

SITUATEDTHINKER: GROUNDING LLM REASONING WITH REAL-WORLD THROUGH SITUATED THINKING

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) demonstrate their impressive reasoning capabilities. However, the reasoning confined to internal parametric space limits LLMs' access to real-time information and understanding of the physical world. To overcome this constraint, we introduce **SITUATEDTHINKER**, a novel framework that enables LLMs to ground their reasoning in real-world contexts through *situated thinking*, which adaptively combines both internal knowledge and external information with predefined interfaces. By utilizing reinforcement learning, **SITUATEDTHINKER** incentivizes deliberate reasoning with the real world to acquire information and feedback, allowing LLMs to surpass their knowledge boundaries and enhance reasoning. Experimental results demonstrate significant performance improvements on multi-hop question-answering and mathematical reasoning benchmarks. Furthermore, **SITUATEDTHINKER** demonstrates strong performance on unseen tasks, such as KBQA, TableQA, and text-based games, showcasing the generalizable real-world grounded reasoning capability.

1 INTRODUCTION

Recent advancements in large language models (LLMs) have been largely driven by their emergent reasoning capabilities in solving complex tasks (Ahn et al., 2024; Sun et al., 2023; Huang & Chang, 2023), representing a substantial leap toward artificial general intelligence (AGI). More recently, long-chain-of-thought (long-CoT) reasoning models, such as OpenAI-01 (OpenAI, 2024), DeepSeek-R1 (DeepSeek-AI et al., 2025), have substantially improved LLM reasoning capabilities by generating a deliberate thinking process, involving extensive exploration and reflection before concluding the final answer (Chen et al., 2025b). These advancements are largely credited to reinforcement learning (RL) frameworks (Shao et al., 2024; Schulman et al., 2017), which incentivize LLMs to freely explore the reasoning steps solely given a final reward. This is positioned as a pathway to self-evolving LLMs with test-time scaling in reasoning (Muennighoff et al., 2025), potentially advancing the development of stronger intelligence (Snell et al., 2024).

Despite their success, current long-CoT reasoning remains confined to the internal parametric space of LLMs, limiting alignment with the external world. This closed-world reasoning restricts LLMs from accessing up-to-date information and adapting to the ever-evolving world, often leading to hallucinations and factual inconsistencies (Wu et al., 2024; Araya, 2025). Moreover, the absence of an internal world model impairs the ability to reason about physical dynamics (Wang et al., 2023), reducing performance on tasks requiring real-world understanding, such as path planning (Song et al., 2023) and robot control (Singh et al., 2023). These limitations pose significant obstacles to the goal of achieving AGI (Feng et al., 2024), underscoring the necessity for LLMs to interact with and ground their reasoning in the external world.

Existing attempts for aligning LLMs with the external world have primarily focused on using retrieval-augmented generation (RAG) (Wu et al., 2024) or tool-calling (Schick et al., 2023b) to inject external knowledge into LLM reasoning. While enhancing factual accuracy, they raise a fundamental challenge in determining the boundary between the LLMs’ internal knowledge and externally retrieved information (Ren et al., 2025) (C.1). Over-reliance on either internal knowledge or external information may lead to brittle or suboptimal reasoning. Additionally, complex reasoning tasks often require deliberate, multi-step thinking processes (C.2). This necessitates LLMs to adaptively engage with the external world—querying, receiving feedback, incorporating new information, refining their

thinking through reflection and self-correction, instead of relying on a predefined workflow (Trivedi et al., 2023b). Moreover, the dynamic nature of the external world necessitates that LLMs adjust their thinking processes in response to evolving environments (C.3). This requires LLMs to develop generalizable real-world grounded reasoning capabilities rather than focusing solely on a specific task and tool, such as searching (Jin et al., 2025; Song et al., 2025; Jin et al., 2025).

To address these challenges, we propose a novel framework, SITUATEDTHINKER, which effectively grounds LLM reasoning with real-world contexts. Extending the internal reasoning of LLMs, we introduce a new paradigm of *situated thinking*, which allows LLMs to adaptively engage with external environments through predefined interfaces. These interfaces provide a unified description of the external world, such as knowledge, tools, and physics environment, allowing LLMs to access real-world information and feedback, facilitating a more accurate and context-aware thinking process. Situated thinking synergizes the internal reasoning of LLMs with situated reasoning in the external world, allowing LLMs to identify required information to surpass its knowledge boundaries, refine their thinking processes, and improve their overall performance in real-world tasks (to address C.1).

To facilitate deliberate situated thinking, we adopt the RL framework (Shao et al., 2024) to enable LLMs to reason with the external world and tackle complex tasks (to address C.2). During training, LLMs are prompted to use interfaces to gather necessary real-world information and explore their reasoning steps freely to reach a final conclusion. The model is then optimized for the accuracy of its conclusions using a straightforward rule-based reward function, avoiding complex intermediate supervision. To incentivize the generalizable situated thinking capability of LLMs, we train the model on two representative tasks (e.g., multi-hop QA and mathematical reasoning) and two fundamental interfaces (e.g., knowledge retrieval and code execution) to improve its adaptability to out-of-domain external worlds (addressing C.3). In general, the distinguishing characteristics of our work are as follows: ① SITUATEDTHINKER integrates internal and external knowledge within single-turn thinking to effectively tackle real-world application tasks; ② SITUATEDTHINKER is not restricted to single external interfaces, such as code execution or web search, and demonstrates generalizability across tasks in diverse scenarios. Experimental results indicate that various LLMs trained with our SITUATEDTHINKER framework demonstrate significant performance improvements on multi-hop question-answering and mathematical reasoning benchmarks, outperforming prominent baselines. Furthermore, we evaluate the generalization capabilities of SITUATEDTHINKER across unseen tasks, including KBQA, TableQA, and text-based games, demonstrating strong situated thinking capability with new interfaces without further training. Moreover, the empirical analysis reveals that SITUATEDTHINKER can effectively perceive the boundaries of its own knowledge and conduct complex reasoning by appropriately invoking interfaces to reflect and verify uncertain thinking processes. The contributions of this work can be summarized as follows:

- We propose a novel framework, SITUATEDTHINKER, that enables LLMs to ground their reasoning in the external world to extend the capability of LLMs for real-world tasks.
- We introduce situated thinking, a new paradigm that allows LLMs to adaptively engage with external environments and incentivize deliberate reasoning processes with reinforcement learning.
- We conduct extensive experiments demonstrating the effectiveness of SITUATEDTHINKER and its generalizable situated thinking to new tasks and interfaces.

2 APPROACH

Figure 1 illustrates the overall framework of SITUATEDTHINKER. In this section, we first present the details of situated thinking, which is central to SITUATEDTHINKER’s ability to ground LLM reasoning in the external world by defining interfaces, internal action, and situated action. Next, we describe SITUATEDTHINKER’s training process, which encourages LLMs to perform complex reasoning about the real world through a deliberative situated thinking approach.

2.1 SITUATED THINKING

The situated thinking is designed to enable LLMs to conduct complex reasoning by combining both internal knowledge and external information, which contains three key components: *interfaces*, *internal action*, and *situated action*.

Figure 1: The framework of SITUATEDTHINKER, where LLMs take questions and predefined interfaces as inputs. Then, they conduct situated thinking to adaptively combine basic reasoning with internal action and external reasoning while performing situated actions through the interfaces. The final conclusion is obtained through a deliberate reasoning process and verified to optimize models with reinforcement learning. External world can be presented as knowledge graphs, databases, or the physical environment (like a room space for robot control).

Interfaces. Interfaces offer a standardized representation of the external world. We can easily define interfaces for various external environments, such as knowledge graphs, databases, and physical environments to ground LLMs’ reasoning in the real world. In SITUATEDTHINKER, we have crafted a universal template for various interfaces, as outlined in the box below. Specifically, each interface is characterized by its Name and Description, which define the purpose, inputs, and feedback associated with the interface to aid the model in understanding the external world and utilizing the interface effectively. Then, the Query Format specifies the format in which the model can interact with the interface, including the start `<interface_start_tag>` and end `<interface_end_tag>` tags for the query. Finally, we assign an Invoke Limit to enhance interaction efficiency and prevent the model from entering inefficient interaction loops. Example interfaces like retrieval, code execution, and game control can be found in § B.5.

Interface Template

```

138 Interface For {Interface Name}
139 - Description: {Description for the Interface}
140 - Query Format: <interface_start_tag> ...query... <interface_end_tag>.
141 - Invoke Limit {Invoke limit}.
142

```

Internal Action. The internal action is a fundamental step of the thinking process, enabling step-by-step reasoning through token generation (CoT) (Wei et al., 2022). It highlights the LLMs’ ability to perform basic reasoning using their internal knowledge, such as problem decomposition, summarization, and simple arithmetic operations. For example, when presented with the question, *What government position was held by the woman who portrayed Corliss Archer in the film Kiss and Tell?*, LLMs could break down the query into two sub-questions using internal action: 1) *Who was the actress that portrayed Corliss Archer in "Kiss and Tell"?*; and 2) *What government position did Shirley Temple hold?*. Additionally, for some mathematical problems, advanced LLMs can utilize its internal knowledge to perform basic arithmetic operations. For instance, when asked *What is 128 + 56?*, LLMs can internally compute the answer as 184 without needing to invoke any external interface.

Situated Action. When addressing tasks requiring up-to-date knowledge, perception of the external environment, or complex reasoning beyond LLMs’ capabilities, LLMs must engage with the external world to conduct reasoning, which is called situating action. For example, as shown in § 3.6, the LLM first uses internal actions to reason and analyze questions. It then realizes it lacks information about the current president of East Timor and formulates a query to expand its knowledge by asking: *Who is the current president of East Timor?* through the interface. The query is enclosed within the tags `<interface_start_tag>` and `<interface_end_tag>` of the relevant interface. Then, we invoke the interface to execute the query and conduct the reasoning on the external world to receive feedback that *The current president of East Timor is Francisco Guterres*. The feedback is

162 returned with the format of `<result>` and `</result>`, which is incorporated into the thinking
 163 process to facilitate further reasoning. Additionally, cases in § C.3 show that LLMs could invoke a
 164 coding interface to solve complex mathematical reasoning or obtain real-world knowledge.
 165

166 **2.2 INCENTIVIZING REASONING WITH SITUATED THINKING USING REINFORCEMENT
 167 LEARNING**

168 Complex tasks often require LLMs to conduct deliberate reasoning, utilizing situated thinking to
 169 surpass knowledge boundaries while reflecting on feedback from the external world. Teaching LLMs
 170 to reason based on real-world information is essential but challenging due to the scarcity of human-
 171 annotated data. Reinforcement learning (RL) has emerged as a powerful method for enhancing
 172 LLMs' reasoning capabilities by providing rewards based on final conclusions (DeepSeek-AI et al.,
 173 2025). Therefore, we aim to harness RL to enhance the reasoning abilities of LLMs, enabling them to
 174 explore the external world with situated thinking and incorporate feedback for refining their reasoning
 175 and maximizing answer accuracy.
 176

177 **2.2.1 INPUT TEMPLATE**

178 The input to SITUATEDTHINKER consists of two main components: the system prompt and the user
 179 question.
 180

181 **System Prompt.** The system prompt is designed to guide LLMs in reasoning and interacting
 182 with the external world. We first prompt LLMs to perform a thorough analysis of the problem
 183 through a reasoning process that leads to a conclusion, marked by the tags `<conclusion>` and
 184 `</conclusion>`. The final answer is clearly presented in the format of `\boxed{...final
 185 answer...}`. Then, we provide LLMs with a set of interfaces that allow them to interact with the
 186 external world, as detailed in the § 2.1.
 187

188 **System Prompt of SITUATEDTHINKER**

189 **Reasoning and Format Prompt**

190 A conversation between a User and an Assistant. The User poses a question, and the Assistant provides a solution. The Assistant's
 191 response follows these structured steps:

- 192 1. **Reasoning Process:** The Assistant comprehensively thinks about the problem through a reasoning process.
- 193 2. **Conclusion:** The Assistant reaches a conclusion, which is enclosed within `<conclusion>` and `</conclusion>` tags. The
 194 final answer is highlighted within '`\boxed{...final answer...}`'.
- 195 3. **Response Format:** The complete response should be formatted as:
 196 ...reasoning process...
 197 <conclusion>
 198 ...conclusion...
 199 The answer is `\boxed{...final answer...}`
 200 </conclusion>

201 **Interfaces Prompt**

202 During the reasoning process, the Assistant can interact with the system by invoking given interfaces and placing queries within
 203 `<interface_start_tag> ...query here... </interface_end_tag>` tags. The system processes these queries and returns
 204 results in the format `<result> ...results... </result>`. After gathering all necessary information, the Assistant continues with
 205 the reasoning process to finalize the answer. The assistant cannot invoke each interface more than `{Invoke Limit}` times.

