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Abstract

In this paper, we study an online strategic classification problem, where a princi-
pal aims to learn an accurate binary linear classifier from interactions with sequen-
tially arriving agents. For each agent, the principal announces a classifier. The
agent can strategically exercise costly manipulations on his features to be classi-
fied as the favorable positive class. The principal is unaware of the true feature-
label relationship, but observes all reported features and only labels of positively
classified agents. We assume that the true feature-label relationship is given by
a halfspace model subject to arbitrary feature-dependent but bounded noise (i.e.,
Massart noise). This problem faces the combined challenges of agents’ strategic
feature manipulations, partial feedback observations, and label noise. We tackle
these challenges by a novel learning algorithm. We show that the proposed al-
gorithm yields classifiers that converge to the clairvoyant optimal classifier and
attains a regret rate of O(

√
T ) up to poly-logarithmic and constant factors over T

cycles.

1 Introduction

Strategic classification studies the problem of learning robust classifiers in presence of self-interested
strategic agents. When subjugated to decision-making aided by classification algorithms, agents
may strategically modify their observable features to game the classification algorithms into making
decisions that best serve the agents’ goals. For example, a bank may use classification to determine
whether loan applicants are qualified to grant approvals. The applicants prefer positive classification
and loan approvals, so they have the incentive to modify their profiles (e.g., credit score), potentially
at certain costs, without actually improving their financial status. It is crucial that classification
algorithms used for decision-making be robust to such strategic manipulation.

Besides the strategic feature manipulation, another common challenge in classification-based
decision-making is that the decision-maker often only observes partial feedback. In particular, the
decision-maker may only observe the true labels of agents who have received the positive decision.
For example, the bank can observe the true financial qualification only for applicants who have
already been classified as qualified and granted loan approvals, but has no chance to observe the
true qualification of rejected applicants. This type of partial feedback is sometimes called one-sided
feedback, apple-tasting feedback [e.g., Harris et al., 2023, Helmbold et al., 2000] or selective label
feedback [e.g., Lakkaraju et al., 2017, Chen et al., 2025].

In this paper, we study an online strategic classification problem with partial feedback. In this
problem, a principal (decision-maker) interacts with sequentially arriving agents. The principal
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announces a binary linear classifier to each agent and makes the decision according to the agent’s
reported feature that may differ from the truth due to strategic manipulation. Following the existing
literature, we assume that the agents manipulate their features to maximize the net utility from the
classification decision and the cost of feature manipulation. We assume that the agents’ true feature-
label relationship is characterized by a linear halfspace model with arbitrary feature-dependent but
bounded noise (i.e., Massart noise). This model is widely adopted in the learning theory literature
(see references in Section 1.1). The principal does not know the true feature-label relationship, but
needs to learn accurate binary classifiers from observations of agents’ reported features (but not the
original true features) and the true labels of only positively classified agents.

Notably, this problem faces the combination of three challenges: agents’ strategic feature manipu-
lations, partial label observations, and label noise. First, because of strategic feature manipulation,
the agents’ true features may not be faithfully observed by the principal, which impedes the learn-
ing process. This is particularly a challenge in the online setting, as the agents’ strategic behaviors
depend on the classifiers announced to them, so their behaviors change over time as the classifiers
evolve. Second, the principal can only observe true labels from positively classified agents, without
feedback from negatively classified agents. This means that the principal can learn only when a pos-
itive classification is made, while the strategic agents are incentivized to manipulate their features
to achieve positive classification. Third, the label noise results in noisy feedback, which further
complicates the learning process.

Our work contributes to the literature along the following dimensions. First, to the best of our
knowledge, our work is the first to study online strategic classification under Massart noise and
partial feedback. This advances the literature of learning halfspaces under noise [e.g., Zhang et al.,
2020, Diakonikolas et al., 2020] to the strategic setting. Moreover, within the online strategic clas-
sification literature, our halfspace model with Massart noise extends the noise-free model of deter-
ministic feature-label relationship in Ahmadi et al. [2021], Shen et al. [2024] and complements the
fully adversarial setting [Dong et al., 2018, Chen et al., 2020]. Second, we propose a novel learning
algorithm that effectively addresses the aforementioned three key challenges. This algorithm has
an initialization-refinement-enhancement pipeline, proceeding in batches and iterations. It features
several key components: 1) a localization scheme that iteratively improves the classifiers via online
linear optimization, using data within increasingly narrow bands around the classification boundary;
2) a projection-based method to construct proxy features from agents’ reported features; 3) a pair-
wise contrastive inference technique to infer information of the localization bands by contrasting
data from pairs of carefully constructed classifiers. Third, we rigorously prove that the proposed
algorithm yields classifiers that converge to the clairvoyant optimal one and attains a regret rate of
O(

√
T ) up to poly-logarithmic and constant factors over T cycles.

1.1 Related Literature

Strategic Classification Strategic classification, introduced by Hardt et al. [2016], has gained in-
creasing attention. The existing literature has studied strategic classification in both offline settings
[e.g., Hardt et al., 2016, Sundaram et al., 2023, Levanon and Rosenfeld, 2021] and online settings.
In online strategic classification, a principal sequentially interacts with strategic agents, aiming to
learn accurate classifiers in the presence of strategic feature manipulation. Some literature models
agents’ strategic behaviors by a manipulation graph that defines agents’ feasible feature manipula-
tions [Ahmadi et al., 2023, 2024, Cohen et al., 2024, Shao et al., 2025]. Meanwhile, other literature
considers agents that maximize the utility net the cost of feature manipulation. For example, Dong
et al. [2018] derive conditions on the manipulation cost function that enable convex optimization
techniques to achieve a sublinear regret rate under different fractions of strategic agents. Chen et al.
[2020] consider a distance-based manipulation cost function and a zero-one loss function. Our work
considers the same cost function and loss function. However, Chen et al. [2020] studies a fully ad-
versarial setting, while our work studies a stochastic setting where agents’ true features and labels
follow some probability distributions. Our work is closely related to Ahmadi et al. [2021] and Shen
et al. [2024], as we study similar models for agents’ strategic behaviors and linear classifiers. How-
ever, their works focus on the noise-free setting with a deterministic feature-label relationship, while
our work tackles label noise.

Notably, nearly all prior studies focus on full feedback settings, whereas our work studies a partial
feedback setting. One exception is Harris et al. [2023], where the feedback can be observed also
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only under a positive decision. However, they consider continuous feedback following a linear
regression model with feature-independent noise and target a different objective. In contrast, our
work considers binary classification feedback and studies a halfspace model with potentially feature-
dependent bounded noise, which directly extends the models in Ahmadi et al. [2021], Shen et al.
[2024].

Learning Halfspaces with Noise Our paper adopts a halfspace model with the label flipped at a
potentially feature-dependent bounded probability, i.e., Massart noise [Massart and Nédélec, 2006].
Recent studies find that even in the absence of strategic agent manipulations, learning halfspaces
under Massart noise presents significant challenges [Zhang et al., 2020, Diakonikolas et al., 2019,
2020, 2024]. The key challenge stems from the nonconvexity of the 0-1 loss function that charac-
terizes the misclassification error. A standard approach to overcome the non-convexity of 0-1 loss
in classification is to use a convex surrogate loss function [Bartlett et al., 2006]. However, Awasthi
et al. [2015] show that popular algorithms such as SVM or hinge loss minimization fails to learn
a halfspace that achieves arbitrarily small excess error under Massart noise. More generally, Di-
akonikolas et al. [2019] show that one cannot achieve non-trivial misclassification error for learning
halfspaces under Massart Noise by optimizing convex surrogates. Instead, a “localization” scheme
has been proposed to learn halfspaces under a variety of noise models [e.g., Shen, 2021a, Awasthi
et al., 2017, Zhang and Li, 2021, Shen, 2021b, Awasthi et al., 2017]. In particular, Zhang et al.
[2020] and Diakonikolas et al. [2020] apply localization to learn halfspaces with Massart noise. The
core idea is to iteratively improve classification via convex optimization, using data within increas-
ingly narrow bands around the classification boundary. This localization scheme focuses more on
data near the classification boundary, as data far away from the boundary tend to be less informative
since they can be either easily correctly classified or misclassified mainly due to noise. However,
naïvely extending this localization scheme to strategic classification poses significant challenges,
because data points close to the classification boundary are the most prone to feature manipulation.
Our work effectively overcomes these challenges by leveraging carefully constructed proxy data and
a novel pairwise contrastive inference approach.

1.2 Notation

We employ the following notation throughout the paper. Boldface letters such as x, r,w denote
vectors. The operator ‖ · ‖p denotes any ℓp norm of a vector. The inner product of two vectors
is denoted by 〈·, ·〉 and the angle between two vectors is represented by θ (·, ·), i.e., θ (v1,v2) =

arccos
(

〈v1,v2〉
‖v1‖2·‖v2‖2

)
for ∀v1,v2 ∈ Rd. Symbols Bd and Sd denote the d-dimensional Euclidean

unit ball and sphere, respectively. Bd(R) denotes the ball with radius R > 0. For any positive
integer N , [N ] represents the set {1, 2, . . . , N}. The indicator function I(·) gives the value 1 if the
event within the parentheses holds and the value 0 otherwise.

2 Problem Setup

We consider a setting where a principal repeatedly interacts with sequentially arriving agents (e.g.,
applicants). Without loss of generality, time is discretized into T cycles, where one agent arrives in
each cycle t ∈ [T ]. The agent is characterized by a feature-label pair (xt, yt), where xt ∈ Rd denotes
a d-dimensional feature vector and yt ∈ {+1,−1} denotes the agent label (i.e., qualified or not). At
the beginning of each cycle t ∈ [T ], the principal announces a classifier h̃t(·) as the admission rule
for the arriving agent. The agent may strategically manipulate and report feature value rt 6= xt to
the principal at some costs, aiming to get admitted (i.e., classified as the positive class, h̃t(rt) = +1).
The principal observes the reported features rt, makes the classification decision h̃t(rt) accordingly,
and observes the true label yt only when this agent is admitted. Importantly, the principal has no
chance to observe the true label of rejected agents. Based on the data of reported features and
admitted agents’ labels, the principal aims to learn accurate classifiers over the T cycles.

Distributional Assumptions We assume that the feature-label pairs (x1, y1), . . . , (xT , yT ) are
independently and identically distributed (i.i.d) draws from a common population denoted by (x, y).
We need to first impose some distributional assumptions on (x, y).
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Assumption 1 (Halfspace with Massart noise). There exists a Boolean-valued function h∗(x) =
sgn(〈w⋆,x〉) for a coefficient vector w⋆ with ‖w⋆‖2 = 1 and a noise level bound η̄ ∈ [0, 1/2),
such that y = h⋆(x) with probability 1− η(x) and y = −h⋆(x) with probability η(x), where η(x)
characterizes the potentially feature-dependent noise satisfying 0 ≤ η(x) ≤ η̄ almost surely.

Assumption 1 is a standard assumption in the literature of learning halfspaces without strategic
manipulation [e.g., Zhang et al., 2020, Diakonikolas et al., 2020, Massart and Nédélec, 2006]. It
allows for arbitrary feature-dependent label noise with an upper bound η̄ ∈ [0, 1/2), and relaxes
the assumptions in some existing strategic classification literature that assumes a noiseless halfs-
pace model y = h⋆(x) and that the positive and negative classes are strictly separated by a margin
[e.g., Ahmadi et al., 2021, Shen et al., 2024]. Our assumption can more aptly model real applica-
tions where label noises are common and even feature-dependent. Nonetheless, unlike the existing
literature, we need to simultaneously handle both the strategic manipulation and label noise.
Assumption 2 (Regular feature distribution). Fix constants R,L1, L2, U1, U2, δ,Q > 0, and let xV

denote the projection of x onto any subspace V ⊆ Rd and ϕV denote its probability density function.
The distribution of features x satisfies the following regularity conditions for any 1-dimensional
subspace V1 ⊆ R and any 2-dimensional subspace V2 ⊆ R2:

1. ϕV1
(xV1

) ≥ L1 and ϕV2
(xV2

) ≥ L2 for any xV1
∈ V1 ∩ B1(R), xV2

∈ V2 ∩ B2(R).

2. ϕV1(xV1) ≤ U1 and ϕV2(xV2) ≤ U2e
−δ‖xV2

‖2 for any xV1
∈ V1, xV2

∈ V2.

3. For any t > 0 and unit vector w ∈ Sd, we have that P[| 〈w,x〉 | ≥ t] ≤ exp(1−Qt).

In Assumption 2, condition 1 requires that the densities of any 1-dimensional and 2-dimensional
projections of feature x are lower bounded around the origin. Condition 2 indicates that these
densities have proper upper bounds. Condition 3 requires that the inner product of x with any unit
vector w has a sub-exponential tail bound. These conditions generalize the feature distribution
conditions in a large body of literature on learning halfspaces with noise [e.g., Diakonikolas et al.,
2020, 2021, Zhang et al., 2020, Dasgupta, 2005, Yan and Zhang, 2017, Shen, 2021a, Awasthi et al.,
2017]. This existing literature typically assumes that the feature x has an isotropic log-concave
distribution, such as a uniform distribution over a unit sphere. In Appendix A.1, we show that
Assumption 2 accommodates even non-isotropic log-concave distributions, including many common
distributions such as uniform, Gaussian, exponential, logistic distributions, etc. Notably, we impose
distributional assumptions on the feature-label pairs, which differ from and complement the fully
adversarial setting in the literature [e.g., Dong et al., 2018, Chen et al., 2020, Ahmadi et al., 2024].

Agent Feature Manipulation We assume that each agent gains a utility of +1 for admission
(classified as +1) and −1 for rejection (classified as −1). An agent with true feature x may re-
port his feature as r to sway the classifier’s decision. Following Shen et al. [2024], Ahmadi et al.
[2021], we assume that this misreporting or manipulation incurs a cost Cost(x, r) = 2‖x − r‖2/γ,
where γ > 0 indicates the maximum manipulation distance. Therefore, upon the principal announc-
ing a classifier h̃(·), the agent’s optimal reported feature that maximizes the net utility would be
r⋆(x, h̃) = argmaxr∈Rd h̃(r)− 2‖x− r‖2/γ.

Given the linear model in Assumption 1, we restrict the principal’s classifier h̃ to linear classifiers
parameterized by (w,m) ∈ Sd × R, i.e., h̃(r) = sgn(〈w, r〉+m) . In this case, an agent’s optimal
reported feature is given in the following lemma [Shen et al., 2024, Ahmadi et al., 2021].

Lemma 1. Given an announced classifier h̃(r) = sgn(〈w, r〉 + m), the optimal reported feature
for an agent with true feature x is

r⋆(x, h̃) =

{
x− (〈w,x〉+m)w, −γ ≤ 〈w,x〉+m < 0;

x, otherwise.

The Clairvoyant Optimal Classifier Under the manipulated feature in Lemma 1, the misclas-
sification rate of a classifier h̃ can be measured by Err(h̃) := P(h̃(r⋆(x, h̃)) 6= y). We hope
to characterize a clairvoyant optimal classifier achieving the minimal misclassification rate: h̃⋆ ∈
argminh̃:Rd 7→{±1}Err(h̃). To this end, we first connect a classifier h̃ under the manipulated feature
r with a hypothetical classifier h under the corresponding true feature x.
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Proposition 1. For any (w,m) ∈ Sd×R, the output of h̃(r) = sgn(〈w, r〉+m−γ) for r = r⋆(x, h̃)
is identical to the output of h(x) = sgn(〈w,x〉+m) for any x ∈ Rd.

According to Assumption 1, the optimal classifier in absence of manipulation is h∗(x) =
sgn(〈w⋆,x〉). Following Proposition 1, we can achieve the same classification by a correspond-
ing classifier subject to manipulation, which gives the clairvoyant optimal classifier. This structural
knowledge of a clairvoyant optimal classifier will guide our algorithm design in Section 3.

Corollary 1. The classifier h̃⋆(r) = sgn(〈w⋆, r〉 − γ) minimizes Err(h̃) = P(h̃(r⋆(x, h̃)) 6= y).

Notably, the clairvoyant optimal classifier on the manipulated feature r has a higher threshold to
classify an agent into +1 than the corresponding optimal classifier h⋆(x) = sgn(〈w⋆,x〉) on the
true feature x. Indeed, the principal would like to raise the bar for positive classification, in order
to avoid errors due to unqualified agents (label −1) who game the classifier by manipulating their
features.

Principal’s Regret Over the T cycles, the principal learns a sequence of classifiers h̃ =
(h̃1, . . . , h̃T ), where each h̃t only depends on the observed data of reported features and admit-
ted agents’ labels prior to cycle t. The goal is to achieve a small cumulative misclassification rate
over all cycles. This is equivalent to achieving a small total suboptimality gap, or regret, relative to
the clairvoyant optimal classifier. Formally, the regret is defined as:

Reg(h̃;T ) :=
∑T

t=1 Err(h̃t)− T × Err(h̃⋆). (1)

This regret corresponds to the “Stackelberg regret” in the strategic classification literature, where
the term “Stackelberg” emphasizes that agents consistently choose their best feature manipulation
in response to the principal’s announced classifiers [Dong et al., 2018, Chen et al., 2020, Ahmadi
et al., 2024]. In the next section, we will propose a learning algorithm that effectively tackles the
combined challenges of agents’ feature manipulations, partial feedback observations, and label noise.
We prove that this algorithm achieves a

√
T -regret rate up to poly-logarithmic and constant factors.

3 The Algorithm

3.1 Overview of our Algorithm

Algorithm 1: Main-Algorithm
Input: Maximum manipulation distance γ, noise level bound η̄, lengths {Tinit} ∪ {Tk}Kk=0, bandwidths

{bk}Kk=0, stepsizes {αk}Kk=0, feature dimension d
1 w̄0 = Initialization(Tinit) // See Algorithm 2
2 w1 = Refinement(w̄0, η̄, T0, b0, α0, d) // See Algorithm 3
3 for k ← 1 to K do
4 wk+1 = Batched-Enhancement(γ,w1, η̄, k, Tk, bk, αk, d) // See Algorithm 4

Our main Algorithm, outlined in Algorithm 1, comprises three sub-algorithms: an Initialization
Algorithm (Algorithm 2), a Refinement Algorithm (Algorithm 3) and a Batched Enhancement Al-
gorithm (Algorithm 4). These algorithms are executed sequentially to generate a sequence of coef-
ficient vectors such that the corresponding classifiers converge to the clairvoyant optimal classifier
as specified in Corollary 1. Specifically, we partition the horizon of T cycles (one agent arrives in
each cycle) into consecutive batches indexed by k ∈ {init, 0, 1, 2, · · · ,K}. Index “init” and “0” de-
note the batches executing the Initialization and Refinement Algorithms, respectively, while indices
“1” to “K” represent the K batches that run the Enhancement Algorithm iteratively. Each batch k
takes the result of the previous batch k − 1 as input. Cycles in each batch k are further grouped
into iterations indexed by i ∈ {1, 2, · · · , Tk}, where each iteration i performs an update for the
coefficient vector w. At the end of batch k, the algorithms output the (normalized) average vectors
of the Tk iterations in the batch. During Refinement, each iteration consists of only one cycle. In
contrast, during Initialization and Enhancement, each iteration contains two cycles, denoted by the
superscript j = 1 or 2 to differentiate between the first and second cycles within the same iteration.
Note that the indices (k, i, j) can be mapped to the corresponding cycle t, for convenience, we will
use these indices in the remainder of this paper.
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Initialization Refinement Batched Enhancement

w0 w1 w2 w3 wk wk+1

2Tinit T0 2T1 2T2

. . .

2Tk

. . .

⟨w∗, w̄0⟩
≥ Ω(1− 2η)

w.h.p.

̸ (w∗,w1)
≤ π/4

w.h.p.

̸ (w∗,w2)
≤ π/8

w.h.p.

̸ (w∗,w3)
≤ π/16

w.h.p.

̸ (w∗,wk)
≤ π/2k+1

w.h.p.

̸ (w∗,wk+1)
≤ π/2k+2

w.h.p.

Figure 1: Roles of the three sub-algorithms

The roles of the three sub-algorithms are summarized in Figure 1. First, the Initialization Algorithm
runs for Tinit = O

(
lnT/(1− 2η̄)2

)
iterations (with 2Tinit cycles) to find a coefficient vector w̄0

such that θ (w⋆, w̄0) ≤ π
2 with high probability (see Proposition 2). Second, the Refinement Algo-

rithm takes w0 = w̄0/‖w̄0‖2 as the initial vector and runs for T0 = O
(
d ln d lnT/(1− 2η̄)8

)
iterations (with T0 cycles) to obtain a refined vector w1 such that θ (w⋆,w1) ≤ π

4 with high
probability (see Proposition 3). Third, the Batched Enhancement Algorithm runs for K =
O
(
log4 (1− 2η̄)4T/(γd ln d lnT )

)
batches, where each batch k enhances its initial coefficient vec-

tor wk through Tk = O
(
4kd ln d lnT/(1− 2η̄)4

)
iterations (with 2Tk cycles), yielding a vector

wk+1 such that θ (w⋆,wk+1) ≤ π
2k+2 with high probability (see Proposition 4). The specification

of the algorithms involves absolute constants c0 to c7, which are derived from the parameters in
Assumption 2. Detailed calculations are available in Appendix A.5.

3.2 Initialization

Algorithm 2: Initialization
Input: Iteration length Tinit

1 for i← 1 to Tinit do
2 Uniformly draw winit,i ∈ Sd

3 for j ← 1 to 2 do
4 Declare h̃

(j)
init,i(r) = (−1)j−1sgn(⟨winit,i, r⟩), agent (x(j)

init,i, y
(j)
init,i) arrives and reports r(j)init,i

5 Make classification decision h̃
(j)
init,i(r

(j)
init,i) and collect label y(j)

init,i if h̃(j)
init,i(r

(j)
init,i) = 1

6 return w̄0 = 1
Tinit

∑Tinit
i=1

∑2
j=1 y

(j)
init,ir

(j)
init,iI

(
(−1)(j−1)

⟨
winit,i, r

(j)
init,i

⟩
> 0

)

The initialization algorithm runs for Tinit = O(lnT/(1 − 2η̄)2) iterations. In each iteration, we
randomly explore a coefficient vector winit,i ∈ Sd and offer two opposing classifiers based on winit,i

to two successive agents. Using the reported features r(1)init,i, r
(2)
init,i and true labels y(1)init,i, y

(2)
init,i of all

positively classified agents over the Tinit iterations, we construct an initial coefficient vector w̄0.

