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Abstract

Mean-field Langevin dynamics (MLFD) is a class of interacting particle methods
that tackle convex optimization over probability measures on a manifold, which are
scalable, versatile, and enjoy computational guarantees. However, some important
problems – such as risk minimization for infinite width two-layer neural networks,
or sparse deconvolution – are originally defined over the set of signed, rather than
probability, measures. In this paper, we investigate how to extend the MFLD
framework to convex optimization problems over signed measures. Among two
known reductions from signed to probability measures – the lifting and the bilevel
approaches – we show that the bilevel reduction leads to stronger guarantees and
faster rates (at the price of a higher per-iteration complexity). In particular, we
investigate the convergence rate of MFLD applied to the bilevel reduction in the
low-noise regime and obtain two results. First, this dynamics is amenable to an
annealing schedule, adapted from [SWON23], that results in improved convergence
rates to a fixed multiplicative accuracy. Second, we investigate the problem of
learning a single neuron with the bilevel approach and obtain local exponential
convergence rates that depend polynomially on the dimension and noise level (to
compare with the exponential dependence that would result from prior analyses).

1 Introduction

Let M(W) be the set of finite signed measures on a compact Riemannian manifold without bound-
aries W and let G : M(W) → R be a convex function, assumed smooth in the sense of Assumption 1
below. In this paper, we investigate optimization methods to solve

min
ν∈M(W)

Gλ(ν), Gλ(ν) := G(ν) +
λ

2
∥ν∥2TV , (1.1)

where ∥ · ∥TV is the total variation norm and λ > 0 the regularization level.1 This covers for instance
risk minimization for infinite-width 2-layer neural networks (2NN) [BRVDM05; Bac17] by taking
W = Sd the unit sphere in Rd+1 or W = Rd+1 and

G(ν) = E(x,y)∼ρ

[
ℓ(h(ν, x), y)

]
where h(ν, x) =

∫
W

φ(⟨x,w⟩)dν(w). (1.2)

Here φ : R → R is the activation function, h(ν, ·) is the predictor parameterized by ν, G is the
(population or empirical) risk under the data distribution ρ ∈ P(Rd+1×R), and ℓ is smooth (uniformly

∗Equal contributions, authors ordered randomly.
1The square exponent on ∥ · ∥TV might appear unusual, but it is convenient for our subsequent developments.

We show in App. A that the regularization path is the same with or without the square.
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in y) and convex in its first argument. These 2NNs will be our guiding examples throughout, but
note that the class of problems covered by Eq. (1.1) is more general and includes for instance sparse
deconvolution via the Beurling-LASSO estimator [DG12] or optimal design [MZ04].

To tackle such problems, interacting particle methods use the parameterization ν =
∑m

i=1 riδwi
and

apply gradient methods in a well-chosen geometry [Chi22c; YWR23; GCM23]. They have recently
gained traction thanks to their scalability and flexibility, and in the context of 2NNs, the usual gradient
descent algorithm is an instance of such a method. On the downside, global convergence guarantees
remain difficult to obtain due to the nonconvex nature of the reparameterized problem and existing
positive results require either very specific settings [LMZ20], or modifications of the dynamics which
often limit their scalability2.

In a related, but slightly different context, mean-field Langevin dynamics (MFLD) solve entropy-
regularized problems of the form

min
µ∈P(W′)

Fβ(µ), Fβ(µ) := F (µ) + β−1H(µ), (1.3)

where P(W ′) is the space of probability measures on a manifold W ′ (typically Rd), F : P(W ′) → R
is a (sufficiently regular) convex functional, H(µ) =

∫
log(dµ/d vol)dµ is the negative differential

entropy and β > 0. These dynamics are obtained as the mean-field limit of noisy interacting particles
dynamics [MMN18; HRŠS21] and converge globally at an exponential rate [NWS22; Chi22b], under
two key conditions on F : (i) a notion of regularity, which we refer to as displacement smoothness (see
P1 below) and (ii) a uniform log-Sobolev inequality (LSI) condition (see P2 below). These mean-field,
continuous-time guarantees have been further refined into computational guarantees for fully discrete
algorithms [CRW22; SWN23]. The favorable properties of MFLD naturally lead to the following
question:

Can we efficiently solve problems of the form Eq. (1.1) using MFLD?

At first, it is not obvious that MFLD can be applied at all since it is originally defined only for
problems over probability measures. However, we can find in the literature two general recipes to
reduce a problem over M(W) to a problem over P(W ′), thus amenable to MFLD. The first one is
a lifting reduction, that takes W ′ = R×W where the extra dimension serves to encode the signed
mass of particles [CB18, Section A.2] [Chi22c]. The second one, that takes W ′ = W , is a bilevel
reduction [Bac21; TS24] that uses a variational representation of the regularizer ∥ · ∥2TV , common in
the multiple kernel learning literature [LCBGJ04]. A first task is thus to compare the behavior of
MFLD on these two approaches. Furthermore, MFLD involves an entropic regularization which is
absent from Eq. (1.1). A second task is thus to analyze the behavior of MFLD in the large β regime,
when the regularization vanishes.

In this work, we tackle these two tasks and make the following contributions:

• In Sec. 3, we introduce the lifting and bilevel reductions and compare the “displacement
smoothness” (P1) and “uniform LSI” (P2) properties of the resulting problems. These
properties play a central role in the global convergence analysis of MFLD. Specifically,
we consider a large class of lifting reductions and show that none satisfies simultaneously
(P1) and (P2) unless λ is large. In contrast, the bilevel reduction satisfies both under mild
assumptions. So in the sequel we focus on MFLD applied to the bilevel reduction.

• In Sec. 4, we investigate what convergence rates can be obtained for the problem (1.1) by
using MFLD on the bilevel formulation. While a classical simulated annealing technique
yields convergence in O(log log t/ log t), we show that the structure of the bilevel objective
is in fact amenable to a more efficient annealing schedule, adapted from [SWON23], that
reaches a fixed multiplicative accuracy, say 1.01 inf Gλ, in time eO(λ−1 log λ−1) instead of
eO(λ−2) for the classical schedule.

• In Sec. 5, to obtain a more complete picture, we investigate the problem of learning a single
neuron. Here, using a Lyapunov type argument, we show that the local convergence rate of
MFLD applied to the bilevel formulation scales polynomially in β and d, at odds with all
previous MFLD analyses which had exponential dependencies.

All proofs are deferred to the Appendix.
2Such as forcing the particles to remain close to their initial position [Chi22c], or adding new particles using

a potentially hard linear minimization oracle [DDPS19].
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1.1 Related work

Particle methods and mean-field limits. Interacting particle systems have been studied for decades
in various fields, see e.g. [Szn91; CD13; Lac18]. Their more recent connection with the standard
training of 2NNs [NS17; SS20; RV22; MMN18] has suggested new settings of analysis, where
convexity of the functional plays a key role, and has led to many developments. In particular, the
case of MFLD (under study here) quickly progressed from nonquantitative guarantees [MMN18;
HRŠS21], to mean-field convergence rates [NWS22; Chi22b] and fully discrete computational
guarantees [CRW22; SWN23; KZCE+24] in the span of a few years. Recent progress also address its
accelerated (underdamped) version [CLRW24; FW23], which could also be of interest in our setting.

Multiple kernel learning and bilevel training of NNs. The lifting reductions we consider are
inspired by the unbalanced optimal transport literature [LMS18], while the bilevel reduction comes
from the Multiple Kernel Learning (MKL) literature [CVBM02; LCBGJ04; RBCG08] (see [Bac19]
for an account). While the latter is usually studied with a discrete domain W (see also [PP21;
PP23] for recent computational considerations), it was suggested for the training of large width
2NN in [Bac21] and used in conjonction with MFLD in [TS24] (more details below). Relatedly, a
recent line of work studies the (noiseless) training of 2NN in a two-timescale regime, where the outer
layer is trained at a much faster rate than the inner layer [BMZ23; MB23; BBP23]. This implicitly
corresponds to optimizing the bilevel objective and leads to improved convergence guarantees.

The work that is closest to ours is [TS24], which considers the MFLD on a 2NN with weight decay
where the outer layer is optimized at each step. They interpret the resulting dynamics as a kernel
learning dynamics and study properties of the learnt kernel and its associated RKHS. While they do
not formulate explicitly the problem Eq. (1.1), it can be shown that our approaches are equivalent
when considering W = Rd+1 in Eq. (1.2) (and adding an extra regularization). The details are given
in Sec. A.2. Key advantages of our formulation with W = Sd are that we cover the case of unbounded
homogeneous activation functions (such as ReLU), and can obtain improved LSI.

2 Background on guarantees for mean-field Langevin dynamics

The MFLD is defined as the Wasserstein gradient flow (µt)t∈R+
in P(Ω) of an objective of the form

Eq. (1.3). It is characterized as the solution to the partial differential equation (PDE)

∂tµt = div(µt∇F ′[µt]) + β−1∆µt, µ0 ∈ P(Ω). (2.1)

where F ′[µ] : Ω → R is the first variation of F at µ [San15, Sec. 7.2], defined by limϵ↓0 1
ϵ (F (µ+

ϵ(µ′−µ))−F (µ)) =
∫
F ′[µ]d(µ′−µ) for any µ′ ∈ P(Ω). This PDE corresponds to the mean-field

limit (N → ∞) of the noisy particle gradient flow ωt ∈ ΩN :

∀i ≤ N, dωi
t = −N∇ωi

t
F (N)

(
ω1
t , ..., ω

N
t

)
dt+

√
2β−1dBi

t, ωi
0

i.i.d.∼ µ0

where F (N)
(
ω1, ..., ωN

)
= F

(
1
N

∑N
i=1 δωi

)
and the Bi

t are N independent Brownian motions
on Ω. The convergence guarantees for MFLD rely on three key properties:

(P0) (Convexity) F is convex and is such that Fβ admits a minimizer µ∗
β .

(P1) (Displacement smoothness) F is L-displacement smooth, in the sense that3

∀µ ∈ P2(Ω), ∀ω ∈ Ω, max
s∈TωΩ
∥s∥ω≤1

∣∣∇2 F ′[µ](s, s)
∣∣ ≤ L,

and ∀µ, µ′ ∈ P2(Ω), ∀ω ∈ Ω, ∥∇F ′[µ]−∇F ′[µ′]∥ω ≤ L W2(µ, µ
′),

where ∇2 denotes the Riemannian Hessian.

(P2) (Uniform LSI) There exists α > 0 such that ∀t ≥ 0, Fβ satisfies local α-LSI at µt, as in
Def. 2.1.

3Strictly speaking, (P1) is only a sufficient condition for displacement smoothness (see details in App. B).
We refer to (P1) as displacement smoothness in this paper for conciseness only.
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Definition 2.1 (Local LSI). We say that a functional Fβ = F + β−1H satisfies local α-LSI
at µ ∈ P(Ω) if Z :=

∫
Ω
exp (−βF ′[µ]) dω < ∞ and the proximal Gibbs measure µ̂ :=

Z−1 exp(−βF ′[µ]) ∈ P(Ω) satisfies α-LSI, that is

∀µ′ ∈ P(Ω), H (µ′|µ̂) ≤ 1

2α
I(µ′|µ̂),

where the relative entropy and relative Fisher Information are respectively defined as

H (µ′|µ̂) :=
∫
Ω

log

(
dµ′

dµ̂

)
dµ′, I(µ′|µ̂) :=

∫
Ω

∥∥∥∥∇ log
dµ′

dµ̂
(ω)

∥∥∥∥2
ω

dµ′(ω),

and ∥ · ∥ω denotes the Riemannian metric.

We review some useful criteria for LSI in App. B. In particular, the uniform LSI property (P2)
holds for example when training two-layer neural networks with a frozen second layer, under some
technical assumptions such as bounded activation function. In fact in that case, the proximal Gibbs
measures µ̂ even satisfy LSI uniformly for all µ ∈ P(Ω) [Chi22b; NWS22].

Note that the Riemannian gradient ∇ and the Laplace-Beltrami operator ∆ appearing in (2.1), as well
as the definition of Brownian motion, depend on the Riemannian metric of Ω. This dependency is
reflected in (P1) and (P2).

The global convergence of MFLD is guaranteed by the following theorem, with a rate.
Theorem 2.1 ([Chi22b, Thm. 3.2][NWS22, Thm. 1]). Consider F : P(Ω) → R and (µt) as in (2.1).
If (P0), (P1) and (P2) are satisfied then for t ≥ 0 it holds

β−1H(µt|µ∗
β) ≤ Fβ(µt)− Fβ(µ

∗
β) ≤ exp(−2β−1α t)

(
Fβ(µ0)− Fβ(µ

∗
β)
)
.

Note that although the L-smoothness constant does not appear in Thm. 2.1, it does appear in the
discrete-time guarantees of [SWN23], and is thus an important quantity in practice. In this paper, we
limit our analysis to the mean-field dynamics (2.1) because its time-discretization has not yet been
studied on Riemannian manifolds. In continuous time, the proof of Thm. 2.1 translates directly to
Riemannian manifolds thanks to our definition of (P1), see App. B.

3 Reductions from signed measures to probability measures

In order to apply the MFLD framework to solve our initial problem over signed measures (1.1), we
must first recast it as an optimization problem over probability measures. In this section we build two
such reductions, and discuss the properties (P0, P1 and P2) of the resulting problems.

3.1 Reduction by lifting

Reductions by lifting consist in representing signed measures as projections of probability measures in
the higher dimensional space Ω = R×W . This construction involves the 1-homogeneous projection
operator4 h : P1(Ω) → M(W) characterized by

∀φ ∈ C(W,R),
∫
W

φ(w)(hµ)(dw) =

∫
Ω

rφ(w)µ(dr, dw),

where Pp(Ω) is the subset of P(Ω) for which
∫
|r|pdµ(dr, dw) < +∞. For instance, it acts on

discrete measures as h
(

1
m

∑m
j=1 δ(rj ,wj)

)
= 1

m

∑m
j=1 rjδwj

. We also define, for b ∈ [1, 2] and

µ ∈ Pb(Ω), Ψb(µ) :=
(∫

Ω
|r|bdµ(r, w)

)2/b
. The objective functional of the lifted problem is then

defined, for µ ∈ Pb(Ω), as

Fλ,b(µ) := G(hµ) +
λ

2
Ψb(µ). (3.1)

It is equivalent to minimize Gλ or Fλ,b, as shown in the following statement.

4We could consider more general p-homogeneous projections as in [LMS18], but we show in Sec. C.2 that
we can always bring ourselves back to the case p = 1 up to a change of metric.
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Proposition 3.1. Let ν ∈ M(W). For any µ ∈ Pb(W) such that hµ = ν, it holds Fλ,b(µ) ≥ Gλ(ν),
and equality holds for µ(dr, dw) = δf(w)(dr)

|ν|(dw)
∥ν∥TV

where f(w) = ∥ν∥TV
dν
d|ν| (w) (and only for

this µ when b > 1). In particular, if Gλ admits a minimizer then Fλ,b does too, and it holds

min
µ∈Pb(Ω)

Fλ,b(µ) = min
ν∈M(W)

Gλ(ν).

It is not difficult to see that Fλ,b satisfies (P0) as long as Gλ admits a minimizer. In order to study
(P1) and (P2), we need to define a Riemannian metric on Ω. Following [Chi22c], we consider a
general class of Riemannian metrics on Ω∗ := R∗ ×W , parameterized by qr, qw ∈ R and Γ > 0,
defined by 〈(

δr1
δw1

)
,

(
δr2
δw2

)〉
(r,w)

= Γ−1 |r|qr δr1δr2
r2

+ |r|qw ⟨δw1, δw2⟩w . (3.2)

This indeed defines an inner product on T(r,w)Ω
∗ := R×TwW that varies smoothly, and so equips Ω∗

with a (disconnected) Riemannian manifold structure [Lee18]. Intuitively, the parameter Γ will govern
the relative speed of the weight or position variables along gradient flows; larger Γ means faster
weight updates.

Two particular cases of this construction appear (sometimes implicitly) in the literature on 2NN:

(i) when qr = 2 and qw = 0, the metric (3.2) extends to the product metric on Ω = R ×W .
With W = Rd+1, this corresponds to the usual parameterization of 2NNs and is the setting
of most previous works applying MFLD to 2NN (with a weight decay regularization on the
second layer for b = 2 and λ > 0).

(ii) when qr = qw = 1, Ω∗ is isometric to the union of two copies of the (tipless) metric
cone over W [BBI01] (via the mapping (r, ω) 7→ (sign(r),

√
|r|, ω)). This is the natural

setting for optimization over signed measures; and with W = Sd, is equivalent to the
parameterization of 2NNs with ReLU activation and balanced initialization [CB20, App. H].

Issues caused by the disconnectedness of Ω∗. On the level of the equivalence of variational
problems, one can check that the statement of Prop. 3.1 also holds if Ω = R ×W is replaced by
Ω∗ = R∗ ×W . However, when the manifold Ω∗ is truly disconnected,5 then P(Ω) is not connected
in the sense of absolutely continuous curves in Wasserstein space. More precisely, Ω∗ is the disjoint
union of Ω∗

+ = R∗
+ × W and Ω∗

− = R∗
− × W , and one can show that (for certain choices of

qr, qw), if (µt)t is a Wasserstein gradient flow (or any other absolutely continuous curve), then
µt(Ω

∗
+) = µ0(Ω

∗
+) for all t.

Moreover, supposing for simplicity that Gλ has a unique minimizer ν and that b > 1, then Fλ,b

has a unique minimizer µ∗, and µ∗(Ω∗
+) = ν+(W)/ ∥ν∥TV where ν = ν+ − ν− is the Jordan

decomposition of ν. Therefore, Wasserstein gradient flow for Fλ,b can only converge to µ∗ if it was
initialized such that µ0(Ω

∗
+) = µ∗(Ω∗

+). In terms of particle methods, this means that the fraction of
the particles (ri, wi) initialized with ri > 0 must be precisely µ∗(Ω∗

+). A similar problem arises if
we apply MFLD to Fλ,b, since it is nothing else than Wasserstein gradient flow for Fλ,b + β−1H;
but it is more tedious to discuss formally, as Fλ,b + β−1H does not have a minimizer in general.

In order to bypass this limitation, one may focus on settings where the ratio ν+(W)/ ∥ν∥TV for the
optimal ν is known in advance, e.g., the problem (1.1) constrained to non-negative measures, or on
choices of qr, qw for which Ω∗ can be extended into a connected manifold, such as the product metric
qr = 2, qw = 0. However, even in those cases, MFLD on Fλ,b presents other limitations.

Incompatibility with MFLD. We now show that, in spite of the degrees of freedom given by the
parameters qr, qw and b, satisfying both (P1) and (P2) requires restrictive assumptions. This suggests
that the lifting approach is fundamentally incompatible with MFLD.

5This issue also occurs in the case qr = qw = 1, even though Ω∗ can be completed into a topologically
connected set by adding an element 0 “bridging” the two cones Ω∗

+ and Ω∗
−. Indeed, any particle reaching 0

remains at 0 for all subsequent times. Besides, this completion is not itself a manifold, as 0 is a singularity.
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Proposition 3.2. Consider Fλ,b from Eq. (3.1) and Ω∗ equipped with the metric (3.2). Suppose G′[ν]
is continuous for all ν and that there exists ν such that ∇2G′[ν] is not constant equal to 0. Then

• If qr ̸= 1 or qw ̸= 1 or b ̸= 1, then (P1) does not hold.

• If qr = qw = b = 1, then for any µ ∈ P1(Ω), there exists λ0 > 0 such that Fλ,b + β−1H
does not satisfy local LSI at µ for any λ < λ0 (in particular (P2) does not hold unless λ is
large enough).

When qr = qw = b = 1 and λ is large enough, then it can indeed be shown that Thm. 2.1 applies
under natural conditions, see for instance [Chi22b, Sec. 5.1].

Remark 3.1. For functionals of the form Gλ,s = G(ν)+ λ
s ∥ν∥sTV , instead of (1.1) which corresponds

to s = 2, one can formulate a similar reduction by posing Ψb,s(µ) = (
∫
Ω
|r|b dµ(r, w))s/b and

Fλ,b,s(µ) = G(hµ) + λ
sΨb,s(µ). The statements of Prop. 3.1 and Prop. 3.2 hold true with Gλ

replaced by Gλ,s, and Fλ,b by Fλ,b,s, for any 1 ≤ b ≤ s, as can be shown by very simple adaptations
of the proofs (only the second inequality in the proof of Lem. C.1, and the definition of λ′ in (C.2),
need to be adapted). Note that the problem considered in [Chi22c] is of the form G(ν) + λ ∥ν∥TV ,
and they analyzed Wasserstein gradient flow on Fλ,1,1 with qr = qw = 1 (in particular the issues
caused by the disconnectedness of Ω∗ are bypassed thanks to the choice b = 1). The above discussion
shows that applying MFLD to that problem would only yield convergence guarantees for λ large
enough.

3.2 Reduction by bilevel optimization

We define the bilevel objective functional Jλ for η ∈ P(W) as6

Jλ(η) := inf
ν∈M(W)

G(ν) +
λ

2

∫
W

|ν|2
η

. (3.3)

It can be derived using the variational representation of the squared TV-norm [LCBGJ04; Bac19]:
for any ν ∈ M(Ω), one has ∥ν∥2TV = minη∈P(W)

∫
W

|ν|2
η . By exchanging infima, it thus holds

infν∈M(W) Gλ(ν) = infη∈P(W),ν∈M(W) G(ν) + λ
2

∫ |ν|2
η = infη∈P(W) Jλ(η). Moreover, the

objective minimized in (3.3) is jointly convex in (η, ν) and partial minimization preserves convexity,
so Jλ is convex. Let us gather these crucial remarks in a formal statement.

Proposition 3.3. The bilevel objective Jλ is convex and infP(W) Jλ = infM(W) Gλ. Moreover, if

Gλ admits a minimizer ν ∈ M(W), then argminJλ =
{

|ν|
∥ν∥TV

, ν ∈ argminGλ

}
.

Link between the lifted and bilevel reductions. The equality case in the statement of Prop. 3.1
shows that we can restrict the lifted reduction to measures µ ∈ Pb(Ω) of the form µ(dr, dw) =
δf(w)(dr)η(dw) for some f : W → R and η ∈ P(W). Since they satisfy hµ(dw) = f(w)η(dw),
the lifted reduction with b = 2 thus rewrites

min
η∈P(W)

min
f∈L2(η)

G(fη) +
λ

2

∫
W

f(w)2dη(w).

After the change of variable (ν, η) = (fη, η), the outer objective is precisely Jλ(η). Thus, Wasser-
stein gradient flow on Jλ can be seen as a two-timescale optimization dynamics: it is the Wasserstein
gradient flow on Fλ,2 in the limit where Γ → ∞. In the context of 2NN training with the parametriza-
tion (i), this amounts to training the output layer infinitely faster than the input layer, as done
in [BMZ23; MB23; BBP23; TS24]. This remark allows to implement the bilevel MFLD numerically
by discretizing in time the system of SDEs, for fixed large N and Γ,

∀i ≤ N, drit = −Γ∇riF
′
λ,2[µt](r

i
t, w

i
t)dt = −Γ

(
G′[νt](w

i
t) + λrit

)
dt (3.4)

dwi
t = −∇wiF ′

λ,2[µt](r
i
t, w

i
t)dt+

√
2β−1dBi

t = −rit∇G′[νt](w
i
t)dt+

√
2β−1dBi

t

6We use
∫
W

|ν|2
η

as a shorthand for
∫
W

(
dν
dη

(w)
)2
dη(w).
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where µt = 1
N

∑N
i=1 δ(rit,wi

t)
and νt = 1

N

∑N
i=1 r

i
tδwi

t
, and taking ηt = 1

N

∑n
i=1 δwi

t
. Notice the

absence of noise term on the weight variables r; it reflects the fact that MFLD for the bilevel objective
is not a limit case of MFLD for the lifted objective, as the noise would prevent to reach optimality in
the inner problem.

Compability with MFLD. We now show that, in contrast to the lifting reduction, the bilevel
reduction is amenable to MFLD. The main assumption on (1.1) is as follows.
Assumption 1. G : M(W) → R is non-negative and admits second variations, and for each
i ∈ {0, 1, 2}, there exist Li, Bi < ∞ such that

∥∥∇iG′′[ν](w,w′)
∥∥
w

≤ Li and
∥∥∇iG′[ν]

∥∥
w

≤
Li ∥ν∥TV + Bi for all ν ∈ M(W) and w,w′ ∈ W . Moreover there exists L̃2 < ∞ such that
∥∇w∇w′G′′[ν](w,w′)∥ ≤ L̃2 for all ν, w,w′. Furthermore, W is compact and the uniform probabil-
ity measure τ on W satisfies LSI with constant ατ .

Concrete settings that satisfy Assumption 1 are discussed in Sec. 5. The following proposition
confirms the compatibility with MFLD and gives quantitative bounds on the LSI constant.
Proposition 3.4. Under Assumption 1, Jλ satisfies (P0), (P1) and (P2). More precisely, for any
η ∈ P(W), Jλ + β−1H satisfies local LSI at η with the constant αη̂ = ατ exp

(
− 1

λL0βJλ(η)
)
.

