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Abstract

Surveys have recently gained popularity as a tool to study large language models.
By comparing survey responses of models to those of human reference popula-
tions, researchers aim to infer the demographics, political opinions, or values best
represented by current language models. In this work, we critically examine this
methodology on the basis of the well-established American Community Survey by
the U.S. Census Bureau. Evaluating 43 different language models using de-facto
standard prompting methodologies, we establish two dominant patterns. First,
models’ responses are governed by ordering and labeling biases, for example,
towards survey responses labeled with the letter ‘A’. Second, when adjusting for
these systematic biases through randomized answer ordering, models across the
board trend towards uniformly random survey responses, irrespective of model
size or pre-training data. As a result, in contrast to conjectures from prior work,
survey-derived alignment measures often permit a simple explanation: models
consistently appear to better represent subgroups whose aggregate statistics are
closest to uniform for any survey under consideration.

1 Introduction

Surveys have a long tradition in social science research as a means for gathering statistical information
about the characteristics, values, and opinions of human populations [Groves et al., 2009]. Insights
from surveys inform policy interventions, business decisions, and science across various domains.
Surveys typically consist of a series of well-curated questions in a multiple-choice format, with
unambiguous framing and a set of answer choices carefully selected by domain experts. Surveys are
then presented to groups of individuals and their answers are aggregated to gain statistical insights
about the populations that these groups of individuals represent.

Many established survey questionnaires together with the carefully collected answer statistics are
publicly available. Machine learning researchers have identified the potential benefits of building on
this valuable data resource to study large language models (LLMs). Survey questions offer a way
to systematically prompt LLMs, and the aggregate statistics over answers collected by surveying
human populations serve as a reference point for evaluation. As a result, the use of surveys has
recently gained popularity for studying LLMs’ biases [Santurkar et al., 2023, Durmus et al., 2023].
Also prompting LLMs with survey questions, researchers in the social sciences have explored using
LLMs to emulate the survey responses of human populations [Argyle et al., 2023, Lee et al., 2023]. If
effective proxies, simulated responses could augment or replace the expensive data collection process
involving human subjects and provide insights into subpopulations that are otherwise hard to reach.
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Figure 1: We prompt language models with questions from the American Community Survey (ACS).
We systematically compare models’ survey responses to those of the U.S. Census.

It is tempting to prompt LLMs with survey questions, due to their syntactic similarity to question
answering tasks [Brown et al., 2020, Liang et al., 2022]. However, it is a priori unclear how to
interpret their answers. Rather than knowledge testing, surveys seek to elicit aggregate statistics over
individuals, providing an unbiased view on the properties of the population they are targeting. The
quality of survey data hinges on the validity and robustness of the conclusions that can be drawn
from it. Clearly, running a survey on LLMs is different from interrogating humans and thus it comes
with distinct challenges. While much research has gone into carefully designing surveys to ensure
faithful human responses, it is unclear whether prompting LLMs with the same surveys satisfies
similar premises out-of-the-box. We devote this work to gain systematic insights into the survey
responses of LLMs, what we can expect to learn from them, and to what extent they resemble those
of human populations.

1.1 Our work

The basis of our investigation is the American Community Survey1 (ACS), a demographic survey
conducted by the U.S. Census Bureau at a national level, on a yearly basis. We curate a questionnaire
composing of 25 multiple choice questions from the 2019 ACS. We prompt 43 language models
of varying size with these questions, individually and in sequence, and we record their probability
distribution over answers. Based on the collected data, we investigate the following two questions:
What can we infer about LLMs, and the data they have been trained on, from their survey responses?
Does the data generated by prompting models to answer the ACS questionnaire qualitatively resemble
the census data collected by surveying the U.S. population? See Figure 1.

We start by inspecting models’ distributions over answers to individual survey questions when the
questions are asked independently. We observe that the entropy of response distributions differs
substantially across models of varying size. Entropy tends to increase log linearly with model size,
and it is preserved across different questions asked. We find that this differences arise because strong
ordering and labeling biases confound models’ answers. In fact, after adjusting for such systematic
biases through randomized choice ordering, we find that response distributions are very similar across
models and tend to correspond to highly balanced answers.

Comparing models’ adjusted responses to those of the U.S. census population, we find that natural
variations in entropy across questions are not reflected in the responses. Instead, on average across
questions, models’ responses are no closer to the census population, or the population of any state
within the US, than to a fixed uniform baseline. This qualitative difference between model responses
and human data puts into question the insights that can be gained from such comparisons. We find
that even after instruction-tuning this trend persists, and model responses have consistently higher
entropy than any human population we compare to, independent of the survey used. Only for models
of size larger than 70 billion parameters we can recognize a trend that the divergence between model
responses and the census data decreases after instruction-tuning.

With these insights in mind, we inspect conjectures from prior work related to survey derived
alignment metrics, that is, that differences in similarity between models’ and populations’ responses
might be attributable to certain demographics being better represented in the training data. Instead, our
results suggest a much simpler explanation: the relative alignment of model responses with different

1https://www.census.gov/programs-surveys/acs
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demographic subgroups can be explained by the entropy of the subgroups’ responses, irrespective of
the data or training procedure employed to train the model. We demonstrate this beyond the ACS
on other surveys considered by prior work. As such, our findings provide important context to prior
studies that employ surveys to examine the biases of LLMs.

More broadly, our findings suggest caution when treating language models’ survey responses as a
faithful representation of any human population, at least a present time, as it could lead to potentially
misguided conclusions about alignment.

1.2 Related work

Despite the syntactical similarities, there are important differences between evaluating LLMs on
the basis of their survey responses and traditional question answering evaluations [Liang et al.,
2022]. Question answering (QA) tasks predominantly serve the purpose of knowledge testing [e.g.,
Kwiatkowski et al., 2019, Rajpurkar et al., 2016, Talmor et al., 2019, Mihaylov et al., 2018]. In such
setting, a language model’s answer to some unambiguous input question is extracted by computing
its most likely completion. Similarly, for questions that lack a clear answer (e.g., “Angela and Patrick
are sitting together. Who is an entrepreneur?”) models’ most likely response have been used to
investigate various biases of LLMs [Li et al., 2020, Mao et al., 2021, Perez et al., 2023, Abid et al.,
2021, Jiang et al., 2022].

When evaluating LLMs on the basis of survey questions, the focus is not on the model’s most likely
completion but rather on the probability distribution that the model assigns to various answer choices.
For example, not whether the model is more likely to answer “Yes” than “No” to a given survey
question, but the normalized probability assigned to each of the two answer choices. See Figure 1.
More concretely, Santurkar et al. [2023] study LLMs’ answer distributions for multiple-choice
opinion polling questions, measuring their similarity to those of various U.S. demographic groups.
They extract models’ answer distributions from the next token probabilities corresponding to each
answer choice. Subsequent works employ a similar methodology but instead consider transnational
opinion surveys [Durmus et al., 2023, AlKhamissi et al., 2024] and moral beliefs surveys [Scherrer
et al., 2024]. We adopt this popular methodology to systematically investigate the properties of
models’ answer distributions on the basis of a well-established demographic survey.

Instead of asking questions individually, Hartmann et al. [2023], Rutinowski et al. [2023], Motoki
et al. [2023], Feng et al. [2023] sequentially prompt language models to answer entire political
compass or voting advice questionnaires. Rather than aggregating answers into a political affinity
score, our focus is instead on examining whether models’ responses qualitatively resemble those of
human populations. We discuss this sequential generation setting in detail in Appendix F.

