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Abstract

In this paper, we study an online strategic classification problem, where a princi-
pal aims to learn an accurate binary linear classifier from interactions with sequen-
tially arriving agents. For each agent, the principal announces a classifier. The
agent can strategically exercise costly manipulations on his features to be classi-
fied as the favorable positive class. The principal is unaware of the true feature-
label relationship, but observes all reported features and only labels of positively
classified agents. We assume that the true feature-label relationship is given by
a halfspace model subject to arbitrary feature-dependent but bounded noise (i.e.,
Massart noise). This problem faces the combined challenges of agents’ strategic
feature manipulations, partial feedback observations, and label noise. We tackle
these challenges by a novel learning algorithm. We show that the proposed al-
gorithm yields classifiers that converge to the clairvoyant optimal classifier and

attains a regret rate of O(+v/T') up to poly-logarithmic and constant factors over 7'
cycles.

1 Introduction

Strategic classification studies the problem of learning robust classifiers in presence of self-interested
strategic agents. When subjugated to decision-making aided by classification algorithms, agents
may strategically modify their observable features to game the classification algorithms into making
decisions that best serve the agents’ goals. For example, a bank may use classification to determine
whether loan applicants are qualified to grant approvals. The applicants prefer positive classification
and loan approvals, so they have the incentive to modify their profiles (e.g., credit score), potentially
at certain costs, without actually improving their financial status. It is crucial that classification
algorithms used for decision-making be robust to such strategic manipulation.

Besides the strategic feature manipulation, another common challenge in classification-based
decision-making is that the decision-maker often only observes partial feedback. In particular, the
decision-maker may only observe the true labels of agents who have received the positive decision.
For example, the bank can observe the true financial qualification only for applicants who have
already been classified as qualified and granted loan approvals, but has no chance to observe the
true qualification of rejected applicants. This type of partial feedback is sometimes called one-sided
feedback, apple-tasting feedback [e.g., Harris"ef"all, D023, Helmbold ef all, Z000] or selective label
feedback [e.g., Cakkaraju et all, 2017, Chen"ef-all, ZO75].

In this paper, we study an online strategic classification problem with partial feedback. In this
problem, a principal (decision-maker) interacts with sequentially arriving agents. The principal
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announces a binary linear classifier to each agent and makes the decision according to the agent’s
reported feature that may differ from the truth due to strategic manipulation. Following the existing
literature, we assume that the agents manipulate their features to maximize the net utility from the
classification decision and the cost of feature manipulation. We assume that the agents’ true feature-
label relationship is characterized by a linear halfspace model with arbitrary feature-dependent but
bounded noise (i.e., Massart noise). This model is widely adopted in the learning theory literature
(see references in Section [Tl). The principal does not know the true feature-label relationship, but
needs to learn accurate binary classifiers from observations of agents’ reported features (but not the
original true features) and the true labels of only positively classified agents.

Notably, this problem faces the combination of three challenges: agents’ strategic feature manipu-
lations, partial label observations, and label noise. First, because of strategic feature manipulation,
the agents’ true features may not be faithfully observed by the principal, which impedes the learn-
ing process. This is particularly a challenge in the online setting, as the agents’ strategic behaviors
depend on the classifiers announced to them, so their behaviors change over time as the classifiers
evolve. Second, the principal can only observe true labels from positively classified agents, without
feedback from negatively classified agents. This means that the principal can learn only when a pos-
itive classification is made, while the strategic agents are incentivized to manipulate their features
to achieve positive classification. Third, the label noise results in noisy feedback, which further
complicates the learning process.

Our work contributes to the literature along the following dimensions. First, to the best of our
knowledge, our work is the first to study online strategic classification under Massart noise and
partial feedback. This advances the literature of learning halfspaces under noise [e.g., Zhang et all,
2020, Diakonikolasef all, PO20] to the strategic setting. Moreover, within the online strategic clas-
sification literature, our halfspace model with Massart noise extends the noise-free model of deter-
ministic feature-label relationship in Ahmadiefall [2021], Shen'ef all [20024] and complements the
fully adversarial setting [Dong et all, POT8, Chenef all, 2020]. Second, we propose a novel learning
algorithm that effectively addresses the aforementioned three key challenges. This algorithm has
an initialization-refinement-enhancement pipeline, proceeding in batches and iterations. It features
several key components: 1) a localization scheme that iteratively improves the classifiers via online
linear optimization, using data within increasingly narrow bands around the classification boundary;
2) a projection-based method to construct proxy features from agents’ reported features; 3) a pair-
wise contrastive inference technique to infer information of the localization bands by contrasting
data from pairs of carefully constructed classifiers. Third, we rigorously prove that the proposed
algorithm yields classifiers that converge to the clairvoyant optimal one and attains a regret rate of

O(V/T) up to poly-logarithmic and constant factors over 7' cycles.

1.1 Related Literature

Strategic Classification Strategic classification, introduced by Hardf ef all [20T6], has gained in-
creasing attention. The existing literature has studied strategic classification in both offline settings
[e.g., Hardf"ef all, P(0TAH, Sundaram_ef all, 0773, Levanon and Rosenfeld, PO71] and online settings.
In online strategic classification, a principal sequentially interacts with strategic agents, aiming to
learn accurate classifiers in the presence of strategic feature manipulation. Some literature models
agents’ strategic behaviors by a manipulation graph that defines agents’ feasible feature manipula-
tions [Ahmadief all, 2073, 20724, Cohen ef all, 2024, Shao_ef all, 2025]. Meanwhile, other literature
considers agents that maximize the utility net the cost of feature manipulation. For example, Dong
ef_all [2OTY] derive conditions on the manipulation cost function that enable convex optimization
techniques to achieve a sublinear regret rate under different fractions of strategic agents. Chenef all
[2020] consider a distance-based manipulation cost function and a zero-one loss function. Our work
considers the same cost function and loss function. However, Chen"ef-all [P02(]] studies a fully ad-
versarial setting, while our work studies a stochastic setting where agents’ true features and labels
follow some probability distributions. Our work is closely related to Ahmadiefall [2021] and Shen
efall [2024], as we study similar models for agents’ strategic behaviors and linear classifiers. How-
ever, their works focus on the noise-free setting with a deterministic feature-label relationship, while
our work tackles label noise.

Notably, nearly all prior studies focus on full feedback settings, whereas our work studies a partial
feedback setting. One exception is Harrisef all [Z073], where the feedback can be observed also



only under a positive decision. However, they consider continuous feedback following a linear
regression model with feature-independent noise and target a different objective. In contrast, our
work considers binary classification feedback and studies a halfspace model with potentially feature-
dependent bounded noise, which directly extends the models in Ahmadi_ef-all [2021], Shen ef all
[074].

Learning Halfspaces with Noise Our paper adopts a halfspace model with the label flipped at a
potentially feature-dependent bounded probability, i.e., Massart noise [Massarf and Nédéled, PO0A].
Recent studies find that even in the absence of strategic agent manipulations, learning halfspaces
under Massart noise presents significant challenges [Zhang et all, 2020, Diakonikolas ef all, DOTY,
20710, 2074]. The key challenge stems from the nonconvexity of the 0-1 loss function that charac-
terizes the misclassification error. A standard approach to overcome the non-convexity of 0-1 loss
in classification is to use a convex surrogate loss function [RBarfleff_ef-all, PO0A]. However, [Awasfhi
ef_all [2OTS] show that popular algorithms such as SVM or hinge loss minimization fails to learn
a halfspace that achieves arbitrarily small excess error under Massart noise. More generally, IDi
akonikolas ef all [Z0T9] show that one cannot achieve non-trivial misclassification error for learning
halfspaces under Massart Noise by optimizing convex surrogates. Instead, a “localization” scheme
has been proposed to learn halfspaces under a variety of noise models [e.g., Shen, P02Ta, Awasthi
ef—all, DOT7, Zhang and L1, POZ1, Shen, PO7TH, Awasthi_ef-all, DOT7]. In particular, Zhang et al!
[20200] and Diakonikolasefall [2020] apply localization to learn halfspaces with Massart noise. The
core idea is to iteratively improve classification via convex optimization, using data within increas-
ingly narrow bands around the classification boundary. This localization scheme focuses more on
data near the classification boundary, as data far away from the boundary tend to be less informative
since they can be either easily correctly classified or misclassified mainly due to noise. However,
naively extending this localization scheme to strategic classification poses significant challenges,
because data points close to the classification boundary are the most prone to feature manipulation.
Our work effectively overcomes these challenges by leveraging carefully constructed proxy data and
a novel pairwise contrastive inference approach.

1.2 Notation

We employ the following notation throughout the paper. Boldface letters such as x,r, w denote
vectors. The operator || - ||, denotes any ¢, norm of a vector. The inner product of two vectors
is denoted by (-,-) and the angle between two vectors is represented by 6 (-, -), i.e., 8 (vi,v2) =

arccos (w) for Vv, vy € R% Symbols B¢ and S¢ denote the d-dimensional Euclidean
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unit ball and sphere, respectively. B?(R) denotes the ball with radius R > 0. For any positive
integer N, [INV] represents the set {1,2,..., N'}. The indicator function I(-) gives the value 1 if the
event within the parentheses holds and the value 0 otherwise.

2 Problem Setup

We consider a setting where a principal repeatedly interacts with sequentially arriving agents (e.g.,
applicants). Without loss of generality, time is discretized into 7" cycles, where one agent arrives in
eachcyclet € [T]. The agent is characterized by a feature-label pair (x;, y;), where x; € R? denotes
a d-dimensional feature vector and y; € {+1, —1} denotes the agent label (i.e., qualified or not). At
the beginning of each cycle t € [T, the principal announces a classifier h(-) as the admission rule
for the arriving agent. The agent may strategically manipulate and report feature value r; # x; to
the principal at some costs, aiming to get admitted (i.e., classified as the positive class, h;(r;) = +1).
The principal observes the reported features r;, makes the classification decision h;(r;) accordingly,
and observes the true label y; only when this agent is admitted. Importantly, the principal has no
chance to observe the true label of rejected agents. Based on the data of reported features and
admitted agents’ labels, the principal aims to learn accurate classifiers over the 1" cycles.

Distributional Assumptions We assume that the feature-label pairs (x1,¥1),..., (X7, yr) are
independently and identically distributed (i.i.d) draws from a common population denoted by (x, y).
We need to first impose some distributional assumptions on (X, ).



Assumption 1 (Halfspace with Massart noise). There exists a Boolean-valued function h*(x) =
sgn({w*,x)) for a coefficient vector w* with |w*||2 = 1 and a noise level bound 7] € [0,1/2),
such that y = h*(x) with probability 1 — n(x) and y = —h*(x) with probability 1(x), where n(x)
characterizes the potentially feature-dependent noise satisfying 0 < n(x) < 7 almost surely.

Assumption [0 is a standard assumption in the literature of learning halfspaces without strategic
manipulation [e.g., Zhang et all, 2020, Diakonikolasef all, D020, Massarf_and Nédéled, PO0G]. It
allows for arbitrary feature-dependent label noise with an upper bound 77 € [0,1/2), and relaxes
the assumptions in some existing strategic classification literature that assumes a noiseless halfs-
pace model y = h*(x) and that the positive and negative classes are strictly separated by a margin
[e.g., Ahmadi_ef-all, 2071, Shen"ef all, P074]. Our assumption can more aptly model real applica-
tions where label noises are common and even feature-dependent. Nonetheless, unlike the existing
literature, we need to simultaneously handle both the strategic manipulation and label noise.

