
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SITUATEDTHINKER: GROUNDING LLM REASONING
WITH REAL-WORLD THROUGH SITUATED THINKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) demonstrate their impressive
reasoning capabilities. However, the reasoning confined to internal parametric
space limits LLMs’ access to real-time information and understanding of the physi-
cal world. To overcome this constraint, we introduce SITUATEDTHINKER, a novel
framework that enables LLMs to ground their reasoning in real-world contexts
through situated thinking, which adaptively combines both internal knowledge
and external information with predefined interfaces. By utilizing reinforcement
learning, SITUATEDTHINKER incentivizes deliberate reasoning with the real world
to acquire information and feedback, allowing LLMs to surpass their knowledge
boundaries and enhance reasoning. Experimental results demonstrate significant
performance improvements on multi-hop question-answering and mathematical
reasoning benchmarks. Furthermore, SITUATEDTHINKER demonstrates strong
performance on unseen tasks, such as KBQA, TableQA, and text-based games,
showcasing the generalizable real-world grounded reasoning capability.

1 INTRODUCTION

Recent advancements in large language models (LLMs) have been largely driven by their emergent
reasoning capabilities in solving complex tasks (Ahn et al., 2024; Sun et al., 2023; Huang & Chang,
2023), representing a substantial leap toward artificial general intelligence (AGI). More recently,
long-chain-of-thought (long-CoT) reasoning models, such as OpenAI-o1 (OpenAI, 2024), DeepSeek-
R1 (DeepSeek-AI et al., 2025), have substantially improved LLM reasoning capabilities by generating
a deliberate thinking process, involving extensive exploration and reflection before concluding the
final answer (Chen et al., 2025b). These advancements are largely credited to reinforcement learning
(RL) frameworks (Shao et al., 2024; Schulman et al., 2017), which incentivize LLMs to freely explore
the reasoning steps solely given a final reward. This is positioned as a pathway to self-evolving LLMs
with test-time scaling in reasoning (Muennighoff et al., 2025), potentially advancing the development
of stronger intelligence (Snell et al., 2024).

Despite their success, current long-CoT reasoning remains confined to the internal parametric space
of LLMs, limiting alignment with the external world. This closed-world reasoning restricts LLMs
from accessing up-to-date information and adapting to the ever-evolving world, often leading to
hallucinations and factual inconsistencies (Wu et al., 2024; Araya, 2025). Moreover, the absence of
an internal world model impairs the ability to reason about physical dynamics (Wang et al., 2023),
reducing performance on tasks requiring real-world understanding, such as path planning (Song et al.,
2023) and robot control (Singh et al., 2023). These limitations pose significant obstacles to the goal of
achieving AGI (Feng et al., 2024), underscoring the necessity for LLMs to interact with and ground
their reasoning in the external world.

Existing attempts for aligning LLMs with the external world have primarily focused on using retrieval-
augmented generation (RAG) (Wu et al., 2024) or tool-calling (Schick et al., 2023b) to inject external
knowledge into LLM reasoning. While enhancing factual accuracy, they raise a fundamental chal-
lenge in determining the boundary between the LLMs’ internal knowledge and externally retrieved
information (Ren et al., 2025) (C.1). Over-reliance on either internal knowledge or external infor-
mation may lead to brittle or suboptimal reasoning. Additionally, complex reasoning tasks often
require deliberate, multi-step thinking processes (C.2). This necessitates LLMs to adaptively engage
with the external world—querying, receiving feedback, incorporating new information, refining their

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

thinking through reflection and self-correction, instead of relying on a predefined workflow (Trivedi
et al., 2023b). Moreover, the dynamic nature of the external world necessitates that LLMs adjust
their thinking processes in response to evolving environments (C.3). This requires LLMs to develop
generalizable real-world grounded reasoning capabilities rather than focusing solely on a specific
task and tool, such as searching (Jin et al., 2025; Song et al., 2025; Jin et al., 2025).

To address these challenges, we propose a novel framework, SITUATEDTHINKER, which effectively
grounds LLM reasoning with real-world contexts. Extending the internal reasoning of LLMs, we
introduce a new paradigm of situated thinking, which allows LLMs to adaptively engage with external
environments through predefined interfaces. These interfaces provide a unified description of the
external world, such as knowledge, tools, and physics environment, allowing LLMs to access real-
world information and feedback, facilitating a more accurate and context-aware thinking process.
Situated thinking synergizes the internal reasoning of LLMs with situated reasoning in the external
world, allowing LLMs to identify required information to surpass its knowledge boundaries, refine
their thinking processes, and improve their overall performance in real-world tasks (to address C.1).

To facilitate deliberate situated thinking, we adopt the RL framework (Shao et al., 2024) to enable
LLMs to reason with the external world and tackle complex tasks (to address C.2). During training,
LLMs are prompted to use interfaces to gather necessary real-world information and explore their
reasoning steps freely to reach a final conclusion. The model is then optimized for the accuracy of
its conclusions using a straightforward rule-based reward function, avoiding complex intermediate
supervision. To incentivize the generalizable situated thinking capability of LLMs, we train the model
on two representative tasks (e.g., multi-hop QA and mathematical reasoning) and two fundamental
interfaces (e.g., knowledge retrieval and code execution) to improve its adaptability to out-of-domain
external worlds (addressing C.3). In general, the distinguishing characteristics of our work are
as follows: ❶ SITUATEDTHINKER integrates internal and external knowledge within single-turn
thinking to effectively tackle real-world application tasks; ❷ SITUATEDTHINKER is not restricted to
single external interfaces, such as code execution or web search, and demonstrates generalizability
across tasks in diverse scenarios. Experimental results indicate that various LLMs trained with our
SITUATEDTHINKER framework demonstrate significant performance improvements on multi-hop
question-answering and mathematical reasoning benchmarks, outperforming prominent baselines.
Furthermore, we evaluate the generalization capabilities of SITUATEDTHINKER across unseen
tasks, including KBQA, TableQA, and text-based games, demonstrating strong situated thinking
capability with new interfaces without further training. Moreover, the empirical analysis reveals
that SITUATEDTHINKER can effectively perceive the boundaries of its own knowledge and conduct
complex reasoning by appropriately invoking interfaces to reflect and verify uncertain thinking
processes. The contributions of this work can be summarized as follows:

• We propose a novel framework, SITUATEDTHINKER, that enables LLMs to ground their reasoning
in the external world to extend the capability of LLMs for real-world tasks.

• We introduce situated thinking, a new paradigm that allows LLMs to adaptively engage with
external environments and incentivize deliberate reasoning processes with reinforcement learning.

• We conduct extensive experiments demonstrating the effectiveness of SITUATEDTHINKER and its
generalizable situated thinking to new tasks and interfaces.

2 APPROACH

Figure 1 illustrates the overall framework of SITUATEDTHINKER. In this section, we first present
the details of situated thinking, which is central to SITUATEDTHINKER’s ability to ground LLM
reasoning in the external world by defining interfaces, internal action, and situated action. Next,
we describe SITUATEDTHINKER’s training process, which encourages LLMs to perform complex
reasoning about the real world through a deliberative situated thinking approach.

2.1 SITUATED THINKING

The situated thinking is designed to enable LLMs to conduct complex reasoning by combining
both internal knowledge and external information, which contains three key components: interfaces,
internal action, and situated action.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

LLM

Interfaces

Thinking Conclusion

Internal Action

Training &
Inference

Input Question

External
World

invoke feedback

verify

AnswerInterfaces
Template

Internal World

Situated
Thinking

Physical
Environment

 Knowledge
Graph

Database

Code Retrieval

Situated Action

Robot

Figure 1: The framework of SITUATEDTHINKER, where LLMs take questions and predefined
interfaces as inputs. Then, they conduct situated thinking to adaptively combine basic reasoning with
internal action and external reasoning while performing situated actions through the interfaces. The
final conclusion is obtained through a deliberate reasoning process and verified to optimize models
with reinforcement learning. External world can be presented as knowledge graphs, databases, or the
physical environment (like a room space for robot control).

Interfaces. Interfaces offer a standardized representation of the external world. We can easily define
interfaces for various external environments, such as knowledge graphs, databases, and physical
environments to ground LLMs’ reasoning in the real world. In SITUATEDTHINKER, we have
crafted a universal template for various interfaces, as outlined in the box below. Specifically, each
interface is characterized by its Name and Description, which define the purpose, inputs, and
feedback associated with the interface to aid the model in understanding the external world and
utilizing the interface effectively. Then, the Query Format specifies the format in which the
model can interact with the interface, including the start <interface start tag> and end
<interface end tag> tags for the query. Finally, we assign an Invoke Limit to enhance
interaction efficiency and prevent the model from entering inefficient interaction loops. Example
interfaces like retrieval, code execution, and game control can be found in § A.5.

Interface Template

Interface For {Interface Name}
- Description: {Description for the Interface}
- Query Format: ¡interface start tag¿ ...query... ¡interface end tag¿.

- Invoke Limit {Invoke limit}.

Internal Action. The internal action is a fundamental step of the thinking process, enabling step-by-
step reasoning though token generation (CoT) (Wei et al., 2022). It highlights the LLMs’ ability to
perform basic reasoning using their internal knowledge, such as problem decomposition, summa-
rization, and simple arithmetic operations. For example, when presented with the question, What
government position was held by the woman who portrayed Corliss Archer in the film Kiss and Tell?,
LLMs could break down the query into two sub-questions using internal action: 1) Who was the
actress that portrayed Corliss Archer in ”Kiss and Tell”?; and 2) What government position did
Shirley Temple hold?. Additionally, for some mathematical problems, advanced LLMs can utilize
its internal knowledge to perform basic arithmetic operations. For instance, when asked What is
128 + 56?, LLMs can internally compute the answer as 184 without needing to invoke any external
interface.

Situated Action. When addressing tasks requiring up-to-date knowledge, perception of the external
environment, or complex reasoning beyond LLMs’ capabilities, LLMs must engage with the external
world to conduct reasoning, which is called situating action. For example, as shown in § 3.6, the
LLM first uses internal actions to reason and analyze questions. It then realizes it lacks information
about the current president of East Timor and formulates a query to expand its knowledge by asking:
Who is the current president of East Timor? through the interface. The query is enclosed within the
tags <interface start tag> and <interface end tag> of the relevant interface. Then,
we invoke the interface to execute the query and conduct the reasoning on the external world to
receive feedback that The current president of East Timor is Francisco Guterres. The feedback is

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

returned with the format of <result> and </result>, which is incorporated into the thinking
process to facilitate further reasoning. Additionally, cases in § B.3 show that LLMs could invoke a
coding interface to solve complex mathematical reasoning or obtain real-world knowledge.