The design of our initialization algorithm stems from the well-known “averaging” technique for
learning halfspaces [Servedio, 2001]. In the non-strategic, noiseless and full feedback setting,
y〈w⋆,x〉 = 〈w⋆, yx〉 ≥ 0 for all (x, y) ∈ Rd × {±1}, so yx forms an acute angle with the
optimal normal vector w⋆ almost surely (since the set {x | 〈w⋆,x〉 = 0} is zero-measure). Anal-
ogously, in the noisy feedback setting, we have 〈w⋆,E[yx]〉 > 0, so E[yx] forms an acute angle
with w⋆. In a non-strategic and full feedback setting, the literature uses the sample average of yx
to approximate E[yx] as an initial estimate of w⋆ [Zhang et al., 2020]. However, this estimator is
unavailable for us because of agents’ feature manipulation and the partial feedback setting. Instead,
our algorithm declares pairs of opposite classifiers. We collect and average the yr of agents whose
reported feature r falls above the hyperplane. Note that these agents report their features truthfully
(r = x), so we are able to form w̄0 from these agents’ yr as a proper approximation of E[yx]. We
can show that, for large enough Tinit, this vector w̄0 forms an acute angle with the optimal w⋆ with
high probability.
Proposition 2. For some constants c0, c1 > 0, when Algorithm 2 runs for Tinit = c0 lnT/(1− 2η̄)2

iterations, its output w̄0 satisfies 〈w⋆, w̄0〉 > c1(1− 2η̄) > 0 and θ (w⋆, w̄0) ≤ π
2 with probability

at least 1− 2/T 2.
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3.3 Refinement of the Initial Coefficient Vector

Algorithm 3: Refinement
Input: Initial vector w̄0, noise level η̄, iteration length T0, bandwidth b0, step size α0, feature dimension

d
Initialization :w0,1 = w̄0/∥w̄0∥2

1 for i← 1 to T0 do
2 Declare classifier h̃0,i(r) = sgn(⟨w0,i, r⟩), agent (x0,i, y0,i) arrives and reports r0,i
3 Make classification decision h̃0,i(r0,i) and collect label y0,i if h̃0,i(r0,i) = 1
4 Compute gradient: g̃0,i = [−η̄r0,iI (y0,i = 1) + (1− η̄)r0,iI (y0,i = −1)]I(0 < ⟨w0,i, r0,i⟩ ≤ b0)
5 Set constraint set: W0 = {w | ∥w∥2 ≤ 1, ⟨w, w̄0⟩ ≥ c1(1− 2η̄)}

6 Update w: ŵ0,i+1 = argminw∈W0 ⟨g̃0,i,w⟩+ 1
α0

∥w−w0,i∥2p
2(p−1)

, where p = ln(8d)
ln(8d)−1

7 Normalize: w0,i+1 = ŵ0,i+1/∥ŵ0,i+1∥2
8 Compute mean vector: w̄1 = 1

T0

∑T0
i=1 w0,i

9 return w1 = w̄1/∥w̄1∥2

The refinement algorithm adopts a “localization” scheme to refine the output w̄0 of Algorithm 2 to
better approximate w⋆. In every iteration i, we consider only data within a band 0 < 〈w0,i, r〉 ≤ b0
adjacent to the boundary of the current classifier h̃0,i(r) = sgn(〈w0,i, r〉). Agents in this band are
positively classified and have no incentives for feature manipulation, allowing us to observe both
the true feature x = r and the true label y. Moreover, this effectively probes the localized region
D0,i = {x : 0 < 〈w0,i,x〉 ≤ b0} in the true feature space. Similar “localization” is widely used
in the literature of learning half-spaces with label noises (see references in Section 1.1), since data
near the classification boundary is the most informative, while data far from the boundary are either
correctly classified with ease or are misclassified mainly due to noises, providing little information.

We formulate an online linear optimization problem with constructed losses {w 7→ 〈w, g̃0,i〉}T0
i=1

over a proper constraint set W0 = {w | ‖w‖2 ≤ 1, 〈w, w̄0〉 ≥ c1(1 − 2η̄)}. This con-
straint set, according to Proposition 2, contains w⋆ with high probability. We then solve this
problem by online mirror descent with a stepsize α0 and regularizer ‖w −w0,i‖2p/2(p− 1) for
p = ln(8d)/(ln(8d)− 1), perform proper normalization in each iteration, and normalize the aver-
age of all iterates to obtain the output w1. By focusing on the band {r : 0 < 〈w0,i, r〉 ≤ b0}, we
can perfectly observe r0,i = x0,i and y0,i and the gradients2 g̃0,i coincide with the counterparts in
Zhang et al. [2020]. As a result, we can follow their analysis to bound the error of the output w1.

Proposition 3. For the constant c1 in Proposition 2 and some constants c2, c3, c4 > 0, when the
initial vector w̄0 satisfies 〈w⋆, w̄0〉 ≥ c1(1−2η̄) and Algorithm 3 runs with bandwidth b0 = c2(1−
2η̄)2 for T0 = c3d ln d(lnT )

2/(1 − 2η̄)8 iterations with step size α0 = c4
√

d ln(d)/(
√
T0 lnT ),

then its output w1 satisfies θ (w⋆,w1) ≤ π/4 with probability at least 1− 3/T 2.

The main idea in proving Proposition 3 is outlined as follows. By the theory of online convex
optimization, we can upper bound the cumulative regret for the constructed loss in this stage, i.e.,∑T0

i=1 〈w0,i, g̃0,i〉 − 〈w⋆, g̃0,i〉. This regret bound, together with a bound on
∑T0

i=1 〈w0,i, g̃0,i〉
and a concentration bound on

∑T0

i=1 〈w⋆,−g̃0,i〉, leads to a high probability upper bound on∑T0

i=1 E [〈w⋆,−g̃0,i〉]. Moreover, it can be shown that E [〈w⋆,−g̃0,i〉] is lower bounded by
θ (w⋆,w0,i) up to some proportional factors. This is why we expect to obtain a high probability
upper bound on θ (w⋆,w1). Importantly, the gradients g̃0,i are carefully constructed to ensure that
|〈w0,i, g̃0,i〉| is small and meanwhile E [〈w⋆,−g̃0,i〉] upper bounds θ (w⋆,w0,i).

Notably, while Algorithm 3 collects true feature-label data and implements localization by focus-
ing on local bands around the origin-crossing classification hyperplanes h̃0,i’s, this approach can be
costly. According to Lemma 1, unqualified agents with true features x satisfying −γ ≤ 〈w0,i,x〉 ≤
0 would manipulate their features to achieve positive classifications, resulting in constant instanta-
neous regret. Fortunately, Algorithm 3 runs for only Õ(lnT ) cycles, so this refinement algorithm
obtains an improved coefficient w1 for the next stage at the cost of at most only Õ(lnT ) regret.

2It can be verified that g̃0,i is the gradient of a Leaky ReLu loss restricted to the band D0,i.
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3.4 Batched Enhancement: Proxy Features and Pairwise Contrastive Inference

Algorithm 4: Batched Enhancement
Input: Maximum manipulation distance γ, initial vector wk, noise level η̄, batch index k, iteration length

Tk, bandwidth bk, step size αk, feature dimension d
Initialization :wk,1 = wk

1 for i← 1 to Tk do
2 Construct classifiers h̃(1)

k,i(r) = sgn(⟨wk,i, r⟩ − γ) and h̃
(2)
k,i(r) = sgn(⟨wk,i, r⟩ − γ − bk)

3 for j ← 1 to 2 do
4 Declare classifier h̃(j)

k,i, agent (x(j)
k,i, y

(j)
k,i) arrives and reports r(j)k,i

5 Make classification decision h̃
(j)
k,i(rk,i) and collect label y(j)

k,i if h̃(j)
k,i(r

(j)
k,i) = 1

6 Construct proxy data: x̂(j,+)
k,i = Proj+Dk,i

(r
(j)
k,i)I(y

(j)
k,i = 1, r

(j)
k,i ∈ D̃

(j)
k,i), x̂

(j,−)
k,i =

Proj−Dk,i
(r

(j)
k,i)I(y

(j)
k,i = −1, r

(j)
k,i ∈ D̃

(j)
k,i)

7 Use the proxy data to compute the gradient: ĝk,i = −η̄(x̂(1,+)
k,i − x̂

(2,+)
k,i ) + (1− η̄)(x̂

(1,−)
k,i − x̂

(2,−)
k,i )

8 Update: ŵk,i+1 ← argminw∈Wk ⟨ĝk,i,w⟩+ 1
αk

∥w−wk,i∥2p
2(p−1)

, where p = ln(8d)
ln(8d)−1

, the constraint set
Wk = {w| ∥w∥2 ≤ 1, ⟨w,wk⟩ ≥ cos θk}, starting angle θk = π

2k+1

9 Normalize: wk,i+1 = ŵk,i+1/∥ŵk,i+1∥2
10 Compute mean vector w̄k+1 = 1

Tk

∑Tk
i=1 wk.i

11 return wk+1 = w̄k+1/∥w̄k+1∥2

In the non-strategic and full feedback setting, after obtaining the refined coefficient w1, Zhang
et al. [2020] further improves it by solving a sequence of adaptively constructed online lin-
ear optimization problems minw∈Wk

∑Tk

i=1 〈w,gk,i〉 with gk,i = [−η̄xk,iI (yk,i = 1) + (1 −
η̄)xk,iI (yk,i = −1)]I(−bk < 〈wk,i,xk,i〉 ≤ bk) via mirror descent over k = 1 . . . ,K batches,
using local data within increasingly narrow bands {x | −bk < 〈wk,i,x〉 ≤ bk} around the classifi-
cation hyperplanes. This process can geometrically reduce the error of the coefficient estimates,
outputting a final classifier that approaches the optimal classifier after enough batches. The key in-
gredient underlying this guarantee is that the gradients gk,i are well constructed so that |〈wk,i,gk,i〉|
is small and meanwhile E [〈w⋆,−gk,i〉] upper bounds θ (w⋆,wk,i) (see discussions below Proposi-
tion 3). One may consider directly implementing this batched enhancement approach in our strategic
classification. In particular, one may again use classifiers h̃k,i(r) = sgn(〈wk,i, r〉) and focus on the
band Dk,i = {x | 0 < 〈wk,i,x〉 ≤ bk} in each batch k and iteration i, since this enables us to collect
the true feature-label data and probe the localized region Dk,i. However, as we discussed at the
end of Section 3.3, this approach may result in constant instantaneous regret in every cycle due to
unqualified strategic agents, so that O(T ) regret accumulates over the O(T ) cycles in this stage.

To avoid excessive errors due to feature manipulation, we can instead employ classifiers h̃k,i(r) =

sgn(〈wk,i, r〉 − γ), mimicking the form of the clairvoyant optimal strategic classifier h̃⋆ and raising
the bar for positive classification to tackle strategic behaviors (see Corollary 1). However, this gives
rise to new challenges: it is unclear how to construct the gradients gk,i and probe the localized
regions Dk,i, since both depend on the true features, but all agents in the localized regions Dk,i

misreport their features. This means that we know neither which agents’ true feature values belong
to the regions Dk,i nor their true feature values. To tackle these challenges, we propose two key
ideas: proxy features and pairwise contrastive inference.

Proxy Features Even if we assume, for the sake of argument, that we can identify agents whose
true features lie in Dk,i, their true feature values remain unobservable, since they all misreport their
features to secure positive classification (so their reported feature values fall on the hyperplane of
the announced classifier). To resolve this, we construct proxy features from the reported features.

Specifically, consider an agent with true feature value x ∈ Dk,i and reported feature value r. This
agent will manipulate his feature to get positively classified, and thus we can observe his true label.
If his true label is y = +1, then we construct his proxy feature x̃ as the projection of r onto the
upper boundary of Dk,i, i.e., x̃ = Proj+Dk,i

(r) := r + (bk − 〈wk,i, r〉)wk,i. On the contrary, if his
true label is y = −1, then we construct his proxy feature x̃ as the projection of r onto the lower
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boundary of Dk,i, i.e., x̃ = Proj−Dk,i
(r) := r − 〈wk,i, r〉wk,i. As a result, this agent’s proxy

feature value, like his true feature value, also belongs to Dk,i, and the proxy feature value under a
positive label (i.e., projection onto the upper boundary of Dk,i) is more aligned with the direction
of positive classification than the proxy feature value under a negative label (i.e., projection onto the
lower boundary of Dk,i). See the illustration in Figure 2(a).

Using the proxy features, we can approximate the ideal gradient gk,i by a proxy gradient g̃k,i =

[−η̄Proj+Dk,i
(rk,i)I (yk,i = 1) + (1− η̄)Proj−Dk,i

(rk,i)I (yk,i = −1)]I(xk,i ∈ Dk,i). Although this
may not exactly recover the ideal gradient, it is still effective, in that |〈wk,i, g̃k,i〉| is small and
E [〈w⋆,−g̃k,i〉] ≥ E [〈w⋆,−gk,i〉] also upper bounds θ (w⋆,wk,i) (see Appendix A.5). Therefore,
we can use the proxy gradients g̃k,i in the algorithm to achieve similar guarantees. Nevertheless,
these proxy gradients require knowing whether an agent’s true feature value belongs to the localized
region Dk,i or not, which is still infeasible in our setting. This motivates our second key idea.

Pairwise Contrastive Inference We propose to offer two classifiers h̃(1)
k,i(r) = sgn(〈wk,i, r〉 − γ)

and h̃
(2)
k,i(r) = sgn(〈wk,i, r〉 − γ − bk) successively in each iteration. Under classifier h̃(1)

k,i(r), we

consider only agents with reported features in D̃
(1)
k,i = {r : γ ≤ 〈wk,i, r〉 ≤ γ + bk}, while under

classifier h̃(2)
k,i(r), we consider only agents with reported features in D̃

(2)
k,i = {r : 〈wk,i, r〉 = γ+bk}.

These agents are all classified into the positive class, so their true labels are observed. Moreover,
according to the feature manipulation rule in Lemma 1, these agents have true feature values in
D

(1)
k,i = {x : 0 ≤ 〈wk,i,x〉 ≤ γ + bk} and D

(2)
k,i = {x : bk ≤ 〈wk,i,x〉 ≤ γ + bk}, respectively.

Since Dk,i = D
(1)
k,i \D

(2)
k,i up to a measure-zero set, we can expect to infer distributional properties

of the data within the region Dk,i of interest by contrasting the data within D
(1)
k,i and the data within

D
(2)
k,i . We call this a pairwise contrastive inference approach, which is illustrated in Figure 2(b).

We can use this approach to infer the two key components in the proxy gradient gk,i. Note

E
[
Proj+Dk,i

(rk,i)I (yk,i = 1,xk,i ∈ Dk,i)
]
= E

[
x̂
(1,+)
k,i − x̂

(2,+)
k,i

]
,

where x̂
(j,+)
k,i = Proj+Dk,i

(r
(j)
k,i)I

(
y
(j)
k,i = 1, r

(j)
k,i ∈ D̃

(j)
k,i

)
for j = 1, 2. This means that we can use

x̂
(1,+)
k,i − x̂

(2,+)
k,i to unbiasedly infer one key component of g̃k,i in expectation. Similarly, we can

construct x̂(1,−)
k,i − x̂

(2,−)
k,i to infer the other component. This gives our gradient estimate ĝk,i in Al-

gorithm 4 Line 7, satisfying that E [〈w⋆,−ĝk,i〉] = E [〈w⋆,−g̃k,i〉] also upper bounds θ (w⋆,wk,i).

After getting the gradient estimator ĝk,i, we again conduct online mirror decent with a regularizer
similar to that in Algorithm 3 and constraint set Wk = {w| ‖w‖2 ≤ 1, 〈w,wk〉 ≥ cos θk}, where
θk = π

2k+1 . Then we output the normalized average coefficient vector wk+1 for the next batch. Our
constraint set ensures that θ(wk,i,wk) ≤ π/2k+1 for all i ∈ [Tk]. Then, when the input vector
wk satisfies θ (w⋆,wk) ≤ π/2k+1, we have θ(w⋆,wk,i) ≤ θ(w⋆,wk) + θ(wk,i,wk) ≤ π/2k

by a triangular inequality shown in Appendix A.3, Lemma 12. This statement is critical: First, it
controls the expected cumulative error in batch k to be O

(
1
2k

· Tk

)
. Second, the condition that

θ(w⋆,wk,i) ≤ π/2k, together with our localized online mirror descent method, ensures that batch k
outputs a vector wk+1 that satisfy θ(w⋆,wk+1) ≤ π/2k+2 with high probability (see Proposition 4),
which is in turn required by the next batch.
Proposition 4. For some constants c5, c6, c7 > 0, when Algorithm 4 runs with an initial vec-
tor wk satisfying θ (w⋆,wk) ≤ θk = π/2k+1, bandwidth bk = c5(1 − 2η̄)2−k for Tk =

c64
k(γ + 1)d ln d(lnT )2/(1− 2η̄)4 iterations with step size αk = c7

√
d ln dθk/(

√
Tk lnT ), its

output wk+1 satisfies θ (w⋆,wk+1) ≤ θk+1 = θk
2 with probability at least 1− 6/T 2.

Proposition 4 shows that Algorithm 4 enhances its input by reducing the error by half in every batch,
generating a sequence of coefficient estimates (wk)

K
k=1 with geometrically decaying errors. Notably,

we achieve the enhancement by classifiers h̃(1)
k,i , h̃

(2)
k,i that use at least γ classification thresholds and

are hence more resilient to errors due to strategic classification, which results in only a sublinear
regret, as we will show in Theorem 1.
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x1 (r1)

x2 (r2)

wk,i
w⋆

bk

γ

O

(a) Proxy Feature

x1 (r1)

x2 (r2)

wk,i
w⋆

bk

γ
γ

bk

O

D
(1)

k,i

D
(2)

k,i

Dk,i

(b) Contrastive Inference

true feature x with label +1 true feature x with label −1
reported feature r with label +1 reported feature r with label +1
proxy feature x̃ with label +1 proxy feature x̃ with label +1
region {x | ⟨w⋆,x⟩ ≥ 0} region {x | ⟨w⋆,x⟩ < 0}
the band of interest Dk,i = {x | 0 ≤ ⟨wk,i,x⟩ ≤ bk} hyperplane of optimal classifier h⋆(x) = sgn(⟨w⋆,x⟩)
hyperplane of h̃

(1)
k,i(r) = sgn(⟨wk,i, r⟩ − γ)} hyperplane of classifier h̃

(2)
k,i(r) = sgn(⟨wk,i, r⟩ − γ − bk)

1

Figure 2: (a) The gray arrows indicate how agents with true feature values (circles) within the band
Dk,i manipulate their features (triangles). The blue and red arrows indicate how we construct proxy
features (squares) from the reported features of agents with labels +1 and −1, respectively. (b) By
declaring classifiers h̃

(1)
k,i and h̃

(2)
k,i , we collect data from agents with true values in D

(1)
k,i and D

(2)
k,i

respectively, through which we infer the information for agents in the region Dk,i of interest.

4 Regret Guarantee

We now provide a formal regret guarantee of Algorithm 1, showing that it achieves a sublinear regret
dependent on the noise level η̄ and feature dimension d.
Theorem 1. For any instance of our online strategic classification problem with noise level η̄, max-
imum manipulation distance γ, and feature dimension d, the expected regret of classifiers h̃ from
Algorithm 1 over T cycles satisfies

E[Reg(h̃;T )] = O
(
d ln d× (lnT )2/(1− 2η̄)8 +

√
(γ + 1)d ln d× T lnT/(1− 2η̄)2

)
.

We prove the theorem by analyzing the regret incurred by each of the three sub-algorithms in Sec-
tion 3. The full proof is outlined in Appendix A.6. We also conduct numerical experiments to
evaluate our proposed algorithm, with results presented in Appendix A.2.

5 Concluding Remarks

In this paper, we study an online strategic classification problem under Massart Noise with partial
feedback. The settings are of practical relevance yet theoretically challenging. We introduce a novel
algorithm that concurrently learns a linear classifier and manages instantaneous prediction errors.
The algorithm leverages localization to mitigate the complexities induced by Massart noise. The
strategic manipulation of agents poses a critical challenge by limiting access to reliable training data;
thus, the core innovation of our approach lies in using carefully designed classifier pairs to collect
some proxy data and contrasting their data for effective learning. This pairwise contrastive inference
approach with proxy data effectively addresses the challenges in online strategic classification. This
paper has some limitations. First, our algorithm is specifically designed for Massart Noise. Second,
this paper assumes that agents’ utility functions are homogeneous and known to the principal. Third,
we adopt as an objective the traditional classification accuracy metric. Future research directions
include extending the algorithm to overcome these limitations.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract accurately reflects the paper’s contributions and scope by stating
that the paper addresses the online strategic classification problem and proposes a novel
learning algorithm that converges to the optimal classifier and achieves a regret rate of
O(

√
T ) (up to poly-logarithmic and constant factors). It also clearly outlines the combined

challenges of agents’ strategic feature manipulations, partial label observations, and label
noises.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 5, we acknowledge our limitations and point out some future direc-
tions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions are clearly stated in Assumption 1 and Assumption 2. We
provide a complete proof in our appendix and provide proof sketches in Section 3 and
Section 4.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We use Python 3.9 to conduct our numerical experiments. All settings and
results are listed in Appendix A.2. We guarantee that our results are genuine and credible.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The paper provides the code and data required for the experiments in the sup-
plementary material. The code is well-organized and well-documented, which facilitates
the reproduction process.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details of our numerical experiment is listed in Appendix A.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We present the mean regret rate of all algorithms, calculated across 10 inde-
pendent experimental replications in Appendix A.2 The experimental findings are consis-
tent with the theoretical assurances we provide in Section 4.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We state in Appendix A.2 that all experiments can be conducted locally using
a standard CPU without requiring specialized hardware, making reproduction accessible
and straightforward.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, the research performed in the paper conforms with the NeurIPS Code of
Ethics. The paper does not involve human subjects or sensitive personal information, so
issues like privacy and consent are not applicable. The research focuses on developing an
algorithm for strategic classification under specific noise conditions, and it does not present
any foreseeable risks of harm, discrimination, or other unethical consequences as outlined
in the Code of Ethics. Our numerical experiment only uses simulated data, so it does not
involve any deprecated datasets or copyright violations.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss in Section 1 that agents’ strategic feature manipulation can hurt
a certain classification rule, and we design an algorithm to prevent this, which is a poten-
tial positive societal impact. This algorithm aims to enhance the fairness and accuracy of
automated decision-making systems, potentially reducing financial losses from misclassifi-
cations. While the research focuses on foundational aspects and does not directly address
all potential negative societal impacts, we acknowledge the importance of considering such
implications as the technology evolves.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The research in this paper focuses on developing an algorithm for online
strategic classification and does not involve the release of data or models with high misuse
risks, such as pretrained language models, image generators, or scraped datasets. Therefore,
no specific safeguards for such releases are applicable.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The research in this paper focuses on developing a novel algorithm for online
strategic classification. We do not use any existing assets such as code, data, or models
from external sources. All methods and experiments are designed and implemented by us,
so there are no original owners or licenses to credit.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: The research in this paper does not release any new assets such as datasets,
code, or models. Therefore, no new assets are introduced that would require documenta-
tion.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The research in this paper does not involve crowdsourcing experiments or
research with human subjects. Therefore, there are no instructions, screenshots, or com-
pensation details to provide.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.
• Including this information in the supplemental material is fine, but if the main contri-

bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This research does not involve crowdsourcing or research with human sub-
jects. Therefore, there are no risks to participants, disclosures, or IRB approvals to report.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methodology of this research does not involve the use of LLMs as
any important, original, or non-standard components. LLMs were not utilized in develop-
ing the algorithms or conducting the experiments.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Feature Regularity Conditions and General Log-concave Distributions

The literature on learning halfspaces with noise typically assumes that the feature vector x has an
isotropic log-concave distribution [Balcan and Long, 2013, Awasthi et al., 2017, Zhang et al., 2020,
Shen, 2023]. The log-concave and isotropic log-concave distributions are defined as follows.
Definition 1 (Isotropic log-concave distribution [Lovász and Vempala, 2007]). A random vector
z over Rd with probability density function ϕz(·) follows a log-concave distribution if lnϕz(·) is
concave. Moreover, it is isotropic if E [z] = 0 and E

[
zzT

]
= I .