206 The following are the interfaces provided for the Assistant:

207 `{Placeholder for Interface Definitions}`

208 **Question.** The system prompt is followed by the specific question, to which the model responds
 209 through an iterative and detailed reasoning process of exploration and reflection, accompanied by
 210 interaction with the external world.
 211

212 **2.2.2 ROLLOUT WITH SITUATED THINKING**

213 The rollout process of SITUATEDTHINKER is designed to enable LLMs to use situated thinking and
 214 freely explore the reasoning on the external world. The rollout would generate an iterative reasoning
 215 trajectory with both internal and situated actions as detailed in § 2.1. Given a question, we sample G
 216 individual reasoning trajectories $\{t_i\}_{i=1}^G$ from the policy of the current LLM, denoted as $\pi_{\theta_{\text{old}}}(\cdot|q)$
 217 where q is the input question. The trajectories would be assessed by the reward function to optimize
 218 the model.
 219

216 2.2.3 REWARD DESIGN
217

218 We design a simple reward function to obtain rewards for the generated trajectories. The reward
219 function is based on the format correctness and the answer accuracy of the generated trajectory, which
220 is a common practice in RL training for reasoning tasks (DeepSeek-AI et al., 2025). Formally, the
221 reward r_i for each trajectory t_i is calculated as follows:

$$222 \quad r_i = \begin{cases} 1.0, & c_{\text{answer}}(t_i), \\ 223 \quad 0.0, & c_{\text{format}}(t_i) \text{ and } \neg c_{\text{answer}}(t_i), \\ 224 \quad -0.1, & \neg c_{\text{format}}(t_i) \text{ and } \neg c_{\text{answer}}(t_i), \end{cases} \quad (1)$$

225 where $c_{\text{format}}(\cdot)$ evaluates the correctness of the trajectory format, requiring that the conclusion be
226 correctly enclosed within `<conclusion>` and `</conclusion>` tags, and the answer within
227 `\boxed{\cdot}`. The $c_{\text{answer}}(\cdot)$ indicates the correctness of the final answer, which will be evaluated
228 by QA accuracy or match correctness. It is noteworthy that we did not design additional rewards
229 for teaching LLMs how to invoke interfaces (Song et al., 2025). In subsequent experiments, we
230 empirically find that the model learned to invoke the interface correctly solely through the reward of
231 answer correctness verification.

232 2.2.4 TRAINING OBJECTIVE
233

234 We design the training objective by extending the Group Relative Policy Optimization (GRPO) (Shao
235 et al., 2024). By sampling a group of trajectories, we compute advantages $a_{i,:}$ of all tokens in each
236 trajectory as the mean normalization of group-level rewards $\{r_i\}_{i=1}^G$, which is computed as:

$$237 \quad a_{i,j} = r_i - \text{mean}(\{r_i\}_{i=1}^G), \quad 0 \leq j < |t_i|, \quad (2)$$

238 where $a_{i,j}$ is the advantage of the j -th token in the i -th trajectory. Then, the final objective of
239 SITUATEDTHINKER is formulated as:

$$240 \quad \mathcal{L}(\theta) = \mathbb{E}_{(q,a) \sim \mathcal{D}, \{t_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|t_i|} \sum_{j=1}^{|t_i|} \min \left(\frac{\pi_{\theta}(t_{i,j}|q, t_{i,<j})}{\pi_{\theta_{\text{old}}}(t_{i,j}|q, t_{i,<j})} a_{i,j}, \text{clip} \left(\frac{\pi_{\theta}(t_{i,j}|q, t_{i,<j})}{\pi_{\theta_{\text{old}}}(t_{i,j}|q, t_{i,<j})}, 1 - \epsilon_{\min}, 1 + \epsilon_{\max} \right) a_{i,j} \right) \right]. \quad (3)$$

245 Compared to standard GRPO, our objective incorporates the following key modifications: 1) We
246 introduce distinct clipping bounds, ϵ_{\min} and ϵ_{\max} , to promote exploration (Yu et al., 2025); 2) We
247 omit the KL penalty term, as our goal is to inject the situated thinking capability into LLM reasoning
248 that is distinct from the base LLMs (Yu et al., 2025).

250 3 EXPERIMENT
251252 3.1 EXPERIMENT SETTINGS
253

254 **Implementation Details.** We select two distinct base LLMs from the Qwen3 series (Team, 2025):
255 the 8B-Base and 14B-Base models, which have not undergone any post-training, allowing us to
256 observe fundamental performance changes during training. For training, we utilize only two tasks:
257 multi-hop question-answering and mathematical reasoning. Specifically, we employ the training
258 split of MuSiQue (Trivedi et al., 2022) and select 10,000 samples from Big-Math (Albalak et al.,
259 2025) to construct our training data. During the training process, we provide two interfaces for the
260 model: 1) *information retrieval interface*, which retrieves useful information from Wikipedia (2018
261 dump (Karpukhin et al., 2020)); 2) *code execution interface*, which executes Python code generated
262 by LLMs and returns feedback. More details of interface definitions and training parameters are
263 provided in § B.

264 **Evaluation Settings.** We evaluate SITUATEDTHINKER on two groups of benchmarks: in-domain
265 and out-of-domain benchmarks. For in-domain benchmarks, we evaluate the performance on four
266 multi-hop question-answering (§ 3.2) and three mathematical reasoning benchmarks (§ 3.3) to assess
267 its reasoning capabilities on trained tasks and interfaces. For out-of-domain benchmarks, we evaluate
268 the generalization capabilities of SITUATEDTHINKER on five unseen external environments, including
269 new domains (e.g., medical, science), new tasks (e.g., KBQA, table QA), and new interfaces (e.g.,
game environment interaction interfaces) (§ 3.4).

270 Table 1: Multi-Hop QA benchmarks results. All methods are based on Qwen series LLMs. indicates the model with 7B/8B parameters and indicates the model with 14B parameters. **Green** cells
 271 indicate the best performance in each column, while **Blue** cells indicate the second-best performance.
 272 The results of ReSearch and Search-R1 are borrowed from original papers.
 273

Model	Size	HotpotQA	2WikiMultihop QA	MusiQue	Bamboogle
w/o RAG		0.237	0.294	0.078	0.137
		0.256	0.299	0.089	0.154
Naive RAG		0.331	0.258	0.090	0.164
		0.358	0.261	0.118	0.185
Iter-RetGen		0.370	0.312	0.110	0.242
IRCOT		0.340	0.246	0.107	0.282
ReSearch		0.406	0.447	0.217	0.432
Search-R1		0.380	0.326	0.168	0.384
SITUATEDTHINKER		0.433	0.464	0.235	0.552
		0.451	0.483	0.255	0.512

285 3.2 PERFORMANCE ON MULTI-HOP QUESTION-ANSWERING BENCHMARKS

286 **Benchmarks.** We first evaluate SITUATEDTHINKER on test the split of four multi-hop question-
 287 answering benchmarks: HotpotQA (Yang et al., 2018), 2WikiMultihopQA (Ho et al., 2020),
 288 MusiQue (Trivedi et al., 2022), and Bamboogle (Press et al., 2023), with the information retrieval and
 289 coding interface seen during training. We report exact match (EM) metrics to assess the performance
 290 on these benchmarks.

291 **Baselines.** We employ four types of baseline methods: 1) No RAG methods, where the LLM
 292 is prompted to generate answers directly; 2) Naive RAG methods, involving a straightforward
 293 retrieval-based approach that concatenates the retrieval results with the question before prompting the
 294 language model to generate an answer; 3) Multi-step RAG methods, which utilize a multi-step RAG
 295 framework during reasoning, including two prominent methods: Iter-RetGen (Shao et al., 2023) and
 296 IRCoT (Trivedi et al., 2023a); and 4) Search-enhanced models, which utilize search tools to retrieve
 297 information during the LLM reasoning process, including two advanced methods: ReSearch (Chen
 298 et al., 2025a) and Search-R1 (Jin et al., 2025), which are also trained from GRPO. All baselines are
 299 implemented on base models of the equivalent size and family, and we leverage the same external
 300 documents for the retrieval. For methods that are challenging to reproduce, we report the best results
 301 achieved with models of the same size as presented in the original papers.

302 **Performance.** Table 1 summarizes the performance of SITUATEDTHINKER in comparison to baseline
 303 methods. Notably, SITUATEDTHINKER consistently surpasses prominent baseline approaches. In
 304 particular, our model outperforms those baseline methods that incorporate retrieval in their reasoning
 305 process, demonstrating its ability to interact with the external environment using multiple interfaces
 306 (e.g., coding) beyond simple retrieval (§ C.3). Additionally, our improvements are evident across
 307 both in-domain (MusiQue) and out-of-domain benchmarks (e.g., HotpotQA, 2WikiMultiHopQA,
 308 and Bamboogle).

310 3.3 PERFORMANCE ON MATHEMATICAL REASONING BENCHMARKS

312 **Benchmarks.** We assess the mathematical reasoning capabilities of SITUATEDTHINKER and baseline
 313 models using three representative benchmarks: AIME24¹, AIME25², and MATH500 (Hendrycks
 314 et al., 2021; Lightman et al., 2024). The average accuracy at position 32 (avg@32) is employed as
 315 the evaluation metric.

317 **Baselines.** Three categories of baseline methods are employed: 1) Base models, which are
 318 public LLMs without additional training, including Qwen3-Base (Team, 2025) and Qwen2.5-Math-
 319 Instruct (Yang et al., 2024); 2) Advanced reasoning LLMs trained via reinforcement learning, which
 320 employ reinforcement learning with verifiable rewards but cannot interact with real-world, such
 321 as SimpleRL-Zero (Zeng et al., 2025) and Eurus-2 (Cui et al., 2025); 3) Tool-integrated reasoning

323 ¹<https://huggingface.co/datasets/AI-MO/aimo-validation-aime>

²<https://huggingface.co/datasets/opencompass/AIME2025>

324 methods, which incorporate code integration into their reasoning process, including Qwen2.5-Math-
 325 Instruct-TIR (Yang et al., 2024) and ToRL (Li et al., 2025).
 326

327 **Performance.** As demon-
 328 strated in Table 2, SITUAT-
 329 EDTHINKER achieves a sig-
 330 nificant improvement over
 331 the base model. Further-
 332 more, when compared with
 333 other advanced baselines,
 334 particularly those derived
 335 from math-specific mod-
 336 els typically pre-trained on
 337 extensive professional cor-
 338 pora, our model also demon-
 339 strates competitive per-
 340 formance. In comparison to
 341 the advanced tool-integrated baseline ToRL, which is trained from the stronger math-specific LLM
 342 and more training data, SITUATEDTHINKER outperforms it on the MATH500 dataset and achieves
 343 competitive results on AIME24 and AIME25.

Table 2: Mathematical reasoning benchmarks results. *Math-Specific* means whether is based on the math-specific LLM.