Assumption 2 (Regular feature distribution). Fix constants R, L1, Lo, Uy,Us, 0, Q > 0, and let xy
denote the projection of X onto any subspace V. C R and ¢y denote its probability density function.
The distribution of features x satisfies the following regularity conditions for any I-dimensional
subspace Vi C R and any 2-dimensional subspace Vo C R?:

1. ¢v,(xv,) > Ly and ¢y, (xv,) > Lo for any xy, € Vi NBY(R), xy, € Vo NB?(R).
2. v, (xv,) < Uy and by, (xv,) < Use 01%v2ll2 for any xy, € V1, xy, € Va.
3. Foranyt > 0 and unit vector w € S% we have that P[| (w,x) | > t] < exp(1 — Qt).

In Assumption B, condition 1 requires that the densities of any 1-dimensional and 2-dimensional
projections of feature x are lower bounded around the origin. Condition 2 indicates that these
densities have proper upper bounds. Condition 3 requires that the inner product of x with any unit
vector w has a sub-exponential tail bound. These conditions generalize the feature distribution
conditions in a large body of literature on learning halfspaces with noise [e.g., Diakonikolas ef all,
P20, P07, [Zhang et all, PO20, Dasgupta, P009, [Yan and Zhang, 2017, Shen, 207714, Awasthi ef all,
20T7]. This existing literature typically assumes that the feature x has an isotropic log-concave
distribution, such as a uniform distribution over a unit sphere. In Appendix B, we show that
Assumption @ accommodates even non-isotropic log-concave distributions, including many common
distributions such as uniform, Gaussian, exponential, logistic distributions, etc. Notably, we impose
distributional assumptions on the feature-label pairs, which differ from and complement the fully
adversarial setting in the literature [e.g., Dong et all, POTS, Chen ef-all, PO2(, Ahmadiefall, P0724].

Agent Feature Manipulation We assume that each agent gains a utility of +1 for admission
(classified as +1) and —1 for rejection (classified as —1). An agent with true feature x may re-
port his feature as r to sway the classifier’s decision. Following Shen_ef all [2074], Ahmadi_ef all
[2021], we assume that this misreporting or manipulation incurs a cost Cost(x,r) = 2||x — r||2/7,
where v > 0 indicates the maximum manipulation distance. Therefore, upon the principal announc-

ing a classifier iL() the agent’s optimal reported feature that maximizes the net utility would be
r*(x, h) = argmax, cga h(r) — 2||x —rl|2/7.

Given the linear model in Assumption [, we restrict the principal’s classifier h to linear classifiers
parameterized by (w, m) € S% x R, i.e., h(r) = sgn((w,r) + m) . In this case, an agent’s optimal
reported feature is given in the following lemma [Shen"ef all, D074, Ahmadief all, ZO2T].

Lemma 1. Given an announced classifier iNL(r) = sgn((w,r) + m), the optimal reported feature
for an agent with true feature x is

I'*(X ﬁ)_ X_(<W7X>+m)wa _’)/S <W7X>+m<0;
Y x, otherwise.

The Clairvoyant Optimal Classifier Under the manipulated feature in Lemma [, the misclas-
sification rate of a classifier & can be measured by Err(h) := P(h(r*(x,h)) # y). We hope
to characterize a clairvoyant optimal classifier achieving the minimal misclassification rate: h* e
argming pa, { il}Err(iz). To this end, we first connect a classifier h, under the manipulated feature
r with a hypothetical classifier i under the corresponding true feature x.
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Proposition 1. For any (w,m) € S*xR, the output of h(r) = sgn((w,r)+m—=) forr = r*(x, h)
is identical to the output of h(x) = sgn({w,x) + m) for any x € R%.

According to Assumption [, the optimal classifier in absence of manipulation is h*(x) =
sgn({w*,x)). Following Proposition [, we can achieve the same classification by a correspond-
ing classifier subject to manipulation, which gives the clairvoyant optimal classifier. This structural
knowledge of a clairvoyant optimal classifier will guide our algorithm design in Section B.

Corollary 1. The classifier h*(r) = sgn((w*,r) — ~) minimizes Err(h) = P(h(r*(x, h)) # ).

Notably, the clairvoyant optimal classifier on the manipulated feature r has a higher threshold to
classify an agent into +1 than the corresponding optimal classifier h*(x) = sgn({w*,x)) on the
true feature x. Indeed, the principal would like to raise the bar for positive classification, in order
to avoid errors due to unqualified agents (label —1) who game the classifier by manipulating their
features.

Principal’s Regret Over the T cycles, the principal learns a sequence of classifiers h =
(h1,...,h7), where each h; only depends on the observed data of reported features and admit-
ted agents’ labels prior to cycle ¢. The goal is to achieve a small cumulative misclassification rate
over all cycles. This is equivalent to achieving a small total suboptimality gap, or regret, relative to
the clairvoyant optimal classifier. Formally, the regret is defined as:

Reg(h; T) := ZZ;I Err(hy) — T x Err(h*). (1

This regret corresponds to the “Stackelberg regret” in the strategic classification literature, where
the term “Stackelberg” emphasizes that agents consistently choose their best feature manipulation
in response to the principal’s announced classifiers [Dong et all, POIR, Chen ef all, 2020, Ahmadi
ef-all, 074]. In the next section, we will propose a learning algorithm that effectively tackles the
combined challenges of agents’ feature manipulations, partial feedback observations, and label noise.
We prove that this algorithm achieves a /T -regret rate up to poly-logarithmic and constant factors.

3 The Algorithm

3.1 Overview of our Algorithm

Algorithm 1: Main-Algorithm

Input: Maximum manipulation distance v, noise level bound 7, lengths {Tit} U {Tk } =, bandwidths
{br 11, stepsizes {au, }1—o, feature dimension d

wo = Initialization(Tini) // See Algorithm
w1 = Refinement(wo, 77, 1o, bo, o, d) // See Algorithm B
for k£ < 1to K do

wi+1 = Batched-Enhancement(vy, w1, 7, k, Tk, br, o, d) // See Algorithm @

Our main Algorithm, outlined in Algorithm [, comprises three sub-algorithms: an Initialization
Algorithm (Algorithm @), a Refinement Algorithm (Algorithm B) and a Batched Enhancement Al-
gorithm (Algorithm H). These algorithms are executed sequentially to generate a sequence of coef-
ficient vectors such that the corresponding classifiers converge to the clairvoyant optimal classifier
as specified in Corollary [. Specifically, we partition the horizon of 7" cycles (one agent arrives in
each cycle) into consecutive batches indexed by k € {init,0,1,2,--- , K'}. Index “init” and “0” de-
note the batches executing the Initialization and Refinement Algorithms, respectively, while indices
“1” to “K” represent the K batches that run the Enhancement Algorithm iteratively. Each batch &
takes the result of the previous batch £ — 1 as input. Cycles in each batch k are further grouped
into iterations indexed by ¢ € {1,2,---,T}}, where each iteration ¢ performs an update for the
coefficient vector w. At the end of batch k, the algorithms output the (normalized) average vectors
of the T}, iterations in the batch. During Refinement, each iteration consists of only one cycle. In
contrast, during Initialization and Enhancement, each iteration contains two cycles, denoted by the
superscript j = 1 or 2 to differentiate between the first and second cycles within the same iteration.
Note that the indices (k, i, j) can be mapped to the corresponding cycle ¢, for convenience, we will
use these indices in the remainder of this paper.
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Figure 1: Roles of the three sub-algorithms

The roles of the three sub-algorithms are summarized in Figure [. First, the Initialization Algorithm
runs for Tiiy = O (InT/(1 — 277)?) iterations (with 2T}y cycles) to find a coefficient vector W
such that 0 (w*, wq) < 7 with high probability (see Proposition B). Second, the Refinement Algo-
rithm takes wo = Wo/||Wol|2 as the initial vector and runs for Ty = O (dIndInT/(1 — 277)®)
iterations (with T} cycles) to obtain a refined vector wy such that § (w*,wy) < 7 with high
probability (see Proposition B). Third, the Batched Enhancement Algorithm runs for K =
O (log, (1 — 27)*T /(ydIndInT)) batches, where each batch & enhances its initial coefficient vec-
tor wy, through 7, = O (4¥dIndInT/(1 — 27)*) iterations (with 27}, cycles), yielding a vector
W1 such that 0 (w*, wy11) < 575 with high probability (see Proposition ). The specification
of the algorithms involves absolute constants cy to c7, which are derived from the parameters in
Assumption D. Detailed calculations are available in Appendix B™S.

3.2 [Initialization

Algorithm 2: Initialization
Input: Iteration length Tini
for i < 1 to T}, do
Uniformly draw wigi,; € S?
for j < 1to2do
Declare hfnjlt) ,(r) = (=1)7'sgn((Winit,s, r)), agent (x l(rfl[) i yl(njlzz) arrives and reports r;

L) (r @) @) ¢ p@) (r (J)_) -1

init, 7 |mt 1 init,? init, mll,z

return wo = 7— S ZJ 1 yl(n],z)v ,(n];zﬂ (( 1=y <W””’ ol '('”')1> ~ 0)

()

init, %

Make classification decision ) and collect label y;

init

The initialization algorithm runs for T}, = O(InT/(1 — 27)?) iterations. In each iteration, we
randomly explore a coefficient vector Wiy ; € S? and offer two opposing classifiers based on Winit,i

to two successive agents. Using the reported features rl(mz I l(mz , and true labels yl(mt) i 3/1(11211) , of all

positively classified agents over the T} iterations, we construct an initial coefficient vector wy.

The design of our initialization algorithm stems from the well-known “averaging” technique for
learning halfspaces [Servedia, POOT]. In the non-strategic, noiseless and full feedback setting,
y(w*,x) = (w*,yx) > 0 for all (x,y) € R? x {£1}, so yx forms an acute angle with the
opti i (w*,x) = 0} is zero-measure). Anal-
ogously, in the noisy feedback setting, we have (w*, E[yx]) > 0, so E[yx] forms an acute angle
with w*. In a non-strategic and full feedback setting, the literature uses the sample average of yx
to approximate E[yx] as an initial estimate of w* [Zhang et all], 2020]. However, this estimator is
unavailable for us because of agents’ feature manipulation and the partial feedback setting. Instead,
our algorithm declares pairs of opposite classifiers. We collect and average the yr of agents whose
reported feature r falls above the hyperplane. Note that these agents report their features truthfully
(r = x), so we are able to form W from these agents’ yr as a proper approximation of E[yx]. We
can show that, for large enough Tiy;, this vector w( forms an acute angle with the optimal w* with
high probability.

Proposition 2. For some constants co, ¢y > 0, when Algorithm B runs for Ty, = coInT/(1 — 27))?
iterations, its output W satisfies (w*, wo) > c1(1 —2n) > 0 and 6 (W*,wq) < T with probability
at least 1 — 2/T2.
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3.3 Refinement of the Initial Coefficient Vector

Algorithm 3: Refinement

Input: Initial vector wyo, noise level 7, iteration length 75, bandwidth by, step size o, feature dimension
d

Initialization : wo 1 = Wo/||Wol|2

fori< ltoTpdo
Declare classifier ho,;(r) = sgn({wo s, 1)), agent (Xo,s, Yo,:) arrives and reports ro_;
Make classification decision ho_i(ro ;) and collect label yo ; if ho i (ro.;) = 1
Compute gradient: go,l‘ = [—771‘0,2']1 (yo,i = 1) + (1 — 17)1‘071']1 (yo,i = —1)]]1(0 < <W0,i,1‘0,¢> < bo)
Set constraint set: Wy = {w | ||[wl]2 <1, (w,Wo) > c1(1 — 27)}

. : . lw—wo ;3 In(8d

Update w: Wo ;41 = arg minwew, (€o,:, W) + %OXTOUP where p = ﬁ
Normalize: Wo,i+1 = VAVO,Z'+1/||WO,¢+1||2

C oy, — L To X

ompute mean vector: W1 = 7>, %, Wo.i

return wi = w1 /||w1||2

The refinement algorithm adopts a “localization” scheme to refine the output wg of Algorithm & to
better approximate w*. In every iteration ¢, we consider only data within a band 0 < (wyq ;,r) < by

adjacent to the boundary of the current classifier hg ;(r) = sgn({wpg ;,r)). Agents in this band are
positively classified and have no incentives for feature manipulation, allowing us to observe both
the true feature x = r and the true label y. Moreover, this effectively probes the localized region
Do, = {x:0 < (wp;,x) < by} in the true feature space. Similar “localization” is widely used
in the literature of learning half-spaces with label noises (see references in Section [l), since data
near the classification boundary is the most informative, while data far from the boundary are either
correctly classified with ease or are misclassified mainly due to noises, providing little information.