The following lemma summarizes some important properties of (isotropic) log-concave distributions
that have been proved by literature.
Lemma 2. Suppose z ∈ Rd with probability density function ϕz(·) follows a log-concave distribu-
tion. Then, the following holds.

(a) (Klivans et al. [2009] Lemma 5.17) For d = 1, assume that E
[
z2
]
= C2, then for every

t > 0, P (| z | > t) ≤ e−Ct+1.

Moreover, if z is isotropic, then,

(b) (Lovász and Vempala [2007] Lemma 5.2) ϕz(z) ≥ β1(d) for all 0 ≤ ‖z‖2 ≤ 1/9, where
β1(d) = 2−8d.

(c) (Lovász and Vempala [2007] Lemma 5.5) For d = 1, ϕz(z) ≤ 1.

(d) (Klivans et al. [2009] Lemma 7 ) For d ≥ 2, ϕz(z) ≤ β2(d)e
−β3(d)‖z‖2 , where β2(d) =

28ddd/2e and β3(d) =
2−7d

2(d−1)(20(d−1))(d−1)/2 .

Following Lemma 2, one can show that any mean-zero isotropic log-concave distribution satisfies
the regularity conditions in assumption 2. Importantly, in this part, we show that the regularity
conditions can hold even for a mean-zero log-concave distribution that is not isotropic. In this
case, eigenvalue bounds on the covariance matrix of the distribution determine the corresponding
regularity parameters.
Lemma 3. Let x ∈ Rd (d ≥ 2) have zero mean and a log-concave distribution. Suppose the
eigenvalues of its covariance matrix Σ = E

[
xx>] are all bounded within [λ, λ] for some positive

constants λ, λ, then the distribution of x satisfies the regularity conditions in assumption 2, with
parameters L1 = β1(1)√

λ̄
, L2 = β1(2)

λ̄
, R = 1

9

√
λ, U1 = 1√

λ
, U2 = β2(2)

λ , δ = β3(2)√
λ̄

, Q =
√
λ for

β1(1), β1(2), β2(2), β3(2) given in Lemma 2.

A.2 Numerical Experiments

In this subsection, we conduct numerical experiments to evaluate our proposed algorithm. To high-
light the challenges posed by Massart Noise and strategic behavior, and to demonstrate the effective-
ness of our algorithm, we compare its regret against two benchmarks: (1) the Strategic Perceptron
algorithm from Ahmadi et al. [2021], designed for noiseless online strategic classification, and (2)
the PAC learning algorithm for halfspaces with Massart Noise from Zhang et al. [2020], designed
for non-strategic classification. Note that these benchmarks are both originally designed for full
feedback settings, whereas our work focuses on partial feedback. We evaluate the performance of
these benchmark algorithms both when they have access to full feedback (while our algorithm does
not) and when they only use partial feedback as our algorithm.

We test the algorithms under two different settings, with key parameters outlined in Table 1. Each
setting is replicated 30 times, and we report the average regret for each algorithm. Our analysis
includes a performance comparison of the different algorithms and an investigation of how various
problem parameters influence our proposed algorithm.

Benchmark against Strategic Perceptron by Ahmadi et al. [2021] To understand the impact
of Massart Noise, we compare our algorithm with the Strategic Perceptron algorithm from Ahmadi
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Table 1: Numerical experiment settings.

Index Dx η̄ η(x) γ w⋆

Setting 1 Standard Normal 0.1 η(x) = η̄(1− exp(−∥x∥2)) 0.1 (1,0)
Setting 2 Unit Ball 0.1 η(x) = η̄ 0.1 (1,0)

et al. [2021]. This algorithm provably achieves only a finite number of mistakes under a noiseless
model where the feature-label relationship is deterministic and the true and negative classes are
strictly separated by a positive margin. Ahmadi et al. [2021] modify the classical Perceptron algo-
rithm by setting a higher threshold for classifying an agent as positive and proxy surrogate features
to estimate the agents’ true features. Their proxy feature is defined as follows.

Definition 2 (x̃t, proxy feature , Ahmadi et al. [2021]). For a given classifier h̃(·) = sgn(〈w, ·〉+m),
an agent (x, y) reports his feature as r according to Lemma 1. Then the corresponding proxy feature
x̃t in Ahmadi et al. [2021] is defined as

x̃t =

{
rt − γw 〈w, rt〉 = γ and yt = −1;

rt otherwise.
(2)

Algorithm 5: Original Strategic Perceptron with Full Feedback (Ahmadi et al. [2021])
1 Accept the first agent without declaring any classifier
2 if y1 = 1 then
3 ŵ2 ←− r1
4 else
5 ŵ2 ←− −r1
6 w2 ←− ŵ2/∥ŵ2∥2
7 for t = 2 · · · , T do
8 Declare classifier h̃t(r) = sgn(⟨wt, r⟩ − γ), receive agent response rt

9 Classify the agent as ŷt = h̃t(rt)
10 if yt ̸= ŷt then
11 ŵt+1 ←− wt + ytx̃t, wt+1 ←− ŵt+1/∥ŵt+1∥2
12 else
13 wt+1 ←− wt

Their original algorithm, designed for the full feedback setting, is presented in Algorithm 5. Algo-
rithm 6 below directly adapts this algorithm to our partial feedback setting. Specifically, instead of
using all data points that incur misclassifications for update, the refined algorithm uses only posi-
tively classified agents with true labels −1 to adjust the coefficient vector.

Algorithm 6: Strategic Perceptron with Partial Feedback
1 Accept the first agent without declaring any classifier
2 if y1 = 1 then
3 ŵ2 ←− r1
4 else
5 ŵ2 ←− −r1
6 w2 ←− ŵ2/∥ŵ2∥2
7 for t = 2 · · · , T do
8 Declare classifier h̃t(r) = sgn(⟨wt, r⟩ − γ), receive agent response rt
9 if ⟨w, rt⟩ ≥ γ then

10 Accept the agent and receive his true label yt
11 else
12 Reject the agent without getting his true label
13 if yt = −1 then
14 ŵt+1 ←− wt − x̃t, wt+1 ←− ŵt+1/∥ŵt+1∥2
15 else
16 wt+1 ←− wt
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Figure 3: Average regrets of our algorithm and two Strategic Perceptron-based benchmark algo-
rithms over different time horizons T under the two settings listed in Table 1. Results are based on
30 independent replications of the experiment.

Figure 3 illustrates the average regret of each algorithm over 50,000 cycles in both settings listed
in Table 1. We observe that our algorithm’s regret grows sublinearly, while the two benchmarks’
regrets may accumulate linearly. The original Strategic Perceptron with full feedback (the dashed
red line) demonstrates slightly better performance compared to its partially feedback-modified coun-
terpart (the dashed green line). However, the improvement remains marginal, suggesting that our
partial feedback setting is not the primary cause of the Strategic Perceptron’s failure. Intuitively, the
ineffectiveness of the two benchmarks stems from their sensitivity to noise when updating with data
from all admitted agents. When θ(w⋆,wt) is relatively small but 〈wt, rt〉 (equals 〈wt,xt〉 when
〈wt, rt〉 > γ) is large, the algorithm is more likely to admit a ‘wrong’ agent (yt = −1 but h̃(rt) = 1)
due to noise rather than an inaccurate classifier. Since the perceptron algorithm updates are based
on mistakes (Rosenblatt [1958]), the presence of noise increases the probability of misleading up-
dates for the classifiers. In contrast, our algorithm explores a small band near the decision boundary,
whose bandwidth decreases proportionally to θ(w⋆,wk), k = 1, 2, · · · ,K across batches. Within
this band, wrong admissions are more likely due to suboptimal classifiers than noise, making the
update more effective. This enables our algorithm to gradually converge to the optimal decision.

Benchmark against Non-Strategic Learning under Massart Noise by Zhang et al. [2020]
Next, to highlight the impact of agents’ strategic behavior, we compare our algorithm against the
algorithm proposed by Zhang et al. [2020] (see Algorithm 7), which is designed for adaptively learn-
ing halfspaces with Massart Noise in the non-strategic classification setting. Their algorithm also
adopts a localization scheme that focuses on data within an increasingly narrow band near the clas-
sification boundary and uses online mirror descent in batches for classifier updates. However, they
do not consider the impact of agents’ strategic behavior. We test the performance of their algorithm
under strategic manipulation in both full feedback and partial feedback settings. The two settings
differ in: 1) whether the principal can collect labels of those who are negatively classified (full
feedback) or not (partial feedback) and 2) the algorithm chooses different bandwidths for updates,
namely, {r | −bk ≤ 〈wk,i, rk,i〉 ≤ bk} for the full feedback setting and {r | 0 < 〈wk,i, rk,i〉 ≤ bk}
for the partial feedback setting.

As shown in Figure 4, after a common pure exploration phase, the regret of the non-strategic learning
algorithm in both full feedback and partial feedback settings grows linearly. This is because the non-
strategic learning algorithm ignores agents’ strategic manipulation. Consequently, true negative
agents may misreport their features to be positively labeled. In contrast, our algorithm accounts for
agents’ strategic behavior and is able to efficiently learn the ground truth distribution.
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Algorithm 7: Non-Strategic Learning under Massart Noise
Input: Feedback setting F , noise level bound η̄, lengths {Tinit} ∪ {Tk}Kk=0, bandwidths {bk}Kk=0, step

sizes {αk}Kk=0, feature dimension d
1 w̄0 = Non-Strategic-Initialization(F, Tinit) // See Algorithm 8
2 w1 = Non-Strategic-Refinement(F, w̄0, η̄, T0, b0, α0, d) // See Algorithm 9
3 for k ← 1 to K do
4 wk+1 = Non-Strategic-Batched-Enhancement(F,w1, η̄, k, Tk, bk, αk, d) // See Algorithm 10

Algorithm 8: Non-Strategic-Initialization
Input: Feedback setting F , iteration length Tinit

1 for i← 1 to Tinit do
2 Uniformly draw winit,i ∈ Sd

3 Declare h̃init,i(r) = sgn(⟨winit,i, r⟩), agent (xinit,i, yinit,i) arrives and reports rinit,i

4 Make classification decision h̃init,i(rinit,i)
5 if F = “full” then
6 collect label yinit,i
7 if F =“partial” then
8 collect label yinit,ionly if h̃init,i(rinit,i) = 1
9 if F = “full” then

10 return w̄0 = 1
Tinit

∑Tinit
i=1 rinit,iyinit,i

11 if F = “partial” then
12 return w̄0 = 1

Tinit

∑Tinit
i=1 rinit,iyinit,iI (⟨winit,i, rinit,i⟩ > 0)

Algorithm 9: Non-Strategic-Refinement
Input: Feedback setting F , Initial vector w̄0, noise level η̄, iteration length T0, bandwidth b0, step size

α0, feature dimension d
Initialization :w0,1 = w̄0/∥w̄0∥2

1 for i← 1 to T0 do
2 Declare classifier ŷ0,i = h̃0,i(r) = sgn(⟨w0,i, r⟩), agent (x0,i, y0,i) arrives and reports r0,i
3 if F = “full” then
4 Make classification decision ŷ0,1 = h̃0,i(r0,i) and collect label y0,i
5 Compute gradient:

g̃0,i = [−η̄r0,iI (y0,i = ŷ0,1) + (1− η̄)r0,iI (y0,i ̸= ŷ0,1)]I(−b0 ≤ ⟨w0,i, r0,i⟩ ≤ b0)
6 if F = “partial” then
7 Make classification decision ŷ0,1 = h̃0,i(r0,i) and collect label y0,i only if ŷ0,i = 1
8 Compute gradient:

g̃0,i = [−η̄r0,iI (y0,i = ŷ0,1) + (1− η̄)r0,iI (y0,i ̸= ŷ0,1)]I(0 < ⟨w0,i, r0,i⟩ ≤ b0)
9 Set constraint set: W0 = {w | ∥w∥2 ≤ 1, ⟨w, w̄0⟩ ≥ c1(1− 2η̄)}

10 Update w: ŵ0,i+1 = argminw∈W0 ⟨g̃0,i,w⟩+ 1
α0

∥w−w0,i∥2p
2(p−1)

, where p = ln(8d)
ln(8d)−1

11 Normalize: w0,i+1 = ŵ0,i+1/∥ŵ0,i+1∥2
12 Compute mean vector: w̄1 = 1

T0

∑T0
i=1 w0,i

13 return w1 = w̄1/∥w̄1∥2

Impact of Different Parameters We examine three groups of additional settings to analyze the
impact of different parameters. For each group, we test both settings from Table 1. The average
regret over 30 independent experiments for each group is depicted in fig. 5 up to 50,000 cycles.

We first examine how different maximum manipulation distances γ = 0.1, 0.2, 0.5 affect the regret
of our algorithm. As depicted in Figure 5 (a1) and (a2), larger γ values result in higher regret.
Intuitively, a larger γ permits more agents to manipulate their features, so the strategic manipulation
problem becomes more severe. This causes all algorithms to have worse performance.

Next, we vary the feature space dimension, setting w⋆ to be (1, 0) (d = 2), (1, 0, 0, 0) (d = 4), and
(1, 0, 0, 0, 0, 0) (d = 6), respectively. The average regret across different time horizons is shown in
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Algorithm 10: Non-Strategic-Batched Enhancement
Input: Feedback setting F , initial vector wk, noise level η̄, batch index k, iteration length Tk, bandwidth

bk, step size αk, feature dimension d
Initialization :wk,1 = wk

1 for i← 1 to Tk do
2 Declare classifier h̃k,i(r) = sgn(⟨wk,i, r⟩), agent (xk,i, yk,i) arrives and reports rk,i
3 if F = “full” then
4 Make classification decision ŷk,i = h̃k,i(rk,i) and collect label yk,i
5 Compute gradient:

g̃k,i = [−η̄rk,iI (y0,i = ŷk,i) + (1− η̄)r0,iI (y0,i ̸= ŷk,i)]I(−b0 ≤ ⟨w0,i, r0,i⟩ ≤ b0)
6 if F = “partial” then
7 Make classification decision ŷk,i = h̃k,i(rk,i) and collect label yk,i only if ŷk,i = 1
8 Compute gradient:

g̃k,i = [−η̄rk,iI (y0,i = ŷk,i) + (1− η̄)r0,iI (y0,i ̸= ŷk,i)]I(0 < ⟨w0,i, r0,i⟩ ≤ b0)

9 Update: ŵk,i+1 ← argminw∈Wk ⟨ĝk,i,w⟩+ 1
αk

∥w−wk,i∥2p
2(p−1)

, where p = ln(8d)
ln(8d)−1

, the constraint set
Wk = {w| ∥w∥2 ≤ 1, ∥w −wk∥2 ≤ θk, starting angle θk = π

2k+1

10 Normalize: wk,i+1 = ŵk,i+1/∥ŵk,i+1∥2
11 Compute mean vector ŵk+1 = 1

Tk

∑Tk
i=1 wk.i

12 return wk+1 = ŵk+1/∥ŵk+1∥2
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Figure 4: Average regrets of our algorithm and two Non-strategic learning based-benchmark algo-
rithms over different time horizons T under the two settings listed in Table 1. Results are based on
30 independent replications of the experiment.

fig. 5 (b1) and (b2). As expected, the d = 2 setting yields the lowest regret, while d = 6 setting
yields the highest, consistent with our regret bound.

We finally investigate the impact of the noise level η̄ on our algorithm’s convergence in fig. 5 (c1)
and (c2), setting η̄ to 0.1, 0.2 and 0.4. Surprisingly, the impact of the noise level manifests in
opposite trends across the two settings. In setting 1, a higher noise level results in greater regret
when T is large enough. Conversely, in setting 2, increased noise levels lead to a lower regret rate.
This discrepancy might stem from the fact that, as the noise level rises, the learning accuracy of the
clairvoyant optimal classifier diminishes. Given that regret is defined as the difference in cumulative
error between our algorithm’s classifiers and the clairvoyant optimal ones, the noisier environment
could potentially narrow this gap.

A.3 Technical Lemmas

In this subsection, we list some technical lemmas as instruments for our further proofs.

Properties of Regular Distributions
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Figure 5: Average regrets of our algorithm over different time horizons T on various parameters.
Results are based on 30 independent replications of the experiment.

Lemma 4. Suppose that the distribution of a random vector x ∼ Dx satisfies the regularity condi-
tions outlined in Assumption 2, then, it has the following properties.

(a) For ∀w ∈ Sd and ∀ b > 0, L1 min{R, b} ≤ P (0 ≤ 〈w,x〉 ≤ b) ≤ U1b.

(b) There exist positive constants c8, c9 > 0, such that for any two unit vectors v1,v2 ∈ Sd, if
0 ≤ θ (v1,v2) ≤ π

2 , then

c8P (sgn(〈v1,x〉) 6= sgn(〈v2,x〉)) ≤ θ (v1,v2) ≤ c9P (sgn(〈v1,x〉) 6= sgn (〈v2,x〉)) .
(3)

Proof. (a) Since 〈w,x〉 forms a projection of x onto a certain 1-dimensional hyperplane, property
(a) trivially holds by conditions 1 and 2 in Assumption 2.

(b) Let z := (〈v1,x〉 , 〈v2,x〉), which is a projection of x onto a 2-dimensional subspace V2 spanned
by v1 and v2. Let ϕV2

(·) and DV2
denote its density and distribution, respectively. Let GV2

:=
{z | sgn(z1) 6= sgn(z2)}, then,

Px∼Dx (sgn(〈v1,x〉) 6= sgn(〈v2,x〉)) = Pz∼DV2
(z ∈ GV2)

=

∫
z∈GV

ϕV2(z) dz

≥
∫
z∈GV ∩B2(R)

L2 dz

≥ L2R
2θ (v1,v2) ,

where the first inequality holds by condition 1 of Assumption 2 that L2 ≤ ϕV2
(z) for all ‖z‖2 ≤ R.

The last inequality holds by an observation that
∫
z∈GV2

∩B2(R)
1 dz ≥ R2θ(v1,v2). Hence, we

prove the first inequality of (3).

To prove the second inequality of (3), for ∀ϵ > 0, we have

Px∼Dx (sgn(〈v1,x〉) 6= sgn(〈v2,x〉))
= Pz∼DV2

(z ∈ GV2)

≤ Pz∼DV2
(z ∈ GV2 , ‖z‖2 ≤ ϵ) + Pz∼DV2

(‖z‖2 > ϵ)

≤
∫
z∈GV2

∩B2(ϵ)

ϕV2(z) + Px∼Dx(| 〈v1,x〉 | > ϵ) + Px∼Dx(| 〈v2,x〉 | > ϵ)

=

∫
z∈GV2

∩B2(ϵ)

ϕV2
(z) + Px∼Dx(| 〈v1,x〉 | > ϵ) + Px∼Dx(| 〈v2,x〉 | > ϵ)

≤ U2θ (v1,v2) ϵ
2 + 2 exp(1−Qϵ),
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where the last inequality holds by the fact that ϕV2(z) ≤ U2 exp(−δ‖z‖2) ≤ U2 according to
Assumption 2 condition 2 and Px∼Dx(| 〈w,x〉 | > ϵ) ≤ exp(1 − Qϵ) for ∀w ∈ Sd according to
Assumption 2 Condition 3. Taking ϵ = 1−ln(θ(v1,v2))

Q , then we have

Px∼Dx(sgn(〈v1,x〉) 6= sgn(〈v2,x〉)) ≤
(
U2

Q2
+ 2

)
θ (v1,v2) .

Thus, we complete the proof of the second inequality in (3).

Probability Tail bounds
Definition 3. ((σ, b)-subexponential, Wainwright [2019], Definition 2.7) A random variable X with
mean µ = E [X] is (σ, b)-subexponential, if for ∀λ ∈

[
− 1

b ,
1
b

]
,

E [exp(λ(X − µ))] ≤ exp

(
σ2λ2

2

)
.

Lemma 5. ((σ, b)-subexponential tail bound, another form of Wainwright [2019], Proposition 2.9)
Suppose X is a (σ, b)-subexponential random variable with mean E [X] = µ, then with probability
at least 1− δ,

X ≤ µ+

√
2σ2 ln

1

δ
+ 2b ln

1

δ
,

also, with probability at least 1− δ,

X ≥ µ−
√
2σ2 ln

1

δ
− 2b ln

1

δ
.

Lemma 6. (A Bernstein-type bound for i.i.d. random variables, another form of Wainwright [2019],
Equation (2.18)) Suppose {X}Ni=1 is sequence of i.i.d. (σ, b)-subexponential random variables, then,
with probability at least 1− δ,

N∑
i=1

Xi ≤
N∑
i=1

E [Xi] + σ

√
2N ln

1

δ
+ 2b ln

1

δ
,

and, with probability at least 1− δ,

N∑
i=1

Xi ≥
N∑
i=1

E [Xi]− σ

√
2N ln

1

δ
− 2b ln

1

δ
.

Lemma 7. (A Bernstein-type bound for a martingale difference sequence, another form of Wain-
wright [2019], Theorem 2.19) Suppose {X}Ni=1 is a sequence of conditionally (σ, b)-subexponential
random variables adapted from filtration {Fi}Ni=1, i.e.,

E [exp(λ(Xi − E [Xi | Fi−1])) | Fi−1] ≤ exp

(
σ2λ2

2

)
, ∀λ ∈

[
−1

b
,
1

b

]
.