Model	Size	Math-Specific	AIME24	AIME25	MATH500
Qwen3-Base	█	✗	11.7	7.6	59.6
Qwen2.5-Math-It	█	✗	10.0	10.1	70.7
SimpleRL-Zero	█	✓	33.3	6.7	77.2
Eurus-2	█	✓	26.7	13.3	79.2
Qwen2.5-Math-It-TIR	█	✓	26.7	16.7	74.8
ToRL	█	✓	43.3	30.0	82.2
SITUATEDTHINKER	█	✗	27.0	22.6	84.7
SITUATEDTHINKER	█	✗	43.0	26.5	87.1

344 In this section, we aim to assess the generalization capability of SITUATEDTHINKER with respect to
 345 out-of-domain external environments.

346 **Benchmarks.** We focus on two types of generalization capabilities: 1) cross-domain and 2) cross-
 347 interface. For cross-domain generalization, we utilize the medical reasoning benchmark MedQA (Jin
 348 et al., 2020) and the scientific reasoning benchmark GPQA (Rein et al., 2023), which share interfaces
 349 with the training data but focus on different disciplines. For cross-interface generalization, we evaluate
 350 three benchmarks: the knowledge-based question-answering benchmark WebQSP (Yih et al., 2016),
 351 the table question-answering benchmark WTQ (Pasupat & Liang, 2015), and the text-based planning
 352 benchmark TextWorld (Côté et al., 2018). Please refer to § B.4 for details and evaluation metrics of
 353 these benchmarks.

354 **Baselines.** We primarily compare with Qwen3-Base models (Team, 2025). To better evaluate the
 355 effectiveness of SITUATEDTHINKER, we also compared it with the interface-enhanced baseline.
 356 Specifically, we utilize the input template to feed to the Qwen3-Base models, so that they can interact
 357 with the external world using interfaces, which can be seen as an implementation of ReAct (Yao et al.,
 358 2023). We also include Research and Search-R1, which are only trained to incorporate with single
 359 interface to further assess the generalization capability of SITUATEDTHINKER.

360 **Performance.** As illustrated in Table 3, SITUATEDTHINKER significantly surpasses the baseline
 361 models both with and without interface invocation, demonstrating its enhanced ability to generalize
 362 to new environments. This generalization includes both different vertical domains and different
 363 interfaces. Particularly for TextWorld, a dataset based on simulated physical environments, where the
 364

Table 3: Generalization performance comparison between SITUATEDTHINKER and baselines on
 MedQA, GPQA, WebQSP, WTQ, and TextWorld. The **Interfaces** column indicates whether the
 model can interact with external world through interfaces.

Model	Size	Interfaces	MedQA	GPQA	WebQSP	WTQ	TextWorld
Vanilla LLMs	█	✗	3.9	6.1	41.7	6.5	10.0
Vanilla LLMs	█	✗	69.6	39.4	53.1	10.5	24.0
ReAct	█	✓	5.7	5.6	22.1	35.7	8.0
ReSearch	█	✓	71.9	35.9	56.3	41.6	28.0
Search-R1	█	✓	43.6	20.2	25.2	8.7	4.0
SITUATEDTHINKER	█	✓	21.8	15.2	15.9	5.1	2.0
SITUATEDTHINKER	█	✓	58.1	25.8	66.5	68.9	42.0
SITUATEDTHINKER	█	✓	77.9	53.0	68.7	69.7	94.0

Figure 2: Illustration of training dynamics of SITUATEDTHINKER. The x -axis indicates the training steps and the y -axis means the observation metrics.

underlying LLMs lack intrinsic knowledge of the environment, effectively utilizing the interface’s name to interact with the external world leads to significant performance enhancements.

3.5 ANALYSIS ON TRAINING DYNAMICS

In this section, we will explore what the model has learned through GRPO by analyzing the training dynamics. The key training dynamics are detailed in Figure 2.

SITUATEDTHINKER Learned to Invoke Interfaces. The training dynamics presented in the sub-figures titled “Code Interface Invocation”, “Retrieval Interface Invocation”, and “Invoke Error Penalty” illustrate the model’s ability to learn correct interface invocation and obtain feedback without relying on explicit reward incentives. In the early stages of training, the model is unable to invoke interfaces correctly and demonstrates no significant tendency toward improvement. However, as training progresses, the quantity of successful interface invocations steadily increases, accompanied by a corresponding decrease in error rates.

SITUATEDTHINKER Learned to Reflect. The sub-figure titled “Reflection Score” illustrates the dynamics of reflection patterns that emerge in responses generated by SITUATEDTHINKER. As training progresses, the frequency of these reflection patterns gradually increases, indicating that SITUATEDTHINKER is learning to reflect based on external feedback and subsequently improve its reasoning performance. Additionally, the sub-figure titled “Response Length” demonstrates that the length of SITUATEDTHINKER’s responses gradually increases as training continues. This aligns with recent research expectations (Snell et al., 2024), suggesting that SITUATEDTHINKER has learned to progressively scale its reasoning by enhancing interface invocation efficiency and incorporating reflection and backtracking to verify the correctness of its thinking.

3.6 CASE STUDY

In this section, we will discuss the abilities and nature of SITUATEDTHINKER by analyzing the Case 3.1 in which SITUATEDTHINKER actually performs situated thinking.

Reasoning Step by Step. SITUATEDTHINKER firstly decomposes complex reasoning problems and solves them incrementally, a capability acquired automatically during model training without relying on annotated data.

Discovery Knowledge Boundary. The **red highlighted** part indicates that SITUATEDTHINKER is capable of recognizing the limitations of its own knowledge. Following GRPO training, SITUATEDTHINKER can identify when the knowledge or information necessary to solve a problem surpasses its knowledge boundary, prompting it to invoke situating interfaces to interact with the external environment and obtain feedback that aids its reasoning.

432 **Reflection with Interfaces.** The **green highlighted** part signifies that SITUATEDTHINKER embodies
 433 reflective characteristics within the reasoning process. In response to potential errors in prior reasoning,
 434 SITUATEDTHINKER reassesses and deliberates to verify the accuracy of its conclusions. Notably,
 435 unlike previous long-chain-of-thought reasoning LLMs, such as DeepSeek-R1, SITUATEDTHINKER
 436 integrates situating interfaces during reflection to enhance alignment with external environmental
 437 information.

438 **Case 3.1: Case From MusiQue**

439 **QUESTION**

440 Who is the president of the newly declared independent country that has a Commission of Truth and Friendship with the country
 441 where Ambelau is located?

442 **RESPONSE**

443 **Alright, I need to find out who is the president of the newly declared independent country that has a Commission of Truth
 444 and Friendship with the country where Ambelau is located. Let's break this down step by step.**

445 **### Step 1: Identify the country where Ambelau is located.**

446 ...
 447 From the information, it seems that Taur Matan Ruak was the President of East Timor from 20 May 2012 to 20 May 2017. However,
 448 I need to confirm if he is the current president or if there have been any changes since then.

449 **Wait, the information also mentions that José Ramos-Horta was the President of East Timor from 20 May 2007 to 20 May
 450 2012. So, the timeline is: - José Ramos-Horta: 2007-2012 - Taur Matan Ruak: 2012-2017**

451 **But the question is about the newly declared independent country, which is East Timor, and the president of that country.
 452 Since East Timor declared independence in 2002, and the timeline provided goes up to 2017, I need to find out who the
 453 current president is.**

454 **Wait, the information doesn't specify the current president. Maybe I need to check more recent sources.**

455 <retrieval>Who is the current president of East Timor?</retrieval>

456 ...

457 The answer is \boxed{Francisco Guterres}

458 </conclusion>

459 More cases of SITUATEDTHINKER’s reasoning process across different tasks and external environments
 460 are provided in § C.3.

461 **4 RELATED WORK**

462 The most related line of work involves the integration of LLMs with external information through
 463 tools or functions which are similar to the interfaces defined in our paper. Previous works (Schick
 464 et al., 2023a; Yao et al., 2023; Wang et al., 2024; Gou et al., 2024; Qin et al., 2024; 2025) leverage the
 465 capabilities of LLMs’ tool-calling, which are typically pre-trained on vast amounts of relevant data and
 466 can employ pre-defined tools to solve user tasks across multiple rounds of dialogue. However, most of
 467 these methods perform direct reasoning based on external information, they lack the ability to engage
 468 in reflective thinking or backtracking and to utilize external information to validate their conclusions
 469 during the reasoning process. In contrast, SITUATEDTHINKER integrates external information with
 470 single-turn deep thinking, enabling LLMs to engage in reflective thinking through external interfaces
 471 during the reasoning process. Recent studies (Chen et al., 2025a; Jin et al., 2025; Song et al., 2025;
 472 Li et al., 2025; Feng et al., 2025) have attempted to bolster LLMs with reinforcement learning using
 473 web search or writing code, which allow thinking and reflecting with external information. However,
 474 training these methods on a single tool limits their ability to generalize to new environments, resulting
 475 in inadequate capabilities and inflexible workflow definitions. In contrast, SITUATEDTHINKER
 476 achieves interface generalization through a unified interface design, moving beyond reliance on a
 477 single interface, and takes the lead in validating this approach across extensive benchmarks. Lastly,
 478 advanced reasoning models, such as OpenAI DeepResearch (OpenAI, 2025), are regarded as capable
 479 of handling out-of-domain tools. We believe that our work constitutes an important step toward
 480 exploring the implementation of such models.

481 **5 CONCLUSION**

482 This paper introduces SITUATEDTHINKER, a novel framework that facilitates *situated thinking*,
 483 enabling LLMs to actively engage with external environments through predefined interfaces. By em-
 484 ploying reinforcement learning, SITUATEDTHINKER promotes intentional reasoning and adaptation
 485 to diverse tasks and interfaces. Extensive experiments demonstrate the effectiveness of SITUATED-
 486 THINKER, while further analysis highlights its intriguing and meaningful reasoning behaviors.

486 ETHICS STATEMENT
487488 This research focuses solely on general scientific tasks and does not pose risks to health, safety,
489 personal security, or privacy. No human subjects are involved, and no new datasets are released as
490 part of this study. Furthermore, the research does not include potentially harmful insights, methods,
491 or applications, nor does it raise concerns related to privacy, security, legal compliance, or research
492 integrity. Consequently, we anticipate no ethical risks or conflicts of interest. We are committed to
493 maintaining the highest standards of scientific integrity and adhering to ethical guidelines throughout
494 the research process.495
496 REPRODUCIBILITY STATEMENT
497498 We provide a comprehensive description of the proposed model in the main body, accompanied by
499 detailed implementation specifics, including dataset information, baseline models, and experimental
500 settings in §§ B and 3.1. All datasets used in this research are publicly available. Key code implementa-
501 tions are included in the supplementary materials for reference, with the complete code to be released
502 publicly upon acceptance of the paper.503
504 REFERENCES
505506 Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
507 for mathematical reasoning: Progresses and challenges. In *EACL (Student Research Workshop)*,
508 pp. 225–237. Association for Computational Linguistics, 2024. 1509 Alon Albalak, Duy Phung, Nathan Lile, Rafael Rafailov, Kanishk Gandhi, Louis Castricato, Anikait
510 Singh, Chase Blagden, Violet Xiang, Dakota Mahan, and Nick Haber. Big-math: A large-scale,
511 high-quality math dataset for reinforcement learning in language models. *CoRR*, abs/2502.17387,
512 2025. 3.1, B.2513 Roberto Araya. Do chains-of-thoughts of large language models suffer from hallucinations, cognitive
514 biases, or phobias in bayesian reasoning? *CoRR*, abs/2503.15268, 2025. 1515 516 Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
517 Wojciech Zaremba. Openai gym. *CoRR*, abs/1606.01540, 2016. B.4518 Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z. Pan,
519 Wen Zhang, Huajun Chen, Fan Yang, Zenan Zhou, and Weipeng Chen. Research: Learning to
520 reason with search for llms via reinforcement learning. *CoRR*, abs/2503.19470, 2025a. 3.2, 4521 522 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
523 Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
524 thought for reasoning large language models. *CoRR*, abs/2503.09567, 2025b. 1525 526 Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
527 Moore, Matthew J. Hausknecht, Layla El Asri, Mahmoud Adada, Wendy Tay, and Adam Trischler.
528 Textworld: A learning environment for text-based games. In *CGW@IJCAI*, volume 1017 of
529 *Communications in Computer and Information Science*, pp. 41–75. Springer, 2018. 3.4, B.4530 531 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
532 Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang,
533 Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning
534 Ding. Process reinforcement through implicit rewards. *CoRR*, abs/2502.01456, 2025. 3.3535 536 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
537 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
538 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
539 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang

540 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
 541 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
 542 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
 543 Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
 544 Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
 545 Jin, Ruyi Chen, Shanghai Lu, Shangyan Zhou, Shanhua Chen, Shengfeng Ye, Shiyu Wang,
 546 Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing reasoning
 547 capability in llms via reinforcement learning. *CoRR*, abs/2501.12948, 2025. 1, 2.2, 2.2.3

548 Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
 549 Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
 550 *CoRR*, abs/2504.11536, 2025. 4

551 Tao Feng, Chuanyang Jin, Jingyu Liu, Kunlun Zhu, Haoqin Tu, Zirui Cheng, Guanyu Lin, and
 552 Jiaxuan You. How far are we from agi: Are llms all we need? *Transactions on Machine Learning
 553 Research*, 2024. 1

554 Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
 555 CRITIC: large language models can self-correct with tool-interactive critiquing. In *ICLR*. OpenRe-
 556 view.net, 2024. 4

557 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 558 and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
 559 *NeurIPS Datasets and Benchmarks*, 2021. 3.3

560 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing A multi-
 561 hop QA dataset for comprehensive evaluation of reasoning steps. In *COLING*, pp. 6609–6625.
 562 International Committee on Computational Linguistics, 2020. 3.2

563 Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. In
 564 *ACL (Findings)*, pp. 1049–1065. Association for Computational Linguistics, 2023. 1

565 Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-
 566 r1: Training llms to reason and leverage search engines with reinforcement learning. *CoRR*,
 567 abs/2503.09516, 2025. 1, 3.2, 4

568 Di Jin, Eileen Pan, Nassim Oufattolle, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What
 569 disease does this patient have? A large-scale open domain question answering dataset from medical
 570 exams. *CoRR*, abs/2009.13081, 2020. 3.4, B.4

571 Vladimir Karpukhin, Barlas Onguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
 572 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In *EMNLP*,
 573 pp. 6769–6781. Association for Computational Linguistics, 2020. 3.1

574 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 575 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 576 serving with pagedattention. In *SOSP*, pp. 611–626. ACM, 2023. B.3

577 Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated RL. *CoRR*, abs/2503.23383,
 578 2025. 3.3, 4

579 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 580 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *ICLR*.
 581 OpenReview.net, 2024. 3.3

582 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 583 Zettlemoyer, Percy Liang, Emmanuel J. Candès, and Tatsunori Hashimoto. s1: Simple test-time
 584 scaling. *CoRR*, abs/2501.19393, 2025. 1

585 OpenAI. Learning to reason with llms. <https://openai.com/index/learning-to-reason-with-llms/>, 2024. Accessed: 2024-09-12. 1

586 OpenAI. Introducing deep research. <https://openai.com/index/introducing-deep-research/>, 2025. Accessed: 2025-02-02. 4

594 Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables. In
 595 *ACL (1)*, pp. 1470–1480. The Association for Computer Linguistics, 2015. 3.4, B.4
 596

597 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
 598 Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
 599 Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
 600 Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
 601 performance deep learning library. In *NeurIPS*, pp. 8024–8035, 2019. B.3

602 Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis. Measuring
 603 and narrowing the compositionality gap in language models. In *EMNLP (Findings)*, pp. 5687–5711.
 604 Association for Computational Linguistics, 2023. 3.2

605 Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
 606 Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
 607 Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
 608 16000+ real-world apis. In *ICLR*. OpenReview.net, 2024. 4

609 Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe
 610 Zhou, Yufei Huang, Chaojun Xiao, Chi Han, Yi R. Fung, Yusheng Su, Huadong Wang, Cheng Qian,
 611 Runchu Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen
 612 Li, Ziwei Tang, Jing Yi, Yuzhang Zhu, Zhenming Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao,
 613 Yuxiang Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang
 614 Wu, Heng Ji, Guoliang Li, Zhiyuan Liu, and Maosong Sun. Tool learning with foundation models.
 615 *ACM Comput. Surv.*, 57(4):101:1–101:40, 2025. 4

616 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
 617 Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a benchmark.
 618 *CoRR*, abs/2311.12022, 2023. 3.4, B.4

619 Ruiyang Ren, Yuhao Wang, Yingqi Qu, Wayne Xin Zhao, Jing Liu, Hua Wu, Ji-Rong Wen, and
 620 Haifeng Wang. Investigating the factual knowledge boundary of large language models with
 621 retrieval augmentation. In *Proceedings of the 31st International Conference on Computational
 622 Linguistics*, pp. 3697–3715, 2025. 1

623 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
 624 Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
 625 themselves to use tools. In *NeurIPS*, 2023a. 4

626 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
 627 Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
 628 themselves to use tools. *Advances in Neural Information Processing Systems*, 36:68539–68551,
 629 2023b. 1

630 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 631 optimization algorithms. *CoRR*, abs/1707.06347, 2017. 1

632 Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Enhancing
 633 retrieval-augmented large language models with iterative retrieval-generation synergy. In *EMNLP
 634 (Findings)*, pp. 9248–9274. Association for Computational Linguistics, 2023. 3.2

635 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
 636 Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
 637 language models. *CoRR*, abs/2402.03300, 2024. 1, 2.2.4

638 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 639 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient RLHF framework. In *EuroSys*,
 640 pp. 1279–1297. ACM, 2025. B.3

641 Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
 642 Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
 643 large language models. In *2023 IEEE International Conference on Robotics and Automation
 644 (ICRA)*, pp. 11523–11530. IEEE, 2023. 1

648 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute optimally
 649 can be more effective than scaling model parameters. *CoRR*, abs/2408.03314, 2024. 1, 3.5
 650

651 Chan Hee Song, Brian M. Sadler, Jiaman Wu, Wei-Lun Chao, Clayton Washington, and Yu Su.
 652 Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
 653 *ICCV*, pp. 2986–2997. IEEE, 2023. 1

654 Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and
 655 Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement learning.
 656 *CoRR*, abs/2503.05592, 2025. 1, 2.2.3, 4
 657

658 Jiankai Sun, Chuanyang Zheng, Enze Xie, Zhengying Liu, Ruihang Chu, Jianing Qiu, Jiaqi Xu,
 659 Mingyu Ding, Hongyang Li, Mengzhe Geng, Yue Wu, Wenhui Wang, Junsong Chen, Zhangyue
 660 Yin, Xiaozhe Ren, Jie Fu, Junxian He, Wu Yuan, Qi Liu, Xihui Liu, Yu Li, Hao Dong, Yu Cheng,
 661 Ming Zhang, Pheng-Ann Heng, Jifeng Dai, Ping Luo, Jingdong Wang, Ji-Rong Wen, Xipeng Qiu,
 662 Yike Guo, Hui Xiong, Qun Liu, and Zhenguo Li. A survey of reasoning with foundation models:
 663 Concepts, methodologies, and outlook. *ACM Comput. Surv.*, 2023. 1

664 Qwen Team. Qwen3: Think deeper, act faster. <https://qwenlm.github.io/blog/qwen3/>,
 665 2025. 3.1, 3.3, 3.4
 666

667 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
 668 questions via single-hop question composition. *Trans. Assoc. Comput. Linguistics*, 10:539–554,
 669 2022. 3.1, 3.2, B.2

670 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval
 671 with chain-of-thought reasoning for knowledge-intensive multi-step questions. In *ACL (1)*, pp.
 672 10014–10037. Association for Computational Linguistics, 2023a. 3.2
 673

674 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval
 675 with chain-of-thought reasoning for knowledge-intensive multi-step questions. In *Proceedings
 676 of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
 677 Papers)*, pp. 10014–10037, 2023b. 1

678 Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
 679 Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. *Trans.
 680 Mach. Learn. Res.*, 2024, 2024. 4
 681

682 Yi Ru Wang, Jiafei Duan, Dieter Fox, and Siddhartha S. Srinivasa. NEWTON: are large language
 683 models capable of physical reasoning? In *EMNLP (Findings)*, pp. 9743–9758. Association for
 684 Computational Linguistics, 2023. 1

685 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 686 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 687 neural information processing systems*, 35:24824–24837, 2022. 2.1
 688

689 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 690 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
 691 von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
 692 Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
 693 language processing. In *EMNLP (Demos)*, pp. 38–45. Association for Computational Linguistics,
 694 2020. B.3

695 Shangyu Wu, Ying Xiong, Yufei Cui, Haolun Wu, Can Chen, Ye Yuan, Lianming Huang, Xue
 696 Liu, Tei-Wei Kuo, Nan Guan, and Chun Jason Xue. Retrieval-augmented generation for natural
 697 language processing: A survey. *CoRR*, abs/2407.13193, 2024. 1
 698

699 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
 700 Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
 701 Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
 model via self-improvement. *CoRR*, abs/2409.12122, 2024. 3.3

702 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
 703 and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 704 answering. In *EMNLP*, pp. 2369–2380. Association for Computational Linguistics, 2018. [3.2](#)

705 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao.
 706 React: Synergizing reasoning and acting in language models. In *ICLR*. OpenReview.net, 2023.
 707 [3.4](#), [4](#), [C.1](#)

708 Wen-tau Yih, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh. The value
 709 of semantic parse labeling for knowledge base question answering. In *ACL*. The Association for
 710 Computer Linguistics, 2016. [3.4](#), [B.4](#)

711 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 712 Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
 713 Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
 714 Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
 715 Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO: an open-source
 716 LLM reinforcement learning system at scale. *CoRR*, abs/2503.14476, 2025. [2.2.4](#)

717 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
 718 zoo: Investigating and taming zero reinforcement learning for open base models in the wild. *CoRR*,
 719 abs/2503.18892, 2025. [3.3](#)

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

Appendix

Table of Contents

A	Discussions	16
B	More Implementation Details	16
B.1	Training Parameters	16
B.2	Details of Training Data	16
B.3	Details of Hardware and Software	16
B.4	Details of Out-of-Domain Benchmarks	16
B.5	Deatils of Interface Definitions	17
C	More Experimental Results	19
C.1	Can Instruction-Tuned LLMs Effectively Invoke Interfaces?	19
C.2	Ablation Studies	20
C.3	More Case Studies	20
D	Limitations	28
E	LLM Usage	29

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

A DISCUSSIONS

Comparison With RAG. The classic RAG framework typically operates as a one-off process: it retrieves information based on the initial query and synthesizes a response, treating retrieval and reasoning as separate, disconnected stages. Consequently, when faced with multi-hop reasoning tasks that require connecting disparate pieces of information, traditional methods struggle to capture the latent relationships between multiple sub-questions and necessary intermediate answers. In contrast, our proposed method fundamentally shifts this paradigm by embedding dynamic interaction with the external environment directly into the model’s single-turn chain of thought. By harnessing the inherent planning and reasoning strengths of LLMs, the system iteratively solves complex questions step by step—retrieving, evaluating, and reasoning in a loop—thereby achieving a level of accuracy and depth that static retrieval cannot match.

B MORE IMPLEMENTATION DETAILS

B.1 TRAINING PARAMETERS

The hyperparameters used for training are listed in Table 4.

Table 4: Training Hyperparameters for SITUATEDTHINKER.

Parameters	Value
Learning Rate	1e-6
Total Training Steps	250
Warmup Steps	20
# Rollouts per Question	8
Total Training Batch Size	256
Max Prompt Length	2048
Max Response Length	12288
ϵ_{\min}	0.2
ϵ_{\max}	0.28

B.2 DETAILS OF TRAINING DATA

The training data consist of two components: 1) the training subset of MusiQue (Trivedi et al., 2022), containing 19,938 samples; and 2) 10,000 mathematical data from Big-Math (Albalak et al., 2025), where the pass rate in the original data is treated as an indication of difficulty, and the easy (pass rate ≥ 0.7), medium ($0.3 \leq \text{pass rate} < 0.7$), and hard ($\text{pass rate} < 0.3$) questions are selected in a ratio of 1:1:8.

