITUATEDTHINKER's ability to ground LLM reasoning in the external world by defining interfaces, internal action, and situated action. Next, we describe SITUATEDTHINKER's training process, which encourages LLMs to perform complex reasoning about the real world through a deliberative situated thinking approach.

2.1 SITUATED THINKING

The situated thinking is designed to enable LLMs to conduct complex reasoning by combining both internal knowledge and external information, which contains three key components: *interfaces*, *internal action*, and *situated action*.

Figure 1: The framework of SITUATEDTHINKER, where LLMs take questions and predefined interfaces as inputs. Then, they conduct situated thinking to adaptively combine basic reasoning with internal action and external reasoning while performing situated actions through the interfaces. The final conclusion is obtained through a deliberate reasoning process and verified to optimize models with reinforcement learning. External world can be presented as knowledge graphs, databases, or the physical environment (like a room space for robot control).

Interfaces. Interfaces offer a standardized representation of the external world. We can easily define interfaces for various external environments, such as knowledge graphs, databases, and physical environments to ground LLMs' reasoning in the real world. In SITUATEDTHINKER, we have crafted a universal template for various interfaces, as outlined in the box below. Specifically, each interface is characterized by its Name and Description, which define the purpose, inputs, and feedback associated with the interface to aid the model in understanding the external world and utilizing the interface effectively. Then, the Query Format specifies the format in which the model can interact with the interface, including the start <interface_start_tag> and end <interface_end_tag> tags for the query. Finally, we assign an Invoke Limit to enhance interaction efficiency and prevent the model from entering inefficient interaction loops. Example interfaces like retrieval, code execution, and game control can be found in § A.5.

Interface Template Interface For {Interface Name} - Description: {Description for the Interface} - Query Format: ¡interface_start_tag; ...query... ¡interface_end_tag;. - Invoke Limit {Invoke limit}.

Internal Action. The internal action is a fundamental step of the thinking process, enabling step-by-step reasoning though token generation (CoT) (Wei et al., 2022). It highlights the LLMs' ability to perform basic reasoning using their internal knowledge, such as problem decomposition, summarization, and simple arithmetic operations. For example, when presented with the question, *What government position was held by the woman who portrayed Corliss Archer in the film Kiss and Tell?*, LLMs could break down the query into two sub-questions using internal action: 1) *Who was the actress that portrayed Corliss Archer in "Kiss and Tell"?*; and 2) *What government position did Shirley Temple hold?*. Additionally, for some mathematical problems, advanced LLMs can utilize its internal knowledge to perform basic arithmetic operations. For instance, when asked *What is 128 + 56?*, LLMs can internally compute the answer as 184 without needing to invoke any external interface.

Situated Action. When addressing tasks requiring up-to-date knowledge, perception of the external environment, or complex reasoning beyond LLMs' capabilities, LLMs must engage with the external world to conduct reasoning, which is called situating action. For example, as shown in § 3.6, the LLM first uses internal actions to reason and analyze questions. It then realizes it lacks information about the current president of East Timor and formulates a query to expand its knowledge by asking: Who is the current president of East Timor? through the interface. The query is enclosed within the tags <interface_start_tag> and <interface_end_tag> of the relevant interface. Then, we invoke the interface to execute the query and conduct the reasoning on the external world to receive feedback that The current president of East Timor is Francisco Guterres. The feedback is

returned with the format of <result> and </result>, which is incorporated into the thinking process to facilitate further reasoning. Additionally, cases in § B.3 show that LLMs could invoke a coding interface to solve complex mathematical reasoning or obtain real-world knowledge.

2.2 Incentivizing Reasoning with Situated Thinking using Reinforcement LEARNING

Complex tasks often require LLMs to conduct deliberate reasoning, utilizing situated thinking to surpass knowledge boundaries while reflecting on feedback from the external world. Teaching LLMs to reason based on real-world information is essential but challenging due to the scarcity of humanannotated data. Reinforcement learning (RL) has emerged as a powerful method for enhancing LLMs' reasoning capabilities by providing rewards based on final conclusions (DeepSeek-AI et al., 2025). Therefore, we aim to harness RL to enhance the reasoning abilities of LLMs, enabling them to explore the external world with situated thinking and incorporate feedback for refining their reasoning and maximizing answer accuracy.

2.2.1 INPUT TEMPLATE

162

163

164

165 166

167

168

170

171

172

173

174

175

176 177

178

179

180 181

182

183

184

185

187

188 189

190

192

193

194

196

199

200

201

202

203

204 205

206

207

208 209

210 211

212

213

214

215

The input to SITUATEDTHINKER consists of two main components: the system prompt and the user question.

System Prompt. The system prompt is designed to guide LLMs in reasoning and interacting with the external world. We first prompt LLMs to perform a thorough analysis of the problem through a reasoning process that leads to a conclusion, marked by the tags <conclusion> and </conclusion>. The final answer is clearly presented in the format of \boxed{...final answer...}. Then, we provide LLMs with a set of interfaces that allow them to interact with the external world, as detailed in the § 2.1.

System Prompt of SITUATEDTHINKER

Reasoning and Format Prompt

A conversation between a User and an Assistant. The User poses a question, and the Assistant provides a solution. The Assistant's response follows these structured steps:

- 1. **Reasoning Process**: The Assistant comprehensively thinks about the problem through a reasoning process.
- 2. Conclusion: The Assistant reaches a conclusion, which is enclosed within <conclusion> and </conclusion> tags. The final answer is highlighted within '\boxed{...final answer...}'
- 3. **Response Format**: The complete response should be formatted as:

...reasoning process...

<conclusion> ...conclusion..

The answer is \boxed{...final answer...}

</conclusion>

Interfaces Prompt

During the reasoning process, the Assistant can interact with the system by invoking given interfaces and placing queries within <interface_start_tag> ...query here... </interface_end_tag> tags. The system processes these queries and returns results in the format <result> ...results... </result>.. After gathering all necessary information, the Assistant continues with the reasoning process to finalize the answer. The assistant cannot invoke each interface more than {Invoke Limit} times.

The following are the interfaces provided for the Assistant:

{Placeholder for Interface Definitions}

Question. The system prompt is followed by the specific question, to which the model responds through an iterative and detailed reasoning process of exploration and reflection, accompanied by interaction with the external world.

2.2.2 ROLLOUT WITH SITUATED THINKING

The rollout process of SITUATEDTHINKER is designed to enable LLMs to use situated thinking and freely explore the reasoning on the external world. The rollout would generate an iterative reasoning trajectory with both internal and situated actions as detailed in § 2.1. Given a question, we sample Gindividual reasoning trajectories $\{t_i\}_{i=1}^G$ from the policy of the current LLM, denoted as $\pi_{\theta_{\text{old}}}(\cdot|q)$ where q is the input question. The trajectories would be assessed by the reward function to optimize the model.

2.2.3 REWARD DESIGN

216

217 218

219

220

221

222

224 225

226

227

228

229

230

231 232

233 234

235

236

237

238 239

240

241

246

247

248

249 250

251 252

253 254

255

256

257

258

259

260

261

262

263 264

265

266

267

268

269

We design a simple reward function to obtain rewards for the generated trajectories. The reward function is based on the format correctness and the answer accuracy of the generated trajectory, which is a common practice in RL training for reasoning tasks (DeepSeek-AI et al., 2025). Formally, the reward r_i for each trajectory t_i is calculated as follows:

$$r_i = \begin{cases} 1.0, & c_{\text{answer}}(t_i), \\ 0.0, & c_{\text{format}}(t_i) \text{ and } \neg c_{\text{answer}}(t_i), \\ -0.1, & \neg c_{\text{format}}(t_i) \text{ and } \neg c_{\text{answer}}(t_i), \end{cases}$$
the correctness of the trajectory format, requiring that the conclusion be

where $c_{\text{format}}(\cdot)$ evaluates the correctness of the trajectory format, requiring that the conclusion be correctly enclosed within <conclusion> and </conclusion> tags, and the answer within \boxed{}. The $c_{answer}(\cdot)$ indicates the correctness of the final answer, which will be evaluated by QA accuracy or match correctness. It is noteworthy that we did not design additional rewards for teaching LLMs how to invoke interfaces (Song et al., 2025). In subsequent experiments, we empirically find that the model learned to invoke the interface correctly solely through the reward of answer correctness verification.

2.2.4 Training Objective

We design the training objective by extending the Group Relative Policy Optimization (GRPO) (Shao et al., 2024). By sampling a group of trajectories, we compute advantages $a_{i,:}$ of all tokens in each trajectory as the mean normalization of group-level rewards $\{r_i\}_{i=1}^G$, which is computed as:

$$a_{i,j} = r_i - \text{mean}\left(\{r_i\}_{i=1}^G\right), \quad 0 \le j < |t_i|,$$
 (2)

 $a_{i,j} = r_i - \text{mean}\left(\{r_i\}_{i=1}^G\right), \quad 0 \le j < |t_i|,$ where $a_{i,j}$ is the advantage of the *j*-th token in the *i*-th trajectory. Then, the final objective of SITUATED THINKER is formulated as:

$$\mathcal{L}(\theta) = \mathbb{E}_{(q,a) \sim \mathcal{D}, \{t_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | q)}$$

$$\left[\frac{1}{G}\sum_{i=1}^{G}\frac{1}{|t_{i}|}\sum_{j=1}^{|t_{i}|}\min\left(\frac{\pi_{\theta}(t_{i,j}|q,t_{i,< j})}{\pi_{\theta_{\text{old}}}(t_{i,j}|q,t_{i,< j})}a_{i,j},\operatorname{clip}\left(\frac{\pi_{\theta}(t_{i,j}|q,t_{i,< j})}{\pi_{\theta_{\text{old}}}(t_{i,j}|q,t_{i,< j})},1-\epsilon_{\min},1+\epsilon_{\max}\right)a_{i,j}\right)\right]. \tag{3}$$

Compared to standard GRPO, our objective incorporates the following key modifications: 1) We introduce distinct clipping bounds, ϵ_{\min} and ϵ_{\max} , to promote exploration (Yu et al., 2025); 2) We omit the KL penalty term, as our goal is to inject the situated thinking capability into LLM reasoning that is distinct from the base LLMs (Yu et al., 2025).

EXPERIMENT

3.1 Experiment Settings

Implementation Details. We select two distinct base LLMs from the Qwen3 series (Team, 2025): the 8B-Base and 14B-Base models, which have not undergone any post-training, allowing us to observe fundamental performance changes during training. For training, we utilize only two tasks: multi-hop question-answering and mathematical reasoning. Specifically, we employ the training split of MuSiQue (Trivedi et al., 2022) and select 10,000 samples from Big-Math (Albalak et al., 2025) to construct our training data. During the training process, we provide two interfaces for the model: 1) information retrieval interface, which retrieves useful information from Wikipedia (2018 dump (Karpukhin et al., 2020)); 2) code execution interface, which executes Python code generated by LLMs and returns feedback. More details of interface definitions and training parameters are provided in § A.