Further, Jλ + β−1H satisfies α-LSI uniformly along the MFLD trajectory (ηt)t with the constant
α = ατ exp

(
− 1

λL0βmin
{
G(0), Jλ(η0) + β−1H (η0|τ)

})
.

In view of the negative result of Prop. 3.2 for the lifting reduction, and the positive result of Prop. 3.4
for the bilevel reduction, in the sequel we focus on MFLD applied on Jλ, which we will refer to as
MFLD-Bilevel.

4 Global convergence and annealing for MFLD-Bilevel

While the bounds from Prop. 3.4 along with Thm. 2.1 allow to establish global convergence to
minimizers of Jλ + β−1H , our aim is to minimize the unregularized bilevel objective Jλ. This can
be achieved by annealing the temperature parameter β−1 along the dynamics. Namely, Theorem 4.1
of [Chi22b] guarantees that by choosing βt = c log(t) for an appropriate constant c, the annealed
MFLD trajectory

∂tηt = div(ηt∇J ′
λ[ηt]) + β−1

t ∆ηt

satisfies Jλ(ηt)− inf Jλ = O
(

log log t
log t

)
. This is a very slow rate however.

In this section, we show that the structure of Jλ originating from the bilevel reduction can be
exploited to go beyond the generic guarantees from [Chi22b, Thm. 4.1]. Namely, we study in detail
an alternative temperature annealing strategy, and we show that it improves upon the classical one
βt ∼ log(t) in terms of convergence to a fixed multiplicative accuracy.

4.1 Faster convergence to a fixed multiplicative accuracy

Definition 4.1. Suppose 0 ̸∈ argminG, so that J∗
λ := inf Jλ > 0. We will say that MFLD-Bilevel

with a given temperature annealing schedule (βt)≥0 converges to (1 + ∆)-multiplicative accuracy in
time-complexity T∆, for a fixed positive constant ∆ (say ∆ = 0.01), if Jλ(ηT∆

) ≤ (1 + ∆)J∗
λ .

Note that in machine learning settings where the problem (1.1) corresponds to learning with overpa-
rameterized models, it is realistic to assume J∗

λ to be small (as long as the regularization λ is small),
and T∆ is the time it takes for the annealed MFLD to achieve a suboptimality of at most ∆J∗

λ .

For ease of comparison, let us report the time-complexity T∆ that can be achieved by simply running
MFLD-Bilevel with a constant but well-chosen β, based on the bounds from Prop. 3.4 and Thm. 2.1.
Proposition 4.1 (Baseline “annealing” schedule: constant βt). Under Assumption 1, let ∆ > 0

and assume that ∆ ≤ L0L1G(0)
λ2J∗

λ
. Then, MFLD-Bilevel with the temperature schedule ∀t, βt =

4d
∆J∗

λ
log
(

CB
∆J∗

λ

)
converges to (1 + ∆)-multiplicative accuracy in time

T∆ ≤ C ′

∆J∗
λ

log

(
CB

∆J∗
λ

)
· exp

(
C ′L0G(0)

λ ∆J∗
λ

log

(
CB

∆J∗
λ

))
· log

(
2G(0)

∆J∗
λ

+ C ′H (η0|τ)
)

where B = poly(L0, L1, B1, G(0), λ−1) and C,C ′ are constants dependent on W (and d and ατ ).
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For the annealing schedule βt ∼ log(t), the time-complexity T∆ that can be guaranteed from
inspecting the proof of [Chi22b, Thm. 4.1] has the same dependency on d, λ and J∗

λ as for the
baseline βt = cst.

Improved annealing schedule. Recall the result of Prop. 3.4: for any β > 0, Jλ + β−1H satisfies
local αη̂-LSI at η with αη̂ = ατ exp(−L0

λ βJλ(η)). Informally, if we manage to control Jλ(ηt) along
the annealed MFLD trajectory and show that it decreases, then we can increase βt at the same rate,
while retaining the same local LSI constant. This observation and the resulting annealing procedure
were introduced in [SWON23], in a 2NN classification setting with the logistic loss. There the
optimal value of the loss functional, corresponding to our J∗

λ , is 0, and the annealing procedure
yields favorable rates for global convergence. Here we show that this procedure is also applicable for
MFLD-Bilevel, as soon as G satisfies the mild Assumption 1, yielding favorable rates for convergence
to a fixed multiplicative accuracy.7

Theorem 4.2. Under Assumption 1, there exist constants B = poly(Li, Bi, G(0), λ−1) and Ci

dependent only on G(0), H(η0), W (and d and ατ ) such that the following holds. For any ∆ ≤ B
J∗
λ

,

MFLD-Bilevel with the temperature schedule (βt)t≥0 defined by ∀k ≤ K,∀t ∈ [tk, tk+1], βt = 2kd
where t0 = 0 and K = ⌈2 log2(B/(∆J∗

λ))⌉ and

tk+1 − tk = C12
k k · exp

(
L0d

λ

(
C3

∆
log

(
B

∆J∗
λ

)
+ C2

))
,

achieves (1 + ∆)-multiplicative accuracy, with time-complexity

T∆ ≤ tK+1 ≤ C4

∆J∗
λ

log

(
B

∆J∗
λ

)2

· exp
(
L0d

λ

(
C3

∆
log

(
B

∆J∗
λ

)
+ C2

))
.

Note that assuming that G admits a minimizer ν0 and that minG = 0, as is typically the case in over-
parametrized machine learning settings, then by the envelope theorem J∗

λ = inf
(
G+ λ

2 ∥·∥2TV

)
=

∥ν0∥2
TV

2 λ+o(λ). So in the regime of small λ, ignoring the subexponential factors, the time complexity
bound achieved by the annealing schedule of Thm. 4.2 scales as exp

(
cλ−1 log λ−1

)
for a constant c.

This improves upon the time complexity bound of the classical annealing procedure βt ∼ log(t) (the
same as in Prop. 4.1), which scales as exp(c′λ−2).

5 Local LSI constant at optimality for learning a single neuron

Devising temperature annealing schemes for global convergence, as illustrated in the previous section,
relies on bounds on the local LSI constant at every iterate ηt of the (annealed) MFLD. Such bounds
are readily provided by the widely applicable Holley-Stroock perturbation argument, on which for
example our Prop. 3.4 is based, but may be overly pessimistic. Indeed in this section, we demonstrate
that for MFLD-Bilevel, the LSI constant at convergence can be independent of β, λ and d, instead of
exponential in β as a global analysis would suggest.

More precisely, we are interested in α∗, the best local LSI constant of Jλ,β := Jλ + β−1H (·|τ),
at ηλ,β := argmin Jλ,β . In fact the proximal Gibbs measure of the optimum is the optimum itself:
η̂λ,β = ηλ,β , so α∗ is precisely the LSI constant of ηλ,β . A bound on α∗ is of interest, especially in
the regime of large β (low entropic regularization), for two reasons. Firstly, it directly implies a local
convergence bound on MFLD-Bilevel, as shown in the proposition below. Secondly, characterizing
the dependency of α∗ on β may open the way to more efficient temperature annealing strategies; but
this is out of the scope of this paper.
Proposition 5.1. Under Assumption 1, suppose ηλ,β satisfies LSI with some constant α∗

β . For any
ε > 0, there exists a sublevel set of Jλ,β such that, for any initialization η0 in this sublevel set,

Jλ,β(ηt)− inf Jλ,β ≤ (Jλ,β(η0)− inf Jλ,β) e
−(α∗

ββ
−1−ε)t.

7In fact, the annealing procedure of Thm. 4.2 would also yield a rate of convergence for any J : P(W) → R
with J ′′[η](w,w′) uniformly bounded and inf J > 0, instead of Jλ; but the resulting bound on T∆ would have
an additional factor of (inf J )1/2 inside the exponential. See Sec. E.2 for a detailed discussion.
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Figure 1: The regularized training loss Gλ(ν) (1.1) of a 2NN with the ReLU activation, learning a
teacher 2NN with the 4th degree Hermite polynomial as its activation. In both plots, d = 10 and
λ = β−1 = 10−3. The implementation details are provided in Sec. F.4. Plots are averaged over 5
experiments. G∗

λ is the best value achieved at each experiment. In Fig. (1b), “Conic” refers to using
the metric (3.2) with qr = 1, qw = 1, while “Canonical” refers to the choice of qr = 2, qw = 0.

For the local LSI analysis, we focus on a specific setting of (1.1), namely, least-squares regression
using a 2NN with a normalization constraint on the first-layer weights, and a single-neuron teacher
network. See Fig. 1 for an illustrative numerical experiment. Note that Assumption 2, with additional
bounded-moment assumptions on φ and ρ, is a special case of Assumption 1, as shown in Prop. F.4.
Assumption 2. W = Sd is the Euclidean sphere in Rd+1 and there exist ρ a covariate distribution
over Rd+1, y ∈ L2

ρ(Rd+1) a fixed target function, and φ : R → R a C2 activation function such that
G(ν) = 1

2Ex∼ρ |ŷν(x)− y(x)|2 where ŷν(x) =
∫
W φ(⟨w, x⟩)dν(w).

Under the above assumption, we show in Prop. F.1 a simplified expression for the bilevel objective
and its first variation,

Jλ(η) =
λ

2
⟨y, (Kη + λ id)−1y⟩L2

ρ
, J ′

λ[η](w) = −λ

2
⟨φ(⟨w, ·⟩), (Kη + λ id)−1y⟩2L2

ρ
,

where Kη is the integral operator in L2
ρ of the kernel kη(x, x′) =

∫
φ(⟨w, x⟩)φ(⟨w, x′⟩)dη(w) and

id is the identity operator on L2
ρ. Additionally, we make the following assumption on the data

distribution ρ and on the response y.
Assumption 3. ρ is rotationally invariant and the labels come from a single-index model: y =
φ(⟨v, x⟩) for some fixed v ∈ W .

With the above assumptions, we can state the main theorem of this section.
Theorem 5.2. Under Assumptions 2 and 3, there exists a function g : [−1,+1] → R+ such that
J ′
λ[δv](w) = −λg(⟨w, v⟩) for any w ∈ Sd. Suppose that λ ≤ 1 and that there exist constants

ci, Ci > 0 such that for all r ∈ [−1,+1],

c1 ≤ g′(r) ≤ C1, g′′(r) ≥ −C2,
∣∣∣g′′(r)(1− r2)1/2

∣∣∣ ≤ C3,
∣∣∣g′′′(r)(1− r2)3/2

∣∣∣ ≤ C4.

Then there exist constants αv, D0 (dependent only on the ci, Ci) such that for any β ≥ D0dλ
−1,

δ̂v ∝ e−βJ ′
λ[δv ]τ satisfies αv-LSI. Furthermore, if additionally 1

d2Ex∼ρ ∥x∥4 ,
∥∥φ(i)

∥∥
L4(ρ)

< ∞
for i ∈ {0, 1, 2} where ∥φ∥pLp(ρ)

:=
∫
|φ(⟨w, x⟩)|pdρ(x) (independent of w as ρ is rotationally

invariant), then there exists a constant α∗ dependent only on those constants and on the ci, Ci such
that, provided that β ≥ poly(d, λ−1), ηλ,β satisfies α∗-LSI.

The proof is based on the observation that ηλ,β ≈ argminJλ = δv the Dirac measure at v, for
certain regimes of β and λ, in the Wasserstein metric. Thus we show that J ′

λ[δv] is amenable to a
Lyapunov type argument inspired from [MS14; LE23], and then transfer its properties to J ′

λ[ηλ,β ].
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We now verify the assumptions of Thm. 5.2 for a class of smooth, non-negative, and monotone
activations which includes some popular practical choices such as the Softplus φ(z) = ln(1+ez) and
sigmoid φ(z) = 1/(1 + e−z). While we only consider smooth activations here for simplicity, certain
non-smooth activations such as a leaky version of ReLU can also satisfy the conditions of Thm. 5.2.

Proposition 5.3. Suppose Assumptions 2 and 3 hold, and b1(d+ 1) ≤ E[∥x∥2] ≤ E[∥x∥12]1/6 ≤
b2(d + 1) for constants b1, b2 > 0. Let m := 2b

3/2
2 /b1. Suppose φ and φ′ are non-negative,

inf |z|≤m φ(z) ∧ φ′(z) > 0 and
∥∥φ(i)

∥∥
L4(ρ)

< ∞ for i ≤ 3. Then, φ satisfies the assumptions of
Thm. 5.2 with constants that only depend on b1, b2, and φ.

6 Conclusion

In this paper, we investigated how mean-field Langevin dynamics (MFLD), an optimization dynamics
over probability measures with global convergence guarantees, can be leveraged to solve convex
optimization problems over signed measures of the form (1.1). For a large class of objectives G, we
highlighted that MFLD with a lifting approach necessarily runs into some issues, whereas the bilevel
approach always inherits the guarantees of MFLD, leading to convergence guarantees for Gλ via
annealing. Finally, turning to a 2-layer NN learning task which can be stated as an instance of (1.1),
we showed that the local LSI constant of MFLD-Bilevel can scale much more favorably with d and β
than a generic analysis would suggest.

Another approach to tackle (1.1) could be to build noisy particle dynamics directly in the space of
signed measures, complementing the MFLD updates with, for instance, a birth-death process. A
challenge then is to build such dynamics that can be efficiently discretized. It is also an interesting
question for future works to find other settings to which MFLD can be extended, beyond signed
measures.
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A Details for Sec. 1 (introduction)

A.1 Using ∥·∥2TV vs. ∥·∥TV as the regularization term

The optimization problems we consider in this paper are of the form (1.1), that is, for ease of
reference,

min
ν∈M(W)

Gλ(ν), Gλ(ν) := G(ν) +
λ

2
∥ν∥2TV .

Note the regularization term λ
2 ∥ν∥2TV . This is to be contrasted with the more usual form of optimiza-

tion problems

min
ν∈M(W)

G̃λ̃(ν), G̃λ̃(ν) := G(ν) + λ̃ ∥ν∥TV ,

which uses ∥ν∥TV as the regularization.

On the level of variational problems, these two classes of problems are equivalent, in the sense that

{0} ∪
⋃
λ≥0

argminGλ = {0} ∪
⋃
λ̃≥0

argmin G̃λ̃

where “0” refers to the zero measure on W . Indeed, note that by convexity, the argmins are determined
by the respective first-order optimality conditions, so that⋃

λ≥0

argminGλ =

{
ν ∈ M(W); ∀w,G′[ν](w) + λ ∥ν∥TV

ν(dw)

|ν(dw)| = 0, λ ∈ R+

}
⋃
λ̃≥0

argmin G̃λ̃ =

{
ν ∈ M(W); ∀w,G′[ν](w) + λ̃

ν(dw)

|ν(dw)| = 0, λ̃ ∈ R+

}
.

To see that the set on the first line is contained in the second, let ν ∈ argminGλ, then ν satisfies
the first-order optimality condition for G̃λ̃ with λ̃ = λ ∥ν∥TV . Conversely, if ν ∈ argmin G̃λ̃ then
either ν = 0 or ν ∈ argminGλ with λ = λ̃

∥ν∥TV
.

In terms of optimization convergence guarantees, when using the reduction by lifting, the problems
with ∥·∥TV vs. with ∥·∥2TV regularization give rise to similar analyses, as discussed in Rem. 3.1.
However when using the reduction by bilevel optimization, it seems that only the problem with ∥·∥2TV
regularization is amenable to a precise analysis. This is perhaps most apparent in our derivation of
the simplified expression for the bilevel objective, Prop. D.2.

A.2 Detailed comparison with Takakura and Suzuki [TS24]

In this subsection, we show that the learning dynamics considered by [TS24, Sec. 2, 3] is an instance
of a variant of MFLD applied to the bilevel reduction of (1.1). We do this by recalling their setting
(in the case of single-task learning for simplicity) in notations that are compatible with ours.

• For a set of first-layer weights wi ∈ W := Rd and second-layer weights ai ∈ R (for
1 ≤ i ≤ N ), and an activation function φ : R → R, the associated 2NN is defined as
x 7→ 1

N

∑N
i=1 aiφ(w

⊤
i x).

• For µ ∈ P(R×W), the associated infinite-width 2NN is x 7→
∫
R×W aφ(w⊤x)dµ(a,w).

Note that in our notation of Sec. 3.1, this also writes x 7→
∫
W φ(w⊤x)d[hµ](w).

• Consider a data distribution ρ(dx,dy) ∈ P(Rd
x × Ry). We may define the Hilbert space of

predictors H = L2
ρx(Rd

x), and the “single first-layer neuron predictor” mapping ϕ : W → H
by ϕ(w)(x) = φ(w⊤x). The predictor associated to an infinite-width 2NN parametrized
by µ is then

∫
R×W aϕ(w)dµ(a,w).
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• Consider a loss function ℓ(ŷ, y) : Ry × Ry → R, inducing a risk functional over predictors
given by R(h) = E(x,y)∼ρ[ℓ(h(x), y)]. We may define the unregularized risk functional
over (infinite-width) 2NN weights by

L(µ) = R

(∫
R×W

aϕ(w)dµ(a,w)

)
= R

(∫
W

ϕ(w)d[hµ](w)

)
.

Accordingly, let the operator Φ : M(W) → H such that Φν =
∫
W ϕ(w)dν(w), and

G(ν) = R(Φν) = R

(∫
W

ϕ(w)dν(w)

)
.

Then the unregularized risk is L(µ) = G(hµ).
• The regularized risk functional considered in [TS24, Sec. 2.1] is

F(µ) = R

(∫
R×W

aϕ(w)dµ(a,w)

)
+

λ

2

∫
R×W

a2dµ(a,w) +
1

2σ2

∫
R×W

∥w∥2 dµ(a,w)
(A.1)

= G(hµ) +
λ

2

∫
R×W

a2dµ(a,w) +
1

2σ2

∫
R×W

∥w∥2 dµ(a,w).

(More precisely, “F (f, η)” in their notation corresponds to our F
(
δf(w)(da)η(dw)

)
, their

“λa” corresponds to our λ , and their “λw” corresponds to our 1/σ2.) Note that, in our
notation of Sec. 3.1,

F(µ) = Fλ,2(µ) +
1

2σ2

∫
R×W

∥w∥2 dµ(a,w).

• The bilevel limiting functional, which is the main object of study of [TS24, Sec. 2.1], is then
defined as the mapping G : P(W) → R such that

G(η) = inf
f :W→R

F
(
δf(w)(dr)η(dw)

)
, corresponding precisely to

G(η) = Jλ(η) +
1

2σ2

∫
W

∥w∥2 dη(w)

in our notation of Sec. 3.2 (see the paragraph “Link between the lifted and bilevel reduc-
tions”). Interestingly, the convexity of G is almost immediate with our presentation, as it is
expressed as a partial minimization of a convex function, whereas the proof of the convexity
of G in [TS24] is quite involved.
They also introduce a functional “U” which corresponds precisely to our Jλ(η), and which
is an important auxiliary object in their analysis.

• The learning dynamics studied from Section 2.3 onwards in [TS24] (except for the label
noise procedure in Section 5), is precisely MFLD for G(η):

∂tηt = β−1∆ηt + div (ηt∇G′[ηt])

= β−1∆ηt + div

(
ηt

(
∇J ′

λ[ηt] +
1

σ2
w

))
(A.2)

(and their constant “λ” corresponds to our β−1).

“MFL + confining” dynamics. The PDE (A.2) can be interpreted as a variant of MFLD for Jλ
in two ultimately equivalent ways: one is as the MFLD PDE (2.1) with an added “confining” term
− 1

σ2w, which intuitively encourages the noisy particles to remain close to the origin. Another is as
Wasserstein gradient flow for the regularized functional

Jλ,β,σ = Jλ + β−1H +
1

2σ2

∫
W

∥w∥2 dη(w)

= Jλ + β−1H
(
·
∣∣∣β−1/2σγ

)
where β−1/2σγ := N (0, β−1σ2Id),

14



whereas MFLD for Jλ is the Wasserstein gradient flow for the functional regularized by entropy only,
Jλ,β = Jλ+β−1H (·|τ) = Jλ+β−1H+cst. Unsurprisingly in view of this second interpretation, the
distribution β−1/2σγ plays a similar role in the analysis of convergence of (A.2) [TS24, Lemma 3.5],
as played by the uniform measure τ in our paper: the local LSI property of Jλ,β,σ (resp. Jλ,β) is
obtained by applying the Holley-Stroock argument using β−1/2σγ (resp. τ ) as a reference measure.

Note that the additional confining term − 1
σ2w in (A.2) cannot be captured straightforwardly by any

additional penalty term on the objective G from (1.1). Indeed, informally, the three terms in (A.1)
each have a different homogeneity in the variable a. Rather, the confining term in σ should be viewed
as corresponding to another regularization term added to (1.3), besides the entropy one in β−1.

In short, while our work considers MFLD i.e. Wasserstein gradient flow for F + β−1H as the main
“algorithmic primitive”, the work of [TS24] considers a MFL+confining dynamics, i.e. Wasserstein
gradient flow for F + β−1H

(
·
∣∣βσ2γ

)
.

Summary of differences. On a technical level, the learning dynamics considered by [TS24]
corresponds to a special case of a variant of the MFLD-bilevel we consider from Sec. 3.2 onwards.
Namely, they focus on instances of the problem (1.1) where G has a particular form, corresponding
to learning with 2NN; and they consider W = Rd and use an additional confining term − 1

σ2w in the
MFLD dynamics, while we consider settings where W is a compact Riemannian manifold, and no
additional confining term is needed.

We also emphasize that, while our work and that of [TS24] cover some similar settings, our focus is
quite different. In that work, the key object of interest is the kernel that is learned by MFLD in a 2NN
setting ((x, x′) 7→

∫
φ(x⊤w)φ(x⊤w′)dη(w) in the notation of our second bullet point above). By

contrast, our main motivation is a general optimization question: how to use MFLD as an algorithmic
primitive for problems of the form (1.1). In particular we do not assume a particular form for G
except in Sec. 5, and we pay special attention to the bounds on the local LSI constants of Jλ along
the MFLD trajectory, instead of using the global uniform LSI bound (compare Prop. 3.4 and [TS24,
Lemma 3.5]).

B Details for Sec. 2 (background about MFLD)

B.1 The displacement smoothness property

For MFLD (Eq. (2.1)) to be well-posed, we require that F is L-smooth along Wasserstein geodesics
for some L < +∞. More precisely, for any constant-speed Wasserstein geodesic (µt)t∈[0,1] ⊂ P2(Ω)
with W2(µ0, µ1) = 1, t 7→ F (µt) should be L-smooth in the usual sense of continuous optimization.
This property ensures that the PDE defining MFLD has a unique solution [Chi22b, App. A], and is
also helpful to ensure convergence of explicit time-discretization schemes [SWN23]. The following
proposition gives a practical sufficient condition.

Proposition B.1. Suppose F : P2((Ω, g)) → R is twice differentiable in the Wasserstein sense. Let
0 ≤ L < ∞. Suppose that F satisfies (P1), i.e.,

∀µ ∈ P2(Ω), ∀ω ∈ Ω, max
s∈TωΩ
∥s∥ω≤1

∣∣∇2 F ′[µ](s, s)
∣∣ ≤ L

and ∀µ, µ′ ∈ P2(Ω), ∀ω ∈ Ω, ∥∇F ′[µ]−∇F ′[µ′]∥ω ≤ L W2(µ, µ
′)

where ∇2 denotes the Riemannian Hessian. Then F is 2L-smooth along Wasserstein geodesics.

The first condition can be stated as F ′[µ] : Ω → R having Lipschitz-continuous gradients in the
Riemannian sense [Bou23, Coroll. 10.47], whereas the second condition can be interpreted as a
displacement Lipschitz-continuity of µ 7→ F ′[µ](ω) for each ω uniformly.

Proof. Let a constant-speed Wasserstein geodesic (µt)t∈[0,1] ⊂ P2(Ω) with W2(µ0, µ1) = 1, and
pose f(t) = F (µt). We want to show that f is 2L-smooth in the usual sense of continuous
optimization, for which it suffices to show that ∀t, |f ′′(t)| ≤ 2L.
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By [Vil09, Eq. (13.6)] there exist functions ϕt : Ω → R such that
{
∂tµt = −div(∇ϕtµt)

∂tϕt = − 1
2 ∥∇ϕt∥2

and∫
dµt ∥∇ϕt∥2 = W 2

2 (µ0, µ1) = 1 for all t. So we can compute explicitly:

f ′(t) =
d

dt
F (µt) =

∫
dµt ⟨∇F ′[µt],∇ϕt⟩

f ′′(t) =
∫

d(∂tµt) ⟨∇F ′[µt],∇ϕt⟩+
∫

dµt
d

dt

〈
∇F ′[µt],

d

dt
∇ϕt

〉
=

∫
dµt

〈
∇
[
⟨∇F ′[µt],∇ϕt⟩

]
,∇ϕt

〉
+

∫
dµt

(〈
∇F ′[µt],

d

dt
∇ϕt

〉
+

〈
d

dt
∇F ′[µt],∇ϕt

〉)
=

∫
dµt ∇2 F ′[µt](∇ϕt,∇ϕt)

+

∫
dµt ∇2 ϕt (∇F ′[µt],∇ϕt) +

∫
dµt ⟨∇F ′[µt],∇∂tϕt⟩

+

∫
dµt

〈
d

dt
∇F ′[µt],∇ϕt

〉
.