Lastly, there is an emerging body of research that integrates LLMs into computational social sci-
ence [Ziems et al., 2024]. This includes tasks such as taxonomic labeling, where language models are
employed for tasks such as opinion prediction [Kim and Lee, 2023, Mellon et al., 2022], and free-form
coding, where language models are used to generate explanations for social science constructs [Nelson
et al., 2021]. Recent studies have also investigated the feasibility of using LLMs to simulate human
participants in psychological, psycholinguistic, and social psychology experiments [Dillion et al.,
2023, Aher et al., 2023], or as proxies for specific human populations in social science research [Ar-
gyle et al., 2023, Lee et al., 2023, Sanders et al., 2023] and economics [Brand et al., 2023, Horton,
2023]. Within this context, our work suggests caution in relying on the survey responses of LLMs to
elicit synthetic responses that resemble those of human populations and highlights potential pitfalls.

2 Surveying language models

We employ the de-facto standard methodology to survey language models introduced by Santurkar
et al. [2023]. For every survey question, we generate a prompt containing the multiple-choice question
and we collect language models’ probability distribution over answer choices. Formally, for a given
model m and survey question q we define the model’s survey response as a categorical random
variable Rm

q which can take on kq values corresponding to the number of answer choices to question
q. The respective answer distributions are then contrasted with those of human populations align
various dimensions. The overall setup is illustrated in Figure 1.
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Prompting. We determine the event probabilities of Rm
q by prompting model m as follows:

1. We construct an input prompt of the form “Question: <question> \n A. <choice 1 >\n B.
<choice 2> \n ... <choice kq> \n Answer:”.

2. We query language models with the input prompt and obtain their output distribution over
next-token probabilities. We select the kq output probabilities corresponding to each answer
choice (e.g., the tokens “A”, “B”, etc.), and we renormalize to obtain the probability distribution
over survey answers. 2.

The chosen style of prompt is standard for question answering tasks [Hendrycks et al., 2021], used
in OpinionQA [Santurkar et al., 2023], and follows the best practices for social science research
recommended by Ziems et al. [2024]. For completeness we perform several prompt ablations,
including the prompt variations used by Argyle et al. [2023], Santurkar et al. [2023] and Durmus
et al. [2023]. We find our take-aways to be robust to such changes, see Appendix D. However, note
that our goal is not to engineer better prompts, but to critically examine popular scientific practices.

Survey questions. We use a representative subset of 25 multiple-choice questions from the 2019
ACS questionnaire. We denote the set of questions by Q. The questions cover basic demographic
information, education attainment, healthcare coverage, disability status, family status, veteran status,
employment status, and income. We generally consider the questions and answers as they appear in
the ACS questionnaire. Figure 1 depicts an example question. We refer to Appendix A.1 for our list
of questions and the exact framing we used for each question.

Models surveyed. We survey 43 language models of size varying from 110M to 175B parameters:
the base models GPT-2 [Radford et al., 2019], GPT-Neo [Black et al., 2021], Pythia [Biderman et al.,
2023], MPT [MosaicML, 2023], Llama 2 [Touvron et al., 2023],Llama 3 [Dubey et al., 2024] and
GPT-3 [Brown et al., 2020]; as well as the instruct variants of MPT 7B and GPT NeoX 20B, the
Dolly fine-tune of Pythia 12B [Databricks, 2023], Llama 2 Chat, Llama 3 Instruct, the text-davinci
variants of GPT-3 [Ouyang et al., 2022], and GPT-4 [OpenAI, 2023].

Reference data & evaluation. We use the responses collected by the U.S. Census Bureau when
surveying the U.S. population as our reference data. In particular, we use the 2019 ACS public
use microdata sample3 (henceforth census data). The data contains the anonymized responses of
around 3.2 million individuals in the United States. For each survey question q ∈ Q, we denote the
census’ population-level response as a categorical random variable Cq whose event probabilities are
the relative frequency of each answer choice among survey respondents. We use Uq to denote the
uniform distribution over answers. Given these two reference points, we evaluate language models’
responses Rm

q along two dimensions:

• We use entropy to measure the degree of variation in models’ responses. We denote the entropy
of a random variable R as H(R). To meaningfully compare the entropy of responses across
questions with varying number of choices kq , we report normalized entropy, that is, the entropy
relative to the uniform distribution. H(Rm

q ) = 1 implies that model m’s survey response to
question q is uniformly distributed (i.e., H(Uq) = 1).

• We use the Kullback–Leibler (KL) divergence to measure the “similarity” between two distri-
butions over answers. We write KL(Rm

q ∥ Cq) for the KL divergence between the response
distribution Rm

q of model m to question q and the corresponding aggregate response distribution
Cq observed in the census data. The larger the KL distance between two distributions, the more
dissimilar the two distributions are.

Note that the KL divergence between any distribution and the uniform distribution corresponds to the
entropy difference. For normalized entropy this yields KL(Cq ∥ Uq) = kq(1−H(Cq)).

2For OpenAI’s models, we only have access to the top-5 next-token log probabilities through the OpenAI
API. In this case, we assign to the unseen probabilities (if any) the minimum between the remaining probability
mass and the smallest observed probability, following the methodology of Santurkar et al. [2023]

3https://www.census.gov/programs-surveys/acs/microdata
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(a) Entropy of base models’ responses, for five of the ACS questions.
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(b) Entropy of base models’ responses to the ACS, ordered by model size.

Figure 2: Entropy of model responses across the ACS questions for naive prompting. Entropy of
models’ responses (◆) tends to increase log-linearly with model size, irrespective of the underlying
response entropy observed in the U.S. census (–).

Randomized choice ordering. For several investigations we survey models under randomized
choice ordering. This means, for a given question q, we prompt models with different permutations of
the answer choice ordering, i.e., the assignment of answers (e.g., “male”, “female”) to choice labels
(“A”, “B”, etc), while the choice labels are kept in alphabetic order. We evaluate models’ survey
responses under all possible choice orderings and we use R̄m

q to denote the expected distribution
over answers and Ōm

q to denote the expected distribution over selected choice labels. For questions
with more than 6 answers we evaluate a maximum of 5000 permutations. For OpenAI’s models we
evaluate up to 50 permutations due to the costs of querying the OpenAI API. This distinction serves to
decouple a model’s tendency towards picking a particular answer from its tendency towards picking a
particular choice label. In the following we refer to the expected survey response R̄m

q under uniformly
distributed choice ordering as the adjusted survey response. We will come back to this in Section 4.

3 Systematic biases in models’ survey responses

We start by surveying the base pre-trained models. We present survey questions independently of one
another, showing the answer choices in the same order as the ACS.

For a first investigation, we consider the normalized entropy of models’ responses to the “SEX",
“HICOV”, and “FER" questions. The SEX question inquiries about the person’s sex, encoded as male
female, the HICOV question inquiries whether the person is currently covered by any health insurance
plan, and the FER question inquires whether the person has given birth in the past 12 months. When
surveying the U.S. population, these three questions elicit responses with very different entropy;
responses to the SEX question are almost uniformly distributed, whereas most people answer “No”
to the FER question. In contrast, as shown in Figure 2(a), the entropy of models’ responses to these
three questions are surprisingly similar. In particular, we find that the entropy of models’ responses
tends to increase log-linearly with model size, independent of the question asked. This trend is
consistent across all ACS survey questions, see Figure 8 in Appendix B.1.