2.2 INCENTIVIZING REASONING WITH SITUATED THINKING USING REINFORCEMENT
LEARNING

Complex tasks often require LLMs to conduct deliberate reasoning, utilizing situated thinking to
surpass knowledge boundaries while reflecting on feedback from the external world. Teaching LLMs
to reason based on real-world information is essential but challenging due to the scarcity of human-
annotated data. Reinforcement learning (RL) has emerged as a powerful method for enhancing
LLMs’ reasoning capabilities by providing rewards based on final conclusions (DeepSeek-AI et al.,
2025). Therefore, we aim to harness RL to enhance the reasoning abilities of LLMs, enabling them to
explore the external world with situated thinking and incorporate feedback for refining their reasoning
and maximizing answer accuracy.

2.2.1 INPUT TEMPLATE

The input to SITUATEDTHINKER consists of two main components: the system prompt and the user
question.

System Prompt. The system prompt is designed to guide LLMs in reasoning and interacting
with the external world. We first prompt LLMs to perform a thorough analysis of the problem
through a reasoning process that leads to a conclusion, marked by the tags <conclusion> and
</conclusion>. The final answer is clearly presented in the format of \boxed{...final
answer...}. Then, we provide LLMs with a set of interfaces that allow them to interact with the
external world, as detailed in the § 2.1.

System Prompt of SITUATEDTHINKER

Reasoning and Format Prompt
A conversation between a User and an Assistant. The User poses a question, and the Assistant provides a solution. The Assistant’s
response follows these structured steps:

1. Reasoning Process: The Assistant comprehensively thinks about the problem through a reasoning process.
2. Conclusion: The Assistant reaches a conclusion, which is enclosed within <conclusion> and </conclusion> tags. The
final answer is highlighted within ‘\boxed{...final answer...}‘.
3. Response Format: The complete response should be formatted as:
...reasoning process...
<conclusion>
...conclusion...
The answer is \boxed{...final answer...}
</conclusion>

Interfaces Prompt
During the reasoning process, the Assistant can interact with the system by invoking given interfaces and placing queries within
<interface start tag> ...query here... </interface end tag> tags. The system processes these queries and returns
results in the format <result> ...results... </result>. After gathering all necessary information, the Assistant continues with
the reasoning process to finalize the answer. The assistant cannot invoke each interface more than {Invoke Limit} times.
The following are the interfaces provided for the Assistant:

{Placeholder for Interface Definitions}

Question. The system prompt is followed by the specific question, to which the model responds
through an iterative and detailed reasoning process of exploration and reflection, accompanied by
interaction with the external world.

2.2.2 ROLLOUT WITH SITUATED THINKING

The rollout process of SITUATEDTHINKER is designed to enable LLMs to use situated thinking and
freely explore the reasoning on the external world. The rollout would generate an iterative reasoning
trajectory with both internal and situated actions as detailed in § 2.1. Given a question, we sample G
individual reasoning trajectories {ti}Gi=1 from the policy of the current LLM, denoted as πθold(·|q)
where q is the input question. The trajectories would be assessed by the reward function to optimize
the model.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.2.3 REWARD DESIGN

We design a simple reward function to obtain rewards for the generated trajectories. The reward
function is based on the format correctness and the answer accuracy of the generated trajectory, which
is a common practice in RL training for reasoning tasks (DeepSeek-AI et al., 2025). Formally, the
reward ri for each trajectory ti is calculated as follows:

ri =


1.0, canswer(ti),

0.0, cformat(ti) and ¬canswer(ti),

-0.1, ¬cformat(ti) and ¬canswer(ti),

(1)

where cformat(·) evaluates the correctness of the trajectory format, requiring that the conclusion be
correctly enclosed within <conclusion> and </conclusion> tags, and the answer within
\boxed{}. The canswer(·) indicates the correctness of the final answer, which will be evaluated
by QA accuracy or match correctness. It is noteworthy that we did not design additional rewards
for teaching LLMs how to invoke interfaces (Song et al., 2025). In subsequent experiments, we
empirically find that the model learned to invoke the interface correctly solely through the reward of
answer correctness verification.

2.2.4 TRAINING OBJECTIVE

We design the training objective by extending the Group Relative Policy Optimization (GRPO) (Shao
et al., 2024). By sampling a group of trajectories, we compute advantages ai,: of all tokens in each
trajectory as the mean normalization of group-level rewards {ri}Gi=1, which is computed as:

ai,j = ri − mean
(
{ri}Gi=1

)
, 0 ≤ j < |ti|, (2)

where ai,j is the advantage of the j-th token in the i-th trajectory. Then, the final objective of
SITUATEDTHINKER is formulated as:
L(θ) = E(q,a)∼D,{ti}G

i=1∼πθold (·|q) 1

G

G∑
i=1

1

|ti|

|ti|∑
j=1

min

(
πθ(ti,j |q, ti,<j)

πθold(ti,j |q, ti,<j)
ai,j , clip

(
πθ(ti,j |q, ti,<j)

πθold(ti,j |q, ti,<j)
, 1− ϵmin, 1 + ϵmax

)
ai,j

) .

(3)
Compared to standard GRPO, our objective incorporates the following key modifications: 1) We
introduce distinct clipping bounds, ϵmin and ϵmax, to promote exploration (Yu et al., 2025); 2) We
omit the KL penalty term, as our goal is to inject the situated thinking capability into LLM reasoning
that is distinct from the base LLMs (Yu et al., 2025).

3 EXPERIMENT

3.1 EXPERIMENT SETTINGS

Implementation Details. We select two distinct base LLMs from the Qwen3 series (Team, 2025):
the 8B-Base and 14B-Base models, which have not undergone any post-training, allowing us to
observe fundamental performance changes during training. For training, we utilize only two tasks:
multi-hop question-answering and mathematical reasoning. Specifically, we employ the training
split of MuSiQue (Trivedi et al., 2022) and select 10,000 samples from Big-Math (Albalak et al.,
2025) to construct our training data. During the training process, we provide two interfaces for the
model: 1) information retrieval interface, which retrieves useful information from Wikipedia (2018
dump (Karpukhin et al., 2020)); 2) code execution interface, which executes Python code generated
by LLMs and returns feedback. More details of interface definitions and training parameters are
provided in § A.

Evaluation Settings. We evaluate SITUATEDTHINKER on two groups of benchmarks: in-domain
and out-of-domain benchmarks. For in-domain benchmarks, we evaluate the performance on four
multi-hop question-answering (§ 3.2) and three mathematical reasoning benchmarks (§ 3.3) to assess
its reasoning capabilities on trained tasks and interfaces. For out-of-domain benchmarks, we evaluate
the generalization capabilities of SITUATEDTHINKER on five unseen external environments, including
new domains (e.g., medical, science), new tasks (e.g., KBQA, table QA), and new interfaces (e.g.,
game environment interaction interfaces) (§ 3.4).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Multi-Hop QA benchmarks results. All methods are based on Qwen series LLMs. � indi-
cates the model with 7B/8B parameters and � indicates the model with 14B parameters. Green cells
indicate the best performance in each column, while Blue cells indicate the second-best performance.
The results of ReSearch and Search-R1 are borrowed from original papers.

Model Size HotpotQA 2WikiMultihop QA MusiQue Bambooogle

w/o RAG � 0.237 0.294 0.078 0.137
� 0.256 0.299 0.089 0.154

Naive RAG � 0.331 0.258 0.090 0.164
� 0.358 0.261 0.118 0.185

Iter-RetGen � 0.370 0.312 0.110 0.242
IRCOT � 0.340 0.246 0.107 0.282
ReSearch � 0.406 0.447 0.217 0.432
Search-R1 � 0.380 0.326 0.168 0.384

SITUATEDTHINKER
� 0.433 0.464 0.235 0.552
� 0.451 0.483 0.255 0.512

3.2 PERFORMANCE ON MULTI-HOP QUESTION-ANSWERING BENCHMARKS

Benchmarks. We first evaluate SITUATEDTHINKER on test the split of four multi-hop question-
answering benchmarks: HotpotQA (Yang et al., 2018), 2WikiMultihopQA (Ho et al., 2020),
MusiQue (Trivedi et al., 2022), and Bamboogle (Press et al., 2023), with the information retrieval and
coding interface seen during training. We report exact match (EM) metrics to assess the performance
on these benchmarks.

Baselines. We employ four types of baseline methods: 1) No RAG methods, where the LLM
is prompted to generate answers directly; 2) Naive RAG methods, involving a straightforward
retrieval-based approach that concatenates the retrieval results with the question before prompting the
language model to generate an answer; 3) Multi-step RAG methods, which utilize a multi-step RAG
framework during reasoning, including two prominent methods: Iter-RetGen (Shao et al., 2023) and
IRCoT (Trivedi et al., 2023a); and 4) Search-enhanced models, which utilize search tools to retrieve
information during the LLM reasoning process, including two advanced methods: ReSearch (Chen
et al., 2025a) and Search-R1 (Jin et al., 2025), which are also trained from GRPO. All baselines are
implemented on base models of the equivalent size and family, and we leverage the same external
documents for the retrieval. For methods that are challenging to reproduce, we report the best results
achieved with models of the same size as presented in the original papers.

Performance. Table 1 summarizes the performance of SITUATEDTHINKER in comparison to baseline
methods. Notably, SITUATEDTHINKER consistently surpasses prominent baseline approaches. In
particular, our model outperforms those baseline methods that incorporate retrieval in their reasoning
process, demonstrating its ability to interact with the external environment using multiple interfaces
(e.g., coding) beyond simple retrieval (§ B.3). Additionally, our improvements are evident across
both in-domain (MusiQue) and out-of-domain benchmarks (e.g., HotpotQA, 2WikiMultiHopQA,
and Bamboogle).

3.3 PERFORMANCE ON MATHEMATICAL REASONING BENCHMARKS

Benchmarks. We assess the mathematical reasoning capabilities of SITUATEDTHINKER and baseline
models using three representative benchmarks: AIME241, AIME252, and MATH500 (Hendrycks
et al., 2021; Lightman et al., 2024). The average accuracy at position 32 (avg@32) is employed as
the evaluation metric.

Baselines. Three categories of baseline methods are employed: 1) Base models, which are
public LLMs without additional training, including Qwen3-Base (Team, 2025) and Qwen2.5-Math-
Instruct (Yang et al., 2024); 2) Advanced reasoning LLMs trained via reinforcement learning, which
employ reinforcement learning with verifiable rewards but cannot interact with real-world, such
as SimpleRL-Zero (Zeng et al., 2025) and Eurus-2 (Cui et al., 2025); 3) Tool-integrated reasoning

1https://huggingface.co/datasets/AI-MO/aimo-validation-aime
2https://huggingface.co/datasets/opencompass/AIME2025

6

https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/opencompass/AIME2025

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

methods, which incorporate code integration into their reasoning process, including Qwen2.5-Math-
Instruct-TIR (Yang et al., 2024) and ToRL (Li et al., 2025).

Table 2: Mathematical reasoning benchmarks results. Math-Specific
means whether is based on the math-specific LLM.