Now the first line can be bounded using the first condition of (P1): writing st(ω) =
∇ϕt(ω)

∥∇ϕt(ω)∥ for all
t and ω,∣∣∣∣∫ dµt ∇2 F ′[µt](∇ϕt,∇ϕt)

∣∣∣∣ = ∣∣∣∣∫ dµt ∥∇ϕt∥2 ∇2 F ′[µt](st, st)

∣∣∣∣ ≤ L ·
∫

dµt ∥∇ϕt∥2 = L.

Moreover, one can show by direct computation that the second line is zero, using that ∂tϕt =

− 1
2 ∥∇ϕt∥2. For the third line, we have∣∣∣∣∫ dµt

〈
d

dt
∇F ′[µt],∇ϕt

〉∣∣∣∣ ≤ ∫ dµt ∥∇ϕt∥ · sup
t∈[0,1]

sup
ω∈Ω

∥∥∥∥ d

dt
∇F ′[µt](ω)

∥∥∥∥
since

(∫
dµt ∥∇ϕt∥

)2 ≤
∫
dµt ∥∇ϕt∥2 = 1. Finally, let us show that the second condition of

(P1) implies a bound on the last quantity: for all ω ∈ Ω, by applying the assumption to µ = µt and
µ′ = µs,

∥∇F ′[µs](ω)−∇F ′[µt](ω)∥ω
s− t

≤ L W2(µs, µt)

s− t
= L

since (µt)t is a constant-speed geodesic with W2(µ0, µ1) = 1. So by letting s → t we obtain that∥∥ d
dt∇F ′[µt](ω)

∥∥ ≤ L for all t ∈ [0, 1], ω ∈ Ω. Thus we have shown |f ′′(t)| ≤ 2L, and so F is
2L-smooth along Wasserstein geodesics.

B.2 Classical sufficient conditions for LSI

For ease of reference we reproduce here a classical sufficient condition for a probability measure
µ ∈ P(Ω) to satisfy LSI.

Lemma B.2 (Holley-Stroock bounded perturbation argument [HS86]). Let µ, µ0 ∈ P(Ω) such
that µ is absolutely continuous w.r.t. µ0. Suppose that µ0 satisfies LSI with constant α and that
−M ≤ log dµ

dµ0
(ω) + c ≤ M for all ω ∈ supp(µ0), for some c ∈ R and M ≥ 0. Then µ satisfies

LSI with constant αe−M .

C Details for Sec. 3.1 (reduction by lifting)

C.1 Proof of Prop. 3.1

Here we present a slightly stronger version of Prop. 3.1 that uses the p-homogeneous projection
operator for arbitrary p > 0, in preparation for the next subsection, where we show that one can
restrict attention to the case p = 1 as done in the main text.
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Recall that we let Ω = R × W . For any p > 0, we denote by hp : P(Ω) → M(W) the signed
p-homogeneous projection operator [LMS18] defined by

∀φ ∈ C(W,R),
∫
W

φ(w)(hpµ)(dw) =

∫
Ω

sign(r) |r|p φ(w)µ(dr, dw).

More concretely, for atomic measures, hp
(

1
m

∑m
j=1 δ(rj ,wj)

)
= 1

m

∑m
j=1 sign(rj) |rj |

p
δwj .

Lemma C.1. For b ∈ [1, 2] and p > 0, let Ψb,p : P(Ω) → R ∪ {+∞} defined by Ψb,p(µ) :=(∫
Ω
|r|pb dµ(r, w)

)2/b
if µ ∈ Ppb(Ω), and +∞ otherwise. Then

min
µ s.t. hpµ=ν

Ψb,p(µ) = ∥ν∥2TV .

Moreover, if b = 1 then the set of minimizers is
{µ ∈ P(W); hpµ = ν and ∀w, supp(µ(·|w)) ⊂ R+ or supp(µ(·|w)) ⊂ R−} ,

and if b > 1 there is a unique minimizer which is δf(w)(dr)
|ν|(dw)
∥ν∥TV

where f(w) = ∥ν∥1/pTV
dν
d|ν| (w).

Proof. For any µ ∈ P(Ω) such that hp = ν,

∥hpµ∥TV = max
ϕ:W→[−1,1]

∫
Ω

sign(r) |r|p ϕ(w)dµ(r, w) ≤
∫
Ω

|r|p dµ(r, w)

so ∥ν∥2TV = ∥hpµ∥2TV ≤
((∫

Ω

|r|p dµ(r, w)
)b
)2/b

≤
(∫

Ω

|r|pb dµ(r, w)
)2/b

= Ψb,p(µ),

where the first inequality follows from the triangle inequality, and the second inequality follows
from Jensen’s inequality since t 7→ tb is convex on R+. Note that the first inequality above holds
with equality if and only if there exists ϕ : W → [−1, 1] such that sign(r)ϕ(w) ≥ 0 for all
(r, w) ∈ supp(µ), i.e., if the conditional distribution µ(dr|w) is either supported on R+ or supported
on R− for each w. Conversely, the value ∥ν∥2TV is attained by letting µ(dr, dw) = δf(w)(dr)

|ν|(dw)
∥ν∥TV

where f(w) = ∥ν∥1/pTV
dν
d|ν| (w). This proves that minµ:hpµ=ν Ψb,p(µ) = ∥ν∥2TV .

For b = 1, t 7→ tb = t is linear, so equality always holds in Jensen’s inequality. So the set of
minimizers is all of {µ ∈ P(W); hpµ = ν and ∀w, supp(µ(·|w)) ⊂ R+ or supp(µ(·|w)) ⊂ R−}.

For b > 1, t 7→ tb is strictly convex, the second inequality above holds with equality if and
only if there exists a constant c such that |r|p = c for all (r, w) ∈ supp(µ). So for µ to be a
minimizer, the conditional distribution µ(dr|w) must be concentrated on {c1/p,−c1/p} for each
w. Moreover, for the first inequality above to hold, the conditional distribution at each w must
be either supported on R+ or suported on R−, so there exists a function f : W → {c1/p,−c1/p}
such that µ(dr, dw) = δf(w)(dr)µ

w(dw) where µw ∈ P(W) denotes the marginal distribution.
Since hpµ = ν, then for all fixed w,

∫
R+

sign(r) |r|p µ(dr, dw) = sign(f(w))cµw(dw) = ν(dw).

So sign(f(w)) = sign( dν
dµw (w)) = dν

d|ν| (w) and µw(dw) = 1
c |ν| (dw) since µw is a probability

measure so non-negative, and integrating on both sides over Ω shows that c = ∥ν∥TV . Hence the
only minimizer is µ(dr, dw) = δf(w)(dr)

|ν|(dw)
∥ν∥TV

where f(w) = c1/p dν
d|ν| (w).

Prop. 3.1 follows directly as a special case of the following proposition with p = 1.
Proposition C.2. Let any p > 0 and b ∈ [1, 2] and let Ψb,p : P(Ω) → R ∪ {+∞} as in the lemma
above. Consider the optimization problem over probability measures, with λ > 0,

min
µ∈P(Ω)

Fλ,b,p(µ) where Fλ,b,p(µ) = G(hpµ) +
λ

2
Ψb,p(µ). (C.1)

Then minP(Ω) Fλ,b,p = minM(W) Gλ.

Moreover, if b > 1 then argminF =

{
δ∥ν∥1/p

TV
dν
d|ν| (w)

(dr) ν(dw)
∥ν∥TV

; ν ∈ argminG

}
, and otherwise

argminF = {µ; hpµ ∈ argminG and ∀w, supp(µ) ⊂ R+ or supp(µ) ⊂ R+}. Furthermore, F
is convex.
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Proof. The fact that minP(Ω) Fλ,b,p = minM(W) Gλ can be seen directly as follows:

min
µ∈P(Ω)

F (µ) = min
µ∈P(Ω)

G(hpµ) +
λ

2
Ψb,p(µ)

= min
ν∈M(Ω)

[
min

µ∈P(Ω):hp=ν
G(hpµ) +

λ

2
Ψb,p(µ)

]
= min

ν∈M(Ω)
G(ν) +

λ

2

[
min

µP(Ω):hp=ν
Ψb,p(µ)

]
= min

ν∈M(Ω)
G(ν) +

λ

2
∥ν∥2TV = min

ν∈M(Ω)
Gλ(ν)

where we used the lemma above at the fourth equality. The characterization of argminF in
terms of argminG follows from the characterization of the minimizers of the inner minimization[
minµ∈P(Ω):hp=ν Ψb(µ)

]
in the third line, which is given by the lemma above.

Furthermore, Fλ,b,p is convex since G and Ψb,p are.

C.2 Equivalence of using (cp, cqr, cqw,Γ/c
2) for any c > 0 by reparametrizing

Equivalence of Riemannian structures on Ω∗ for (cqr, cqw,Γ/c
2) for c > 0. Recall that we

consider equipping Ω∗ = R∗ ×W with a Riemannian metric of the form (3.2), reproduced here for
ease of reference:〈(

δr1
δw1

)
,

(
δr2
δw2

)〉
(r,w)

= Γ−1 |r|qr δr1δr2
r2

+|r|qw ⟨δw1, δw2⟩w , i.e., g(r,w) =

[
Γ−1 |r|qr−2

0
0 |r|qw gw

]
.

The following proposition shows that, in fact, different choices of qr, qw and Γ lead to the same
geometry, up to a reparametrization of the form (a,w) = (rα, w) (for r > 0). Namely it is equivalent
to use the metric with exponents (qr, qw) or with

(
qr
α , qw

α

)
, up to adjusting Γ.

Proposition C.3. For any qr, qw, denote by g[qr,qw,Γ] the metric g(r,w) =

[
Γ−1 |r|qr−2

0
0 |r|qw gw

]
on Ω∗ = R∗ × W . Then for any qr, qw ∈ R and Γ, α > 0, the map Tα :

(
Ω∗, g[qr,qw,Γ]

)
→(

Ω∗, g[ qrα , qwα ,α2Γ]

)
defined by Tα(r, w) = (sign(r) |r|α , w) is an isometry.

Proof. Since Ω∗ is a disjoint manifold: Ω∗ = R∗
+×W ∪R∗

−×W , and since Tα(R∗
+×W) = R∗

+×W ,

it suffices to check that the restricted map T+
α :

(
R∗

+ ×W, g[qr,qw,Γ]

)
→
(
R∗

+ ×W, g[ qrα , qwα ,α2Γ]

)
is an isometry (as well as the analogous statement for the restricted map T−

α , but it will follow
analogously).

Indeed, denote by g̃ the metric on R∗
+ ×W induced by T+

α . It is given by, for (a,w) = T+
α (r, w) =

(rα, w), so da
a = αdr

r ,(
δr1
δw1

)
· g(r,w)

(
δr2
δw2

)
=

(
δa1
δw1

)
· g̃(a,w)

(
δa2
δw2

)
=

(
αa 1

r δr1
δw1

)
· g̃(a,w)

(
αa 1

r δr2
δw2

)
so g̃(a,w) =

[
r
αa 0
0 1

]
g(r,w)

[
r
αa 0
0 1

]
=

[
r2

α2a2Γ
−1rqr−2 0
0 rqwgw

]
=

[
Γ−1α−2aqr/α−2 0

0 aqw/αgw

]
.

So g̃ is precisely g[ qrα , qwα ,α2Γ] on R∗
+ ×W , which proves the claim.

Equivalence of the Wasserstein gradient flow of Fλ,b,p for (cp, cqr, cqw,Γ/c
2) for any c > 0.

Proposition C.4. Let T : (Ω1, g[1]) → (Ω2, g[2]) an isometry between Riemannian manifolds. Let
F : P(Ω1) → R (sufficiently regular) and (µt)t a Wasserstein gradient flow for F , i.e., ∂tµt =
−div(µt∇F ′[µt]) (where ∇ denotes Riemannian gradient in (Ω1, g[1])). Then, (µ̃)t := (T♯µt)t is a
Wasserstein gradient flow for F̃ : P(Ω2) → R defined by F̃ (µ̃) = F (T−1

♯ µ̃).
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Proof. First note that g[2] is given by, for all y = T (x) ∈ Ω2, so dy = DT (x)dx where D denotes
the differential,

δy⊤ g[2]y δy′ = δx⊤ g[1]x δx′ = δy⊤((DT (x))−1)⊤ g[1]x (DT (x))−1δy′

so g−1
[1]x = (DT (x))−1) g−1

[2]T (x) ((DT (x))−1)⊤.

Also note that F̃ ′[µ̃](y) = F ′[T−1
♯ µ̃](T−1(y)), as one can check directly by computing

limε→0
1
ε

[
F̃ (µ̃+ εν̃)− F̃ (µ̃)

]
= limε→0

1
ε

[
F (T−1

♯ µ̃+ εT−1
♯ ν̃)− F (T−1

♯ µ̃)
]
. In particular

DF̃ ′[µ̃](y) = DF ′[T−1
♯ µ̃](T−1(y))(DT (T−1(y)))−1. Then for any φ : Ω2 → R,

d

dt

∫
Ω2

φdµ̃t =
d

dt

∫
Ω1

φ(T (x))dµt(x)

=

∫
Ω1

Dφ(T (x))DT (x) g−1
[1] DF ′[µt](x)dµt(x)

=

∫
Ω1

Dφ(y) g−1
[2] DF̃ ′[µ̃t](y)dµ̃t(y).

That is, ∂tµ̃t = −div(µ̃tg
−1
[2] DF̃ ′[µ̃t]), i.e., (µ̃t)t is a Wasserstein gradient flow for F̃ .

Proposition C.5. Consider the functionals Fλ,b,p over P(Ω) from Prop. C.2 and the Riemannian
metrics g[qr,qw,Γ] over Ω∗ from Prop. C.3, where Ω = R×W and Ω∗ = R∗ ×W .

Fix qr, qw ∈ R, Γ, p, λ > 0 and b ∈ [1, 2]. Let (µt)t the Wasserstein gradient flow for Fλ,b,p over
(Ω∗, g[qr,qw,Γ]), starting from some µ0 ∈ P(Ω∗).

Let α > 0 and Tα : Ω∗ → Ω∗ defined by Tα(r, w) = (sign(r) |r|α , w). Then (µ̃t)t := ((Tα)♯µt)t
coincides with the Wasserstein gradient flow for Fλ̃,b̃,p̃ over (Ω∗, g[q̃r,q̃w,Γ̃]) starting from µ̃0 =

(Tα)♯µ0, where

p̃ =
p

α
, q̃r =

qr
α
, q̃w =

qw
α
, Γ̃ = α2Γ, λ̃ = λ, b̃ = b.

Proof. The proposition follows from an application of Prop. C.4 with T = Tα, Ω1 = (Ω∗, g[qr,qw,Γ]),
Ω2 = (Ω∗, g[q′r,q′w,Γ′]) and F = Fλ,b,p. Indeed the fact that Tα is an isometry from Ω1 to Ω2 was
shown in Prop. C.3. It only remains to show that F ◦ T−1

♯ = Fλ̃,b̃,p̃. And indeed for any µ̃ ∈ P(Ω∗),

Fλ,b,p((Tα)
−1
♯ µ̃) = Fλ,b,p((Tα−1)♯µ̃) = G (hp(Tα−1)♯µ̃) +

λ

2
Ψb,p ((Tα−1)♯µ̃) ,

and hp(Tα−1)♯µ̃ = hp/αµ̃, since for any φ : W → R,∫
W

φd [hp(Tα−1)♯µ̃] =

∫
R

∫
W

φ(w) sign(r) |r|p [(Tα−1)♯µ̃] (dr, dw)

=

∫
R

∫
W

φ(w) sign(r̃) |r̃|p/α µ̃(dr̃,dw) =

∫
W

φd
[
hp/αµ̃

]
,

and

Ψb,p((Tα−1)♯µ̃) =
(
|r|pb d [(Tα−1)♯µ̃]

)2/b
=
(
|r̃|pb/α dµ̃(r, w)

)2/b
.

This confirms that F ◦ T−1
♯ = Fλ̃,b̃,p̃ and concludes the proof.

Thus, it is equivalent to consider the lifting reduction with the hyperparameters (p, qr, qw,Γ) or with(
cp, cqr, cqw,Γ/c

2
)

for any c > 0.
Remark C.1. The choice p = qr = qw plays a special role, as Wasserstein gradient flows (µt)t on
P(R∗

+ ×W) for functionals of the form µ 7→ G(hpµ) then correspond to gradient flows (νt)t on
M+(W) for G in the Wasserstein-Fisher-Rao geometry [Chi22c, Prop. 2.1], via νt = hpµt. This
correspondence is lost however for functionals of the form of Fλ,b,p as in Prop. C.2 with λ ̸= 0.
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Equivalence of MFLD of Fλ,b,p for (cp, cqr, cqw,Γ/c2) for any c > 0. Since MFLD for Fλ,b,p is
the Wasserstein gradient flow of Fλ,b,p + β−1H , then by Prop. C.4, by proceeding similarly as in the
proof of Prop. C.5, it suffices to check that µ̃ 7→ H((Tα−1)♯µ̃) is equal to H itself, up to an additive
constant. And indeed, since Tα−1 is invertible, by data processing inequality for differential entropy,
we have H((Tα−1)♯µ̃) = H(µ̃) for all µ̃ ∈ P(Ω∗).

C.3 Proof of Prop. 3.2

Lemma C.6. Let Fλ,b,p defined in (C.1) and Ω = W × R. For any µ ∈ P(Ω),

F ′
λ,b,p[µ](r, w) = sign(r) |r|p G′[hpµ](w) + λ′ |r|pb (C.2)

where λ′ = λ 1
bΨb,p(µ)

1− b
2 .

Proof. For any µ′ ∈ P(Ω),

lim
ε→0

1

ε
[(G ◦ hp)(µ+ εµ′)− (G ◦ hp)(µ)] = lim

ε→0

1

ε
[G(hpµ+ εhpµ′)−G(hpµ)]

=

∫
W

G′[hpµ](w)d [hpµ′] (w) =
∫
R×W

sign(r) |r|p G′[hpµ](w)dµ′(r, w)

and so (G ◦ hp)
′
[µ](r, w) = sign(r) |r|p G′[hpµ](w). Moreover

Ψb,p(µ) =

(∫
Ω

|r|pb dµ(r, w)
) 2

b

Ψ′
b,p[µ](r, w) =

2

b

(∫
Ω

|r|′pb dµ(r′, w′)

) 2
b−1

|r|pb = 2

b
Ψb,p(µ)

1− b
2 |r|pb .

Summing the results of these two calculations gives the first variation of Fλ,b,p = G◦hp+ λ
2Ψb,p.

Lemma C.7. Let f : R∗
+ × W → R defined by f(r, w) = rpϕ̃(w) + λ′rpb, for some p, λ′ > 0,

b ∈ [1, 2], and ϕ̃ : W → R. Assume that ∇2 ϕ̃ is not constant equal to 0.

Consider R∗
+ × W equipped with the Riemannian metric (3.2). If f has Lipschitz-continuous

Riemannian gradients, then necessarily b = 1 and p = qr = qw, or b = 1 and p = qr/2 = qw/2 and

∇2ϕ̃(w) = Γp2
(
ϕ̃(w) + λ′

)
gw for all w.

The proof of Lem. C.7 is technical, so it is deferred to the next section.

Proof of Prop. 3.2. Let us prove the first item in the proposition. Suppose by contraposition that Fλ,b

does satisfy (P1). Let any ν ∈ M(W) such that ∇2G′[ν] is not constant equal to 0, and consider some
µ ∈ P(Ω) to be chosen such that hµ = ν. Then by the first condition of (P1), f := F ′

λ,b[µ]
∣∣∣
R∗

+×W
the restriction of F ′

λ,b[µ] to R∗
+ ×W must have Lipschitz-continuous Riemannian gradients. More

explicitly, by (C.2), f(r, w) = rG′[ν](w) + λ′
µr

b where λ′
µ = λ

bΨb(µ)
1− b

2 . So by Lem. C.7,

necessarily b = 1, and so λ′
µ = λΨ1(µ)

1/2. If ϕ̃ := G′[ν] satisfies ∇2ϕ̃(w) = Γp2
(
ϕ̃(w) + λ′

µ

)
gw

for all w, pick any other µ′ such that hµ′ = ν and Ψ1(µ
′) ̸= Ψ1(µ) – the existence of such a

µ′ follows from the first step in the proof of Lem. C.1. Then by applying the above reasoning to
F ′
λ,b[µ

′]
∣∣∣
R∗

+×W
instead of f , since λ′

µ′ ̸= λ′
µ, we also have by Lem. C.7 that p = qr = qw. This

shows that if Fλ,b satisfies (P1) then (qr, qw, b) = (1, 1, 1), which was the announced necessary
condition.

We now turn to the second item of the proposition. Suppose that qr = qw = b = 1. For any
µ ∈ P1(Ω), denote

λ0µ = sup
w∈W

|G′[hµ](w)|
Ψ1(µ)1/2

.
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Let us show that if λ < λ0µ, then Fλ,1 does not satisfy local LSI at µ. Suppose that λ < λ0µ, i.e.,
there exists w0 ∈ W such that

Ψ1(µ)
1/2λ < |G′[hµ](w0)| .

Let us distinguish cases between G′[hµ](w0) ≥ 0 or G′[hµ](w0) < 0.

First suppose G′[hµ](w0) ≥ 0, so that Ψ1(µ)
1/2λ < G′[hµ](w0). By continuity of G′[hµ], let

N ⊂ W an open neighborhood of w0 such that ∀w ∈ N,Ψ1(µ)
1/2λ < G′[hµ](w). Then, since

F ′
λ,1[µ](r, w) = |r|

(
sign(r)G′[hµ](w) + λΨ1(µ)

1/2
)

by (C.2),

∀r ∈ R−,∀w ∈ N, F ′
λ,1[µ](r, w) = |r|

(
−G′[hµ](w) + λΨ1(µ)

1/2
)
≤ 0

and so
∫
R

∫
W

e−βF ′
λ,1[µ](r,w)drdw ≥

∫
R−

∫
N

e−βF ′
λ,1[µ](r,w)drdw

≥
∫
R−

∫
N

1 drdw = +∞.

This contradicts the exponential integrability condition in the definition of local LSI, and so Fλ,1

does not satisfy local LSI at µ.

Likewise, now suppose that G′[hµ](w0) < 0, so that Ψ1(µ)
1/2λ < −G′[hµ](w0). By continuity

of G′[hµ], let N ⊂ W an open neighborhood of w0 such that ∀w ∈ N,Ψ1(µ)
1/2λ < −G′[hµ](w).

Then

∀r ∈ R+,∀w ∈ N, F ′
λ,1[µ](r, w) = |r|

(
G′[hµ](w) + λΨ1(µ)

1/2
)
≤ 0

and so
∫
R

∫
W

e−βF ′
λ,1[µ](r,w)drdw ≥

∫
R+

∫
N

e−βF ′
λ,1[µ](r,w)drdw

≥
∫
R+

∫
N

1 drdw = +∞.

As in the previous case, we conclude that Fλ,1 does not satisfy local LSI at µ.

C.4 Proof of Lem. C.7 via computing the Hessians under the lifted Riemannian geometry

We start by a general lemma. We use D to denote differentials, and for a function f : R∗
+ ×W → R,

we will write Drf = ∂f(r,w)
∂r and Dwf = ∂f(r,w)

∂w .
Lemma C.8. Let (W, g) a Riemannian manifold. Let Ω∗

+ = R∗
+ ×W and consider

g(r,w) =

[
α(r)−1 0

0 β(r)−1gw

]
for smooth positive functions α, β : R∗

+ → R∗
+. This defines a smooth Riemannian metric g on Ω∗

+.

Denote by g(r,w), ∇, Γ, ∇2 the Riemannian metric, gradient, Christoffel symbols, resp. Hessian
on Ω∗

+, and by gw,∇,Γ,∇2 the corresponding objects on the original space W .

Let f : Ω∗
+ → R a smooth scalar field. Write for convenience fr(w) = f(r, w), so that for example

∇fr(w) = g−1
w Dwf(r, w), and note that Dr∇fr(w) = ∇Drfr(w). Fix a local coordinate chart on

W . This induces a local coordinate chart on Ω∗
+ by adding the index 0 for the variable r. Then the

Riemannian Hessian f at (r, w) is given in coordinates by

∇2 f00 = α(r)2D2
rrf +

1

2
α(r)α′(r)Drf

∇2 f i0 = ∇2 f0i = α(r)β(r)∇Drfr(w)
i +

1

2
α(r)β′(r)∇fr(w)

i

∇2 f ij = β(r)2 ∇2 fr(w)
ij − 1

2
α(r)β′(r) ·Drf · (g−1

w )ij .

Proof. We will use uppercase letters for indes ranging over [0, d] and lowercase for [1, d], with the
index 0 corresponding to the variable r; for example ∇f(r, w)0 = α(r)Drf(r, w). We will use
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Einstein summation notation freely. With slight abuse of notation we denote (gij)ij = g−1 for the
inverse matrix of the metric (gij)ij = g, and likewise for gIJ , gIJ , so that for example g00 = α(r).

We start by using that [Lee18, Example 4.22, Eq. (5.10)]

∇2 f(r, w)IJ = gIKgJL
[

∂2f

∂ωK∂ωL
− Γ

M

KL

∂f

∂Mω

]
and Γ

M

IJ =
1

2
gMK

[
∂gKI

∂ωJ
+

∂gKJ

∂ωI
− ∂gIJ

∂ωK

]
where ω = (r, w), and that the analogous formulas hold for fr : W → R for all r and for Γm

ij the
Christoffel symbols of W .