We formulate an online linear optimization problem with constructed losses {w — (w,&o.:)}.2,
over a proper constraint set Wy = {w | |[w|z2 < 1,(w,wo) > c1(1 — 27)}. This con-
straint set, according to Proposition [, contains w* with high probability. We then solve this
problem by online mirror descent with a stepsize ag and regularizer ||[w — wo [|2/2(p — 1) for
p = In(8d)/(In(8d) — 1), perform proper normalization in each iteration, and normalize the aver-
age of all iterates to obtain the output wy. By focusing on the band {r : 0 < (wq;,r) < by}, we
can perfectly observe ro; = Xg,; and y; and the gradientsn go,; coincide with the counterparts in
Zhang et all [Z020]. As a result, we can follow their analysis to bound the error of the output w.

Proposition 3. For the constant ci in Proposition B and some constants co,c3,cq > 0, when the
initial vector w satisfies (w*, wWo) > c¢1(1 — 27)) and Algorithm B runs with bandwidth by = co(1 —

2i))2 for Ty = c3dInd(InT)?/(1 — 27)8 iterations with step size ag = c4+/dIn(d)/(v/ToInT),
then its output w1 satisfies 0 (w*,w1) < 7/4 with probability at least 1 — 3/T>.

The main idea in proving Proposition B is outlined as follows. By the theory of online convex
optimization, we can upper bound the cumulative regret for the constructed loss in this stage, i.e.,
221 (Wo,i,80,:) — (W*,80,;). This regret bound, together with a bound on 221 (Wo,i,80,:)
and a concentration bound on Zgl (W*, —80.,;), leads to a high probability upper bound on
ZiTilE[(w*,f§07i>]. Moreover, it can be shown that E [(w*, —g ;)] is lower bounded by
6 (w*,wyg,;) up to some proportional factors. This is why we expect to obtain a high probability
upper bound on 6 (w*, w1). Importantly, the gradients g ; are carefully constructed to ensure that
[{Wo.5,80,:)| is small and meanwhile E [(w*, —go ;)] upper bounds § (w*, wg ;).

Notably, while Algorithm B collects true feature-label data and implements localization by focus-
ing on local bands around the origin-crossing classification hyperplanes hy ;’s, this approach can be
costly. According to Lemma [Il, unqualified agents with true features x satisfying —y < (w4, x) <
0 would manipulate their features to achieve positive classifications, resulting in constant instanta-
neous regret. Fortunately, Algorithm B runs for only O(InT') cycles, so this refinement algorithm

obtains an improved coefficient w; for the next stage at the cost of at most only O(ln T) regret.

21t can be verified that g ; is the gradient of a Leaky ReLu loss restricted to the band Do ;.
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3.4 Batched Enhancement: Proxy Features and Pairwise Contrastive Inference

Algorithm 4: Batched Enhancement

Input: Maximum manipulation distance +, initial vector w, noise level 77, batch index k, iteration length
T, bandwidth by, step size ok, feature dimension d
Initialization : w1 = wy,
for i < 1to T} do
Construct classifiers h;:f(r) = sgn((wg,;, r) — ) and hfi(r) = sgn((wg,;, r) — v — bi)
for j <+ 1to2do
Declare classifier h;f 3, agent (xgj 2, y,(j 2) arrives and reports r,(f 2 -
Make classification decision h,(f Z(rkz) and collect label y,(fz if h;f 2 (r](f 2) =1
G ' . . NS
Construct proxy data: x(,jl ) = PrOJzkﬁi(r,(jﬁg)]I(y,(jyz = 1,r§£ € Dl(cjz)7x](c]7, ) =

Projp, (DI} = ~1.x{; € D)

Use the proxy data to compute the gradient: gx,; = —77()2;,17;“ — )A(,(jf)) +(1-7) (&21’%7) — f{,ff))

[lw—wp |

2
1
2 where p = —2(8d)

T(8d)~1° the constraint set

Update: Wi, i1 < arg minwew, (&, w) + i 1)
Wi = {w| |wll2 < 1,(w, W) > cos 0}, starting angle 0 = 57
Normalize: Wi, iy1 = Wk7i+1/||\7vk,i+1“2

Compute mean vector W1 = T% Dok Wi

return wi1 = Wit1/||[Wrt1]2

In the non-strategic and full feedback setting, after obtaining the refined coefficient w, Zhang
ef—all [P020] further improves it by solving a sequence of adaptively constructed online lin-
ear optimization problems min ey, Z;‘F:kl (w, gk with g, = [—7xk: (e =1) + (1 —
M)xeil (Y, = —1)|I(=bx < (W, Xk,s) < bi) via mirror descent over k = 1..., K batches,
using local data within increasingly narrow bands {x | —by < (wy, ;,x) < by} around the classifi-
cation hyperplanes. This process can geometrically reduce the error of the coefficient estimates,
outputting a final classifier that approaches the optimal classifier after enough batches. The key in-
gredient underlying this guarantee is that the gradients g, ; are well constructed so that [(w, ;, gk ;)|
is small and meanwhile E [(w*, —gy, ;)] upper bounds 6 (w*, wy, ;) (see discussions below Proposi-
tion B). One may consider directly implementing this batched enhancement approach in our strategic
classification. In particular, one may again use classifiers iy, ;(r) = sgn((wy_;, r)) and focus on the
band Dy, ; = {x|0 < (w4, x) < b} in each batch k and iteration ¢, since this enables us to collect
the true feature-label data and probe the localized region Dy, ;. However, as we discussed at the
end of Section B3, this approach may result in constant instantaneous regret in every cycle due to
unqualified strategic agents, so that O(T') regret accumulates over the O(T') cycles in this stage.

To avoid excessive errors due to feature manipulation, we can instead employ classifiers hy, ;(r) =

sgn((wy, ;,r) — ), mimicking the form of the clairvoyant optimal strategic classifier * and raising
the bar for positive classification to tackle strategic behaviors (see Corollary ). However, this gives
rise to new challenges: it is unclear how to construct the gradients gy, ; and probe the localized
regions Dy, ;, since both depend on the true features, but all agents in the localized regions Dy, ;
misreport their features. This means that we know neither which agents’ true feature values belong
to the regions Dy, ; nor their true feature values. To tackle these challenges, we propose two key
ideas: proxy features and pairwise contrastive inference.

Proxy Features Even if we assume, for the sake of argument, that we can identify agents whose
true features lie in Dy, ;, their true feature values remain unobservable, since they all misreport their
features to secure positive classification (so their reported feature values fall on the hyperplane of
the announced classifier). To resolve this, we construct proxy features from the reported features.

Specifically, consider an agent with true feature value x € Dj, ; and reported feature value r. This
agent will manipulate his feature to get positively classified, and thus we can observe his true label.
If his true label is y = +1, then we construct his proxy feature x as the projection of r onto the
upper boundary of Dy, ;, i.e., X = Projf, (r) :=r + (bx — (W, r))Wg ;. On the contrary, if his
true label is y = —1, then we construct his proxy feature x as the projection of r onto the lower



boundary of Dy, ;, i.e, X = Proj,_jkﬂ(r) = r — (Wg;,T) Wi ;. As a result, this agent’s proxy
feature value, like his true feature value, also belongs to Dy, ;, and the proxy feature value under a
positive label (i.e., projection onto the upper boundary of Dy, ;) is more aligned with the direction
of positive classification than the proxy feature value under a negative label (i.e., projection onto the
lower boundary of Dy, ;). See the illustration in Figure D(a).

Using the proxy features, we can approximate the ideal gradient g, ; by a proxy gradient g ; =
[=Proj},  (rr,)I (Yri = 1) + (1 = )Projp,  (rr,i)I (i = —1]I(xk,: € Dy,;). Although this
may not exactly recover the ideal gradient, it is still effective, in that |(wy ;, 8k ;)| is small and
E [(w*, —8k.:)] > E [(w*, —gk.)] also upper bounds 6 (w*, wy, ;) (see Appendix B). Therefore,
we can use the proxy gradients gy, ; in the algorithm to achieve similar guarantees. Nevertheless,
these proxy gradients require knowing whether an agent’s true feature value belongs to the localized
region Dy, ; or not, which is still infeasible in our setting. This motivates our second key idea.

Pairwise Contrastive Inference We propose to offer two classifiers ﬁ,glz (r) =sgn((wg 4, 1) —7)
and iLEfZ(I‘) = sgn({wy,;,r) — 7 — by) successively in each iteration. Under classifier ﬁgl).(r), we
consider only agents with reported features in [7,(;2 ={r: v < (wy;,7) <+ by}, while under
classifier iL,(fz (r), we consider only agents with reported features in ﬁ,(fz) ={r: (wg;r)=v+bs}.
These agents are all classified into the positive class, so their true labels are observed. Moreover,
according to the feature manipulation rule in Lemma [0, these agents have true feature values in
D,(Cll) ={x:0 < (wg;,x) <v+bg}and D,(fz) = {x: by < (wy,i,x) < v+ by}, respectively.
Since Dy, ; = D,(clg \ D,(fg up to a measure-zero set, we can expect to infer distributional properties

of the data within the region Dj, ; of interest by contrasting the data within D,(clg and the data within

D,(fz We call this a pairwise contrastive inference approach, which is illustrated in Figure Di(b).

We can use this approach to infer the two key components in the proxy gradient gy, ;. Note

B [Proi,, () s = 1x0s € D] =[5 (3],

K2

where fcgf) = Projgk.i(r,(jg)]l (y,(jz = 1,rg2 € D,(fl)) for j = 1,2. This means that we can use
kgf—) — f(ffz’.ﬂ to unbiasedly infer one key component of gy, ; in expectation. Similarly, we can

construct fc,(cl_f) - 5(,(62;7) to infer the other component. This gives our gradient estimate gy, ; in Al-

gorithm B Line [, satisfying that E [(w*, =gy, ;)] = E [(w*, —gy ;)] also upper bounds 6 (w*, wy, ;).
After getting the gradient estimator gy, ;, we again conduct online mirror decent with a regularizer
similar to that in Algorithm B and constraint set Wy, = {w| ||w||2 < 1, (w, wy) > cos}, where
0r = 5757 Then we output the normalized average coefficient vector wy. 1 for the next batch. Our
constraint set ensures that §(wy, ;, wi) < 7/2%+1 for all i € [T}]. Then, when the input vector
wy, satisfies 6 (w*, wy) < 7/2+1 we have O(w*, wy ;) < O(w*, wy) + 0(wp i, wi) < m/2F
by a triangular inequality shown in Appendix A.3, Lemma . This statement is critical: First, it
controls the expected cumulative error in batch & to be O (5% - T;). Second, the condition that
O(w*, wy,;) < m/2", together with our localized online mirror descent method, ensures that batch k
outputs a vector w1 that satisfy 0(w*, wi41) < 7/2%+2 with high probability (see Proposition B),
which is in turn required by the next batch.