For a broader picture, we illustrate models’ response entropy across all survey questions in Figure 2(b).
The blue dots represent models’ responses to individual questions, and the green dots represent the
entropy of the responses of the U.S. census. We order models by size. We observe that the entropy of
responses of the U.S. census greatly varies across questions. In contrast, for any given model, the
entropy of its responses varies substantially less so.
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Overall, we find that models’ response distributions seem to be widely independent of the survey
question asked, and variations across models are much larger than variations across questions. This
lead us to suspect that observed differences across models might arise mostly due to systematic biases.

3.1 Testing for systematic biases: A-bias

It is well-known that language models’ most likely answer to multiple-choice questions can change
depending on seemingly minor factors such as the ordering of few-shot examples [Zhao et al., 2021,
Lu et al., 2022] or the ordering of answer choices [Robinson and Wingate, 2023a]. We are interested
in the extent to which changes in choice ordering affect a model’s output distribution over answers.

We start by measuring A-bias: the tendency of a model towards picking the answer choice labeled “A".
In particular, we seek to study the extent to which the strength of this bias explains the differences in
responses observed across models. For an unbiased model that outputs the same answer distribution
irrespective of choice ordering, the expected choice distribution Ōm

q under randomized choice
ordering would match precisely the uniform distribution (e.g., P(“A”) = P(“B”) = 0.5). We define a
model’s A-bias as its absolute deviation from this unbiased baseline:

Abiasmq := P(Ōm
q = “A”)− 1/kq (1)

We measure A-bias for each question q and model m. Results are illustrated in Figure 3. We again
sort models by their size. We observe all models exhibit substantial A-bias. However, models in the
order of a few billion parameters or fewer consistently exhibit particularly strong A-bias, and tend
towards mono answers. We additionally observe that the strength of A-bias in instruction or RLHF
tuned models is similar to that of base models, see Appendix B.2. A plausible explanation for small
models exhibiting strong A-bias is that the ability to answer MMLU-style multiple-choice questions
only emerges for models of sufficient scale [Dominguez-Olmedo et al., 2024].

We investigate other types of labeling and position bias (e.g., last-choice bias) in Appendix C. Overall,
we find a strong tendency of LLMs to pick up on spurious signals in the way that answers are ordered
and labeled, rather than their semantic meaning. Notably, in contrast to the primacy bias observed in
humans [Groves et al., 2009], we find that models exhibit substantial A-bias even when randomizing
the position of the “A” choice. Our findings are consistent with the concurrent work of Tjuatja et al.
[2023], which similarly finds that models’ response biases to multiple-choice survey questions are
generally not human-like. The orthogonal work of Wang et al. [2024] additionally shows that models’
responses to multiple-choice survey questions may not consistently reflect their free-form outputs.

In summary, we find that systematic biases confound models’ answer distributions. This makes it
challenging to draw robust conclusions about inherent properties of LLMs, such as the opinions or
populations they best represent. For example, simply reversing the order of answers to the “SEX”
question could lead to GPT-2 seemingly representing a population where females are significantly
over-represented, whereas a reverse conclusion would be drawn when using the standard answer
order. While much research went into designing the ACS to elicit faithful answers and eliminate
systematic biases when surveying human populations, simply using the same question framing does
not protect against the systematic response biases that language models exhibit.
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models’ responses after adjustment. Entropy of base models’ responses is close to 1 (i.e., uniform).
Instruction tuned-models exhibit substantially higher variations in entropy across questions.

4 Inspecting adjusted responses

To eliminate confounding due to labeling and ordering biases, we survey models under randomized
choice ordering, borrowing an established methodology to adjust for ordering biases of all kinds in
survey research [Groves et al., 2009]. Also a recent work in LLM research adopts this methodol-
ogy [Robinson and Wingate, 2023b]. In the following, we refer to the expected response after answer
choice randomization as the adjusted response.

In Figure 4 we plot the normalized entropy of models’ adjusted responses for the ACS questions
considered. First focusing on base models, and comparing the results to Figure 2(b) we find that
after adjustment, 1) the variations in responses’ entropy across survey questions are very small, 2) we
no longer observe the trend of the entropy of model responses increasing log-linearly with model
size. In fact, models’ survey responses have a normalized entropy of approximately 1 irrespective of
model size or survey question asked. This validates our initial hypothesis that, without adjustment,
variations in responses across base models arise predominantly due to systematic biases such as
A-bias, rather than the content of the survey questions asked.

4.1 Effect of instruction tuning

We now evaluate language models that have been fine-tuned with instructions and/or human prefer-
ences, henceforth “instruction-tuned models”. In the right plot of Figure 4 we show the normalized
entropy of instruction-tuned models’ ACS survey responses after adjustment. We observe that instruc-
tion tuned-models all exhibit substantially higher variations in entropy across questions compared
to base models. But in general, the entropy of their responses remains higher than the entropy of
the census responses. Interestingly, as we will see, although deviating more from uniform, model
responses do not tend to be closer to the U.S. census responses.
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4.2 Comparing model responses to the U.S. census

We now investigate the similarity of language models’ adjusted responses to the census data. To do
so, we consider the overall U.S. census population, as well as 50 census subgroups corresponding to
every state in the United States. This leads to different human reference populations.

Inspired by the alignment measures proposed by Santurkar et al. [2023] and Durmus et al. [2023], we
investigate the similarity of model responses to the census data by evaluating the average divergence
across questions between model responses and the census statistics.4 As we focus on categorical
questions, we evaluate average KL divergence between each language model m and each reference
population Ref , as follows:

K̄L(m,Ref) =
1

|Q|
∑
q∈Q

KL(R̄m
q ||Refq).

Results are depicted in Figure 5. For each model we plot the divergence to the census in black, the
divergence to the different subgroups in blue, and the divergence to a uniform baseline with balanced
responses in red. We observe that models are strikingly more similar to the uniform baseline than to
any of the populations considered. For base models, this result is unsurprising, since in the previous
section we established that base models’ responses are essentially uniform after adjustment.

Looking at Figure 5 we find no consistent trend that instruction-tuning would move responses closer
to the census, despite the increased deviation from uniform and the larger variations in entropy (recall
Figure 4). Only for larger models the divergence seems to clearly decrease with instruction-tuning.
However, all models’ responses still remain significantly closer to the uniform baseline than to the
U.S. census. For instance, for the GPT-4 model whose answers exhibit the highest similarity to the
human reference populations, only 6 out of 25 questions (24%) are closer to the U.S. census than
to the uniform baseline. Given these results, drawing conclusions about the relative alignment of
models with subgroups is prone to resulting in brittle conclusions.

5 Implications for survey-based alignment metrics

Our findings add important context to previous works studying the alignment of language models
with different human subpopulations. In particular, we highlighted the tendency of models towards
balanced answers. Due to varying entropy in the responses of subgroups this leads to a strong
correlation between model alignment and the reference population’s entropy. The linear trend in
Figure 6 visualizes this. For any given model, it consistently appears to be more “aligned” with
the subpopulations exhibiting high entropy in their answers. Interestingly, we find that this trend
also holds pre-adjustment, suggesting that the transformation of the response through randomized
choice ordering is orthogonal to differentiating aspects of any specific population. In contrast,
when comparing different models in Figure 6, we can see how adjustment has a large influence on
their relative order. Differences across models that we see under naive prompting disappear after
adjustment, which means that they should largely be attributed to systematic biases, rather than
inherent properties of the model.

4Whereas Santurkar et al. [2023] use the Wasserstein distance to compare answer distributions, we use KL
divergence since questions in the ACS are predominantly nominal, rather than ordinal.
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Figure 6: Alignment of models with different census subgroups. All models tend to exhibit similar
relative alignment, and the divergence metric decreases with the entropy of the subgroups’ responses.