Model Size Math-Specific AIME24 AIME25 MATH500

Qwen3-Base � ✗ 11.7 7.6 59.6
� ✗ 10.0 10.1 70.7

Qwen2.5-Math-It � ✓ 10.0 16.7 74.8
SimpleRL-Zero � ✓ 33.3 6.7 77.2
Eurus-2 � ✓ 26.7 13.3 79.2
Qwen2.5-Math-It-TIR � ✓ 26.7 16.7 74.8
ToRL � ✓ 43.3 30.0 82.2

SITUATEDTHINKER
� ✗ 27.0 22.6 84.7
� ✗ 43.0 26.5 87.1

Performance. As demon-
strated in Table 2, SITUAT-
EDTHINKER achieves a sig-
nificant improvement over
the base model. Further-
more, when compared with
other advanced baselines,
particularly those derived
from math-specific mod-
els typically pre-trained on
extensive professional cor-
pora, our model also demon-
strates competitive perfor-
mance. In comparison to
the advanced tool-integrated baseline ToRL, which is trained from the stronger math-specific LLM
and more training data, SITUATEDTHINKER outperforms it on the MATH500 dataset and achieves
competitive results on AIME24 and AIME25.

3.4 PERFORMANCE REGARDING GENERALIZATION TO OUT-OF-DOMAIN WORLDS

In this section, we aim to assess the generalization capability of SITUATEDTHINKER with respect to
out-of-domain external environments.

Benchmarks. We focus on two types of generalization capabilities: 1) cross-domain and 2) cross-
interface. For cross-domain generalization, we utilize the medical reasoning benchmark MedQA (Jin
et al., 2020) and the scientific reasoning benchmark GPQA (Rein et al., 2023), which share interfaces
with the training data but focus on different disciplines. For cross-interface generalization, we evaluate
three benchmarks: the knowledge-based question-answering benchmark WebQSP (Yih et al., 2016),
the table question-answering benchmark WTQ (Pasupat & Liang, 2015), and the text-based planning
benchmark TextWorld (Côté et al., 2018). Please refer to § A.4 for details and evaluation metrics of
these benchmarks.

Baselines. We primarily compare with Qwen3-Base models (Team, 2025). To better evaluate the
effectiveness of SITUATEDTHINKER, we also compared it with the interface-enhanced baseline.
Specifically, we utilize the input template to feed to the Qwen3-Base models, so that they can interact
with the external world using interfaces, which can be seen as an implementation of ReAct (Yao et al.,
2023),. We also include Research and Search-R1, which are only trained to incorporate with single
interface to further assess the generalization capability of SITUATEDTHINKER.

Performance. As illustrated in Table 3, SITUATEDTHINKER significantly surpasses the baseline
models both with and without interface invocation, demonstrating its enhanced ability to generalize
to new environments. This generalization includes both different vertical domains and different
interfaces. Particularly for TextWorld, a dataset based on simulated physical environments, where the

Table 3: Generalization performance comparison between SITUATEDTHINKER and baselines on
MedQA, GPQA, WebQSP, WTQ, and TextWorld. The Interfaces column indicates whether the
model can interact with external world through interfaces.

Model Size Interfaces MedQA GPQA WebQSP WTQ TextWorld

Vanilla LLMs � ✗ 3.9 6.1 41.7 6.5 10.0
� ✗ 69.6 39.4 53.1 10.5 24.0

ReAct � ✓ 5.7 5.6 22.1 35.7 8.0
� ✓ 71.9 35.9 56.3 41.6 28.0

ReSearch � ✓ 43.6 20.2 25.2 8.7 4.0
Search-R1 � ✓ 21.8 15.2 15.9 5.1 2.0

SITUATEDTHINKER
� ✓ 58.1 25.8 66.5 68.9 42.0
� ✓ 77.9 53.0 68.7 69.7 94.0

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250

0.5

1.0

1.5

2.0

2.5

Retrieval Interface Invocation

0 50 100 150 200 250

0.1

0.2

0.3

0.4

0.5

0.6
Code Interface Invocation

0 50 100 150 200 250

0.20

0.15

0.10

0.05

0.00
Invoke Error Penalty

0 50 100 150 200 250

0.2

0.4

0.6

0.8

1.0
Format Score

0 50 100 150 200 250

0.1

0.2

0.3

0.4

Reflection Score

0 50 100 150 200 250

1000

1500

2000

2500

3000

3500

Response Length

0 50 100 150 200 250
0.0

0.5

1.0

1.5

Entropy

0 50 100 150 200 250

0.1

0.2

0.3

0.4

0.5

0.6
Reward

Qwen3-8B-Base Qwen3-14B-Base

Figure 2: Illustration of training dynamics of SITUATEDTHINKER. The x-axis indicates the training
steps and the y-axis means the observation metrics.

underlying LLMs lack intrinsic knowledge of the environment, effectively utilizing the interface’s
name to interact with the external world leads to significant performance enhancements.

3.5 ANALYSIS ON TRAINING DYNAMICS

In this section, we will explore what the model has learned through GRPO by analyzing the training
dynamics. The key training dynamics are detailed in Figure 2.

SITUATEDTHINKER Learned to Invoke Interfaces. The training dynamics presented in the
sub-figures titled “Code Interface Invocation”, “Retrieval Interface Invocation”, and “Invoke Error
Penalty” illustrate the model’s ability to learn correct interface invocation and obtain feedback without
relying on explicit reward incentives In the early stages of training, the model is unable to invoke
interfaces correctly and demonstrates no significant tendency toward improvement. However, as
training progresses, the quantity of successful interface invocations steadily increases, accompanied
by a corresponding decrease in error rates.

SITUATEDTHINKER Learned to Reflect. The sub-figure titled “Reflection Score” illustrates the
dynamics of reflection patterns that emerge in responses generated by SITUATEDTHINKER. As
training progresses, the frequency of these reflection patterns gradually increases, indicating that
SITUATEDTHINKER is learning to reflect based on external feedback and subsequently improve its
reasoning performance. Additionally, the sub-figure titled “Response Length” demonstrates that the
length of SITUATEDTHINKER’s responses gradually increases as training continues. This aligns with
recent research expectations (Snell et al., 2024), suggesting that SITUATEDTHINKER has learned
to progressively scale its reasoning by enhancing interface invocation efficiency and incorporating
reflection and backtracking to verify the correctness of its thinking.

3.6 CASE STUDY

In this section, we will discuss the abilities and nature of SITUATEDTHINKER by analyzing the Case
3.1 in which SITUATEDTHINKER actually performs situated thinking.

Reasoning Step by Step. SITUATEDTHINKER firstly decomposes complex reasoning problems and
solves them incrementally, a capability acquired automatically during model training without relying
on annotated data.

Discovery Knowledge Boundary. The red highlighted part indicates that SITUATEDTHINKER is
capable of recognizing the limitations of its own knowledge. Following GRPO training, SITUATED-
THINKER can identify when the knowledge or information necessary to solve a problem surpasses
its knowledge boundary, prompting it to invoke situating interfaces to interact with the external
environment and obtain feedback that aids its reasoning.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Reflection with Interfaces. The green highlighted part signifies that SITUATEDTHINKER embodies
reflective characteristics within the reasoning process. In response to potential errors in prior reason-
ing, SITUATEDTHINKER reassesses and deliberates to verify the accuracy of its conclusions. Notably,
unlike previous long-chain-of-thought reasoning LLMs, such as DeepSeek-R1, SITUATEDTHINKER
integrates situating interfaces during reflection to enhance alignment with external environmental
information.

Case 3.1: Case From MusiQue

QUESTION
Who is the president of the newly declared independent country that has a Commission of Truth and Friendship with the country
where Ambelau is located?

RESPONSE
Alright, I need to find out who is the president of the newly declared independent country that has a Commission of Truth
and Friendship with the country where Ambelau is located. Let’s break this down step by step.
Step 1: Identify the country where Ambelau is located.
...
From the information, it seems that Taur Matan Ruak was the President of East Timor from 20 May 2012 to 20 May 2017. However,
I need to confirm if he is the current president or if there have been any changes since then.
Wait, the information also mentions that José Ramos-Horta was the President of East Timor from 20 May 2007 to 20 May
2012. So, the timeline is: - José Ramos-Horta: 2007-2012 - Taur Matan Ruak: 2012-2017
But the question is about the newly declared independent country, which is East Timor, and the president of that country.
Since East Timor declared independence in 2002, and the timeline provided goes up to 2017, I need to find out who the
current president is.
Wait, the information doesn’t specify the current president. Maybe I need to check more recent sources.
<retrieval>Who is the current president of East Timor?</retrieval>
...
The answer is \boxed{Francisco Guterres}
</conclusion>

More cases of SITUATEDTHINKER’s reasoning process across different tasks and external environ-
ments are provided in § B.3.

4 RELATED WORK

The most related line of work involves the integration of LLMs with external information through
tools or functions which are similar to the interfaces defined in our paper. Previous works (Schick
et al., 2023a; Yao et al., 2023; Wang et al., 2024; Gou et al., 2024; Qin et al., 2024; 2025) leverage the
capabilities of LLMs’ tool-calling, which are typically pre-trained on vast amounts of relevant data and
can employ pre-defined tools to solve user tasks across multiple rounds of dialogue. However, most of
these methods perform direct reasoning based on external information, they lack the ability to engage
in reflective thinking or backtracking and to utilize external information to validate their conclusions
during the reasoning process. In contrast, SITUATEDTHINKER integrates external information with
single-turn deep thinking, enabling LLMs to engage in reflective thinking through external interfaces
during the reasoning process. Recent studies (Chen et al., 2025a; Jin et al., 2025; Song et al., 2025;
Li et al., 2025; Feng et al., 2025) have attempted to bolster LLMs with reinforcement learning using
web search or writing code, which allow thinking and reflecting with external information. However,
training these methods on a single tool limits their ability to generalize to new environments, resulting
in inadequate capabilities and inflexible workflow definitions. In contrast, SITUATEDTHINKER
achieves interface generalization through a unified interface design, moving beyond reliance on a
single interface, and takes the lead in validating this approach across extensive benchmarks. Lastly,
advanced reasoning models, such as OpenAI DeepResearch (OpenAI, 2025), are regarded as capable
of handling out-of-domain tools. We believe that our work constitutes an important step toward
exploring the implementation of such models.

5 CONCLUSION

This paper introduces SITUATEDTHINKER, a novel framework that facilitates situated thinking,
enabling LLMs to actively engage with external environments through predefined interfaces. By em-
ploying reinforcement learning, SITUATEDTHINKER promotes intentional reasoning and adaptation
to diverse tasks and interfaces. Extensive experiments demonstrate the effectiveness of SITUATED-
THINKER, while further analysis highlights its intriguing and meaningful reasoning behaviors.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research focuses solely on general scientific tasks and does not pose risks to health, safety,
personal security, or privacy. No human subjects are involved, and no new datasets are released as
part of this study. Furthermore, the research does not include potentially harmful insights, methods,
or applications, nor does it raise concerns related to privacy, security, legal compliance, or research
integrity. Consequently, we anticipate no ethical risks or conflicts of interest. We are committed to
maintaining the highest standards of scientific integrity and adhering to ethical guidelines throughout
the research process.