By direct computations, we find that for all i, j,m ∈ [1, d],

Γ
0

00 = −1

2

α′(r)
α(r)

Γ
0

i0 = Γ
0

0i = 0 Γ
0

ij =
1

2
α(r)

β′(r)
β(r)2

gij

Γ
m

00 = 0 Γ
m

i0 = Γ
m

0i = −1

2

β′(r)
β(r)

δmi Γ
m

ij = Γm
ij .

So by direct computations, we find that

∇2 f00 = α(r)2D2
rrf +

1

2
α(r)α′(r)Drf

∇2 f i0 = ∇2 f0i = α(r)β(r)∇Drfr(w)
i +

1

2
α(r)β′(r)∇fr(w)

i

∇2 f ij = β(r)2 ∇2 fr(w)
ij − 1

2
α(r)β′(r) ·Drf · gij ,

as announced.

Corollary C.9. Let f : Ω∗
+ = R∗

+ ×W → R defined by f(r, w) = rpϕ̃(w) + λ′rpb, for some p > 0,
b ∈ [1, 2], λ′ ≥ 0 and ϕ̃ : W → R.

Consider Ω∗
+ equipped with the Riemannian metric (3.2). Then the Riemannian Hessian of f is given

in coordinates by

∇2 f00 = Γ2p(p− qr/2)r
2−2qr+pϕ̃(w) + Γ2pbλ′(pb− qr/2)r

2−2qr+pb

∇2 f i0 = ∇2 f0i = Γ(p− qw/2)r
1−qr−qw+p∇ϕ̃(w)i

∇2 f ij = rp−2qw ∇2 ϕ̃(w)ij +
1

2
Γqwr

−qr−qw ·
(
prpϕ̃(w) + pbλ′rpb

)
(g−1

w )ij .

Proof. Continuing with the same notations as in the proof of the lemma above, we have

Drf = prp−1ϕ̃(w) + pbλ′rpb−1 D2
rrf = p(p− 1)rp−2ϕ̃(w) + pb(pb− 1)λ′rpb−2

∇fr(w)
i = rp∇ϕ̃(w)i ∇2 fr(w)

ij = rp ∇2 ϕ̃(w)ij

∇Drfr(w)
i = prp−1∇ϕ̃(w)i

and so

∇2 f00 = α(r)2
(
p(p− 1)rp−2ϕ̃(w) + pb(pb− 1)λ′rpb−2

)
+

1

2
α(r)α′(r)

(
prp−1ϕ̃(w) + pbλ′rpb−1

)
= α(r)p

(
α(r)(p− 1) +

1

2
rα′(r)

)
rp−2ϕ̃(w) + α(r)pbλ′

(
α(r)(pb− 1) +

1

2
rα′(r)

)
rpb−2

∇2 f i0 = ∇2 f0i = α(r)β(r) · prp−1∇ϕ̃(w)i +
1

2
α(r)β′(r) · rp∇ϕ̃(w)i

= α(r)

(
β(r)p+

1

2
rβ′(r)

)
rp−1∇ϕ̃(w)i

∇2 f ij = β(r)2 · rp ∇2 ϕ̃(w)ij − 1

2
α(r)β′(r) ·

(
prp−1ϕ̃(w) + pbλ′rpb−1

)
· gij .

By substituting α(r)−1 = Γ−1rqr−2 and β(r)−1 = rqw , i.e. α(r) = Γr2−qr and β(r) = r−qw , we
obtain the announced formulas.
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Proof of Lem. C.7. Continuing with the same notations as in the proofs of the lemma and of the
corollary above, note that f : Ω∗

+ = R∗
+ ×W → R having Lipschitz-continuous gradients in the

Riemannian sense is equivalent to [Bou23, Coroll. 10.47]

sup
ω∈Ω∗

+

sup
s∈TωΩ∗

+

∥s∥ω=1

∥∥∥∇2 f(ω)IJgJKsK
∥∥∥
ω
< ∞.

Rewriting everything in coordinates, this means that the matrix H̃(ω) =(√
gIK ∇2 f(ω)IJ

√
gJL

)
KL

∈ R(d+1)×(d+1) must be bounded, uniformly in ω ∈ Ω∗
+,

where (
√
gIJ)IJ =

√
g denotes the square root of the positive-definite matrix g (pointwise for

each ω). Concretely, for all i, j ∈ [1, d],√
g00 = α(r)−1/2 = Γ−1/2rqr/2−1,

√
gi0 = 0,

√
gij = β(r)−1/2√gij = rqw/2√gij

and

H̃(ω)00 = g00 ∇2 f00

= Γp(p− qr/2)r
−qr+pϕ̃(w) + Γpbλ′(pb− qr/2)r

−qr+pb

H̃(ω)j0 =
√

g00
√
gji ∇2 f i0

= Γ1/2(p− qw/2)r
−qr/2−qw/2+p · √gji∇ϕ̃(w)i

H̃(ω)kl =
√

gki
√
glj ∇2 f ij

= rp−qw · √gki
√
glj ∇2 ϕ̃(w)ij + Γ

1

2
qwr

−qr ·
(
prpϕ̃(w) + pbλ′rpb

)
δkl.

(Note that here the indes do not respect the covariant/contravariant convention, i.e., “
√
gIK” and

“H̃(ω)KL” do not stand for covariant tensors: we really manipulate everything in coordinates
explicitly.)

Now, note that the desired condition means that H̃(ω)KL should remain bounded both for r → +∞
and r → 0. That is, the exponents of r in the non-zero terms must all be 0. Thus, since we assume
that λ′ ̸= 0, and that ∇2ϕ̃ is not constant equal to 0 and so in particular ϕ̃ and ∇ϕ̃ are not constant,

• Uniform boundedness of the second term in H̃(ω)kl implies that b = 1. Indeed λ′ ̸= 0,
and the first term (in ∇2ϕ̃) cannot cancel out both the term in ϕ̃(w)rp−qr and the term in
λ′rpb−qr if they scale differently with r. This also implies that either p = qw = qr or that
qw = qr and ∇2ϕ̃(w)ij = 1

2Γqwp
(
ϕ̃(w) + λ′

)
gij for all w.

• Uniform boundedness of H̃(ω)00 implies that p = qr or p = qr/2.

• Uniform boundedness of H̃(ω)j0 implies that p = qr+qw
2 or p = qw/2. We saw in the first

point that qr = qw, so equivalently p = qr = qw or p = qr/2 = qw/2.

Thus we get that f can have Lipschitz-continuous Riemannian gradients only if b = 1 and p = qr =

qw, or if b = 1 and p = qr/2 = qw/2 and ∇2ϕ̃(w) = Γp2
(
ϕ̃(w) + λ′

)
gw for all w.

D Details for Sec. 3.2 (reduction by bilevel optimization)

D.1 Proof of Prop. 3.3

In preparation for the proof of Prop. 3.3, let us first provide a formal proof of the variational
representation of the squared-TV norm mentioned at the beginning of Sec. 3.2, with a characterization
of the set of minimizers. See [Chi17, App. 1] for the rigorous justification of these arguments in the
more general context of minimization of convex and positively 1-homogeneous integral functionals
over the space of signed measures.
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Lemma D.1 (“η-trick” for the squared TV-norm). We have

∥ν∥2TV =

(∫
W

|ν(dw)|
)2

= inf
η∈P(W)

∫
W

|ν(dw)|2
η(dw)

= inf
η∈P(W), f :W→R

s.t. fη=ν

∫
W

|f |2 dη.

Moreover the infimum in the third expression is attained at (and only at) η(dw) = |ν(dw)|
∥ν∥TV

, and the

infimum in the fourth expression is attained at (and only at) the same η and f = ν(dw)
|ν(dw)| ∥ν∥TV .

Proof. The infimum in the third expression is the value of a convex constrained minimization
problem, whose Lagrangian is L(η;λ) =

∫ |ν|2
η + λ

(∫
dη − 1

)
. The dual optimality condition

implies ∀w ∈ supp(η), λ = dν
dη (w)

2, so the infinimum is attained at η(dw) = |ν(dw)|
∥ν∥TV

, with optimal

value ∥ν∥2TV .

The optimality condition for the infimum in the fourth expression follows directly from the one for
the third expression and from the constraint fη = ν.

Proof of Prop. 3.3. By the lemma above,

inf
η∈P(W)

Jλ(η) = inf
η∈P(W),f :W→R

G(fη) +
λ

2

∫
W

|f |2 dη

= inf
ν∈M(W)

inf
η∈P(W), f :W→R

s.t. fη=ν

G(fη) +
λ

2

∫
W

|f |2 dη

= inf
ν∈M(W)

G(ν) +
λ

2

 inf
η∈P(W), f :W→R

s.t. fη=ν

∫
W

|f |2 dη


= inf

ν∈M(W)
G(ν) +

λ

2
∥ν∥2TV = inf

ν∈M(W)
Gλ(ν).

Hence the equality of the optimal values. The claimed characterization of argminJλ in terms
of argminGλ follows from the characterization of the minimizers of the inner minimization[
infη∈P(W), f :W→R

s.t. fη=ν

λ
2

∫
W |f |2 dη

]
in the third line, which is given by the lemma above.

Furthermore, Jλ is convex as the partial minimization of (η, ν) 7→ G(ν) + λ
2

∫ |ν|2
η , which is jointly

convex.

D.2 Proof of the explicit form of the two-timescale SDE (3.4)

For ease of reference, we recall here the two-timescale SDE (3.4):

∀i ≤ N,

drit = −Γ ∇riF
′
λ,2

[
1
N

∑N
j=1 δ(rjt ,w

j
t )

]
(rit, w

i
t)dt

dwi
t = −∇wiF ′

λ,2

[
1
N

∑N
j=1 δ(rjt ,w

j
t )

]
(rit, w

i
t)dt+

√
2β−1dBi

t.

By (C.2) with b = 2 and p = 1,

F ′
λ,2[µ](r, w) = rG′[hµ](w) +

λ

2
|r|2

so ∇rF
′
λ,2[µ](r, w) = G′[hµ](w) + λr

and ∇wF
′
λ,2[µ](r, w) = r∇G′[hµ](w).

Finally, by definition h
[

1
N

∑N
j=1 δ(rj ,wj)

]
= 1

N

∑N
j=1 r

jδwj . Hence the second part of (3.4).
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D.3 Proof of Prop. 3.4 (Jλ satisfies P0, P1 and P2)

Simplifying the expression of the bilevel objective. The following expressions will be useful
throughout our analyses of the bilevel problem (3.3).

Proposition D.2. We have that Jλ(η) = G(fηη) +
λ
2

∫
|fη|2 dη where fη is the unique solution of

the fixed-point equation

∀w ∈ W, fη(w) = − 1

λ
G′[fηη](w). (D.1)

Furthermore,

J ′
λ[η](w) = −λ

2
|fη|2 (w). (D.2)

Proof. Consider the optimization problem defining Jλ(η), for a fixed η,

min
f∈L2

η(W)
G(fη) +

λ

2

∫
W

|f |2 dη.

This problem is convex since G is, and strongly convex in L2
η(W) thanks to the term in λ. So there

exists a unique solution which we denote by f̃η ∈ L2
η(W), and it is characterized by the first-order

optimality condition:

G′[f̃η η] η + λf̃η η = 0 in M(W).

Now let fη = − 1
λG

′[f̃ηη], which is defined over all of W . Then fη satisfies the fixed-point equation
(D.1) by construction. Conversely, for any solution gη of (D.1), its restriction to supp(η) viewed as
an element g̃η of L2

η(W) must in particular satisfy G′[g̃ηη]η + λg̃ηη = 0 in M(W), and so g̃η = f̃η ,
and so gη = − 1

λG
′[g̃ηη] = − 1

λG
′[f̃ηη] = fη .

Furthermore, by differentiability of G then η 7→ f̃η is continuous (in the total variation sense). So in
turn, η 7→ fη(w) the unique solution of (D.1) is continuous for each w (in the total variation sense).
So by the envelope theorem, since for any fixed f the first variation of η 7→ G(fη) + λ

2

∫
|f |2 dη is

w 7→ f(w)G′[fη](w) + λ
2 |f(w)|2,

J ′
λ[η](w) = fη(w)G

′[fηη](w) +
λ

2
|fη(w)|2

= −λ

2
|fη(w)|2 = − 1

2λ
|G′[fηη]|2 (w),

which is precisely Eq. (D.2).

We remark that the above manipulations rely crucially on the fact that the optimization problem (1.1)
is over signed measures and not just non-negative measures – as otherwise we would additionally
need to constrain f ≥ 0 –, and on the regularization term being ∥ν∥2TV instead of ∥ν∥TV .

Preliminary estimates.
Lemma D.3. Under Assumption 1, for any ν ∈ M(W), we have

sup
w∈W

|G′[ν](w)|2 ≤ 2L0G(ν).

Proof. We follow the proof technique of [GGGM21, Appendix D]. Let w0 ∈ W and ν′ = ν −
1
L0

G′[ν](w0)δw0
. By mean-value theorem there exists θ ∈ (0, 1) such that G(ν′) − G(ν) =∫

G′[ν + θ(ν′ − ν)]d(ν′ − ν), and so

inf G ≤ G(ν′) ≤ G(ν) +

∫
G′[ν]d(ν′ − ν) +

L0

2
∥ν′ − ν∥2TV

= G(ν)− 1

L0
G′[ν](w0)

2 +
1

2L0
G′[ν](w0)

2 = G(ν)− 1

2L0
G′[ν](w0)

2.

Hence, since G is non-negative by Assumption 1,

∀w ∈ W,
1

2L0
G′[ν](w)2 ≤ G(ν)− inf G ≤ G(ν)
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Lemma D.4. Under Assumption 1, let η ∈ P(W) and let fη as in (D.1). Then

sup
W

|fη| ≤
1

λ

√
2L0Jλ(η)

and for each i ∈ {1, 2},

sup
w∈W

∥∥∇ifη
∥∥
w
≤ Li

λ2

√
2L0Jλ(η) +

Bi

λ
.

Moreover, Jλ(η) ≤ G(0) for all η ∈ P(W).

Proof. For the first inequality, by definition G′[fηη] = −λfη for all w ∈ W , so

λ2 |fη(w)|2 = |G′[fηη](w)|2 ≤ 2L0G(fηη) ≤ 2L0

(
G(fηη) +

λ

2

∫
|fη|2 dη

)
= 2L0Jλ(η)

where the first inequality follows from Lem. D.3.

For the second part, by Assumption 1, ∀ν ∈ M(W), supw
∥∥∇iG′[ν]

∥∥
w
≤ Li ∥ν∥TV +Bi, so

λ
∥∥∇ifη

∥∥
w
=
∥∥∇iG′[fηη]

∥∥
w
≤ Bi + Li ∥fηη∥TV = Bi + Li

∫
|fη|dη

≤ Bi + Li sup
W

|fη| ≤ Bi + Li
1

λ

√
2L0Jλ(η)

by the first part of the lemma.

Finally, the uniform bound on Jλ(η) follows by taking f = 0 in the infimum defining Jλ: Jλ(η) =
inff∈L2

η
G(fη) + λ

2

∫
|f |2 dη ≤ G(0).

Lemma D.5. Under Assumption 1, Jλ : P(W) → R is weakly continuous and

∀η, η′ ∈ P(W), |Jλ(η)− Jλ(η
′)| ≤ BW2(η, η

′)

where B =
√

2L0G(0) ·
(

L1

λ2

√
2L0G(0) + B1

λ

)
.

Proof. For any η ∈ P(W), letting fη as in (D.1), we have J ′
λ[η](w) = −λ

2 |fη|2 (w) so

∇J ′
λ[η](w) = −λfη(w)∇fη(w)

∥∇J ′
λ[η](w)∥w ≤ λ sup

W
|fη| · sup

W
∥∇fη∥

≤ λ · 1
λ

√
2L0G(0) ·

(
L1

λ2

√
2L0G(0) +

B1

λ

)
=: B < ∞

by Lem. D.4, uniformly in η ∈ P(W) and w ∈ W . So by Lem. D.8 below, we have
|Jλ(η)− Jλ(η

′)| ≤ BW2(η, η
′) for all η, η′ ∈ P(W). Moreover W2 metrizes weak convergence,

so Jλ is weakly continuous.

Lemma D.6. Under Assumption 1, let w′ ∈ W and η ∈ P(W). Let h : W → R and suppose that

∀w ∈ W, λh(w) +

∫
G′′[fηη](w,w

′′)dη(w′′)h(w′′) = −G′′[fηη](w,w
′)fη(w

′).

Then supw∈W |h(w)| ≤
(
1 + L0

λ

)
L0

λ

√
2L0G(0).

Alternatively, suppose that there exists s ∈ Tw′W with ∥s∥w′ = 1 such that

∀w ∈ W, λh(w) +

∫
G′′[fηη](w,w

′′)dη(w′′)h(w′′) = −⟨s′,∇w′ [G′′[fηη](w,w
′)fη(w

′)]⟩w′ .

Then supw∈W |h(w)| ≤
(
1 + L0

λ

)
·
((

1 + L0

λ

)
L1

λ

√
2L0G(0) + L0B1

λ

)
.
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Proof. Let G : L2
η(W) → L2

η(W) the operator

(Gh̃)(w) =
∫

G′′[fηη](w,w
′′)dη(w′′)h̃(w′′).

G is well-defined as a bounded operator, since Assumption 1 implies that |G′′[fηη](w,w′)| ≤ L0.
Note that G′′[fηη](w,w′′) is symmetric in w and w′′, and that by convexity of G,
G′′[fηη](w,w′′) ≥ 0 for all w,w′′. Consequently, G is a symmetric positive-semi-definite oper-
ator from L2

η(W) to itself.

On the other hand, let V1(·) = −G′′[fηη](·, w′)fη(w′). By Lem. D.4 we have

∥V1∥L2
η
≤ sup

W
|V1| ≤ sup

W×W
|G′′[fηη]| · sup

W
|fη| ≤ L0 ·

1

λ

√
2L0G(0) =: V 1.

Also let V2(·) = −⟨s′,∇w′ [G′′[fηη](·, w′)fη(w′)]⟩w′ . Then by Lem. D.4,

∥V2∥L2
η
≤ sup

W
|V2| ≤ sup

w,w′
∥∇w′G′′[fηη](w,w

′)∥ · sup
W

|fη|+ sup
W×W

|G′′[fηη]| · sup
W

∥∇fη∥

≤ L1 ·
1

λ

√
2L0G(0) + L0 ·

(
L1

λ2

√
2L0G(0) +

B1

λ

)
=

(
1 +

L0

λ

)
L1

λ

√
2L0G(0) +

L0B1

λ
=: V 2.

Denote by h̃ the restriction of h to supp(η) viewed as an element of L2
η(W). Then, denoting by id

the identity operator on L2
η(W), we may rewrite the assumption as (λ id+G)h̃ = Vj for j = 1 or 2,

and so √∫
|h|2 dη =

∥∥∥h̃∥∥∥
L2

η

=
∥∥(λ id+G)−1Vj

∥∥
L2

η
≤ λ−1 ∥Vj∥L2

η
≤ λ−1V j

since G is positive-semi-definite and λ > 0. Thus for any w ∈ W , we get the point-wise bound

λh(w) = Vj(w)−
∫

dη(w′′)G′′[fηη](w,w
′′)h(w′′)

λ |h(w)| ≤ |Vj(w)|+
∫

dη(w′′) |G′′[fηη](w,w
′′)| |h(w′′)|

≤ V j + ∥G′′[fηη](w, ·)∥L2
η
∥h∥L2

η

≤ V j + L0 · λ−1V j .

Lemma D.7. Under Assumption 1, let η, η′ ∈ P(W) and let fη, fη′ as in (D.1). Then there exist
constants H,H ′ dependent only on λ−1, G(0) and L0, L1, B1, L̃2 such that

sup
W

|fη − fη′ | ≤ HW2(η, η
′) and sup

w∈W
∥∇fη −∇fη′∥w ≤ H ′W2(η, η

′).

Proof. For each w ∈ W , we denote the first variation of η 7→ fη(w) by w′ 7→ δfη(w)
δη(dw′) . Let us show

that this quantity is uniformly bounded.8 By definition, for any w ∈ W and η ∈ P(W) and w′ ∈ W ,

λfη(w) +G′[fηη](w) = 0

so λ
δfη(w)

δη(w′)
+G′′[fηη](w,w

′)fη(w
′) +

∫
(G′′[fηη](w, ·)) d

(
η
δfη(·)
δη(w′)

)
= 0

λ
δfη(w)

δη(w′)
+

∫
G′′[fηη](w,w

′′)η(dw′′)
δfη(w

′′)
δη(w′)

= −G′′[fηη](w,w
′)fη(w

′). (D.3)

8The rigorous proof that the first variation δfη(w)

δη(dw′) is well-defined for all w,w′ ∈ W and η ∈ P(W) would
follow from the same derivations as for the uniform bound, so we omit it here.
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So by Lem. D.6 applied to h =
δfη(·)
δη(w′) , we indeed have that δfη(w)

δη(w′) is bounded by a constant uniformly
in w,w′ and η.

Let us now show that

sup
w∈W

sup
η∈P(W)

sup
w′∈W

∥∥∥∥∇w′
δfη(w)

δη(dw′)

∥∥∥∥
w′

≤ H

for a constant H depending only on λ−1, L0, L1, B1, G(0). Indeed, it suffices to show that for any
s′ ∈ Tw′W such that ∥s′∥w′ = 1,

∣∣∣〈s′,∇w′
δfη(w)
δη(dw′)

〉
w′

∣∣∣ ≤ H . Now, starting from (D.3) – which

holds for all w,w′, η – and differentiating with respect to w′ in the direction s′, we get that

λ

〈
s′,∇w′

δfη(w)

δη(w′)

〉
w′

+

∫
G′′[fηη](w,w

′′)η(dw′′)

〈
s′,∇w′

δfη(w
′′)

δη(w′)

〉
w′

= −⟨s′,∇w′ [G′′[fηη](w,w
′)fη(w

′)]⟩w′

and so h(w) =
〈
s′,∇w′

δfη(w)
δη(dw′)

〉
w′

satisfies the conditions of Lem. D.6, which proves the claim.

Next let us show that

sup
w∈W

sup
s∈TwW
∥s∥w=1

sup
η∈P(W)

sup
w′∈W

∥∥∥∥∇w′
δ ⟨s,∇fη(w)⟩w

δη(dw′)

∥∥∥∥
w′

≤ H ′

for a constant H ′ depending only on λ−1, L0, L1, B1, G(0) and L̃2. Indeed, starting from (D.3) and
differentiating with respect to w′ in the direction s′, and differentiating with respect to w in the
direction s, we get

λ

〈
s′,∇w′

δ ⟨s,∇fη(w)⟩w
δη(w′)

〉
w′

+

∫
∇wG

′′[fηη](w,w
′′)η(dw′′)

〈
s′,∇w′

δfη(w
′′)

δη(w′)

〉
w′

= −
〈
s,∇w

{
⟨s′,∇w′ [G′′[fηη](w,w

′)fη(w
′)]⟩w′

}〉
w

and so

λ

∥∥∥∥∇w′
δ ⟨s,∇fη(w)⟩w

δη(dw′)

∥∥∥∥
w′

≤ ∥∇w∇w′G′′[fηη]∥ · |fη(w′)|+ ∥∇wG
′′[fηη]∥w · ∥∇fη(w

′)∥w′

+ sup
w′′∈W

∥∇wG
′′[fηη](w,w

′′)∥w · sup
w′′∈W

∥∥∥∥∇w′
δfη(w

′′)
δη(dw′)

∥∥∥∥
w′

≤ L̃2 ·
1

λ

√
2L0G(0) + L1 ·

(
L1

λ2

√
2L0G(0) +

B1

λ

)
+ L1 ·H =: H ′

by Assumption 1.

Now fix w ∈ W . By Lem. D.8 below applied to F (η) = fη(w), we have that

|fη(w)− fη′(w)| ≤ sup
η′′∈P(W)

sup
w′∈W

∥∥∥∥∇w′
δfη′′(w)

δη′′(dw′)

∥∥∥∥
w′

W2(η, η
′) ≤ HW2(η, η

′).

Likewise, fix any w ∈ W and let s =
∇fη′ (w)−∇fη(w)

∥∇fη′ (w)−∇fη(w)∥
w

∈ TwW . Then by Lem. D.8 below

applied to F (η) = ⟨s,∇fη(w)⟩w,

∥∇fη′(w)−∇fη(w)∥ = ⟨s,∇fη′(w)⟩w − ⟨s,∇fη(w)⟩w ≤ H ′W2(η, η
′).

Lemma D.8. Let W a compact Riemannian manifold and F : P(W) → R such that

∀η ∈ P(W),∀w ∈ W, ∥∇F ′[η](w)∥w ≤ B.

Then
∀η, η′ ∈ P(W), |F (η)− F (η′)| ≤ BW1(η, η

′) ≤ BW2(η, η
′).
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Proof. For any x, y ∈ W , pose (Σθ(x, y))θ∈[0,1] the constant-speed length-minimizing geodesic in
W interpolating between x and y. Also pose Σ′

θ(x, y) =
d
dθΣθ(x, y) ∈ TΣθ(x,y)W for any θ. For

example if W = Rd, Σθ(x, y) = x+ θ(y − x) and Σ′
θ(x, y) = y − x for all θ.