Proposition 4. For some constants cs,cg,c7 > 0, when Algorithm B runs with an initial vec-
tor wy, satisfying 0 (w*,wy) < Op = w/2F1, bandwidth b, = c5(1 — 27)27% for Ty, =
c6d®(y 4+ 1)dInd(InT)2/(1 — 2n)* iterations with step size oy, = c7V/dIndOy /(T InT), its
output Wi,y satisfies 0 (W* , wri1) < 1 = %’“ with probability at least 1 — 6/T>.

Proposition B shows that Algorithm B enhances its input by reducing the error by half in every batch,
generating a sequence of coefficient estimates (wy)5_, with geometrically decaying errors. Notably,
we achieve the enhancement by classifiers h,(clg, h,(fz that use at least y classification thresholds and
are hence more resilient to errors due to strategic classification, which results in only a sublinear

regret, as we will show in Theorem [.
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(a) Proxy Feature (b) Contrastive Inference
e true feature x with label +1 e true feature x with label —1
a  reported feature r with label +1 a  reported feature r with label +1
s proxy feature X with label +1 o proxy feature X with label +1
O region {x | (w*,x) >0} O region {x | (w*,x) <0}
@ the band of interest Dy ; = {x | 0 < (wy;,x) <by} — hyperplane of optimal classifier h*(x) = sgn((w*,x))
—  hyperplane of i)ilz (r) = sgn({wki,r) — )} — hyperplane of classifier ﬁizz(r) = sgn({wg,i, 1) — v — bg)

Figure 2: (a) The gray arrows indicate how agents with true feature values (circles) within the band
Dy, ; manipulate their features (triangles). The blue and red arrows indicate how we construct proxy
features (squares) from the reported features of agents with labels +1 and —1, respectively. (b) By

declaring classifiers BSZ and B;fz) we collect data from agents with true values in D,(Cli) and D,(fz
respectively, through which we infer the information for agents in the region Dy, ; of interest.

4 Regret Guarantee

We now provide a formal regret guarantee of Algorithm [, showing that it achieves a sublinear regret
dependent on the noise level 7 and feature dimension d.

Theorem 1. For any instance of our online strategic classification problem with noise level 1, max-

imum manipulation distance -, and feature dimension d, the expected regret of classifiers h from
Algorithm W over T cycles satisfies

E[Reg(h; T)] = O (dlnd X (InT)2/(1 =20)% + /(v + DdInd x TInT/(1 — 2ﬁ)2) .

We prove the theorem by analyzing the regret incurred by each of the three sub-algorithms in Sec-
tion B. The full proof is outlined in Appendix Ad. We also conduct numerical experiments to
evaluate our proposed algorithm, with results presented in Appendix B2

S Concluding Remarks

In this paper, we study an online strategic classification problem under Massart Noise with partial
feedback. The settings are of practical relevance yet theoretically challenging. We introduce a novel
algorithm that concurrently learns a linear classifier and manages instantaneous prediction errors.
The algorithm leverages localization to mitigate the complexities induced by Massart noise. The
strategic manipulation of agents poses a critical challenge by limiting access to reliable training data;
thus, the core innovation of our approach lies in using carefully designed classifier pairs to collect
some proxy data and contrasting their data for effective learning. This pairwise contrastive inference
approach with proxy data effectively addresses the challenges in online strategic classification. This
paper has some limitations. First, our algorithm is specifically designed for Massart Noise. Second,
this paper assumes that agents’ utility functions are homogeneous and known to the principal. Third,
we adopt as an objective the traditional classification accuracy metric. Future research directions
include extending the algorithm to overcome these limitations.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract accurately reflects the paper’s contributions and scope by stating
that the paper addresses the online strategic classification problem and proposes a novel
learning algorithm that converges to the optimal classifier and achieves a regret rate of
O(V/T) (up to poly-logarithmic and constant factors). It also clearly outlines the combined
challenges of agents’ strategic feature manipulations, partial label observations, and label
noises.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In Section B, we acknowledge our limitations and point out some future direc-
tions.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-

dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions are clearly stated in Assumption [l and Assumption 0. We
provide a complete proof in our appendix and provide proof sketches in Section B and
Section A.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

» The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We use Python 3.9 to conduct our numerical experiments. All settings and
results are listed in Appendix A71. We guarantee that our results are genuine and credible.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides the code and data required for the experiments in the sup-
plementary material. The code is well-organized and well-documented, which facilitates
the reproduction process.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All details of our numerical experiment is listed in Appendix B7.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We present the mean regret rate of all algorithms, calculated across 10 inde-
pendent experimental replications in Appendix A7 The experimental findings are consis-
tent with the theoretical assurances we provide in Section .
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Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We state in Appendix A7 that all experiments can be conducted locally using
a standard CPU without requiring specialized hardware, making reproduction accessible
and straightforward.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research performed in the paper conforms with the NeurIPS Code of
Ethics. The paper does not involve human subjects or sensitive personal information, so
issues like privacy and consent are not applicable. The research focuses on developing an
algorithm for strategic classification under specific noise conditions, and it does not present
any foreseeable risks of harm, discrimination, or other unethical consequences as outlined
in the Code of Ethics. Our numerical experiment only uses simulated data, so it does not
involve any deprecated datasets or copyright violations.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss in Section [ that agents’ strategic feature manipulation can hurt
a certain classification rule, and we design an algorithm to prevent this, which is a poten-
tial positive societal impact. This algorithm aims to enhance the fairness and accuracy of
automated decision-making systems, potentially reducing financial losses from misclassifi-
cations. While the research focuses on foundational aspects and does not directly address
all potential negative societal impacts, we acknowledge the importance of considering such
implications as the technology evolves.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The research in this paper focuses on developing an algorithm for online
strategic classification and does not involve the release of data or models with high misuse
risks, such as pretrained language models, image generators, or scraped datasets. Therefore,
no specific safeguards for such releases are applicable.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The research in this paper focuses on developing a novel algorithm for online
strategic classification. We do not use any existing assets such as code, data, or models

from external sources. All methods and experiments are designed and implemented by us,
so there are no original owners or licenses to credit.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: The research in this paper does not release any new assets such as datasets,
code, or models. Therefore, no new assets are introduced that would require documenta-
tion.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The research in this paper does not involve crowdsourcing experiments or
research with human subjects. Therefore, there are no instructions, screenshots, or com-
pensation details to provide.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

¢ Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-

tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human

16.

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This research does not involve crowdsourcing or research with human sub-
jects. Therefore, there are no risks to participants, disclosures, or IRB approvals to report.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core methodology of this research does not involve the use of LLMs as

any important, original, or non-standard components. LLMs were not utilized in develop-
ing the algorithms or conducting the experiments.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLN)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Feature Regularity Conditions and General Log-concave Distributions

The literature on learning halfspaces with noise typically assumes that the feature vector x has an
isotropic log-concave distribution [Balcan and Long, P13, Awasthi ef all, P01, [Zhang et al], 2020,
Shen, P0773]. The log-concave and isotropic log-concave distributions are defined as follows.

Definition 1 (Isotropic log-concave distribution [Lovasz and Vempald, 2007]). A random vector
z over R? with probability density function ¢,(-) follows a log-concave distribution if In ¢,(-) is
concave. Moreover, it is isotropic if E [z] = 0 and E [zz"] = I.

The following lemma summarizes some important properties of (isotropic) log-concave distributions
that have been proved by literature.

Lemma 2. Suppose z € R with probability density function ¢,(-) follows a log-concave distribu-
tion. Then, the following holds.

(a) (Klvans_et all [P009] Lemma 5.17) For d = 1, assume that E [ZQ] = C?, then for every
t>0,P(|z|>t) <e L

Moreover, if z is isotropic, then,

(b) (Lovasz and Vempald [P007] Lemma 5.2) ¢,(z) > B1(d) for all 0 < ||z||2 < 1/9, where
Bi(d) = 2784,
(¢) (Lovasz and Vempald [2007] Lemma 5.5) For d = 1, ¢.(z) < 1.

(d) (Klvans et all [PO09] Lemma 7 ) For d > 2, ¢.(z) < Ba(d)ePs(Dlzlz where By (d) =

—7d
28442 ¢ and B3(d) = 2(d—1)(202(d—1))<d*1>/2'

Following Lemma [, one can show that any mean-zero isotropic log-concave distribution satisfies
the regularity conditions in assumption B. Importantly, in this part, we show that the regularity
conditions can hold even for a mean-zero log-concave distribution that is not isotropic. In this
case, eigenvalue bounds on the covariance matrix of the distribution determine the corresponding
regularity parameters.

Lemma 3. Let x € R? (d > 2) have zero mean and a log-concave distribution. Suppose the
eigenvalues of its covariance matrix > = K [XXT} are all bounded within [\, \| for some positive
constants )\, \, then the distribution of x satisfies the regularity conditions in assumption B, with

parameters L, = —53/%1), Ly = 515(\2), R=3VAU = %, Uy = [32;\2), §= —Bf’/(;), Q = VA for

B1(1), B1(2), B2(2), B3(2) given in Lemma D.

A.2 Numerical Experiments

In this subsection, we conduct numerical experiments to evaluate our proposed algorithm. To high-
light the challenges posed by Massart Noise and strategic behavior, and to demonstrate the effective-
ness of our algorithm, we compare its regret against two benchmarks: (1) the Strategic Perceptron
algorithm from Ahmadief-all [Z021], designed for noiseless online strategic classification, and (2)
the PAC learning algorithm for halfspaces with Massart Noise from [Zhang et al] [2072(]], designed
for non-strategic classification. Note that these benchmarks are both originally designed for full
feedback settings, whereas our work focuses on partial feedback. We evaluate the performance of
these benchmark algorithms both when they have access to full feedback (while our algorithm does
not) and when they only use partial feedback as our algorithm.

We test the algorithms under two different settings, with key parameters outlined in Table . Each
setting is replicated 30 times, and we report the average regret for each algorithm. Our analysis
includes a performance comparison of the different algorithms and an investigation of how various
problem parameters influence our proposed algorithm.

Benchmark against Strategic Perceptron by Ahmadi ef all [202T] To understand the impact
of Massart Noise, we compare our algorithm with the Strategic Perceptron algorithm from Ahmadi
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Table T: Numerical experiment settings.

*

Index Dx 7l n(x) 5 w
Setting 1 Standard Normal 0.1 n(x) = (1 — exp(—|x]|2)) 0.1 (1,0)
Setting 2 Unit Ball 0.1 n(x) =n 0.1 (1,0

ef-all [2021]]. This algorithm provably achieves only a finite number of mistakes under a noiseless
model where the feature-label relationship is deterministic and the true and negative classes are
strictly separated by a positive margin. Ahmadi_ef-all [P021] modify the classical Perceptron algo-
rithm by setting a higher threshold for classifying an agent as positive and proxy surrogate features
to estimate the agents’ true features. Their proxy feature is defined as follows.

Definition 2 (X;, proxy feature , Ahmadiefall [Z021]). Fora given classifier h(-) = sgn((w,-)+m),
an agent (x,y) reports his feature as r according to Lemmal. Then the corresponding proxy feature
X in Bhmadi et all [PO71] is defined as

s _ JTt YW (w,r) =vyandy, = —1; )
ry otherwise.

Algorithm 5: Original Strategic Perceptron with Full Feedback (Ahmadief-all [Z02T])

Accept the first agent without declaring any classifier
if y1 = 1 then
W < Iy
else
W < —T7
wa = Wa/|[Wallo
fort=2---,Tdo
Declare classifier ht(r) = sgn({w¢,r) — ), receive agent response r¢
Classify the agent as §: = h(r¢)
if Yt §£ :ljt then
Wil ¢ Wi + YeXe, Wit — Wit /|| Wit ||2
else
Wil < Wt

Their original algorithm, designed for the full feedback setting, is presented in Algorithm B. Algo-
rithm B below directly adapts this algorithm to our partial feedback setting. Specifically, instead of
using all data points that incur misclassifications for update, the refined algorithm uses only posi-
tively classified agents with true labels —1 to adjust the coefficient vector.