B.3 DETAILS OF HARDWARE AND SOFTWARE

We conduct experiments on the cluster equipped with NVIDIA H100-80G GPUs. The reinforcement learning framework is implemented based on veRL (Sheng et al., 2025), cooperated with Pytorch (Paszke et al., 2019) 2.6.0, Transformers (Wolf et al., 2020) 4.51.3, vLLM (Kwon et al., 2023) 0.8.4.

B.4 DETAILS OF OUT-OF-DOMAIN BENCHMARKS

MedQA. MedQA is a free-form, multiple-choice open-domain question-answering dataset designed to tackle medical problems, as detailed by professional medical licensing exams like the USMLE, AIIMS, and NEET PG (Jin et al., 2020). The dataset encompasses three languages—English, Simplified Chinese, and Traditional Chinese—consisting of 12,723, 34,251, and 14,123 questions, respectively. For our analysis, we utilize only the English test subset, which contains a total of 1,273 questions. Accuracy is reported as the evaluation metric and the information retrieval interface is provided for SITUATEDTHINKER and baselines.

864 **GPQA.** GPQA (Graduate-Level Google-Proof Q&A) (Rein et al., 2023) is a rigorous multiple-
 865 choice benchmark comprising 448 expert-crafted questions in biology, physics, and chemistry. These
 866 questions are both authored and validated by domain experts who either hold or are pursuing PhDs
 867 in the respective fields. While experts demonstrate an accuracy of only 65%, which increases to
 868 74% when clear mistakes are discounted, skilled non-experts achieve a mere 34% accuracy, despite
 869 having full web access and allotting over 30 minutes per question. Our experiment employs the
 870 diamond split of GPQA, consisting of 198 questions. Accuracy serves as the evaluation metric and
 871 the information retrieval interface is provided for SITUATEDTHINKER and baselines.

872 **WebQSP.** WebQSP dataset (Yih et al., 2016) is a significant benchmark in knowledge-base question
 873 answering, derived from the original WebQuestions dataset, which includes 6,642 question–answer
 874 pairs over Freebase. It contains 4,737 fully annotated SPARQL query parses and 1,073 partial
 875 annotations for questions that could not be semantically parsed or required descriptive answers,
 876 totaling 5,810 annotations. This dataset necessitates models to perform up to two-hop reasoning
 877 over Freebase entities, serving as a fundamental benchmark for multi-hop KBQA research. Our
 878 experiments are conducted on the test split comprising 1,628 questions. We implement two interfaces
 879 for interacting with the knowledge base: 1) the Relation Retrieval Interface for retrieving neighboring
 880 relations of a given entity, and 2) the Tail Entity Retrieval Interface for retrieving neighboring tail
 881 entities of a given entity and relation. We report hits1, which measures the correctness of the predicted
 882 answer, as the evaluation metric.

883 **WTQ.** WTQ dataset (Pasupat & Liang, 2015) is a large-scale question-answering dataset based
 884 on semi-structured HTML tables from Wikipedia, designed for exploring compositional semantic
 885 parsing on real-world tables. It includes 22,033 free-form, natural language questions paired with
 886 2,108 distinct tables—each with at least 8 rows and 5 columns—created by Amazon Mechanical
 887 Turk workers without templates, resulting in high linguistic and structural diversity. This dataset
 888 serves as a benchmark for multi-step reasoning over tables, necessitating operations such as filtering,
 889 aggregation, superlatives, arithmetic, joins, and unions. Our experiments are conducted on the test
 890 split containing 7,175 questions. We implement three interfaces for interacting with the knowledge
 891 base: 1) the Header Interface for retrieving headers given a table ID, 2) the Column Interface for
 892 retrieving a column specified by the table ID and header, and 3) the Row Interface for retrieving a
 893 row specified by the table ID and row index. We report accuracy as the evaluation metric.

894 **TextWorld.** TextWorld (Côté et al., 2018) is a text-based game generator and extensible sandbox
 895 learning environment for training and testing reinforcement learning (RL) agents. We leverage it to
 896 generate a test text-based games benchmark composed of 50 distinct games. We implement four
 897 interfaces for interacting with the games through the gym-like APIs(Brockman et al., 2016): 1)
 898 the Feedback Interface for returning text observation produced by the game in response to the last
 899 command, 2) the Description Interface for returns text description of the current room given the
 900 command sequence, 3) the Admissible Commands Interface for returning all commands relevant to
 901 the current state given the command sequence, and 4) the Possible Admissible Commands Interface
 902 for returning all possible commands of the current game. We report the pass rate of all games as the
 903 evaluation metric.

906 B.5 DEATILS OF INTERFACE DEFINITIONS

908 **Question Answering Interfaces.** Two interfaces (e.g., retrieval and code execution) have been
 909 employed in HotpotQA, 2WikiMultihop, MuSiQue, Bamboogle, MedQA, and GPQA.

912 Information Retrieval Interface

914 Interface For Retrieval Information

- **Description:** This interface retrieves the necessary information based on the given query.
- **Query Format:** `!retrieval; ...query... !/retrieval;`
- **Invoke Limit 5.**

918

Code Execution Interface

919

920

Interface For Code Execution

921

- **Description:** This interface executes provided Python code snippets and returns the results, making it suitable for tasks such as data processing, analysis, computation, and validation.

922

- **Query Format:** `|code| ...query... |/code|.`

923

- **Invoke Limit 5.**

924

925

926

Knowledge Graph Interfaces. We outline the interfaces used in WebQSP to interact with the knowledge graph environments, which includes: relation retrieval and tail entity retrieval interfaces.

927

928

929

Relation Retrieval Interface

930

Interface For Relation Retrieval

931

- **Description:** This interface retrieves the neighboring relations given the entity in the query format `|relation| entity |/relation|.`

932

- **Query Format:** `|relation| ...query... |/relation|.`

933

- **Invoke Limit 10.**

934

935

936

937

Tail Entity Retrieval Interface

938

Interface For Tail Entity Retrieval

939

- **Description:** This interface retrieves the tail entities associated with a given head entity and relation, as specified in the query format `|entity| head entity, relation |/entity|.`

940

- **Query Format:** `|entity| ...query... |/entity|.`

941

- **Invoke Limit 10.**

942

943

944

Database Interfaces. The interfaces used in WTQ to interact with the database environments include: table header retrieval, column retrieval, and row retrieval interfaces.

945

946

947

Header Retrieval Interface

948

Interface For Header Retrieval

949

- **Description:** This interface retrieves the headers of the table specified by the given table id in the query format `|header| table id |/header|.`

950

- **Query Format:** `|header| ...query... |/header|.`

951

- **Invoke Limit 10.**

952

953

954

955

Column Retrieval Interface

956

Interface For Column Retrieval

957

- **Description:** This interface retrieves a column of the table specified by the given table id and header in the query format `|column| table id, header name |/column|.`

958

- **Query Format:** `|column| ...query... |/column|.`

959

- **Invoke Limit 10.**

960

961

962

963

Row Retrieval Interface

964

Interface For Row Retrieval

965

- **Description:** This interface retrieves a row of the table specified by the given table id and row index in the query format `|row| table id, row index |/row|.`

966

- **Query Format:** `|row| ...query... |/row|.`

967

- **Invoke Limit 10.**

968

969

970

971

Game Interaction Interfaces. In TextWorld, we adopt the interfaces to interact with the game environments, including: obtaining feedback, obtaining description, obtaining admissible commands, obtaining description, and obtaining possible admissible commands interfaces.

972

Obtaining Feedback Interface

973

Interface For Obtaining Feedback

975

- **Description:** This interface returns text observation produced by the game in response to the last command given the game id and the command sequence in the query format `|feedback; game id — command1, command2, ... |/feedback|`.

976

- **Query Format:** `|feedback; ...query... |/feedback|`.

977

- **Invoke Limit** 50.

978

979

980

981

Obtaining Description Interface

982

Interface For Obtaining Description

983

- **Description:** This interface returns text description of the current room given game id and the command sequence in the query format `|description; game id — command1, command2, ... |/description|`.

984

- **Query Format:** `|description; ...query... |/description|`.

985

- **Invoke Limit** 50.

986

987

988

989

Obtaining Admissible Commands Interface

990

Interface For Obtaining Admissible Commands

991

- **Description:** This interface returns all commands relevant to the current state given game id and the command sequence in the query format `|admissiblecommand; game id — command1, command2, ... |/admissiblecommand|`.

992

- **Query Format:** `|admissiblecommand; ...query... |/admissiblecommand|`.

993

- **Invoke Limit** 50.

994

995

996

997

998

999

1000

Obtaining Description Interface

1001

Interface For Obtaining Description

1002

- **Description:** This interface returns text description of the current room given game id and the command sequence in the query format `|description; game id — command1, command2, ... |/description|`.

1003

- **Query Format:** `|description; ...query... |/description|`.

1004

- **Invoke Limit** 50.

1005

1006

1007

Obtaining Possible Admissible Commands Interface

1008

Interface For Obtaining Possible Admissible Commands

1009

- **Description:** This interface returns all possible commands given game id in the query format `|possibleadmissiblecommand; game id|/possibleadmissiblecommand|`.

1010

- **Query Format:** `|possibleadmissiblecommand; ...query... |/possibleadmissiblecommand|`.

1011

- **Invoke Limit** 50.

1012

1013

1014

1015

C MORE EXPERIMENTAL RESULTS

1016

1017

C.1 CAN INSTRUCTION-TUNED LLMs EFFECTIVELY INVOKE INTERFACES?

1018

1019

1020

1021

1022

1023

1024

1025

In this section, we investigate whether instruction-tuned LLMs can effectively utilize interfaces. We compare the performance of instruction-tuned Qwen3 series models against SITUATEDTHINKER, using a no-thinking mode to minimize the impact of post-training. For instruction-tuned LLMs, we implement a pipeline similar to ReAct (Yao et al., 2023). As shown in Table 5, while instruction tuning enhances the LLM’s ability to use interfaces compared to the base model, indicating some improvement in capability, the performance remains inadequate. In contrast, SITUATEDTHINKER significantly outperforms the instruction-tuned models, supporting our claim in W3 that SITUATEDTHINKER can further enhance the capabilities of already powerful models.