Evaluation Settings. We evaluate SITUATEDTHINKER on two groups of benchmarks: in-domain and out-of-domain benchmarks. For in-domain benchmarks, we evaluate the performance on four multi-hop question-answering (§ 3.2) and three mathematical reasoning benchmarks (§ 3.3) to assess its reasoning capabilities on trained tasks and interfaces. For out-of-domain benchmarks, we evaluate the generalization capabilities of SITUATEDTHINKER on five unseen external environments, including new domains (e.g., medical, science), new tasks (e.g., KBQA, table QA), and new interfaces (e.g., game environment interaction interfaces) (§ 3.4).

Table 1: Multi-Hop QA benchmarks results. All methods are based on Qwen series LLMs. indicates the model with 7B/8B parameters and indicates the model with 14B parameters. Green cells indicate the best performance in each column, while Blue cells indicate the second-best performance. The results of ReSearch and Search-R1 are borrowed from original papers.

Model	Size	HotpotQA	2WikiMultihop QA	MusiQue	Bambooogle
w/o DAC		0.237	0.294	0.078	0.137
w/o RAG		0.256	0.299	0.089	0.154
Naive RAG		0.331	0.258	- 0.090	0.164
Naive KAG		0.358	0.261	0.118	0.185
Iter-RetGen		0.370	0.312	- 0.110	$ 0.24\overline{2}$ $ -$
IRCOT		0.340	0.246	0.107	0.282
ReSearch		0.406	0.447	- 0.217	$ 0.43\overline{2}$ $ -$
Search-R1		0.380	0.326	0.168	0.384
SITUATEDTHINKER		0.433	0.464	-0.235	$0.\overline{552}$
SHUALEDIHINKER		0.451	0.483	0.255	0.512

3.2 Performance on Multi-Hop Question-Answering Benchmarks

Benchmarks. We first evaluate SITUATEDTHINKER on test the split of four multi-hop question-answering benchmarks: HotpotQA (Yang et al., 2018), 2WikiMultihopQA (Ho et al., 2020), MusiQue (Trivedi et al., 2022), and Bamboogle (Press et al., 2023), with the information retrieval and coding interface seen during training. We report exact match (EM) metrics to assess the performance on these benchmarks.

Baselines. We employ four types of baseline methods: 1) No RAG methods, where the LLM is prompted to generate answers directly; 2) Naive RAG methods, involving a straightforward retrieval-based approach that concatenates the retrieval results with the question before prompting the language model to generate an answer; 3) Multi-step RAG methods, which utilize a multi-step RAG framework during reasoning, including two prominent methods: Iter-RetGen (Shao et al., 2023) and IRCoT (Trivedi et al., 2023a); and 4) Search-enhanced models, which utilize search tools to retrieve information during the LLM reasoning process, including two advanced methods: ReSearch (Chen et al., 2025a) and Search-R1 (Jin et al., 2025), which are also trained from GRPO. All baselines are implemented on base models of the equivalent size and family, and we leverage the same external documents for the retrieval. For methods that are challenging to reproduce, we report the best results achieved with models of the same size as presented in the original papers.

Performance. Table 1 summarizes the performance of SITUATEDTHINKER in comparison to baseline methods. Notably, SITUATEDTHINKER consistently surpasses prominent baseline approaches. In particular, our model outperforms those baseline methods that incorporate retrieval in their reasoning process, demonstrating its ability to interact with the external environment using multiple interfaces (e.g., coding) beyond simple retrieval (§ B.3). Additionally, our improvements are evident across both in-domain (MusiQue) and out-of-domain benchmarks (e.g., HotpotQA, 2WikiMultiHopQA, and Bamboogle).

3.3 Performance on Mathematical Reasoning Benchmarks

Benchmarks. We assess the mathematical reasoning capabilities of SITUATEDTHINKER and baseline models using three representative benchmarks: AIME24¹, AIME25², and MATH500 (Hendrycks et al., 2021; Lightman et al., 2024). The average accuracy at position 32 (avg@32) is employed as the evaluation metric.

Baselines. Three categories of baseline methods are employed: 1) Base models, which are public LLMs without additional training, including Qwen3-Base (Team, 2025) and Qwen2.5-Math-Instruct (Yang et al., 2024); 2) Advanced reasoning LLMs trained via reinforcement learning, which employ reinforcement learning with verifiable rewards but cannot interact with real-world, such as SimpleRL-Zero (Zeng et al., 2025) and Eurus-2 (Cui et al., 2025); 3) Tool-integrated reasoning

¹https://huggingface.co/datasets/AI-MO/aimo-validation-aime

²https://huggingface.co/datasets/opencompass/AIME2025

methods, which incorporate code integration into their reasoning process, including Qwen2.5-Math-Instruct-TIR (Yang et al., 2024) and ToRL (Li et al., 2025).

Performance. As demonstrated in Table 2, SITUAT-EDTHINKER achieves a significant improvement over the base model. Furthermore, when compared with other advanced baselines, particularly those derived from math-specific models typically pre-trained on extensive professional corpora, our model also demonstrates competitive performance. In comparison to

Table 2: Mathematical reasoning benchmarks results. *Math-Specific* means whether is based on the math-specific LLM.

Model	Size	Math-Specific	AIME24	AIME25	MATH500
Owen 2 Dags		Х	11.7	7.6	59.6
Qwen3-Base		X	10.0	10.1	70.7
Qwen2.5-Math-It		\checkmark	10.0	16.7	74.8
SimpleRL-Zero	_		33.3	6.7	77.2
Eurus-2		\checkmark	26.7	13.3	79.2
Qwen2.5-Math-It-TIR			26.7	16.7	74.8
ToRL		\checkmark	43.3	30.0	82.2
SITUATEDTHINKER	_	×	27.0	22.6	84.7
SITUATEDIHINKER		×	43.0	26.5	87.1

the advanced tool-integrated baseline ToRL, which is trained from the stronger math-specific LLM and more training data, SITUATEDTHINKER outperforms it on the MATH500 dataset and achieves competitive results on AIME24 and AIME25.

3.4 Performance Regarding Generalization to Out-of-Domain Worlds

In this section, we aim to assess the generalization capability of SITUATEDTHINKER with respect to out-of-domain external environments.

Benchmarks. We focus on two types of generalization capabilities: 1) cross-domain and 2) cross-interface. For cross-domain generalization, we utilize the medical reasoning benchmark MedQA (Jin et al., 2020) and the scientific reasoning benchmark GPQA (Rein et al., 2023), which share interfaces with the training data but focus on different disciplines. For cross-interface generalization, we evaluate three benchmarks: the knowledge-based question-answering benchmark WebQSP (Yih et al., 2016), the table question-answering benchmark WTQ (Pasupat & Liang, 2015), and the text-based planning benchmark TextWorld (Côté et al., 2018). Please refer to § A.4 for details and evaluation metrics of these benchmarks.

Baselines. We primarily compare with Qwen3-Base models (Team, 2025). To better evaluate the effectiveness of SITUATEDTHINKER, we also compared it with the interface-enhanced baseline. Specifically, we utilize the input template to feed to the Qwen3-Base models, so that they can interact with the external world using interfaces, which can be seen as an implementation of ReAct (Yao et al., 2023),. We also include Research and Search-R1, which are only trained to incorporate with single interface to further assess the generalization capability of SITUATEDTHINKER.

Performance. As illustrated in Table 3, SITUATEDTHINKER significantly surpasses the baseline models both with and without interface invocation, demonstrating its enhanced ability to generalize to new environments. This generalization includes both different vertical domains and different interfaces. Particularly for TextWorld, a dataset based on simulated physical environments, where the

Table 3: Generalization performance comparison between SITUATEDTHINKER and baselines on MedQA, GPQA, WebQSP, WTQ, and TextWorld. The **Interfaces** column indicates whether the model can interact with external world through interfaces.

Model	Size	Interfaces	MedQA	GPQA	WebQSP	WTQ	TextWorld
Vanilla LLMs		X	3.9	6.1	41.7	6.5	10.0
valilla LLIVIS		X	69.6	39.4	53.1	10.5	24.0
ReAct			5.7	5.6	22.1	35.7	8.0
REACT		\checkmark	71.9	35.9	56.3	41.6	28.0
ReSearch			43.6	20.2	25.2	8.7	$ \bar{4}.\bar{0}$
Search-R1		\checkmark	21.8	15.2	15.9	5.1	2.0
SITUATEDTHINKER			58.1	25.8	66.5	68.9	42.0
SHUALEDIHINKER		\checkmark	77.9	53.0	68.7	69.7	94.0

Figure 2: Illustration of training dynamics of SITUATEDTHINKER. The x-axis indicates the training steps and the y-axis means the observation metrics.

underlying LLMs lack intrinsic knowledge of the environment, effectively utilizing the interface's name to interact with the external world leads to significant performance enhancements.

3.5 Analysis on Training Dynamics

In this section, we will explore what the model has learned through GRPO by analyzing the training dynamics. The key training dynamics are detailed in Figure 2.

SITUATEDTHINKER Learned to Invoke Interfaces. The training dynamics presented in the sub-figures titled "Code Interface Invocation", "Retrieval Interface Invocation", and "Invoke Error Penalty" illustrate the model's ability to learn correct interface invocation and obtain feedback without relying on explicit reward incentives In the early stages of training, the model is unable to invoke interfaces correctly and demonstrates no significant tendency toward improvement. However, as training progresses, the quantity of successful interface invocations steadily increases, accompanied by a corresponding decrease in error rates.

SITUATEDTHINKER Learned to Reflect. The sub-figure titled "Reflection Score" illustrates the dynamics of reflection patterns that emerge in responses generated by SITUATEDTHINKER. As training progresses, the frequency of these reflection patterns gradually increases, indicating that SITUATEDTHINKER is learning to reflect based on external feedback and subsequently improve its reasoning performance. Additionally, the sub-figure titled "Response Length" demonstrates that the length of SITUATEDTHINKER's responses gradually increases as training continues. This aligns with recent research expectations (Snell et al., 2024), suggesting that SITUATEDTHINKER has learned to progressively scale its reasoning by enhancing interface invocation efficiency and incorporating reflection and backtracking to verify the correctness of its thinking.