Taken together our findings imply that the survey-derived alignment measure is more informative of
differences in the reference populations rather than the language models is aims to evaluate. Model
particularities, such as the pre-training data used, instruction tuning or the use of reinforcement
learning with human feedback, seem to have little impact on which population is best represented.

5.1 Beyond the ACS

To inspect whether this trend changes with the content of the questions asked, we reproduce our
experiments with additional surveys. We use the American Trends Panel (ATP) opinion surveys
considered by Santurkar et al. [2023], and the Pew Research’s Global Attitudes Surveys (GAS) and
World Values Surveys (WVS) considered by Durmus et al. [2023]. These surveys encompass around
1500 questions and 60 U.S. demographic subgroups, and around 2300 questions and 60 national
populations, respectively. We adopt the alignment metrics considered by the aforementioned works.
We find that our insights gained from the ACS also hold for the ATP and GAS/WVS surveys. In
particular, we similarly find a linear trend between the alignment metrics and subgroups’ entropy
of responses, in particular after adjustment, see Figure 7. Note here that alignment and divergence
are negatively correlated by definition. Interestingly, this observation explains some of the findings
in prior works. For example, Santurkar et al. [2023] find that “all the base models share striking
similarities–e.g., being most aligned with lower income, moderate, and Protestant or Roman Catholic
groups” and “our analysis [...] surfaces groups whose opinions are poorly reflected by current LLMs
(e.g., 65+ and widowed individuals)”. For the ATP surveys considered, low income, moderate, and
Protestant/Catholic are precisely the demographic subgroups with responses closest to uniformly
random among the income, political ideology, and religion demographic subgroups; whereas age
65+ and widowed are the demographic subgroups with responses furthest from uniform among the
age and marital status demographic subgroups. Further, Santurkar et al. [2023] observe that RLHF
can result in a “substantial shift [...] towards more liberal, educated, and wealthy [demographic
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Figure 7: Alignment beyond ACS for selected models. We adopt the measures of Santurkar et al.
[2023] and Durmus et al. [2023] on ATP and GAS/VVS opinion surveys. Again, the alignment be-
tween models and a given subpopulation correlates with the entropy of the subpopulations’ responses.

groups]”. Our results suggest that this could be an artifact of systematic biases. For the ATP surveys,
we observe three outliers for which its alignment before adjustment is not correlated with the entropy
of subgroup’s responses: Llama 2 70B Chat and the two Llama 3 Instruct models. These are the
models with largest pre-training compute considered. However, after adjustment, the alignment
trends of Llama 2 70B Chat and the Llama 3 Instruct models are remarkably similar to that of their
corresponding base models and all other LLMs.

6 Conclusion

We used a popular methodology to elicit LLMs’ answer distributions to survey questions and closely
examined the responses on the basis of the prime US demographic survey. We found that model
responses are dominated by systematic ordering biases and do not exhibit the natural variations
in entropy found in the human reference data collected by the US census. Even after adjusting for
ordering biases, LLMs’ responses still do not resemble those of human populations. Instead, they
exhibit consistently high entropy, independent of the question asked. This holds true irrespective
of model size or fine-tuning with human preferences.

These findings have important implications for insights gained from survey-derived alignment metrics.
In particular, it explains why models of varying size all exhibit the same trend: they are most aligned
with subgroups who happen to have balanced answers for the survey questions under consideration.
For all models and surveys considered, alignment appears to be a proxy for the entropy of subgroups,
rather than an inherent property of the model, or its training data.

We want to reiterate that our focus lies on questioning a popular methodology of eliciting survey
responses from large language models using multiple choice prompting. At the example of this
methodology our results highlight an important pitfall and suggest caution to expect robust insights
when comparing such responses against those of human populations. The robustness and quality
of an established survey does not seamlessly translate from the results obtained by surveying human
populations to the logits output by LLMs. More research is urgently needed to design methodologies
for getting insights into the inherent biases of LLMs and the population they might represent. Here
public surveys and their accompanying data offer exciting potential and the could play an important
role as a benchmarking tool for systematic evaluations of LLMs, see [Cruz et al., 2024] as an
example. Although the use of survey data for LLM research has recently gained popularity, it still
remains a widely under explored data source.

Acknowledgements

The authors would like to thank Frauke Kreuter and the Social Data Science and AI Lab at Ludwig-
Maximilians-Universität Munich for inspiring discussions on an earlier version of this manuscript.
Celestine Mendler-Dünner acknowledges financial support from the Hector Foundation.

10



References
Abubakar Abid, Maheen Farooqi, and James Zou. Persistent anti-muslim bias in large language

models. In AAAI/ACM Conference on AI, Ethics, and Society, pages 298–306, 2021.

Gati V Aher, Rosa I Arriaga, and Adam Tauman Kalai. Using large language models to simulate
multiple humans and replicate human subject studies. In International Conference on Machine
Learning, pages 337–371, 2023.

Badr AlKhamissi, Muhammad ElNokrashy, Mai Alkhamissi, and Mona Diab. Investigating cultural
alignment of large language models. In Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 12404–12422, 2024.

Lisa P Argyle, Ethan C Busby, Nancy Fulda, Joshua R Gubler, Christopher Rytting, and David
Wingate. Out of one, many: Using language models to simulate human samples. Political Analysis,
31(3):337–351, 2023.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan,
Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar Van Der Wal. Pythia: a suite for analyzing large language models
across training and scaling. In International Conference on Machine Learning, 2023.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale
Autoregressive Language Modeling with Mesh-Tensorflow, 2021.

James Brand, Ayelet Israeli, and Donald Ngwe. Using GPT for Market Research. Harvard Business
School Marketing Unit Working Paper No. 23-062, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In Advances in Neural Information
Processing Systems, pages 1877–1901, 2020.

André F Cruz, Moritz Hardt, and Celestine Mendler-Dünner. Evaluating language models as risk
scores. ArXiv preprint arXiv:2407.14614, 2024.

Databricks. Dolly 12b, 2023. URL https://github.com/databrickslabs/dolly.

Danica Dillion, Niket Tandon, Yuling Gu, and Kurt Gray. Can AI language models replace human
participants? Trends in Cognitive Sciences, 2023.

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New datasets for fair
machine learning. Advances in Neural Information Processing Systems, 2021.

Ricardo Dominguez-Olmedo, Florian E Dorner, and Moritz Hardt. Training on the test task confounds
evaluation and emergence. ArXiv preprint arXiv:2407.07890, 2024.

Florian Dorner, Tom Sühr, Samira Samadi, and Augustin Kelava. Do personality tests generalize
to large language models? In NeurIPS Workshop on Socially Responsible Language Modelling
Research, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
ArXiv preprint arXiv:2407.21783, 2024.

Esin Durmus, Karina Nyugen, Thomas I Liao, Nicholas Schiefer, Amanda Askell, Anton Bakhtin,
Carol Chen, Zac Hatfield-Dodds, Danny Hernandez, Nicholas Joseph, et al. Towards measuring the
representation of subjective global opinions in language models. ArXiv preprint arXiv:2306.16388,
2023.

11

https://github.com/databrickslabs/dolly


Shangbin Feng, Chan Young Park, Yuhan Liu, and Yulia Tsvetkov. From Pretraining Data to
Language Models to Downstream Tasks: Tracking the Trails of Political Biases Leading to Unfair
NLP Models. Findings of the Association for Computational Linguistics, 2023.