REPRODUCIBILITY STATEMENT

We provide a comprehensive description of the proposed model in the main body, accompanied by
detailed implementation specifics, including dataset information, baseline models, and experimental
settings in §§ A and 3.1. All datasets used in this research are publicly available. Key code implemen-
tations are included in the supplementary materials for reference, with the complete code to be released
publicly upon acceptance of the paper.

REFERENCES

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. In EACL (Student Research Workshop),
pp. 225–237. Association for Computational Linguistics, 2024. 1

Alon Albalak, Duy Phung, Nathan Lile, Rafael Rafailov, Kanishk Gandhi, Louis Castricato, Anikait
Singh, Chase Blagden, Violet Xiang, Dakota Mahan, and Nick Haber. Big-math: A large-scale,
high-quality math dataset for reinforcement learning in language models. CoRR, abs/2502.17387,
2025. 3.1, A.2

Roberto Araya. Do chains-of-thoughts of large language models suffer from hallucinations, cognitive
biases, or phobias in bayesian reasoning? CoRR, abs/2503.15268, 2025. 1

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. A.4

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z. Pan,
Wen Zhang, Huajun Chen, Fan Yang, Zenan Zhou, and Weipeng Chen. Research: Learning to
reason with search for llms via reinforcement learning. CoRR, abs/2503.19470, 2025a. 3.2, 4

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models. CoRR, abs/2503.09567, 2025b. 1

Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew J. Hausknecht, Layla El Asri, Mahmoud Adada, Wendy Tay, and Adam Trischler.
Textworld: A learning environment for text-based games. In CGW@IJCAI, volume 1017 of
Communications in Computer and Information Science, pp. 41–75. Springer, 2018. 3.4, A.4

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang,
Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning
Ding. Process reinforcement through implicit rewards. CoRR, abs/2502.01456, 2025. 3.3

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing reasoning
capability in llms via reinforcement learning. CoRR, abs/2501.12948, 2025. 1, 2.2, 2.2.3

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
CoRR, abs/2504.11536, 2025. 4

Tao Feng, Chuanyang Jin, Jingyu Liu, Kunlun Zhu, Haoqin Tu, Zirui Cheng, Guanyu Lin, and
Jiaxuan You. How far are we from agi: Are llms all we need? Transactions on Machine Learning
Research, 2024. 1

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
CRITIC: large language models can self-correct with tool-interactive critiquing. In ICLR. OpenRe-
view.net, 2024. 4

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
NeurIPS Datasets and Benchmarks, 2021. 3.3

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing A multi-
hop QA dataset for comprehensive evaluation of reasoning steps. In COLING, pp. 6609–6625.
International Committee on Computational Linguistics, 2020. 3.2

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. In
ACL (Findings), pp. 1049–1065. Association for Computational Linguistics, 2023. 1

Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-
r1: Training llms to reason and leverage search engines with reinforcement learning. CoRR,
abs/2503.09516, 2025. 1, 3.2, 4

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What
disease does this patient have? A large-scale open domain question answering dataset from medical
exams. CoRR, abs/2009.13081, 2020. 3.4, A.4

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP,
pp. 6769–6781. Association for Computational Linguistics, 2020. 3.1

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In SOSP, pp. 611–626. ACM, 2023. A.3

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated RL. CoRR, abs/2503.23383,
2025. 3.3, 4

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In ICLR.
OpenReview.net, 2024. 3.3

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel J. Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. CoRR, abs/2501.19393, 2025. 1

OpenAI. Learning to reason with llms. https://openai.com/index/learning-to-
reason-with-llms/, 2024. Accessed: 2024-09-12. 1

OpenAI. Introducing deep research. https://openai.com/index/introducing-deep-
research/, 2025. Accessed: 2025-02-02. 4

11

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables. In
ACL (1), pp. 1470–1480. The Association for Computer Linguistics, 2015. 3.4, A.4

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, pp. 8024–8035, 2019. A.3

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. In EMNLP (Findings), pp. 5687–5711.
Association for Computational Linguistics, 2023. 3.2

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
16000+ real-world apis. In ICLR. OpenReview.net, 2024. 4

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe
Zhou, Yufei Huang, Chaojun Xiao, Chi Han, Yi R. Fung, Yusheng Su, Huadong Wang, Cheng Qian,
Runchu Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen
Li, Ziwei Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao,
Yuxiang Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang
Wu, Heng Ji, Guoliang Li, Zhiyuan Liu, and Maosong Sun. Tool learning with foundation models.
ACM Comput. Surv., 57(4):101:1–101:40, 2025. 4

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a benchmark.
CoRR, abs/2311.12022, 2023. 3.4, A.4

Ruiyang Ren, Yuhao Wang, Yingqi Qu, Wayne Xin Zhao, Jing Liu, Hua Wu, Ji-Rong Wen, and
Haifeng Wang. Investigating the factual knowledge boundary of large language models with
retrieval augmentation. In Proceedings of the 31st International Conference on Computational
Linguistics, pp. 3697–3715, 2025. 1

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. In NeurIPS, 2023a. 4

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–68551,
2023b. 1

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. 1

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Enhancing
retrieval-augmented large language models with iterative retrieval-generation synergy. In EMNLP
(Findings), pp. 9248–9274. Association for Computational Linguistics, 2023. 3.2

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. CoRR, abs/2402.03300, 2024. 1, 2.2.4

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient RLHF framework. In EuroSys,
pp. 1279–1297. ACM, 2025. A.3

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 11523–11530. IEEE, 2023. 1

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute optimally
can be more effective than scaling model parameters. CoRR, abs/2408.03314, 2024. 1, 3.5

Chan Hee Song, Brian M. Sadler, Jiaman Wu, Wei-Lun Chao, Clayton Washington, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
ICCV, pp. 2986–2997. IEEE, 2023. 1

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and
Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement learning.
CoRR, abs/2503.05592, 2025. 1, 2.2.3, 4

Jiankai Sun, Chuanyang Zheng, Enze Xie, Zhengying Liu, Ruihang Chu, Jianing Qiu, Jiaqi Xu,
Mingyu Ding, Hongyang Li, Mengzhe Geng, Yue Wu, Wenhai Wang, Junsong Chen, Zhangyue
Yin, Xiaozhe Ren, Jie Fu, Junxian He, Wu Yuan, Qi Liu, Xihui Liu, Yu Li, Hao Dong, Yu Cheng,
Ming Zhang, Pheng-Ann Heng, Jifeng Dai, Ping Luo, Jingdong Wang, Ji-Rong Wen, Xipeng Qiu,
Yike Guo, Hui Xiong, Qun Liu, and Zhenguo Li. A survey of reasoning with foundation models:
Concepts, methodologies, and outlook. ACM Comput. Surv., 2023. 1

Qwen Team. Qwen3: Think deeper, act faster. https://qwenlm.github.io/blog/qwen3/,
2025. 3.1, 3.3, 3.4

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Trans. Assoc. Comput. Linguistics, 10:539–554,
2022. 3.1, 3.2, A.2

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval
with chain-of-thought reasoning for knowledge-intensive multi-step questions. In ACL (1), pp.
10014–10037. Association for Computational Linguistics, 2023a. 3.2

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval
with chain-of-thought reasoning for knowledge-intensive multi-step questions. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 10014–10037, 2023b. 1

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. Trans.
Mach. Learn. Res., 2024, 2024. 4

Yi Ru Wang, Jiafei Duan, Dieter Fox, and Siddhartha S. Srinivasa. NEWTON: are large language
models capable of physical reasoning? In EMNLP (Findings), pp. 9743–9758. Association for
Computational Linguistics, 2023. 1

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022. 2.1

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In EMNLP (Demos), pp. 38–45. Association for Computational Linguistics,
2020. A.3

Shangyu Wu, Ying Xiong, Yufei Cui, Haolun Wu, Can Chen, Ye Yuan, Lianming Huang, Xue
Liu, Tei-Wei Kuo, Nan Guan, and Chun Jason Xue. Retrieval-augmented generation for natural
language processing: A survey. CoRR, abs/2407.13193, 2024. 1

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
model via self-improvement. CoRR, abs/2409.12122, 2024. 3.3

13

https://qwenlm.github.io/blog/qwen3/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In EMNLP, pp. 2369–2380. Association for Computational Linguistics, 2018. 3.2

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In ICLR. OpenReview.net, 2023.
3.4, 4, B.1

Wen-tau Yih, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh. The value
of semantic parse labeling for knowledge base question answering. In ACL. The Association for
Computer Linguistics, 2016. 3.4, A.4

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO: an open-source
LLM reinforcement learning system at scale. CoRR, abs/2503.14476, 2025. 2.2.4

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. CoRR,
abs/2503.18892, 2025. 3.3

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Appendix

Table of Contents
A More Implementation Details 16

A.1 Training Parameters . 16
A.2 Details of Training Data . 16
A.3 Details of Hardware and Software . 16
A.4 Details of Out-of-Domain Benchmarks . 16
A.5 Deatils of Interface Definitions . 17

B More Experimental Results 19
B.1 Can Instruction-Tuned LLMs Effectively Invoke Interfaces? 19
B.2 Ablation Studies . 20
B.3 More Case Studies . 20

C Limitations 28

D LLM Usage 29

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A MORE IMPLEMENTATION DETAILS

A.1 TRAINING PARAMETERS

The hyperparameters used for training are listed in Table 4.

Table 4: Training Hyperparameters for SITUATEDTHINKER.

Parameters Value
Learning Rate 1e-6
Total Training Steps 250
Warmup Steps 20
Rollouts per Question 8
Total Training Batch Size 256
Max Prompt Length 2048
Max Response Length 12288
ϵmin 0.2
ϵmax 0.28

A.2 DETAILS OF TRAINING DATA

The training data consist of two components: 1) the training subset of MusiQue (Trivedi et al., 2022),
containing 19,938 samples; and 2) 10,000 mathematical data from Big-Math (Albalak et al., 2025),
where the pass rate in the original data is treated as an indication of difficulty, and the easy (pass rate
≥ 0.7), medium (0.3 ≤ pass rate < 0.7), and hard (pass rate < 0.3) questions are selected in a ratio
of 1:1:8.

A.3 DETAILS OF HARDWARE AND SOFTWARE

We conduct experiments on the cluster equipped with NVIDIA H100-80G GPUs. The reinforce-
ment learning framework is implemented based on veRL (Sheng et al., 2025), cooperated with
Pytorch (Paszke et al., 2019) 2.6.0, Transformers (Wolf et al., 2020) 4.51.3, vLLM (Kwon et al.,
2023) 0.8.4.

A.4 DETAILS OF OUT-OF-DOMAIN BENCHMARKS

MedQA. MedQA is a free-form, multiple-choice open-domain question-answering dataset designed
to tackle medical problems, as detailed by professional medical licensing exams like the USMLE,
AIIMS, and NEET PG (Jin et al., 2020). The dataset encompasses three languages—English,
Simplified Chinese, and Traditional Chinese—consisting of 12,723, 34,251, and 14,123 questions,
respectively. For our analysis, we utilize only the English test subset, which contains a total of 1,273
questions. Accuracy is reported as the evaluation metric and the information retrieval interface is
provided for SITUATEDTHINKER and baselines.