3.6 CASE STUDY

In this section, we will discuss the abilities and nature of SITUATEDTHINKER by analyzing the Case 3.1 in which SITUATEDTHINKER actually performs situated thinking.

Reasoning Step by Step. SITUATEDTHINKER firstly decomposes complex reasoning problems and solves them incrementally, a capability acquired automatically during model training without relying on annotated data.

Discovery Knowledge Boundary. The **red highlighted** part indicates that SITUATEDTHINKER is capable of recognizing the limitations of its own knowledge. Following GRPO training, SITUATEDTHINKER can identify when the knowledge or information necessary to solve a problem surpasses its knowledge boundary, prompting it to invoke situating interfaces to interact with the external environment and obtain feedback that aids its reasoning.

Reflection with Interfaces. The **green highlighted** part signifies that SITUATEDTHINKER embodies reflective characteristics within the reasoning process. In response to potential errors in prior reasoning, SITUATEDTHINKER reassesses and deliberates to verify the accuracy of its conclusions. Notably, unlike previous long-chain-of-thought reasoning LLMs, such as DeepSeek-R1, SITUATEDTHINKER integrates situating interfaces during reflection to enhance alignment with external environmental information.

Case 3.1: Case From MusiQue

QUESTION

432

433

434

435

436

437 438

439

440

441

442

443

444

445

446

448

449

450

452 453

455

456

457 458 459

460 461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478 479

480

482

483

484

485

Who is the president of the newly declared independent country that has a Commission of Truth and Friendship with the country where Ambelau is located?

RESPONSE

Alright, I need to find out who is the president of the newly declared independent country that has a Commission of Truth and Friendship with the country where Ambelau is located. Let's break this down step by step.

Step 1: Identify the country where Ambelau is located.

From the information, it seems that Taur Matan Ruak was the President of East Timor from 20 May 2012 to 20 May 2017. However, I need to confirm if he is the current president or if there have been any changes since then.

Wait, the information also mentions that José Ramos-Horta was the President of East Timor from 20 May 2007 to 20 May 2012. So, the timeline is: - José Ramos-Horta: 2007-2012 - Taur Matan Ruak: 2012-2017

But the question is about the newly declared independent country, which is East Timor, and the president of that country. Since East Timor declared independence in 2002, and the timeline provided goes up to 2017, I need to find out who the current president is.

Wait, the information doesn't specify the current president. Maybe I need to check more recent sources.

<retrieval>Who is the current president of East Timor?/retrieval>

The answer is \boxed{Francisco Guterres}

454 </conclusion>

More cases of SITUATEDTHINKER's reasoning process across different tasks and external environments are provided in § B.3.

4 RELATED WORK

The most related line of work involves the integration of LLMs with external information through tools or functions which are similar to the interfaces defined in our paper. Previous works (Schick et al., 2023a; Yao et al., 2023; Wang et al., 2024; Gou et al., 2024; Qin et al., 2024; 2025) leverage the capabilities of LLMs' tool-calling, which are typically pre-trained on vast amounts of relevant data and can employ pre-defined tools to solve user tasks across multiple rounds of dialogue. However, most of these methods perform direct reasoning based on external information, they lack the ability to engage in reflective thinking or backtracking and to utilize external information to validate their conclusions during the reasoning process. In contrast, SITUATEDTHINKER integrates external information with single-turn deep thinking, enabling LLMs to engage in reflective thinking through external interfaces during the reasoning process. Recent studies (Chen et al., 2025a; Jin et al., 2025; Song et al., 2025; Li et al., 2025; Feng et al., 2025) have attempted to bolster LLMs with reinforcement learning using web search or writing code, which allow thinking and reflecting with external information. However, training these methods on a single tool limits their ability to generalize to new environments, resulting in inadequate capabilities and inflexible workflow definitions. In contrast, SITUATEDTHINKER achieves interface generalization through a unified interface design, moving beyond reliance on a single interface, and takes the lead in validating this approach across extensive benchmarks. Lastly, advanced reasoning models, such as OpenAI DeepResearch (OpenAI, 2025), are regarded as capable of handling out-of-domain tools. We believe that our work constitutes an important step toward exploring the implementation of such models.

5 Conclusion

This paper introduces SITUATEDTHINKER, a novel framework that facilitates *situated thinking*, enabling LLMs to actively engage with external environments through predefined interfaces. By employing reinforcement learning, SITUATEDTHINKER promotes intentional reasoning and adaptation to diverse tasks and interfaces. Extensive experiments demonstrate the effectiveness of SITUATEDTHINKER, while further analysis highlights its intriguing and meaningful reasoning behaviors.

ETHICS STATEMENT

This research focuses solely on general scientific tasks and does not pose risks to health, safety, personal security, or privacy. No human subjects are involved, and no new datasets are released as part of this study. Furthermore, the research does not include potentially harmful insights, methods, or applications, nor does it raise concerns related to privacy, security, legal compliance, or research integrity. Consequently, we anticipate no ethical risks or conflicts of interest. We are committed to maintaining the highest standards of scientific integrity and adhering to ethical guidelines throughout the research process.

REPRODUCIBILITY STATEMENT

We provide a comprehensive description of the proposed model in the main body, accompanied by detailed implementation specifics, including dataset information, baseline models, and experimental settings in §§ A and 3.1. All datasets used in this research are publicly available. Key code implementations are included in the supplementary materials for reference, with the complete code to be released publicly upon acceptance of the paper.

REFERENCES

- Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models for mathematical reasoning: Progresses and challenges. In *EACL (Student Research Workshop)*, pp. 225–237. Association for Computational Linguistics, 2024. 1
- Alon Albalak, Duy Phung, Nathan Lile, Rafael Rafailov, Kanishk Gandhi, Louis Castricato, Anikait Singh, Chase Blagden, Violet Xiang, Dakota Mahan, and Nick Haber. Big-math: A large-scale, high-quality math dataset for reinforcement learning in language models. *CoRR*, abs/2502.17387, 2025. 3.1, A.2
- Roberto Araya. Do chains-of-thoughts of large language models suffer from hallucinations, cognitive biases, or phobias in bayesian reasoning? *CoRR*, abs/2503.15268, 2025. 1
- Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. *CoRR*, abs/1606.01540, 2016. A.4
- Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z. Pan, Wen Zhang, Huajun Chen, Fan Yang, Zenan Zhou, and Weipeng Chen. Research: Learning to reason with search for llms via reinforcement learning. *CoRR*, abs/2503.19470, 2025a. 3.2, 4
- Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu, Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-thought for reasoning large language models. *CoRR*, abs/2503.09567, 2025b. 1
- Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James Moore, Matthew J. Hausknecht, Layla El Asri, Mahmoud Adada, Wendy Tay, and Adam Trischler. Textworld: A learning environment for text-based games. In *CGW@IJCAI*, volume 1017 of *Communications in Computer and Information Science*, pp. 41–75. Springer, 2018. 3.4, A.4
- Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang, Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning Ding. Process reinforcement through implicit rewards. *CoRR*, abs/2502.01456, 2025. 3.3
- DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang

```
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing reasoning capability in Ilms via reinforcement learning. CoRR, abs/2501.12948, 2025. 1, 2.2, 2.2.3
```

- Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang, Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms. CoRR, abs/2504.11536, 2025. 4
- Tao Feng, Chuanyang Jin, Jingyu Liu, Kunlun Zhu, Haoqin Tu, Zirui Cheng, Guanyu Lin, and Jiaxuan You. How far are we from agi: Are llms all we need? *Transactions on Machine Learning Research*, 2024. 1
- Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen. CRITIC: large language models can self-correct with tool-interactive critiquing. In *ICLR*. OpenReview.net, 2024. 4
- Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In *NeurIPS Datasets and Benchmarks*, 2021. 3.3
- Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing A multi-hop QA dataset for comprehensive evaluation of reasoning steps. In *COLING*, pp. 6609–6625. International Committee on Computational Linguistics, 2020. 3.2
- Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. In *ACL (Findings)*, pp. 1049–1065. Association for Computational Linguistics, 2023. 1
- Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement learning. *CoRR*, abs/2503.09516, 2025. 1, 3.2, 4
- Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What disease does this patient have? A large-scale open domain question answering dataset from medical exams. *CoRR*, abs/2009.13081, 2020. 3.4, A.4
- Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In *EMNLP*, pp. 6769–6781. Association for Computational Linguistics, 2020. 3.1
- Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *SOSP*, pp. 611–626. ACM, 2023. A.3
- Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated RL. *CoRR*, abs/2503.23383, 2025. 3.3, 4
- Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *ICLR*. OpenReview.net, 2024. 3.3
- Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel J. Candès, and Tatsunori Hashimoto. s1: Simple test-time scaling. *CoRR*, abs/2501.19393, 2025. 1
- OpenAI. Learning to reason with llms. https://openai.com/index/learning-to-reason-with-llms/, 2024. Accessed: 2024-09-12. 1
- OpenAI. Introducing deep research. https://openai.com/index/introducing-deep-research/, 2025. Accessed: 2025-02-02. 4

- Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables. In *ACL* (1), pp. 1470–1480. The Association for Computer Linguistics, 2015. 3.4, A.4
- Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In *NeurIPS*, pp. 8024–8035, 2019. A.3
- Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis. Measuring and narrowing the compositionality gap in language models. In *EMNLP (Findings)*, pp. 5687–5711. Association for Computational Linguistics, 2023. 3.2
- Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master 16000+ real-world apis. In *ICLR*. OpenReview.net, 2024. 4
- Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe Zhou, Yufei Huang, Chaojun Xiao, Chi Han, Yi R. Fung, Yusheng Su, Huadong Wang, Cheng Qian, Runchu Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang Wu, Heng Ji, Guoliang Li, Zhiyuan Liu, and Maosong Sun. Tool learning with foundation models. *ACM Comput. Surv.*, 57(4):101:1–101:40, 2025. 4
- David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a benchmark. *CoRR*, abs/2311.12022, 2023. 3.4, A.4
- Ruiyang Ren, Yuhao Wang, Yingqi Qu, Wayne Xin Zhao, Jing Liu, Hua Wu, Ji-Rong Wen, and Haifeng Wang. Investigating the factual knowledge boundary of large language models with retrieval augmentation. In *Proceedings of the 31st International Conference on Computational Linguistics*, pp. 3697–3715, 2025. 1
- Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to use tools. In *NeurIPS*, 2023a. 4
- Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to use tools. *Advances in Neural Information Processing Systems*, 36:68539–68551, 2023b. 1
- John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *CoRR*, abs/1707.06347, 2017. 1
- Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Enhancing retrieval-augmented large language models with iterative retrieval-generation synergy. In *EMNLP* (*Findings*), pp. 9248–9274. Association for Computational Linguistics, 2023. 3.2
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *CoRR*, abs/2402.03300, 2024. 1, 2.2.4
- Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient RLHF framework. In *EuroSys*, pp. 1279–1297. ACM, 2025. A.3
- Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using large language models. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 11523–11530. IEEE, 2023. 1

- Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute optimally can be more effective than scaling model parameters. *CoRR*, abs/2408.03314, 2024. 1, 3.5
 - Chan Hee Song, Brian M. Sadler, Jiaman Wu, Wei-Lun Chao, Clayton Washington, and Yu Su. Llm-planner: Few-shot grounded planning for embodied agents with large language models. In *ICCV*, pp. 2986–2997. IEEE, 2023. 1
 - Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement learning. *CoRR*, abs/2503.05592, 2025. 1, 2.2.3, 4
 - Jiankai Sun, Chuanyang Zheng, Enze Xie, Zhengying Liu, Ruihang Chu, Jianing Qiu, Jiaqi Xu, Mingyu Ding, Hongyang Li, Mengzhe Geng, Yue Wu, Wenhai Wang, Junsong Chen, Zhangyue Yin, Xiaozhe Ren, Jie Fu, Junxian He, Wu Yuan, Qi Liu, Xihui Liu, Yu Li, Hao Dong, Yu Cheng, Ming Zhang, Pheng-Ann Heng, Jifeng Dai, Ping Luo, Jingdong Wang, Ji-Rong Wen, Xipeng Qiu, Yike Guo, Hui Xiong, Qun Liu, and Zhenguo Li. A survey of reasoning with foundation models: Concepts, methodologies, and outlook. *ACM Comput. Surv.*, 2023. 1
 - Qwen Team. Qwen3: Think deeper, act faster. https://qwenlm.github.io/blog/qwen3/, 2025. 3.1, 3.3, 3.4
 - Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop questions via single-hop question composition. *Trans. Assoc. Comput. Linguistics*, 10:539–554, 2022. 3.1, 3.2, A.2
 - Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. In *ACL* (1), pp. 10014–10037. Association for Computational Linguistics, 2023a. 3.2
 - Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. In *Proceedings* of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 10014–10037, 2023b. 1
 - Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. *Trans. Mach. Learn. Res.*, 2024, 2024. 4
 - Yi Ru Wang, Jiafei Duan, Dieter Fox, and Siddhartha S. Srinivasa. NEWTON: are large language models capable of physical reasoning? In *EMNLP* (*Findings*), pp. 9743–9758. Association for Computational Linguistics, 2023. 1
 - Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022. 2.1
 - Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language processing. In *EMNLP (Demos)*, pp. 38–45. Association for Computational Linguistics, 2020. A.3
 - Shangyu Wu, Ying Xiong, Yufei Cui, Haolun Wu, Can Chen, Ye Yuan, Lianming Huang, Xue Liu, Tei-Wei Kuo, Nan Guan, and Chun Jason Xue. Retrieval-augmented generation for natural language processing: A survey. *CoRR*, abs/2407.13193, 2024. 1
 - An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert model via self-improvement. *CoRR*, abs/2409.12122, 2024. 3.3

- Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov, and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question answering. In *EMNLP*, pp. 2369–2380. Association for Computational Linguistics, 2018. 3.2
- Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in language models. In *ICLR*. OpenReview.net, 2023. 3.4, 4, B.1
- Wen-tau Yih, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh. The value of semantic parse labeling for knowledge base question answering. In *ACL*. The Association for Computer Linguistics, 2016. 3.4, A.4
- Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO: an open-source LLM reinforcement learning system at scale. *CoRR*, abs/2503.14476, 2025. 2.2.4
- Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerlzoo: Investigating and taming zero reinforcement learning for open base models in the wild. *CoRR*, abs/2503.18892, 2025. 3.3

Appendix

Table of Contents

A	More Implementation Details	16
	A.1 Training Parameters	16
	A.2 Details of Training Data	16
	A.3 Details of Hardware and Software	16
	A.4 Details of Out-of-Domain Benchmarks	16
	A.5 Deatils of Interface Definitions	17
В	More Experimental Results	19
	B.1 Can Instruction-Tuned LLMs Effectively Invoke Interfaces?	19
	B.2 Ablation Studies	20
	B.3 More Case Studies	20
C	Limitations	28
D	LLM Usage	29

A MORE IMPLEMENTATION DETAILS

A.1 TRAINING PARAMETERS

The hyperparameters used for training are listed in Table 4.

Table 4: Training Hyperparameters for SITUATEDTHINKER.

Parameters	Value
Learning Rate	1e-6
Total Training Steps	250
Warmup Steps	20
# Rollouts per Question	8
Total Training Batch Size	256
Max Prompt Length	2048
Max Response Length	12288
$\epsilon_{ m min}$	0.2
$\epsilon_{ ext{max}}$	0.28

A.2 DETAILS OF TRAINING DATA

The training data consist of two components: 1) the training subset of MusiQue (Trivedi et al., 2022), containing 19,938 samples; and 2) 10,000 mathematical data from Big-Math (Albalak et al., 2025), where the pass rate in the original data is treated as an indication of difficulty, and the easy (pass rate \geq 0.7), medium (0.3 \leq pass rate < 0.7), and hard (pass rate < 0.3) questions are selected in a ratio of 1:1:8.

A.3 DETAILS OF HARDWARE AND SOFTWARE

We conduct experiments on the cluster equipped with NVIDIA H100-80G GPUs. The reinforcement learning framework is implemented based on veRL (Sheng et al., 2025), cooperated with Pytorch (Paszke et al., 2019) 2.6.0, Transformers (Wolf et al., 2020) 4.51.3, vLLM (Kwon et al., 2023) 0.8.4.

A.4 DETAILS OF OUT-OF-DOMAIN BENCHMARKS

MedQA. MedQA is a free-form, multiple-choice open-domain question-answering dataset designed to tackle medical problems, as detailed by professional medical licensing exams like the USMLE, AIIMS, and NEET PG (Jin et al., 2020). The dataset encompasses three languages—English, Simplified Chinese, and Traditional Chinese—consisting of 12,723, 34,251, and 14,123 questions, respectively. For our analysis, we utilize only the English test subset, which contains a total of 1,273 questions. Accuracy is reported as the evaluation metric and the information retrieval interface is provided for SITUATEDTHINKER and baselines.

GPQA. GPQA (Graduate-Level Google-Proof Q&A) (Rein et al., 2023) is a rigorous multiple-choice benchmark comprising 448 expert-crafted questions in biology, physics, and chemistry. These questions are both authored and validated by domain experts who either hold or are pursuing PhDs in the respective fields. While experts demonstrate an accuracy of only 65%, which increases to 74% when clear mistakes are discounted, skilled non-experts achieve a mere 34% accuracy, despite having full web access and allotting over 30 minutes per question. Our experiment employs the diamond split of GPQA, consisting of 198 questions. Accuracy serves as the evaluation metric and the information retrieval interface is provided for SITUATEDTHINKER and baselines.

WebQSP. WebQSP dataset (Yih et al., 2016) is a significant benchmark in knowledge-base question answering, derived from the original WebQuestions dataset, which includes 6,642 question–answer pairs over Freebase. It contains 4,737 fully annotated SPARQL query parses and 1,073 partial annotations for questions that could not be semantically parsed or required descriptive answers,

totaling 5,810 annotations. This dataset necessitates models to perform up to two-hop reasoning over Freebase entities, serving as a fundamental benchmark for multi-hop KBQA research. Our experiments are conducted on the test split comprising 1,628 questions. We implement two interfaces for interacting with the knowledge base: 1) the Relation Retrieval Interface for retrieving neighboring relations of a given entity, and 2) the Tail Entity Retrieval Interface for retrieving neighboring tail entities of a given entity and relation. We report hits1, which measures the correctness of the predicted answer, as the evaluation metric.

WTQ. WTQ dataset (Pasupat & Liang, 2015) is a large-scale question-answering dataset based on semi-structured HTML tables from Wikipedia, designed for exploring compositional semantic parsing on real-world tables. It includes 22,033 free-form, natural language questions paired with 2,108 distinct tables—each with at least 8 rows and 5 columns—created by Amazon Mechanical Turk workers without templates, resulting in high linguistic and structural diversity. This dataset serves as a benchmark for multi-step reasoning over tables, necessitating operations such as filtering, aggregation, superlatives, arithmetic, joins, and unions. Our experiments are conducted on the test split containing 7,175 questions. We implement three interfaces for interacting with the knowledge base: 1) the Header Interface for retrieving headers given a table ID, 2) the Column Interface for retrieving a column specified by the table ID and header, and 3) the Row Interface for retrieving a row specified by the table ID and row index. We report accuracy as the evaluation metric.

TextWorld. TextWorld (Côté et al., 2018) is a text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. We leverage it to generate a test text-based games benchmark composed of 50 distinct games. We implement four interfaces for interacting with the games through the gym-like APIs(Brockman et al., 2016): 1) the Feedback Interface for returning text observation produced by the game in response to the last command, 2) the Description Interface for returns text description of the current room given the command sequence, 3) the Admissible Commands Interface for returning all commands relevant to the current state given the command sequence, and 4) the Possible Admissible Commands Interface for returning all possible commands of the current game. We report the pass rate of all games as the evaluation metric.

A.5 DEATILS OF INTERFACE DEFINITIONS

Question Answering Interfaces. Two interfaces (e.g., retrieval and code execution) have been employed in HotpotQA, 2WikiMultihop, MuSiQue, Bamboogle, MedQA, and GPQA.

Information Retrieval Interface

Interface For Retrieval Information

- **Description:** This interface retrieves the necessary information based on the given query.
- Query Format: ¡retrieval¿, ...query... ¡/retrieval¿.
- Invoke Limit 5.

Code Execution Interface

Interface For Code Execution

- **Description:** This interface executes provided Python code snippets and returns the results, making it suitable for tasks such as data processing, analysis, computation, and validation.
- Query Format: ¡code¿ ...query... ¡/code¿.
- Invoke Limit 5.

Knowledge Graph Interfaces. We outline the interfaces used in WebQSP to interact with the knowledge graph environments, which includes: relation retrieval and tail entity retrieval interfaces.

Relation Retrieval Interface

Interface For Relation Retrieval

- **Description:** This interface retrieves the neighboring relations given the entity in the query format ¡relation¿ entity ¡/relation¿.
- Query Format: ¡relation¿ ...query... ¡/relation¿.
- Invoke Limit 10.

Tail Entity Retrieval Interface

Interface For Tail Entity Retrieval

- **Description:** This interface retrieves the tail entities associated with a given head entity and relation, as specified in the query format jentity, head entity, relation j/entity.
- Query Format: ¡entity¿ ...query... ¡/entity¿.
- Invoke Limit 10.