1026
1027
1028 Table 5: Comparison of instruct LLMs and SITUATEDTHINKER.
1029
1030
1031
1032
1033

Model	Size	Musique	Bamboogle	WebQSP	TextWorld
Instruct	■	0.124	0.448	34.7	22.0
	■	0.197	0.465	58.4	46.0
SITUATEDTHINKER	■	0.235	0.552	66.5	42.0
	■	0.255	0.512	68.7	94.0

1034
1035 Table 6: Ablation study of interfaces during training.
1036
1037
1038
1039
1040
1041

Training Configuration	Size	Bamboogle	AIME24	TextWorld
w/o interfaces	■	0.208	11.3	14.0
w/ retrieval only	■	0.440	22.4	40.0
w/ code only	■	0.336	24.7	36.0
SITUATEDTHINKER	■	0.552	27.0	42.0

1042
1043 C.2 ABLATION STUDIES1044
1045
1046 **Impact of Interfaces in Training.** To investigate the roles of different interfaces in training, we
1047 compare the performance of SITUATEDTHINKER when trained without interfaces, with only the
1048 Information Retrieval interface, or with only the Code Execution interface, as presented in Table 6.
1049 The results indicate that training without interfaces or with a single interface leads to degraded
1050 performance. For benchmarks like Bamboogle and TextWorld, which rely heavily on external
1051 knowledge, the Information Retrieval interface proves more critical. In contrast, for tasks such as
1052 mathematical reasoning (AIME24), where internal knowledge is often sufficient, the Code Execution
1053 interface plays a more significant role.1054
1055 **Impact of Interfaces in Inference.** In this section, we examine the role of different interfaces during
1056 the inference phase of SITUATEDTHINKER, with all experiments based on SITUATEDTHINKER
1057 trained using both information retrieval and code execution interfaces. First, we assess performance
1058 when no interfaces are provided during inference. As shown in Table 7, access to interfaces at
1059 inference time significantly enhances performance, particularly for benchmarks like Bamboogle and
1060 TextWorld, which heavily depend on external information. Next, we evaluate SITUATEDTHINKER’s
1061 performance when provided with all 12 interfaces discussed in this paper during inference to determine
1062 whether SITUATEDTHINKER can effectively select appropriate interfaces in practical applications
1063 and generalize to out-of-domain interfaces, given that interface definitions in real-world scenarios are
1064 typically not task-specific. As presented in Table 8, performance degradation is minimal, indicating
1065 that SITUATEDTHINKER is robust to a large number of available interfaces and remains focused
1066 without being distracted.1066
1067 C.3 MORE CASE STUDIES1068
1069
1070 In this section, we present a detailed analysis of cases sampled from the outputs generated by SITU-
1071 ATEDTHINKER across diverse benchmarks to highlight additional aspects of SITUATEDTHINKER’s
1072 reasoning process.1073
1074 **Case From Multi-Hop Question-Answering Benchmarks.** Case C.1 illustrates SITUATED-
1075 THINKER’s response on the Bamboogle dataset. The **red highlighted** and **green highlighted**
1076 sections demonstrate SITUATEDTHINKER’s ability to correct invocation errors based on external
1077 feedback.1078
1079 **Case From Mathematical Reasoning Benchmarks.** Case C.2 illustrates SITUATEDTHINKER’s
1080 response on the MATH500 dataset. When addressing fundamental mathematical problems, SITUAT-
1081 EDTHINKER can utilize its internal knowledge to perform actions for solving them, as detailed in the
1082 **red highlighted** section. The **green highlighted** section indicates that SITUATEDTHINKER leverages
1083 the code execution interface to validate its conclusions, enabling effective reflection.

1080

Table 7: Ablation study of no-interfaces during inference.

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

Inference Configuration	Size	Bamboogle	AIME24	TextWorld
w/ all interfaces	█	0.240	20.7	28.0
SITUATEDTHINKER	█	0.552	27.0	42.0

1086

Table 8: Ablation study of all-interfaces during inference.

1087

1088

1089

1090

1091

1092

1093

Case From MedQA Benchmark. Case C.3 presents SITUATEDTHINKER’s response on the MedQA dataset, which involves a multiple-choice medical question requiring selection of the correct option. SITUATEDTHINKER demonstrates step-by-step reasoning: it first understands the question and options, then retrieves relevant information (green highlighted), and finally draws a conclusion. Before generating the final answer, SITUATEDTHINKER invokes the code execution interface to validate this conclusion (red highlighted).

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Inference Configuration	Size	WTQ	TextWorld
w/o interfaces	█	67.3	44.0
SITUATEDTHINKER	█	68.9	42.0

Case From GPQA Benchmark. Case C.4 presents SITUATEDTHINKER’s response on the GPQA dataset, which includes a multiple-choice science question requiring the correct option to be selected. Initially, SITUATEDTHINKER utilizes its knowledge and computational power to reach a preliminary conclusion (green highlighted), followed by invoking a code execution interface to verify this conclusion (red highlighted).

Case from WebQSP Benchmark. Case C.5 presents SITUATEDTHINKER’s response on the WebQSP dataset, involving a question requiring an answer based on knowledge graph data. SITUATEDTHINKER employs step-by-step reasoning: it first understands the question, then identifies and retrieves relevant entity and relation information (green highlighted). Before generating the answer, SITUATEDTHINKER verifies its conclusion (blue highlighted).

Case from WTQ Benchmark. Case C.6 presents SITUATEDTHINKER’s response on the WTQ dataset, involving a question requiring an answer based on a table-based database. SITUATEDTHINKER invokes appropriate interfaces to determine the context of the external world (green highlighted), subsequently acquires the necessary information from external sources (red highlighted) to reach a conclusion, and also utilizes its knowledge to perform simple calculations and reflections.

Case from TextWorld Benchmark. Case C.7 presents SITUATEDTHINKER’s response on the TextWorld dataset, involving a text-based game requiring a command sequence for completion. The green highlighted section shows the initial planning based on understanding the requirements. Subsequently, SITUATEDTHINKER refines its solution by invoking appropriate interfaces to obtain feedback from the game world (blue highlighted). Notably, the red highlighted section illustrates how SITUATEDTHINKER learns from errors, allowing it to refine its invocation.

1134
1135

Case C.1: Case From Bamboogle

1136

QUESTION

1137

What is the capital of the second largest state in the US by area?

1138

1139

ANSWER

austin

1140

RESPONSE

1141

To determine the capital of the second largest state in the US by area, we need to follow these steps:

1142

1. Identify the second largest state in the US by area. 2. Find the capital of that state.

1143

Step 1: Identify the Second Largest State in the US by Area

1144

First, we need to know the states ranked by their area. We can use the Code Execution interface to find this information. I'll write a Python code snippet to get the list of US states sorted by area and then identify the second largest state.

1145

|code|

1146

import requests

1147

from bs4 import BeautifulSoup

1148

url = "https://www.worldatlas.com/articles/the-10-largest-states-in-the-united-states.html"

1149

response = requests.get(url)

1150

soup = BeautifulSoup(response.text, 'html.parser')

1151

Extract the table of largest states

1152

table = soup.find('table', 'class': 'table')

1153

rows = table.find_all('tr')

1154

Parse the state names and areas

1155

states = []

1156

for row in rows[1:11]: # Top 10 largest states

1157

cols = row.find_all('td')

1158

state = cols[1].text.strip()

1159

area = float(cols[2].text.strip().replace(',', ''))

1160

states.append((state, area))

1161

Sort states by area in descending order

1162

states.sort(key=lambda x: x[1], reverse=True)

1163

Get the second largest state

1164

second_largest_state = states[1][0]

print(second_largest_state)

1165

|/code|

|result|

Error from code executor: list index out of range

|/result|

It seems there was an error in the code. The error might be due to the structure of the webpage or the way we are trying to parse it. Let's try a different approach to get the information about the largest states by area.**Instead of scraping the website, we can use a more reliable dataset. I'll write a Python code snippet with a predefined list of the largest states by area.**

1166

|code|

Predefined list of the largest states in the US by area

1167

largest_states_by_area = [("Alaska", 1723335.0), ("Texas", 695662.0), ("California", 423967.0), ("Montana", 380831.0), ("New Mexico", 314917.0), ("Arizona", 295234.0), ("Nevada", 286313.0), ("Colorado", 269601.0), ("Oregon", 254755.0), ("Washington", 184827.0)]

1168

Sort states by area in descending order

1169

largest_states_by_area.sort(key=lambda x: x[1], reverse=True)

1170

Get the second largest state

1171

second_largest_state = largest_states_by_area[1][0]

print(second_largest_state)

1172

|/code|

|result|

Texas

|/result|

The second largest state in the US by area is Texas.

1173

Step 2: Find the Capital of Texas

1174

Now that we know the second largest state is Texas, we need to find its capital. We can use the Retrieval interface to get this information.

1175

|retrieval|

What is the capital of Texas? |retrieval|

|result| ...retrieval results... |result|

1176

From the retrieved information, we can conclude that the capital of Texas is Austin.

1177

|conclusion|

The answer is \boxed{Austin}

1178

|/conclusion|

1179

1180

1181

1182

QUESTION

1183

A regular hexagon can be divided into six equilateral triangles. If the perimeter of one of the triangles is 21 inches, what is the

1184

perimeter, in inches, of the regular hexagon?

1185

ANSWER

1186

42

1188

1189

RESPONSE

1190

1191

1. Determine the side length of the equilateral triangle:

1192

- The perimeter of an equilateral triangle is the sum of the lengths of its three equal sides.

1193

- If the perimeter of the equilateral triangle is 21 inches, then the side length s of the triangle can be calculated as:

1194

1195

$$s = \frac{\text{perimeter}}{3} = \frac{21}{3} = 7 \text{ inches}$$

1196

1197

2. Relate the side length of the triangle to the side length of the hexagon:

1198

- A regular hexagon can be divided into six equilateral triangles, and each side of the hexagon is equal to the side length of these triangles.

1199

- Therefore, the side length of the hexagon is also 7 inches.

1200

3. Calculate the perimeter of the regular hexagon:

1201

- A regular hexagon has six equal sides.

1202

- If the side length of the hexagon is 7 inches, then the perimeter P of the hexagon is:

1203

$$P = 6 \times s = 6 \times 7 = 42 \text{ inches}$$

1204

Now, let's confirm the calculation using the provided interfaces. `!code`

1205

`s = 21 / 3`

1206

`P = 6 * s`

1207

`P`

1208

`!code`

1209

`!result` 42.0

1210

`!result`

1211

Now we have confirmed the calculation using code execution. The perimeter of the regular hexagon is indeed 42 inches.

1212

`!conclusion`

1213

The answer is `\boxed{42}`

1214

`!conclusion`**Case C.3: Case From MedQA**

1215

QUESTION

1216

A 35-year-old man comes to the physician because of itchy, watery eyes for the past week. He has also been sneezing multiple times a day during this period. He had a similar episode 1 year ago around springtime. He has iron deficiency anemia and ankylosing spondylitis. Current medications include ferrous sulfate, artificial tear drops, and indomethacin. He works as an elementary school teacher. His vital signs are within normal limits. Visual acuity is 20/20 without correction. Physical examination shows bilateral conjunctival injection with watery discharge. The pupils are 3 mm, equal, and reactive to light. Examination of the anterior chamber of the eye is unremarkable. Which of the following is the most appropriate treatment?

1217

A: Erythromycin ointment

1218

B: Ketotifen eye drops

1219

C: Warm compresses

1220

D: Fluorometholone eye drops

1221

ANSWER

1222

B

1223

RESPONSE

1224

Alright, I have this multiple-choice question about a 35-year-old man with itchy, watery eyes and sneezing. I need to figure out the most appropriate treatment from the options provided. Let's break this down step by step.

1225

Step 1: Understand the Patient's Symptoms and History

1226

First, let's summarize what's given:

1227

- Patient's Age and Gender: 35-year-old man.

1228

- Chief Complaint: Itchy, watery eyes for the past week, sneezing multiple times a day.

1229

- History: Similar episode 1 year ago around springtime.

1230

- Medical Conditions: Iron deficiency anemia, ankylosing spondylitis.

1231

- Current Medications: Ferrous sulfate, artificial tear drops, indomethacin.

1232

- Occupation: Elementary school teacher.

1233

- Vital Signs: Within normal limits.

1234

- Visual Acuity: 20/20 without correction.

1235

- Physical Examination:

1236

- Bilateral conjunctival injection with watery discharge.

1237

- Pupils: 3 mm, equal, reactive to light.

1238

- Anterior chamber of the eye: Unremarkable.

1239

Okay, so the patient has seasonal symptoms of itchy, watery eyes and sneezing, which suggests an allergic reaction. The physical exam shows signs of conjunctival inflammation, which is consistent with allergic conjunctivitis.