GPQA. GPQA (Graduate-Level Google-Proof Q&A) (Rein et al., 2023) is a rigorous multiple-
choice benchmark comprising 448 expert-crafted questions in biology, physics, and chemistry. These
questions are both authored and validated by domain experts who either hold or are pursuing PhDs
in the respective fields. While experts demonstrate an accuracy of only 65%, which increases to
74% when clear mistakes are discounted, skilled non-experts achieve a mere 34% accuracy, despite
having full web access and allotting over 30 minutes per question. Our experiment employs the
diamond split of GPQA, consisting of 198 questions. Accuracy serves as the evaluation metric and
the information retrieval interface is provided for SITUATEDTHINKER and baselines.

WebQSP. WebQSP dataset (Yih et al., 2016) is a significant benchmark in knowledge-base question
answering, derived from the original WebQuestions dataset, which includes 6,642 question–answer
pairs over Freebase. It contains 4,737 fully annotated SPARQL query parses and 1,073 partial
annotations for questions that could not be semantically parsed or required descriptive answers,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

totaling 5,810 annotations. This dataset necessitates models to perform up to two-hop reasoning
over Freebase entities, serving as a fundamental benchmark for multi-hop KBQA research. Our
experiments are conducted on the test split comprising 1,628 questions. We implement two interfaces
for interacting with the knowledge base: 1) the Relation Retrieval Interface for retrieving neighboring
relations of a given entity, and 2) the Tail Entity Retrieval Interface for retrieving neighboring tail
entities of a given entity and relation. We report hits1, which measures the correctness of the predicted
answer, as the evaluation metric.

WTQ. WTQ dataset (Pasupat & Liang, 2015) is a large-scale question-answering dataset based
on semi-structured HTML tables from Wikipedia, designed for exploring compositional semantic
parsing on real-world tables. It includes 22,033 free-form, natural language questions paired with
2,108 distinct tables—each with at least 8 rows and 5 columns—created by Amazon Mechanical
Turk workers without templates, resulting in high linguistic and structural diversity. This dataset
serves as a benchmark for multi-step reasoning over tables, necessitating operations such as filtering,
aggregation, superlatives, arithmetic, joins, and unions. Our experiments are conducted on the test
split containing 7,175 questions. We implement three interfaces for interacting with the knowledge
base: 1) the Header Interface for retrieving headers given a table ID, 2) the Column Interface for
retrieving a column specified by the table ID and header, and 3) the Row Interface for retrieving a
row specified by the table ID and row index. We report accuracy as the evaluation metric.

TextWorld. TextWorld (Côté et al., 2018) is a text-based game generator and extensible sandbox
learning environment for training and testing reinforcement learning (RL) agents. We leverage it to
generate a test text-based games benchmark composed of 50 distinct games. We implement four
interfaces for interacting with the games through the gym-like APIs(Brockman et al., 2016): 1)
the Feedback Interface for returning text observation produced by the game in response to the last
command, 2) the Description Interface for returns text description of the current room given the
command sequence, 3) the Admissible Commands Interface for returning all commands relevant to
the current state given the command sequence, and 4) the Possible Admissible Commands Interface
for returning all possible commands of the current game. We report the pass rate of all games as the
evaluation metric.

A.5 DEATILS OF INTERFACE DEFINITIONS

Question Answering Interfaces. Two interfaces (e.g., retrieval and code execution) have been
employed in HotpotQA, 2WikiMultihop, MuSiQue, Bamboogle, MedQA, and GPQA.

Information Retrieval Interface

Interface For Retrieval Information
- Description: This interface retrieves the necessary information based on the given query.
- Query Format: ¡retrieval¿ ...query... ¡/retrieval¿.
- Invoke Limit 5.

Code Execution Interface

Interface For Code Execution
- Description: This interface executes provided Python code snippets and returns the results, making it
suitable for tasks such as data processing, analysis, computation, and validation.
- Query Format: ¡code¿ ...query... ¡/code¿.
- Invoke Limit 5.

Knowledge Graph Interfaces. We outline the interfaces used in WebQSP to interact with the
knowledge graph environments, which includes: relation retrieval and tail entity retrieval interfaces.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Relation Retrieval Interface

Interface For Relation Retrieval
- Description: This interface retrieves the neighboring relations given the entity in the query format
¡relation¿ entity ¡/relation¿.
- Query Format: ¡relation¿ ...query... ¡/relation¿.
- Invoke Limit 10.

Tail Entity Retrieval Interface

Interface For Tail Entity Retrieval
- Description: This interface retrieves the tail entities associated with a given head entity and relation,
as specified in the query format ¡entity¿ head entity, relation ¡/entity¿.
- Query Format: ¡entity¿ ...query... ¡/entity¿.
- Invoke Limit 10.

Database Interfaces. The interfaces used in WTQ to interact with the database environments include:
table header retrieval, column retrieval, and row retrieval interfaces.

Header Retrieval Interface

Interface For Header Retrieval
- Description: This interface retrieves the headers of the table specified by the given table id in the
query format ¡header¿ table id ¡/header¿.
- Query Format: ¡header¿ ...query... ¡/header¿.
- Invoke Limit 10.

Column Retrieval Interface

Interface For Column Retrieval
- Description: This interface retrieves a column of the table specified by the given table id and header
in the query format ¡column¿ table id, header name ¡/column¿.
- Query Format: ¡column¿ ...query... ¡/column¿.
- Invoke Limit 10.

Row Retrieval Interface

Interface For Row Retrieval
- Description: This interface retrieves a row of the table specified by the given table id and row index in
the query format ¡row¿table id, row index¡/row¿.
- Query Format: ¡row¿ ...query... ¡/row¿.
- Invoke Limit 10.

Game Interaction Interfaces. In TextWorld, we adopt the interfaces to interact with the game
environments, including: obtaining feedback, obtaining description, obtaining admissible commands,
obtaining description, and obtaining possible admissible commands interfaces.

Obtaining Feedback Interface

Interface For Obtaining Feedback
- Description: This interface returns text observation produced by the game in response to the last
command given the game id and the command sequence in the query format ¡feedback¿ game id —
command1, command2, ... ¡/feedback¿.
- Query Format: ¡feedback¿ ...query... ¡/feedback¿.
- Invoke Limit 50.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Obtaining Description Interface

Interface For Obtaining Description
- Description: This interface returns text description of the current room given game id and the com-
mmnd sequence in the query format ¡description¿ game id — command1, command2, ... ¡/description¿.
- Query Format: ¡description¿ ...query... ¡/description¿.
- Invoke Limit 50.

Obtaining Admissible Commands Interface

Interface For Obtaining Admissible Commands
- Description: This interface returns all commands relevant to the current state given game id and the
command sequence in the query format ¡admissiblecommand¿ game id — command1, command2, ...
¡/dadmissiblecommand¿.
- Query Format: ¡admissiblecommand¿ ...query... ¡/admissiblecommand¿.
- Invoke Limit 50.

Obtaining Description Interface

Interface For Obtaining Description
- Description: This interface returns text description of the current room given game id and the comm-
mand sequence in the query format ¡description¿ game id — command1, command2, ... ¡/description¿.
- Query Format: ¡description¿ ...query... ¡/description¿.
- Invoke Limit 50.

Obtaining Possible Admissible Commands Interface

Interface For Obtaining Possible Admissible Commands
- Description: This interface returns all possible commands given game id in the query format ¡possi-
bleadmissiblecommand¿ game id¡/possibledadmissiblecommand¿.
- Query Format: ¡possibleadmissiblecommand¿ ...query... ¡/possibleadmissiblecommand¿.
- Invoke Limit 50.

B MORE EXPERIMENTAL RESULTS

B.1 CAN INSTRUCTION-TUNED LLMS EFFECTIVELY INVOKE INTERFACES?

In this section, we investigate whether instruction-tuned LLMs can effectively utilize interfaces. We
compare the performance of instruction-tuned Qwen3 series models against SITUATEDTHINKER,
using a no-thinking mode to minimize the impact of post-training. For instruction-tuned LLMs, we
implement a pipeline similar to ReAct (Yao et al., 2023). As shown in Table 5, while instruction
tuning enhances the LLM’s ability to use interfaces compared to the base model, indicating some
improvement in capability, the performance remains inadequate. In contrast, SITUATEDTHINKER
significantly outperforms the instruction-tuned models, supporting our claim in W3 that SITUATED-
THINKER can further enhance the capabilities of already powerful models.

Table 5: Comparison of instruct LLMs and SITUATEDTHINKER.

Model Size Musique Bamboogle WebQSP TextWorld

Instruct � 0.124 0.448 34.7 22.0
� 0.197 0.465 58.4 46.0

SITUATEDTHINKER
� 0.235 0.552 66.5 42.0
� 0.255 0.512 68.7 94.0

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: Ablation study of interfaces during training.

Training Configuration Size Bamboogle AIME24 TextWorld
w/o interfaces � 0.208 11.3 14.0
w/ retrieval only � 0.440 22.4 40.0
w/ code only � 0.336 24.7 36.0
SITUATEDTHINKER � 0.552 27.0 42.0

Table 7: Ablation study of no-interfaces during inference.

Inference Configuration Size Bamboogle AIME24 TextWorld
w/o interfaces � 0.240 20.7 28.0
SITUATEDTHINKER � 0.552 27.0 42.0

B.2 ABLATION STUDIES

Impact of Interfaces in Training. To investigate the roles of different interfaces in training, we
compare the performance of SITUATEDTHINKER when trained without interfaces, with only the
Information Retrieval interface, or with only the Code Execution interface, as presented in Table 6.
The results indicate that training without interfaces or with a single interface leads to degraded
performance. For benchmarks like Bamboogle and TextWorld, which rely heavily on external
knowledge, the Information Retrieval interface proves more critical. In contrast, for tasks such as
mathematical reasoning (AIME24), where internal knowledge is often sufficient, the Code Execution
interface plays a more significant role.

Impact of Interfaces in Inference. In this section, we examine the role of different interfaces during
the inference phase of SITUATEDTHINKER, with all experiments based on SITUATEDTHINKER
trained using both information retrieval and code execution interfaces. First, we assess performance
when no interfaces are provided during inference. As shown in Table 7, access to interfaces at
inference time significantly enhances performance, particularly for benchmarks like Bamboogle and
TextWorld, which heavily depend on external information. Next, we evaluate SITUATEDTHINKER’s
performance when provided with all 12 interfaces discussed in this paper during inference to determine
whether SITUATEDTHINKER can effectively select appropriate interfaces in practical applications
and generalize to out-of-domain interfaces, given that interface definitions in real-world scenarios are
typically not task-specific. As presented in Table 8, performance degradation is minimal, indicating
that SITUATEDTHINKER is robust to a large number of available interfaces and remains focused
without being distracted.