Then, with probability at least 1− δ,

N∑
i=1

Xi ≤
N∑
i=1

E [Xi | Fi−1] + σ

√
2N ln

1

δ
+ 2b ln

1

δ
,

and, with probability at least 1− δ,

N∑
i=1

Xi ≥
N∑
i=1

E [Xi | Fi−1]− σ

√
2N ln

1

δ
− 2b ln

1

δ
.
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Lemma 8. (Azuma-Hoeffding’s Inequality, another form of Wainwright [2019], Corollary 2.20)
Suppose {X}Ni=1 is a sequence adapted from filtration {Fi}Ni=1 such that Xi ∈ [a, b], Then, with
probability at least 1− δ,

N∑
i=1

Xi ≤
N∑
i=1

E [Xi | Fi−1] + (b− a)

√
1

2
N ln

1

δ
,

and, with probability at least 1− δ,

N∑
i=1

Xt ≥
N∑
i=1

E [Xi | Fi−1]− (b− a)

√
1

2
N ln

1

δ
.

We show in the following lemma how to determine the parameters (σ, b) prescribed in Definition 3
by a given probability tail bound.
Lemma 9. Suppose a random variable satisfies P (|X| ≥ a) ≤ C exp(−a

ν ) for given C, ν > 0,
then X is (6ν

√
1 + 2C, 6ν)-subexponential. Also, if Y is a random variable that satisfy |Y | ≤ M ,

then, XY is (6Mν
√
1 + 2C, 6Mν)-subexponential.

Proof. First, consider |X|’s moment generating function E
[
eλ|X|] , for ∀λ > 0, we have

E
[
eλ|X|

]
=

∫ +∞

0

P
(
eλ|X| ≥ u

)
du

≤ 1 +

∫ +∞

1

P
(
|X| ≥ lnu

λ

)
du

≤ 1 + C

∫ +∞

1

u− 1
λν du.

From the above inequality, we get that E
[
eλ|X|] ≤ 1 + Cλν

1−λν < ∞ if 0 < λ < 1
ν . Set λ = 2

3ν , as

E
[
e

2
3ν |X|

]
=
∑∞

i=0

E[|X|i]
( 3
2 ν)

ii!
, we have:

E
[
|X|i

]
( 32ν)

ii!
≤ E

[
e

2
3ν |X|

]
≤ 1 + 2C. (4)

Now we introduce a new random variable X ′ that is an independent copy of X , then we can bound
E [exp(λ(X − E [X]))] by Jensen’s inequality, E [exp(λ(X − E [X]))] ≤ E [exp(λ(X −X ′))].
Therefore, we only need to bound E [exp(λ(X −X ′))]. For ∀λ ∈

[
− 1

6ν ,
1
6ν

]
,

E [exp(λ(X −X ′))] =

∞∑
i=0

E
[
(X −X ′)iλi

]
i!

=

∞∑
i=0

E
[
(X −X ′)2iλ2i

]
(2i)!

≤ 1 +

∞∑
i=1

E
[
|X|2i

]
22iλ2i

(2i)!
≤ 1 + (1 + 2C)

∞∑
i=1

(
3

2
ν

)2i

22iλ2i

= 1 + (1 + 2C)

∞∑
i=1

(3νλ)2i ≤ 1 + 2(1 + 2C)(3νλ)2

≤ exp(2(1 + 2C)(3νλ)2) = exp

(
(6ν

√
1 + 2C)2λ2

2

)
,

where the first equality holds by Taylor expansion, the second equality holds since E
[
(X −X ′)i

]
=

0 for all i’s that are odd. The first inequality holds by the fact that |x− x′|i ≤ 2i−1(|x|i + |x′|i) for
all i ≥ 1, and that X and X ′ have the same distribution. The second inequality holds by (4). The
third inequality holds since

∑∞
i=1(3νλ)

2i = (3νλ)2

1−(3νλ)2 ≤ 2× (3νλ)2 when λ ∈
[
− 1

6ν ,
1
6ν

]
. The last

inequality holds by the fact that 1 + x ≤ ex for all x ∈ R.
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Thus, by definition of (σ, b)-subexponential, we conclude that X is (6ν
√
1 + 2C, 6ν)-

subexponential.

Now we prove the subexponential property of XY . Since |Y | ≤ M and P (|X| ≥ a) ≤ C exp(−a
ν ),

P (|XY | ≥ a) ≤ P
(
|X| ≥ a

M

)
≤ C exp

(
− a

Mν

)
.

Replacing ν by Mν, we conclude that XY is (6Mν
√
1 + 2C, 6Mν)-subexponential.

Lemma 9 directly accommodates our regularity assumption and leads to the following corollary.

Corollary 2. (Subexponential property of regular distributions) Suppose x is a random variable
that satisfies Assumption 2, then, for ∀ w ∈ Bd, 〈w,x〉 is ( 16Q , 6

Q )-subexponential.

Proof. By Assumption 2 Condition 3, P[| 〈w,x〉 | ≥ t] ≤ exp(1 − Qt) for ∀ t > 0. Then by
Lemma 9, set C = e, ν = 1

Q , then, 6ν
√
1 + 2C = 6

√
1+2e
Q < 16

Q , 6ν = 6
Q , we conclude that x is(

16
Q , 6

Q

)
-subexponential.

The relationship between E [〈w⋆,−gk,i〉] and θ (wk,i,w
⋆) Recall that in the non-strategic set-

ting, we shall adjust the coefficient by solving a sequence of adaptively constructed online regret min-
imization problems minw∈Wk

∑Tk

i=1 〈w,gk,i〉−
∑Tk

i=1 〈w∗,gk,i〉 with gk,i = [−η̄xk,iI (yk,i = 1)+
(1 − η̄)xk,iI (yk,i = −1)]I(xk,i ∈ Dk,i) via mirror descent over k = 0 . . . ,K batches, using local
data within increasingly narrow bands Dk,i = {x : 0 < 〈wk,i,x〉 ≤ bk}. The key ingredient un-
derlying this guarantee is that the gradients gk,i are well constructed so that |〈wk,i,gk,i〉| is small
and meanwhile E [〈w⋆,−gk,i〉] upper bounds θ (w⋆,wk,i). Here, we show the relationship between
E [〈w⋆,−gk,i〉] and θ (wk,i,w

⋆) for k = 0, 1, · · · ,K, which is critical in the guarantees of Algo-
rithm 3 and Algorithm 4.

Fix batch k and iteration i, to connect E [〈w⋆,−gk,i〉] and θ (wk,i,w
⋆) we introduce a new vari-

able fk,i(wk,i) in (5). Later, we will show how E [〈w⋆,−gk,i〉] upper bounds fk,i(wk,i) and how
fk,i(wk,i) approximates θ (wk,i,w

⋆).

fk,i(wk,i) := E [| 〈w⋆,x〉 | I (〈w⋆,x〉 < 0) | x ∈ Dk,i] . (5)

Now, we show that E [〈w⋆,−gk,i〉] can upper bound fk,i(wk,i) by the following lemma.

Lemma 10. Given a unit vector wk,i ∈ Sd and an agent with true feature-label pair (xk,i, yk,i).
For gk,i = [−η̄xk,iI (yk,i = 1)+(1− η̄)xk,iI (yk,i = −1)]I(xk,i ∈ Dk,i) and fk,i(wk,i) defined in
(5). The following holds.

E [〈w⋆,−gk,i〉] ≥ (1− 2η̄)fk,i(wk,i)P (x ∈ Dk,i) .

Proof. First, for convenience, we rewrite gk,i as the following.

gk,i = [−η̄xk,iI (yk,i = 1) + (1− η̄)xk,iI (yk,i = −1)]I(xk,i ∈ Dk,i)

=

(
−1

2
yk,i +

(
1

2
− η̄

))
xk,iI(xk,i ∈ Dk,i).
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Then, we have

E [〈w⋆,−gk,i〉] = E
[〈

w⋆,

(
1

2
yk,i −

(
1

2
− η̄

))
xk,i

〉
I (xk,i ∈ Dk,i)

]
= E

[〈
w⋆,

(
1

2
yk,i −

(
1

2
− η̄

))
xk,i

〉 ∣∣∣∣ xk,i ∈ Dk,i

]
P (xk,i ∈ Dk,i) + 0

=
1

2
E [〈w⋆,xk,i〉 E [yk,i | xk,i] | xk,i ∈ Dk,i]P (x ∈ Dk,i)

−
(
1

2
− η̄

)
E [〈w⋆,xk,i〉 | xk,i ∈ Dk,i]P (x ∈ Dk,i)

≥
(
1

2
− η̄

)
E [| 〈w⋆,xk,i〉 | | xk,i ∈ Dk,i]P (x ∈ Dk,i)

−
(
1

2
− η̄

)
E [〈w⋆,xk,i〉 | xk,i ∈ Dk,i]P (x ∈ Dk,i)

= (1− 2η̄) E [| 〈w⋆,xk,i〉 | I (〈w⋆,xk,i〉 < 0) | xk,i ∈ Dk,i]P (x ∈ Dk,i)

= (1− 2η̄) fk,i(wk,i)P (x ∈ Dk,i) ,

where the second and third equality hold by the law of iterated expectations, and the inequality holds
as the following.

E [yk,i | xk,i] = (1− η(xk,i))sgn(〈w⋆,xk,i〉)− η(xk,i)sgn(〈w⋆,xk,i〉)
= (1− 2η(xk,i))sgn(〈w⋆,xk,i〉)
≥ (1− 2η̄)sgn(〈w⋆,xk,i〉).

Next, in the following lemma, we show that fk,i(wk,i) measures the closeness of w⋆ and wk,i.

Lemma 11. For fixed batch k and iteration i, if θ (w⋆,wk,i) = ϕ, then the following holds.

1. When 0 < bk ≤ R
4 and ϕ ∈

[
4bk
R , π

2

]
, we have

fk,i(wk,i) ≥
L2

32U1
R2ϕ.

2. When 0 < bk ≤ R
4 and ϕ ∈

[
π
2 , π − 4bk

R

]
, we have

fk,i(wk,i) ≥
L2

32U1
R2(π − ϕ).

Proof. We prove the two cases respectively. For Case 1, define the region G1 :={
x | 0 ≤ 〈wk,i,x〉 ≤ bk, − 1

2R sinϕ ≤ 〈w⋆,x〉 ≤ − 1
4R sinϕ

}
, see Figure 6 as an illustration. We

have the following

E [| 〈w⋆,x〉 | I (〈w⋆,x〉 < 0) I (0 ≤ 〈wk,i,x〉 ≤ bk)]

≥ E [| 〈w⋆,x〉 | I (x ∈ G1)]

≥ 1

4
R sinϕE [I (x ∈ G1)]

≥ 1

8
RϕP (x ∈ G1)

≥ 1

32
L2R

2ϕbk,

where the first inequality holds since G1 ⊆ {x | 0 ≤ 〈wk,i,x〉 ≤ b, 〈w⋆,x〉 < 0}. The third in-
equality holds by the fact that sinϕ ≥ ϕ

2 for 0 ≤ ϕ ≤ π
2 . And the last inequality holds by the claim

that P (x ∈ G1) ≥ 1
4L2Rbk, which we will show later.
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Figure 6: Illustration of region G1 (the red region) in Case 1. Which satisfies G1 ={
x | 0 ≤ 〈w,x〉 ≤ bk, − 1

2R sinϕ ≤ 〈w⋆,x〉 ≤ − 1
4R sinϕ

}
.

Hence, we can establish the lower bound of fk,i(wk,i) by:

fk,i(wk,i) = E [| 〈w⋆,x〉 | I (〈w⋆,x〉 < 0) | 0 ≤ 〈wk,i,x〉 ≤ bk]

=
E [| 〈w⋆,x〉 | I (〈w⋆,x〉 < 0) I (0 ≤ 〈wk,i,x〉 ≤ bk)]

P (0 ≤ 〈wk,i,x〉 ≤ bk)

≥
1
32L2R

2ϕbk

P (0 ≤ 〈wk,i,x〉 ≤ bk)

≥ L2

32U1
R2ϕ,

where the last inequality holds by Lemma 4, property (a).

Now we show the claim that P (x ∈ G1) ≥ 1
4L2Rbk. For a given vector x, we first project x

down to the subspace V2 ⊆ R2 spanned by w⋆ and wk,i and denote the projected value z :=
(〈w⋆,x〉 , 〈w,x〉).
Without loss of generality, let w = (0, 1) and w⋆ = (sinϕ, cosϕ). As illustrated in Figure 6,
the parallelogram ABCD denotes the region G1, where A =

(
1
4R, 0

)
, B =

(
1
2R, 0

)
, C =(

1
2R+ bk

tanϕ , bk

)
, D =

(
1
4R+ bk

tanϕ , bk

)
. Since C is the farthest point to the origin with respect

to the Euclidean Norm, and
∥∥∥( 1

2R+ bk
tanϕ , bk

)∥∥∥
2
≤
∥∥∥( 1

2R+ bk
tanϕ , bk

)∥∥∥
1
= 1

2R + bk
tanϕ + bk ≤

1
2R + bk

ϕ + bk ≤ R, then for all z ∈
{
z = (z1, z2) | − 1

2R sinϕ ≤ z1 ≤ − 1
4 sinϕ, 0 ≤ z2 ≤ bk

}
,

we have ‖z‖2 ≤ R. Also, the area of parallelogram ABCD is bk · 1
4R = 1

4Rbk. In addition, by
Assumption 2, condition 1, the density ϕV2

(z) of projected value z satisfies ϕV2
(z) ≥ L2 for all

z ∈ V2 ∩ B2(R). Hence, we can lower bound P (x ∈ G1) by

P (x ∈ G1) ≥ L2 ·
1

4
Rbk =

1

4
L2Rbk.

The proof of Case 2 is similar to that of Case 1. Define the region G2 ={
x | 0 ≤ 〈wk,i,x〉 ≤ bk, − 1

2R sin(π − ϕ) ≤ 〈w⋆,x〉 ≤ − 1
4R sin(π − ϕ)

}
(see Figure 7). We re-

place ϕ in the proof of Case 1 by π − ϕ, by choosing A =
(
− 1

4R, 0
)
, B =

(
− 1

2R, 0
)
,

C =
(
− 1

2R+ bk
tan(π−ϕ) , bk

)
, D =

(
− 1

4R+ bk
tan(π−ϕ) , bk

)
and then we complete the proof.

Lemma 11 directly leads to the following corollary.

Corollary 3. If θ(w⋆,wk,i) ≤ π
2 , and fk,i(wk,i) ≤ L2

160U1
R2θk, then θ(w⋆,wk,i) ≤ θk

5 .

Proof. We conduct a case analysis.

1. If θ (w⋆,wk,i) < 4bk
R , then by our setting of bk in Algorithm 3 and Algorithm 4,

θ (w⋆,wk,i) <
4bk
R ≤ θk

5 .
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Figure 7: Illustration of region G2 (the red region) in Case 2. Which satisfies G2 ={
x | 0 ≤ 〈wk,i,x〉 ≤ bk, − 1

2R sin(π − ϕ) ≤ 〈w⋆,x〉 ≤ − 1
4R sin(π − ϕ)

}
.

2. If 4bk
R ≤ θ (w⋆,wk,i) ≤ π

2 , then by Lemma 11, we have fk,i(wk,i) ≥
L2

32U1
R2θ (w⋆,wk,i), combing it with the condition that fk,i(wk,i) ≤ L2

160U1
R2θk, we have

θ(w⋆,wk,i) ≤ θk
5 .

Other lemmas We also outline some other lemmas that are used in the subsequent proof.
Lemma 12. (Triangular inequality of angles) Suppose vectors x,y, z ∈ Rd satisfy 0 ≤ θ (x,y) ≤
π
2 and 0 ≤ θ (x, z) ≤ π

2 , then,

| θ (x,y)− θ (x, z) | ≤ θ (y, z) ≤ θ (x,y) + θ (x, z) .

Proof. Without loss of generality, assume that ‖x‖2 = ‖y‖2 = ‖z‖2 = 1. First, we decompose
vectors y and z into components along the direction of x and perpendicular to x, respectively, as:

y = cos(θ (x,y))x+ sin(θ (x,y))y⊥x,

z = cos(θ (x, z))x+ sin(θ (x, z))z⊥x,

where y⊥x and z⊥x are unit vectors that are perpendicular to x. Hence, we have

cos(θ (y, z)) = 〈y, z〉 = cos(θ (x,y)) cos(θ (x, z)) + sin(θ (x,y)) sin(θ (x, z)) 〈y⊥, z⊥〉 ,
where the second equality holds since 〈x,y⊥〉 = 〈x, z⊥〉 = 0. Since y⊥ and z⊥ are both unit
vectors, by Cauchy-Schwarz inequality, −1 ≤ 〈y⊥, z⊥〉 ≤ 1. Also, since 0 ≤ θ (x,y) ≤ π

2 and
0 ≤ θ (x, z) ≤ π

2 , we have sin(θ (x,y)) sin(θ (x, z)) ≥ 0. Putting all together, we have:

cos(θ (y, z)) ≤ cos(θ (x,y)) cos(θ (x, z)) + sin(θ (x,y)) sin(θ (x, z))

= cos(θ (x,y)− θ (x, z)),
(6)

and
cos(θ (y, z)) ≥ cos(θ (x,y)) cos(θ (x, z))− sin(θ (x,y)) sin(θ (x, z))

= cos(θ (x,y) + θ (x, z)).
(7)

Since cos(x) is decreasing in x ∈ [0, π], and cos(x) = cos(−x) for all x ∈ R, we get θ (y, z) ≥
| θ (x,y)− θ (x, z) | from (6), and θ (y, z) ≤ θ (x,y) + θ (x, z) from (7).

Lemma 13. Given a random vector x ∼ Dx that satisfy Assumption 2, then with probability at least
1− δ,

‖x‖∞ ≤ 1

Q

(
1 + ln

(
d

δ

))
.

Proof. We bound ‖x‖∞ element-wisely. Given x ∼ Dx and j ∈ [d], let xj be the j-th coordinate of
x. Let e[j] ∈ Rd denote the unit vector whose j’th coordinate is 1 while other coordinate is 0, then,
by Assumption 2, condition 3, for ∀ a > 0

P (|xj | ≥ a) = P
(∣∣∣ 〈e[j],x〉 ∣∣∣ ≥ a

)
≤ exp(1−Qa).
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Taking union bound over all coordinates, we have

P (‖x‖∞ ≥ a) ≤ d exp(1−Qa).

Taking a = 1
Q

(
1 + ln

(
d
δ

))
in the above inequality and hence we complete the proof.

A.4 Proofs for Section 2

In this subsection, we outline some important results to describe the relationships between classifier
h(·) for unmanipulated features x and classifier h̃ for reported features r = r⋆(x, h̃), which is
critical for the subsequent algorithm design.

Proof of Proposition 1
Proposition 1. For any (w,m) ∈ Sd×R, the output of h̃(r) = sgn(〈w, r〉+m−γ) for r = r⋆(x, h̃)
is identical to the output of h(x) = sgn(〈w,x〉+m) for any x ∈ Rd.

Proof. For fixed w ∈ Sd and m ∈ R, we categorize the agent population into three
classes according to their true features x: {x | 〈w,x〉+m < 0}, {x | 0 ≤ 〈w,x〉+m < γ} and
{x | 〈w,x〉+m ≥ γ}. Then, we discuss their classification output by h(x) and h̃(r) with respect
to r = r⋆(x, h̃), respectively.

1. When 〈w,x〉 + m < 0, h(x) = −1. At the same time, 〈w,x〉 + m − γ < −γ, by
Lemma 1, agent in this region will report his feature truthfully, i.e., r = x. Thus, h̃(r) =
sgn(〈w, r〉+m− γ) = sgn(〈w,x〉+m− γ) = −1. Hence, we have h(x) = h̃(r) = −1
for ∀x ∈ {x | 〈w,x〉+m < 0} .

2. When 0 ≤ 〈w,x〉+m < γ, h(x) = 1. At the same time, −γ ≤ 〈w,x〉+m− γ < 0, by
Lemma 1, agent in this region will manipulate his feature as r = x+ (γ −m− 〈w,x〉)w.

Thus, h̃(r) = sgn(〈w, r〉 +m − γ) = sgn(〈w,x+ (γ −m− 〈w,x〉)w〉 +m − γ) = 1.

Hence, we have h(x) = h̃(r) = 1 for ∀x ∈ {x | 0 ≤ 〈w,x〉+m < γ} .

3. When 〈w,x〉 +m ≥ γ, h(x) = 1. At the same time, 〈w,x〉 +m − γ ≥ 0, by Lemma 1,
agent in this region will report his feature truthfully, i.e., r = x. Thus, h̃(r) = sgn(〈w, r〉+
m − γ) = sgn(〈w,x〉 + m − γ) = 1. Hence, we have h(x) = h̃(r) = 1 for ∀x ∈
{x | 〈w,x〉+m ≥ γ} .

Inferring agents’ true features from their reported features Proposition 1 directly leads to the
following corollary, enabling us to infer an agent’s true features x given a classification rule h̃(·) and
his corresponding reported features r.

Corollary 4. For given announced classifier h̃(·) = sgn (〈w, ·〉+m) and agent response r, then,
his true features x satisfy the following.

1. if 〈w, r〉+m 6= 0, then x = r;

2. if 〈w, r〉+m = 0, then −γ ≤ 〈w,x〉+m ≤ 0.

A.5 Proofs for Section 3

In this subsection, we show the theoretical guarantees of Algorithm 2, Algorithm 3 and Algorithm 4,
respectively.

Theoretical Guarantees of Algorithm 2 A key observation in the non-strategic and noiseless
classification scenario is that y 〈w⋆,x〉 > 0 holds for all (x, y). Consequently, xy always forms
an acute angle with the optimal normal vector w⋆. Considering agents’ strategic responses and the
bandit feedback setting, we introduce Lemma 14 to show that, under our construction in Algorithm 2,
w̄0 is an unbiased estimator of E[xy].
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Lemma 14. In Algorithm 2, we have

E[w̄0] = E[xy].

Proof. In Algorithm 2, at iteration i, the principal declares classifier h̃
(1)
init,i(r) = sgn(〈winit,i, r〉)

and h̃
(2)
init,i(r) = sgn(〈−winit,i, r〉), and receives response r

(1)
init,i and r

(2)
init,i respectively. By

Corollary 4, we get that r
(1)
init,iI

(〈
winit,i, r

(1)
init,i

〉
> 0
)

= x
(1)
init,iI

(〈
winit,i,x

(1)
init,i

〉
> 0
)

and

r
(2)
init,iI

(〈
−winit,i, r

(2)
init,i

〉
> 0
)

= x
(2)
init,iI

(〈
−winit,i,x

(2)
init,i

〉
> 0
)

. Also,
(
x
(1)
init,i, y

(1)
init,i

)
and(

x
(2)
init,i, y

(2)
init,i

)
are i.i.d. drawn from D, hence,

E
[
r
(1)
init,iy

(1)
init,iI

(〈
winit,i, r

(1)
init,i

〉
> 0
)
+ r

(2)
init,iy

(2)
init,iI

(〈
−winit,i, r

(2)
init,i

〉
> 0
)]

= E
[
x
(1)
init,iy

(1)
init,iI

(〈
winit,i,x

(1)
init,i

〉
> 0
)
+ x

(2)
init,iy

(2)
init,iI

(〈
−winit,i,x

(2)
init,i

〉
> 0
)]

= E [xyI (〈winit,i,x〉 > 0)] + E [xyI (〈winit,i,x〉 < 0)]

= E [xy] .