1240

Step 2: Recall the Options

1241

The options for treatment are:

A: Erythromycin ointment**B: Ketotifen eye drops****C: Warm compresses****D: Fluorometholone eye drops**

I need to determine which of these is the most appropriate treatment for allergic conjunctivitis.

```

1242
1243     ### Step 3: Retrieve Relevant Information
1244     First, I should retrieve some information about allergic conjunctivitis and the treatments listed.
1245     ;retrieval; What is allergic conjunctivitis and what are the common treatments? ;/retrieval; ;result; ...results.. ;/result;
1246     From the retrieval, it seems that allergic conjunctivitis is caused by an allergic reaction, often due to hay fever, and is
1247     characterized by symptoms like redness, swelling, itching, and watery discharge. The treatment typically involves avoiding
1248     allergens and using antihistamines, either topically or systemically.
1249     ### Step 4: Analyze Each Option
1250     Now, let's look at each option and see if it aligns with the treatment of allergic conjunctivitis.
1251     **A) Erythromycin ointment**
1252     Erythromycin is an antibiotic. I recall that antibiotics are used to treat bacterial infections, not allergic conditions. So, this doesn't
1253     seem appropriate for allergic conjunctivitis.
1254     **B) Ketotifen eye drops**
1255     Ketotifen is an antihistamine. From the retrieval, antihistamines are a common treatment for allergic conjunctivitis. This seems like a
1256     good candidate.
1257     **C) Warm compresses**
1258     Warm compresses are often used for conditions like styes or blocked tear ducts. I'm not sure if they're a standard treatment for
1259     allergic conjunctivitis. Maybe for symptom relief, but not a primary treatment.
1260     **D) Fluorometholone eye drops**
1261     Fluorometholone is a corticosteroid. Corticosteroids are anti-inflammatory and can be used for severe allergic reactions, but they're
1262     usually not the first-line treatment for allergic conjunctivitis due to potential side effects. Antihistamines are generally preferred first.
1263     ### Step 5: Narrow Down The Options
1264     Based on the analysis:
1265     - **A) Erythromycin ointment:** Unlikely, as it's an antibiotic for bacterial infections.
1266     - **B) Ketotifen eye drops:** Likely, as it's an antihistamine for allergic conditions.
1267     - **C) Warm compresses:** Possibly for symptom relief, but not a primary treatment.
1268     - **D) Fluorometholone eye drops:** Possible for severe cases, but not the first-line treatment.
1269     So, the most appropriate treatment seems to be **B) Ketotifen eye drops**.
1270     ### Step 6: Verify with Code Execution
1271     To ensure I'm correct, I'll run a quick code snippet to confirm the classification of these treatments.
1272     ;code;
1273     import pandas as pd
1274     # Create a DataFrame with treatments and their categories
1275     data = {
1276         'Treatment': ['Erythromycin ointment', 'Ketotifen eye drops', 'Warm compresses', 'Fluorometholone eye drops'],
1277         'Category': ['Antibiotic', 'Antihistamine', 'Symptom Relief', 'Corticosteroid']
1278     }
1279     df = pd.DataFrame(data)
1280     # Define the correct treatment based on the analysis
1281     correct_treatment = 'Ketotifen eye drops'
1282     # Check the category of the correct treatment
1283     category = df[df['Treatment'] == correct_treatment]['Category'].values[0]
1284     print(f"The correct treatment is {correct_treatment}, which is a {category}.")
1285     ;/code; ;result; The correct treatment is Ketotifen eye drops, which is a Antihistamine.
1286     ;/result;
1287     Yes, Ketotifen is indeed an antihistamine, which aligns with the treatment of allergic conjunctivitis.
1288     ### Step 7: Final Answer
1289     After going through the reasoning process and verifying with the code execution, the most appropriate treatment for this patient's
1290     allergic conjunctivitis is Ketotifen eye drops.
1291     ...
1292     The answer is \boxed{B}.
1293     ;conclusion;
1294
1295

```

Case C.4: Case From GPQA

QUESTION

Researchers are attempting to detect transits of two Earth-like planets: Planet.1 and Planet.2. They have limited observing time and want to observe the one that has the highest probability of transiting. Both of these planets have already been detected via the RV method, allowing us to know their minimum masses and orbital periods. Although both planets share the same masses, the orbital period of Planet.1 is three times shorter than that of Planet.2. Interestingly, they both have circular orbits. Furthermore, we know the masses and radii of the host stars of these two planets. The star hosting Planet.1 has a mass that is twice that of the host star of Planet.2. As the host of Planet.2 is slightly evolved, both host stars have the same radii. Based on the provided information, the researchers have chosen to observe:

- A): Planet.1 is preferred due to its 1.65 times higher probability to transit.
- B): Planet.1 is preferred due to its 2.7 times higher probability to transit.
- C): Planet.2 is preferred due to its 2.25 times higher probability to transit.
- D): Planet.2 is preferred due to its 1.5 times higher probability to transit.

ANSWER

A

RESPONSE

1. **Understanding the Problem**: We need to determine which planet has a higher probability of transiting its host star, given the information about their orbital periods and the masses/radii of their host stars. The probability of a transit is related to the inclination of the planet's orbit, and planets with shorter orbital periods around smaller stars have a higher probability of transiting.
2. **Key Factors**:

1296

- **Orbital Period**:** Planet_1 has an orbital period that is three times shorter than Planet_2.
- **Host Star Mass**:** The host star of Planet_1 is twice as massive as that of Planet_2.
- **Host Star Radius**:** Both host stars have the same radius.

3. **Transit Probability**:** The probability P of a transit is approximately the ratio of the star's radius R_* to the semi-major axis a of the planet's orbit:

$$P \approx \frac{R_*}{a}$$

For circular orbits, the semi-major axis a can be estimated using Kepler's Third Law:

$$a = \left(\frac{GM_*P^2}{4\pi^2} \right)^{1/3}$$

where G is the gravitational constant, M_* is the mass of the star, and P is the orbital period.

4. **Comparing the Two Planets**:**

- Let P_1 and P_2 be the orbital periods of Planet_1 and Planet_2, respectively. Given $P_1 = \frac{1}{3}P_2$.
- Let $M_{*1} = 2M_{*2}$ and $R_{*1} = R_{*2} = R_*$.

5. **Calculating the Semi-Major Axes**:**

- For Planet_1:

$$a_1 = \left(\frac{GM_{*1}P_1^2}{4\pi^2} \right)^{1/3} = \left(\frac{G \cdot 2M_{*2} \cdot \left(\frac{1}{3}P_2 \right)^2}{4\pi^2} \right)^{1/3}$$

- For Planet_2:

$$a_2 = \left(\frac{GM_{*2}P_2^2}{4\pi^2} \right)^{1/3}$$

6. **Simplifying the Ratio $\frac{a_1}{a_2}$:**

$$\frac{a_1}{a_2} = \left(\frac{2M_{*2} \cdot \left(\frac{1}{3}P_2 \right)^2}{M_{*2}P_2^2} \right)^{1/3} = \left(\frac{2}{9} \right)^{1/3} \approx 0.66$$

So, $a_1 \approx 0.66a_2$.

7. **Calculating the Transit Probabilities**:**

- For Planet_1:

$$P_1 \approx \frac{R_*}{a_1} \approx \frac{R_*}{0.66a_2} \approx 1.52 \frac{R_*}{a_2}$$

- For Planet_2:

$$P_2 \approx \frac{R_*}{a_2}$$

Therefore, $P_1 \approx 1.52P_2$.

8. **Interpreting the Results**:** The transit probability of Planet_1 is approximately 1.52 times higher than that of Planet_2. This means Planet_1 is more likely to transit its host star.

9. **Matching with the Options**:** The closest option to a 1.52 times higher probability is option A, which states that Planet_1 is preferred due to its 1.65 times higher probability to transit.

Let's verify the calculations using Python to ensure accuracy.

```
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

import math
# Given data
P2 = 1 # Let P2 be 1 unit
P1 = P2 / 3
M2 = 1 # Let M2 be 1 unit
M1 = 2 * M2
# Calculating semi-major axes
a1 = (M1 * P1**2)**(1/3)
a2 = (M2 * P2**2)**(1/3)
# Calculating transit probabilities
P1_transit = 1 / a1
P2_transit = 1 / a2
# Ratio of transit probabilities
P1_P2_ratio = P1_transit / P2_transit
print(P1_P2_ratio)
# The calculated ratio of the transit probabilities is approximately 1.65, which matches option A.
# Conclusion
Planet_1 is preferred due to its 1.65 times higher probability to transit.
The answer is backslashboxed{A}
# Conclusion
```

1350
1351

Case C.5: Case From WebQSP

1352 QUESTION

1353 where is jaMarcus russell from

1354 ANSWER

1355 mobile

1356 RESPONSE

1357 To find out where JaMarcus Russell is from, I need to follow these steps:

1358 1. First, I should find the neighboring relations of JaMarcus Russell. This will give me an overview of the information available about him.

1359 **Query:** {relation:JaMarcus Russell;relation: {result: ['sports.sports_team.roster.player', 'common.topic.notable_for', 'education.education.institution', 'american_football.player.rushing_statistics.player', 'sports.pro_sports.played.sport', 'american_football.football.player.position.s', 'sports.pro_sports.played.athlete', 'american_football.player.passing_statistics.player', 'american_football.player.rushing_statistics.season', 'sports.sports_league.draft.pick.school', 'people.person.nationality', 'sports.sports_team.roster.team', 'people.person.parents', 'people.place.lived.person', 'people.place.lived.location', 'people.person.place.of.birth', 'sports.sports_league.draft.pick.draft', 'sports.sports_league.draft_pick.player', 'freebase.valuenotation.has_value', 'education.education.student', 'common.topic.notable_types', 'sports.sports_league.draft_pick.team', 'american_football.player.passing_statistics.team', 'american_football.player.passing_statistics.season', 'american_football.player.game_statistics.team', 'people.person.ethnicity', 'sports.sports_team.roster.position', 'common.topic.image', 'american_football.player.rushing_statistics.team', 'american_football.player.game_statistics.season', 'people.person.profession', 'people.person.gender', 'american_football.player.game_statistics.player']} } /result}

1360 The result shows various relations related to JaMarcus Russell. The most relevant ones to find his place of birth is 'people.person.place.of.birth'.

1361 2. Next, I need to retrieve the entity associated with the relation 'people.person.place.of.birth' for JaMarcus Russell.

1362 Query: {entity:JaMarcus Russell, people.person.place.of.birth;entity: {result: ['Mobile']} } /result

1363 The result indicates that the place of birth for JaMarcus Russell is Mobile.

1364 **3. To provide a more complete answer, I should find out more about Mobile, such as the country it is located in. First, I need to find the neighboring relations of Mobile.**1365 **Query:** {relation:Mobile;relation: {result: ['music.composition.composer', 'travel.travel_destination.tourist.attractions', 'common.topic.notable_for', 'music.composition.recordings', 'music.recording.producer', 'music.recording.releases', 'music.recording.song', 'location.administrative_division.capital_relationship.administrative_division', 'base.wikipedia.infobox.settlement.area.code', 'music.recording.canonical.version', 'location.location.nearby_airports', 'location.hud_county.place.county', 'film.film.location.featured_in_films', 'freebase.valuenotation.has_value', 'music.single.versions', 'location.location.events', 'music.composition.form', 'common.topic.notable_types', 'location.hud_county.place.place', 'location.citytown.postal.codes', 'music.recording.artist', 'common.webpage.topic', 'government.government.position.held.jurisdiction.of.office', 'location.place.with.neighborhoods.neighborhoods', 'location.location.time_zones', 'common.topic.image', 'location.location.containedby', 'location.administrative_division.capital.relationship.capital']} } /result

1366 The result doesn't directly show the country, so I need to find a relation that can lead me to that information. The relation 'location.location.containedby' might help.

1367 **4. I need to retrieve the entity associated with the relation 'location.location.containedby' for Mobile.**

1368 Query: {entity:Mobile, location.location.containedby;entity: {result: ['Alabama', 'Mobile County', 'United States of America', 'Area code 251']} } /result

1369 The result includes 'United States of America', which is the country. For more specificity, I can check the relation 'location.hud_county.place.county' to find the state.

1370 **5. I need to retrieve the entity associated with the relation 'location.hud_county.place.county' for Mobile.**

1371 Query: {entity:Mobile, location.hud_county.place.county;entity: {result: ['Mobile County']} } /result

1372 This confirms that Mobile is in Mobile County, Alabama, USA.

1373 Based on this information, I can conclude that JaMarcus Russell is from Mobile, Alabama, USA.

1374 {conclusion}

1375 JaMarcus Russell is from Mobile.

1376 The answer is \boxed{Mobile}

1377 {/conclusion}

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

Case C.6: Case From WTQ

1392 QUESTION

1393 How many were played on a hard surface?

1394 ANSWER

1395 7

1396 RESPONSE

1397 Alright, I have this question: "How many were played on a hard surface?" and I'm given a table with the ID 'nt-458'. I need to figure out how to extract the relevant information from this table to answer the question. Let's break this down step by step.