Algorithm 6: Strategic Perceptron with Partial Feedback

Accept the first agent without declaring any classifier
if y1 = 1 then
Wz — I
else
Wz “— —I
Wo = W2 /[[Wallo
fort=2---,Tdo
Declare classifier h+(r) = sgn({w¢,r) — ), receive agent response r¢
if (w,r;) > - then
Accept the agent and receive his true label y;

else

Reject the agent without getting his true label
if y» = —1 then

Wil ¢ Wi — Xe, Wil ¢ Wep1/||[Wegt||2
else

Wil < We
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Figure 3: Average regrets of our algorithm and two Strategic Perceptron-based benchmark algo-
rithms over different time horizons 7" under the two settings listed in Table . Results are based on
30 independent replications of the experiment.

Figure O illustrates the average regret of each algorithm over 50,000 cycles in both settings listed
in Table M. We observe that our algorithm’s regret grows sublinearly, while the two benchmarks’
regrets may accumulate linearly. The original Strategic Perceptron with full feedback (the dashed
red line) demonstrates slightly better performance compared to its partially feedback-modified coun-
terpart (the dashed green line). However, the improvement remains marginal, suggesting that our
partial feedback setting is not the primary cause of the Strategic Perceptron’s failure. Intuitively, the
ineffectiveness of the two benchmarks stems from their sensitivity to noise when updating with data
from all admitted agents. When 6(w*, w;) is relatively small but (w,, r;) (equals (w;, x;) when
(wy, 1) > ) is large, the algorithm is more likely to admit a ‘wrong’ agent (y; = —1 but h(r;) = 1)
due to noise rather than an inaccurate classifier. Since the perceptron algorithm updates are based
on mistakes (Rosenblafi [TY58]), the presence of noise increases the probability of misleading up-
dates for the classifiers. In contrast, our algorithm explores a small band near the decision boundary,
whose bandwidth decreases proportionally to 6(w*, wy), k = 1,2,--- | K across batches. Within
this band, wrong admissions are more likely due to suboptimal classifiers than noise, making the
update more effective. This enables our algorithm to gradually converge to the optimal decision.

Benchmark against Non-Strategic Learning under Massart Noise by Zhang et all [2020]
Next, to highlight the impact of agents’ strategic behavior, we compare our algorithm against the
algorithm proposed by Zhang et al] [2020] (see Algorithm @), which is designed for adaptively learn-
ing halfspaces with Massart Noise in the non-strategic classification setting. Their algorithm also
adopts a localization scheme that focuses on data within an increasingly narrow band near the clas-
sification boundary and uses online mirror descent in batches for classifier updates. However, they
do not consider the impact of agents’ strategic behavior. We test the performance of their algorithm
under strategic manipulation in both full feedback and partial feedback settings. The two settings
differ in: 1) whether the principal can collect labels of those who are negatively classified (full
feedback) or not (partial feedback) and 2) the algorithm chooses different bandwidths for updates,
namely, {r|—by < (W ;,rr:) < by} for the full feedback setting and {r|0 < (wy ;,r ;) < bi}
for the partial feedback setting.

As shown in Figure B, after a common pure exploration phase, the regret of the non-strategic learning
algorithm in both full feedback and partial feedback settings grows linearly. This is because the non-
strategic learning algorithm ignores agents’ strategic manipulation. Consequently, true negative
agents may misreport their features to be positively labeled. In contrast, our algorithm accounts for
agents’ strategic behavior and is able to efficiently learn the ground truth distribution.
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Algorithm 7: Non-Strategic Learning under Massart Noise

Input: Feedback setting ', noise level bound 7, lengths { T} U {Tk } =, bandwidths {by, }7—,, step
sizes {ak}szo, feature dimension d
wo = Non-Strategic-Initialization(F, Tinit) // See Algorithm B
w1 = Non-Strategic-Refinement(F, wo, 77, To, bo, o, d) // See Algorithm H
for k < 1to K do
Wi+1 = Non-Strategic-Batched-Enhancement(F, w1, 7], k, Tk, bk, ak,d) // See Algorithm MO

Algorithm 8: Non-Strategic-Initialization

Input: Feedback setting F, iteration length Tini
for ¢ < 1 to Ty do
Uniformly draw wigi;; € S?
Declare hinit,i (r) = sgn({Winit,s, ) ), agent (Xinit,i, Yinit,s ) arrives and reports Tinit,;
Make classification decision ilinit,i(rinit,i)
if ' = “full” then
collect label ¥init,s
if ' =“partial” then
collect label yini,;only if ﬁinit,i(rinh,i) =1
if I = “full” then
return wo = T,-l,,,-, o ity Y,
if ' = “partial” then
return wo = ﬁ ZZT':”'{ Tinit, i Yinit,i ] ((Winir,i, Tinir,s) > 0)

Algorithm 9: Non-Strategic-Refinement

Input: Feedback setting F', Initial vector wo, noise level 7, iteration length T, bandwidth by, step size
o, feature dimension d
Initialization : wo 1 = Wo/||Wol|2

for ¢ <— 1 to Ty do
Declare classifier §o,; = ho.i(r) = sgn({(wo,i, r)), agent (X0, yo,;) arrives and reports ro ;
if F' = “full” then
Make classification decision §jo,1 = ho,;(ro,;) and collect label yo ;
Compute gradient:
£o,i = [—7rod (Yo,i = Jo,1) + (1 — 7)ro,:l (yo.: 7# Fo,1)[I(—bo < (Wo,i,r0,:) < bo)
if ' = “partial” then
Make classification decision o1 = izoﬂ-(ro,i) and collect label yo ; only if go,; = 1
Compute gradient:
£o,i = [—7ro,: I (yo,i = Po,1) + (1 = 7)ro:l (yo,i: 7 Ho,1)]1(0 < (Wo,:,T0,:) < bo)
Set constraint set: Wy = {w | ||wl]2 < 1, (w,Wo) > c1(1 —27)}
2
Update w: Wo i+1 = arg minwew, (€o,i, W) + %%, where p = lnl?g(:)dll
Normalize: Wo,i+1 = Wo,i+1/||Wo,i+1||2
Compute mean vector: wi = T% ST woy

return wi = w1 /||w|2

Impact of Different Parameters We examine three groups of additional settings to analyze the
impact of different parameters. For each group, we test both settings from Table [l. The average
regret over 30 independent experiments for each group is depicted in fig. B up to 50,000 cycles.

We first examine how different maximum manipulation distances v = 0.1, 0.2, 0.5 affect the regret
of our algorithm. As depicted in Figure B (al) and (a2), larger + values result in higher regret.
Intuitively, a larger v permits more agents to manipulate their features, so the strategic manipulation
problem becomes more severe. This causes all algorithms to have worse performance.

Next, we vary the feature space dimension, setting w* to be (1,0) (d = 2), (1,0,0,0) (d = 4), and
(1,0,0,0,0,0) (d = 6), respectively. The average regret across different time horizons is shown in
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Algorithm 10: Non-Strategic-Batched Enhancement

Input: Feedback setting F, initial vector wy, noise level 7, batch index k, iteration length 7}, bandwidth
by, step size ay, feature dimension d
Initialization :wy ; = wy,
for i < 1to Ty do
Declare classifier hy ;(r) = sgn({w,i, r)), agent (Xk,i, Yk,;) arrives and reports r ;
if ' = “full” then
Make classification decision §x,; = hi,i(rk,:) and collect label yy ;
Compute gradient:
&k,i = [Tkl (yo,i = Ur,i) + (1 — 7)ro,il (yo,s # Gr,s)|LI(—bo < (Wo,s,10,5) < bo)
if ' = “partial” then
Make classification decision g ; = fzkz(rkz) and collect label y ; only if gy ; = 1
Compute gradient:
8k,i = [—re,:l (Yo, = Ur,i) + (1 — 7)ro,sI (yo,s # Jk,s)]I(0 < (Wo,i,r0,:) < bo)

. . . llw—wy il In(8d .
Update: Wy, i+1 < arg minwew, (8k,i, W) + iz(Tlﬂl)p where p = ln(nS(dS)Zl , the constraint set
Wi = {w] |lwl]l2 < 1, ||w — wy||]2 < 0, starting angle 0 = 575
Normalize: Wi, i+1 = Wk,i+1/||Wk,i+1|2
Compute mean vector Wgy+1 = Tik Zsz"l Wk.i
return Wgt1 = VAV]C+1/HVAV]C+1 ||2
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ezZ=" Prag
2000 A ,=:—=" 3000 A Pe
40-.; “‘;53’ ‘G-J’ 4”"
2 $ 2000 1 R
< 10001 o s
/s“ 1000 +
I
01, : : : : : 01, : : : : :
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000

T
(a) Setting 1

T
(b) Setting 2

——- Non-Strategic PAC Learning under Massart Noise with Full Feedback
——= Non-Strategic PAC Learning under Massart Noise with Partial Feedback
Our Algorithm

Figure 4: Average regrets of our algorithm and two Non-strategic learning based-benchmark algo-
rithms over different time horizons 7" under the two settings listed in Table 0. Results are based on
30 independent replications of the experiment.

fig. B (bl) and (b2). As expected, the d = 2 setting yields the lowest regret, while d = 6 setting
yields the highest, consistent with our regret bound.

We finally investigate the impact of the noise level 7 on our algorithm’s convergence in fig. B (c1)
and (c2), setting 77 to 0.1, 0.2 and 0.4. Surprisingly, the impact of the noise level manifests in
opposite trends across the two settings. In setting 1, a higher noise level results in greater regret
when T is large enough. Conversely, in setting 2, increased noise levels lead to a lower regret rate.
This discrepancy might stem from the fact that, as the noise level rises, the learning accuracy of the
clairvoyant optimal classifier diminishes. Given that regret is defined as the difference in cumulative
error between our algorithm’s classifiers and the clairvoyant optimal ones, the noisier environment
could potentially narrow this gap.

A.3 Technical Lemmas

In this subsection, we list some technical lemmas as instruments for our further proofs.

Properties of Regular Distributions
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Figure 5: Average regrets of our algorithm over different time horizons 7" on various parameters.
Results are based on 30 independent replications of the experiment.

Lemma 4. Suppose that the distribution of a random vector x ~ Dy satisfies the regularity condi-
tions outlined in Assumption O, then, it has the following properties.

(a) ForvVw € S andV b > 0, Ly min{R, b} <P (0 < (w,x) < b) < U;b.

(b) There exist positive constants cg, cg > 0, such that for any two unit vectors vy, vy € Se if
0<60(vi,v2) < 7, then

sl (sgn((vi, %)) # sgn((va, x))) <0 (v1,v2) < coP (sgn((vi, %)) # sgn((v2,x))) .
3)
Proof. (a) Since (w, x) forms a projection of x onto a certain 1-dimensional hyperplane, property
(a) trivially holds by conditions 1 and 2 in Assumption .