R.M. Groves, F.J. Fowler, M.P. Couper, J.M. Lepkowski, E. Singer, and R. Tourangeau. Survey
Methodology. Wiley, 2009.

Jochen Hartmann, Jasper Schwenzow, and Maximilian Witte. The political ideology of conversational
AI: Converging evidence on ChatGPT’s pro-environmental, left-libertarian orientation. ArXiv
preprint arXiv:2301.01768, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021.

John J Horton. Large language models as simulated economic agents: What can we learn from homo
silicus? NBER Working Paper, 2023.

Hang Jiang, Doug Beeferman, Brandon Roy, and Deb Roy. CommunityLM: Probing Partisan
Worldviews from Language Models. In International Conference on Computational Linguistics,
2022.

Junsol Kim and Byungkyu Lee. AI-Augmented Surveys: Leveraging Large Language Models for
Opinion Prediction in Nationally Representative Surveys. ArXiv preprint arxiv:2305.09620, 2023.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452–466, 2019.

Sanguk Lee, Tai-Quan Peng, Matthew H Goldberg, Seth A Rosenthal, John E Kotcher, Edward W
Maibach, and Anthony Leiserowitz. Can large language models capture public opinion about
global warming? an empirical assessment of algorithmic fidelity and bias. ArXiv preprint
arXiv:2311.00217, 2023.

Tao Li, Daniel Khashabi, Tushar Khot, Ashish Sabharwal, and Vivek Srikumar. Unqovering stereo-
typing biases via underspecified questions. In Findings of the Association for Computational
Linguistics, pages 3475–3489, 2020.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan, Bobby
Yan, Ce Zhang, Christian Cosgrove, Christopher D. Manning, Christopher Ré, Diana Acosta-Navas,
Drew A. Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu
Yao, Jue Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun,
Nathan Kim, Neel Guha, Niladri Chatterji, Omar Khattab, Peter Henderson, Qian Huang, Ryan
Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tatsunori Hashimoto, Thomas Icard,
Tianyi Zhang, Vishrav Chaudhary, William Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta
Koreeda. Holistic evaluation of language models. ArXiv preprint arxiv:2211.09110, 2022.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. In Annual Meeting
of the Association for Computational Linguistics, volume 1, pages 8086–8098, 2022.

Andrew Mao, Naveen Raman, Matthew Shu, Eric Li, Franklin Yang, and Jordan Boyd-Graber.
Eliciting bias in question answering models through ambiguity. In Workshop on Machine Reading
for Question Answering, pages 92–99, 2021.

Jonathan Mellon, Jack Bailey, Ralph Scott, James Breckwoldt, Marta Miori, and Phillip Schmedeman.
Do ais know what the most important issue is? using language models to code open-text social
survey responses at scale. SSRN Electronic Journal, 2022.

12



Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Conference on Empirical Methods
in Natural Language Processing, pages 2381–2391, 2018.

MosaicML. Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs,
2023. URL www.mosaicml.com/blog/mpt-7b.

Fabio Motoki, Valdemar Pinho Neto, and Victor Rodrigues. More human than human: Measuring
chatgpt political bias. Available at SSRN 4372349, 2023.

Laura K Nelson, Derek Burk, Marcel Knudsen, and Leslie McCall. The future of coding: A com-
parison of hand-coding and three types of computer-assisted text analysis methods. Sociological
Methods & Research, 50(1):202–237, 2021.

OpenAI. Gpt-4 technical report. ArXiv preprint arXiv:2303.08774, 2023.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback. Advances in
Neural Information Processing Systems, 2022.

Ethan Perez, Sam Ringer, Kamile Lukosiute, Karina Nguyen, Edwin Chen, Scott Heiner, Craig
Pettit, Catherine Olsson, Sandipan Kundu, Saurav Kadavath, Andy Jones, Anna Chen, Benjamin
Mann, Brian Israel, Bryan Seethor, Cameron McKinnon, Christopher Olah, Da Yan, Daniela
Amodei, Dario Amodei, Dawn Drain, Dustin Li, Eli Tran-Johnson, Guro Khundadze, Jackson
Kernion, James Landis, Jamie Kerr, Jared Mueller, Jeeyoon Hyun, Joshua Landau, Kamal Ndousse,
Landon Goldberg, Liane Lovitt, Martin Lucas, Michael Sellitto, Miranda Zhang, Neerav Kingsland,
Nelson Elhage, Nicholas Joseph, Noemi Mercado, Nova DasSarma, Oliver Rausch, Robin Larson,
Sam McCandlish, Scott Johnston, Shauna Kravec, Sheer El Showk, Tamera Lanham, Timothy
Telleen-Lawton, Tom Brown, Tom Henighan, Tristan Hume, Yuntao Bai, Zac Hatfield-Dodds,
Jack Clark, Samuel R. Bowman, Amanda Askell, Roger Grosse, Danny Hernandez, Deep Ganguli,
Evan Hubinger, Nicholas Schiefer, and Jared Kaplan. Discovering language model behaviors with
model-written evaluations. In Findings of the Association for Computational Linguistics, pages
13387–13434, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Conference on Empirical Methods in Natural Language
Processing, 2016.

Joshua Robinson and David Wingate. Leveraging large language models for multiple choice question
answering. In International Conference on Learning Representations, 2023a.

Joshua Robinson and David Wingate. Leveraging large language models for multiple choice question
answering. In International Conference on Learning Representations, 2023b.

Jérôme Rutinowski, Sven Franke, Jan Endendyk, Ina Dormuth, and Markus Pauly. The Self-
Perception and Political Biases of ChatGPT. ArXiv preprint arXiv:2304.07333, 2023.

Nathan E Sanders, Alex Ulinich, and Bruce Schneier. Demonstrations of the potential of ai-based
political issue polling. ArXiv preprint arXiv:2307.04781, 2023.

Shibani Santurkar, Esin Durmus, Faisal Ladhak, Cinoo Lee, Percy Liang, and Tatsunori Hashimoto.
Whose opinions do language models reflect? International Conference on Machine Learning,
2023.

Nino Scherrer, Claudia Shi, Amir Feder, and David Blei. Evaluating the moral beliefs encoded in
llms. Advances in Neural Information Processing Systems, 36, 2024.

13

www.mosaicml.com/blog/mpt-7b


Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
answering challenge targeting commonsense knowledge. In Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages
4149–4158, 2019.

Lindia Tjuatja, Valerie Chen, Sherry Tongshuang Wu, Ameet Talwalkar, and Graham Neubig.
Do llms exhibit human-like response biases? a case study in survey design. ArXiv preprint
arXiv:2311.04076, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. ArXiv preprint arXiv:2307.09288, 2023.

Xinpeng Wang, Bolei Ma, Chengzhi Hu, Leon Weber-Genzel, Paul Röttger, Frauke Kreuter, Dirk
Hovy, and Barbara Plank. "my answer is C": First-token probabilities do not match text answers in
instruction-tuned language models. arXiv preprint arXiv:2402.14499, 2024.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In International Conference on Machine Learning,
pages 12697–12706, 2021.

Caleb Ziems, William Held, Omar Shaikh, Jiaao Chen, Zhehao Zhang, and Diyi Yang. Can large
language models transform computational social science? Computational Linguistics, 50(1):
237–291, 2024.

14



A Experimental details

We use the American Community Survey (ACS) Public Use Microdata Sample (PUMS) files made
available by the U.S. Census Bureau.5 The data itself is governed by the terms of use provided by the
Census Bureau.6 We download the data directly from the U.S. Census using the Folktables Python
package [Ding et al., 2021]. We download the files corresponding to the year 2019.