Thus, we have

E [w̄0] =
1

Tinit

Tinit∑
i=1

E
[
r
(1)
init,iy

(1)
init,iI

(〈
winit,i, r

(1)
init,i

〉
> 0
)
+ r

(2)
init,iy

(2)
init,iI

(〈
−winit,i, r

(2)
init,i

〉
> 0
)]

= E [xy] .

Now we show that w̄0 constructed by Algorithm 2 has a positive inner product with the optimal
coefficient w∗ with high probability.

Proposition 2. For some constants c0, c1 > 0, when Algorithm 2 runs for Tinit = c0 lnT/(1− 2η̄)2

iterations, its output w̄0 satisfies 〈w⋆, w̄0〉 > c1(1− 2η̄) > 0 and θ (w⋆, w̄0) ≤ π
2 with probability

at least 1− 2/T 2.

Proof. First, considering the non-strategic classification problem, we establish a lower bound of
E[〈w⋆,x〉 y] as the following.

E[〈w⋆,x〉 y] = E [E[y| x] 〈w⋆,x〉]
= E [[(1− η(x))sgn(〈w⋆,x〉)− η(x)sgn(〈w⋆,x〉)] 〈w⋆,x〉]
= E [(1− 2η(x))| 〈w⋆,x〉 |]
≥ (1− 2η̄)E [| 〈w⋆,x〉 |]
≥ (1− 2η̄)L1R

2,

(8)

where the first equality holds by the law of iterated expectations. The second equality holds by the
definition of Massart Noise. The third equality holds since sgn(〈w∗,x〉 〈w∗,x〉) = | 〈w∗,x〉 |. The
first inequality holds because η(x) ≤ η̄, ∀x ∈ Rd. Now we prove E [| 〈w⋆,x〉 |] ≥ L1R

2 for the
last inequality as the following: let xV1

:= 〈w⋆,x〉 denote a 1-dimensional projection of x. Then,
by Assumption 2, condition 1, ϕV1

(xV1
) ≥ L1 for all −R ≤ xV1

≤ R. Hence, we have

E[| 〈w⋆,x〉 |] ≥ 2

∫ R

0

xV1ϕV1(xV1) dxV1 ≥ L1 × 2

∫ R

0

xdx = L1R
2.

Second, considering agents’ strategic response, we find an unbiased estimator of E [〈w⋆,x〉 y]
through samples. By Lemma 14, w̄0 = 1

Tinit

∑Tinit
i=1 r

(1)
init,iy

(1)
init,iI

(〈
winit,i, r

(1)
init,i

〉
> 0
)

+

r
(2)
init,iy

(2)
init,iI

(〈
−winit,i, r

(2)
init,i

〉
> 0
)

is an unbiased estimator of E [xy]. Therefore, E [〈w⋆, w̄0〉] =
E [〈w⋆,x〉 y] ≥ (1− 2η̄)L1R

2.
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Finally, using the results of concentration inequalities, we establish the high proba-
bility bound of 〈w⋆, w̄0〉. By Corollary 1,

〈
w⋆, r

(1)
init,i

〉
I
(〈

winit,i, r
(1)
init,i

〉
> 0
)

=〈
w⋆,x

(1)
init,i

〉
I
(〈

winit,i,x
(1)
init,i

〉
> 0
)

and
〈
w⋆, r

(2)
init,i

〉
I
(〈

−winit,i, r
(2)
init,i

〉
> 0
)

=〈
w⋆,x

(2)
init,i

〉
I
(〈

−winit,i,x
(2)
init,i

〉
> 0
)

. Then, by Assumption 2 condition 3 and Lemma 9, we get

that both
〈
w⋆, r

(1)
init,i

〉
y
(1)
init,iI

(〈
winit,i, r

(1)
init,i

〉
> 0
)

and
〈
w⋆, r

(2)
init,i

〉
y
(2)
init,iI

(〈
−winit,i, r

(2)
init,i

〉
> 0
)

are
(

16
Q , 6

Q

)
-subexponential. Thus, by Lemma 6, we have that with probability at least 1− 1

T 2 ,

1

Tinit

Tinit∑
i=1

〈
w⋆, r

(1)
init,i

〉
y
(1)
init,iI

(〈
winit,i, r

(1)
init,i

〉
> 0
)

≥ 1

Tinit

Tinit∑
i=1

E [〈w⋆,x〉 yI(〈winit,i,x〉 > 0)]− 32

Q

√
lnT

Tinit
− 24

Q

lnT

Tinit
,

(9)

and with probability 1− 1
T 2 ,

1

Tinit

Tinit∑
i=1

〈
w⋆, r

(2)
init,i

〉
y
(2)
init,iI

(〈
−winit,i, r

(2)
init,i

〉
> 0
)

≥ 1

Tinit

Tinit∑
i=1

E [〈w⋆,x〉 yI(〈winit,i,x〉 < 0)]− 32

Q

√
lnT

Tinit
− 24

Q

lnT

Tinit
.

(10)

Taking the union bound for (9) and (10), then, with probability at least 1− 2
T 2 ,

〈w⋆, w̄0〉 =
1

Tinit

Tinit∑
i=1

〈
w⋆, r

(1)
init,i

〉
y
(1)
init,iI

(〈
winit,i, r

(1)
init,i

〉
> 0
)

+
1

Tinit

Tinit∑
i=1

〈
w⋆, r

(2)
init,i

〉
y
(2)
init,iI

(〈
−winit,i, r

(2)
init,i

〉
> 0
)

≥ 1

Tinit

Tinit∑
i=1

E [〈w⋆,x〉 yI(〈winit,i,x〉 > 0)]− 32

Q

√
lnT

Tinit
− 24

Q

lnT

Tinit

+
1

Tinit

Tinit∑
i=1

E [〈w⋆,x〉 yI(〈winit,i,x〉 < 0)]− 32

Q

√
lnT

Tinit
− 24

Q

lnT

Tinit

= E [〈w⋆,x〉 y]− 64

Q

√
lnT

Tinit
− 48

Q

lnT

Tinit

≥ (1− 2η̄)L1R
2 − 64

Q

√
lnT

Tinit
− 48

Q

lnT

Tinit

≥ 1

2
(1− 2η̄)L1R

2.

The first inequality holds by (9) and (10). The second inequality holds by Lemma 14. The

last inequality holds by setting Tinit =
⌈

20736 lnT
(1−2η̄)2L2

1Q
2R4

⌉
, then 64

Q

√
lnT
Tinit

≤ 4
9 (1 − 2η̄)L1R

2 and
48
Q

lnT
Tinit

� 1
18 (1− 2η̄)L1R

2 for large enough T . Thus, we complete the proof of Proposition 2.

Theoretical Guarantees of Algorithm 3 Recall that in the i’th iteration of Algorithm 3, we de-
clare classifier h̃0,i(r) = sgn(〈w0,i, r〉) and construct the gradient as g̃0,i = [−η̄r0,iI (y0,i = 1) +
(1 − η̄)r0,iI (y0,i = −1)]I(0 < 〈w0,i, r0,i〉 ≤ b0). In Lemma 15, we establish the high probability
upperbound of

∑T0

i=1 E[〈w⋆,−g̃0,i〉)| F0,i−1] by
∑T0

i=1 〈w⋆,−g̃0,i〉.
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Lemma 15. In Algorithm 3, with probability at least 1− 1/T 2, we have

T0∑
i=1

E[〈w⋆,−g̃0,i〉)| F0,i−1] ≤
T0∑
i=1

〈w⋆,−g̃0,i〉

+
24

δ

√
1 + 2ρb0

√
T0 lnT +

48

δ
lnT,

where ρ = max
{
U1 exp(δ),

U2 exp(δ)
δ

}
.

Proof. Since 〈w⋆,−g̃0,i〉 = 〈w⋆,x0,i〉 I (0 < 〈w0,i,x0,i〉 ≤ b0)
(
1
2y0,i −

(
1
2 − η̄

))
, we first estab-

lish the probability tail bound of 〈w⋆,x0,i〉 I(0 < 〈w0,i,x0,i〉 ≤ b0).

We partition x0,i into two orthonormal vectors, for notational convenience, we omit the subindex 0, i
of x0.i and let x‖w denote the ingredient of x0,i that is parallel to w0,i, i.e., x‖w = 〈w0,i,x0,i〉w0,i

and x⊥w denote the ingredient of x0,i that is vertical to w0,i, i.e., x⊥w = x0,i − x‖w. Then,

〈w⋆,x0,i〉 I(0 ≤ 〈w0,i,x0,i〉 ≤ b0)

=
〈
w⋆,x‖w

〉
I(0 ≤ 〈w0,i,x0,i〉 ≤ b0)︸ ︷︷ ︸

(a)

+ 〈w⋆,x⊥w〉 I(0 ≤ 〈w0,i,x0,i〉 ≤ b0)︸ ︷︷ ︸
(b)

. (11)

Thus, we have to bound part (a) and (b) in (11), respectively. First, we bound part (a) as

〈
w⋆,x‖w

〉
I(0 ≤ 〈w0,i,x0,i〉 ≤ b0) = 〈w⋆, 〈w0.i,x0,i〉w0,i〉 I(0 ≤ 〈w0.i,x0,i〉 ≤ b0)

≤ b0 〈w⋆,w0,i〉
≤ b0,

(12)

where the first equality holds since x‖w = 〈w0,i,x0,i〉w0,i. The last inequality holds by the Cauchy-
Schwarz Inequality. Next, we bound part (b) in (11). For ‖w0,i −w⋆‖2 ≤ r0 and a > b0, we have

P (| 〈w⋆,x⊥w〉 I(0 ≤ 〈w0,i,x0,i〉 ≤ b0)| ≥ a− b0)

= P (| 〈w⋆,x⊥w〉 | ≥ a− b0, 0 ≤ 〈w0,i,x0,i〉 ≤ b0)

= P (| 〈w⋆
⊥w,x0,i〉 | ≥ a− b0, 0 ≤ 〈w0,i,x0,i〉 ≤ b0) ,

where we prove the second equality as follows

〈w⋆,x⊥w〉 = 〈w⋆
⊥w,x⊥w〉+

〈
w⋆

‖w,x⊥w

〉
,

〈w⋆
⊥w,x0,i〉 = 〈w⋆

⊥w,x⊥w〉+
〈
w⋆

⊥w,x‖w
〉
.

since
〈
w⋆

‖w,x⊥w

〉
=
〈
w⋆

⊥w,x‖w
〉
= 0, we have 〈w⋆,x⊥w〉 = 〈w⋆

⊥w,x0,i〉.

Denote X :=
〈

w⋆
⊥w

‖w⋆
⊥w‖2

,x0,i

〉
and Y := 〈w0,i,x0,i〉. Then, (X,Y ) forms a projection of x0,i

onto a 2-dimensional subspace V2 spanned by w∗
⊥w

‖w∗
⊥w‖2

and w0,i. Let ϕV2
denote the density

of (X,Y ). By Assumption 2 condition 2, we have ϕV2
(X,Y ) ≤ U2 exp(−δ‖(X,Y )‖2) =
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U2 exp(−δ
√
X2 + Y 2). Hence, we can bound the above probability by

P (| 〈w⋆,x⊥w〉 I(0 ≤ 〈w0,i,x0,i〉 ≤ b0) | ≥ a− b0)

= P
(∣∣∣∣〈 w⋆

⊥w

‖w⋆
⊥w‖2

,x0,i

〉∣∣∣∣ ≥ a− b0
‖w⋆

⊥w‖2
, 0 ≤ 〈w0,i,x0,i〉 ≤ b0

)
=

∫ +∞

a−b0
∥w⋆

⊥w
∥2

∫ b0

0

ϕV2
(X,Y )dXdY

≤ U2

∫ +∞

a−b0
∥w⋆

⊥w
∥2

∫ b0

0

exp
(
−δ
√
X2 + Y 2

)
dXdY

≤ U2b0

∫ +∞

a−b0
∥w⋆

⊥w
∥2

exp(−δX)dXdY

=
U2

δ
b0 exp

(
−δ

a− b0
‖w⋆

⊥w‖2

)
≤ U2 exp (δ)

δ
b0 exp

(
−δ

a

r0

)
.

(13)

The last inequality holds by the fact that ‖w⋆ − w0,i‖2 ≤ r0, which implies ‖w⋆
⊥w‖2 ≤ r0, and

that b0 < r0 = 2, which implies exp
(
δ b0
r0

)
< exp (δ). Combing (12) and (13), for a > b0,

P (〈w⋆,x0,i〉 I(0 ≤ 〈w0,i,x0,i〉 ≤ b0) > a) ≤ P (| 〈w⋆,x⊥w〉 I(0 ≤ 〈w0,i,x0,i〉 ≤ b0)| ≥ a− b0)

≤ U2 exp(δ)

δ
b0 exp

(
−δ

a

r0

)
.

(14)
For 0 < a ≤ b0,

P (〈w⋆,x0,i〉 I(0 ≤ 〈w0,i,x0,i〉 ≤ b0) > a) ≤ P (| 〈w⋆,x0,i〉 I(0 ≤ 〈w0,i,x0,i〉 ≤ b0)| > 0)

≤ P (0 ≤ 〈w0,i,x0,i〉 ≤ b0)

≤ U1b0

≤ U1b0 exp

(
δ
b0
r0

)
exp

(
−δ

a

r0

)
≤ U1 exp(δ)b0 exp

(
−δ

a

r0

)
.

(15)

The third inequality holds by Lemma 4 property (a). The fourth inequality holds for 0 < a < b0.
The last inequality holds since by our construction, b0 < r0 = 2.

Let ρ = max
{
U1 exp(δ),

U2 exp(δ)
δ

}
, by (14) and (15), we conclude that for ∀ a > 0,

P (I(0 ≤ 〈w0,i,x〉 ≤ b0) 〈w⋆,x〉 > a) ≤ ρb0 exp

(
−δ

a

r0

)
. (16)

Thus,
P (| 〈w⋆,−g̃0,i〉 | ≥ a)

= P
(∣∣∣∣ 〈w⋆,x0,i〉 I(0 ≤ 〈w0,i,x0,i〉 ≤ b0)

(
1

2
y0,i −

(
1

2
− η̄

)) ∣∣∣∣ ≥ a

)
≤ P (| 〈w⋆,x0,i〉 I(0 ≤ 〈w0,i,x0,i〉 ≤ b0) | ≥ a)

≤ρb0 exp
(
−δ

a

2

)
,

where the first inequality holds since
∣∣ 1

2y0,i − ( 12 − η̄)
∣∣ ≤ 1. In the last inequality, since ‖w0,i −

w⋆‖2 ≤ ‖w0,i‖2 + ‖w⋆‖2 = 2, we take r0 = 2 in (16) and get the upper bound.
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By Lemma 9, 〈w⋆,−g̃0,i〉 is
(
12
δ

√
1 + 2ρb0,

12
δ

)
-subexponential. By Lemma 7, we can get that

with probability at least (1− 1/T 2),
T0∑
i=1

E[〈w⋆,−g̃0,i〉)| F0,i−1] ≤
T0∑
i=1

〈w⋆,−g̃0,i〉+
24

δ

√
1 + 2ρb0

√
T0 lnT +

48

δ
lnT.

The following lemma establishes a high-probability upper bound for the average of f0,i(w0,i) over
T0 iterations.
Lemma 16. In Algorithm 3, if 〈w⋆, w̄0〉 ≥ 1

2 (1 − 2η)L1R
2, then there exist some con-

stants c2, c3, c4 > 0, when setting bandwidth b0 = c2(1 − 2η̄)2, iteration number T0 =

c3
1

(1−2η̄)8 d ln d(lnT )
2, step size α0 = c4

√
d ln d√
T0 lnT

, then with probability at least 1 − 3/T 2, we
have

1

T0

T0∑
i=1

f0,i(w0,i) ≤ min
{
1, L1R

2
} π(1− 2η̄)L2R

2

2880U1
.

Proof. Recall that in the non-strategic setting, gk,i = [−η̄x0,iI (y0,i = 1) + (1 −
η̄)x0,iI (y0,i = −1)]I (x0,i ∈ D0,i), where D0,i = {x | 0 ≤ 〈w0,i,x〉 ≤ b0} is just the localization
region. Since the announced classifier is h̃0,i(r) = sgn(〈w0,i, r〉), by the construction of g̃0,i in
Algorithm 3 and Corollary 4, we have

g̃0,i = [−η̄r0,iI (y0,i = 1) + (1− η̄)r0,iI (y0,i = −1)]I (0 < 〈w0,i, r0,i〉 ≤ b0)

= [−η̄x0,iI (y0,i = 1) + (1− η̄)x0,iI (y0,i = −1)]I (x0,i ∈ D0,i)

= g0,i.

Then, by Lemma 10, we have
E [〈w⋆,−g̃0,i〉] = E [〈w⋆,−g0,i〉] ≥ (1− 2η̄)f0,i(w0,i)P (x ∈ D0,i) . (17)

We proceed to establish the high probability bound of
∑T0

i=1 E [〈w⋆,−g̃0,i〉]. By Lemma 15, with
probability at least 1− 1/T 2, we have

T0∑
i=1

E[〈w⋆,−g̃0,i〉)| F0,i−1] ≤
T0∑
i=1

〈w⋆,−g̃0,i〉+
24

δ

√
1 + 2ρb0

√
T0 lnT +

48

δ
lnT, (18)

where ρ = max
{
U1 exp(δ),

U2 exp(δ)
δ

}
.

Next, we move on to upper bound
∑T0

i=1 〈w⋆,−g̃0,i〉 through a nonstandard regret analysis of online
mirror decent.

Let B(v1,v2) := 1
2(p−1)‖v1 − v2‖2p denote the Bregman divergence w.r.t. 1

2(p−1)‖ · ‖2p, where

p = ln (8d)
ln (8d)−1 . In each iteration i, the regularizer, B(·,w0,i−1) is 1-strongly convex with respect to

‖ · ‖p [see Shalev-Shwartz [2007]]. From the analysis of online mirror descent [see Orabona [2023],
Lemma 6.9], with step size α0, we have

〈α0ĝ0,i,w0,i −w⋆〉 ≤ B(w⋆,w0,i)−B(w⋆,w0,i+1) +
α2
0

2
‖g̃0,i‖2q,

where q = ln(8d) > 2. Summing the above equality over i ∈ [T0], we get
T0∑
i=1

〈α0g̃0,i,w0,i −w⋆〉 ≤ B(w⋆,w0,1)−B(w⋆,w0,T0+1) +
α2
0

2

T0∑
i=1

‖g̃0,i‖2q.

Dividing both sides by α0, and moving
∑T0

i=1 〈w0,i, g̃0,i〉 to RHS, we get
T0∑
i=1

〈w⋆,−g̃0,i〉 ≤
1

α0
[B(w⋆,w0,1)−B(w⋆,w0,T0+1)] +

T0∑
i=1

〈w0,i,−g̃0,i〉+
α0

2

T0∑
i=1

‖g̃0,i‖2q

≤ 1

α0
B(w⋆,w0,1) +

T0∑
i=1

〈w0,i,−g̃0,i〉+
α0

2

T0∑
i=1

‖g̃0,i‖2q.

(19)
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Now we need to bound the three terms in the RHS of (19) respectively.

First, we bound B(w⋆,w0,1) = B(w⋆,w0)

B(w⋆,w0,1) =
‖w⋆ −w0‖2p
2(p− 1)

(a)
≤ ‖w⋆ −w0‖21

2(p− 1)

(b)
≤ d‖w⋆ −w0‖22

2(p− 1)

(c)

≤ 2d ln(8d), (20)

where inequality (a) holds by the fact that ‖x‖p ≤ ‖x‖1 for all p > 1 and x ∈ Rd. Inequality (b)
holds since ‖x‖1 ≤

√
d‖x‖2 for all x ∈ Rd. Inequality (c) holds since ‖w⋆ − w0‖2 ≤ ‖w⋆‖2 +

‖w0‖2 = 2 and 1
p−1 ≤ ln(8d)− 1 < ln(8d).

Next, we bound
∑T0

i=1 〈−w0,i, g̃0,i〉.
Since 〈−w0,i, g̃0,i〉 = 〈w0,i,x0,i〉

(
1
2y0,i −

(
1
2 − η

))
I (0 < 〈w0,i,x0,i〉 ≤ b0), then

| 〈−w0,i, g̃0,i〉 | ≤ b0 and E [〈−w0,i, g̃0,i〉] ≤ b0P (x ∈ D0,i), by Lemma 8, with probability
at least 1− 1/T 2, we have

T0∑
i=1

〈−w0,i, g̃0,i〉 ≤
T0∑
i=1

E [〈−w0,i, g̃0,i〉 | F0,i−1] + b0
√
T0 lnT

≤ b0

T0∑
i=1

Pr(x ∈ D0,i) + b0
√
T0 lnT .

(21)

Finally, we bound
∑T0

i=1 ‖g̃0,i‖2q . Since ‖g0,i‖q ≤ 2‖g0,i‖∞, we only need to upper bound∑T0

i=1 ‖g0,i‖2∞, which satisfies

‖g0,i‖∞ =

∥∥∥∥I(0 ≤ 〈w0,i,x0,i〉 ≤ b0)

(
−1

2
y0,i +

(
1

2
− η

))
x0,i

∥∥∥∥
∞

≤ ‖x0,i‖∞.

By Lemma 13, we have with probability at least 1− 1/T0T
2,

‖x0,i‖∞ ≤ 1

Q

(
1 + ln(dT0T

2)
)
≤ 3

Q
lnT.

Thus, taking the union bound over i ∈ [T0], we have with probability at least 1− 1/T 2,

T0∑
i=1

‖g0,i‖2∞ ≤ T0 ×
(

3

Q
lnT

)2

=
9

Q2
T0(lnT )

2.