(b) Letz == ({v1,x), (v2,x)), which is a projection of x onto a 2-dimensional subspace V5 spanned
by vy and vy. Let ¢y, (-) and Dy,denote its density and distribution, respectively. Let Gy, =

{z |sgn(z1) # sgn(zz)}, then,
Py~p, (sgn((vi,x)) # sgn({ve, x))) = Puup,, (z € Gvy)

= /ZGGV Pv, (z) dz

> / Lo dz
z€GyNB2(R)

> LyR?0 (vi,va),

where the first inequality holds by condition 1 of Assumption D that Ly < ¢y, (z) for all ||z||2 < R.
The last inequality holds by an observation that fze G, NB2(R) 1dz > R29(v17 v3). Hence, we
2

prove the first inequality of (B).
To prove the second inequality of (B), for Ve > 0, we have

Py, (sgn((v1,x)) # sgn((vz, x)))
= PZNDVQ (Z S sz)

< Puupy, (2 € Gy, |12]2 < €) + Ponpy, ([12]2 > €)

< / P15 (2) + P, (| (V1 %) [ > €) 4 P, (| (v2, %) [ > €)
z€G v, NB2(¢)

- / 013 (2) + Py (| (v1,%) | > €) + P (| (v, ) | > €)
z€Gy, NB2(¢)

< Usf (v, va) € + 2exp(1l — Qe),
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where the last inequality holds by the fact that ¢y, (z) < Usexp(—d||z|2) < Us; according to

Assumption @ condition 2 and Py..p_(| (w,x) | > €) < exp(l — Qe) for Yw € S¢ according to

1—In(0(vyi,v2))
Q

Assumption P Condition 3. Taking € = , then we have

P, (sgn((v1,%)) # sgn((va, %)) < (g T 2) b (vi,va).

Thus, we complete the proof of the second inequality in (B). O

Probability Tail bounds

Definition 3. ((o, b)-subexponential, Wainwrighi [P019], Definition 2.7) A random variable X with
mean (i = E [X] is (o, b)-subexponential, if for VA € [—1, £].

E [exp(A(X — 2))] < exp ((’2;2) |

Lemma 5. ((o,b)-subexponential tail bound, another form of Wainwrighi [20U19], Proposition 2.9)
Suppose X is a (o, b)-subexponential random variable with mean E [X| = p, then with probability

at least 1 — 9,
/ 1 1
X<pu+ 2021ng+2bln5,

also, with probability at least 1 — §,

1 1
XZM—HQO’QIHE—QZ)IDS.

Lemma 6. (A Bernstein-type bound for i.i.d. random variables, another form of Wainwrighi [2019],
Equation (2.18)) Suppose { X }I¥_, is sequence of i.i.d. (o, b)-subexponential random variables, then,
with probability at least 1 — 0,

N N
g S; +a./2N1n5+2b1n5

and, with probability at least 1 — ¢,

N N 1 1
X; > E[X;] — 2NIn - —2bln —.
; 7; [Xi] — 04/ n(s n5

Lemma 7. (A Bernstein-type bound for a martingale difference sequence, another form of Wain-
wright [?019], Theorem 2.19) Suppose { X }_, is a sequence of conditionally (o, b)-subexponential
random variables adapted from filtration {F;}Y ,, i.e.,

E [exp(A(X; — E[X; | Fi_1])) | Fia] < exp (0'2;2) = [—2 11)] .

Then, with probability at least 1 — 6,

X; < Xi| Fiot] +oy/2NIn < + 2bIn
DX <Y EIXi| Fi] 40y /2NIn <+ 2bIn 5,

i=1 i=1

and, with probability at least 1 — ¢,

N
1 1
X; > (X ] Fiz 2N In—- —2bln —.
;:1 ; E: | 1] — o4/ n6 n(S
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Lemma 8. (Azuma Hoeffding’s Inequality, another form of Wainwright [P019], Corollary 2.20)
Suppose { X}V, is a sequence adapted from filtration {F;}Y | such that X; € [a,b], Then, with
probability at least 1 — ¢,

N N 1 1
;Xi < ; E[X:| Fica] + (b—a)y/ ZNn 5

and, with probability at least 1 — §,

N N 1 1
th > Z E[X;| Fi1] — (b— a),/azvlng.
i=1 =1

We show in the following lemma how to determine the parameters (o, b) prescribed in Definition B
by a given probability tail bound.

Lemma 9. Suppose a random variable satisfies P (| X| > a) < Cexp(—2) for given C,v > 0,

then X is (6v+/1 4 2C, 6v)-subexponential. Also, if Y is a random variable that satisfy |Y| < M,
then, XY is (6Mv+/1+ 2C, 6 Mv)-subexponential.

Proof. First, consider | X |'s moment generating function E [e*X1] | for VA > 0, we have

E [eMXq = /JFOO]P’(eMXl > u) du
0
§1+/+OO (|X|>ln/\u) du
1

+o0 .
Sl—!—C’/ u” 2 du.
1

From the above inequality, we get that E [e} ] <1+ £AL < 00if 0 < A < L. Set A = 2, as

E {eéle} = Z:’OO ](ELE()! ]‘, we have:
E[|IX/']
G0y

<E [eélxq <1+2C. @

Now we introduce a new random variable X’ that is an independent copy of X, then we can bound
E [exp(AM(X — E[X]))] by Jensen’s inequality, E [exp(A(X — E [X]))] < Elexp(AM(X — X))].
1

Therefore, we only need to bound E [exp(A(X — X'))]. For VA € [—&&, L],

7§:IE[(X XN XE[(X - X)Zum]
=0 =0

OOE X2z 221/\22 ) )
[ | ] <1+ (1+420) Z( y> 2%\

<1+)
=1+ (1+20) i(?)m)% <142(1+2C)(3vN)?

i=1

|y 212
< exp(2(1 + 20) (3v\)?) = exp (m) 7

2

where the first equality holds by Taylor expansion, the second equality holds since £ [(X - X' )1] =
0 for all i’s that are odd. The first inequality holds by the fact that |z — 2/|* < 2071 (|z|* + |2/|?) for
all ¢ > 1, and that X and X' have the same distribution. The second inequality holds by (&). The

third inequality holds since >_:;° | (3vA)% = 153(@))\2)2 <2x (3vA)? when A € [, &5]. The last

inequality holds by the fact that 1 4+ x < e” for all x € R.
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Thus, by definition of (o,b)-subexponential, we conclude that X is (6v+v/1+ 2C,6v)-
subexponential.

Now we prove the subexponential property of XY". Since |Y| < M and P (| X| > a) < C exp(—;(),
P(‘XY| > ) <P (‘X‘ > 7) < Ce (—7)
a >qs} .
Za)< =)= Mo

Replacing v by Mv, we conclude that XY is (6Mv+/1 + 2C, 6 Mv)-subexponential. O

Lemma B directly accommodates our regularity assumption and leads to the following corollary.

Corollary 2. (Subexponential property of regular distributions) Suppose X is a random variable

that satisfies Assumption D, then, for ¥V w € B%, (w,x) is (15’ g) subexponential.

Proof. By Assumption @ Condition 3, P[| (w,x) | > t] < exp(l — Qt) for V ¢ > 0. Then by

Lemmal, setC = e, v = é, then, 6v+v/1 + 2C = Lg% < 156’ 6rv = %, we conclude that x is

(%, %) -subexponential. L)

The relationship between E [(w*, —g;, ;)] and 0 (wy, ;, w*) Recall that in the non-strategic set-
ting, we shall adjust the coefficient by solving a sequence of adaptively constructed online regret min-
imization problems miny ey, S0%, (W, gr i) — Yoty (W™, gr) with gg s = [—7%pil (yrs = 1)+
(1 — 7)xp I (yr,s = —1)]I(xx,; € Dy,) via mirror descent over k = 0. .., K batches, using local
data within increasingly narrow bands Dy, ; = {x : 0 < (wy;,x) < b,}. The key ingredient un-
derlying this guarantee is that the gradients gy, ; are well constructed so that |(wy, ;, gk ;)| is small
and meanwhile E [(w*, —gy ;)] upper bounds 6 (w*, wy, ;). Here, we show the relationship between
E [(w*, —gk,)] and 0 (wy ;,w*) for k = 0,1,--- , K, which is critical in the guarantees of Algo-
rithm B and Algorithm B.

Fix batch k and iteration i, to connect E [(w*, —gy ;)] and 6 (wy, ;, w*) we introduce a new vari-
able fy ;(wy ;) in (B). Later, we will show how E [(w*, —gy ;)] upper bounds f ;(wy ;) and how
fie,i(Wy ;) approximates 6 (wy, ;, w*).

frilwrs) = E[| (w*,x) |[I({(w*,x) <0)| x € D] . 5)

Now, we show that E [(w™*, —gy, ;)] can upper bound f, ;(wy, ;) by the following lemma.

Lemma 10. Given a unit vector wy,; € S? and an agent with true feature-label pair (X ;, Yk ;)-
Forgi; =[xkl (ks = 1) + (1 — )Xkl (yr.i = —1)|I(xk,; € Di;) and fi ;(wy ;) defined in
(B). The following holds.

E[(w*, —gr,i)] > (1 —20) fri(We,i)P (x € Dy ).

Proof. First, for convenience, we rewrite gy, ; as the following.

8ri = [—NxXk Ll (yei = 1) + (1 — N)xp il (yr,i = —1)|I(xx,; € D)

1
= (—ka i ( >> X, il(Xk,i € Di.i)-
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Then, we have

1 1
E[(w*, —gk:)] =E KW*, <2yk,i - <2 - 77)) Xk,i> I(xx; € Dm)}
(1 1
<W , <2yk,z’ - <2 - 77)) sz> Xp,i € Dk1:| P(xy,; € D) +0

(W™, xk:) Elyk,i| Xk, | Xk, € Dii] P(x € Dy )

I
=

E
1 = *
— (2 — n) E [<W an,i> | Xk,i S Dk,i] P (X S Dk,i)

Y

1
( — ’I]) E [| <W*,Xk’i> | | Xk,i € Dk,i] P (X S Dk,i)
LN
— (2 — n) E[(Ww*, %) | Xk,; € Dii]P(x € Dy ;)
(1 — 277) E H <W*,Xk’i> |]I(<W*,Xk’i> < 0) | Xk, € Dkﬂ‘] P(X S Dk,i)
= (1 —=27) fr,i(Wr,i)P (x € Dyi),

where the second and third equality hold by the law of iterated expectations, and the inequality holds
as the following.

E Yk, | Xki] = (1= n(xx,i))sgn((W, X)) — n(xp,i)sgn((W*, X))
(1 = 2n(xk,i))sgn({w*, X i))
> (1 —27)sgn((W*, xk4)).

Next, in the following lemma, we show that fj ;(wy ;) measures the closeness of w* and wy, ;.
Lemma 11. For fixed batch k and iteration i, if § (W*, wy, ;) = ¢, then the following holds.

1. When 0 < by, < % and ¢ € [%’“, g] we have

Lo

R2¢.
32U, ¢

Jri(Wii) >

2. When 0 < by, < % and ¢ € [%,77— %’“}, we have
Ly o

i(Wii) 2 == R*(m — ).

et (Wi2) 320, (m—9)

Proof. We prove the two cases respectively.  For Case 1, define the region G; =
{x]0 < (Wi, x) < bp, —2Rsing < (w*,x) < —3Rsing}, see Figure B as an illustration. We
have the following

(W, x) [T((w*,x) <0)I(0 < (wy;,x) < by)]
(w*,x) |L(x € G1)]

v

Y

RsingE I (x € Gy)]

Y
ol B =

RoP (X S G1)

\%
gl

h
N
%
-
S
T

where the first inequality holds since G; C {x|0 < (wy;,x) < b, (w*,x) < 0}. The third in-
equality holds by the fact that sin ¢ > % for 0 < ¢ < 7. And the last inequality holds by the claim
that P (x € Gy) > %LgRbk, which we will show later.
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w
\ 5 .

Figure 6: Illustration of region (1 (the red region) in Case 1. Which satisfies G; =
{x]0< (w,x) < b, —1Rsin¢g < (w*,x) < —1Rsin¢}.

Hence, we can establish the lower bound of f, ;(wy ;) by:

Sri(wii) = E[| (W, x) [T((W",x) <0)[ 0 < (Wi, x) < b
Efl (w*,x) [T((w*,x) <0)I(0 < (Wi, x) < bi)]
P (0 < (Wi, x) < by)
35 LaR2 by,
_IP(O < AW i, x) < by)

R2
- 32U1 ?

where the last inequality holds by Lemma B, property (a).