We downloaded the publicly available language model weights from their respective official Hugging-
Face repositories. We run the models in an internal cluster. The total number of GPU hours needed to
complete all experiments is approximately 1500 (NVIDIA A100). The budget spent querying the
OpenAI models was approximately $200.

We open source the code to replicate all experiments.7

In addition, the repository contains notebooks to visualize the results of our investigations under
different prompt ablations.

A.1 Survey questionnaire used

The exact questionnaire used in our experiments can be retrieved from our Github repository. We
consider 25 questions from the 2019 ACS questionnaire corresponding to the following variables in
the Public Use Microdata Sample: SEX, AGEP, HISP, RAC1P, NATIVITY, CIT, SCH, SCHL, LANX,
ENG, HICOV, DEAR, DEYE, MAR, FER, GCL, MIL, WRK, ESR, JWTRNS, WKL, WKWN,
WKHP, COW, PINCP. We take all questions as they appear in the ACS, with the exceptions:

• HISP: The ACS contains 5 answer choices corresponding to different Hispanic, Latino, and
Spanish origins, and respondents are instructed to write down their origin if their origin is
not among the choices provided. We instead provide two choices: “Yes” and “No".

• RAC1P: The ACS contains 15 answer choices, allows for selecting multiple choices, and
respondents are instructed to write down their race if not among those in the multiple choice.
The PUMS then provides up to 170 race codes (RAC2P and RAC3P). We instead present 9
choices, corresponding to the race codes of the RAC1P varible in the PUMS data dictionary.

Additionally, the variables ESR and COW are not directly associated with any single question in the
ACS, but rather aggregate employment information. We formulate them as questions by taking the
PUMS data dictionary’s variable and codes descriptions. Lastly, for the questions corresponding to
the variables AGE, WKWN, WKHP, and PINCP, respondents are asked to write down an integer
number. We convert such questions to multiple-choice via binning.

B Detailed experimental results

B.1 Model responses across questions before and after adjusting for A-bias

The results in this section complement Section 3, and pertain non-instruction-tuned language models.
When surveying models without choice order randomization, we observe that the entropy of model
responses tends to increase log-linearly with model size, often matching the entropy of the uniform
distribution for the larger models. This trend is consistent across survey questions, irrespective of the
question’s distribution over responses observed in the U.S. census (Figure 8).

B.2 A-bias of instruction-tuned models

The results in this section complement Section 3.1, and pertain instruction-tuned language models
as well as language models fine-tuned with reinforcement learning with human feedback (RLHF).
We observe that the strength of A-bias for these models, plotted in Figure 9, is comparable to that of
base pre-trained models, plotted in Figure 3. This motivates the use of choice-order randomization in
order to eliminate confounding due to labeling biases in models’ responses.

5https://www.census.gov/programs-surveys/acs/microdata.html
6https://www.census.gov/data/developers/about/terms-of-service.html
7https://github.com/socialfoundations/surveying-language-models
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B.3 Relative alignment across demographic subgroups

The results presented here complement those of Section 5. We plot the average KL divergence between
each language model and each demopgrahic subpopulation (U.S. state) against the average entropy
of the subgroup’s responses. For readability, we split models into GPT-2 and GPT-Neo (Figure 6(a)),
OpenAI’s API models (Figure 6(b)), MPT, Pythia, GPT-NeoX and its instruction variants (Figure 6(c)),
and LLaMA, Llama 2 and its instruction and chat variants (Figure 6(d)).

C Ordering bias: further experiments

We conduct additional randomization experiments pertaining to answer choice position and labeling
bias, complimenting Section 3. We consider the GPT-2, GPT Neo, MPT, Pythia, and LLaMA models.
The experiments follow a consistent setup:

1. We randomize both the order in which choices are presented and the label (i.e., letter) as-
signed to each answer choice. For example, for the "sex" question, the possible combinations
are “A. Male B. Female”, “A. Female B. Male”, “B. Male A. Female”, and “B. Female A.
Male”. Note that in the experiments presented in Section 3.1 we only randomized over the
order in which choices are presented (i.e., the “A” choice was always presented first).

2. We compute the output distribution over responses for choice position (the probability
assigned to the first, second, etc., answer choice presented) and letter assignment (the
probability assigned to the answer choice assigned “A”, “B”, etc.).

For each model and survey question, we estimate the expected distribution over responses for
both choice position and letter assignment by collecting 3,000 responses (step 2) under different
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randomizations of choice position and letter assignment (step 1). A model with no position and
labeling biases would assign the same probability distribution to answer choices (e.g., “male” and
“female”) regardless of position or letter assignment, and therefore the expected distributions over
position (e.g., selecting the first choice) and letter assignment (e.g., selecting “A”) would be uniform.

C.1 Disentangling ordering bias into positioning bias and labeling bias

We perform chi-square tests to determine whether language models’ output responses distributions
over position and letter assignment significantly deviate from the uniform distribution (i.e., if there
exists statistically significant bias in position or letter assignment). Since we collect 3,000 response
distributions under randomized choice position and letter assignment, we ensure a high test power (≥
0.98) in detecting small effect sizes (0.1) at a significance level of 0.05.

We find that models exhibit significant positioning and labelling for most survey questions, see
Figure 10. We observe that labelling is more prevalent that positioning bias. While both tend to
decrease with model size, order bias decreases more significantly with model size, whereas labeling
bias tends to be very prevalent across all model sizes. In Figure 11 we plot both the strength of A-bias
and first-choice bias across survey questions. The strength of A-bias tends to be greater than that of
first-choice bias, particularly for the smaller models.
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(b) Significant label bias.

Figure 10: All models exhibit statistically significant letter and ordering bias for most survey
questions.
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Figure 11: Models, particularly those with less than a few billion parameters, tend to exhibit stronger
A-bias than first-choice bias.

C.2 I-bias

We hypothesize that A-bias is prevalent because the single character “A” is relatively frequent as the
starting word of a sentence in written English. We test this hypothesis by replacing the character
“B” with “I” when presenting the survey questions, since the character “I” is even more frequent as
the starting word of a sentence in written English. We randomize over choice ordering and label
assignment as in the previous evaluation. We find that, when presenting both “A” and “I”, small
models then exhibit I-bias rather than A-bias (Figure 12), supporting our initial hypothesis.

C.3 Using letters with similar frequency in written English

Motivated by the I-bias experiment, we now examine whether labeling bias can be mitigated by using
letters that have similar frequency in written English. Therefore, instead of assigning to choices the
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(a) A-bias in the “A”, “I” randomization experiment.
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Figure 12: When both “A” and “I” are present, small models exhibit I-bias rather than A-bias.
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Figure 13: “R”, “S”, “N”, etc. randomization experiment. All models, irrespective of size, exhibit
statistically significant letter and positioning bias for most survey questions.

labels “A”, “B”, etc. we assign the following labels: “R”, “S”, “N”, “L”, “O”, “T”, “M”, “P”, “W”,
“U”, “Y”, “V”. We find that, compared to the “A”, “B”, etc. randomization experiment, the percentage
of questions for which models exhibit significant labeling bias somewhat decreases (Figure 13).
However, models tend to exhibit substantially more position bias. This indicates that, in the absence
of a label that provides a strong signal (e.g., “A” or “I”), models tend to exhibit significantly higher
choice-ordering bias, irrespective of model size.