Hence, with probability at least 1− 1/T 2,

T0∑
i=1

‖g̃0,i‖2q ≤ 4

T0∑
i=1

‖g0,i‖2∞ ≤ 36

Q2
T0(lnT )

2. (22)

Combining (18), (20), (21) and (22) together, and taking the union bound, we get with probability
at least 1− 3/T 2,

(1− 2η)

T0∑
i=1

f0,i(w0,i)P (x ∈ D0,i)

≤
T0∑
i=1

E [〈w⋆,−g̃0,i〉]

≤
T0∑
i=1

〈w⋆,−g̃0,i〉+
24

δ

√
1 + 2ρb0

√
T0 lnT +

48

δ
lnT

≤ 2d ln(8d)

α0
+ b0

T0∑
i=1

Pr(x ∈ D0,i) + b0
√
T0 lnT +

18α0

Q2
T0(lnT )

2

+
24

δ

√
1 + 2ρb0

√
T0 lnT +

48

δ
lnT,

(23)
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where ρ = max
{
U1 exp(δ),

U2 exp(δ)
δ

}
. By Lemma 4, property (a), and the fact that b0 < R, we

have L1b0 ≤ P (x ∈ D0,i) ≤ U1b0, dividing both sides of (23) by (1− 2η̄)L1b0T0, we get

1

T0

T0∑
i=1

f0,i(w0,i)

≤ 1

α0

2d ln(8d)

(1− 2η̄)L1b0T0
+

U1

(1− 2η̄)L1
b0 +

1

(1− 2η̄)L1

√
lnT

T0
+

18α0

(1− 2η̄)Q2L1b0
(lnT )2

+
24

(1− 2η̄)δL1b0

√
1 + 2ρb0

√
lnT

T0
+

48

(1− 2η̄)δL1b0

lnT

T0
.

By our setting, b0 = min
{
1, L1R

2
} (1−2η̄)2L1L2R

2

2880U2
1

= c2(1 − 2η̄)2, T0 =

576(1+2ρb0)d ln(8d)(lnT )2

U2
1 δ

2b40
= c3

1
(1−2η̄)8 d ln d(lnT )

2, α0 =
Q
√

d ln(8d)

3
√
T0 lnT

= c4
√
d ln d√
T0 lnT

, then we
finish the proof.

The following lemma established by Zhang et al. [2020] indicates that by the construction of the
constraint set W0, any two vectors in W0 form an angle that is no bigger than π− 1

2 (1− 2η̄)L1R
2.

Lemma 17. (Zhang et al. [2020], Lemma 19) For any two vectors u,v ∈ W0 ={
w | ‖w‖2 ≤ 1, 〈w, w̄0〉 ≥ 1

2 (1− 2η̄)L1R
2
}

, we have θ (u,v) ≤ π − 1
2 (1− 2η̄)L1R

2.

We use the following corollary to show that, in the i’th iteration, a small value of f0,i(w0,i) indicates
that w0,i and w∗ are close.

Corollary 5. If w∗ ∈ W0 and f0,i(w0,i) < min
{
1, L1R

2
} π(1−2η̄)L2R

2

320U1
, then θ (w⋆,w0,i) ≤ π

10 .

Proof. We first exclude the case that θ (w⋆,w0,i) >
π
2 , which we prove by contradiction. Suppose

θ (w⋆,w0,i) >
π
2 . By Lemma 17 and our choice of b0, θ (w⋆,w0,i) ≤ π− 1

2 (1−2η)L1R
2 < π−b0.

From Lemma 11, we get fk,i(wk,i) ≥ L2

32U1
R2 (π − θ (w⋆,wk,i)). Together with the condition that

f0,i(w0,i) <
π(1−2η̄)L1L2R

4

320U1
, we have θ (w⋆,w0,i) > π− π

10 (1− 2η̄)L1R
2 > π− 1

2 (1− 2η̄)L1R
2,

which is a contradiction. Thus, we conclude that θ (w⋆,w0,i) ≤ π
2 .

Next, since f0,i(w0,i) < π(1−2η̄)L2R
2

320U1
≤ L2R

2

160U1
· π

2 , by Corollary 3, setting θ0 = π
2 , then

θ (w⋆,w0,i) ≤ θ0
5 = π

10 .

Putting all pieces together, now we are able to show the main theoretical guarantee of Algorithm 3.
Proposition 3. For the constant c1 in Proposition 2 and some constants c2, c3, c4 > 0, when the
initial vector w̄0 satisfies 〈w⋆, w̄0〉 ≥ c1(1−2η̄) and Algorithm 3 runs with bandwidth b0 = c2(1−
2η̄)2 for T0 = c3d ln d(lnT )

2/(1 − 2η̄)8 iterations with step size α0 = c4
√

d ln(d)/(
√
T0 lnT ),

then its output w1 satisfies θ (w⋆,w1) ≤ π/4 with probability at least 1− 3/T 2.

Proof. In Algorithm 3, the constraint set we choose for gradient update is W0 = {w| ‖w‖2 ≤
1, 〈w, w̄0〉 ≥ c1(1 − 2η̄)}, where c1 = 1

2L1R
2, since 〈w⋆, w̄0〉 ≥ c1(1 − 2η̄), we can conclude

that w⋆ ∈ W0.

Next, Lemma 16 shows that with probability at least 1− 3/T 2,

1

T0

T0∑
i=1

f0,i(w0,i) ≤ min
{
1, L1R

2
} π(1− 2η̄)L2R

2

2880U1
. (24)

Let A0 denote the set
{
i | f0,i(w0,i) > min

{
1, L1R

2
} π(1−2η̄)L2R

2

320U1

}
. Combing (24), we have:

min
{
1, L1R

2
} π(1− 2η̄)L2R

2

2880U1
≥ 1

T0

T0∑
i=1

f0,i(w0,i) ≥
|A0|
T0

min
{
1, L1R

2
} π(1− 2η̄)L2R

2

320U1
.
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Solve the above inequality and we get |A0|
T0

≤ 1
9 .

From Corollary 3, set θ0 = π
2 , we know that when i ∈ Ā0, θ(w⋆,w0,i) ≤ π

10 . Thus,

1

T0

T0∑
i=1

cos(θ (w⋆,w0,i)) ≥
∣∣Ā0

∣∣
T0

cos
( π

10

)
− |A0|

T0

≥
(
1− |A0|

T0

)(
1− 1

2

( π

10

)2)
− |A0|

T0

≥
(
1− 1

9

)(
1− 1

2

( π

10

)2)
− 1

9

≥ cos
(π
4

)
,

where the first inequality holds since cosx is decreasing in x ∈ [0, π] and cosx ≥ −1. The sec-
ond inequality holds since cosx ≥ 1 − 1

2x
2 for all x ∈ [0, π]. The last inequality holds since(

1− 1
9

) (
1− 1

2

(
π
10

)2) − 1
9 ≈ 0.73 > 0.71 ≈ cos

(
π
4

)
. By the concavity of cos(θ (w⋆, ·)), using

Jensen’s inequality, we conclude that when the above inequality holds, we have

cos

(
θ

(
w⋆,

1

T0

T0∑
i=1

w0,i

))
≥ 1

T0

T0∑
i=1

cos(θ (w⋆,w0,i)) ≥ cos
(π
4

)
.

Thus, we can get that with probability at least 1− 3/T 2, Algorithm 3 returns a vector w1 such that
θ(w⋆,w1) ≤ π

4 .

Theoretical Guarantees of Algorithm 4 The following lemma shows that if, in batch k, iteration
i, we can identify agents whose true features lie in the localization region Dk,i, and we use proxy
features to construct a proxy gradient g̃k,i, then E [〈w⋆,−g̃k,i〉] upper bounds E [〈w⋆,−gk,i〉] (and
hence upper bounds θ (w⋆,wk,i)).

Lemma 18. Given a classification rule h̃(r) = sgn(〈wk,i, r〉 + mk,i) with fixed wk,i ∈ Sd and
arbitrary mk,i < 0, an agent (xk,i, yk,i) reports his feature as rk,i according to Lemma 1. Construct
proxy data as

x̃+
k,i :=

(
rk,i + (bk − 〈wk,i, rk,i〉)wk,i

)
I (yk,i = 1,xk,i ∈ Dk,i) ,

x̃−
k,i := (rk,i − 〈wk,i, rk,i〉wk,i)I (yk,i = −1,xk,i ∈ Dk,i) ,

and define the gradient as

g̃k,i :=
[
−η̄x̃+

k,i + (1− η̄)x̃−
k,i

]
I (xk,i ∈ Dk,i) .

Then, we have
E [〈w⋆,−g̃k,i〉] ≥ E [〈w⋆,−gk,i〉] .

Proof. First, by Lemma 1, given wk,i,mk,i, for ∀ xk,i ∈ Rd, we have

rk,i + (bk − 〈wk,i, rk,i〉)wk,i = xk,i + (bk − 〈wk,i,xk,i〉)wk,i,

and
rk,i − 〈wk,i, rk,i〉wk,i = xk,i − 〈wk,i,xk,i〉wk,i.

Therefore, when xk,i ∈ Dk,i = {x| 0 ≤ 〈wk,i,x〉 ≤ bk}, we have the following〈
w⋆, x̃+

k,i

〉
= 〈w⋆, rk,i + (bk − 〈wk,i, rk,i〉)wk,i〉 I (yk,i = 1, xk,i ∈ Dk,i)

= 〈w⋆,xk,i + (bk − 〈wk,i,xk,i〉)wk,i〉 I (yk,i = 1, xk,i ∈ Dk,i)

= [〈w⋆,xk,i〉+ (bk − 〈wk,i,xk,i〉) 〈w⋆,wk,i〉] I (yk,i = 1, xk,i ∈ Dk,i)

≥ 〈w⋆,xk,i〉 I (yk,i = 1, xk,i ∈ Dk,i) ,

(25)

where the inequality holds since 〈w⋆,wk,i〉 > 0 and 〈wk,i,xk,i〉 I (xk,i ∈ Dk,i) ≤ bk.
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Similarly,〈
w⋆, x̃−

k,i

〉
= 〈w⋆, rk,i − 〈wk,i, rk,i〉wk,i〉 I (yk,i = −1, xk,i ∈ Dk,i)

= 〈w⋆,xk,i − 〈wk,i,xk,i〉wk,i〉 I (yk,i = −1, xk,i ∈ Dk,i)

= [〈w⋆,xk,i〉 − 〈wk,i,xk,i〉 〈w⋆,wk,i〉] I (yk,i = −1, xk,i ∈ Dk,i)

≤ 〈w⋆,xk,i〉 I (yk,i = −1, xk,i ∈ Dk,i) .

(26)

where the inequality holds since 〈w⋆,wk,i〉 > 0 and 〈wk,i,xk,i〉 I (xk,i ∈ Dk,i) ≥ 0. Combing
(25) and (26), we have

E [〈w⋆,−g̃k,i〉]

= η̄E
[〈

w⋆, x̃+
k,i

〉]
− (1− η̄)E

[〈
w⋆, x̃−

k,i

〉]
≥ η̄E [〈w⋆,xk,i〉 I (yk,i = 1, xk,i ∈ Dk,i)]− (1− η̄)E [〈w⋆,xk,i〉 I (yk,i = −1, xk,i ∈ Dk,i)]

= E [〈w⋆,−gk,i〉] .

The following lemma shows that by pairwise comparing agents’ responses under two different de-
clared classifiers designed in Algorithm 4, we can unbiasedly estimate the proxy data desired by
Lemma 18 and hence construct a gradient estimator ĝk,i, accordingly.

Lemma 19. Given x̃+
k,i, x̃

−
k,i and g̃k,i defined in Lemma 18, for the proxy data x̂

(1,+)
k,i , x̂(1,−)

k,i , x̂(2,+)
k,i ,

x̂
(2,−)
k,i and gradient estimator ĝk,i defined in Algorithm 4, we have

E
[
x̂
(1,+)
k,i − x̂

(2,+)
k,i

]
= E

[
x̃+
k,i

]
,

and
E
[
x̂
(1,−)
k,i − x̂

(2,−)
k,i

]
= E

[
x̃−
k,i

]
.

Moreover,
E [〈w⋆,−ĝk,i〉] = E [〈w⋆,−g̃k,i〉] .

Proof. For fixed normal vector wk,i and bandwidth bk, recall that D
(1)
k,i =

{x | 0 ≤ 〈wk,i,x〉 ≤ γ + bk} and D
(2)
k,i = {x | bk ≤ 〈wk,i,x〉 ≤ γ + bk}. Then, we can ver-

ify that Dk,i = D
(1)
k,i/D

(2)
k,i . By Corollary 4, we have

x̃+
k,i = [rk,i + (bk − 〈wk,i, rk,i〉)wk,i]I (yk,i = 1, xk,i ∈ Dk,i)

= [xk,i + (bk − 〈wk,i,xk,i〉)wk,i]I (yk,i = 1, xk,i ∈ Dk,i) ,

x̃−
k,i = [rk,i − 〈wk,i, rk,i〉wk,i] I (yk,i = −1, xk,i ∈ Dk,i)

= [xk,i − 〈wk,i,xk,i〉wk,i]I (yk,i = −1, xk,i ∈ Dk,i) ,

x̂
(1,+)
k,i =

[
r
(1)
k,i +

(
bk −

〈
wk,i, r

(1)
k,i

〉)
wk,i

]
I
(
y
(1)
k,i = 1, γ ≤

〈
wk,i, r

(1)
k,i

〉
≤ γ + bk

)
=
[
x
(1)
k,i +

(
bk −

〈
wk,i,x

(1)
k,i

〉)
wk,i

]
I
(
y
(1)
k,i = 1, x

(1)
k,i ∈ D

(1)
k,i

)
,

x̂
(1,−)
k,i =

[
r
(1)
k,i −

〈
wk,i, r

(1)
k,i

〉
wk,i

]
I
(
y
(1)
k,i = −1, γ ≤

〈
wk,i, r

(1)
k,i

〉
≤ γ + bk

)
=
[
x
(1)
k,i −

〈
wk,i,x

(1)
k,i

〉
wk,i

]
I
(
y
(1)
k,i = −1, x

(1)
k,i ∈ D

(1)
k,i

)
,

x̂
(2,+)
k,i =

[
r
(2)
k,i +

(
bk −

〈
wk,i, r

(2)
k,i

〉)
wk,i

]
I
(
y
(2)
k,i = 1,

〈
wk,i, r

(2)
k,i

〉
= γ + bk

)
=
[
x
(2)
k,i +

(
bk −

〈
wk,i,x

(2)
k,i

〉)
wk,i

]
I
(
y
(2)
k,i = 1, x

(2)
k,i ∈ D

(2)
k,i

)
,

x̂
(2,−)
k,i =

[
r
(2)
k,i −

〈
wk,i, r

(2)
k,i

〉
wk,i

]
I
(
y
(2)
k,i = −1,

〈
wk,i, r

(2)
k,i

〉
= γ + bk

)
=
[
x
(2)
k,i −

〈
wk,i,x

(2)
k,i

〉
wk,i

]
I
(
y
(2)
k,i = −1, x

(2)
k,i ∈ D

(2)
k,i

)
.
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Also, (x(1)
k,i , y

(1)
k,i ) and (x

(2)
k,i , y

(2)
k,i ) are drawn i.i.d. from D, thus,

E
[
x̂
(1,+)
k,i − x̂

(2,+)
k,i

]
= E

[[
x
(1)
k,i +

(
bk −

〈
wk,i,x

(1)
k,i

〉)
wk,i

]
I
(
y
(1)
k,i = 1, x

(1)
k,i ∈ D

(1)
k,i

)]
− E

[[
x
(2)
k,i +

(
bk −

〈
wk,i,x

(2)
k,i

〉)
wk,i

]
I
(
y
(2)
k,i = 1, x

(2)
k,i ∈ D

(2)
k,i

)]
= E

[
[x+ (bk − 〈wk,i,x〉)wk,i]I

(
y = 1, x ∈ D

(1)
k,i

)]
− E

[
[x+ (bk − 〈wk,i,x〉)wk,i]I

(
y = 1, x ∈ D

(2)
k,i

)]
= E [[x+ (bk − 〈wk,i,x〉)wk,i]I (y = 1, x ∈ Dk,i)]

= E
[
x̃+
k,i

]
.

Similarly, we can show that E
[
x̂
(1,−)
k,i − x̂

(2,−)
k,i

]
= E

[
x̃−
k,i

]
. Therefore,

E [〈w⋆,−ĝk,i〉] = η̄E
[〈

w⋆, x̂
(1,+)
k,i − x̂

(2,+)
k,i

〉]
− (1− η̄)E

[〈
w⋆, x̂

(1,−)
k,i − x̂

(2,−)
k,i

〉]
= η̄E

[〈
w⋆, x̃

(+)
k,i

〉]
− (1− η̄)E

[〈
w⋆, x̃

(−)
k,i

〉]
= E [〈w⋆,−g̃k,i〉] .

Next, we establish the high probability bound of
∑Tk

i=1 E[〈w⋆,−ĝk,i〉 | Fk,i−1] by∑Tk

i=1 〈w⋆,−ĝk,i〉.
Lemma 20. At batch k of Algorithm 4, when ‖w⋆−wk,i‖2 ≤ rk for ∀i ∈ [Tk], then with probability
at least 1− 2/T 2, we have

Tk∑
i=1

E[〈w⋆,−ĝk,i〉 | Fk,i−1] ≤
Tk∑
i=1

〈w⋆,−ĝk,i〉

+
24

δ

√
1 + 2ρ(γ + bk)rk

√
Tk lnT +

48

δ
rk lnT,

where ρ = max
{
U1 exp(δ),

U2 exp(δ)
δ

}
.

Proof. First, we partition 〈w⋆,−ĝk,i〉 into two parts, as the following

〈w⋆,−ĝk,i〉

=
〈
w⋆, η̄(x̂

(1,+)
k,i − x̂

(2,+)
k,i )− (1− η̄)(x̂

(1,−)
k,i − x̂

(2,−)
k,i )

〉
=
〈
w⋆, η̄x̂

(1,+)
k,i − (1− η̄)x̂

(1,−)
k,i

〉
︸ ︷︷ ︸

(a)

−
〈
w⋆, η̄x̂

(2,+)
k,i − (1− η̄)x̂

(2,−)
k,i

〉
︸ ︷︷ ︸

(b)

.
(27)

Since the randomness in part (a) arises from one sample, while the randomness in part (b) arises
from another independent sample, parts (a) and (b) are independent. Therefore, we can bound them
separately. We first discuss the high-probability tail bound of part (a).

We partition η̄x̂
(1,+)
k,i − (1− η̄)x̂

(1,−)
k,i into two orthonormal vectors. For notational convenience, we

omit the subindex k, i and let x‖w denote the component of x that is parallel to wk,i, i.e., x‖w =
〈wk,i,x〉wk,i, and x⊥w denote the component of x that is orthogonal to wk,i, i.e., x⊥w = x−x‖w.
Then, 〈

w⋆, η̄x̂
(1,+)
k,i − (1− η̄)x̂

(1,−)
k,i

〉
=

〈
w⋆,

(
η̄x̂

(1,+)
k,i − (1− η̄)x̂

(1,−)
k,i

)
‖w

〉
︸ ︷︷ ︸

(a1)

+
〈
w⋆,

(
η̄x̂

(1,+)
k,i − (1− η̄)x̂

(1,−)
k,i

)
⊥w

〉
︸ ︷︷ ︸

(a2)

. (28)
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Hence, we have to bound part (a1) and (a2) in (28), respectively.

To bound part (a1) in (28), we have〈
w⋆, x̂

(1,+)
‖w

〉
=
〈
w⋆, r

(1)
‖w +

(
bk −

〈
wk,i, r

(1)
k,i

〉)
wk,i

〉
I
(
y
(1)
k,i = 1, γ ≤

〈
wk,i, r

(1)
k,i

〉
≤ γ + bk

)
=
〈
w⋆, r

(1)
‖w +

(
bkwk,i − r

(1)
‖w

)〉
I
(
y
(1)
k,i = 1, γ ≤

〈
wk,i, r

(1)
k,i

〉
≤ γ + bk

)
= 〈w⋆, bkwk,i〉 I

(
y
(1)
k,i = 1, γ ≤

〈
wk,i, r

(1)
k,i

〉
≤ γ + bk

)
≤bk,

(29)
where the last inequality holds because 〈w⋆,wk,i〉 ≤ ‖w⋆‖2‖wk,i‖2 ≤ 1. Similarly,〈

w⋆, x̂
(1,−)
‖w

〉
=
〈
w⋆, r

(1)
‖w −

〈
wk,i, r

(1)
k,i

〉
wk,i

〉
I
(
y
(1)
k,i = −1,

〈
wk,i, r

(1)
k,i

〉
= γ + bk

)
=
〈
w⋆, r

(1)
‖w − r

(1)
‖w

〉
I
(
y
(1)
k,i = −1,

〈
wk,i, r

(1)
k,i

〉
= γ + bk

)
=0.

(30)

Combing (29) and (30), we can bound part (a1) as〈
w⋆,

(
η̄x̂

(1,+)
k,i − (1− η̄)x̂

(1,−)
k,i

)
‖w

〉
≤ bk. (31)

Next, we bound part (a2) in (28). From Lemma 1, we get that

r
(1)
⊥w =

(
r
(1)
k,i +

(
bk −

〈
wk,i, r

(1)
k,i

〉)
wk,i

)
⊥w

=
(
r
(1)
k,i −

〈
wk,i, r

(1)
k,i

〉
wk,i

)
⊥w

= x
(1)
⊥w,

hence,〈
w⋆,

(
η̄x̂

(1,+)
k,i − (1− η̄)x̂

(1,−)
k,i

)
⊥w

〉
︸ ︷︷ ︸

(a2)

= η̄
〈
w⋆,

(
r
(1)
k,i +

(
bk −

〈
wk,i, r

(1)
k,i

〉)
wk,i

)
⊥w

〉
I
(
y
(1)
k,i = 1, γ ≤

〈
wk,i, r

(1)
k,i

〉
≤ γ + bk

)
− (1− η̄)

〈
w⋆,

(
r
(1)
k,i −

〈
wk,i, r

(1)
k,i

〉
wk,i

)
⊥w

〉
I
(
y
(1)
k,i = −1, γ ≤

〈
wk,i, r

(1)
k,i

〉
≤ γ + bk

)
= η̄

〈
w⋆,x

(1)
⊥w

〉
I
(
y
(1)
k,i = 1, x

(1)
k,i ∈ D

(1)
k,i

)
− (1− η̄)

〈
w⋆,x

(1)
⊥w

〉
I
(
y
(1)
k,i = −1, x

(1)
k,i ∈ D

(1)
k,i

)
=
〈
w⋆,x

(1)
⊥w

〉(1

2
y
(1)
k,i −

(
1

2
− η̄

))
I
(
x
(1)
k,i ∈ D

(1)
k,i

)
,

where the second equality holds by Corollary 4.