Now we show the claim that P(x € G1) > %LgRbk. For a given vector x, we first project x
down to the subspace V> C R? spanned by w* and wy; and denote the projected value z =
(W, x) , (w,x)).

Without loss of generality, let w = (0,1) and w* = (sin¢,cos¢). As illustrated in Figure B,
the parallelogram ABCD denotes the region G1, where A = (iR, 0), B = (%R, 0), C =

( R+ tdn 3 bk) (1 R+ t:rlf 3 bk) Since C is the farthest point to the origin with respect
to the Euclidean Norm, and H( R+ tan¢’bk)H < H( R+ tangb’bk)H =1iR+ mbr’f¢ + b, <

iR+ qu]f + by < R, then forall z € {z = (21,22) | —3Rsin¢g < 21 < —1sing, 0 <z < by},

we have ||z < R. Also, the area of parallelogram ABCD is by, - 1R = 1Rb;. In addition, by
Assumption B, condition 1, the density ¢y, (z) of projected value z satisfies ¢y, (z) > Lo for all
z € Vo N B2(R). Hence, we can lower bound P (x € G1) by

1 1
P(xeGy)>Ly- ZRbk = ngRbk.

The proof of Case 2 is similar to that of Case 1. Deﬁne the region G =
{x]0 < (W, x) < by, —3Rsin(r — ¢) < (w*,x) < —1Rsin(r — ¢)} (see Figure ). We re-
place ¢ in the proof of Case 1 by m — ¢, by choosmg A = ( 1R, O), = ( 1R, 0),

C= ( 1R—|— m,bk), D= ( 1R + m bk) and then we complete the proof. O

Lemma [ directly leads to the following corollary.

Corollary 3. IfO(w*,wy ;) < T, and fri(Wy;) < 16[62(,7 R?0y, then (w*, wy ;) < %.

Proof. We conduct a case analysis.

L If 6(w*,wg;) <
G(W*,Wk,i) < ? < ek.

then by our setting of by in Algorithm B and Algorithm H,
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Figure 7: [Illustration of region G5 (the red region) in Case 2. Which satisfies G =
{x]0 < (wy,i,x) < by, —3Rsin(r — ¢) < (w*,x) < —1Rsin(7 — ¢)}.

2. If % < O(wr,wy;) < 3, then by Lemma @I, we have fi;(Wg:) >
3551 R%*0 (w*, Wy, ;), combing it with the condition that f ;(Wy ;) < 16%72%]%29” we have

O(w*, wy,;) < 9.

Other lemmas We also outline some other lemmas that are used in the subsequent proof.
Lemma 12. (Triangular inequality of angles) Suppose vectors x,y,z € R? satisfy 0 < 0 (x,y) <
Zand0 < 0 (x,z) < 7, then,

[0(xy) —0(x,2) | <0(y,2) <O(xy)+0(x,2).

Proof. Without loss of generality, assume that ||x||2 = ||y|l2 = ||z||= = 1. First, we decompose
vectors y and z into components along the direction of x and perpendicular to x, respectively, as:

y = cos(0 (x,y))x + sin(f (x,y))y 1x;
z = cos(f (x,2z))x + sin(d (x,2))z x,
where y | x and z | » are unit vectors that are perpendicular to x. Hence, we have

cos(f (y,2)) = (y,2z) = cos(0 (x,y)) cos(f (x, 2)) + sin(0 (x,y)) sin(6 (x, 2)) (y1,21),

where the second equality holds since (x,y,) = (x,z,) = 0. Since y, and z, are both unit
vectors, by Cauchy-Schwarz inequality, —1 < (y1,z1) < 1. Also, since 0 < 0 (x,y) < 5 and
0 <0(x,2z) < 7, wehavesin(f (x,y))sin(f (x,2z)) > 0. Putting all together, we have:

cos(f (y,z)) < cos(d (x,y)) cos(0 (x,2z)) + sin(f (x,y)) sin(d (x,2z))

=cos(f (x,y) — 0 (x,2)), ©)
nd
‘ cos(f (y,z)) > cos(d (x,y)) cos(0 (x,2z)) — sin(f (x,y)) sin(d (x,z))
=cos(f (x,y) + 0 (x,2)).

Since cos(x) is decreasing in z € [0, 7], and cos(z) = cos(—z) for all z € R, we get 0 (y,z) >
|0 (x,y) — 6 (x,2z) | from (B), and 6 (y,z) < 0 (x,y) + 0 (x,z) from (@).

(N

Lemma 13. Given a random vector x ~ Dy that satisfy Assumption B, then with probability at least

=0,
oo < % (1 +in (?)) .

Proof. We bound ||x || element-wisely. Given x ~ Dx and j € [d], let z; be the j-th coordinate of
x. Let eVl € R? denote the unit vector whose j’th coordinate is 1 while other coordinate is 0, then,
by Assumption B, condition 3, for Va > 0

P(lzj| >a)=P (‘ <em,x> ‘ > a) < exp(l — Qa).
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Taking union bound over all coordinates, we have
P(lxlloc = a) < dexp(1 — Qa).
Taking a = é (1 +1n (%)) in the above inequality and hence we complete the proof. O

A.4 Proofs for Section 2

In this subsection, we outline some important results to describe the relationships between classifier

h(-) for unmanipulated features x and classifier i for reported features r = r*(x, &), which is
critical for the subsequent algorithm design.

Proof of Proposition [

Proposition 1. Forany (w, m) € S*xR, the output of h(r) = sgn((w,r)+m—=) forr = r*(x, h)
is identical to the output of h(x) = sgn({w,Xx) +m) for any x € R%

Proof. For fixed w € S% and m € R, we categorize the agent population into three
classes according to their true features x: {x|(w,x) +m < 0}, {x]|0 < (w,x) +m < v} and

{x|(w,x) +m > ~}. Then, we discuss their classification output by /(x) and h(r) with respect
tor = r*(x, h), respectively.

1. When (w,x) + m < 0, h(x) = —1. At the same time, (w,x) +m —y < —7, by
Lemma [, agent in this region will report his feature truthfully, i.e., r = x. Thus, B(I‘) =
sgn((w,r) +m — ) = sgn((w, x) + m — ) = —1. Hence, we have h(x) = h(r) = —1
for Vx € {x|(w,x) +m < 0} .

2. When 0 < (w,x) +m < 7, h(x) = 1. At the same time, —y < (w,x) +m — v < 0, by
Lemma [, agent in this region will manipulate his feature as r = x + (y — m — (w, x))w.
Thus, A(r) = sgn((w,t) +m — ) = sgn((w,x + (y —m — (W,x))w) + m — ) = 1.
Hence, we have h(x) = h(r) = 1 for Vx € {x|0 < (w,x) +m < 7}.

3. When (w,x) +m > v, h(x) = 1. At the same time, (w,x) +m — v > 0, by Lemma [,
agent in this region will report his feature truthfully, i.e., r = x. Thus, h(r) = sgn((w, r) +

m — ) = sgn({w,x) + m — ) = 1. Hence, we have h(x) = h(r) = 1 for Vx €
{x|{w,x) +m >~}

O

Inferring agents’ true features from their reported features Proposition [ directly leads to the

following corollary, enabling us to infer an agent’s true features x given a classification rule B() and
his corresponding reported features r.

Corollary 4. For given announced classifier iL() = sgn ((w,-) + m) and agent response r, then,
his true features x satisfy the following.

1 if (w,r) + m #0, thenx = r;
2. if(w,r) + m =0, then —y < (w,x) + m < 0.

A.5 Proofs for Section B

In this subsection, we show the theoretical guarantees of Algorithm D, Algorithm B and Algorithm B,
respectively.

Theoretical Guarantees of Algorithm @ A key observation in the non-strategic and noiseless
classification scenario is that y (w*,x) > 0 holds for all (x,y). Consequently, xy always forms
an acute angle with the optimal normal vector w*. Considering agents’ strategic responses and the
bandit feedback setting, we introduce Lemma [ to show that, under our construction in Algorithm D,
Wy is an unbiased estimator of E[xy].
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Lemma 14. In Algorithm B, we have

E[wo] = E[xy].

Proof. In Algorithm [, at iteration 4, the principal declares classifier hl(mzl( ) = sgn({Winiti, I))

and hl(mzl( ) = sgn({—wWin,r)), and receives response rl(mz . and rl(mzl respectively. By
Corollary B, we get that rl(nllz i <<wmm, 1(n121> > 0) = l(nllzl]l (<Wini“, 1(n121> > 0) and
1(r12121]I (< Winit,i, I 1(mt)1> > 0) = 1(112121]I <<_Winit1; 1(n121> > 0) AISO’ (Xl(rlllzﬁyl(nllt)l) and

(xl(flzl, yl(n?lt) 1) are i.i.d. drawn from D, hence,

E [ri(nliziyigil)i]l <<wmm, fm“> > O) +r el <<*Winit,i7 rl(flzl> > O)]

=E [ fmﬁiyﬁﬁiﬂ (<Winit1a fm21> > 0) + Xl(nzlzl i(n2it),iH (<_Winit,i7 X1(n2121> > O)}
= E [xyl ((Winiti, X) > 0)] + E [xyl ((Winici, X) < 0)]
=E[xy].

Thus, we have

T .
_ 1 & ! 2) (2
E [wo] = Tt ZE { i(nigiyi(nit),i]l (<Wlmtu 1(n121> > 0) i(niziyi(nit)i]l << Winit,i, I 1(n121> > 0)}
mi ’L:1
=E[xy].

O

Now we show that w( constructed by Algorithm @ has a positive inner product with the optimal
coefficient w* with high probability.

Proposition 2. For some constants co, ¢, > 0, when Algorithm B runs for Ty, = coInT/(1 — 27)?
iterations, its output Wy satisfies (W*, wo) > c1(1 —27) > 0 and 6 (W*,wq) < T with probability
at least 1 —2/T2.

Proof. First, considering the non-strategic classification problem, we establish a lower bound of
E[(w*, x) y] as the following.

E[(w", x)y] = E [E[y| x] (w", x)]
=E[[(1 = n(x))sgn((w",x)) — n(x)sgn((w”,x))] (W, x)]
=E[(1 = 2n(x))[{(w",x) ] ®)
= (1 =2n)E[|(w",x) ]
> (1-20) L1 R?,
where the first equality holds by the law of iterated expectations. The second equality holds by the
definition of Massart Noise. The third equality holds since sgn({w*, x) (w*,x)) = | (w*,x) |. The
first inequality holds because 1(x) < 7, ¥x € R%. Now we prove E [| (w*,x) |] > L; R? for the

last inequality as the following: let xy, = (w*, x) denote a 1-dimensional projection of x. Then,
by Assumption B, condition 1, ¢y, (xy,) > L; for all —R < xy, < R. Hence, we have

R R
E[| (w*,x)]|] > 2/ xXv, dv; (Xvy ) dxy, > Lq X 2/ xdx = L1 R
0 0

Second, considering agents’ strategic response, we find an unbiased estimator of E [(w*,x) y]

through samples. By Lemma M4, w, = Tilnn ZZT‘“‘i rl(mzly](nllz i (<w,m”, l(nll21> >0> +
2 .2 r?