B.3 MORE CASE STUDIES

In this section, we present a detailed analysis of cases sampled from the outputs generated by SITU-
ATEDTHINKER across diverse benchmarks to highlight additional aspects of SITUATEDTHINKER’s
reasoning process.

Case From Multi-Hop Question-Answering Benchmarks. Case B.1 illustrates SITUATED-
THINKER’s response on the Bamboogle dataset. The red highlighted and green highlighted
sections demonstrate SITUATEDTHINKER’s ability to correct invocation errors based on external
feedback.

Case From Mathematical Reasoning Benchmarks. Case B.2 illustrates SITUATEDTHINKER’s
response on the MATH500 dataset. When addressing fundamental mathematical problems, SITUAT-
EDTHINKER can utilize its internal knowledge to perform actions for solving them, as detailed in the
red highlighted section. The green highlighted section indicates that SITUATEDTHINKER leverages
the code execution interface to validate its conclusions, enabling effective reflection.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 8: Ablation study of all-interfaces during inference.

Inference Configuration Size WTQ TextWorld
w/o interfaces � 67.3 44.0
SITUATEDTHINKER � 68.9 42.0

Case From MedQA Benchmark. Case B.3 presents SITUATEDTHINKER’s response on the MedQA
dataset, which involves a multiple-choice medical question requiring selection of the correct option.
SITUATEDTHINKER demonstrates step-by-step reasoning: it first understands the question and
options, then retrieves relevant information (green highlighted), and finally draws a conclusion.
Before generating the final answer, SITUATEDTHINKER invokes the code execution interface to
validate this conclusion (red highlighted).

Case From GPQA Benchmark. Case B.4 presents SITUATEDTHINKER’s response on the GPQA
dataset, which includes a multiple-choice science question requiring the correct option to be selected.
Initially, SITUATEDTHINKER utilizes its knowledge and computational power to reach a preliminary
conclusion (green highlighted), followed by invoking a code execution interface to verify this
conclusion (red highlighted).

Case from WebQSP Benchmark. Case B.5 presents SITUATEDTHINKER’s response on the We-
bQSP dataset, involving a question requiring an answer based on knowledge graph data. SITUAT-
EDTHINKER employs step-by-step reasoning: it first understands the question, then identifies and
retrieves relevant entity and relation information (green highlighted). Before generating the answer,
SITUATEDTHINKER verifies its conclusion (blue highlighted).

Case from WTQ Benchmark. Case B.6 presents SITUATEDTHINKER’s response on the WTQ
dataset, involving a question requiring an answer based on a table-based database. SITUATED-
THINKER invokes appropriate interfaces to determine the context of the external world (green
highlighted), subsequently acquires the necessary information from external sources (red high-
lighted) to reach a conclusion, and also utilizes its knowledge to perform simple calculations and
reflections.

Case from TextWorld Benchmark. Case B.7 presents SITUATEDTHINKER’s response on the
TextWorld dataset, involving a text-based game requiring a command sequence for completion.
The green highlighted section shows the initial planning based on understanding the requirements.
Subsequently, SITUATEDTHINKER refines its solution by invoking appropriate interfaces to obtain
feedback from the game world (blue highlighted). Notably, the red highlighted section illustrates
how SITUATEDTHINKER learns from errors, allowing it to refine its invocation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Case B.1: Case From Bamboogle

QUESTION
What is the capital of the second largest state in the US by area?

ANSWER
austin

RESPONSE
To determine the capital of the second largest state in the US by area, we need to follow these steps:
1. Identify the second largest state in the US by area. 2. Find the capital of that state.
Step 1: Identify the Second Largest State in the US by Area
First, we need to know the states ranked by their area. We can use the Code Execution interface to find this information. I’ll write a
Python code snippet to get the list of US states sorted by area and then identify the second largest state.
¡code¿
import requests
from bs4 import BeautifulSoup
url = ”https://www.worldatlas.com/articles/the-10-largest-states-in-the-united-states.html”
response = requests.get(url)
soup = BeautifulSoup(response.text, ’html.parser’)

Extract the table of largest states
table = soup.find(’table’, ’class’: ’table’)
rows = table.find all(’tr’)

Parse the state names and areas
states = []
for row in rows[1:11]: # Top 10 largest states
cols = row.find all(’td’)
state = cols[1].text.strip()
area = float(cols[2].text.strip().replace(’,’, ”))
states.append((state, area))

Sort states by area in descending order
states.sort(key=lambda x: x[1], reverse=True)

Get the second largest state
second largest state = states[1][0]
print(second largest state)
¡/code¿ ¡result¿
Error from code executor: list index out of range
¡/result¿
It seems there was an error in the code. The error might be due to the structure of the webpage or the way we are trying to
parse it. Let’s try a different approach to get the information about the largest states by area.
Instead of scraping the website, we can use a more reliable dataset. I’ll write a Python code snippet with a predefined list of
the largest states by area.
¡code¿
Predefined list of the largest states in the US by area
largest states by area = [(”Alaska”, 1723335.0), (”Texas”, 695662.0), (”California”, 423967.0), (”Montana”, 380831.0), (”New
Mexico”, 314917.0), (”Arizona”, 295234.0), (”Nevada”, 286313.0), (”Colorado”, 269601.0), (”Oregon”, 254755.0), (”Washington”,
184827.0)]

Sort states by area in descending order
largest states by area.sort(key=lambda x: x[1], reverse=True)

Get the second largest state
second largest state = largest states by area[1][0]
print(second largest state)
¡/code¿ ¡result¿ Texas
¡/result¿
The second largest state in the US by area is Texas.
Step 2: Find the Capital of Texas
Now that we know the second largest state is Texas, we need to find its capital. We can use the Retrieval interface to get this
information.
¡retrieval¿ What is the capital of Texas? ¡/retrieval¿ ¡result¿ ...retrieval results... ¡/result¿ From the retrieved information, we can
conclude that the capital of Texas is Austin.
¡conclusion¿
The answer is \boxed{Austin}
¡/conclusion¿

Case B.2: Case From MATH500

QUESTION
A regular hexagon can be divided into six equilateral triangles. If the perimeter of one of the triangles is 21 inches, what is the
perimeter, in inches, of the regular hexagon?

ANSWER
42

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

RESPONSE
To solve the problem, we need to determine the side length of the equilateral triangle first, and then use that information to find the
perimeter of the regular hexagon.
1. Determine the side length of the equilateral triangle:
- The perimeter of an equilateral triangle is the sum of the lengths of its three equal sides.
- If the perimeter of the equilateral triangle is 21 inches, then the side length s of the triangle can be calculated as:

s =
perimeter

3
=

21

3
= 7 inches

2. Relate the side length of the triangle to the side length of the hexagon:
- A regular hexagon can be divided into six equilateral triangles, and each side of the hexagon is equal to the side length of these
triangles.
- Therefore, the side length of the hexagon is also 7 inches.
3. Calculate the perimeter of the regular hexagon:
- A regular hexagon has six equal sides.
- If the side length of the hexagon is 7 inches, then the perimeter P of the hexagon is:

P = 6 × s = 6 × 7 = 42 inches

Now, let’s confirm the calculation using the provided interfaces. ¡code¿
s = 21 / 3
P = 6 * s
P
¡/code¿
¡result¿ 42.0
¡/result¿
Now we have confirmed the calculation using code execution. The perimeter of the regular hexagon is indeed 42 inches.
¡conclusion¿
The answer is \boxed{42}
¡/conslusion¿

Case B.3: Case From MedQA

QUESTION
A 35-year-old man comes to the physician because of itchy, watery eyes for the past week. He has also been sneezing multiple times
a day during this period. He had a similar episode 1 year ago around springtime. He has iron deficiency anemia and ankylosing
spondylitis. Current medications include ferrous sulfate, artificial tear drops, and indomethacin. He works as an elementary school
teacher. His vital signs are within normal limits. Visual acuity is 20/20 without correction. Physical examination shows bilateral
conjunctival injection with watery discharge. The pupils are 3 mm, equal, and reactive to light. Examination of the anterior chamber
of the eye is unremarkable. Which of the following is the most appropriate treatment?
A): Erythromycin ointment
B): Ketotifen eye drops
C): Warm compresses
D): Fluorometholone eye drops

ANSWER
B

RESPONSE
Alright, I have this multiple-choice question about a 35-year-old man with itchy, watery eyes and sneezing. I need to figure out the
most appropriate treatment from the options provided. Let’s break this down step by step.
Step 1: Understand the Patient’s Symptoms and History
First, let’s summarize what’s given:
- **Patient’s Age and Gender:** 35-year-old man.
- **Chief Complaint:** Itchy, watery eyes for the past week, sneezing multiple times a day.
- **History:** Similar episode 1 year ago around springtime.
- **Medical Conditions:** Iron deficiency anemia, ankylosing spondylitis.
- **Current Medications:** Ferrous sulfate, artificial tear drops, indomethacin.
- **Occupation:** Elementary school teacher.
- **Vital Signs:** Within normal limits.
- **Visual Acuity:** 20/20 without correction.
- **Physical Examination:**
- Bilateral conjunctival injection with watery discharge.
- Pupils: 3 mm, equal, reactive to light.
- Anterior chamber of the eye: Unremarkable.
Okay, so the patient has seasonal symptoms of itchy, watery eyes and sneezing, which suggests an allergic reaction. The physical
exam shows signs of conjunctival inflammation, which is consistent with allergic conjunctivitis.
Step 2: Recall the Options
The options for treatment are:
A) Erythromycin ointment
B) Ketotifen eye drops
C) Warm compresses
D) Fluorometholone eye drops
I need to determine which of these is the most appropriate treatment for allergic conjunctivitis.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Step 3: Retrieve Relevant Information
First, I should retrieve some information about allergic conjunctivitis and the treatments listed.
¡retrieval¿ What is allergic conjunctivitis and what are the common treatments? ¡/retrieval¿ ¡result¿ ...results.. ¡/result¿
From the retrieval, it seems that allergic conjunctivitis is caused by an allergic reaction, often due to hay fever, and is
characterized by symptoms like redness, swelling, itching, and watery discharge. The treatment typically involves avoiding
allergens and using antihistamines, either topically or systemically.
Step 4: Analyze Each Option
Now, let’s look at each option and see if it aligns with the treatment of allergic conjunctivitis.
A) Erythromycin ointment
Erythromycin is an antibiotic. I recall that antibiotics are used to treat bacterial infections, not allergic conditions. So, this doesn’t
seem appropriate for allergic conjunctivitis.
B) Ketotifen eye drops
Ketotifen is an antihistamine. From the retrieval, antihistamines are a common treatment for allergic conjunctivitis. This seems like a
good candidate.
C) Warm compresses
Warm compresses are often used for conditions like styes or blocked tear ducts. I’m not sure if they’re a standard treatment for
allergic conjunctivitis. Maybe for symptom relief, but not a primary treatment.
D) Fluorometholone eye drops
Fluorometholone is a corticosteroid. Corticosteroids are anti-inflammatory and can be used for severe allergic reactions, but they’re
usually not the first-line treatment for allergic conjunctivitis due to potential side effects. Antihistamines are generally preferred first.
Step 5: Narrow Down the Options
Based on the analysis:
- **A) Erythromycin ointment:** Unlikely, as it’s an antibiotic for bacterial infections.
- **B) Ketotifen eye drops:** Likely, as it’s an antihistamine for allergic conditions.
- **C) Warm compresses:** Possibly for symptom relief, but not a primary treatment.
- **D) Fluorometholone eye drops:** Possible for severe cases, but not the first-line treatment.
So, the most appropriate treatment seems to be **B) Ketotifen eye drops**.
Step 6: Verify with Code Execution
To ensure I’m correct, I’ll run a quick code snippet to confirm the classification of these treatments.
¡code¿
import pandas as pd
Create a DataFrame with treatments and their categories
data = {
’Treatment’: [’Erythromycin ointment’, ’Ketotifen eye drops’, ’Warm compresses’, ’Fluorometholone eye drops’],
’Category’: [’Antibiotic’, ’Antihistamine’, ’Symptom Relief’, ’Corticosteroid’]
}
df = pd.DataFrame(data)
Define the correct treatment based on the analysis
correct treatment = ’Ketotifen eye drops’
Check the category of the correct treatment
category = df[df[’Treatment’] == correct treatment][’Category’].values[0]
print(f”The correct treatment is {correct treatment}, which is a {category}.”)
¡/code¿ ¡result¿ The correct treatment is Ketotifen eye drops, which is a Antihistamine.
¡/result¿
Yes, Ketotifen is indeed an antihistamine, which aligns with the treatment of allergic conjunctivitis.
Step 7: Final Answer
After going through the reasoning process and verifying with the code execution, the most appropriate treatment for this patient’s
allergic conjunctivitis is Ketotifen eye drops.
...
The answer is \boxed{B}.