D Prompt ablations

We reproduce our experiments using different prompts to query the model. Due to the cost of querying
OpenAI’s models, we only perform these ablations for models with publicly available weights. The
notebooks with all figures can be retrieved from our Github repository. 8

Overall, the prompt ablation results are very consistent with the findings presented in the main text of
the paper. In the following we provide an overview over the different ablations performed.

D.1 System rompt used for GPT-3.5 and GPT-4

When querying GPT-3.5, GPT-4, and GPT-4 Turbo, we use the system prompt Please respond with
a single letter., as otherwise for most questions none of the top-5 logits correspond to answer
choice labels (e.g., “A”, “B”). Note that this problematic arises due to the fact that the OpenAI API
only allows access to the top 5 logits. We adapt the system prompt used by Dorner et al. [2023] in the
context of surveying GPT-4 with standarized personality tests.

D.2 Individual survey questions

First, we use different styles to prompt individual survey questions. We enumerate the prompt styles
as (P1)-(P8).

Additional context. We first explore whether including additional context signaling that the
questions presented are from the American Community Survey, or that they are to be answered by

8https://github.com/socialfoundations/surveying-language-models/blob/main/prompt-ablations
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U.S. households. Keeping identical survey questions, we append at the start of the prompt one of the
following sentences:

(P1) Bellow is a question from the American Community Survey.
(P2) Answer the following question from the American Community Survey.
(P3) Answer the following question as if you lived at a household in the

United States.

Asking questions in the second person. We change the framing of the questions.

(P4) We modify the survey questionnaire such that questions are formulated in the second person
rather than the third person (e.g., “What is your sex?” instead of “What is this person’s
sex?”).

Including instructions. Following the prompt ablation of Santurkar et al. [2023], we append at the
start of the prompt one of the following instructions:

(P5) Please read the following multiple-choice question carefully and
select ONE of the listed options.

(P6) Please read the multiple-choice question below carefully and
select ONE of the listed options. Here is an example of the
format:\nQuestion: Question 1\nA. Option 1\nB. Option 2\n
C. Option 3\nAnswer: C

Chat-style prompt. We consider the prompt used by Durmus et al. [2023]:

(P7) Human: {question}\nHere are the options:\n{options}\n
Assistant: If had to select one of the options, my answer
would be

Interview-style prompt. We consider the prompt used by Argyle et al. [2023]:

(P8) Interviewer: {question}\n{options}\nMe:

D.3 Sequential generation

We use different prompts to integrate a model’s previous responses when prompting subsequent
survey questions. Instead of summarizing previous responses using bullet points as in Section 5, we
keep previous questions and answers in-context.

Question answering. Keeping questions and answers in-context resembles the typical few-shot
Q&A setting. For instance, prompting for the third question in the questionnaire corresponds to

Question: {question 1}\n{options 1}\nAnswer:{answer 1}\n

Question: {question 2}\n{options 2}\nAnswer:{answer 2}\n

Question: {question 3}\n{options 3}\nAnswer:

Interview-style prompt. We consider the prompting style used by Argyle et al. [2023]. For
instance, prompting for the third question in the questionnaire corresponds to

Interviewer: {question 1}\n{options 1}\nMe:{answer 1}\n

Interviewer: {question 2}\n{options 2}\nMe:{answer 2}\n

Interviewer: {question 3}\n{options 3}\nMe:

19



GPT2 110M

GPT Neo 125M
GPT2 355M

GPT2 774M

GPT Neo  1.3B
GPT2 1.5B

MPT 7B
Pythia 7B

Llama 2 7B
Pythia 12B

Llama 2 13B

GPT NeoX 20B
LLaMA 30B

Llama 2 70B

U.S. Census
0.0

0.5

1.0

Re
sp

on
se

 e
nt

ro
py

Survey question

GPT2 110M

GPT Neo 125M
GPT2 355M

GPT2 774M

GPT Neo  1.3B
GPT2 1.5B

MPT 7B
Pythia 7B

Llama 2 7B
Pythia 12B

Llama 2 13B

GPT NeoX 20B
LLaMA 30B

Llama 2 70B
0.0

0.2

0.4

0.6

A-
bi

as

Survey question

GPT2 110M

GPT Neo 125M
GPT2 355M

GPT2 774M

GPT Neo  1.3B
GPT2 1.5B

MPT 7B
Pythia 7B

Llama 2 7B
Pythia 12B

Llama 2 13B

GPT NeoX 20B
LLaMA 30B

Llama 2 70B

U.S. Census
0.0

0.5

1.0

Re
sp

on
se

 e
nt

ro
py

Survey question

MPT Inst 7B

MPT Chat 7B
Koala 7B

Vicuna 7B

Llama 2 Chat 7B
Dolly 12B

Koala 13B
Vicuna 13B

Llama 2 Chat 13B

NeoXT Chat 20B

Llama 2 Chat 70B

U.S. Census
0.0

0.5

1.0

Re
sp

on
se

 e
nt

ro
py

Survey question

GPT2 110M

GPT NEO 125M
GPT2 355M

GPT2 774M

GPT NEO 1.3B
GPT2 1.5B

MPT 7B
Pythia 7B

Llama 2 7B
Pythia 12B

Llama 2 13B

GPT NeoX 20B
LLaMA 30B

Llama 2 70B

0.8

0.9

1.0

Al
ig

m
en

t
(m

od
el

, R
ef

.)

MPT Instruct 7B

MPT Chat 7B
Koala 7B

Vicuna 7B

Llama 2 Chat 7B
Dolly 12B

Koala 13B
Vicuna 13B

Llama 2 Chat 13B

NeoXT Chat 20B

Llama 2 Chat 70B

0.8

0.9

1.0

Al
ig

m
en

t
(m

od
el

, R
ef

.)

Figure 14: Reproduction of the experiments in Sections 3 and 4 for the ATP surveys.

E Results for ATP, GAS, WVS, and ANES surveys

We reproduce the experiments of Sections 3 and 4 using the ATP, and GAS/WVS used by Santurkar
et al. [2023] and Durmus et al. [2023], where questions are presented individually of one another. We
additionally reproduce the experiments of Section 5 using the 2016 ANES questionnaire considered
by Argyle et al. [2023], where questions are presented in sequence. We do not consider OpenAI’s
models as the cost to reproduce the experiments via the OpenAI API exceeds our budget. We obtain
very similar results to those of the ACS presented in the main text of the paper. The notebooks with
all figures can be retrieved from our Github repository. 9

E.1 ATP surveys

We obtain the ATP survey questions and their corresponding human responses from the OpinionsQA
repository.10 We present all answer choices when querying the models, but exclude the answer choices
corresponding to refusals from our analysis similarly to Santurkar et al. [2023]. When comparing
the similarity of models’ responses to different demographic subgroups, we use the demographic
subgroups and the alignment metric considered by Santurkar et al. [2023]. For such metric, higher
values of alignment indicate that models’ responses are more similar to the reference demographic
group. We find that all models are more “aligned” with the uniformly random baseline than with any
of the demographic subgroups, see Figure 14.

E.2 GAS and WVS surveys

We obtain the ATP survey questions and their corresponding human responses from the GlobalOpin-
ionsQA repository.11 When comparing the similarity of models’ responses to the population-level
survey responses of different countries, we use the countries and the similarity metric considered by
Durmus et al. [2023]. We find that all models produce survey responses that are more similar to those
of the uniformly random baseline than to those of any of the demographic subgroups, see Figure 15.

9https://github.com/socialfoundations/surveying-language-models
10https://github.com/tatsu-lab/opinions_qa
11https://huggingface.co/datasets/Anthropic/llm_global_opinions
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Figure 15: Reproduction of the experiments in Sections 3 and 4 for the GAS/WVS surveys.