Database Interfaces. The interfaces used in WTQ to interact with the database environments include: table header retrieval, column retrieval, and row retrieval interfaces.

Header Retrieval Interface

Interface For Header Retrieval

- **Description:** This interface retrieves the headers of the table specified by the given table id in the query format ¡header¡, table id ¡/header¡.
- Query Format: ¡header¿ ...query... ¡/header¿.
- Invoke Limit 10.

Column Retrieval Interface

Interface For Column Retrieval

- **Description:** This interface retrieves a column of the table specified by the given table id and header in the query format ¡column¿ table id, header name ¡/column¿.
- Query Format: ¡column¿ ...query... ¡/column¿.
- Invoke Limit 10.

Row Retrieval Interface

Interface For Row Retrieval

- **Description:** This interface retrieves a row of the table specified by the given table id and row index in the query format $irow_{i,t}$ table id, row index $irow_{i,t}$.
- Query Format: ¡row¿ ...query... ¡/row¿.
- Invoke Limit 10.

Game Interaction Interfaces. In TextWorld, we adopt the interfaces to interact with the game environments, including: obtaining feedback, obtaining description, obtaining admissible commands, obtaining description, and obtaining possible admissible commands interfaces.

Obtaining Feedback Interface

Interface For Obtaining Feedback

- **Description:** This interface returns text observation produced by the game in response to the last command given the game id and the command sequence in the query format ¡feedback¿ game id command1, command2, ... ¡/feedback¿.
- Query Format: ¡feedback¿ ...query... ¡/feedback¿.
- Invoke Limit 50.

975

976

977

978 979 980

981

982

983

984

985

986

987

989

990

991

992

993

994

995 996

997 998

999

1000

1002

1003 1004

1007

1008 1009

1010

1011

1012

1013

1014

1015

1016

1017 1018

1020

1023 1024 1025

Obtaining Description Interface

Interface For Obtaining Description

- Description: This interface returns text description of the current room given game id and the commmnd sequence in the query format ¡description¿ game id — command1, command2, ... ¡/description¿.
- **Query Format:** ¡description¿ ...query... ¡/description¿.
- Invoke Limit 50.

Obtaining Admissible Commands Interface

Interface For Obtaining Admissible Commands

- Description: This interface returns all commands relevant to the current state given game id and the command sequence in the query format ¡admissiblecommand¿ game id — command1, command2, ... ¡/dadmissiblecommand¿.
- Query Format: ¡admissiblecommand¿ ...query... ¡/admissiblecommand¿.
- Invoke Limit 50.

Obtaining Description Interface

Interface For Obtaining Description

- Description: This interface returns text description of the current room given game id and the commmand sequence in the query format ¡description¿ game id — command1, command2, ... ¡/description¿.
- **Query Format:** ¡description¿ ...query... ¡/description¿.
- Invoke Limit 50.

Obtaining Possible Admissible Commands Interface

Interface For Obtaining Possible Admissible Commands

- **Description:** This interface returns all possible commands given game id in the query format possibleadmissiblecommand; game id;/possibledadmissiblecommand;.
- Query Format: ¡possibleadmissiblecommand¿, ...query... ¡/possibleadmissiblecommand¿,
- Invoke Limit 50.

More Experimental Results

CAN INSTRUCTION-TUNED LLMs EFFECTIVELY INVOKE INTERFACES?

In this section, we investigate whether instruction-tuned LLMs can effectively utilize interfaces. We compare the performance of instruction-tuned Qwen3 series models against SITUATEDTHINKER, using a no-thinking mode to minimize the impact of post-training. For instruction-tuned LLMs, we implement a pipeline similar to ReAct (Yao et al., 2023). As shown in Table 5, while instruction tuning enhances the LLM's ability to use interfaces compared to the base model, indicating some improvement in capability, the performance remains inadequate. In contrast, SITUATEDTHINKER significantly outperforms the instruction-tuned models, supporting our claim in W3 that SITUATED-THINKER can further enhance the capabilities of already powerful models.

Table 5: Comparison of instruct LLMs and SITUATEDTHINKER.

Model	Size	Musique	Bamboogle	WebQSP	TextWorld
Instruct		0.124	0.448	34.7	22.0
mstruct		0.197	0.465	58.4	46.0
SITUATEDTHINKER		0.235	$-\bar{0}.\bar{5}5\bar{2}$	66.5	42.0
SHUATEDIHINKER		0.255	0.512	68.7	94.0

1026 1027

Table 6: Ablation study of interfaces during training.

1031 1032

1033 1034 1035

1036

1039

1040 1041

1043 1044 1045

1046

1047

1048

1053

1054

1055

1056

1057

1063

1064

1067 1068

1073 1074 1075

1077 1078

1079

Training Configuration AIME24 **TextWorld** Size **Bamboogle** w/o interfaces 0.208 11.3 14.0 w/ retrieval only 0.440 22.4 40.0 w/ code only 0.336 24.7 36.0 27.0 SITUATEDTHINKER 0.552 42.0

Table 7: Ablation study of no-interfaces during inference.

Inference Configuration	Size	Bamboogle	AIME24	TextWorld
w/o interfaces		0.240	20.7	28.0
SITUATEDTHINKER		0.552	27.0	42.0

B.2 ABLATION STUDIES

Impact of Interfaces in Training. To investigate the roles of different interfaces in training, we compare the performance of SITUATEDTHINKER when trained without interfaces, with only the Information Retrieval interface, or with only the Code Execution interface, as presented in Table 6. The results indicate that training without interfaces or with a single interface leads to degraded performance. For benchmarks like Bamboogle and TextWorld, which rely heavily on external knowledge, the Information Retrieval interface proves more critical. In contrast, for tasks such as mathematical reasoning (AIME24), where internal knowledge is often sufficient, the Code Execution interface plays a more significant role.

Impact of Interfaces in Inference. In this section, we examine the role of different interfaces during the inference phase of SITUATEDTHINKER, with all experiments based on SITUATEDTHINKER trained using both information retrieval and code execution interfaces. First, we assess performance when no interfaces are provided during inference. As shown in Table 7, access to interfaces at inference time significantly enhances performance, particularly for benchmarks like Bamboogle and TextWorld, which heavily depend on external information. Next, we evaluate SITUATEDTHINKER'S performance when provided with all 12 interfaces discussed in this paper during inference to determine whether SITUATEDTHINKER can effectively select appropriate interfaces in practical applications and generalize to out-of-domain interfaces, given that interface definitions in real-world scenarios are typically not task-specific. As presented in Table 8, performance degradation is minimal, indicating that SITUATEDTHINKER is robust to a large number of available interfaces and remains focused without being distracted.

MORE CASE STUDIES

In this section, we present a detailed analysis of cases sampled from the outputs generated by SITU-ATEDTHINKER across diverse benchmarks to highlight additional aspects of SITUATEDTHINKER's reasoning process.

Case From Multi-Hop Question-Answering Benchmarks. Case B.1 illustrates SITUATED-THINKER's response on the Bamboogle dataset. The red highlighted and green highlighted sections demonstrate SITUATEDTHINKER's ability to correct invocation errors based on external feedback.

Case From Mathematical Reasoning Benchmarks. Case B.2 illustrates SITUATEDTHINKER'S response on the MATH500 dataset. When addressing fundamental mathematical problems, SITUAT-EDTHINKER can utilize its internal knowledge to perform actions for solving them, as detailed in the red highlighted section. The green highlighted section indicates that SITUATEDTHINKER leverages the code execution interface to validate its conclusions, enabling effective reflection.

Table 8: Ablation study of all-interfaces during inference.

Inference Configuration	Size	WTQ	TextWorld
w/o interfaces		67.3	44.0
SITUATEDTHINKER		68.9	42.0

Case From MedQA Benchmark. Case B.3 presents SITUATEDTHINKER's response on the MedQA dataset, which involves a multiple-choice medical question requiring selection of the correct option. SITUATEDTHINKER demonstrates step-by-step reasoning: it first understands the question and options, then retrieves relevant information (green highlighted), and finally draws a conclusion. Before generating the final answer, SITUATEDTHINKER invokes the code execution interface to validate this conclusion (red highlighted).

Case From GPQA Benchmark. Case B.4 presents SITUATEDTHINKER's response on the GPQA dataset, which includes a multiple-choice science question requiring the correct option to be selected. Initially, SITUATEDTHINKER utilizes its knowledge and computational power to reach a preliminary conclusion (green highlighted), followed by invoking a code execution interface to verify this conclusion (red highlighted).

Case from WebQSP Benchmark. Case B.5 presents SITUATEDTHINKER's response on the WebQSP dataset, involving a question requiring an answer based on knowledge graph data. SITUATEDTHINKER employs step-by-step reasoning: it first understands the question, then identifies and retrieves relevant entity and relation information (green highlighted). Before generating the answer, SITUATEDTHINKER verifies its conclusion (blue highlighted).

Case from WTQ Benchmark. Case B.6 presents SITUATEDTHINKER's response on the WTQ dataset, involving a question requiring an answer based on a table-based database. SITUATEDTHINKER invokes appropriate interfaces to determine the context of the external world (green highlighted), subsequently acquires the necessary information from external sources (red highlighted) to reach a conclusion, and also utilizes its knowledge to perform simple calculations and reflections.