Since
∣∣∣ 1

2y
(1)
k,i −

(
1
2 − η̄

) ∣∣∣ ≤ 1, we only need to establish the high probability bound of〈
w⋆,x

(1)
⊥w

〉
I
(
x
(1)
k,i ∈ D

(1)
k,i

)
, for a > bk we have

P
(∣∣∣ 〈w⋆,x

(1)
⊥w

〉
I
(
x
(1)
k,i ∈ D

(1)
k,i

) ∣∣∣ ≥ a− bk

)
= P

(∣∣∣〈w⋆,x
(1)
⊥w

〉∣∣∣ ≥ a− bk, 0 ≤
〈
wk,i,x

(1)
k,i

〉
≤ γ + bk

)
= P

(∣∣∣〈w⋆
⊥w,x

(1)
k,i

〉∣∣∣ ≥ a− bk, 0 ≤
〈
wk,i,x

(1)
k,i

〉
≤ γ + bk

)
,

where the last inequality holds because
〈
w⋆,x

(1)
⊥w

〉
=

〈
w⋆

⊥w,x
(1)
⊥w

〉
+
〈
w⋆

‖w,x
(1)
⊥w

〉
=〈

w⋆
⊥w,x

(1)
⊥w

〉
=
〈
w⋆

⊥w,x
(1)
⊥w

〉
+
〈
w⋆

⊥w,x
(1)
‖w

〉
=
〈
w⋆

⊥w,x
(1)
k,i

〉
.

Let X :=
〈

w⋆
⊥w

‖w⋆
⊥w‖2

,xk,i

〉
and Y := 〈wk,i,xk,i〉. Then, (X,Y ) forms a projection of xk,i onto a

2-dimensional subspace V2 spanned by w∗
⊥w

‖w∗
⊥w‖2

and wk,i. Let ϕV2 denote the density of (X,Y ). By
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condition 2 of Assumption 2 ϕV2(X,Y ) ≤ U2 exp(−δ‖(X,Y )‖2), thus, we can bound the above
probability by

P
(∣∣∣ 〈w⋆,x

(1)
⊥w

〉
I
(
x ∈ D

(1)
k,i

) ∣∣∣ ≥ a− bk

)
=

∫ +∞

a−bk
∥w⋆

⊥w
∥2

∫ γ+bk

0

ϕ(X,Y )dXdY

≤ U2

∫ +∞

a−bk
∥w⋆

⊥w
∥2

∫ γ+bk

0

exp(−δ
√

X2 + Y 2)dXdY

≤ U2(γ + bk)

∫ +∞

a−bk
∥w⋆

⊥w
∥2

exp(−δX)dXdY

=
U2(γ + bk)

δ
exp

(
−δ

a− bk
‖w⋆

⊥w‖2

)
≤ U2(γ + bk)

δ
exp

(
−δ

a− bk
rk

)
≤ U2 exp(δ)(γ + bk)

δ
exp

(
−δ

a

rk

)
,

where the third inequality holds since ‖w⋆ −wk,i‖ ≤ rk < π
2 , which implies ‖w⋆

⊥w‖2 ≤ rk. The
last inequality holds since bk < rk by our setting.

Since
∣∣∣( 1

2y
(1)
k,i −

(
1
2 − η̄

))∣∣∣ ≤ 1, for a ≥ bk, we have

P
(∣∣∣∣ 〈w⋆,x

(1)
⊥w

〉(1

2
−
(
1

2
− η̄

)
y
(1)
k,i

)
I
(
x
(1)
k,i ∈ D(1)

) ∣∣∣∣ ≥ a− bk

)
≤ P

(∣∣∣ 〈w⋆,x
(1)
⊥w

〉
I
(
x
(1)
k,i ∈ D

(1)
k,i

) ∣∣∣ ≥ a− bk

)
≤ U2 exp(δ)(γ + bk)

δ
exp

(
−δ

a

rk

)
.

(32)

Combing (32) and (31), we get that for a ≥ bk,

P
(∣∣∣ 〈w⋆, η̄x̃

(1,+)
k,i − (1− η̄)x̃

(1,−)
k,i

〉 ∣∣∣ ≥ a
)
≤ P

(∣∣∣ 〈 w∗,
(
η̄x̃

(1,+)
k,i − (1− η̄)x̃

(1,−)
k,i

)
⊥w

〉 ∣∣∣ ≥ a− bk

)
≤ U2 exp(δ)(γ + bk)

δ
exp

(
−δ

a

rk

)
.

(33)

For 0 < a < bk,

P
(∣∣∣ 〈w⋆, η̄x̂

(1,+)
k,i − (1− η̄)x̂

(1,−)
k,i

〉 ∣∣∣ ≥ a
)
≤ P

(∣∣∣ 〈w⋆, η̄x̂
(1,+)
k,i − (1− η̄)x̂

(1,−)
k,i

〉 ∣∣∣ > 0
)

≤ P
(
x
(1)
k,i ∈ D

(1)
k,i

)
≤ U1(γ + bk)

≤ U1 exp(δ)(γ + bk) exp

(
−δ

a

rk

)
.

(34)

Where the third inequality holds by Lemma 4 property (a) and the last equality holds since a < bk <
rk.

Combing (33) and (34), we establish probability tail bound of (a) in (27): for ∀a > 0 and ρ =

max
{
U1 exp(δ),

U2 exp(δ)
δ

}
, we have

P
(∣∣∣ 〈w⋆, η̄x̂

(1,+)
k,i − (1− η̄)x̂

(1,−)
k,i

〉 ∣∣∣ ≥ a
)
≤ ρ(γ + bk) exp

(
−δ

a

rk

)
.

Following the same technique, we can bound part (b) of (27) for a > 0 by:

P
(∣∣∣ 〈w⋆, η̄x̂

(2,+)
k,i − (1− η̄)x̂

(2,−)
k,i

〉 ∣∣∣ ≥ a
)
≤ ργ exp

(
−δ

a

rk

)
.
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By Lemma 9, part (a) and part (b) in (27) are
(

6
δ

√
1 + 2ρ(γ + bk)rk,

6
δ rk

)
-subexponential, thus,

by Lemma 7, we get that with probability at least 1− 1/T 2,

Tk∑
i=1

E
[〈

w⋆, η̄x̃
(1,+)
k,i − (1− η̄)x̃

(1,−)
k,i

〉 ∣∣∣ Fk,i−1

]
≤

Tk∑
i=1

〈
w⋆, η̄x̃

(1,+)
k,i − (1− η̄)x̃

(1,−)
k,i

〉
+

12

δ

√
1 + 2ρ(γ + bk)rk

√
Tk lnT +

24

δ
rk lnT,

(35)

and with probability at least 1− 1/T 2,

Tk∑
i=1

E
[〈

w⋆, η̄x̃
(2,+)
k,i − (1− η̄)x̃

(2,−)
k,i

〉 ∣∣∣ Fk,i−1

]
≥

Tk∑
i=1

〈
w⋆, η̄x̃

(2,+)
k,i − (1− η̄)x̃

(2,−)
k,i

〉
− 12

δ

√
1 + 2ρ(γ + bk)rk

√
Tk lnT − 24

δ
rk lnT.

(36)

Taking the union bound of (35) and (36), we get that with probability at least 1− 2/T 2,

Tk∑
i=1

E[〈w⋆,−ĝk,i〉)| Fk,i−1] ≤
Tk∑
i=1

〈w⋆,−ĝk,i〉+
24

δ

√
1 + 2ρ(γ + bk)rk

√
Tk lnT +

48

δ
rk lnT.

We then show that by our construction of ĝk,i,
∑Tk

i=1 〈−wk,i, ĝk,i〉 also has a high probability upper
bound.

Lemma 21 (High probability bound of
∑Tk

i=1 〈−wk,i, ĝk,i〉). At batch k, with probability at least
1− 2/T 2, we have

Tk∑
i=1

〈−wk,i, ĝk,i〉 ≤ η̄bk

Tk∑
i=1

P (x ∈ Dk,i) + 2η̄bk
√
Tk lnT .

Proof. Since ĝk,i = −η̄(x̂
(1,+)
k,i − x̂

(2,+)
k,i ) + (1− η̄)(x̂

(1,−)
k,i − x̂

(2,−)
k,i ), and we have the〈

wk,i, x̂
(1,+)
k,i

〉
= bkI(y(1)k,i = 1)I(x(1)

k,i ∈ D
(1)
k,i ),〈

wk,i, x̂
(2,+)
k,i

〉
= bkI(y(2)k,i = 1)I(x(2)

k,i ∈ D
(2)
k,i ),〈

wk,i, x̂
(1,−)
k,i

〉
=
〈
wk,i, x̂

(2,−)
k,i

〉
= 0.

Thus,

E[〈wk,i,−ĝk,i〉] = η̄bkE
[
I
(
y = 1, x ∈ D

(1)
k,i

)
− I
(
y = 1, x ∈ D

(2)
k,i

)]
= η̄bkP (y = 1, x ∈ Dk,i)

= η̄bkP (y = 1 | x ∈ Dk,i)P (x ∈ Dk,i) .

Also, since x̂
(1,+)
k,i and x̂

(1,−)
k,i are calculated by one sample while x̂

(2,+)
k,i and x̂

(2,−)
k,i are calculated

by another independent sample, we can reformulate 〈wk,i,−ĝk,i〉 as the following:

〈wk,i,−ĝk,i〉 =
〈
wk,i, η̄x̂

(1,+)
k,i − (1− η̄)x̂

(1,−)
k,i

〉
︸ ︷︷ ︸

(a)

−
〈
wk,i, η̄x̂

(2,+)
k,i − (1− η̄)x̂

(2,−)
k,i

〉
︸ ︷︷ ︸

(b)

, (37)

where (a) and (b) in (37) are independent. Thus, we establish the high probability bound of parts (a)
and (b), respectively.
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For part (a),
∣∣∣ 〈wk,i, η̄x̂

(1,+)
k,i − (1− η̄)x̂

(1,−)
k,i

〉 ∣∣∣ ≤ η̄bk, so by Lemma 8, with probability at least

1− 1/T 2,

Tk∑
i=1

〈
wk,i, η̄x̂

(1,+)
k,i − (1− η̄)x̂

(1,−)
k,i

〉
≤

Tk∑
i=1

E
[〈

wk,i, η̄x̂
(1,+)
k,i − (1− η̄)x̂

(1,−)
k,i

〉∣∣∣ Fk,i−1

]
+ η̄bk

√
Tk lnT .

Similarly, for part (b), with probability at least 1− 1/T 2,

Tk∑
i=1

〈
wk,i, η̄x̂

(2,+)
k,i − (1− η̄)x̂

(2,−)
k,i

〉
≥

Tk∑
i=1

E
[〈

wk,i, η̄x̂
(2,+)
k,i − (1− η̄)x̂

(2,−)
k,i

〉∣∣∣ Fk,i−1

]
− η̄bk

√
Tk lnT .

(38)

Combing part (a) and (b) above, and taking the union bound, we get that with probability at least
1− 2/T 2,

Tk∑
i=1

〈−wk,i, ĝk,i〉 ≤ E

[
Tk∑
i=1

〈−wk,i, ĝk,i〉

]
+ 2η̄bk

√
Tk lnT

= η̄bk

Tk∑
i=1

Pr(y = 1| x ∈ Dk,i) Pr(x ∈ Dk,i) + 2η̄bk
√
Tk lnT

≤ η̄bk

Tk∑
i=1

Pr(x ∈ Dk,i) + 2η̄bk
√

Tk lnT .

(39)

The following lemma shows a high probability upper bound of
∑Tk

i=1 ‖ĝk,i‖2q .

Lemma 22 (High probability bound of
∑Tk

i=1 ‖ĝk,i‖2q). In Algorithm 4, with probability at least
1− 2/T 2,

Tk∑
i=1

‖ĝk,i‖2∞ ≤ 144

Q2
Tk(lnT )

2 .

Proof. For q = ln(8d) > 2, ‖ĝk,i‖q ≤ 2‖ĝk,i‖∞, hence, we only need to establish the high
probability bound of ‖ĝk,i‖∞. By our construction of ĝk,i,

‖ĝk,i‖∞ =
∥∥∥−η̄(x̂

(1,+)
k,i − x̂

(2,+)
k,i ) + (1− η̄)(x̂

(1,−)
k,i − x̂

(2,−)
k,i )

∥∥∥
∞

≤ η̄
∥∥∥x̂(1,+)

k,i

∥∥∥
∞

+ (1− η̄)
∥∥∥x̂(1,−)

k,i

∥∥∥
∞

+ η̄
∥∥∥x̂(2,+)

k,i

∥∥∥
∞

+ (1− η̄)
∥∥∥x̂(2,−)

k,i

∥∥∥
∞

= η̄
∥∥∥[x(1)

k,i + (bk −
〈
wk,i,x

(1)
k,i

〉
)wk,i]I(yk,i = 1)I(x(1)

k,i ∈ D
(1)
k,i )
∥∥∥
∞

+ (1− η̄)
∥∥∥(x(1)

k,i −
〈
wk,i,x

(1)
k,i

〉
wk,i)I(yk,i = −1)I(x(1)

k,i ∈ D
(1)
k,i )
∥∥∥
∞

+ η̄
∥∥∥[x(2)

k,i + (bk −
〈
wk,i,x

(2)
k,i

〉
)wk,i]I(yk,i = 1)I(x(2)

k,i ∈ D
(2)
k,i )
∥∥∥
∞

+ (1− η̄)
∥∥∥(x(2)

k,i −
〈
wk,i,x

(2)
k,i

〉
wk,i)I(yk,i = −1)I(x(2)

k,i ∈ Dk,i)
∥∥∥
∞

≤
∥∥∥x(1)

k,i

∥∥∥
∞

+
∥∥∥x(2)

k,i

∥∥∥
∞

+ 2(γ + bk).

From Lemma 13, we get that ,with probability at least 1− 1
TkT 2 ,∥∥∥x(1)

k,i

∥∥∥
∞

≤ 1

Q

(
1 + ln(dTkT

2)
)
, (40)
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and with probability at least 1− 1
TkT 2 ,∥∥∥x(2)

k,i

∥∥∥
∞

≤ 1

Q

(
1 + ln(dTkT

2)
)
. (41)

Taking the union bound of (40),(41), we get that with probability at least 1− 2
TkT 2 ,

‖ĝk,i ‖∞ ≤ 2

Q
+

2

Q
ln(dTkT

2) + 2(γ + bk).

Taking union bound over all iterations i ∈ [Tk], we have that with probability at least 1− 2/T 2,

Tk∑
i=1

‖ĝk,i‖2∞ ≤ Tk

(
2

Q
+

2

Q
ln(dTkT

2) + 2(γ + bk)

)2

≤ Tk

(
2

Q
ln(T 3)

)2

=
36

Q2
Tk(lnT )

2.

Thus, we conclude that with probability at least 1− 2/T 2,

Tk∑
i=1

‖ĝk,i‖2q ≤ 4

Tk∑
i=1

‖ĝk,i‖2∞ ≤ 144

Q2
Tk(lnT )

2.

Given the starting angle of batch k as θk = π
2k+1 , the following lemma establishes the high proba-

bility upper bound of the average of fk,i(wk,i).
Lemma 23. In Algorithm 4, at every batch k ∈ {1, 2, · · · ,K}, if θ(w⋆,wk) ≤ θk, there ex-
ists some constants c5, c6, c7 > 0, when setting bandwidth bk = c5

1−2η̄
2k

, iteration number

Tk = c6
(γ+1)d ln d lnT

(1−2η̄)4 · 4k, step size αk = c7
√
dθk

Tk lnT , then with probability at least 1 − 6
T 2 , the

following holds
1

Tk

Tk∑
i=1

fk,i(wk,i) ≤
L2R

2θk
12800U1

. (42)

Proof. Combing Lemma 10, Lemma 18 and Lemma 19, we have (1−2η̄)fk,i(wk,i)P (x ∈ Dk,i) ≤
E [〈w⋆,−ĝk,i〉], hence, it suffices to upper bound

∑Tk

i=1 E [〈w⋆,−ĝk,i〉].

First, we upper bound
∑Tk

i=1 E [〈w⋆,−ĝk,i〉] by
∑Tk

i=1 〈w⋆,−ĝk,i〉.
By our setting of constraint set, cos(θ (wk,i,wk)) = 〈wk,i,wk〉 ≥ cos θk, since cos θ is decreasing
in θ ∈ [0, π], hence, we have θ (wk,i,wk) ≤ θk, thus, ‖wk,i −wk‖2 ≤ θ (wk,i,wk) ≤ θk. Also,
‖wk −w⋆‖2 ≤ θ (wk,w

⋆) ≤ θk, by Lemma 12, ‖wk,i −w⋆‖2 ≤ 2θk. According to Lemma 20,
set rk = 2θk, then with probability at least 1− 2/T 2, the following holds:

Tk∑
i=1

E[〈w⋆,−ĝk,i〉)| Fk,i−1] ≤
Tk∑
i=1

〈w⋆,−ĝk,i〉
48

δ

√
1 + 2ρ(γ + bk)θk

√
Tk lnT +

96

δ
θk lnT.

(43)
Next, we move on to upper bound

∑Tk

i=1 〈w⋆,−ĝk,i〉 through a nonstandard regret analysis of online
mirror decent. Let B(v1,v2) :=

1
2(p−1)‖v1−v2‖2p denotes the Bregman divergence w.r.t. 1

2(p−1)‖ ·
‖2p, where p = ln (8d)

ln (8d)−1 . In each iteration i, the regularizer, B(·,wk,i−1) is 1-strongly convex
with respect to ‖ · ‖p [see Shalev-Shwartz [2007]]. From the analysis of online mirror descent [see
Orabona [2023], Lemma 6.9], with step size αk, we have

〈αkĝk,i,wk,i −w⋆〉 ≤ B(w⋆,wk,i)−B(w⋆,wk,i+1) +
α2
k

2
‖ĝk,i‖2q.

Where q = ln(8d) > 2. Summing the above equality over i ∈ [Tk], we get

Tk∑
i=1

〈αkĝk,i,wk,i −w⋆〉 ≤ B(w⋆,wk,1)−B(w⋆,wk,Tk+1) +
α2
k

2

Tk∑
i=1

‖ĝk,i‖2q.
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Dividing both sides by αk, and moving
∑Tk

i=1 〈wk,i, ĝk,i〉 to RHS, we get

Tk∑
i=1

〈w⋆,−ĝk〉 ≤
1

αk
[B(w⋆,wk,1)−B(w⋆,wk,Tk+1)] +

Tk∑
i=1

〈wk,i,−ĝk,i〉+
αk

2

Tk∑
i=1

‖ĝk,i‖2q

≤ 1

αk
B(w⋆,wk,1) +

Tk∑
i=1

〈wk,i,−ĝk,i〉+
αk

2

Tk∑
i=1

‖ĝk,i‖2q.

(44)
Now we need to bound the three terms in the RHS of (44) respectively.

First, we bound B(w⋆,wk,1) = B(w⋆,wk).

B(w⋆,wk,1) =
‖w⋆ −wk‖2p
2(p− 1)

(a)
≤ ‖w⋆ −wk‖21

2(p− 1)

(b)
≤ d‖w⋆ −wk‖22

2(p− 1)

(c)

≤ d ln(8d)θ2k
2

. (45)

Where inequality (a) holds by the fact that ‖x‖p ≤ ‖x‖1 for all p > 1 and x ∈ Rd. Inequality (b)
holds since ‖x‖1 ≤

√
d‖x‖2 for all x ∈ Rd. Inequality (c) holds since ‖w⋆−wk‖2 ≤ θ (w⋆,wk) ≤

θk.

Next, we bound
∑Tk

i=1 〈−wk,i, ĝk,i〉. By Lemma 21, we have that with probability at least 1−2/T 2,

Tk∑
i=1

〈−wk,i, ĝk,i〉 ≤ η̄bk

Tk∑
i=1

P (x ∈ Dk,i) + 2η̄bk
√
Tk lnT . (46)

Finally, we bound
∑Tk

i=1 ‖ĝk,i‖2q . By Lemma 22, we have with probability at least 1− 2/T 2,

Tk∑
i=1

‖ĝk,i‖2∞ ≤ 144

Q2
Tk(lnT )

2. (47)

Combining (43), (45), (46) and (47), and taking the union bound, we get that with probability at
least 1− 6/T 2,

(1− 2η̄)

Tk∑
i=1

fk,i(wk,i)P (x ∈ Dk,i)

≤
Tk∑
i=1

E [〈w⋆,−ĝk,i〉]

≤ 1

αk

d ln(8d)θ2k
2

+ η̄bk

Tk∑
i=1

P (x ∈ Dk,i) + 2η̄bk
√

Tk lnT +
72

Q2
αkTk(lnT )

2

+
48

δ

√
1 + 2ρ(γ + bk)θk

√
Tk lnT +

96

δ
θk lnT.

(48)

By Lemma 4, property (a), and the fact that bk ≤ b1 < R, we have L1bk ≤ P (x ∈ Dk,i) ≤ U1bk,
dividing both sides of (48) by (1− 2η̄)L1Tkbk, we get

1

Tk

Tk∑
i=1

fk,i(wk,i)

≤ 1

αk

d ln(8d)θ2k
2(1− 2η̄)L1Tkbk

+
U1η̄

(1− 2η̄)L1
bk +

2η̄

(1− 2η̄)L1

√
lnT

Tk
+

72αk

Q2(1− 2η̄)L1bk
(lnT )2

+
48

δ(1− 2η̄)L1

√
1 + 2ρ(γ + bk)

θk
bk

√
lnT

Tk
+

96

δ(1− 2η̄)L1

θk
bk

lnT

Tk
.

(49)

By our setting, bk = (1−2η̄)L1L2R
2

38400U2
1

θk = c5
1−2η̄
2k

, Tk = 576π2(1+2ρ(γ+b1))d ln(8d)(lnT )2

δ2c25(1−2η̄)2b2k
=

c6
(γ+1)d ln d(lnT )2

(1−2η̄)4 4k, αk =
Q
√

d ln(8d)θk

12
√
Tk lnT

= c7
√
d ln dθk√
Tk lnT

, then we get our proof.
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Based on Lemma 23, we establish the main theoretical guarantee of Algorithm 4 in Proposition 4.

Proposition 4. For some constants c5, c6, c7 > 0, when Algorithm 4 runs with an initial vec-
tor wk satisfying θ (w⋆,wk) ≤ θk = π/2k+1, bandwidth bk = c5(1 − 2η̄)2−k for Tk =

c64
k(γ + 1)d ln d(lnT )2/(1− 2η̄)4 iterations with step size αk = c7

√
d ln dθk/(

√
Tk lnT ), its

output wk+1 satisfies θ (w⋆,wk+1) ≤ θk+1 = θk
2 with probability at least 1− 6/T 2.

Proof. For the given unit vector wk that satisfy θ(w⋆,wk) ≤ θk ≤ π
4 , we have

‖w⋆ −wk‖2 ≤ 2 sin

(
θ(w⋆,wk)

2

)
≤ 2 sin

(
θk
2

)
≤ θk.