Figure 16: The discriminator test performed on datasets generated using the 2016 ANES survey
questionnaire (with choice randomization).

E.3 Relative alignment for ATP and GAS/WVS surveys

We consider the alignment measures proposed by Santurkar et al. [2023] and Durmus et al. [2023] on
ATP and GAS/VVS opinion surveys for the largest base / instruct models considered. We find that,
similarly to our observations for the ACS, the alignment between models and a given subpopulation
is highly correlated with the entropy of the subpopulations’ responses.

E.4 ANES survey

We present questions in the multiple-choice format described in Section 2, using the Interviewer:,
Me: prompt style described by Argyle et al. [2023]. We retrieve the 2016 ANES data from the official
website12, and process it such that it matches in form the questionnaire designed by Argyle et al.
[2023]. We find that the trained classifiers can discriminate between the model-generated data and
the ANES data with very high accuracy (≥99%), see Figure 16.

F Sequential sampling of responses

Motivated by recent findings of Argyle et al. [2023] we conducted an additional investigation where
we seek to fill entire ACS questionnaires in a sequential manner, in order to generate for each language
model a synthetic dataset of responses. This data emulates in form the ACS dataset collected by the

12https://electionstudies.org/data-center/2016-time-series-study/
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Information about this person:
• Sex is female
• Age is 65 years and over

Question: Is this person of Hispanic, 
Latino, or Spanish origin?
A. Yes
B. No
Answer:

P(A) = 0.55 P(B) = 0.45 A

Question: What is this person's sex?
A. Male
B. Female
Answer:

BP(A) = 0.58 P(B) = 0.42

Model’s response Sample

Information about this person:
• Sex is female

Question: What is this person’s age?
A. Under 5 years
…
G. 65 years and over
Answer:

P(A) = 0.12 P(G) = 0.15… G

Model’s response Sample
Model’s response Sample

Repeat to obtain a tabular 
dataset of responses

HISPRAGERSEX
YesOver 65Female

HISPRAGERSEX
YesOver 65Female

No5 to 15Male

No41 to 50Male

Yes5 to 15Female

Figure 17: Methodology and prompt template used to sequentially sample models’ responses to
entire survey questionnaires. We provide the answers to previous question in context when prompting
subsequent questions. The output is a tabular dataset of responses.

U.S. Census Bureau. We then study the extent to which such synthetic datasets resemble the ACS
dataset.

F.1 Methodology

We present survey questions in the same order as in the ACS questionnaire. When querying a model to
answer survey question q, we include a summary of the q − 1 previously sampled answers in context.
13 We then sample from the model’s output probability distribution over answers, and continue to the
next question. We illustrate this sequential process in Figure 17. We refer to Appendix D.3 for results
collected with different variations of how a model’s previous answers are integrated into the prompt.
We find our results to be robust to these prompt variations.

For each language model we sample N=100,000 model-generated responses to the ACS. Due to the
cost of querying OpenAI’s models, we only survey GPT-4 and sample N = 500 responses. As a
result, we generate for each language model a tabular dataset similar in form to the ACS data, with N
rows corresponding to each filled questionnaire and 25 columns corresponding to each question.

F.2 The discriminator test

We investigate whether the model-generated datasets resemble the U.S. census data by constructing a
binary prediction task aiming to discriminate synthetic responses from census responses. Intuitively,
if the two datasets were very dissimilar, then a classifier would be able to achieve high accuracy.
Formally, let F be class of binary prediction functions mapping each data point (i.e., a row in the
tabular dataset) to {0, 1}, then the accuracy of the best f ∈ F on the discriminator task provides a
lower bound on the total variation (TV) distance between the two empirical data distributions.

Hence, we train a predictor f to discriminate between the model-generated data and the census data
in order to obtain an empirical lower bound on the distance between the two datasets. Specifically,
we concatenate to each model-generated dataset a random sample of N individuals from the ACS
census data, and introduce a binary label indicating whether each row of the concatenated dataset
was model-generated or not. We then train an XGBoost classifier in this binary prediction task. As an
additional point of reference, we also consider the accuracy in discriminating between the census
data of any given U.S. state and an equally-sized sample of the ACS data of all other U.S. states.

We report mean test accuracy in Figure 18. We consider 100 different random seeds. We find that the
trained classifiers can differentiate between model-generated data and census data with very high
accuracy (> 90%) in all cases. Therefore, the empirical distributions corresponding to the model-
generated data and the census data have TV distance larger than 0.9. These stark results indicate that
data generated by sequentially prompting language models with the ACS survey questionnaire bears
little similarity with the data collected by surveying the U.S. population.

F.3 Contrast with silicon samples

Argyle et al. [2023] propose “silicon sampling”, a methodology to produce synthetic survey re-
spondents using LLMs by conditioning on actual survey respondents. They focus on a subset of

13The maximum number of tokens in a filled questionnaire was less than 1024 tokens in all cases, thus fitting
entirely within the context window of all surveyed models.
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Figure 18: Accuracy of the discriminator test. For all language models, it is possible to discriminate
with very high accuracy between the ACS census data and model-generated data, (é) before adjust-
ment and (é) after adjustment. We contrast this against the accuracy value of discriminating between
the ACS data of any given U.S. state and the rest of the ACS census data (–).

12 questions from the 2016 American National Election Studies (ANES) survey. For every human
respondent, they construct a corresponding “silicon individual” by querying GPT-3 to predict the
ANES respondent’s answer to each survey question given the respondent’s answers to all other
questions. Their results indicate that, for the 2016 ANES survey, GPT-3 can be a fairly calibrated
predictor of an individual’s answer to some survey question conditioned on the respondent’s answers
to all other survey questions.14

However, Argyle et al. [2023] emphasize that important insights can be gained by emulating the
survey responses of human populations “prior to or in the absence of human data”. In this work
we have considered precisely the setting where models’ responses are obtained in the absence of
human data.15 To investigate how our findings transfer to the ANES, we reproduce the experiments
of Section F using the 2016 ANES survey questionnaire considered by Argyle et al. [2023] and
their “interview-style” prompt. We apply the discriminator test, and find that the trained classifiers
can discriminate between the model-generated data and the ANES data with accuracy > 99 % (see
Appendix E), indicating that models’ responses are markedly different to those in the ANES data.

Thus, the fact that models may perform reasonably well at feature imputation tasks (e.g., predicting
an individual’s answer to some question given their answers to all other questions) does not imply
that models can generate synthetic respondents that resemble the responses obtained by surveying
human populations. This suggests caution when using LLMs to emulate human populations at present
time, in particular in the absence of human data.

14Lee et al. [2023] and Sanders et al. [2023] study imputation tasks similar to those of Argyle et al. [2023],
and find that LLMs are not calibrated predictors for a variety of such tasks.

15Conceptually, to generate each synthetic individual, we start with a blank survey questionnaire and prompt
the LLM to sequentially fill the entire questionnaire. Whereas we only prompt LLMs with their own responses
(i.e., to previous survey questions), Argyle et al. [2023] prompt the model only with actual human responses
from the 2016 ANES data.
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Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

25



Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Appendix A and the code release.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The main figures contain exact measures. We conduct significance tests on
Section B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, see Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We confirm that the research conducted in the paper conforms, in every respect,
with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We argue throughout the paper that current evaluation practices might result in
misleading claims regarding what subgroups current models best represent.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any models. We release models’ survey responses, which
pose no risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit the authors of the models considered, as well as the sources
of the surveys considered.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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