Let γ the optimal coupling between η, η′ in the W1 sense, and for all θ ∈ [0, 1], ηθ = (Σθ)♯γ the
pushforward measure of γ by Σθ. Note that for any θ ∈ [0, 1],

d

dθ
F (ηθ) =

∫
W

F ′[ηθ]d (∂θηθ)

and that

∀φ : W → R,
d

dθ

∫
W

φdηθ =
d

dθ

∫∫
W×W

φ(Σθ(x, y))dγ(x, y)

=

∫∫
W×W

d

dθ
φ(Σθ(x, y))dγ(x, y)

=

∫∫
W×W

⟨Σ′
θ(x, y),∇φ(Σθ(x, y))⟩Σθ(x,y)

dγ(x, y).

(The interchange of d
dθ and

∫∫
W×W on the second line can be justified by the dominated convergence

theorem assuming that φ has bounded C1 norm, which is the case of F ′[ηθ] by assumption.) So by
Cauchy-Schwarz inequality,

d

dθ
F (ηθ) =

∫∫
W×W

⟨Σ′
θ(x, y),∇F ′[ηθ](Σθ(x, y))⟩Σθ(x,y)

dγ(x, y)∣∣∣∣ ddθF (ηθ)

∣∣∣∣ ≤ ∫∫
W×W

∥Σ′
θ(x, y)∥Σθ(x,y)

· ∥∇F ′[ηθ](Σθ(x, y))∥Σθ(x,y)
dγ(x, y)

≤ sup
w∈W

sup
η′∈P(W)

∥∇F ′[η](w)∥w ·
∫∫

W×W
∥Σ′

θ(x, y)∥Σθ(x,y)
dγ(x, y)

≤ B ·
∫∫

W×W
dist(x, y)dγ(x, y) = BW1(η, η

′)

by definition of the geodesic (Σθ(x, y))θ∈[0,1] and by definition of the optimal coupling γ. Finally,

|F (η)− F (η′)| =
∣∣∣∣∫ 1

0

d

dθ
F (ηθ) dθ

∣∣∣∣ ≤ sup
θ∈[0,1]

∣∣∣∣ ddθF (ηθ)

∣∣∣∣ ≤ BW1(η, η
′).

Proof of the Proposition.

Proof of Prop. 3.4. We first check (P0). The fact that Jλ is convex is given by Prop. 3.3. Moreover,
let any β > 0 and let us check that Jλ,β := Jλ+β−1H (·|τ) has a minimizer. Indeed, Jλ,β is weakly
continuous as shown in Lem. D.5, and non-negative so lower-bounded. Since W is compact then
any set of probability measures on W is tight, i.e., any sequence in P(W) has a weakly convergent
subsequence. So we conclude by the direct method of calculus of variations: let a sequence (ηn)n
such that Jλ,β(ηn) → infP(W) Jλ,β and extract a weakly convergent subsequence with limit η∞;
then by weak continuity η∞ is a minimizer of Jλ,β .

We now show that Jλ satisfies (P1). Recall from (D.2) that J ′
λ[η](w) = −λ

2 |fη|2 (w) with fη =

− 1
λG

′[fηη] over W . Let us show the first condition for (P1):

∀η ∈ P2(W), ∀w ∈ W, max
s∈TwW
∥s∥w≤1

∣∣∇2 J ′
λ[η](s, s)

∣∣ ≤ Λ

for some Λ < ∞, where ∇2 denotes the Riemannian Hessian. We have

∇J ′
λ[η](w) = −λfη(w)∇fη(w)

∇2 J ′
λ[η](w) = −λfη(w)∇2fη(w)− λ∇fη(w)∇⊤fη(w)
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and so, for all s ∈ TwW such that ∥s∥w ≤ 1,∣∣∇2 J ′
λ[η](s, s)

∣∣ ≤ λ |fη|
∥∥∇2fη

∥∥+ λ ∥∇fη∥2

≤
√
2L0G(0)

(
L2

λ2

√
2L0G(0) +

B2

λ

)
+ λ

(
L1

λ2

√
2L0G(0) +

B1

λ

)2

by Lem. D.4.

Let us now check the second condition for (P1), namely that

∀w ∈ W, ∀η, η′ ∈ P2(W), ∥∇J ′
λ[η]−∇J ′

λ[η
′]∥w ≤ Λ W2(η, η

′)

for some Λ < ∞. Indeed,

∥∇J ′
λ[η]−∇J ′

λ[η
′]∥w

= λ ∥fη∇fη − fη′∇fη′∥ ≤ λ (∥fη(∇fη −∇fη′)∥+ ∥(fη − fη′)∇fη′∥)

≤ λ

(
sup
η′′

sup
W

|fη′′ | · sup
W

∥∇fη −∇fη′∥+ sup
η′′

sup
W

∥∇fη′′∥ · sup
W

|fη − fη′ |
)

≤ λ

(
1

λ

√
2L0G(0) ·H ′W2(η, η

′) +

(
L1

λ2

√
2L0G(0) +

B1

λ

)
·HW2(η, η

′)

)
=: ΛW2(η, η

′)

by Lem. D.4 and Lem. D.7.

We now turn to the proof of (P2) with the quantitative bound on the local LSI constant. Let
η ∈ P(W). By the first part of Lem. D.4, we directly have that

|J ′
λ[η](w)| =

λ

2
|fη|2 (w) ≤

L0

λ
Jλ(η).

In particular, by the Holley-Stroock bounded perturbation argument [HS86], the proximal Gibbs
measure η̂ := e−βJ ′

λ[η]τ/Z satisfies LSI with constant αη̂ = ατ exp
(
− 1

λL0βJλ(η)
)
.

Finally, we turn to the proof of the bound on the uniform LSI constant along the MFLD trajectory
(ηt)t≥0. Given the bound on the local LSI constants, it suffices to show that

∀η ∈ P(W), Jλ(η) ≤ G(0) and ∀t ≥ 0, Jλ(ηt) ≤ Jλ(η0) + β−1H (η0|τ) .
The first bound was shown in Lem. D.4. For the second bound, note that Jλ(ηt) + β−1H (ηt|τ)
decreases with t, since MFLD is precisely the Wasserstein gradient flow for η 7→ Jλ(η) + β−1H(η)
and H(η) and H (η|τ) differ by a constant. So, since relative entropy is non-negative,

Jλ(ηt) ≤ Jλ(ηt) + β−1H (ηt|τ) ≤ Jλ(η0) + β−1H (η0|τ)
for all t ≥ 0, as desired.

E Details for Sec. 4 (global convergence by annealing)

The following preliminary lemma allows to control the effect of entropic regularization, using a
box-kernel smoothing technique similar to [Chi22a].

Lemma E.1. Let W a d-dimensional compact Riemannian manifold and denote by τ the uniform
probability measure over W . Let J : P(W) → R and η∗ ∈ P(W), and suppose that there exist
constants A,B > 0 such that

∀η s.t. W1(η, η
∗) ≤ A, J (η)− J (η∗) ≤ BW∞(η, η∗).

Denote Jβ = J + β−1H (·|τ), for any β > 0. Then

min
η:W1(η,η∗)≤A

Jβ(η) ≤ J (η∗) + inf
0<ϵ≤min{1,A}

[
Bϵ+

d

β
log

(
1

ϵ

)
+

logC

β

]
where C :=

[
infw∈W inf0<ϵ≤1 ϵ−d · τ ({w′; distW(w,w′) ≤ ϵ})

]−1
.
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Proof. The proof is adapted from [Chi22a]. It is based on constructing an ϵ-smoothed version of η∗,
i.e. a measure ηϵ which admits a density w.r.t. τ while being close to η∗ in an appropriate sense.

Let any 0 < ϵ ≤ min{1, A}. Given w ∈ W , define the probability measure γϵ,w(dw
′) as the

uniform probability measure over the geodesic ball Bϵ(w) := {w ∈ W; dist(w,w′) ≤ ϵ}. In other
words, dγϵ,w

dτ (w′) := 1(w′∈Bϵ(w))
τ(Bϵ(w)) . Then, let γϵ(dw,dw′) = η∗(dw)γϵ,w(dw′) ∈ P(W ×W), and

let ηϵ(dw′) =
∫
w∈W γϵ(dw,dw

′) its second marginal.

One can then verify that

dηϵ
dτ

(w′) =
∫
w∈W

dγϵ,w
dτ

(w′)η∗(dw) =
∫
w∈W

1(w′ ∈ Bϵ(w))

τ(Bϵ(w))
η∗(dw).

Moreover there exists a positive constant C such that τ(Bϵ(w)) ≥ C−1ϵd for all ϵ ≤ 1 [GV79,
Theorem 3.3]. As a consequence,

H (ηϵ|τ) =
∫

dηϵ(w
′) log

dηϵ
dτ

(w′) ≤ sup
w∈W

− log τ(Bε(w)) ≤ d log(1/ϵ) + logC.

Furthermore, by definition of the coupling γϵ, we have W1(ηϵ, η
∗) ≤ W∞(ηϵ, η

∗) ≤ ϵ ≤ A.
Therefore, by assumption J (ηϵ)− J (η∗) ≤ BW∞(ηϵ, η

∗) ≤ Bϵ, and so

min
η:W1(η,η∗)≤A

Jβ(η) ≤ Jβ(ηϵ) = J (ηϵ) + β−1H (ηϵ|τ)

≤ J (η∗) +Bϵ+ β−1 (d log(1/ϵ) + logC) ,

and the inequality of the lemma follows by taking the infimum over ϵ.

E.1 Proof of Prop. 4.1

We state and prove a more precise version of Prop. 4.1 below.

Proposition E.2. Under Assumption 1, let ∆ > 0 and assume that ∆ ≤ 2L0L1G(0)
λ2J∗

λ
. Then

MFLD-Bilevel with the temperature schedule ∀t, βt = 4d
∆J∗

λ
log
(

4C1/dB
∆J∗

λ

)
converges to (1 + ∆)-

multiplicative accuracy in time

T∆ ≤ 2d

ατ∆J∗
λ

log

(
4C1/dB

∆J∗
λ

)
· exp

(
4dL0G(0)

λ∆J∗
λ

log

(
4C1/dB

∆J∗
λ

))
· log

(
2Jλ(η0)

∆J∗
λ

+
H (η0|τ)
2 logC

)
where C = max

{
1,
[
infw∈W inf0<ϵ≤1 ϵ−d · τ ({w′; distW(w,w′) ≤ ϵ})

]−1
}

.

Proof of Prop. E.2. Let (η)t the MFLD-Bilevel trajectory with constant inverse temperature parame-
ter β to be chosen. Denote Jλ,β = Jλ + β−1H (·|τ). Recall that by Prop. 3.4, Jλ,β satisfies αβ-LSI
uniformly along the MFLD trajectory with αβ = ατ exp

(
− 1

λL0βG(0)
)
. So by Thm. 2.1, for all t,

Jλ(ηt) ≤ Jλ,β(ηt) ≤ inf Jλ,β+e−2β−1αβt (Jλ,β(η0)− inf Jλ,β) ≤ inf Jλ,β+e−2β−1αβtJλ,β(η0),

where in the first inequality we used that Jλ,β − Jλ = β−1H (·|τ) ≥ 0.

Furthermore, by applying Lem. E.1 to J = Jλ, η∗ = argmin Jλ, A = ∞ and B =
√
2L0G(0) ·(

L1

λ2

√
2L0G(0) + B1

λ

)
the constant from Lem. D.5, we find that

inf Jλ,β ≤ inf Jλ + inf
0<ϵ≤1

[
Bϵ+

d

β
log

1

ϵ
+

logC

β

]
.

Taking β = d
B s for some s ≥ 1 to be chosen, and evaluating at the infimum at ϵ = d

βB , we get

inf Jλ,β ≤ J∗
λ +

d+ logC ′

β
− d

β
log

(
d

βB

)
.
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where C ′ = max{1, C}. So in order to guarantee that Jλ(ηt) ≤ (1 +∆)J∗
λ , it suffices to take t such

that

J∗
λ +

d+ logC ′

β
− d

β
log

(
d

βB

)
+ e−2β−1αβt

(
Jλ(η0) + β−1H (η0|τ)

)
≤ (1 + ∆)J∗

λ

i.e. t ≥ β

2αβ
log

 Jλ(η0) + β−1H (η0|τ)
∆J∗

λ −
(

d+logC′

β − d
β log

(
d

βB

))
 =: Ts,

assuming that ∆ is large enough so that the above expression is well-defined. More explicitly,
substituting the value of αβ and of β = d

B s, we have

Ts =
β

2ατ
· exp

(
1

λ
L0βG(0)

)
· log

 Jλ(η0) + β−1H (η0|τ)
∆J∗

λ −
(

d+logC′

β − d
β log

(
d

βB

))


=
sd/B

2ατ
· exp

(
s

1

λB
L0dG(0)

)
· log

(
Jλ(η0) +

B
sdH (η0|τ)

∆J∗
λ − B

s (1 + d−1 logC ′ + log s)

)
.

Noting that

log
s∆J∗

λ

4B
= log s− log

4B

∆J∗
λ

≤ s∆J∗
λ

4B
− 1

so
B

s

(
1 + d−1 logC ′ + log s

)
≤ B

s

(
d−1 logC ′ + log

4B

∆J∗
λ

+
s∆J∗

λ

4B

)
=

B

s

(
d−1 logC ′ + log

4B

∆J∗
λ

)
+

∆J∗
λ

4
,

choose henceforth s = max
{
1, 4B

∆J∗
λ

(
d−1 logC ′ + log 4B

∆J∗
λ

)}
, so that

∆J∗
λ − B

s

(
1 + d−1 logC ′ + log s

)
≥ ∆J∗

λ

2
.

To simplify the final statement, we make the assumption that ∆ is small enough so that 1 ≤
4B
∆J∗

λ

(
d−1 logC ′ + log 4B

∆J∗
λ

)
. More explicitly, since we were careful to choose C ′ ≥ 1,

1 ≤ 4B

∆J∗
λ

(
d−1 logC ′ + log

4B

∆J∗
λ

)
⇐⇒ ∆J∗

λ

4B
+ log

∆J∗
λ

4B
≤ d−1 logC ′

⇐=
∆J∗

λ

4B
≤ 1 and log

∆J∗
λ

4B
≤ −1 ⇐⇒ ∆J∗

λ

4B
≤ min{1, e−1} = e−1

⇐⇒ ∆ ≤ 4Be−1

J∗
λ

=
4e−1

J∗
λ

·
√

2L0G(0)

(
L1

λ2

√
2L0G(0) +

B1

λ

)
⇐= ∆ ≤ 4e−1

J∗
λ

· 2L0L1G(0)

λ2
⇐= ∆ ≤ 1

J∗
λ

· 2L0L1G(0)

λ2
.

Then s = 4B
∆J∗

λ

(
d−1 logC ′ + log 4B

∆J∗
λ

)
, β = 4d

∆J∗
λ

(
d−1 logC ′ + log 4B

∆J∗
λ

)
≥ 4

∆J∗
λ
logC ′, and

Ts ≤
β

2ατ
· exp

(
1

λ
L0βG(0)

)
· log

(
Jλ(η0) + β−1H (η0|τ)

∆J∗
λ/2

)
≤ 2d

ατ∆J∗
λ

log

(
4C ′1/dB
∆J∗

λ

)
· exp

(
4dL0G(0)

λ∆J∗
λ

log

(
4C ′1/dB
∆J∗

λ

))
· log

(
2Jλ(η0)

∆J∗
λ

+
H (η0|τ)
2 logC ′

)
=: T∆.

Hence the time-complexity upper bound of T∆ for reaching (1 + ∆)-multiplicative accuracy.
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Algorithm 1 Annealing of the MFLD.
Require: Functional J : P(W) → R. Initialization η0, β0 > 0. Schedule K, (Tk)

K
k=0.

1: η00 = η0
2: for k = 0, . . . ,K do
3: βk = 2kβ0

4: Run the MFLD with βk initialized from ηk0 up to Tk,

∂tη
k
t = div(ηkt ∇J ′[ηkt ]) +

1

βk
∆ηkt .

5: ηk+1
0 = ηkTk

6: end for
7: return ηKTK

.

E.2 General annealing procedure and its convergence guarantee

The following theorem builds upon and generalizes the idea of [SWON23, Sec. 4.1] to objective
functionals J that have a positive optimal value. It ensures fast convergence to a fixed multiplicative
accuracy.
Theorem E.3. Let W a d-dimensional compact Riemannian manifold, so in particular the uniform
measure τ over W satisfies ατ -LSI for some ατ > 0. Let J : P(W) → R+ convex, suppose
that J ∗ := minJ > 0 and that there exists a minimizer η∗. Suppose that there exist constants
κ1, CL, A > 0 such that

1. ∥J ′[η]∥∞ ≤ κ1J (η) for all η ∈ P(W).

2. J (η)− J (η∗) ≤ CLW∞(η, η∗) for all η ∈ P(W) such that W1(η, η
∗) ≤ A.

Fix 0 < δ ≤ CL min{1,A}
J ∗ . Let ηkt the iterates of the annealing procedure of Algorithm 1 with

initialization β0 = d and with the schedule K = ⌈log2(1/(δJ ∗))⌉ and

Tk = 2k−1d log
(
2kJβ0

(η0)
)
·α−1

τ exp

(
2κ1d

(
δ−1 + log

(
CLC

1/d

δJ ∗

)
+ 2 +

Jβ0
(η0)

2

))
(E.1)

where C :=
[
infw∈W inf0<ϵ≤1 ϵ−d · τ ({w′; distW(w,w′) ≤ ϵ})

]−1
.

Then J (ηKTK
) ≤ J ∗

(
1 + 3δ + 2δ log

(
CLC1/d

δJ ∗

))
, and the total time-complexity is given by

K∑
k=0

Tk ≤ d

δJ ∗ log

(
Jβ0

(η0)

δJ ∗

)
· α−1

τ exp

(
2κ1d

(
δ−1 + log

(
CLC

1/d

δJ ∗

)
+ 2 +

Jβ0
(η0)

2

))
.

Let us discuss the assumptions of Thm. E.3 and possible generalizations.

• Note that the condition 2. of the theorem holds as soon as J ′[η] : W → R is CL-Lipschitz
for all η ∈ P(W), as shown in Lem. D.8, since W1 ≤ W2 ≤ W∞.

• The annealing procedure and its convergence guarantee can be generalized to a non-compact
manifold W by modifying MFLD to include a confining potential term, as discussed in
Sec. A.2.

• Condition 1. of the theorem actually holds for any J such that supη,w,w′ |J ′′[η](w,w′)| ≤
L < ∞ and J ∗ > 0, with the constant κ1 =

√
2L
J ∗ . Indeed, one can then show similarly to

Lem. D.3 that

∥J ′[η]∥2∞ ≤ 2L (J (η)− J ∗) ≤ 2LJ (η) ≤ 2L
J (η)2

J ∗ .

However, when plugging in κ1 =
√

2L/J ∗ into the bounds of the theorem, one obtains a
less favorable dependency of the total time-complexity in J ∗. In particular, note that the total
time-complexity guaranteed by the theorem scales exponentially in κ1 and polynomially
in 1/J ∗.

33



• The way that the condition 1. of the theorem comes into the proof, is that it allows to
guarantee a local LSI constant of J + β−1

t H at ηt of αη̂t
= cst · e−κ1βtJ (ηt). One could

similarly formulate an annealing procedure, and state convergence guarantees, tailored
to objectives J that satisfy different criteria for LSI, such as the Bakry-Emery curvature-
dimension criterion.

The remainder of this subsection is dedicated to proving Thm. E.3.

Proof of Thm. E.3. Fix any 0 < δ ≤ CL min{1,A}
J ∗ . Let, for any β > 0, Jβ = J + β−1H (·|τ).

By condition 1. of the theorem and the Holley-Stroock bounded perturbation argument, for any t, k,
the proximal Gibbs measure η̂kt ∝ e−βkJ ′[ηk

t ]τ satisfies LSI with the constant

ατ exp
(
−βkκ1J (ηkt )

)
≥ inf

t′≥0
ατ exp

(
−βkκ1J (ηkt′)

)
=: α(k).

That is, for any k, Jβk
satisfies α(k)-LSI at ηkt for all t ≥ 0. (To see that α(k) > 0, note that for any

k, t, J (ηkt ) ≤ Jβk
(ηkt ) ≤ Jβk

(ηk0 ), since H (·|τ) is non-negative and (ηkt )t is a Wasserstein gradient
flow of Jβk

, and so α(k) = inft≥0 ατ exp
(
−βkκ1J (ηkt )

)
≥ ατ exp

(
−βkκ1Jβk

(ηk0 )
)
> 0; but

we will not make use of this rough bound in the sequel.)

Now let

Tk =
βk

2α(k)
log

(
βk

d
ck

)
for some α(k) ≤ α(k) and ck ≥ Jβk

(ηk0 ) −minJβk
to be chosen. Then by Thm. 2.1 applied to

Jβk
, we obtain

Jβk
(ηkTk

) ≤ minJβk
+ exp

(
−2β−1

k α(k)Tk

)
·
(
Jβk

(ηk0 )−minJβk

)
≤ minJβk

+

[
βk

d

(
Jβk

(ηk0 )−minJβk

)]−1

·
(
Jβk

(ηk0 )−minJβk

)
= minJβk

+
d

βk
.

Further, by Lem. E.1,

Jβk
(ηkTk

) ≤ J ∗ + inf
0<ϵ≤min{1,A}

[
CLϵ+

d

βk
log

(
1

ϵ

)
+

logC

βk

]
+

d

βk

≤ J ∗(1 + δ) +
d

βk
log

(
CL

δJ ∗

)
+

d+ logC

βk
, (E.2)

where the last inequality follows by choosing ϵ = δJ ∗

CL
≤ min{1, A} since δ ≤ CL min{1,A}

J ∗ .

Then, for all k ≥ 1 and t ≥ 0,

βkJ (ηkt ) ≤ βkJβk
(ηkt ) ≤ βkJβk

(ηk0 ) = βkJβk
(ηk−1

Tk−1
) ≤ βkJβk−1

(ηk−1
Tk−1

) = 2βk−1Jβk−1
(ηk−1

Tk−1
),

where we used successively that Jβk
− J = β−1

k H (·|τ) ≥ 0, that (ηkt )t is a Wasserstein gradient
flow for Jβk

, that Jβk−1
− Jβk

= (β−1
k−1 − β−1

k )H (·|τ) ≥ 0 since (βk)k is increasing, and that by
definition βk = 2kβ0. So by (E.2),

βkJ (ηkt ) ≤ 2βk−1Jβk−1
(ηk−1

Tk−1
) ≤ 2βk−1J ∗(1 + δ) + 2d log

(
CL

δJ ∗

)
+ 2d+ 2 logC

≤ 2
d

δ
(1 + δ) + 2d log

(
CL

δJ ∗

)
+ 2d+ 2 logC

= 2d

(
δ−1 + log

(
CL

δJ ∗

)
+ 2 +

logC

d

)
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since our choice of β0 = d and K = ⌈log2(1/(δJ ∗))⌉ ensures that βk−1 ≤ βK = 2Kβ0 ≤ d
δJ ∗ .

For k = 0 and all t ≥ 0, we have more simply β0J (η0t ) ≤ β0Jβ0
(η0t ) ≤ β0Jβ0

(η0) = dJβ0
(η0).

As a result, for all k ≥ 0 we have

∀t ≥ 0, βkJ (ηkt ) ≤ 2d

(
δ−1 + log

(
CL

δJ ∗

)
+ 2 +

logC

d
+

1

2
Jβ0

(η0)

)
and so

α(k) = inf
t≥0

ατ exp
(
−κ1βkJ (ηkt )

)
≥ ατ exp

(
−2κ1d

(
δ−1 + log

(
CL

δJ ∗

)
+ 2 +

logC

d
+

1

2
Jβ0

(η0)

))
=: α(k).

Moreover, we can choose ck as

Jβk
(ηk0 ) = Jβk

(ηk−1
Tk−1

) ≤ Jβk−1
(ηk−1

Tk−1
) ≤ Jβk−1

(ηk−1
0 ) ≤ ... ≤ Jβ0

(η0) by induction,

so Jβk
(ηk0 )−minJβk

≤ Jβ0(η0) =: ck.

Therefore, more explicitly,

Tk =
βk

2α(k)
log

(
βk

d
ck

)
=

βk

2
log

(
βk

d
Jβ0(η0)

)
· α−1

τ exp

(
2κ1d

(
δ−1 + log

(
CL

δJ ∗

)
+ 2 +

logC

d
+

1

2
Jβ0(η0)

))
= 2k−1d · log

(
2kJβ0

(η0)
)
· α−1

τ exp

(
2κ1d

(
δ−1 + log

(
CL

δJ ∗

)
+ 2 +

logC

d
+

1

2
Jβ0

(η0)

))
since βk = 2kβ0 = 2kd. Note that

K∑
k=0

2k−1 log
(
2kJβ0

(η0)
)
=

K∑
k=0

2k
log Jβ0

(η0)

2
+

K∑
k=0

k2k−1 log(2)

= (2K+1 − 1)
log Jβ0

(η0)

2
+ log(2)

(
(K − 1)2K + 1

)
≤ 2K log Jβ0

(η0) + log(2)K2K

≤ 1

δJ ∗ log Jβ0(η0) +
1

δJ ∗ log

(
1

δJ ∗

)
=

1

δJ ∗ log

(
Jβ0

(η0)

δJ ∗

)
since K = ⌈log2(1/(δJ ∗))⌉, hence the announced bound on the total time-complexity

∑K
k=0 Tk.