The first inequality holds since ‖w⋆‖2 = ‖wk‖2 = 1. The second inequality holds since sinx is
increasing in x ∈ [0, π

2 ], the last inequality holds since sinx ≤ x for all 0 ≤ x ≤ π
2 .

By our choice of Wk, for every iteration i, we have cos(θ (wk,i,wk)) = 〈wk,i,wk〉 ≥ cos(θk),
thus, since cosx is decreasing for 0 ≤ x ≤ π, then θ (wk,i,wk) ≤ θk, hence,

θ(w⋆,wk,i) ≤ θ (w⋆,wk) + θ (wk,wk,i) ≤ 2θk, (50)

where the first inequality holds by Lemma 12. By Lemma 10, with probability at least 1 − 6
T 2 ,

1
Tk

∑Tk

i=1 fk,i(wk,i) ≤ L2R
2θk

12800U1
. Let Ak := {i ∈ [Tk]| fk,i(wk,i) ≥ L2

160U1
R2θk}. Thus,

L2R
2θk

12800U1
≥ 1

Tk

Tk∑
i=1

fk,i(wk,i) ≥
L2R

2θk
160U1

|Ak|
Tk

.

From the above inequality and we get |Ak|
Tk

≤ 1
80 , and thus |Āk|

Tk
≥ 79

80 . By Corollary 3, the iterations
i′ ∈ Āk satisfy θ(w⋆,wk,i′) ≤ θk

5 . Other iterations i′ ∈ Ak satisfy θ (w⋆,wk,i) ≤ 2θk by (50).
Therefore,

1

Tk

Tk∑
i=1

cos(θ (w⋆,wk.i)) ≥ cos

(
1

5
θ

)
× |Āk|

Tk
+ cos(2θ)× |Ak|

Tk

≥
(
1− 1

50
θ2
)
× 79

80
+

(
1− 1

2
× 4θ2

)
× 1

80

≥ 1− 1

50
θ2 − 1

2
× 1

20
θ2

≥ 1− 1

20
θ2

= 1− 1

5
×
(
1

2
θ

)2

≥ cos

(
θ

2

)
,

where the second inequality utilizes the fact that cosx ≥ 1− 1
2x

2 and the last inequality holds since
cosx ≤ 1 − 1

5x
2 for 0 ≤ x ≤ π

2 . By the concavity of cos(θ (w⋆, ·)) when θ(w⋆,wk,i) ≤ π
2 , we

have

cos(θ (w⋆,wk+1)) = cos

(
θ

(
w⋆,

1

Tk

Tk∑
i=1

wk,i

))
≥ 1

Tk

Tk∑
i=1

cos(θ (w⋆,wk.i)) ≥ cos

(
θk
2

)
.

Since cosx is decreasing in x ∈ [0, π], we have θ(w⋆,wk+1) ≤ θk
2 .

A.6 Proofs for Section 4

In this section, we outline the proof of Theorem 1, which is the key theorem of this paper.
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Theorem 1. For any instance of our online strategic classification problem with noise level η̄, max-
imum manipulation distance γ, and feature dimension d, the expected regret of classifiers h̃ from
Algorithm 1 over T cycles satisfies

E[Reg(h̃;T )] = O
(
d ln d× (lnT )2/(1− 2η̄)8 +

√
(γ + 1)d ln d× T lnT/(1− 2η̄)2

)
.

Proof. To derive the regret bound in Theorem 1, we decompose the total regret Reg(h̃;T ) as defined
in (1) into two parts according to pure exploration phase versus exploration-exploitation phase, and
then we move on to decompose the regret in the exploration-exploitation phase according to certain
events. We upper bound each of these parts separately. First, we define the two phases and the events
used in the regret decomposition.

Definition 4. Define the set TPE := {t ∈ [T ] | 0 < t ≤ 2Tinit + T0} as the pure exploration phase,
where Tinit and T0 are number of iterations in Algorithm 2 and Algorithm 3. Define the set
TEE := {t ∈ [T ] | 2Tinit + T0 < t ≤ T} as the exploration-exploitation phase. Define the event
εinit := {〈w̄0,w

⋆〉 ≥ c0(1 − 2η̄)}, where c0 is a constant defined in Proposition 2. For
k ∈ {0, 1, 2, · · · ,K}, define the event εk := {θ (wk+1,w

⋆) ≤ π
2k+2 }. Define the event

ε := εinit
⋂
ε0
⋂

k∈[K] εk as the “clean event”.

In Definition 4, the pure exploration phase TPE corresponds to all cycles in the Initialization and
Refinement Algorithm, and the exploration-exploitation phase TEE corresponds to all cycles in the
Enhancement Algorithm. By Proposition 2, Proposition 3 and Proposition 4, the events defined in
Definition 4 satisfy the following properties:

P (εinit) ≥ 1− 2

T 2
, (51)

P (ε0 | εinit) ≥ 1− 3

T 2
, (52)

P (εk | εk−1, εk−2, · · · ε0, εinit) = P (εk | εk−1) ≥ 1− 6

T 2
, ∀k ∈ [K] . (53)

Hence, taking the union bound by (51),(52) and (53), we get that the probability of clean event
satisfy

P (ε) = P

εinit

⋂
ε0

⋂
k∈[K]

εk

 ≥
(
1− 2

T 2

)
×
(
1− 3

T 2

)
×
(
1− 6

T 2

)K

≥ 1− 6

T
.

Then, we decompose the total regret as

Reg(h̃;T ) = Reg(h̃; TPE) + Reg(h̃; TEE , ε) + Reg(h̃; TEE , ε̄), (54)

where ε̄ denotes the complement of ε, and the three parts of (54) is represented as the following:

Reg(h̃; TPE) =
∑

t∈TPE

Err(h̃t)− | TPE | × Err(h̃⋆) ,

Reg(h̃; TEE , ε) =
∑

t∈TEE

(
Err(h̃t)− Err(h̃⋆)

)
I (ε) ,

Reg(h̃; TEE , ε̄) =
∑

t∈TEE

(
Err(h̃t)− Err(h̃⋆)

)
I (ε̄) .

The first term in (54) denotes the expected regret incurred during the pure exploration phase. The sec-
ond term captures the expected regret incurred during the exploration-exploitation phase, given that
the clean event holds. The last term characterizes the expected regret incurred during the exploration-
exploitation phase, given that the clean event does not hold.

Now we upper bound the three parts of (54) respectively. For the first term Reg(h̃; TPE), the regret
incurred in a single cycle is at most 1, and the length of pure exploration phase is |TPE | = 2Tinit+T0,
then, the expected total regret during these time can be upper bounded by

E
[
Reg(h̃; TPE)

]
≤
∑

t∈TPE

1 ≤ 2Tinit + T0 = O

(
1

(1− 2η)8
d ln d(lnT )2

)
, (55)
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where the last equality holds by our setting that Tinit = O
(

1
(1−2η)2 lnT

)
and T0 =

O
(

1
(1−2η)8 d ln d(lnT )

2
)

.

Then, we upper bound the expectation of the second term Reg(h̃; TEE , ε), which is the cumula-
tive regret incurred under the clean event during the Enhancement procedure. Let Regk(h̃; TEE , ε)
denote the regret in each batch k ∈ {1, 2, · · · ,K} during this procedure under “clean event” i.e.,
Reg(h̃; TEE , ε) =

∑K
k=1 Regk(h̃; TEE , ε), then we only need to upper bound E

[
Regk(h̃; TEE , ε)

]
for each batch k ∈ {1, 2, · · · ,K}, which is characterized as

E
[
Regk(h̃; TEE , ε)

]
=

Tk∑
i=1

2∑
j=1

E
[
Err(h̃

(j)
k,i)− Err(h̃⋆)

∣∣∣ ε]P (ε)

≤
Tk∑
i=1

2∑
j=1

E
[
Err(h̃

(j)
k,i)− Err(h̃⋆)

∣∣∣ ε]

≤
Tk∑
i=1

E
[
I
(

sgn
(〈

wk,i, r
(1)
k,i

〉
− γ
)
6= y

(1)
k,i

)
− I
(

sgn
(〈

w⋆, r
(1,∗)
k,i

〉
− γ
)
6= y

(1)
k,i

) ∣∣∣ ε]
+

Tk∑
i=1

E
[
I
(

sgn
(〈

wk,i, r
(2)
k,i

〉
− γ − bk

)
6= y

(2)
k,i

)
− I
(

sgn
(〈

w⋆, r
(2,∗)
k,i

〉
− γ
)
6= y

(2)
k,i

) ∣∣∣ ε]
=

Tk∑
i=1

E
[
I
(

sgn
(〈

wk,i,x
(1)
k,i

〉)
6= y

(1)
k,i

)
− I
(

sgn
(〈

w⋆,x
(1)
k,i

〉)
6= y

(1)
k,i

) ∣∣∣ ε]
+

Tk∑
i=1

E
[
I
(

sgn
(〈

wk,i,x
(2)
k,i

〉
− bk

)
6= y

(2)
k,i

)
− I
(

sgn
(〈

w⋆,x
(2)
k,i

〉)
6= y

(2)
k,i

) ∣∣∣ ε] .
(56)

Where r
(1,∗)
k,i and r

(2,∗)
k,i are the counterfactual agent responses under the optimal classifier. The

first equality holds by the fact that E [XI (ε)] = E [X | I (ε) = 1]P (ε) + E [0 | I (ε) = 0]P (ε̄) =
E [X | ε]P (ε). The inequality holds since 0 ≤ P (ε) ≤ 1. The last equality holds by Proposition 1.

For the first term within the summation in the RHS of (56), we have

E
[
I
(

sgn
(〈

wk,i,x
(1)
k,i

〉)
6= y

(1)
k,i

)
− I
(

sgn
(〈

w⋆,x
(1)
k,i

〉)
6= y

(1)
k,i

) ∣∣∣ ε]
≤ P (sgn (〈w⋆,x〉) 6= sgn (〈wk,i,x〉) | ε)

≤ c10
2k

,

(57)

where c10 is a positive constant. The first inequality holds by the triangular inequality, the last
equality holds since by Lemma 4 property (b), and Proposition 4.
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For the second term, we have

E
[
I
(

sgn
(〈

wk,i,x
(2)
k,i

〉
− bk

)
6= y

(2)
k,i

)
− I
(

sgn
(〈

w⋆,x
(2)
k,i

〉)
6= y

(2)
k,i

) ∣∣∣ ε]
= E

[
I
(

sgn
(〈

wk,i,x
(2)
k,i

〉
− bk

)
6= y

(2)
k,i

)
− I
(

sgn
(〈

wk,i,x
(2)
k,i

〉)
6= y

(2)
k,i

) ∣∣∣ ε]
+ E

[
I
(

sgn
(〈

wk,i,x
(2)
k,i

〉)
6= y

(2)
k,i

)
− I
(

sgn
(〈

w⋆,x
(2)
k,i

〉)
6= y

(2)
k,i

) ∣∣∣ ε]
≤ E

[
I
(

sgn
(〈

wk,i,x
(2)
k,i

〉
− bk

)
6= sgn

(〈
wk,i,x

(2)
k,i

〉)) ∣∣∣ ε]
+ E

[
I
(

sgn
(〈

wk,i,x
(2)
k,i

〉)
6= sgn

(〈
w⋆,x

(2)
k,i

〉)) ∣∣∣ ε]
= P

(
0 ≤

〈
wk,i,x

(2)
k,i

〉
< bk

)
+ P (sgn (〈w⋆,x〉) 6= sgn (〈wk,i,x〉) | ε)

≤ U1bk +
c10
2k

≤ c11(1− 2η̄)

2k
+

c10
2k

,

(58)

where c11 > 0 is a positive constant. The first inequality holds by the triangular inequality, the last
inequality holds by Lemma 4 property (a) and (b), and Proposition 4.

Summing (57) and (58) over [Tk], and then we can upper bound (56) by

E
[
Regk(h̃; TEE , ε)

]
≤

Tk∑
i=1

O(1) · 1

2k
+O(1) · 1− 2η

2k

= O(1) · Tk

2k
+O(1) · (1− 2η̄)Tk

2k

= 2kO

(
1

(1− 2η)4
(γ + 1)d ln d(lnT )2

)
.

Since T = |TPE | + |TEE | and |TPE | = O(d ln d(lnT )2), then |TEE | = O(T ). Also, the
exploration-exploitation phase corresponds to all cycles run in Algorithm 4, hence 2

∑K
k=1 Tk =

|TEE | = O(T ). By Tk = 4kO
(

1
(1−2η)4 (γ + 1)d ln d(lnT )2

)
, we get the total number of batches

as K = log4

(
O
(

(1−2η)4T
(γ+1)d ln d(lnT )2

))
. Then, we can upper bound the cumulative regret during the

exploration-exploitation phase under “clean event” as

E
[
Reg(h̃; TEE , ε)

]
=

K∑
k=1

E
[
Regk(h̃; TEE , ε)

]

=

log4

(
O

(
(1−2η)4T

(γ+1)d ln d(lnT )2

))∑
k=1

2kO

(
1

(1− 2η)4
(γ + 1)d ln d(lnT )2

)
= O

(
1

(1− 2η)2

√
(γ + 1)d ln dT lnT

)
.

(59)

Finally, we upper bound the third term in (54) as

E
[
Reg

(
h̃; TEE , ε̄

)]
=
∑

t∈TEE

E
[(

Err(h̃t)− Err(h̃⋆)
)
I (ε̄)

]
≤ E

[ ∑
t∈TEE

I (ε̄)

]
= |TEE |P (ε̄) ≤ T · 6

T
= 6.

(60)

By combining the upper bounds of (55), (59), and (60), we finish the proof.

A.7 Proofs for Appendix A.1

Before proving Lemma 3, we need to first prove some intermediate lemmas. In the following lemma,
we show that any log-concave distributed random vector with zero mean and positive definite covari-
ance matrix can be linearly transformed into a new random vector with an isotropic log-concave
distribution.
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Lemma 24. For any random vector x ∈ Rd that follows a log-concave distribution with E [x] = 0

and E
[
xxT

]
= Σ, where Σ is positive definite, the transformed random vector z = Σ− 1

2x that
follows an isotropic log-concave distribution.

Proof. We first prove that z = Σ− 1
2x is isotropic. Since E

[
xxT

]
= Σ, Σ is positive definite,

then E
[
zzT

]
= Σ− 1

2E
[
xxT

] (
Σ− 1

2

)T
= Σ− 1

2Σ
(
Σ− 1

2

)T
= I . Also, since E [x] = 0, then

E [z] = Σ− 1
2E [x] = 0.

Next, we show that the probability density function of z is log-concave. Suppose the corresponding
probability density functions of x and z are ϕx (·) are ϕz (·), respectively. Since ϕx (·) is log-
concave, then for ∀ α ∈ [0, 1] and ∀ x1,x2 ∈ Rd,

α ln (ϕx (x1)) + (1− α) ln (ϕx (x2)) ≤ ln (ϕx (αx1 + (1− α)x2)) .

Then, for ∀ α ∈ [0, 1], z1, z2 ∈ Rd,

α ln ((ϕz (z1))) + (1− α) ln ((ϕz (z2)))

= α ln
(
det
(
Σ

1
2

)
ϕx

(
Σ

1
2 z1

))
+ (1− α) ln

(
det
(
Σ

1
2

)
ϕx

(
Σ

1
2 z2

))
= α ln

(
ϕx

(
Σ

1
2 z1

))
+ (1− α) ln

(
ϕx

(
Σ

1
2 z2

))
+ ln

(
det
(
Σ

1
2

))
≤ ln

(
ϕx

(
αΣ

1
2 z1 + (1− α)Σ

1
2 z2

))
+ ln

(
det
(
Σ

1
2

))
= ln (ϕz (αz1 + (1− α) z2)) .

Thus, ϕz(·) is isotropic log-concave.

The next lemma outlines the relationship between the eigenvalues of the covariance matrices for a
high-dimensional random variable before and after it is projected onto a lower-dimensional subspace.

Lemma 25. Let x be an arbitrary d-dimensional random variable with a positive definite covari-
ance matrix Σ, whose maximum and minimum eigenvalues are λ̄ and λ, respectively. Let Vd′ an
arbitrary d′-dimensional subspace with d′ ≤ d. Let xVd′ denote the projection of x onto Vd′ with
covariance matrix ΣVd′ whose maximum and minimum eigenvalues are λ̄Vd′ and λVd′

, respectively.
Then, λ̄Vd′ ≤ λ̄ and λVd′

≥ λ.

Proof. Let P ∈ Rd×d′
denote the projection matrix of x, i.e., PTP = I and PTx = xVd′ , then,

ΣVd′ = PTΣP . Hence, by definition of maximum eigenvalue, we have

λ̄Vd′ = max
v 6=0, v∈Rd′

vTΣVd′v

vTv
= max

v 6=0, v∈Rd′

vTPTΣPv

vTv

= max
v 6=0, v∈Rd′

vTPTΣPv

vTPTPv
≤ max

u 6=0, u∈Rd

uTΣu

uTu
= λ̄,

where u = Pv.

λVd′
= min

v 6=0, v∈Rd′

vTΣVd′v

vTv
= min

v 6=0, v∈Rd′

vTPTΣPv

vTv

= min
v 6=0, v∈Rd′

vTPTΣPv

vTPTPv
≥ min

u 6=0, u∈Rd

uTΣu

uTu
= λ,

where u = Pv.

Now we are ready to prove Lemma 3.
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Lemma 3. Let x ∈ Rd (d ≥ 2) have zero mean and a log-concave distribution. Suppose the
eigenvalues of its covariance matrix Σ = E

[
xx>] are all bounded within [λ, λ] for some positive

constants λ, λ, then the distribution of x satisfies the regularity conditions in assumption 2, with
parameters L1 = β1(1)√

λ̄
, L2 = β1(2)

λ̄
, R = 1

9

√
λ, U1 = 1√

λ
, U2 = β2(2)

λ , δ = β3(2)√
λ̄

, Q =
√
λ for

β1(1), β1(2), β2(2), β3(2) given in Lemma 2.

Proof for Lemma 3. For arbitrary 1-dimensional subspace V1 ⊆ R1 and 2-dimensional subspace
V2 ⊆ R2, let xV1 and xV2 denote the projected vectors on V1 and V2 with covariance matrices ΣV1

and ΣV2 , respectively. Let λ̄V1 and λ̄V2 denote the maximum eigenvalues of ΣV1 , ΣV2 and λV1

and λV2
denote the minimum eigenvalues of ΣV1

, ΣV2
, respectively. Then by Lemma 25, we have

λ̄ ≥ λ̄V1 , λ̄ ≥ λ̄V2 , λ ≤ λV1
and λ ≤ λV2

. Let zV1 = Σ
− 1

2

V1
xV1 , zV2 = Σ

− 1
2

V2
xV2 . Then, zV1 and zV2

have isotropic log-concave densities, denoted as ϕzV1
and ϕzV2

, respectively.

We first determine L1, L2 and R prescribed in Assumption 2, Condition 1. For all ‖xV1‖2 ≤ 1
9

√
λ,

xV1
’s probability density function ϕxV1

(·) satisfies

ϕxV1
(xV1

) = ϕzV1

(
Σ

− 1
2

V1
xV1

)
det
(
Σ

− 1
2

V1

)
≥ β1(1)√

λ̄V1

≥ β1(1)√
λ̄

. (61)

Now ‖zV1
‖2 =

∥∥∥Σ− 1
2

V1
xV1

∥∥∥
2
≤ 1√

λV1

‖xV1
‖2 ≤ 1√

λ
· 1
9

√
λ = 1

9 . Then, the first inequality in

(61) holds by Lemma 2, property (b) and det
(
Σ

− 1
2

V1

)
≥ 1√

λ̄V1

. The second inequality holds by

Lemma 25.

Similarly, for all ‖xV2
‖2 ≤ 1

9

√
λ, xV2

’s probability density function ϕV2
(·) satisfies

ϕxV2
(xV2

) = ϕzV2

(
Σ

− 1
2

V2
xV2

)
det
(
Σ

− 1
2

V2

)
≥ β1(2)

λ̄V2

≥ β1(2)

λ̄
. (62)

Now ‖zV2‖2 =
∥∥∥Σ− 1

2

V2
xV2

∥∥∥
2
≤ 1√

λV2

‖xV2
‖2 ≤ 1√

λ
· 1
9

√
λ = 1

9 . Then, the first inequality in (62)

holds by Lemma 2, property (b) and det
(
Σ

− 1
2

V2

)
≥ 1

λ̄V2

. The second inequality holds by Lemma 25.

Combining (61) and (62), we have L1 = β1(1)√
λ̄

, L2 = β1(2)

λ̄
, R = 1

9

√
λ.

Then, we determine U1, U2 and δ prescribed in Assumption 2, Condition 2. For ϕxV1
(·), we have

ϕxV1
(xV1) = ϕzV1

(
Σ

− 1
2

V1
xV1

)
det
(
Σ

− 1
2

V1

)
≤ 1√

λV1

≤ 1√
λ
,

where the first the inequality holds by Lemma 2, property (c) and det
(
Σ

− 1
2

V1

)
≤ 1√

λV1

. The second

inequality holds by Lemma 25. Thus, U1 = 1√
λ

.

For ϕxV2
(·), we have

ϕxV2
(xV2

) = ϕzV2

(
Σ

− 1
2

V2
xV2

)
det
(
Σ

− 1
2

V2

)
≤

β2(2) exp
(
−β3(2)

∥∥∥Σ− 1
2

V2
xV2

∥∥∥
2

)
λV2

≤
β2(2) exp

(
− β3(2)√

λ̄V2

‖xV2
‖2

)
λV2

≤
β2(2) exp

(
−β3(2)√

λ̄
‖xV1‖2

)
λ

,

where the first inequality holds by Lemma 2, property (d) and det
(
Σ

− 1
2

V2

)
≤ 1

λV2

. The second

inequality holds by
∥∥∥Σ− 1

2

V2
xV2

∥∥∥
2
≥ 1√

λ̄V2

‖xV2
‖2. The last inequality holds by Lemma 25.
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Thus, we have U2 = β2(2)
λ , δ = β3(2)√

λ̄
.

Finally, we determine Q prescribed in Assumption 2, Condition 3. For arbitrary w ∈ Bd, 〈w,x〉
forms a 1-dimensional random variable whose probability density function is log-concave. Let
xV ′

1
:= 〈w,x〉 denote the projected random variable and σ2

V ′
1
= E

[
xT
V ′
1
xV ′

1

]
denote its variance.

Then, by Lemma 2 property (a), for every t > 0,

P (| z | > t) ≤ e
−σV ′

1
t+1 ≤ e−

√
λt+1,

where the second inequality holds by σ2
V ′
1
≥ λV ′

1
≥ λ. Thus Q =

√
λ.
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