¡conculsion¿

Case B.4: Case From GPQA

QUESTION
Researchers are attempting to detect transits of two Earth-like planets: Planet 1 and Planet 2. They have limited observing time and
want to observe the one that has the highest probability of transiting. Both of these planets have already been detected via the RV
method, allowing us to know their minimum masses and orbital periods. Although both planets share the same masses, the orbital
period of Planet 1 is three times shorter than that of Planet 2. Interestingly, they both have circular orbits. Furthermore, we know
the masses and radii of the host stars of these two planets. The star hosting Planet 1 has a mass that is twice that of the host star of
Planet 2. As the host of Planet 2 is slightly evolved, both host stars have the same radii. Based on the provided information, the
researchers have chosen to observe:
A): Planet 1 is preferred due to its 1.65 times higher probability to transit.
B): Planet 1 is preferred due to its 2.7 times higher probability to transit.
C): Planet 2 is preferred due to its 2.25 times higher probability to transit.
D): Planet 2 is preferred due to its 1.5 times higher probability to transit.

ANSWER
A

RESPONSE
1. **Understanding the Problem**: We need to determine which planet has a higher probability of transiting its host star, given the
information about their orbital periods and the masses/radii of their host stars. The probability of a transit is related to the inclination
of the planet’s orbit, and planets with shorter orbital periods around smaller stars have a higher probability of transiting.
2. **Key Factors**:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

- **Orbital Period**: Planet 1 has an orbital period that is three times shorter than Planet 2.
- **Host Star Mass**: The host star of Planet 1 is twice as massive as that of Planet 2.
- **Host Star Radius**: Both host stars have the same radius.
3. **Transit Probability**: The probability P of a transit is approximately the ratio of the star’s radius R∗ to the semi-major
axis a of the planet’s orbit:

P ≈
R∗

a

For circular orbits, the semi-major axis a can be estimated using Kepler’s Third Law:

a =

(
GM∗P

2

4π2

)1/3

where G is the gravitational constant, M∗ is the mass of the star, and P is the orbital period.
4. **Comparing the Two Planets**:
- Let P1 and P2 be the orbital periods of Planet 1 and Planet 2, respectively. Given P1 = 1

3P2.
- Let M∗1 = 2M∗2 and R∗1 = R∗2 = R∗.
5. **Calculating the Semi-Major Axes**:
- For Planet 1:

a1 =

(
GM∗1P

2
1

4π2

)1/3

=

(
G · 2M∗2 ·

(
1
3P2

)2
4π2

)1/3

- For Planet 2:

a2 =

(
GM∗2P

2
2

4π2

)1/3

6. **Simplifying the Ratio a1
a2

**:

a1

a2

=

(
2M∗2 ·

(
1
3P2

)2
M∗2P 2

2

)1/3

=

(
2

9

)1/3

≈ 0.66

So, a1 ≈ 0.66a2.
7. **Calculating the Transit Probabilities**:
- For Planet 1:

P1 ≈
R∗

a1

≈
R∗

0.66a2

≈ 1.52
R∗

a2

- For Planet 2:

P2 ≈
R∗

a2

Therefore, P1 ≈ 1.52P2.
8. **Interpreting the Results**: The transit probability of Planet 1 is approximately 1.52 times higher than that of Planet 2. This
means Planet 1 is more likely to transit its host star.
9. **Matching with the Options**: The closest option to a 1.52 times higher probability is option A, which states that Planet 1 is
preferred due to its 1.65 times higher probability to transit.
Let’s verify the calculations using Python to ensure accuracy.
¡code¿
import math
Given data
P2 = 1 # Let P2 be 1 unit
P1 = P2 / 3
M2 = 1 # Let M2 be 1 unit
M1 = 2 * M2
Calculating semi-major axes
a1 = (M1 * P1**2)**(1/3)
a2 = (M2 * P2**2)**(1/3)
Calculating transit probabilities
P1 transit = 1 / a1
P2 transit = 1 / a2
Ratio of transit probabilities
P1 P2 ratio = P1 transit / P2 transit
print(P1 P2 ratio)
¡/code¿ ¡result¿ 1.6509636244473134
¡/result¿ The calculated ratio of the transit probabilities is approximately 1.65, which matches option A.
¡conclusion¿
Planet 1 is preferred due to its 1.65 times higher probability to transit.
The answer is backslashboxed{A}
¡/conclusion¿

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Case B.5: Case From WebQSP

QUESTION
where is jamarcus russell from

ANSWER
mobile

RESPONSE
To find out where JaMarcus Russell is from, I need to follow these steps:
1. First, I should find the neighboring relations of JaMarcus Russell. This will give me an overview of the information available about
him.
Query: ¡relation¿JaMarcus Russell¡/relation¿ ¡result¿ [’sports.sports team roster.player’, ’com-
mon.topic.notable for’, ’education.education.institution’, ’american football.player rushing statistics.player’,
’sports.pro sports played.sport’, ’american football.football player.position s’, ’sports.pro sports played.athlete’,
’american football.player passing statistics.player’, ’american football.player rushing statistics.season’,
’sports.sports league draft pick.school’, ’people.person.nationality’, ’sports.sports team roster.team’, ’peo-
ple.person.parents’, ’people.place lived.person’, ’people.place lived.location’, ’people.person.place of birth’,
’sports.sports league draft pick.draft’, ’sports.sports league draft pick.player’, ’freebase.valuenotation.has value’,
’education.education.student’, ’common.topic.notable types’, ’sports.sports league draft pick.team’, ’amer-
ican football.player passing statistics.team’, ’american football.player passing statistics.season’, ’ameri-
can football.player game statistics.team’, ’people.person.ethnicity’, ’sports.sports team roster.position’, ’com-
mon.topic.image’, ’american football.player rushing statistics.team’, ’american football.player game statistics.season’,
’people.person.profession’, ’people.person.gender’, ’american football.player game statistics.player’] ¡/result¿
The result shows various relations related to JaMarcus Russell. The most relevant one to find his place of birth is ’peo-
ple.person.place of birth’.
2. Next, I need to retrieve the entity associated with the relation ’people.person.place of birth’ for JaMarcus Russell.
Query: ¡entity¿JaMarcus Russell, people.person.place of birth¡/entity¿ ¡result¿ [’Mobile’] ¡/result¿
The result indicates that the place of birth for JaMarcus Russell is Mobile.
3. To provide a more complete answer, I should find out more about Mobile, such as the country it is located in. First, I need
to find the neighboring relations of Mobile.
Query: ¡relation¿Mobile¡/relation¿ ¡result¿ [’music.composition.composer’, ’travel.travel destination.tourist attractions’,
’common.topic.notable for’, ’music.composition.recordings’, ’music.recording.producer’, ’music.recording.releases’,
’music.recording.song’, ’location.administrative division capital relationship.administrative division’,
’base.wikipedia infobox.settlement.area code’, ’music.recording.canonical version’, ’location.location.nearby airports’,
’location.hud county place.county’, ’film.film location.featured in films’, ’freebase.valuenotation.has value’, ’mu-
sic.single.versions’, ’location.location.events’, ’music.composition.form’, ’common.topic.notable types’, ’loca-
tion.hud county place.place’, ’location.citytown.postal codes’, ’music.recording.artist’, ’common.webpage.topic’,
’government.government position held.jurisdiction of office’, ’location.place with neighborhoods.neighborhoods’,
’location.location.time zones’, ’common.topic.image’, ’location.location.containedby’, ’location.statistical region.population’,
’periodicals.newspaper circulation area.newspapers’, ’location.administrative division capital relationship.capital’] ¡/result¿
The result doesn’t directly show the country, so I need to find a relation that can lead me to that information. The relation
’location.location.containedby’ might help.
4. I need to retrieve the entity associated with the relation ’location.location.containedby’ for Mobile.
Query: ¡entity¿Mobile, location.location.containedby¡/entity¿ ¡result¿ [’Alabama’, ’Mobile County’, ’United States of
America’, ’Area code 251’] ¡/result¿
The result includes ’United States of America’, which is the country. For more specificity, I can check the relation ’loca-
tion.hud county place.county’ to find the state.
5. I need to retrieve the entity associated with the relation ’location.hud county place.county’ for Mobile.
Query: ¡entity¿Mobile, location.hud county place.county¡/entity¿ ¡result¿ [’Mobile County’] ¡/result¿
This confirms that Mobile is in Mobile County, Alabama, USA.
Based on this information, I can conclude that JaMarcus Russell is from Mobile, Alabama, USA.
¡conclusion¿
JaMarcus Russell is from Mobile.
The answer is \boxed{Mobile}
¡/conclusion¿

Case B.6: Case From WTQ

QUESTION
How many were played on a hard surface?