Case from TextWorld Benchmark. Case B.7 presents SITUATEDTHINKER's response on the TextWorld dataset, involving a text-based game requiring a command sequence for completion. The green highlighted section shows the initial planning based on understanding the requirements. Subsequently, SITUATEDTHINKER refines its solution by invoking appropriate interfaces to obtain feedback from the game world (blue highlighted). Notably, the red highlighted section illustrates how SITUATEDTHINKER learns from errors, allowing it to refine its invocation.

```
1134
                                                         Case B.1: Case From Bamboogle
1135
1136
                 OUESTION
                 What is the capital of the second largest state in the US by area?
1137
1138
                 ANSWER
1139
                 austin
1140
                 RESPONSE
1141
                 To determine the capital of the second largest state in the US by area, we need to follow these steps:
1142
                 1. Identify the second largest state in the US by area. 2. Find the capital of that state.
                 ### Step 1: Identify the Second Largest State in the US by Area
1143
                 First, we need to know the states ranked by their area. We can use the Code Execution interface to find this information. I'll write a
1144
                 Python code snippet to get the list of US states sorted by area and then identify the second largest state.
                 ;code;
1145
                 import requests
1146
                 from bs4 import BeautifulSoup
                 url = "https://www.worldatlas.com/articles/the-10-largest-states-in-the-united-states.html"
1147
                 response = requests.get(url)
1148
                 soup = BeautifulSoup(response.text, 'html.parser')
1149
                 # Extract the table of largest states
                 table = soup.find('table', 'class': 'table')
1150
                 rows = table.find_all('tr')
1151
                 # Parse the state names and areas
1152
                 states = \Pi
                 for row in rows[1:11]: # Top 10 largest states
1153
                 cols = row.find_all('td')
1154
                 state = cols[1].text.strip()
                 area = float(cols[2].text.strip().replace(',', "))
1155
                 states.append((state, area))
1156
                 # Sort states by area in descending order
1157
                 states.sort(key=lambda x: x[1], reverse=True)
1158
                 # Get the second largest state
                 second_largest_state = states[1][0]
1159
                 print(second_largest_state)
1160
                  /code; result;
                 Error from code executor: list index out of range
1161
1162
                 It seems there was an error in the code. The error might be due to the structure of the webpage or the way we are trying to
                 parse it. Let's try a different approach to get the information about the largest states by area.
1163
                 Instead of scraping the website, we can use a more reliable dataset. I'll write a Python code snippet with a predefined list of
1164
                 the largest states by area.
                 ¡code¿
1165
                 # Predefined list of the largest states in the US by area
                 largest_states_by_area = [ ("Alaska", 1723335.0), ("Texas", 695662.0), ("California", 423967.0), ("Montana", 380831.0), ("New
1166
                 Mexico", 314917.0), ("Arizona", 295234.0), ("Nevada", 286313.0), ("Colorado", 269601.0), ("Oregon", 254755.0), ("Washington",
1167
                 184827.0) 1
1168
                 # Sort states by area in descending order
                 largest\_states\_by\_area.sort(key=lambda\ x:\ x[1],\ reverse=True)
1169
                 # Get the second largest state
1170
                 second_largest_state = largest_states_by_area[1][0]
1171
                 print(second_largest_state)
                 j/code; ¡result; Texas
1172
1173
                 The second largest state in the US by area is Texas.
                 ### Step 2: Find the Capital of Texas
1174
                 Now that we know the second largest state is Texas, we need to find its capital. We can use the Retrieval interface to get this
1175
                 information
                 ¡retrieval¿ What is the capital of Texas? ¡/retrieval¿ ¡result¿ ...retrieval results... ¡/result¿ From the retrieved information, we can
1176
                 conclude that the capital of Texas is Austin.
1177
                 ¡conclusion¿
                 The answer is \boxed{Austin}
1178
                 ¡/conclusion¿
1179
```

Case B.2: Case From MATH500

QUESTION

A regular hexagon can be divided into six equilateral triangles. If the perimeter of one of the triangles is 21 inches, what is the perimeter, in inches, of the regular hexagon?

ANSWER

42

1184

1185 1186

1188 1189 RESPONSE 1190 To solve the problem, we need to determine the side length of the equilateral triangle first, and then use that information to find the perimeter of the regular hexagon 1191 1. Determine the side length of the equilateral triangle: 1192 - The perimeter of an equilateral triangle is the sum of the lengths of its three equal sides. - If the perimeter of the equilateral triangle is 21 inches, then the side length s of the triangle can be calculated as: 1193 1194 $s = \frac{\text{perimeter}}{3} = \frac{21}{3} = 7 \text{ inches}$ 1195 1196 2. Relate the side length of the triangle to the side length of the hexagon: - A regular hexagon can be divided into six equilateral triangles, and each side of the hexagon is equal to the side length of these 1197 triangles. 1198 Therefore, the side length of the hexagon is also 7 inches. 3. Calculate the perimeter of the regular hexagon: 1199 - A regular hexagon has six equal sides. - If the side length of the hexagon is 7 inches, then the perimeter P of the hexagon is: 1201 $P = 6 \times s = 6 \times 7 = 42$ inches 1202 Now, let's confirm the calculation using the provided interfaces. ¡code¿ s = 21/3P = 6 * s1205 ;/code; result; 42.0 /result; 1207 Now we have confirmed the calculation using code execution. The perimeter of the regular hexagon is indeed 42 inches. 1208 The answer is \boxed{42} 1209 ;/conslusion; 1210 1211 1212 1213 QUESTION 1214 A 35-year-old man comes to the physician because of itchy, watery eyes for the past week. He has also been sneezing multiple times 1215 a day during this period. He had a similar episode 1 year ago around springtime. He has iron deficiency anemia and ankylosing spondylitis. Current medications include ferrous sulfate, artificial tear drops, and indomethacin. He works as an elementary school 1216 teacher. His vital signs are within normal limits. Visual acuity is 20/20 without correction. Physical examination shows bilateral 1217 conjunctival injection with watery discharge. The pupils are 3 mm, equal, and reactive to light. Examination of the anterior chamber of the eye is unremarkable. Which of the following is the most appropriate treatment? 1218 A): Erythromycin ointment 1219 B): Ketotifen eye drops C): Warm compresses 1220 D): Fluorometholone eye drops ANSWER 1222 1223

RESPONSE

1224

1225

1226

1227

1228

1229

1230

1231

1235

1236

1237

1240

Alright, I have this multiple-choice question about a 35-year-old man with itchy, watery eyes and sneezing. I need to figure out the most appropriate treatment from the options provided. Let's break this down step by step.

Step 1: Understand the Patient's Symptoms and History

First, let's summarize what's given:

- **Patient's Age and Gender:** 35-year-old man.

- **Chief Complaint:** Itchy, watery eyes for the past week, sneezing multiple times a day.
- **History:** Similar episode 1 year ago around springtime.
- **Medical Conditions:** Iron deficiency anemia, ankylosing spondylitis.
 - **Current Medications: ** Ferrous sulfate, artificial tear drops, indomethacin.
- **Occupation:** Elementary school teacher.
- **Vital Signs: ** Within normal limits.
 - **Visual Acuity: ** 20/20 without correction.
- 1233 **Physical Examination:**
 - Bilateral conjunctival injection with watery discharge.
 - Pupils: 3 mm, equal, reactive to light.
 - Anterior chamber of the eye: Unremarkable.

Okay, so the patient has seasonal symptoms of itchy, watery eyes and sneezing, which suggests an allergic reaction. The physical exam shows signs of conjunctival inflammation, which is consistent with allergic conjunctivitis.

Step 2: Recall the Options
The options for treatment are:

A) Erythromycin ointment

B) Ketotifen eve drops

B) Ketotifen eye drop
C) Warm compresses

D) Fluorometholone eye drops

I need to determine which of these is the most appropriate treatment for allergic conjunctivitis.

```
1242
1243
                 ### Step 3: Retrieve Relevant Information
                 First, I should retrieve some information about allergic conjunctivitis and the treatments listed.
1244
                 retrieval; What is allergic conjunctivitis and what are the common treatments? retrieval; result; ...result; ...result;
1245
                 From the retrieval, it seems that allergic conjunctivitis is caused by an allergic reaction, often due to hay fever, and is
                 characterized by symptoms like redness, swelling, itching, and watery discharge. The treatment typically involves avoiding
1246
                 allergens and using antihistamines, either topically or systemically.
1247
                 ### Step 4: Analyze Each Option
                 Now, let's look at each option and see if it aligns with the treatment of allergic conjunctivitis.
1248
                 **A) Erythromycin ointment**
1249
                 Erythromycin is an antibiotic. I recall that antibiotics are used to treat bacterial infections, not allergic conditions. So, this doesn't
                 seem appropriate for allergic conjunctivitis.
1250
                 **B) Ketotifen eye drops**
1251
                 Ketotifen is an antihistamine. From the retrieval, antihistamines are a common treatment for allergic conjunctivitis. This seems like a
                 good candidate.
1252
                 **C) Warm compresses**
1253
                 Warm compresses are often used for conditions like styes or blocked tear ducts. I'm not sure if they're a standard treatment for
                 allergic conjunctivitis. Maybe for symptom relief, but not a primary treatment.
                 **D) Fluorometholone eye drops*
1255
                 Fluorometholone is a corticosteroid. Corticosteroids are anti-inflammatory and can be used for severe allergic reactions, but they're
                 usually not the first-line treatment for allergic conjunctivitis due to potential side effects. Antihistamines are generally preferred first.
1256
                 ### Step 5: Narrow Down the Options
1257
                 Based on the analysis:
                 - **A) Erythromycin ointment:** Unlikely, as it's an antibiotic for bacterial infections.
                 - **B) Ketotifen eye drops: ** Likely, as it's an antihistamine for allergic conditions.
1259
                 - **C) Warm compresses: ** Possibly for symptom relief, but not a primary treatment.
                 - **D) Fluorometholone eye drops: ** Possible for severe cases, but not the first-line treatment.
                 So, the most appropriate treatment seems to be **B) Ketotifen eye drops**
1261
                 ### Step 6: Verify with Code Execution
                 To ensure I'm correct, I'll run a quick code snippet to confirm the classification of these treatments.
1262
                 :code:
1263
                 import pandas as pd
                 # Create a DataFrame with treatments and their categories
1264
1265
                 'Treatment': ['Erythromycin ointment', 'Ketotifen eye drops', 'Warm compresses', 'Fluorometholone eye drops'],
                 'Category': ['Antibiotic', 'Antihistamine', 'Symptom Relief', 'Corticosteroid']
1266
1267
                 df = pd.DataFrame(data)
                 # Define the correct treatment based on the analysis
1268
                 correct_treatment = 'Ketotifen eye drops'
1269
                 # Check the category of the correct treatment
                 category = df[df['Treatment'] == correct_treatment]['Category'].values[0]
1270
                 print(f"The correct treatment is {correct_treatment}, which is a {category}.")
1271
                 i/code; iresult; The correct treatment is Ketotifen eye drops, which is a Antihistamine.
                 :/result;
1272
                 .
Yes, Ketotifen is indeed an antihistamine, which aligns with the treatment of allergic conjunctivitis.
                 ### Step 7: Final Answer
                 After going through the reasoning process and verifying with the code execution, the most appropriate treatment for this patient's
1274
                 allergic conjunctivitis is Ketotifen eve drops
                 The answer is \backslash boxed\{B\}.
1276
                 :conculsion;
```

Case B.4: Case From GPQA

QUESTION

1278 1279

1280

1281

1282

1283

1284

1285

1286

1287

1290 1291

1293

1295

Researchers are attempting to detect transits of two Earth-like planets: Planet_1 and Planet_2. They have limited observing time and want to observe the one that has the highest probability of transiting. Both of these planets have already been detected via the RV method, allowing us to know their minimum masses and orbital periods. Although both planets share the same masses, the orbital period of Planet_1 is three times shorter than that of Planet_2. Interestingly, they both have circular orbits. Furthermore, we know the masses and radii of the host stars of these two planets. The star hosting Planet_1 has a mass that is twice that of the host star of Planet_2. As the host of Planet_2 is slightly evolved, both host stars have the same radii. Based on the provided information, the researchers have chosen to observe:

A): Planet_1 is preferred due to its 1.65 times higher probability to transit.