Finally, at round K = ⌈log2(1/(δJ ∗))⌉, then βK = 2Kβ0 = 2Kd ∈
[
1
2

d
δJ ∗ ,

d
δJ ∗

]
, so by (E.2),

J (ηKTK
) ≤ JβK

(ηKTK
) ≤ J ∗(1 + δ) +

d

βK
log

(
CL

δJ ∗

)
+

d+ logC

βK

≤ J ∗
(
1 + 3δ + 2δ

log(C)

d
+ 2δ log

(
CL

δJ ∗

))
,

which completes the proof.

E.3 Proof of Thm. 4.2

We state a slightly more precise version of Thm. 4.2 below, and prove it as a corollary of the
more general Thm. E.3. Then Thm. 4.2 follows by choosing δ = Θ( ∆

log(B/(∆J∗
λ))

), gathering the
constants appearing in the bounds, noting that Jλ,β0

(η0) ≤ Jλ(η0)+dH (η0|τ) ≤ G(0)+dH(η0)+
d log vol(W).
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Theorem E.4. Under Assumption 1, there exists constants B = poly(Li, Bi, G(0), λ−1) and C
dependent only on W such that the following holds. For any δ ≤ B

J∗
λ

, MFLD-Bilevel with the

temperature schedule (βt)t≥0 defined by ∀k ≤ K,∀t ∈ [tk, tk+1], βt = 2kd where t0 = 0 and
K = ⌈log2(1/(δJ ∗))⌉ and

tk+1−tk = 2k−1d log
(
2kJλ,β0(η0)

)
·α−1

τ exp

(
2L0d

λ

(
δ−1 + log

(
BC1/d

δJ∗
λ

)
+ 2 +

Jλ,β0
(η0)

2

))
,

achieves (1 + ∆)-multiplicative accuracy, where ∆ = 3δ + 2δ log
(

BC1/d

δJ∗
λ

)
, with time-complexity

T∆ ≤ tK+1 ≤ d

δJ∗
λ

log

(
Jλ,β0

(η0)

δJ∗
λ

)
·α−1

τ exp

(
2L0d

λ

(
δ−1 + log

(
BC1/d

δJ∗
λ

)
+ 2 +

Jλ,β0
(η0)

2

))
.

Proof of Thm. 4.2 . Let us show that the conditions of Thm. E.3 are satisfied, under Assumption 1,
for J = Jλ. Jλ is convex and non-negative, and it is implied throughout Sec. 4.1 that inf Jλ > 0,
for the notion of convergence to a fixed multiplicative accuracy to apply (Def. 4.1). The existence
of a minimizer η∗ is ensured by the weak convexity of Jλ, by a similar argument as the proof
of (P0) in Sec. D.3. We have the condition 1. with κ1 = L0

λ , i.e. ∥J ′
λ[η]∥∞ ≤ L0

λ Jλ(η), by the
first part of Lem. D.4. We also have condition 2. with A = ∞ and CL = B :=

√
2L0G(0) ·(

L1

λ2

√
2L0G(0) + B1

λ

)
, as shown in Lem. D.5, since W1 ≤ W2 ≤ W∞.

Note that annealed MFLD-Bilevel with the announced temperature annealing schedule (βt)t, precisely
corresponds to Algorithm 1 with the schedule (E.1) applied to J = Jλ. So the announced time-
complexity bound follows directly from the application of Thm. E.3.

F Details for Sec. 5 (estimates of the local LSI constant)

We begin by presenting the proof of Prop. 5.1, which states that bounding the LSI constant of ηλ,β
leads to a local convergence rate.

Proof of Prop. 5.1. For any η ∈ P(W), we denote η̂(dw) = e−βJ ′
λ[η](w)τ(dw)/Zη where Zη =∫

e−βJ ′
λ[η]dτ . First note that for any η, η′ ∈ P(W),∣∣∣∣log dη̂

dη̂′
(w) + (logZη − logZη′)

∣∣∣∣ = β |J ′
λ[η](w)− J ′

λ[η
′](w)|

= β
λ

2

∣∣fη(w)2 − fη′(w)2
∣∣

≤ β
λ

2
(|fη|+ |fη′ |) (w) · |fη − fη′ | (w)

≤ β
λ

2
· 2 1

λ

√
2L0G(0) ·HW2(η, η

′) =: H̃W2(η, η
′)

by Lem. D.4 and Lem. D.7, where H is a constant dependent only on λ−1, G(0), L0, L1, B1, L̃2.

Now suppose that ηλ,β = argmin Jλ,β = η̂λ,β satisfies α∗-LSI. Let ε > 0 and η0 in the δ-sublevel
set of Jλ,β , i.e., η0 ∈ Sδ := J−1

λ,β((−∞, inf Jλ,β + δ]), for some δ > 0 to be chosen. Denote by
(ηt)t the MFLD trajectory for Jλ,β initialized at η0. Note that Sδ is stable by MFLD since Jλ,β(ηt)
decreases with t. So it suffices to show that Jλ,β satisfies (α∗ − ε)-LSI uniformly over Sδ .

Choose any η ∈ Sδ , i.e., such that Jλ,β(η)− inf Jλ,β ≤ δ. In particular by Thm. 2.1, it holds

β−1H (η|ηλ,β) ≤ Jλ,β(η)− inf Jλ,β ≤ δ.

Furthermore, since ηλ,β satisfies LSI with constant α∗ then it also satisfies the following Talagrand
inequality, as shown in [OV00]:

∀η′, W2(η
′, ηλ,β) ≤

√
2

α∗H (η′|ηλ,β).
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Then by the inequality noted above, we have∣∣∣∣log dη̂

dηλ,β
(w) + c

∣∣∣∣ ≤ H̃W2(η, ηλ,β) ≤ H̃

√
2

α∗H (η|ηλ,β) ≤ H̃

√
2

α∗ ·
√
βδ =: M

√
δ

for some c ∈ R, and so by the Holley-Stroock bounded perturbation argument, η̂ satisfies LSI with
constant α∗e−M

√
δ ≥ α∗ − ε for δ small enough.

F.1 Preliminary estimates for Jλ under Assumption 2

Throughout the remainder of this appendix, in the context of Assumption 2, we will use the notations

• the Hilbert space H = L2
ρ(Rd+1) with the inner product ⟨f, g⟩H = Ex∼ρf(x)g(x),

• the feature map ϕ : W → H given by ϕ(w)(x) = φ(⟨w, x⟩),
• the symmetric positive-semi-definite operator in H: Kη =

∫
ϕ(w)ϕ(w)∗dη(w), where ∗

denotes adjoint in H.
• For any h ∈ H, we denote by ⟨h,∇ϕ(w)⟩H (resp.

〈
h,∇2 ϕ(w)

〉
H) the gradient (resp.

Hessian) at w of w 7→ ⟨h, ϕ(w)⟩H.

The usefuless of these notations is justified by Prop. F.1 below, which gives a simplified expression
for Jλ and J ′

λ.
Proposition F.1. Under Assumption 2, letting the Hilbert space H = L2

ρ(Rd+1) and the feature map
ϕ : W → H given by ϕ(w)(x) = φ(⟨w, x⟩), we have

Jλ(η) =
λ

2
⟨y, (Kη + λ id)−1y⟩H, J ′

λ[η](w) = −λ

2
⟨ϕ(w), (Kη + λ id)−1y⟩2H,

with Kη =
∫
ϕ(w)ϕ(w)∗dη(w), where ∗ denotes adjoint in H. More explicitly, Kη is the integral

operator of the kernel kη(x, x′) =
∫
φ(⟨w, x⟩)φ(⟨w, x′⟩)dη(w) with respect to the distribution

x ∼ ρ, i.e.,
∀h ∈ H = L2

ρ(Rd+1), (Kηh)(x) = Ex′∼ρ [kη(x, x
′)h(x′)] in L2

ρ.

Proof. Under Assumption 2 we have

G(ν) =
1

2
Ex∼ρ

∣∣∣∣∫
W

φ(⟨w, x⟩)dν(w)− y(x)

∣∣∣∣2 =
1

2

∥∥∥∥∫
W

ϕ(w)dν(w)− y

∥∥∥∥2
H
,

so the optimization problem (3.3) defining Jλ(η), for a fixed η, writes

min
f∈L2

η(W)

1

2

∥∥∥∥∫
W

ϕ(w)f(w)dη(w)− y

∥∥∥∥2
H
+

λ

2

∫
W

|f |2 (w)dη(w).

This problem is strictly convex thanks to the term in λ, and the FOC is
∀w,

〈∫
ϕfdη − y, ϕ(w)η(dw)

〉
H + λf(w)η(dw) = 0. So the unique minimum fη is a so-

lution of the fixed point equation f(w) = − 1
λ

〈∫
ϕfdη − y, ϕ(w)

〉
H in L2

η(W). In particular,

denoting ĥη = − 1
λ

(∫
ϕfηdη − y

)
, then fη(w) =

〈
ĥη, ϕ(w)

〉
H

and, integrating against ϕη,∫
W

fη(w)ϕ(w)dη(w) =

∫
W

ϕ(w) ϕ(w)∗ĥη dη(w)

⇐⇒ −λĥη + y = Kηĥη ⇐⇒ (Kη + λ id)ĥη = y ⇐⇒ ĥη = (Kη + λ id)−1y,

where a∗ b = ⟨a, b⟩H and Kη =
∫
W ϕ(w)ϕ(w)∗dη(w). So the optimal value Jλ(η) is

Jλ(η) =
1

2

∥∥∥∥∫
W

ϕ(w)fη(w)dη(w)− y

∥∥∥∥2
H
+

λ

2

∫
W

|fη|2 (w)dη(w) (F.1)

=
1

2

∥∥∥λĥη

∥∥∥2
H
+

λ

2

∫
W

ĥ∗
ηϕ(w) ϕ(w)

∗ĥη dη(w)

=
1

2

〈
λĥη, λĥη

〉
H
+

λ

2

〈
ĥη,Kηĥη

〉
H

=
1

2

〈
λĥη, λĥη +Kηĥη

〉
H

=
1

2

〈
λĥη, y

〉
H

=
λ

2
⟨y, (Kη + λ id)−1y⟩H.
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Further, by applying the envelope theorem on (F.1) (and reasoning similarly to the proof of Prop. D.2
to deal with w ̸∈ supp(η), by extending fη ∈ L2

η(W) into a function W → R), we then have

∀w ∈ W, J ′
λ[η](w) =

〈∫
ϕfηdη − y, ϕ(w)fη(w)

〉
H
+

λ

2
|fη|2 (w)

= fη(w)
〈
−λĥη, ϕ(w)

〉
H
+

λ

2
|fη|2 (w)

= −λ |fη|2 (w) +
λ

2
|fη|2 (w) = −λ

2
|fη|2 (w) = −λ

2

〈
ĥη, ϕ(w)

〉2
H
.

The characterization of Kη as the integral operator in L2
ρ(Rd+1) of the kernel kη(x, x

′) =∫
W ϕ(w)(x) ϕ(w)(x′)dη(w) follows directly from the definition Kη =

∫
W ϕ(w)ϕ(w)∗dη(w), since

∀h ∈ H, Kηh =

∫
W

ϕ(w) ⟨ϕ(w), h⟩H dη(w),

(Kηh)(x) =

∫
W

ϕ(w)(x) Ex′∼ρ [ϕ(w)(x
′)h(x′)] dη(w)

= Ex′∼ρ

[∫
W

ϕ(w)(x)ϕ(w)(x′) h(x′) dη(w)

]
= Ex′∼ρ [kη(x, x

′)h(x′)] .

We have the following Wasserstein Lipschitz-continuity properties for the bilevel objective func-
tional Jλ.

Proposition F.2. Under Assumption 2, suppose furthermore that supw
∥∥∇iϕ(w)

∥∥
H ≤ Bi < ∞ for

i ∈ {0, 1, 2}. Then for any w ∈ W = Sd and any η, η′ ∈ P(W), it holds

|Jλ(η)− Jλ(η
′)| ≤ B0B1

λ
∥y∥2H ·W1(η, η

′)

and |J ′
λ[η](w)− J ′

λ[η
′](w)| ≤ 2B3

0B1

λ2
∥y∥2H ·W1(η, η

′)

and ∥∇J ′
λ[η](w)−∇J ′

λ[η
′](w)∥w ≤ 4B2

0B
2
1

λ2
∥y∥2H ·W1(η, η

′)

and
∥∥∇2 J ′

λ[η](w)−∇2 J ′
λ[η

′](w)
∥∥
op w

≤ 4B0B1(B0B2 +B2
1)

λ2
∥y∥2H ·W1(η, η

′).

Proof. By Prop. F.1,

J ′
λ[η](w) = −λ

2

〈
ϕ(w), (Kη + λ id)−1y

〉2
H where Kη =

∫
W

ϕ(w′′)ϕ(w′′)∗ dη(w′′)

so ∇J ′
λ[η](w) = −λ

〈
ϕ(w), (Kη + λ id)−1y

〉
H
〈
∇ϕ(w), (Kη + λ id)−1y

〉
H (F.2)

∥∇J ′
λ[η]∥w ≤ λ ∥ϕ(w)∥H ∥∇ϕ(w)∥w

∥∥(Kη + λ id)−1y
∥∥2
H

≤ λB0B1 ∥y∥2H
∥∥(Kη + λ)−1

∥∥2
op

≤ 1

λ
B0B1 ∥y∥2H

since Kη is positive-semi-definite by definition and so
∥∥(Kη + λ)−1

∥∥
op

= σmax((Kη + λ id)−1) =

[σmin(Kη + λ id)]
−1 ≤ λ−1. So by applying Lem. D.8, this shows the first inequality.

Moreover, the first variation of Kη at any η is w′ 7→ ϕ(w′)ϕ(w′)∗, thus by the formula ∂(X−1) =
−X−1(∂X)X−1 for the derivative of a matrix inverse,

δ

δη(w′)
(Kη + λ id)−1 = −(Kη + λ id)−1 · ϕ(w′)ϕ(w′)∗ · (Kη + λ id)−1,
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and so, letting for concision M = (Kη + λ id)−1,

J ′′
λ [η](w,w

′)

= −λ
〈
ϕ(w), (Kη + λ id)−1y

〉
H
〈
ϕ(w),−(Kη + λ id)−1 · ϕ(w′)ϕ(w′)∗ · (Kη + λ id)−1y

〉
H

= −λ ⟨ϕ(w),My⟩H ⟨ϕ(w),−M · ϕ(w′)ϕ(w′)∗ ·My⟩H
= λ ⟨ϕ(w),My⟩H ⟨ϕ(w),Mϕ(w′)⟩H ⟨ϕ(w′),My⟩H .

As a result,

∇wJ
′′
λ [η](w,w

′) = λ ⟨ϕ(w′),My⟩H ·
(⟨∇ϕ(w),My⟩ · ⟨ϕ(w),Mϕ(w′)⟩H + ⟨ϕ(w),My⟩ · ⟨∇ϕ(w),Mϕ(w′)⟩H)

and, using again that ∥M∥op =
∥∥(Kη + λ)−1

∥∥
op

≤ λ−1,

∥∇wJ
′′
λ (w,w

′)∥w ≤ λB0λ
−1 ∥y∥H · 2B2

0B1λ
−2 ∥y∥H = 2λ−2B3

0B1 ∥y∥2H .

Then applying Lem. D.8 shows the second inequality.

Furthermore, for a fixed w ∈ W , continuing from the expression of ∇wJ
′′
λ [η](w,w

′) derived above,

∇w′∇wJ
′′
λ [η](w,w

′)

= λ ⟨∇ϕ(w′),My⟩H · (⟨∇ϕ(w),My⟩ · ⟨ϕ(w),Mϕ(w′)⟩H + ⟨ϕ(w),My⟩ · ⟨∇ϕ(w),Mϕ(w′)⟩H)

+ λ ⟨ϕ(w′),My⟩H · (⟨∇ϕ(w),My⟩ · ⟨ϕ(w),M∇ϕ(w′)⟩H + ⟨ϕ(w),My⟩ · ⟨∇ϕ(w),M∇ϕ(w′)⟩H) ,

so ∥∇w′∇wJ
′′
λ [η](w,w

′)∥ ≤ 4λ−2B2
0B

2
1 ∥y∥2H, and the third inequality follows by applying

Lem. D.8 to η 7→ ⟨s,∇J ′
λ[η](w)⟩w for s ∈ TwW arbitrary.

Finally, by differentiating the expression of ∇w′∇wJ
′′
λ [η](w,w

′) once more with respect to w we
get that, for any fixed w ∈ W ,

∇w′∇2
wJ

′′
λ [η](w,w

′)

= λ ⟨∇ϕ(w′),My⟩H ·
(〈
∇2ϕ(w),My

〉
· ⟨ϕ(w),Mϕ(w′)⟩H + ⟨∇ϕ(w),My⟩ · ⟨∇ϕ(w),Mϕ(w′)⟩H

)
+ λ ⟨∇ϕ(w′),My⟩H ·

(
⟨∇ϕ(w),My⟩ · ⟨∇ϕ(w),Mϕ(w′)⟩H + ⟨ϕ(w),My⟩ ·

〈
∇2ϕ(w),Mϕ(w′)

〉
H
)

+ λ ⟨ϕ(w′),My⟩H ·
(〈
∇2ϕ(w),My

〉
· ⟨ϕ(w),M∇ϕ(w′)⟩H + ⟨∇ϕ(w),My⟩ · ⟨∇ϕ(w),M∇ϕ(w′)⟩H

)
+ λ ⟨ϕ(w′),My⟩H ·

(
⟨∇ϕ(w),My⟩ · ⟨∇ϕ(w),M∇ϕ(w′)⟩H + ⟨ϕ(w),My⟩ ·

〈
∇2ϕ(w),M∇ϕ(w′)

〉
H
)
,

hence
∥∥∇w′∇2

wJ
′′
λ [η](w,w

′)
∥∥ ≤ λ−2 ∥y∥2 B0B1(4B2B0 + 4B2

1), and the fourth inequality follows
by applying Lem. D.8 to η 7→

〈
s,∇2J ′

λ[η](w) · s
〉
w

for s ∈ TwW arbitrary.

The following lemma provides explicit upper estimates of the regularity constants B0, B1, B2 of ϕ
appearing in Prop. F.2, in terms of the activation function φ and the data distribution ρ.
Lemma F.3. Under Assumption 2, recall that ϕ : W → H = L2

ρ(Rd+1) is defined by ϕ(w)(x) =

φ(⟨w, x⟩), and that φ : R → R is C2. There exists a universal constant c > 0 such that

sup
w∈Sd

∥ϕ(w)∥H ≤ ∥φ∥L2(ρ) ,

sup
w∈Sd

∥∇ϕ(w)∥H ≤ ∥φ′∥L4(ρ) N4(ρ),

sup
w∈Sd

∥∥∇2ϕ(w)
∥∥
H ≤

(
∥φ′′∥L4(ρ) + ∥φ′∥L4(ρ)

)
N4(ρ)

where

N4(ρ) := sup
∥u∥2≤1

(
Ex∼ρ ⟨u, x⟩4

)1/4
and ∀f : R → R, ∥f∥Lp(ρ) := sup

w∈Sd
(Ex∼ρ |f(⟨w, x⟩)|p)1/p .

Note that if ρ is rotationally invariant, then Ex∼ρ |f(⟨w, x⟩)|p is independent of w, and there exists a

universal constant c such that N4(ρ) ≤ cd−1/2
(
Ex∼ρ ∥x∥4

)1/4
.
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Proof. For the first inequality, we have by definition

sup
w

∥φ(w)∥H = sup
w

√
Ex∼ρ |φ(⟨w, x⟩)|2 = ∥φ∥L2(ρ) .

For the second inequality, define the orthogonal projector Πw = Id+1 − ww⊤ : Rd+1 → TwSd =
{w}⊥ for any w ∈ Sd. Then [∇ϕ(w)] (x) = φ′(⟨w, x⟩)Πwx, so by Cauchy-Schwarz inequalities,

∥∇ϕ(w)∥H =
(

sup
∥f∥L2(ρ)≤1

sup
s∈TwSd
∥s∥w=1

Ex∼ρ [f(x) ⟨s,∇ϕ(w)(x)⟩w]
)

= sup
s∈TwSd
∥s∥w=1

Ex∼ρ

[
⟨s,∇ϕ(w)(x)⟩2w

]1/2
= sup

s∈TwSd
∥s∥w=1

Ex∼ρ

[
|φ′(⟨w, x⟩)|2 ⟨Πws, x⟩2

]1/2

≤
(
Ex∼ρ

[
|φ′(⟨w, x⟩)|4

])1/4
· sup
∥u∥2=1

(
Ex∼ρ

[
⟨u, x⟩4

])1/4
since ∥s∥w = ∥Πws∥2.

For the third inequality, the Riemannian Hessian of ϕ(w) = φ(⟨w, ·⟩) : Sd → R is given by[
∇2ϕ(w)

]
(x) = ∇2

wφ(⟨w, x⟩) = ∇⊤
w [φ′(⟨w, x⟩)Πwx] = Πw

(
φ′′(⟨w, x⟩)xx⊤ − φ′(⟨w, x⟩) ⟨w, x⟩

)
Πw,

so similarly by Cauchy-Schwarz inequalities,∥∥∇2ϕ(w)
∥∥
H ≤ sup

s∈TwSd
∥s∥w=1

Ex∼ρ

[
|φ′′(⟨w, x⟩)|2 ⟨s,Πwx⟩2

]1/2
+ Ex∼ρ

[
|φ′(⟨w, x⟩)|2 ⟨w, x⟩2

]1/2

≤
(
Ex∼ρ

[
|φ′′(⟨w, x⟩)|4

])1/4
· sup
s∈TwSd
∥s∥w=1

(
Ex∼ρ

[
⟨Πws, x⟩4

])1/4

+
(
Ex∼ρ

[
|φ′(⟨w, x⟩)|4

])1/4 (
Ex∼ρ

[
⟨w, x⟩4

])1/4
.

Finally, suppose that ρ is rotationally invariant, and let us show that N4(ρ) ≤ cd−1/2
(
Ex∼ρ ∥x∥4

)1/4
for some universal constant c. Indeed, for x ∼ ρ, we have that x and x = x/ ∥x∥ are independent
and that x ∼ τ . Therefore,

N4
4 (ρ) = sup

∥u∥2≤1

Ex∼ρ ∥x∥4 ⟨u, x/ ∥x∥⟩4 = sup
∥u∥2≤1

(
Ex∼ρ ∥x∥4

)
·
(
Ex∼τ ⟨u, x⟩4

)
,

and sup∥u∥2≤1 Ex∼τ ⟨u, x⟩4 ≤ c
(d+1)2 for some universal constant c, which is a direct conse-

quence of the fact that ⟨u, x⟩ is sub-Gaussian with sub-Gaussian norm c̃/
√
d+ 1 for some uni-

versal constant c̃ [Ver18, Theorem 3.4.6], along with the moment bound for sub-Gaussian random
variables [Ver18, Proposition 2.5.2]

Finally, we check rigorously in the following proposition that Assumption 2 with proper additional
regularity assumptions on φ and ρ, is a special case of Assumption 1.

Proposition F.4. Consider W = Sd and G : M(W) → R defined as in Assumption 2. Suppose fur-
thermore that N4(ρ), ∥φ∥L2(ρ) , ∥φ′∥L4(ρ) , ∥φ′′∥L4(ρ) < ∞, where N4(ρ) and ∥·∥Lp(ρ) are defined
in Lem. F.3. Then, G and W satisfy Assumption 1.

Proof. The fact that Sd satisfies ατ -LSI with ατ = d− 1 is classical and can be found in [BGL14,
Sec. 5.7].
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By definition, G(ν) = 1
2

∥∥∫
W ϕ(w)dν(w)− y

∥∥2
H, so G is non-negative and admits second variations:

for any ν ∈ M(W) and w,w′ ∈ Sd,

G′[ν](w) =

〈
ϕ(w),

∫
W

ϕ(w′)dν(w′)− y

〉
H

G′′[ν](w,w′) = ⟨ϕ(w), ϕ(w′)⟩H
and ∇wG

′′[ν](w,w′) = ⟨∇ϕ(w), ϕ(w′)⟩H
∇2

wG
′′[ν](w,w′) =

〈
∇2ϕ(w), ϕ(w′)

〉
H

∇w∇w′G′′[ν](w,w′) = ⟨∇ϕ(w),∇ϕ(w′)⟩H .

Consequently, denoting Ci = supw∈Sd
∥∥∇iϕ

∥∥
H for i ∈ {0, 1, 2}, which are all finite by Lem. F.3,

|G′′[ν](w,w′)| ≤ C2
0 =: L0

∥∇wG
′′[ν](w,w′)∥w ≤ C0C1 =: L1∥∥∇2

wG
′′[ν](w,w′)

∥∥
w
≤ C0C2 =: L2

∥∇w∇w′G′′[ν](w,w′)∥ ≤ C2
1 =: L̃2.