ANSWER
7

RESPONSE
Alright, I have this question: ”How many were played on a hard surface?” and I’m given a table with the ID ‘nt-458‘. I need to figure
out how to extract the relevant information from this table to answer the question. Let’s break this down step by step.
Step 1: Understand the Question
First, I need to understand what the question is asking. It’s asking for the number of something that was played on a hard
surface. But what exactly is ”something”? Is it games, sports, matches, or something else? Since I don’t have the actual table,
I’ll need to figure out the structure of the table to proceed.
Step 2: Retrieve the Table Headers
To understand the table, I should start by retrieving its headers. This will give me an idea of what columns are available and
what kind of data is stored in them.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

I’ll use the **Header Retrieval** interface for this.
¡header¿nt-458¡/header¿ ¡result¿ [’Outcome’, ’Date’, ’Tournament’, ’Surface’, ’Partnering’, ’Opponent in the final’, ’Score
in the final’] ¡/result¿
Okay, so the table has the following headers: Outcome, Date, Tournament, Surface, Partnering, Opponent in the final, and
Score in the final.
Step 3: Identify Relevant Columns
Now, I need to identify which columns are relevant to the question. The question is about something played on a hard surface.
Looking at the headers, the ”Surface” column seems directly related to the type of surface on which something was played.
So, the ”Surface” column is likely the key here. But to get the count of how many were played on a hard surface, I might need to look
at the entire ”Surface” column and count the occurrences of ”hard surface.”
Wait, but the question is a bit vague. It’s asking ”how many were played on a hard surface?” So, I need to determine what
”were played” refers to. Given the headers, it could be matches, games, or some other event. Maybe it’s tennis matches, given
the presence of ”Tournament” and ”Score in the final.”
Assuming it’s tennis matches, then ”Surface” would indicate the type of court (e.g., hard, clay, grass). So, I need to count how
many matches were played on a hard surface.
Step 4: Retrieve the ”Surface” Column
To get the count, I need to retrieve the ”Surface” column from the table.
I’ll use the **Column Retrieval** interface for this.
¡column¿nt-458, Surface¡/column¿ ¡result¿ [’Clay’, ’Clay’, ’Hard’, ’Hard’, ’Hard’, ’Grass’, ’Grass’, ’Hard’, ’Hard’, ’Hard’, ’Hard’]
¡/result¿
Okay, so the ”Surface” column contains the following values: [’Clay’, ’Clay’, ’Hard’, ’Hard’, ’Hard’, ’Grass’, ’Grass’, ’Hard’,
’Hard’, ’Hard’, ’Hard’].
Step 5: Count the Occurrences of ”Hard”
Now, I need to count how many times ”Hard” appears in this list.
Let’s go through the list:
1. Clay
2. Clay
3. Hard
4. Hard
5. Hard
6. Grass
7. Grass
8. Hard
9. Hard
10. Hard
11. Hard
Counting the ”Hard” entries:
3, 4, 5, 8, 9, 10, 11 → That’s 7 times.
Wait, let’s double-check:
1. Clay
2. Clay
3. Hard
4. Hard
5. Hard
6. Grass
7. Grass
8. Hard
9. Hard
10. Hard
11. Hard
Yes, ”Hard” appears 7 times.
Step 6: Verify the Count
To ensure accuracy, I’ll recount:
3, 4, 5, 8, 9, 10, 11 → 7 times.
Yes, it’s correct.
Step 7: Formulate the Answer
The question is asking for the number of matches played on a hard surface. Based on the data, that number is 7.
¡conclusion¿
The number of matches played on a hard surface is \boxed{7}
¡/conclusion¿

Case B.7: Case From TextWorld

QUESTION
Game Objective:
You are now playing a exciting session of TextWorld! First, it would be a great idea if you could attempt to venture west. Okay, and
then, move west. That done, retrieve the staple from the chair inside the office. Once you have got the staple, head east. Then, rest
the staple on the shelf inside the cellar. Alright, thanks!

ANSWER
[Any Command Sequence to Win the Game]

RESPONSE
To solve this game, I need to follow the instructions provided in the game objective. Here’s the step-by-step reasoning process:
1. **Start by moving west**: The first instruction is to move west. I should begin with the command ‘go west‘.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

2. **Retrieve the staple from the chair inside the office**: After moving west, I need to find the office, get the staple from the
chair, and pick it up. The command to pick up an item is usually ‘get [item]‘. However, I first need to navigate to the office
and identify the staple.
3. **Head east**: After retrieving the staple, I need to move east. The command for this is ‘go east‘.
4. **Rest the staple on the shelf inside the cellar**: Finally, I need to go to the cellar, find the shelf, and place the staple there.
The command to put an item on something is usually ‘put [item] on [location]‘.
Let’s start by moving west. I’ll invoke the **Interface For Obtain Admissible Commands** to see what commands are available
initially.
¡admissiblecommand¿14¡/admissiblecommand¿ ¡result¿ Invalid query format. Please use the format ¡admissiblecom-
mand¿game id — command1, command2, ... ¡/dadmissiblecommand¿. ¡/result¿
It seems I made a mistake in the query format. Let’s correct that. I’ll try again:
¡admissiblecommand¿14 — ¡/admissiblecommand¿ ¡result¿ [’drop burger’, ’eat burger’, ’examine burger’, ’go west’,
’inventory’, ’look’] ¡/result¿
Great, the admissible commands initially include ‘go west‘. I’ll execute that command.
1. **Command**: ‘go west‘
Now, I need to check the new state of the game to see where I am and what I can do next. I’ll invoke the **Interface For
Obtain Description** to get a description of the current room.
¡description¿14 — go west¡/description¿ ¡result¿
-= Cellar =-
You have come into a cellar. Not the cellar you’d expect. No, this is a cellar.
Look over there! a shelf. You shudder, but continue examining the shelf. The shelf is standard. But oh no! there’s nothing on this
piece of junk. You make a mental note to not get your hopes up the next time you see a shelf in a room. You can see a counter. The
counter is normal. But the thing hasn’t got anything on it.
There is a closed hatch leading north. You need an unguarded exit? You should try going east. There is an unblocked exit to the west.
There is a fondue on the floor.
¡/result¿
From the description, I’m now in the cellar. The next instruction is to retrieve the staple from the chair inside the office. Since I’m in
the cellar, I need to move to the office. The description mentions an unblocked exit to the west, so I’ll go west again.
2. **Command**: ‘go west‘
I’ll check the new room description to see if I’m in the office and to identify the staple.
¡description¿14 — go west, go west¡/description¿ ¡result¿
-= Office =-
I am required to announce that you are now in the office. You try to gain information on your surroundings by using a technique you
call ”looking.”
You see a chair. The chair is standard. On the chair you see a staple.
There is an unblocked exit to the east.
¡/result¿
Now I’m in the office, and the description mentions a staple on the chair. I’ll retrieve the staple.
3. **Command**: ‘get staple‘
After getting the staple, I should check the admissible commands to see what I can do next.
¡admissiblecommand¿14 — go west, go west, get staple¡/admissiblecommand¿ ¡result¿ [’drop burger’, ’eat burger’, ’examine burger’,
’examine chair’, ’examine staple’, ’go east’, ’inventory’, ’look’, ’put burger on chair’, ’take staple from chair’] ¡/result¿
The admissible commands include ‘go east‘. According to the game objective, after getting the staple, I need to head east.
4. **Command**: ‘go east‘
Now, I’m back in the cellar with the staple. The next instruction is to rest the staple on the shelf inside the cellar. I’ll check
the description to locate the shelf.
¡description¿14 — go west, go west, get staple, go east¡/description¿ ¡result¿
-= Cellar =-
You have come into a cellar. Not the cellar you’d expect. No, this is a cellar.
Look over there! a shelf. You shudder, but continue examining the shelf. The shelf is standard. But oh no! there’s nothing on this
piece of junk. You make a mental note to not get your hopes up the next time you see a shelf in a room. You can see a counter. The
counter is normal. But the thing hasn’t got anything on it.
There is a closed hatch leading north. You need an unguarded exit? You should try going east. There is an unblocked exit to the west.
There is a fondue on the floor.
¡/result¿
The description mentions a shelf in the cellar. I’ll put the staple on the shelf.
5. **Command**: ‘put staple on shelf‘
Now, I need to check if this completes the game. I’ll invoke the **Interface For Obtain Feedback** to see the game’s response.
¡feedback¿14 — go west, go west, get staple, go east, put staple on shelf¡/feedback¿ ¡result¿
You put the staple on the shelf.
Your score has just gone up by one point.
*** The End ***
You scored 1 out of a possible 1, in 6 turns.
Would you like to RESTART, RESTORE a saved game, QUIT or UNDO the last command? ¡/result¿
The game indicates that I’ve completed the objective and reached the end. Therefore, the command sequence is successful.
¡conclusion¿
The command sequence to win the game is: ‘go west, go west, get staple, go east, put staple on shelf‘
The answer is \boxed{go west, go west, get staple, go east, put staple on shelf}
¡/conclusion¿

C LIMITATIONS

In this paper, we propose SITUATEDTHINKER to ground LLM reasoning with various external
worlds. Although SITUATEDTHINKER demonstrates noteworthy performance, several avenues for
future investigation remain. First, while our experiments and analysis provide valuable insights,

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

they are presently confined to the textual domain of LLMs and benchmarks. This contrasts with
real-world information, which inherently spans multiple modalities, including images, audio, and
video. Consequently, investigating methods to effectively incorporate multimodal information into
the reasoning process for broader situated thinking remains a significant and intriguing challenge
for future research. Furthermore, the current scope of our experimentation and analysis is limited
exclusively to the English language. Therefore, the applicability and performance of SITUATED-
THINKER with interfaces and information presented in languages other than English remains an
open question. Addressing this linguistic limitation is crucial for establishing the generalizability
of the proposed framework across diverse linguistic contexts. Lastly, the current iteration of our
approach primarily addresses deterministic inference problems that possess definitive answers, while
largely neglecting open-ended questions or tasks requiring non-deterministic outcomes. While some
preliminary exploration within text environments has been conducted, extending the framework to
handle complex planning tasks, such as those encountered in interactive environments or robotics,
which involve sequential decision-making and managing uncertainty, represents a critical direction
for future work and is clearly warranted.

D LLM USAGE

In this research, the use of LLMs is confined to the final stages, specifically for refining and proof-
reading the manuscript. LLMs are employed exclusively to improve the clarity, logical coherence,
and linguistic precision of the narrative, ensuring a clear and sophisticated presentation of our ideas.
Importantly, LLMs played no role in the foundational components of this study, including the for-
mulation of the research strategy, the design of the experimental framework, or the interpretation of
results. We acknowledge full responsibility for the content of the paper.

29

	Introduction
	Approach
	Situated Thinking
	Incentivizing Reasoning with Situated Thinking using Reinforcement Learning
	Input Template
	Rollout with Situated Thinking
	Reward Design
	Training Objective

	Experiment
	Experiment Settings
	Performance on Multi-Hop Question-Answering Benchmarks
	Performance on Mathematical Reasoning Benchmarks
	Performance Regarding Generalization to Out-of-Domain Worlds
	Analysis on Training Dynamics
	Case Study

	Related Work
	Conclusion
	Appendix
	 Appendix
	More Implementation Details
	Training Parameters
	Details of Training Data
	Details of Hardware and Software
	Details of Out-of-Domain Benchmarks
	Deatils of Interface Definitions

	More Experimental Results
	Can Instruction-Tuned LLMs Effectively Invoke Interfaces?
	Ablation Studies
	More Case Studies

	Limitations
	LLM Usage