B): Planet_1 is preferred due to its 2.7 times higher probability to transit.

C): Planet_2 is preferred due to its 2.25 times higher probability to transit.

D): Planet_2 is preferred due to its 1.5 times higher probability to transit.

ANSWER

A

RESPONSE

1. **Understanding the Problem**: We need to determine which planet has a higher probability of transiting its host star, given the information about their orbital periods and the masses/radii of their host stars. The probability of a transit is related to the inclination of the planet's orbit, and planets with shorter orbital periods around smaller stars have a higher probability of transiting.

2. **Key Factors**:

```
1296
1297
                   - **Orbital Period**: Planet_1 has an orbital period that is three times shorter than Planet_2.
                   - **Host Star Mass**: The host star of Planet_1 is twice as massive as that of Planet_2.
- **Host Star Radius**: Both host stars have the same radius.
1298
1299
                   3. **Transit Probability**: The probability P of a transit is approximately the ratio of the star's radius R_* to the semi-major
                   axis \boldsymbol{a} of the planet's orbit:
1300
1301
1302
                    For circular orbits, the semi-major axis a can be estimated using Kepler's Third Law:
1303
                                                                               a = \left(\frac{GM_*P^2}{4\pi^2}\right)^{1/3}
1304
1305
1306
                    where G is the gravitational constant, M_* is the mass of the star, and P is the orbital period.
                   4. **Comparing the Two Planets**:
1307
                   - Let P_1 and P_2 be the orbital periods of Planet_1 and Planet_2, respectively. Given P_1 = \frac{1}{3}P_2.
                    - Let M_{*1} = 2M_{*2} and R_{*1} = R_{*2} = R_*.
                    5. **Calculating the Semi-Major Axes**:
1309
                   - For Planet_1:
1310
                                                        a_1 = \left(\frac{GM_{*1}P_1^2}{4\pi^2}\right)^{1/3} = \left(\frac{G \cdot 2M_{*2} \cdot \left(\frac{1}{3}P_2\right)^2}{4\pi^2}\right)^{1/3}
1311
1312
                   - For Planet_2:
1313
                                                                             a_2 = \left(\frac{GM_{*2}P_2^2}{4\pi^2}\right)^{1/3}
1314
1315
1316
                    6. **Simplifying the Ratio \frac{a_1}{a_2} **:
1317
                                                            \frac{a_1}{a_2} = \left(\frac{2M_{*2} \cdot \left(\frac{1}{3}P_2\right)^2}{M_{*2}P_2^2}\right)^{1/3} = \left(\frac{2}{9}\right)^{1/3} \approx 0.66
1318
1319
                    So, a_1 \approx 0.66 a_2.
1320
                    7. **Calculating the Transit Probabilities**:
1321
                   - For Planet_1:
1322
                                                                       P_1 \approx \frac{R_*}{a_1} \approx \frac{R_*}{0.66a_2} \approx 1.52 \frac{R_*}{a_2}
1323
1324
                   - For Planet_2:
1325
                                                                                      P_2 \approx \frac{R_*}{a_2}
1326
                   Therefore, P_1 \approx 1.52 P_2.
1327
                   8. **Interpreting the Results**: The transit probability of Planet_1 is approximately 1.52 times higher than that of Planet_2. This
                   means Planet_1 is more likely to transit its host star.
                   9. **Matching with the Options**: The closest option to a 1.52 times higher probability is option A, which states that Planet_1 is
                    preferred due to its 1.65 times higher probability to transit.
                    Let's verify the calculations using Python to ensure accuracy.
                    ;code;
1331
                    import math
1332
                    # Given data
                    P2 = 1 # Let P2 be 1 unit
1333
                    P1 = P2 / 3
1334
                    M2 = 1 # Let M2 be 1 unit
                    M1 = 2 * M2
1335
                    # Calculating semi-major axes
1336
                   a1 = (M1 * P1**2)**(1/3)
a2 = (M2 * P2**2)**(1/3)
1337
                    # Calculating transit probabilities
1338
                    P1_{transit} = 1/a1
1339
                    P2 transit = 1/a2
                    # Ratio of transit probabilities
1340
                   P1_P2_ratio = P1_transit / P2_transit
                   print(P1_P2_ratio)
1341
                    ;/code; ;result; 1.6509636244473134
1342
                    i/result and The calculated ratio of the transit probabilities is approximately 1.65, which matches option A.
1343
                    ;conclusion;
                    Planet_1 is preferred due to its 1.65 times higher probability to transit.
1344
                   The answer is backslashboxed{A}
1345
                    ;/conclusion;
```

1350 Case B.5: Case From WebQSP 1351 1352 **OUESTION** where is iamarcus russell from 1353 1354 ANSWER 1355 mobile 1356 RESPONSE 1357 To find out where JaMarcus Russell is from, I need to follow these steps: 1358 1. First, I should find the neighboring relations of JaMarcus Russell. This will give me an overview of the information available about 1359 Query: ;relation;JaMarcus Russell;/relation; ;result; ['sports.sports_team_roster.player', 'com'american_football.player_rushing_statistics.player', 'education.education.institution', mon.topic.notable_for', 'sports.pro_sports_played.sport', 'american_football.football_player.position_s', 'sports.pro_sports_played.athlete', 'american_football.player_passing_statistics.player', 'american_football.player_rushing_statistics.season', 'people.person.nationality', 'sports_league_draft_pick.school', 'sports_sports_team_roster.team', 'people.place_lived.location', 'people.person.place_vived.location', 'people.person.place_vived.location', 'freebase.valuenotation.has_value', 'amerple.person.parents', 'people.place_lived.person', 1363 'sports.sports_league_draft_pick.draft', 'sports.sports_league_draft_pick.player', 1364 'education.education.student', 'common.topic.notable_types', 'sports.sports_league_draft_pick.team', ican football.player_passing_statistics.team', 'american football.player_passing_statistics.season', 'american_football.player_game_statistics.team', 'people.person.ethnicity', 'sports.sports_team_roster.position', 'common.topic.image', 'american_football.player_rushing_statistics.team', 'american_football.player_game_statistics.season', 1365 'people.person.profession', 'people.person.gender', 'american_football.player_game_statistics.player'] ;/result; 1367 The result shows various relations related to JaMarcus Russell. The most relevant one to find his place of birth is 'people.person.place_of_birth'. 2. Next, I need to retrieve the entity associated with the relation 'people.person.place_of_birth' for JaMarcus Russell. 1369 Query: ¡entity¿JaMarcus Russell, people.person.place_of_birth¡/entity¿ ¡result¿ ['Mobile'] ¡/result¿ 1370 The result indicates that the place of birth for JaMarcus Russell is Mobile. 3. To provide a more complete answer, I should find out more about Mobile, such as the country it is located in. First, I need 1371 to find the neighboring relations of Mobile. 1372 Query: ¡relation¿Mobile¡/relation¿ ¡result¿ ['music.composition.composer', 'travel.travel_destination.tourist_attractions', 'common.topic.notable_for', 'music.composition.recordings', 'music.recording.producer', 'music.recording.releases', 1373 'location.administrative_division_capital_relationship.administrative_division', 'music.recording.song', 1374 $'base.wikipedia_infobox.settlement.area_code', \ 'music_recording_canonical_version', \ 'location_location_nearby_airports', \ 'location_nearby_airports', \ 'lo$ place.county', 'film.film_location.featured_in_films', 'freebase.valuenotation.has.value', 'mu'location.location.events', 'music.composition.form', 'common.topic.notable_types', 'loca-'location.hud_county_place.county', 1375 sic.single.versions'. 'common.topic.notable_types', 1376 'location.citytown.postal_codes', 'music.recording.artist'. tion.hud_county_place.place', 'common.webpage.topic'. 'government.government_position_held.jurisdiction_of_office', 'location.place_with_neighborhoods.neighborhoods'. 'location.location.time_zones', 'common.topic.image', 'location.location.containedby', 'location.statistical_region.population', 'periodicals.newspaper_circulation_area.newspapers', 'location.administrative_division_capital_relationship.capital'] [/result; The result doesn't directly show the country, so I need to find a relation that can lead me to that information. The relation 'location.location.containedby' might help. 1380 4. I need to retrieve the entity associated with the relation 'location.location.containedby' for Mobile. Query: ¡entity¿Mobile, location.location.containedby;/entity¿ ¡result¿ ['Alabama', 'Mobile County', 'United States of 1381 America', 'Area code 251'] ;/result; 1382 The result includes 'United States of America', which is the country. For more specificity, I can check the relation 'location.hud_county_place.county' to find the state. 5. I need to retrieve the entity associated with the relation 'location.hud_county_place.county' for Mobile. 1384 Query: ¡entity¿Mobile, location.hud_county_place.county;/entity¿ ¡result¿ ['Mobile County'] ;/result¿ This confirms that Mobile is in Mobile County, Alabama, USA. Based on this information, I can conclude that JaMarcus Russell is from Mobile, Alabama, USA. 1386 conclusion; JaMarcus Russell is from Mobile. 1387 The answer is \boxed{Mobile} 1388 1389 1390 Case B.6: Case From WTQ 1391 1392 OUESTION 1393 How many were played on a hard surface? 1394 ANSWER 1395

RESPONSE

1399

1400

1401

1402

1403

Alright, I have this question: "How many were played on a hard surface?" and I'm given a table with the ID 'nt-458'. I need to figure out how to extract the relevant information from this table to answer the question. Let's break this down step by step. ### Step 1: Understand the Question

First, I need to understand what the question is asking. It's asking for the number of something that was played on a hard surface. But what exactly is "something"? Is it games, sports, matches, or something else? Since I don't have the actual table, I'll need to figure out the structure of the table to proceed.