Now for each i ∈ {0, 1, 2},

∀(ν, w,w′),
∥∥∇i

wG
′′[ν](w,w′)

∥∥
w
≤ Li =⇒ ∀(ν, ν′, w),

∥∥∇iG′[ν]−∇iG′[ν′]
∥∥
w
≤ Li ∥ν − ν′∥TV .

Indeed, the right-hand side can be shown by applying the mean-value theorem to g(θ) =〈
s,∇iG′[ν + θ(ν′ − ν)](w)

〉
w

over θ ∈ [0, 1] for each s ∈ (TwW)⊗i. Thus, to show the exis-
tence of Bi < ∞ such that ∀(ν, w,w′),

∥∥∇iG′[ν]
∥∥
w

≤ Li ∥ν∥TV + Bi, it suffices to check that
there exists ν0 such that ∥ν0∥TV and supw

∥∥∇iG′[ν0]
∥∥
w
< ∞. Note that for any ν and w,

∇iG′[ν](w) =

〈
∇iϕ(w),

∫
W

ϕ(w′)dν(w′)− y

〉
H
,

thus ∇iG′[0](w) = −
〈
∇iϕ(w), y

〉
H

and sup
w

∥∥∇iG′[0](w)
∥∥
w
≤ Ci ∥y∥H < ∞.

Hence the existence of the Bi < ∞ is verified. This finishes the verification of Assumption 1.

F.2 Proof of Thm. 5.2

In the single-index setting of Assumption 3, it is intuitive that δv is a minimizer of Jλ, for any λ ≥ 0,
and that ηλ,β and δv are close in certain regimes of β and λ. For this reason, we will first investigate
the properties of J ′

λ[δv] as a proxy of J ′
λ[ηλ,β ], to show that it is amenable to a refined analysis for

proving LSI, in Sec. F.2.1. This step uses a Lyapunov approach inspired by [MS14; LE23]. We
will then prove that these properties carry from J ′

λ[δv] over to J ′
λ[ηλ,β ], in Sec. F.2.2, thanks to a

quantitative bound on W2(ηλ,β , δv) proved in Sec. F.2.3.
Lemma F.5. Under Assumptions 2 and 3, we have

∀w ∈ Sd, J ′
λ[δv](w) = −λ

2

(
λ+ ∥ϕ(v)∥2H

)−2

⟨ϕ(v), ϕ(w)⟩2H

= −λ

2

(
λ+ ∥φ∥2L2(ρ)

)−2

|Ex∼ρφ(⟨x, v⟩)φ(⟨x,w⟩)|2

= −λg(⟨v, w⟩)
for some g : [−1,+1] → R.

Proof. By Prop. F.1, since y = ϕ(v),

J ′
λ[δv] = −λ

2

〈
ϕ(w), (Kδv + λ id)−1ϕ(v)

〉2
H .
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Since ϕ(v) is an eigenvector of Kδv =
∫
W ϕ(w′)ϕ(w′)∗dδv = ϕ(v)ϕ(v)∗ with eigenvalue

∥ϕ(v)∥2H = Ex∼ρφ(⟨x, v⟩)2 = ∥φ∥2L2(ρ), it is also an eigenvector of (Kδv +λ id)−1 with eigenvalue

(∥φ(v)∥2H + λ)−1, whence the expression of J ′
λ[δv] follows.

Moreover, by rotational invariance of ρ, Ex∼ρφ(⟨x, v⟩)φ(⟨x,w⟩) depends only on ⟨v, w⟩, for all
w ∈ Sd. In other words, there exists g such that J ′

λ[δv] = −λg(⟨v, ·⟩).

F.2.1 Lyapunov function analysis for bounding the LSI constant of δ̂v ∝ e−βJ ′
λ[δv ]τ

Observe that by the assumption g′ ≥ c1 > 0 of Thm. 5.2, J ′
λ[δv] = −λg(⟨v, ·⟩) has a unique global

minimum at v. Moreover, our other assumptions on g will imply that the Riemannian Hessian
at optimum ∇2 J ′

λ[δv](v) is positive definite. This motivates us to follow the strategy of [LE23,
Thm. 3.4] for proving LSI for δ̂v ∝ e−βJ ′

λ[δv ]τ . Let us first outline the strategy and recall some useful
classical notions.

The generator of the Langevin diffusion with invariant measure exp(−βf)τ/Z is

L = ∆− β⟨∇f,∇⟩. (F.3)

Define U = {w : distW(w, v) ≤ r} for some v ∈ Sd, with r > 0 to be chosen later. We say
W : Sd → [1,∞) is a Lyapunov function if LW

W ≤ −θ+ b1U , for constants θ > 0 and b ≥ 0. When
proving functional inequalities for a Gibbs measure exp(−βf)τ/Z, a typical choice of Lyapunov
function is W = exp(β(f −min f)/2), for which the Lyapunov condition writes

β∆f

2
− β2 ∥∇f∥2

4
≤ −θ + b1U . (F.4)

Further, we say a probability measure ν ∈ P(Sd) satisfies a local Poincaré inequality on U with
constant κU if∫

U

f2dν ≤ 1

κU

∫
U

∥∇f∥2 dν, for all smooth f : U → R such that
∫
U

fdν = 0.

Notice that U has a convex boundary, thus we can use the Bakry-Émery criterion as adapted to
manifolds with convex boundaries by [LE23, Proposition B.11] to prove a local Poincaré inequality
on U . Specifically, it suffices to have infw∈U λmin(∇2f(w)) > 0.

In summary, a Lyapunov condition of the form (F.4), along with a control on the eigenspectrum of
∇2f(w), implies an LSI for e−βfτ/Z. We record this fact in the theorem below, working out the
proper dependence on problem parameters for future use.

Theorem F.6. Let v ∈ Sd, 0 < λ ≤ 1 and f : Sd → R of the form f(w) = −λg(⟨w, v⟩) for some
increasing function g : [−1, 1] → R. Suppose there exist constants D0, D1, D2, D3, D4 > 0, and
r ∈ (0, π/2) such that if β ≥ D0dλ

−1 then

∀w ∈ Sd,
1

2
∆f − β

4
∥∇f∥2 ≤ D1λd (LSd )

∀w ∈ Sd \ U, 1

2
∆f − β

4
∥∇f∥2 ≤ −D2βλ

2 (LU )

∀w ∈ Sd, λmin(∇2f(w)) ≥ −D3λ (CSd )

∀w ∈ U, λmin(∇2f(w)) ≥ D4λ (CU )

where U =
{
w ∈ Sd; distW(w, v) ≤ r

}
. Then (provided that β ≥ D0dλ

−1) the probability
measure ν = exp(−βf)τ/Z satisfies α-LSI for a constant α dependent only on the Di and on r.

Furthermore, if the condition on β is replaced by β ≥ D′
0d

4λ−4 and if (LSd ) is replaced by

∀w ∈ Sd,
1

2
∆f − β

4
∥∇f∥2 ≤ D′

1λdβ
3/4, (L′

Sd )

then (provided that β ≥ D′
0d

4λ−4) ν satisfies α′-LSI for a constant α′ dependent only on D′
0, D

′
1,

D2, D3, D4 and on r.

42



Proof. By the Lyapunov criterion for Poincaré inequality [BGL14, Thm. 4.6.2], if the generator L
given by (F.3) satisfies the Lyapunov condition LW

W ≤ −θ+ b1U for some θ > 0, b ≥ 0, U ⊂ Sd and
W : Sd → R, and if ν satisfies a local Poincaré inequality on U with constant κU , then ν satisfies a
Poincaré inequality on Sd with constant κ ≥ θ

1+ b
κU

.

Let us apply this to W = exp(β(f −min f)/2). By (LSd ) and (LU ), the Lyapunov condition holds
with θ = D2β

2λ2 and b = D1λβ(d− 1) +D2β
2λ2. Moreover, since U has a convex boundary (the

geodesic in Sd between any two points in U remains in U for r < π/2), by [LE23, Propostion B.11]
ν satisfies a local Poincaré inequality on U with constant

κU ≥ Ricg + βλmin(∇2f(w)) ≥ d− 1 + βλD4

where Ricg denotes the Ricci curvature of Sd. As a result, ν satisfies Poincaré inequality with constant

κ ≥ D2β
2λ2

1 + D1λβd+D2β2λ2

d−1+βλD4

≥ Cβλ, (F.5)

for some constant C depending only on the Di, where we used that β ≥ D0dλ
−1.

Moreover, by [LE23, Proposition 9.17], if ν ∈ P(Sd) satisfies the Poincaré inequality with constant κ,
and β∇2f +Ricg ≽ −βK for some K > 0 on Sd, then for β ≥ 1, ν satisfies the LSI with constant
α = κ

11βK . By the assumptions of the theorem, this indeed holds with K = D3λ. Consequently, ν
satisfies LSI with constant α = C/(11D3), which finishes the proof of the first part of the theorem.

The second part, with (L′
Sd ) instead of (LSd ), follows by a similar reasoning, except that “D1” should

be replaced by “D′
1β

3/4” in the calculation of (F.5). This still leads to a bound of the form κ ≥ C ′βλ
provided that β ≥ D′

0d
4λ−4, and the rest of the proof follows without change.

We now verify that J ′
λ[δv] satisfies the conditions of Thm. F.6.

Proposition F.7. Under the assumptions of Thm. 5.2, f0 := J ′
λ[δv] satisfies the conditions of Thm. F.6

with D0, ..., D4, r dependent only on c1, C1, C2, C3.

Proof. The Riemannian gradient and Hessian of f0 = J ′
λ[δv] = −λg(⟨v, ·⟩) are given by

∇f0(w) = −λg′(⟨w, v⟩)Πwv

and ∇2 f0(w) = −λΠw

(
g′′(⟨w, v⟩)vv⊤ − g′(⟨w, v⟩) ⟨w, v⟩ Id+1

)
Πw

where Πw = Id+1 − ww⊤ : Rd+1 → TwSd = {w}⊥ for any w ∈ Sd. This can be shown by
considering the smooth extension of f0 to Rd+1 → R defined by x 7→ −λg(⟨v, x⟩) and using that Sd
is a sub-Riemannian manifold of Rd+1 [Bou23, Chap. 5]. In particular since v⊤ΠwΠwv = 1−⟨w, v⟩2
and TrΠw = d,

∥∇f0(w)∥2 = λ2g′(⟨w, v⟩)2(1− ⟨w, v⟩2)
and ∆f0(w) = Tr∇2 f0(w) = −λ

(
g′′(⟨w, v⟩)(1− ⟨w, v⟩2)− g′(⟨w, v⟩) ⟨w, v⟩ d

)
.

Pose U =
{
w ∈ Sd : distSd(w, v) ≤ r

}
for some r > 0 to be chosen.

Let us verify (LSd ). We have for all w ∈ Sd

1

2
∆f0 −

β

4
∥∇f0∥2 = −λ

4

(
2g′′(⟨w, v⟩) + βλg′(⟨w, v⟩)2

)
(1− ⟨w, v⟩2) + λ

2
g′(⟨w, v⟩)⟨w, v⟩d.

(F.6)
The second term is bounded by λ

2C1d. We can ensure that the first term is non-positive by appropri-
ately restricting β as follows:

inf
[−1,1]

[
2g′′ + βλ(g′)2

]
≥ 0 ⇐= 2(inf g′′) + βλ(inf g′)2 ≥ 0

⇐= −2C2 + βλc21 ≥ 0 ⇐⇒ β ≥ 2C2

c21
λ−1.
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Let us verify (LU ). We can upper-bound the first term in (F.6) by a negative quantity by restricting β
further: by a similar calculation as just above,

β ≥ 4C2

c21λ
=⇒ inf

[−1,1]

[
2g′′ +

β

2
λ(g′)2

]
≥ 0 =⇒ 2g′′ + βλ(g′)2 ≥ β

2
λ(g′)2 over [−1, 1].

Then for all w ∈ Sd \ U , we have r ≤ distW(w, v) = arccos(⟨w, v⟩) ≤ π
2

√
1− ⟨w, v⟩2, and so

1

2
∆f0 −

β

4
∥∇f0∥2 ≤ −λ

4

(
1

2
βλg′(⟨w, v⟩)2

)
(1− ⟨w, v⟩2) + λ

2
g′(⟨w, v⟩)⟨w, v⟩d

=
λ

4
g′(⟨w, v⟩)

{
−βλ

2
g′(⟨w, v⟩)(1− ⟨w, v⟩2) + 2⟨w, v⟩d

}
≤ λ

4
g′(⟨w, v⟩)

{
−2βλc1r

2

π2
+ 2⟨w, v⟩d

}
≤ −λ

4
g′(⟨w, v⟩) · βλc1r

2

π2
≤ − c21

4π2
βλ2r2

provided that β ≥ 2π2d
λc1r2

.

To verify (CSd ), simply note that, since
∥∥Πwvv

⊤Πw

∥∥
op

= ∥Πwv∥2 = 1− ⟨w, v⟩2,

∀w,
∥∥∇2f0(w)

∥∥
op

≤ λg′′(⟨w, v⟩)(1− ⟨w, v⟩2) + λC1

≤ λ

[
sup

s∈[−1,1]

g′′(s)(1− s2)

]
+ λC1 ≤ (C3 + C1)λ,

and therefore, infw∈Sd λmin(∇2f0(w)) ≥ −
(
supw

∥∥∇2f0(w)
∥∥
op

)
≥ −(C3 + C1)λ.

Finally, let us verify (CU ). Indeed, for any w ∈ U ,

λmin(∇2f0(w)) = min
∥u∥2=1,⟨u,w⟩=0

−λg′′(⟨w, v⟩)⟨u, v⟩2 + λg′(⟨w, v⟩)⟨w, v⟩

≥ −λ |g′′(⟨w, v⟩)| max
∥u∥2=1,⟨u,w⟩=0

⟨u, v⟩2 + λc1⟨w, v⟩

= −λ |g′′(⟨w, v⟩)| (1− ⟨w, v⟩2) + λc1⟨w, v⟩,
where the bound of the second term follows from ⟨w, v⟩ ≥ 0, which can be ensured by taking r ≤ π

2 .
Since w ∈ U ⇐⇒ ⟨w, v⟩ ≥ cos(r) ≥ 1− r2, it follows that

λmin(∇2f0(w)) ≥ −λ

[
sup

cos r≤s≤1
|g′′(s)| (1− s2)

]
+ λc1 cos r

≥ −λC3

[
sup

cos r≤s≤1

√
1− s2

]
+ λc1 cos r

= λ (−C3 sin r + c1 cos r) ≥ λ
c1
2

for a certain choice of r small enough, dependent only on c1 and C3.

F.2.2 Lyapunov function analysis for bounding the LSI constant of ηλ,β

To prove Thm. 5.2, it only remains to show that the conditions of Thm. F.6 are satisfied for J ′
λ[ηλ,β ]

instead of J ′
λ[δv].

Lemma F.8. Under the setting of Assumptions 2 and 3, ηλ,β is rotationally invariant except for
the direction v, or formally Rv = v =⇒ R♯ηλ,β = ηλ,β for orthonormal matrices R, where R♯η
denotes the pushforward measure. Moreover, there exists gη : [−1, 1] → R such that for all w ∈ Sd,
J ′
λ[ηλ,β ](w) = −λgη(⟨w, v⟩).

Proof. The lemma follows directly from the fact that ρ is rotationally invariant and that y = ϕ(v).
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Lemma F.9. Under Assumption 2, suppose furthermore that supw
∥∥∇iϕ(w)

∥∥
H ≤ Bi < ∞ for

i ∈ {0, 1, 2}. Then we have, for any η, η′ ∈ P(W),

∀w ∈ Sd,
∣∣∣∣12∆J ′

λ[η]−
β

4
∥∇J ′

λ[η]∥
2 − 1

2
∆J ′

λ[η
′] +

β

4
∥∇J ′

λ[η
′]∥2
∣∣∣∣

≤
(
d
2B0B1(B0B2 +B2

1)

λ2
∥y∥2H + β

2B3
0B

3
1

λ3
∥y∥4H

)
W1(η, η

′)

and
∣∣λmin(∇2J ′

λ[η])− λmin(∇2J ′
λ[η

′])
∣∣ ≤ 4B0B1(B0B2 +B2

1)

λ2
∥y∥2H W1(η, η

′).

Proof. By Prop. F.2,∥∥∇2 J ′
λ[η](w)−∇2 J ′

λ[η
′](w)

∥∥
op

≤ 4B0B1(B0B2 +B2
1)

λ2
∥y∥2H W1(η, η

′)

and
∣∣λmin(∇2 J ′

λ[η](w))− λmin(∇2 J ′
λ[η

′](w))
∣∣ ≤ ∥∥∇2 J ′

λ[η](w)−∇2 J ′
λ[η

′](w)
∥∥
op

by Weyl’s
inequality. This shows the second inequality of the lemma.

For the first inequality, we have ∆J ′
λ[η](w) = Tr∇2 J ′

λ[η](W ) and so∣∣∣∣12∆J ′
λ[η]−

1

2
∆J ′

λ[η
′]

∣∣∣∣ ≤ d

2

∥∥∇2 J ′
λ[η](w)−∇2 J ′

λ[η
′](w)

∥∥
op

≤ d

2

4B0B1(B0B2 +B2
1)

λ2
∥y∥2H W1(η, η

′).

Moreover, we showed in (F.2) resp. in Prop. F.2 that

∥∇J ′
λ[η]∥ ≤ B0B1

λ
∥y∥2H and ∥∇J ′

λ[η]−∇J ′
λ[η

′]∥ ≤ 4B2
0B

2
1

λ2
∥y∥2H W1(η, η

′),

so ∣∣∣∣β4 ∥∇J ′
λη]∥

2 − β

4
∥∇J ′

λ[η
′]∥2
∣∣∣∣ ≤ β

4
· 2B0B1 ∥y∥2H

λ
· 4B

2
0B

2
1 ∥y∥2H
λ2

W1(η, η
′)

= β
2B3

0B
3
1 ∥y∥4H
λ3

W1(η, η
′),

which implies the first inequality of the lemma by triangle inequality.

We can now proceed to the proof of Thm. 5.2, thanks to a bound on W2(ηλ,β , δv) under Assumption 3
proved in the next section.

Proof of Thm. 5.2. For concision, in this proof, we will use the notations O(·),Ω(·),Θ(·),≲ to hide
constants dependent only on ∥φ∥L2(ρ) , ∥φ′∥L4(ρ) , ∥φ′′∥L4(ρ) ,Ex∼ρ ∥x∥4 /d2, c1, C1, C2, C3 and
C4.

We established in Prop. F.7 that f0 := J ′
λ[δv] satisfies the conditions (LSd ) (LU ) (CSd ) (CU ) of

Thm. F.6 with some constants Di, r = O(1) (in fact only dependent on c1, C1, C2, C3) provided that
β ≥ D0dλ

−1. Thus, the first part of the theorem concerning the LSI of δ̂v ∝ e−βJ ′
λ[δv]τ , follows from

Thm. F.6. To prove the second part of the theorem, it suffices to show that f∗ := J ′
λ[ηλ,β ] satisfies the

conditions (L′
Sd ) (LU ) (CSd ) (CU ) of Thm. F.6 with some constants D̃′

0, D̃
′
1, D̃2, D̃3, D̃4, r = Θ(1).

By Lem. F.3, there exist constants Bi = O(1) such that supw
∥∥∇iϕ(w)

∥∥
H ≤ Bi, for i ∈ {0, 1, 2}.

Moreover, by Lem. F.12 below, provided that β ≥ Ω(dλ), one has

W2(ηλ,β,δv ) ≲
√
β−1dλ−1 · log(βd−1λ−1) =: W.

Now by the conditions (LSd ) (LU ) (CSd ) (CU ) for f = f0 and Di = Θ(1) (by Prop. F.7), from
Lem. F.9 along with the triangle inequality we have

∀w ∈ Sd,
1

2
∆f∗ − β

4
∥∇f∗∥2 ≲ λd+ (dλ−2 + βλ−3)W

∀w ∈ Sd \ U, 1

2
∆f∗ − β

4
∥∇f∗∥2 ≤ −D2βλ

2 + E2 · (dλ−2 + βλ−3)W

∀w ∈ Sd, λmin(∇2f∗(w)) ≳ −λ− λ−2W

∀w ∈ U, λmin(∇2f∗(w)) ≥ D4λ− E4 · λ−2W

for some constants E2, E4 = O(1). So,
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• (L′
Sd ) for f∗ can be ensured with D̃′

1 = O(1) provided that (dλ−2 + βλ−3)W = (β−1dλ+

1)βλ−3W = O(λdβ3/4). Since we already assume that β ≥ Ω(dλ), this is equivalent to
βλ−3W = O(λdβ3/4), i.e., β1/4λ−4d−1W = O(1).

• (LU ) can be ensured with D̃2 = D2

2 if β is such that E2(dλ
−2 + βλ−3)W ≤ D2

2 βλ2, i.e.,
(β−1dλ+ 1)λ−5W ≤ D2

2E2
. Since we already assume that β ≥ Ω(dλ), this is equivalent to

λ−5W ≤ F2 for a certain F2 = Θ(1).

• (CSd ) can be ensured with D̃3 = O(1) provided that λ−2W = O(λ), i.e., λ−3W = O(1).

• (CU ) can be ensured with D̃4 = D4

4 if E4λ
−2W ≤ D4

2 λ, i.e., λ−3W ≤ D4

2E4
=: F4 = Θ(1).

In summary, since we assume λ ≤ 1, we have λ−3 ≤ λ−5 and λ−4d−1 ≤ λ−5. Hence we will
choose β such that β1/4d−1λ−4W = O(1) and λ−5W ≤ F2 for a certain F2 = Θ(1), and this
will ensure all four conditions with constants D̃′

1, D̃2, D̃3, D̃4 = Θ(1). For choices of β such that
β ≥ d4λ−4, it suffices to have β1/4d−1λ−4W ≤ F2. Now substituting the definition of W , this
sufficient condition rewrites

β1/4d−1λ−4W ≤ F2 ⇐⇒ β1/2d−2λ−8 · β−1dλ−1 log

(
β

dλ

)
= β−1/2λ−9d−1 log

(
β

dλ

)
≤ F 2

2 .

Since ∀ε, x > 0, ε log x = log xε ≤ xε, then for any ε > 0 it suffices to choose β such that

β−1/2λ−9d−1

(
β

dλ

)ε

≤ εF 2
2 ⇐⇒ β1/2−ε ≥ ε−1F−2

2 λ−9−εd−1−ε.

Choosing e.g. ε = 1
4 , we get that a sufficient condition is β ≥ Ω(poly(λ−1, d)).

Hence we may apply the second part of Thm. F.6 to f∗ = J ′
λ[ηλ,β ] with constants D̃′

1, D̃2, D̃3, D̃4 =
O(1), provided that β ≥ Ω(poly(λ−1, d)). This concludes the proof of the second part of the
theorem.

F.2.3 Bound on W1(ηλ,β , δv)

The following lemma shows a form of weak coercivity of Jλ.
Lemma F.10. Under Assumptions 2 and 3, if furthermore there exist c1, C1, C3, C4 > 0 such that

∀r ∈ [−1,+1], c1 ≤ g′(r) ≤ C1,
∣∣∣g′′(r)(1− r2)1/2

∣∣∣ ≤ C3,
∣∣∣g′′′(r)(1− r2)3/2

∣∣∣ ≤ C4,

then there exists a constant αg dependent only on c1, C1, C3, C4 such that

∀η, Jλ(η)− Jλ(δv) ≥ λαgW
2
2 (η, δv).

Proof. Since Jλ is convex,

Jλ(η)− Jλ(δv) ≥
∫
Sd

J ′
λ[δv]d(η − δv) = −λ

∫
Sd

g(⟨v, w⟩)d(η − δv)(w)

= λ

∫
Sd

[g(1)− g(⟨v, w⟩)] dη(w).

Now let Ur =
{
w ∈ Sd; distSd(w, v) ≤ r

}
for some r > 0 to be chosen. We will compute the

integral separately on Ur and on Sd \ Ur.

For the part
∫
Ur

, we proceed by a second-order Taylor expansion. Namely, for any w ∈ Ur \ {v}, let
e ⊥ v such that w = cos(θ)v+ sin(θ)e for some 0 < θ ≤ r, since distSd(w, v) = arccos(⟨w, v⟩) =
θ. Then g(⟨v, w⟩) = g(cos θ), and

d

dθ
g(cos θ) = − sin(θ)g′(cos θ)

d2

dθ2
g(cos θ) = sin(θ)2g′′(cos θ)− cos(θ)g′(cos θ)

d3

dθ3
g(cos θ) = − sin(θ)3g′′′(cos θ) + 3 sin(θ) cos(θ)g′′(cos θ) + sin(θ)g′(cos θ).
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Notice that by our assumptions on g, it is smooth enough at 1 so that sin(θ)g′(cos θ) → 0 and
sin(θ)2g′′(cos θ) → 0 as θ → 0. Further,

sup
θ

d3

dθ3
g(cos θ) ≤ C4 + 3C3 + C1 =: 6M3,g.