1398 **### Step 1: Understand the Question**1399 **First, I need to understand what the question is asking. It's asking for the number of something that was played on a hard surface. But what exactly is "something"? Is it games, sports, matches, or something else? Since I don't have the actual table, I'll need to figure out the structure of the table to proceed.**1400 **### Step 2: Retrieve the Table Headers**1401 **To understand the table, I should start by retrieving its headers. This will give me an idea of what columns are available and what kind of data is stored in them.**

```

1404
1405 I'll use the **Header Retrieval** interface for this.
1406 ;header;nt-458;/header; ;result; ['Outcome', 'Date', 'Tournament', 'Surface', 'Partnering', 'Opponent in the final', 'Score
1407 in the final'] ;/result;
1408 Okay, so the table has the following headers: Outcome, Date, Tournament, Surface, Partnering, Opponent in the final, and Score in the final.
1409 ### Step 3: Identify Relevant Columns
1410 Now, I need to identify which columns are relevant to the question. The question is about something played on a hard surface.
1411 Looking at the headers, the "Surface" column seems directly related to the type of surface on which something was played.
1412 So, the "Surface" column is likely the key here. But to get the count of how many were played on a hard surface, I might need to look
1413 at the entire "Surface" column and count the occurrences of "hard surface."
1414 Wait, but the question is a bit vague. It's asking "how many were played on a hard surface?" So, I need to determine what "were played" refers to. Given the headers, it could be matches, games, or some other event. Maybe it's tennis matches, given the presence of "Tournament" and "Score in the final."
1415 Assuming it's tennis matches, then "Surface" would indicate the type of court (e.g., hard, clay, grass). So, I need to count how many matches were played on a hard surface.
1416 ### Step 4: Retrieve the "Surface" Column
1417 To get the count, I need to retrieve the "Surface" column from the table.
1418 I'll use the **Column Retrieval** interface for this.
1419 ;column;nt-458, Surface;/column; ;result; ['Clay', 'Clay', 'Hard', 'Hard', 'Grass', 'Grass', 'Hard', 'Hard', 'Hard', 'Hard', 'Hard', 'Hard', 'Hard'];
1420 Okay, so the "Surface" column contains the following values: ['Clay', 'Clay', 'Hard', 'Hard', 'Grass', 'Grass', 'Hard', 'Hard', 'Hard', 'Hard', 'Hard', 'Hard'].
1421 ### Step 5: Count the Occurrences of "Hard"
1422 Now, I need to count how many times "Hard" appears in this list.
1423 Let's go through the list:
1424 1. Clay
1425 2. Clay
1426 3. Hard
1427 4. Hard
1428 5. Hard
1429 6. Grass
1430 7. Grass
1431 8. Hard
1432 9. Hard
1433 10. Hard
1434 11. Hard
1435 Counting the "Hard" entries:
1436 3, 4, 5, 8, 9, 10, 11 → That's 7 times.
1437 Wait, let's double-check:
1438 1. Clay
1439 2. Clay
1440 3. Hard
1441 4. Hard
1442 5. Hard
1443 6. Grass
1444 7. Grass
1445 8. Hard
1446 9. Hard
1447 10. Hard
1448 11. Hard
1449 Yes, "Hard" appears 7 times.
1450 ### Step 6: Verify the Count
1451 To ensure accuracy, I'll recount:
1452 3, 4, 5, 8, 9, 10, 11 → 7 times.
1453 Yes, it's correct.
1454 ### Step 7: Formulate the Answer
1455 The question is asking for the number of matches played on a hard surface. Based on the data, that number is 7.
1456 ;conclusion;
1457 The number of matches played on a hard surface is \boxed{7}
1458 ;/conclusion;

```

Case C.7: Case From TextWorld

QUESTION
 Game Objective:
 You are now playing a exciting session of TextWorld! First, it would be a great idea if you could attempt to venture west. Okay, and then, move west. That done, retrieve the staple from the chair inside the office. Once you have got the staple, head east. Then, rest the staple on the shelf inside the cellar. Alright, thanks!

ANSWER
 [Any Command Sequence to Win the Game]

RESPONSE
 To solve this game, I need to follow the instructions provided in the game objective. Here's the step-by-step reasoning process:
1. Start by moving west: The first instruction is to move west. I should begin with the command 'go west'.

1458
 1459 2. ****Retrieve the staple from the chair inside the office**:** After moving west, I need to find the office, get the staple from the
 1460 chair, and pick it up. The command to pick up an item is usually ‘get [item]’. However, I first need to navigate to the office
 1461 and identify the staple.
 1462 3. ****Head east**:** After retrieving the staple, I need to move east. The command for this is ‘go east’.
 1463 4. ****Rest the staple on the shelf inside the cellar**:** Finally, I need to go to the cellar, find the shelf, and place the staple there.
 1464 The command to put an item on something is usually ‘put [item] on [location]’.
 1465 Let’s start by moving west. I’ll invoke the ****Interface For Obtain Admissible Commands**** to see what commands are available
 1466 initially.
 1467 `!admissiblecommand;14;/admissiblecommand;_ ;result;_ Invalid query format. Please use the format !admissiblecom-
 1468 mand;game id — command1, command2,/!admissiblecommand;_ ;result;_`
 1469 It seems I made a mistake in the query format. Let’s correct that. I’ll try again:
 1470 `!admissiblecommand;14 — ./!admissiblecommand;_ ;result;_ ['drop burger', 'eat burger', 'examine burger', 'go west',
 1471 'inventory', 'look'] ./result;_`
 1472 Great, the admissible commands initially include ‘go west’. I’ll execute that command.
 1473 1. ****Command**:** ‘go west’
 1474 Now, I need to check the new state of the game to see where I am and what I can do next. I’ll invoke the ****Interface For**
 1475 **Obtain Description**** to get a description of the current room.
 1476 `!description;14 — go west;/description;_ ;result;_`
 1477 `= Cellar =`
 1478 You have come into a cellar. Not the cellar you’d expect. No, this is a cellar.
 1479 Look over there! a shelf. You shudder, but continue examining the shelf. The shelf is standard. But oh no! there’s nothing on this
 1480 piece of junk. You make a mental note to not get your hopes up the next time you see a shelf in a room. You can see a counter. The
 1481 counter is normal. But the thing hasn’t got anything on it.
 1482 There is a closed hatch leading north. You need an unguarded exit? You should try going east. There is an unblocked exit to the west.
 1483 There is a fondue on the floor.
 1484 `!/result;_`
 1485 From the description, I’m now in the cellar. The next instruction is to retrieve the staple from the chair inside the office. Since I’m in
 1486 the cellar, I need to move to the office. The description mentions an unblocked exit to the west, so I’ll go west again.
 1487 2. ****Command**:** ‘go west’
 1488 I’ll check the new room description to see if I’m in the office and to identify the staple.
 1489 `!description;14 — go west, go west;/description;_ ;result;_`
 1490 `= Office =`
 1491 I am required to announce that you are now in the office. You try to gain information on your surroundings by using a technique you
 1492 call “looking.”
 1493 You see a chair. The chair is standard. On the chair you see a staple.
 1494 There is an unblocked exit to the east.
 1495 `!/result;_`
 1496 Now I’m in the office, and the description mentions a staple on the chair. I’ll retrieve the staple.
 1497 3. ****Command**:** ‘get staple’
 1498 After getting the staple, I should check the admissible commands to see what I can do next.
 1499 `!admissiblecommand;14 — go west, go west, get staple;/admissiblecommand;_ ;result;_ ['drop burger', 'eat burger', 'examine burger',
 1500 'examinate chair', 'examinate staple', 'go east', 'inventory', 'look', 'put burger on chair', 'take staple from chair'] ./result;_`
 1501 The admissible commands include ‘go east’. According to the game objective, after getting the staple, I need to head east.
 1502 4. ****Command**:** ‘go east’
 1503 Now, I’m back in the cellar with the staple. The next instruction is to rest the staple on the shelf inside the cellar. I’ll check
 1504 the description to locate the shelf.
 1505 `!description;14 — go west, go west, get staple, go east;/description;_ ;result;_`
 1506 `= Cellar =`
 1507 You have come into a cellar. Not the cellar you’d expect. No, this is a cellar.
 1508 Look over there! a shelf. You shudder, but continue examining the shelf. The shelf is standard. But oh no! there’s nothing on this
 1509 piece of junk. You make a mental note to not get your hopes up the next time you see a shelf in a room. You can see a counter. The
 1510 counter is normal. But the thing hasn’t got anything on it.
 1511 There is a closed hatch leading north. You need an unguarded exit? You should try going east. There is an unblocked exit to the west.
 1512 There is a fondue on the floor.
 1513 `!/result;_`
 1514 The description mentions a shelf in the cellar. I’ll put the staple on the shelf.
 1515 5. ****Command**:** ‘put staple on shelf’
 1516 Now, I need to check if this completes the game. I’ll invoke the ****Interface For Obtain Feedback**** to see the game’s response.
 1517 `!feedback;14 — go west, go west, get staple, go east, put staple on shelf;/feedback;_ ;result;_`
 1518 You put the staple on the shelf.
 1519 Your score has just gone up by one point.
 1520 *** The End ***
 1521 You scored 1 out of a possible 1, in 6 turns.
 1522 Would you like to RESTART, RESTORE a saved game, QUIT or UNDO the last command? `!/result;_`
 1523 The game indicates that I’ve completed the objective and reached the end. Therefore, the command sequence is successful.
 1524 `!conclusion;_`
 1525 The command sequence to win the game is: ‘go west, go west, get staple, go east, put staple on shelf’
 1526 The answer is `\boxed{go west, go west, get staple, go east, put staple on shelf}`
 1527 `!/conclusion;_`

D LIMITATIONS

1510 In this paper, we propose SITUATEDTHINKER to ground LLM reasoning with various external
 1511 worlds. Although SITUATEDTHINKER demonstrates noteworthy performance, several avenues for
 1512 future investigation remain. First, while our experiments and analysis provide valuable insights,

1512 they are presently confined to the textual domain of LLMs and benchmarks. This contrasts with
1513 real-world information, which inherently spans multiple modalities, including images, audio, and
1514 video. Consequently, investigating methods to effectively incorporate multimodal information into
1515 the reasoning process for broader *situated thinking* remains a significant and intriguing challenge
1516 for future research. Furthermore, the current scope of our experimentation and analysis is limited
1517 exclusively to the English language. Therefore, the applicability and performance of SITUATED-
1518 THINKER with interfaces and information presented in languages other than English remains an
1519 open question. Addressing this linguistic limitation is crucial for establishing the generalizability
1520 of the proposed framework across diverse linguistic contexts. Lastly, the current iteration of our
1521 approach primarily addresses deterministic inference problems that possess definitive answers, while
1522 largely neglecting open-ended questions or tasks requiring non-deterministic outcomes. While some
1523 preliminary exploration within text environments has been conducted, extending the framework to
1524 handle complex planning tasks, such as those encountered in interactive environments or robotics,
1525 which involve sequential decision-making and managing uncertainty, represents a critical direction
1526 for future work and is clearly warranted.

E LLM USAGE

1527 In this research, the use of LLMs is confined to the final stages, specifically for refining and proof-
1528 reading the manuscript. LLMs are employed exclusively to improve the clarity, logical coherence,
1529 and linguistic precision of the narrative, ensuring a clear and sophisticated presentation of our ideas.
1530 Importantly, LLMs played no role in the foundational components of this study, including the for-
1531 mulation of the research strategy, the design of the experimental framework, or the interpretation of
1532 results. We acknowledge full responsibility for the content of the paper.

1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565