Step 2: Retrieve the Table Headers

To understand the table, I should start by retrieving its headers. This will give me an idea of what columns are available and what kind of data is stored in them.

```
1404
1405
                 I'll use the **Header Retrieval** interface for this.
                 ¡header¿nt-458¡/header¿ ¡result¿ ['Outcome', 'Date', 'Tournament', 'Surface', 'Partnering', 'Opponent in the final', 'Score
1406
                 in the final'] ;/result;
1407
                 Okay, so the table has the following headers: Outcome, Date, Tournament, Surface, Partnering, Opponent in the final, and
                 Score in the final.
1408
                 ### Step 3: Identify Relevant Columns
1409
                 Now, I need to identify which columns are relevant to the question. The question is about something played on a hard surface.
                 Looking at the headers, the "Surface" column seems directly related to the type of surface on which something was played.
1410
                 So, the "Surface" column is likely the key here. But to get the count of how many were played on a hard surface, I might need to look
1411
                 at the entire "Surface" column and count the occurrences of "hard surface."
                 Wait, but the question is a bit vague. It's asking "how many were played on a hard surface?" So, I need to determine what
1412
                 "were played" refers to. Given the headers, it could be matches, games, or some other event. Maybe it's tennis matches, given
1413
                 the presence of "Tournament" and "Score in the final.'
                 Assuming it's tennis matches, then "Surface" would indicate the type of court (e.g., hard, clay, grass). So, I need to count how
1414
                 many matches were played on a hard surface.
1415
                 ### Step 4: Retrieve the "Surface" Column
                 To get the count, I need to retrieve the "Surface" column from the table.
1416
                 I'll use the **Column Retrieval** interface for this.
1417
                 [column_{\ell}] nt-458, Surface['column_{\ell}] result_{\ell}['Clay', 'Clay', 'Hard', 'Hard', 'Hard', 'Grass', 'Grass', 'Hard', 'Hard', 'Hard', 'Hard']
1418
                 Okay, so the "Surface" column contains the following values: ['Clay', 'Clay', 'Hard', 'Hard', 'Hard', 'Grass', 'Grass', 'Hard',
1419
                 'Hard', 'Hard', 'Hard'].
                 ### Step 5: Count the Occurrences of "Hard"
1420
                 Now, I need to count how many times "Hard" appears in this list.
1421
                 Let's go through the list:
                 1. Clay
1422
                 2. Clay
                 3. Hard
                 4. Hard
1424
                 5. Hard
1425
                 6. Grass
                 7. Grass
1426
                 8. Hard
1427
                 9. Hard
                 10. Hard
1428
                 11. Hard
1429
                 Counting the "Hard" entries:
                 3, 4, 5, 8, 9, 10, 11 \rightarrow \text{That's 7 times.}
1430
                 Wait, let's double-check:
1431
                 1. Clay
                 2. Clay
1432
                 3. Hard
1433
                 4. Hard
                 5. Hard
1434
                 6. Grass
1435
                 7. Grass
                 8. Hard
1436
                 9. Hard
1437
                 10. Hard
                 11. Hard
1438
                 Yes, "Hard" appears 7 times.
1439
                 ### Step 6: Verify the Count
                 To ensure accuracy, I'll recount:
1440
                 3, 4, 5, 8, 9, 10, 11 \rightarrow 7 times.
1441
                 Yes, it's correct.
                 ### Step 7: Formulate the Answer
1442
                 The question is asking for the number of matches played on a hard surface. Based on the data, that number is 7.
1443
                 The number of matches played on a hard surface is \boxed{7}
1444
                 ¡/conclusion¿
1445
```

Case B.7: Case From TextWorld

QUESTION

1446 1447

1448

1449 1450

1451

1452

1454 1455

1456

1457

Game Objective:

You are now playing a exciting session of TextWorld! First, it would be a great idea if you could attempt to venture west. Okay, and then, move west. That done, retrieve the staple from the chair inside the office. Once you have got the staple, head east. Then, rest the staple on the shelf inside the cellar. Alright, thanks!

ANSWER

[Any Command Sequence to Win the Game]

RESPONSE

To solve this game, I need to follow the instructions provided in the game objective. Here's the step-by-step reasoning process: 1. **Start by moving west**: The first instruction is to move west. I should begin with the command 'go west'.

```
1458
1459
                  2. **Retrieve the staple from the chair inside the office**: After moving west, I need to find the office, get the staple from the
1460
                  chair, and pick it up. The command to pick up an item is usually 'get [item]'. However, I first need to navigate to the office
                  and identify the staple.
1461
                  3. **Head east**: After retrieving the staple, I need to move east. The command for this is 'go east'.
                 4. **Rest the staple on the shelf inside the cellar**: Finally, I need to go to the cellar, find the shelf, and place the staple there.
1462
                 The command to put an item on something is usually 'put [item] on [location]'.
1463
                  Let's start by moving west. I'll invoke the **Interface For Obtain Admissible Commands** to see what commands are available
                 initially
1464
                  ¡admissiblecommand¿14;/admissiblecommand¿ ¡result¿ Invalid query format. Please use the format ¡admissiblecom-
1465
                  mand¿game id — command1, command2, ... ;/dadmissiblecommand¿. ;/result¿
                 It seems I made a mistake in the query format. Let's correct that. I'll try again:
1466
                  ¡admissiblecommand¿14 — ¡/admissiblecommand¿ ¡result¿ ['drop burger', 'eat burger', 'examine burger', 'go west',
1467
                  'inventory', 'look'] ;/result;
                  Great, the admissible commands initially include 'go west'. I'll execute that command.
1468

    **Command**: 'go west'

1469
                  Now, I need to check the new state of the game to see where I am and what I can do next. I'll invoke the **Interface For
                  Obtain Description** to get a description of the current room.
1470
                  ¡description¿14 — go west¡/description¿ ¡result¿
1471
                  = Cellar =-
                  You have come into a cellar. Not the cellar you'd expect. No, this is a cellar.
1472
                  Look over there! a shelf. You shudder, but continue examining the shelf. The shelf is standard. But oh no! there's nothing on this
                  piece of junk. You make a mental note to not get your hopes up the next time you see a shelf in a room. You can see a counter. The
                  counter is normal. But the thing hasn't got anything on it.
1474
                  There is a closed hatch leading north. You need an unguarded exit? You should try going east. There is an unblocked exit to the west.
1475
                  There is a fondue on the floor.
1476
                  From the description, \Gammam now in the cellar. The next instruction is to retrieve the staple from the chair inside the office. Since \Gammam in
1477
                  the cellar, I need to move to the office. The description mentions an unblocked exit to the west, so I'll go west again.
                  2. **Command**: 'go west
1478
                  I'll check the new room description to see if I'm in the office and to identify the staple.
1479
                  ¡description; 14 — go west, go west;/description; ¡result;
                  -= Office =
1480
                  I am required to announce that you are now in the office. You try to gain information on your surroundings by using a technique you
1481
                 call "looking."
                  You see a chair. The chair is standard. On the chair you see a staple.
1482
                 There is an unblocked exit to the east.
1483
                  /result/
                  Now I'm in the office, and the description mentions a staple on the chair. I'll retrieve the staple.
1484
                    **Command**: 'get staple'
1485
                  After getting the staple, I should check the admissible commands to see what I can do next.
                  ¡admissiblecommand¿14 — go west, go west, get staple¡/admissiblecommand¿ ¡result¿ ['drop burger', 'eat burger', 'examine burger', 'examine chair', 'examine staple', 'go east', 'inventory', 'look', 'put burger on chair', 'take staple from chair'] ¡/result¿
1486
1487
                  The admissible commands include 'go east'. According to the game objective, after getting the staple, I need to head east.
                  4. **Command**: 'go east'
1488
                  Now, I'm back in the cellar with the staple. The next instruction is to rest the staple on the shelf inside the cellar. I'll check
1489
                  the description to locate the shelf.
                  idescription, 14 — go west, go west, get staple, go east;/description, iresult,
1490
                  -= Cellar =-
1491
                  You have come into a cellar. Not the cellar you'd expect. No, this is a cellar.
                  Look over there! a shelf. You shudder, but continue examining the shelf. The shelf is standard. But oh no! there's nothing on this
1492
                  piece of junk. You make a mental note to not get your hopes up the next time you see a shelf in a room. You can see a counter. The
1493
                  counter is normal. But the thing hasn't got anything on it.
                  There is a closed hatch leading north. You need an unguarded exit? You should try going east. There is an unblocked exit to the west.
1494
                 There is a fondue on the floor.
1495
                  ;/result;
                  The description mentions a shelf in the cellar. I'll put the staple on the shelf.
1496
                  **Command**: 'put staple on shelf'
1497
                  Now, I need to check if this completes the game. I'll invoke the **Interface For Obtain Feedback** to see the game's response.
                  jfeedback; 14 — go west, go west, get staple, go east, put staple on shelf;/feedback; ¡result;
1498
                  You put the staple on the shelf.
1499
                  Your score has just gone up by one point.
                  *** The End **
1500
                  You scored 1 out of a possible 1, in 6 turns.
1501
                  Would you like to RESTART, RESTORE a saved game, QUIT or UNDO the last command? ;/result;
                 The game indicates that I've completed the objective and reached the end. Therefore, the command sequence is successful.
1502
                  The command sequence to win the game is: 'go west, go west, get staple, go east, put staple on shelf'
                  The answer is \boxed{go west, go west, get staple, go east, put staple on shelf}
                  ;/conclusion;
```

C LIMITATIONS

1509

1510

1511

In this paper, we propose SITUATEDTHINKER to ground LLM reasoning with various external worlds. Although SITUATEDTHINKER demonstrates noteworthy performance, several avenues for future investigation remain. First, while our experiments and analysis provide valuable insights,

they are presently confined to the textual domain of LLMs and benchmarks. This contrasts with real-world information, which inherently spans multiple modalities, including images, audio, and video. Consequently, investigating methods to effectively incorporate multimodal information into the reasoning process for broader *situated thinking* remains a significant and intriguing challenge for future research. Furthermore, the current scope of our experimentation and analysis is limited exclusively to the English language. Therefore, the applicability and performance of SITUATED-THINKER with interfaces and information presented in languages other than English remains an open question. Addressing this linguistic limitation is crucial for establishing the generalizability of the proposed framework across diverse linguistic contexts. Lastly, the current iteration of our approach primarily addresses deterministic inference problems that possess definitive answers, while largely neglecting open-ended questions or tasks requiring non-deterministic outcomes. While some preliminary exploration within text environments has been conducted, extending the framework to handle complex planning tasks, such as those encountered in interactive environments or robotics, which involve sequential decision-making and managing uncertainty, represents a critical direction for future work and is clearly warranted.

D LLM USAGE

 In this research, the use of LLMs is confined to the final stages, specifically for refining and proof-reading the manuscript. LLMs are employed exclusively to improve the clarity, logical coherence, and linguistic precision of the narrative, ensuring a clear and sophisticated presentation of our ideas. Importantly, LLMs played no role in the foundational components of this study, including the formulation of the research strategy, the design of the experimental framework, or the interpretation of results. We acknowledge full responsibility for the content of the paper.