Consequently, by a univariate Taylor expansion with remainder in Langrange form around θ = 0, for
all 0 < θ ≤ r, provided that we choose r ≤ g′(1)

2M3,g
, we have

g(cos θ) = g(1) + 0 +
1

2
(0− g′(1))θ2 +

1

6
(g ◦ cos)(3)(u)θ3 for some u ∈ [0, r]

≤ g(1)− 1

2
g′(1)θ2 +

1

6

[
sup
[0,r]

(g ◦ cos)(3)
]
θ3

≤ g(1)− 1

2
g′(1)θ2 +M3,gθ

3 = g(1)−
(
1

2
g′(1)−M3,gθ

)
θ2

≤ g(1)− 1

4
g′(1)θ2. (F.7)

In other words,

∀w ∈ Ur, g(1)− g(⟨v, w⟩) ≥ 1

4
g′(1) distSd(w, v)

2,

and so,
∫
Ur

[g(1)− g(⟨v, w⟩)] dη(w) ≥ 1

4
g′(1)

∫
Ur

distSd(w, v)
2 dη(w).

For the part
∫
Sd\Ur

, since g is increasing on [−1, 1] since g′ ≥ c1 > 0, we have∫
Sd\Ur

[g(1)− g(⟨v, w⟩)] dη(w) ≥ [g(1)− g(cos(r))] [1− η(Ur)]

≥
[
1

4
g′(1)r2

]
[1− η(Ur)]

where the second inequality follows from the Taylor expansion (F.7) above applied to θ = r.

Thus we showed

Jλ(η)− Jλ(δv) ≥ λ

{[
1

4
g′(1)r2

]
[1− η(Ur)] +

g′(1)
4

∫
Ur

distSd(w, v)
2dη(w)

}
=

λg′(1)
4

{
r2 [1− η(Ur)] +

∫
Ur

distSd(w, v)
2dη(w)

}
.

On the other hand, since distSd(v, w) = arccos(⟨v, w⟩),

W 2
2 (η, δv) =

∫
Sd\Ur

distSd(v, w)
2dη(w) +

∫
Ur

distSd(v, w)
2dη(w)

≤ π2 [1− η(Ur)] +

∫
Ur

distSd(v, w)
2dη(w).

Hence

Jλ(η)− Jλ(δv) ≥
λg′(1)

4
· sup
0≤r≤ g′(1)

2M3,g

min

[
r2

π2
, 1

]
W 2

2 (η, δv)

= λ · g
′(1)
4

min

[(
g′(1)
2M3,g

)2

/π2, 1

]
·W 2

2 (η, δv)

≥ λ · c1
4
min

[(
c1

2M3,g

)2

/π2, 1

]
·W 2

2 (η, δv) =: λαgW
2
2 (η, δv).

Notice that αg only depends on c1, C1, C3, C4.
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We will use the following fact about the surface area of a small hyperspherical cap around a pole for
bounding W1(ηλ,β , δv). It essentially shows that, for W = Sd, the constant called C in the statement
of Lem. E.1 scales with dimension as 2−d ≲ C−1 ≲ 1/

√
d.

Lemma F.11. Fix d ≥ 2 and v ∈ Sd and denote by τ the uniform measure on Sd. For any ϵ > 0, let
Sϵ =

{
w ∈ Sd : distSd(w, v) ≤ ϵ

}
. There exist universal constants C−, C+ > 0 such that

∀0 < ϵ ≤ π

4
, C−1

− (ϵ/2)d ≤ τ(Sϵ) ≤ C+ ϵd/
√
d.

Proof. For w ∼ τ , the distribution of ⟨w, v⟩ admits a probability density function h(z) = (1 −
z2)d/2−1/Z, where

Z =

∫ 1

−1

(1− z2)d/2−1dz = B

(
d

2
,
1

2

)
=

Γ
(
d
2

)√
π

Γ
(
d+1
2

) .

Note that by Gautschi’s inequality ∀s ∈ (0, 1),∀x > 0, x1−s < Γ(x+1)
Γ(x+s) < (x + 1)1−s applied to

s = 1
2 and x = d−1

2 , we have
√

d−1
2 <

Γ( d+1
2 )

Γ( d
2 )

<
√

d+1
2 , so√

2π

d+ 1
≤ Z ≤

√
2π

d− 1
.

By definition, since distSd(w, v) = arccos(⟨w, v⟩), τ(Sϵ) =
∫ 1

cos(ϵ)
h(z)dz. One can verify

∀ 0 < ϵ ≤ π

4
,
√

1− ϵ2 ≤ cos(ϵ) ≤
√
1− ϵ2

4
.

So for all 0 < ϵ ≤ π
4 ,

τ(Sϵ) =

∫ 1

cos(ϵ)

h(z)dz ≤
∫ 1

√
1−ϵ2

h(z)dz

= Z−1

∫ 1

√
1−ϵ2

(1− z2)d/2−1dz = Z−1

∫ 1

1−ϵ2
(1− t)d/2−1 dt

2
√
t

≤ Z−1 1

2
√
1− ϵ2

∫ 1

1−ϵ2
(1− t)d/2−1dt = Z−1 1

2
√
1− ϵ2

∫ ϵ2

0

td/2−1dt

= Z−1 1

2
√
1− ϵ2

· 2
d
[ϵ2]d/2 ≤ Z−1 1

d
√
1− (π/4)2

ϵd ≤ C+ϵ
d/
√
d

for some universal constant C+. In the other direction,

τ(Sϵ) ≥
∫ 1

√
1−ϵ2/4

h(z)dz = Z−1

∫ 1

√
1−ϵ2/4

(1− z2)d/2−1dz = Z−1

∫ 1

1−ϵ2/4

(1− t)d/2−1 dt

2
√
t

≥ Z−1 1

2

∫ 1

1−ϵ2/4

(1− t)d/2−1dt = Z−1 1

2

∫ ϵ2/4

0

td/2−1dt

= Z−1 1

2

2

d
[ϵ2/4]d/2 = Z−1 1

d
(ϵ/2)d ≥ c(ϵ/2)d/

√
d.

for some universal constants c. By repeating the same argument with
√

1− ϵ2

4 replaced by
√
1− ϵ2

3.9 ,

we get τ(Sϵ) ≥ c′(ϵ/1.99)d/
√
d ≥ C−1

− (ϵ/2)d for some universal constants c′, C−.

The following lemma combines the weak coercivity and weak Lipschitz-continuity of Jλ by a
Γ-convergence type argument, to show an explicit bound on W1(ηλ,β , δv). It quantifies the intuitive
fact that ηλ,β converges weakly to δv when β−1 → 0 or λ → +∞.
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Lemma F.12. Under Assumptions 2 and 3, if supw
∥∥∇iϕ(w)

∥∥
H ≤ Bi < ∞ for i ∈ {0, 1}, and if

β ≥ 4dλ
π

(
B0B1 ∥y∥2H

)−1
, then

W2(ηλ,β , δv) ≤
√

1

αg

β−1d

λ

(
C̃ + log

(
B0B1 ∥y∥2H

)
− log (β−1dλ)

)
where C̃ is a universal constant and αg is the constant from Lem. F.10.

Proof. Since ηλ,β = argmin Jλ,β and Jλ,β = J + β−1H (·|τ), then for any ησ ∈ P(W),

Jλ(ηλ,β) ≤ Jλ(ηλ,β) + β−1H (ηλ,β |τ) = Jλ,β(ηλ,β) ≤ Jλ,β(η
σ) = Jλ(η

σ) + β−1H (ησ|τ) .

Further, we showed in Lem. F.10 that ∀η, Jλ(η)− Jλ(δv) ≥ λαg ·W 2
2 (η, δv), so

λαg ·W 2
2 (ηλ,β , δv) ≤ Jλ(ηλ,β)− Jλ(δv) ≤ Jλ(η

σ)− Jλ(δv) + β−1H (ησ|τ) .

It remains to upper-bound the right-hand side, which we do by choosing as ησ a box-kernel smoothed
version of δv (this part the proof is essentially an instantantiation of Lem. E.1). Specifically, let ησ be
the uniform measure over the spherical cap Sσ =

{
w ∈ Sd; distSd(w, v) ≤ σ

}
for σ to be chosen.

We showed in Prop. F.2 that

Jλ(η
σ)− Jλ(δv) ≤

B0B1 ∥y∥2H
λ

·W1(η
σ, δv)

where supw
∥∥∇iϕ(w)

∥∥
H ≤ Bi, and by definition

W1(η
σ, δv) =

∫
distSd(w, v) dη

σ(w) =
1

vol(Sσ)

∫
Sσ

distSd(w, v) d vol(w) ≤ σ.

Moreover by Lem. F.11, provided that 0 < σ ≤ π
4 ,

H (ησ|τ) =
∫

dησ log
dησ
dτ

= log
vol(Sd)
vol(Sσ)

= − log τ(Sσ) ≤ logC − d log
σ

2

for some universal constant C, and let us assume w.l.o.g. that C > 1, so that logC ≤ d logC. Thus

Jλ(η
σ)− Jλ(δv) + β−1H (ησ|τ) ≤ B0B1 ∥y∥2H

λ
σ − β−1d log σ + β−1d log 2C.

Therefore, taking the infimum over 0 < σ ≤ π
4 ,

λαg ·W 2
2 (ηλ,β , δv) ≤ inf

0<σ≤π
4

B0B1 ∥y∥2H
λ

σ − β−1d log σ + β−1d log 2C

= β−1d− β−1d log
β−1dλ

B0B1 ∥y∥2H
+ β−1d log 2C

= β−1d
(
1 + log(2C)− log(β−1dλ) + log

(
B0B1 ∥y∥2H

))
,

where on the second line we used that the unconstrained infimum of the right-hand side over σ > 0 is
attained at σ = β−1dλ

B0B1∥y∥2
H

, which is indeed less than π
4 by assumption. This shows the bound

W2(ηλ,β , δv) ≤
√

1

λαg
β−1d

(
1 + log(2C)− log(β−1dλ) + log

(
B0B1 ∥y∥2H

))
,

and the bound announced in the proposition follows by gathering some universal constants into C̃.
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F.3 Proof of Prop. 5.3 (examples of activations satisfying the assumptions)

Before presenting the proof, we recall a few concepts from the theory of spherical harmonics, and
refer to [AH12; FE12] for more details. Let τ be the uniform probability measure on Sd. The
spherical harmonics in dimension d + 1 form an orthonormal basis of L2(τ). We denote them by
{Ykj}k,j , where k ≥ 0 and 1 ≤ j ≤ N(d, k), where N(d, 0) = 1 and N(d, k) = 2k+d−1

k

(
k+d−2
d−1

)
for k ≥ 1 (for k = 0 we have Y01 = 1). Consequently, any ϕ ∈ L2(τ) can be written as

ϕ =

∞∑
k=0

N(d,k)∑
j=1

⟨ϕ, Ykj⟩L2(τ)Ykj .

Let Pk,d be the Legendre polynomial (a.k.a. Gegenbauer polynomial) of degree k in dimension d+1,
normalized such that Pk,d(1) = 1. Thanks to Rodrigues’ formula [AH12, Theorem 2.23], we can
express Legendre polynomials as,

Pk,d(t) =
(−1)kΓ(d/2)

2kΓ(k + d/2)
(1− t2)(2−d)/2

(
d

dt

)k

(1− t2)k+(d−2)/2.

We now go over some useful properties of spherical harmonics and Legendre polynomials.

• (Addition Formula) We have the following formula which relates Legendre polynomials to
spherical harmonics [AH12, Theorem 2.9],

N(d,k)∑
j=1

Ykj(w)Ykj(v) = N(d, k)Pk,d(⟨w, v⟩), ∀w, v ∈ Sd.

• (Hecke-Funk Formula) Suppose ϕ ∈ L2(τ) is given by ϕ(·) = φ(⟨w, ·⟩) for some w ∈ Sd.
Then [AH12, Theorem 2.22],

⟨ϕ, Ykj⟩L2(τ) =
Γ((d+ 1)/2)

Γ(d/2)
√
π

Ykj(w)

∫ 1

−1

φ(t)Pk(t)(1− t2)(d−2)/2dt.

• (Orthogonality of Legendre Polynomials) Using the addition formula and orthonormality
of spherical harmonics, for every k, k′ ≥ 0 we have,

⟨Pk,d(⟨w, ·⟩), Pk′,d(⟨v, ·)⟩L2(τ) =
δkk′Pk,d(⟨w, v⟩)

N(d, k)
.

• (Derivative of Legendre Polynomials) For every k ≥ j, we have the following identity for
derivatives of Legendre polynomials [AH12, Equation (2.89)],

P
(j)
k,d(t) = cj,k,dPk−j,d+2j(t),

where P
(j)
k,d denotes the jth derivative of Pk,d, and

cj,k,d =
k(k − 1) . . . (k − j + 1)(k + d− 1)(k + d) . . . (k + d+ j − 2)

d(d+ 2) . . . (d+ 2j − 2)
. (F.8)

Notice that for j > k we have P
(j)
k,d = 0.

We use the tools introduced above to prove the following lemma.

Lemma F.13. Suppose ρ is a spherically symmetric probability measure on Rd+1. Define q :
[−1, 1] → R via q(⟨w, v⟩) =

∫
φ(⟨w, x⟩)φ(⟨v, x⟩)dρ(x) for w, v ∈ Sd. Then, for every j ≥ 1,

q(j)(⟨w, v⟩) = 1

(d+ 1)(d+ 3) . . . (d+ 2j − 1)

∫
∥x∥2j φ(j)(⟨w, x⟩)φ(j)(⟨v, x⟩)dρ(x),

where φ(j) denotes the jth derivative of φ.
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Proof. We being by introducing the notation φr(⟨w, x⟩) = φ(r⟨w, x⟩). Doing so allows us to only
consider functions on Sd by conditioning on the norm of input ∥x∥. Notice that

q(⟨w, v⟩) = E
[
E
[
φ
(
∥x∥

〈
w,

x

∥x∥⟩
)
φ
(
∥x∥

〈
v,

x

∥x∥⟩
)
| ∥x∥

]]
= E∥x∥

[
q∥x∥(⟨w, v⟩)

]
, (F.9)

where
qr(⟨w, v⟩) :=

∫
φ(r⟨w, x⟩)φ(r⟨v, x⟩)dτ(x) = ⟨φr(⟨w, ·⟩), φr(⟨v, ·⟩)⟩L2(τ).

By the Hecke-Funk formula,

⟨φr(⟨w, ·⟩), Ykj(·)⟩L2(τ) = ᾱk,rYkj(w) :=
αk,r√
N(d, k)

Ykj(w),

where

ᾱk,r :=
Γ((d+ 1)/2)

Γ(d/2)
√
π

∫ 1

−1

φ(rt)Pk(t)(1− t2)(d−2)/2dt.

Then, by the expansion of φr(⟨w, ·⟩) in the basis of spherical harmonics,

φr(⟨w, ·⟩) =
∞∑
k=0

N(d,k)∑
j=1

αk,r√
N(d, k)

Ykj(w)Ykj(·) =
∞∑
k=0

√
N(d, k)αk,rPk,d(⟨w, ·⟩). (F.10)

Via the formula for inner products of Legendre polynomials, we obtain

qr(⟨w, v⟩) =
∞∑
k=0

α2
k,rN(d, k)⟨Pk,d(⟨w, ·), Pk,d(⟨v, ·)⟩L2(τ) =

∞∑
k=0

α2
k,rPk,d(⟨w, v⟩).

As a result,

q(j)r (⟨w, v⟩) =
∞∑
k=0

α2
k,rP

(j)
k,d(⟨w, v⟩) =

∞∑
k=j

α2
k,rcj,k,dPk−j,d+2j(⟨w, v⟩), (F.11)

where cj,k,d is given by (F.8). On the other hand, we can directly obtain from (F.10),

φ(j)
r (⟨w, x⟩) =

∞∑
k=0

√
N(d, k)αk,rP

(j)
k,d(⟨w, x⟩) =

∞∑
k=j

√
N(d, k)αk,rcj,k,dPk−j,d+2j(⟨w, x⟩).

Therefore,

⟨φ(j)
r (⟨w, ·⟩), φ(j)

r (⟨v, ·⟩)⟩L2(τ) =

∞∑
k=j

α2
k,rc

2
j,k,dN(d, k)

N(d+ 2j, k − j)
Pk−j,d+2j(⟨w, v⟩).

Moreover, it is straightforward to verify that

cj,k,dN(d, k)

N(d+ 2j, k − j)
= (d+ 1)(d+ 3) . . . (d+ 2j − 1)

for k ≥ j. Therefore,

⟨φ(j)
r (⟨w, ·⟩), φ(j)

r (⟨v, ·⟩)⟩L2(τ) = (d+ 1)(d+ 3) . . . (d+ 2j − 1)

∞∑
k=j

α2
k,rcj,k,dPk−j,d+2j(⟨w, v⟩)

= (d+ 1)(d+ 3) . . . (d+ 2j − 1)q(j)r (⟨w, v⟩),

where the last identity follows from (F.11). We can now use the fact that φ(j)
r = rφ(j), and plug the

above back into (F.9) to obtain

q(j)(⟨w, v⟩) = E∥x∥
[
q
(j)
∥x∥(⟨w, v⟩)

]
= E∥x∥

∫ ∥x∥2j
(d+ 1)(d+ 3) . . . (d+ 2j − 1)

φ(j)(∥x∥ ⟨w, x̄⟩)φ(j)(∥x∥ ⟨v, x̄⟩)dτ(x̄)

=

∫ ∥x∥2j
(d+ 1)(d+ 3) . . . (d+ 2j − 1)

φ(j)(⟨w, x⟩)φ(j)(⟨v, x⟩)dρ(x),

which concludes the proof.
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We are now ready to state the proof of Prop. 5.3

Proof of Prop. 5.3. Recall g(⟨w, v⟩) =
⟨ϕ(w),ϕ(v)⟩2H

2(λ+∥ϕ(v)∥2
H)2

. Let q(⟨w, v⟩) = ⟨ϕ(w), ϕ(v)⟩H. Conse-
quently,

g′ =
qq′

(λ+ ∥ϕ(v)∥2H)2
, g′′ =

qq′′ + q′2

(λ+ ∥ϕ(v)∥2H)2
, g′′′ =

3q′q′′ + qq′′′

(λ+ ∥ϕ(v)∥2H)2
.

We proceed to bound each term separately. By non-negativity of ϕ, for any r > 0, we have
q(⟨w, v⟩) = E [φ(⟨w, x⟩)φ(⟨v, x⟩)]

≥ E
[
φ(⟨w, x⟩)ϕ(⟨v, x⟩)1

(
|⟨w, x⟩| ≤ r, |⟨v, x⟩| ≤ r

)]
≥ ( inf

|z|≤r
φ(z))2P [{|⟨w, x⟩| ≤ r} ∩ {|⟨v, x⟩| ≤ r}]

≥ ( inf
|z|≤r

φ(z))2
(
1− P[⟨w, x⟩2 > r2]− P[⟨v, x⟩2 > r2]

)
≥ ( inf

|z|≤r
φ(z))2

(
1− 2E[∥x∥2]

(d+ 1)r2

)
,

where the last inequality follows from Markov inequality along with the fact that E[xx⊤] =
E[∥x∥2]
d+1 Id+1 for spherically symmetric distributions. Thus, by choosing r = m = 2b2

√
b2

b1
, we

have q(z) ≥ 1
2 (inf |z|≤m φ(z)). Furthermore, by the Cauchy-Schwartz inequality, q(⟨w, v⟩) ≤

E[φ(⟨w, x⟩)2] = ∥φ∥2L2(ρ) . Next, we move on to bounding q′. Let x̄ ∼ τ be a uniform random
vector on Sd. Then, for any r > 0, by Lem. F.13,

q′(⟨w, v⟩) = 1

d+ 1
E
[
∥x∥2 φ′(⟨w, x⟩)φ′(⟨v, x⟩)

]
=

1

d+ 1
E
[
∥x∥2 E [φ′(⟨w, x⟩)φ′(⟨v, x⟩) | ∥x∥]

]
≥ (inf |z|≤r φ

′(z))2

d+ 1
E
[
∥x∥2 P

[{
|⟨w, x̄⟩| ≤ r

∥x∥

}
∩
{
|⟨v, x̄⟩| ≤ r

∥x∥

}
| ∥x∥

]]
≥ (inf |z|≤r φ

′(z))2

d+ 1
E

[
∥x∥2

(
1− P

[
⟨w, x̄⟩2 >

r2

∥x∥2
| ∥x∥

]
− P

[
⟨v, x̄⟩2 >

r2

∥x∥2
| ∥x∥

])]

≥ (inf |z|≤r φ
′(z))2

d+ 1
E

[
∥x∥2

(
1− 2 ∥x∥2

r2(d+ 1)

)]
.

Consequently, by choosing r = m = 2b2
√
b2

b1
, we obtain q′ ≥ b1

2 (inf |z|≤m ϕ′(z))2. Moreover, by the
Cauchy-Schwartz inequality, q′ ≤ b2 ∥φ′∥2L4(ρ). As a result,

b1(inf |z|≤m φ(z))2(inf |z|≤m φ′(z))2

(λ+ ∥φ∥2L2(ρ))
2

≤ g′ ≤
b2 ∥φ∥2L2(ρ) ∥φ′∥2L4(ρ)

(λ+ ∥φ∥2L2(ρ))
2

.

Furthermore, by Lem. F.13 and the Cauchy-Schwartz inequality,

|q′′| ≤ b22(d+ 1)

d+ 3
∥φ′′∥2L4(ρ) , |q′′′| ≤ b32(d+ 1)2

(d+ 3)(d+ 5)
∥ϕ′′′∥2L4(ρ) .

Hence,
−b22 ∥φ′′∥2L4(ρ) ∥φ∥

2
L4(ρ)

(λ+ ∥φ∥2L2(ρ))
2

≤ g′′ ≤
b22 ∥φ′′∥2L4(ρ) ∥φ∥

2
L2(ρ) + b22 ∥φ′∥4L4(ρ)

(λ+ ∥φ∥2L2(ρ))
2

,

and

|g′′′| ≤
3b32 ∥ϕ′∥2L4(ρ) ∥ϕ′′∥2L4(ρ) + b32 ∥ϕ∥2L2(ρ) ∥ϕ′′′∥2L4(ρ)

(λ+ ∥φ∥2L2(ρ))
2

,

which completes the proof.
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F.4 Implementation details for Fig. 1

We consider the problem (1.1) where W = Sd and G is defined as in Assumption 2, where d = 10,
λ = 10−3 and

• y : Rd+1 → R is given by a teacher 2NN with 5 neurons defined as follows. The first-layer
weights are orthonormal, drawn from the Haar measure, and the second layer weights
are drawn i.i.d. from N (0, 1.8Id). Its activation is φteacher(z) =

z4−6z2+3√
24

, which is the
normalized 4th degree Hermite polynomial.

• ρ is the empirical distribution of a (covariate) dataset (xi)i≤n of n = 100 training samples,

sampled i.i.d. from N
((

0d
1

)
,

(
Id 0
0 0

))
, with the last coordinate representing bias.

• The activation function φ of the student 2NN ŷν is the ReLU, φ(z) = max(0, z).

We performed 5 different runs, each corresponding to a different teacher network (y) and training
dataset (ρ), and tested all the algorithms considered at each run. So the objective functional Gλ is
different for each run, which is why the values shown on the y-axis are offset by G∗

λ, the best value
achieved by any of the algorithms considered for each run.

For the algorithms using the bilevel formulation, we computed the values and the Wasserstein
gradients of Jλ explicitly by the formulas from Prop. F.1 and (F.2) (the matrix Kη +λ id in L2

ρ ≃ Rn

is inverted explicitly).

For the algorithms using MFLD, we used β−1 = 10−3. We ran the Euler-Maruyama discretization of
the noisy particle gradient flow SDE described in Sec. 2 (with an inexact simulation of the Brownian
increments described below), using N = 1000 particles – corresponding to the width of the student
2NN –, and a step size of 10−2 for (1a) and 10−3 for (1b). For Wasserstein GF without noise, we
used the same discretization but with β−1 = 0.

Concerning the initialization of the particles (ri, wi)i≤N – corresponding to the second resp. first-
layer weights of the student network –, the wi

0 are drawn i.i.d. uniformly on Sd, and for the algorithms
using the lifting formulation, the ri0 are drawn i.i.d. from N (0, 1).

Note that our simulations of Brownian motion are not exact. To implement MFLD on Sd, we simply
took gradient steps in Rd+1 with added Gaussian noise, and projected the weights back to the sphere.

The code to reproduce this experiment can be found at https://github.com/mousavih/
2024-MFLD-bilevel.
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• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide in Sec. F.4 full details for the small numerical experiment of Fig. 1,
which are sufficient to reproduce the experiment. The code we used will also be made public
at a later date.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The setup of the numerical experiment of Fig. 1 is very simple. Moreover full
details are provided in Sec. F.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The purpose of the small experiment from Fig. 1 is to compare the qualitative
behavior of several algorithms: advantage of MFLD over Wasserstein GF in Fig. 1a, and
advantage of MFLD-Bilevel over MFLD-Lifting in Fig. 1b. This qualitative behavior is
clear-cut across the 5 runs, all of which are shown.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The very small scale of the numerical experiment of Fig. 1 means that any
standard laptop or desktop computer can be used to reproduce it in, with a runtime of a few
minutes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the Code of Ethics and have not found any deviation of our
work from it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
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Justification: The contributions of this work are theoretical.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The contributions of this work are theoretical.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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