Tinit.i Yinit,i 1 (<—wm,t s Tinit 1> > O) is an unbiased estimator of E [xy]. Therefore, E [(w*, wo)] =
E[(w*,x)y] > (1 - 2i) L, R2.
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Finally, using the results of concentration inequalities, we establish the high proba-

bility bound of (w*,wyg). By Corollary O, <W rD >H <Wmm, ](mzz >O) =

7~ init,¢

(vt xBT (wiix) > 0)  and (w2 V(w2 ) 5 0) =

<w X1(n212 1> I (<—wim-t i xl(mz ;) > 0). Then, by Assumption 2 condition 3 and Lemma B, we get

that both < ’ 1(11112 1> yl(nllt) 1H (<W1mt i T 1(n12 z> > 0) and <W 7r1(n12 z> yl(r1211)1]I (< Winit,i, T 1(r1212 z> > O)
6
Q

56 ) -subexponential. Thus, by Lemma B, we have that with probability at least 1 — =5

T.
e (1) > (1) Q)

> (w", L ({Winiio ot ) > 0)
Tinit P <W rlmtz ylm[z Winit mltz

9)
T .
1 & InT 24InT
> E [(w*, x) yI((Winit.i, X) > 0)] — — - — ,
~ Tinit ; | ) YE((Winici» X) ) QV Thic @ Tinit

and with probability 1 — 75,

Z <W*’ r1(n212,z> y1(112121H << Winit,i ) 1(11212@> > O)

32 [InT 7 %lnT
Q Tinit Q Tinit ’

(10)

T;Z (W*, %) yI({(Winit,s, X) < 0)] —

Taking the union bound for () and (M), then, with probability at least 1 — =,

T
_ j — 1
{w", Wo) = Tnit Z <W 7r1(n121> yl(mt) i (<Wm1t i T 1(n131> > 0)
mi i=1
1 Tinit
T < J 1(112127,>y1(112n)@]1 (<*Wmit,z, l(nzlzl> > 0)
init i=1
T
Ly 32 T 24T
2 T ) ZE (W™, %) yL({Winit,i, X) > 0)] — Q\/: -
mi i=1 mr mni
T
e 32 [InT 24InT
+ E [(w*, x) yI({Winit,i, X) < 0)] — — _ =
T 2 B X) (Wi %) < 0)] = Gy~

InT 48InT
71init Q T‘inil
64 [InT 481InT

1—27)L1R* — — - —
2 M QV Thic  Q Thnie

=mmtwm—%

1
> 5(1 —27) L R?.

The first inequality holds by (8) and (). The second inequality holds by Lemma [4. The
last inequality holds by setting Tjp; = [%—‘, then % 1;[:: < (1 —27)L1 R* and
g l}lTl < ( — 27)) L1 R? for large enough T'. Thus, we complete the proof of Proposition B. [

Theoretical Guarantees of Algorithm B Recall that in the 7’th iteration of Algorithm B, we de-
clare classifier ho ;(r) = sgn({wy, r)) and construct the gradient as g9 ; = [—7rol(yo; = 1) +
(1 —q)ro,I(yo; = —1)I(0 < (wo,, o) < bp). In Lemma [, we establish the high probability

upperbound of 3°1° E[(w*, —80.,))| Fo.i_1] by Y10, (wW*, —8o.4).
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Lemma 15. In Algorithm B, with probability at least 1 — 1/T?, we have

S E[w*, —80.0)| Foi1] < ) (W, —80.)
i=1

i=1

24 4
+ F\/l + 2pbo/ToIn T + 78 InT,

where p = max{ Uy exp(9), %%M}.

Proof. Since <W*7 _gO,i> = <W*7 XO,i> I (O < <W0,i7 X07i> S bo) (%ymi — (% — 'F])), we ﬁrst estab-
lish the probability tail bound of (w*, % ;) I(0 < (wq;,X0,) < bp).
We partition X ; into two orthonormal vectors, for notational convenience, we omit the subindex 0, ¢

of x¢.; and let x|, denote the ingredient of x¢ ; that is parallel to wq ;, i.e., X|jw = (Wo,i,X0,i) Wo,i
and x , denote the ingredient of x ; that is vertical to wyq ;, i.e., X1 = X0,; — X||,- Then,

Thus, we have to bound part (a) and (b) in (I), respectively. First, we bound part (a) as

(W, X)) 1(0 < (w5, %0,:) < bo) = (W*, (Wo., X0,5) Wo,i) [(0 < (wo.i,%0,:) < bo)
< bo (W*, Wo ;) (12)
S b07

where the first equality holds since X|w, = (Wo,i,X0,;) Wo,;. The last inequality holds by the Cauchy-
Schwarz Inequality. Next, we bound part (b) in (). For ||wq; — w*||2 < ro and a > by, we have

P (] (w*, x1w) L0 < (wo,%0,i) < bo)| >a—bp)
=P ([ (W, x1w)| > a—0bo, 0<(Wo,%0,i) < bo)
=P (| (Wiw:X0:) | >a—0by, 0<(Wo,%0,) < bo),

where we prove the second equality as follows

(WX L) = (W X )+ (Wi X )

<Wj_w7 XO,i> = <wj_w’ XLW> + <Wj_W’ XHW> '

since <Wﬁw,Xlw> = <wj_w,x||w> = 0, we have (W*, X | w) = (W}, X0).

Denote X := <Hvxﬁ,x07i> and Y = (wg,Xo,). Then, (X,Y’) forms a projection of xg ;
Lw
onto a 2-dimensional subspace V5 spanned by ﬁ and wo ;. Let ¢y, denote the density
1w

of (X,Y). By Assumption B condition 2, we have ¢y, (X,Y) < Usexp(—d|(X,Y)|2) =
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Us exp(—6v X2 4+ Y2). Hence, we can bound the above probability by

P (| (W*,x1w) 10 < (Wi, X0,:) < bo) | > a—bo)

* — b
=P< <W}W7X0,i>‘ > (1*707 0 < {wo,X0,) < bo)

IIWLWII ~ Wl
/ ) U (X, V)XY
a—bg

Iw

Twll2

bo
< U2/ / exp 6\/X2 n Y2) AxXdy

Tw LWHQ

SUgbo/ exp(—0X)dXdY

Twi o2

_ %bo exp (_5a:bo)
4 W ll2

U- 1)
L exp(0), <_5a> .
0 To
The last inequality holds by the fact that ||w* — wq ,||2 < 7o, which implies ||w* |2 < 7o, and
that by < o = 2, which implies exp (5%3) < exp (8). Combing (I2) and (I3), for a > by,

(13)

P(<W*,X0’i>ﬂ<0<<WQZ,X01><bo)>a)<P<|<W XJ_W OS W017X02><b0 |>a—b0)

Ugexp bo Xp( )

(14)
For 0 < a < by,
P ((w*, x0,;) I(0 < (w4, %0,:) < bg) >a) <P (] (w*,x0,:) 10 < (wg;,X0,:) < bg)| >0)
<P (0 < (wq,X0,4) < bg)
< Uibg
15
< Uibg exp <5b0> exp (_5(1) (1s)
To 0

< Uy exp(0)bg exp <5a> .
To

The third inequality holds by Lemma B property (a). The fourth inequality holds for 0 < a < by.
The last inequality holds since by our construction, by < 1y = 2.

Let p = max { Uy exp(d), Uz%p(‘s) }, by (@) and (I3), we conclude that for V a > 0,

P (I(0 < (wo,i,x) < bo) (W",x) > a) < pbg exp <—5:;> , (16)
Thus,
P (| (w*,—80,:) | = a)
=P (‘ (w*,x0,:) 1(0 < (wo,i,X0,4) < bo) <;y0,i — (; - 77)) ’ > a)
<P (1w, x0,6) 10 < (wo,i, X0,i) < bo) | > a)

where the first inequality holds since | 2yo; — (3 — 7) ‘ < 1. In the last inequality, since ||wq; —
w2 < ||woill2 + [|[w*|l2 = 2, we take 7o = 2 in (If) and get the upper bound.
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By Lemma 8, (w*, —gg ;) is (32+/T+ 2pbo, 22 )-subexponential. By Lemma [, we can get that
with probability at least (1 — 1/72),

& d 24 48
Z]E[<W*7 —80,i))| Fo,i-1] < Z (W*, —8o,i) + ?\/1 + 2pbo/To In T + ~ T
i=1 i=1
O

The following lemma establishes a high-probability upper bound for the average of fo ;(wq ;) over
Tp iterations.

Lemma 16. In Algorithm B, if (w*,wo) > $(1 — 2n)LiR? then there exist some con-

stants co,c3,cq > 0, when setting bandwidth by = co(l — 217)2, iteration number Ty, =
%ﬁdln d(In'T)?, step size ag = ¢4 quféllr]‘]‘é, then with probability at least 1 — 3/T?, we
have

1 . (1 —27) LR

T ; foi(wo,i) < min {1, Li %} == cemr
Proof. Recall that in the non-strategic setting, gr; = [—7xol(yo;=1) + (1 —

7)%0,:1 (y0,; = —1)]1(x0,; € Do), where Dy ; = {x|0 < (wq4,x) < bp} is just the localization
region. Since the announced classifier is hg ;(r) = sgn({(wyg,r)), by the construction of g ; in
Algorithm B and Corollary B, we have

80, = [—7r0,il (Yo, = 1) + (1 — 7)ro,:I (y0,; = —1)]1(0 < (Wo,i,T0,:) < bo)
= [=nx%0,i1 (yo,s = 1) + (1 = 7)x0,:I (Yo, = —1)]I (x0,s € Do,i)

= 80,i-
Then, by Lemma [, we have
E[(w*, —80,:)] = E[(W*, =g0,:)] > (1 = 27) fo,i(Wo,s)P (x € Do) - (17)

We proceed to establish the high probability bound of ZZ.T; E [(w*,—80,;)]. By Lemma 3, with
probability at least 1 — 1/72, we have
To To

L L 24 48
D EW*, —80.) Foa] <D (W —Boa) + = VI + 2000V To T + = InT, - (18)

i=1 i=1

where p = max{ Uy exp(0), Uz%p(é)}.
Next, we move on to upper bound 221 (w*, —80,;) through a nonstandard regret analysis of online
mirror decent.

Let B(v1,v2) = 35q/lvi — vz} denote the Bregman divergence w.rt. 55555l| - |17, where

p= %. In each iteration 1, the regularizer, B(-, wo ;_1) is 1-strongly convex with respect to

|| ||, [see Shalev-Shwarfz [2007]]. From the analysis of online mirror descent [see Orabona [2023],
Lemma 6.9], with step size o, we have

2
. Qg i~
(080,i, Wo,i — W) < B(W", wo;) — B(W", Woit1) + 70Hg0,i 2,
where ¢ = In(8d) > 2. Summing the above equality over i € [Ty], we get
To a2 To
> (0o, woi — W) < B(W*, wo1) — B(W*, wor,11) + 70 > ll&o.illz-
i=1 i=1
Dividing both sides by ag, and moving 221 (Wo,i, 80,;) to RHS, we get
Ty 1 Ty o o
D (W =) < - [BOWwo.) = Bwwor )] + 3 (Wou —8oi) + 5 3 180l
i=1 i=1 =1
1 Lo g &
< OTB(W*7W0,1) +) " (woi, —8o.) + 70 > lgo.llz.
0 i=1 i=1

19)
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Now we need to bound the three terms in the RHS of () respectively.

First, we bound B(w*, wq 1) = B(w*, wy)

I = woll} @ [w = woll} ® dlw* = woll} ©
2(p—1) 2(p—1) 2(p—1)

where inequality (a) holds by the fact that ||x||, < ||x||; for all p > 1 and x € R%. Inequality (b)

holds since ||x||; < V/d||x||» for all x € R?. Inequality (c) holds since ||[w* — woll2 < ||w*||2 +
[woll2 = 2 and 17 < In(8d) — 1 < In(84).

B(W*, W071) = (8d), (20)

Next, we bound 221 (—Wo.5, 80,i)-

Since  (—wo,i, 8o0,i) = (Wo,i,%0,i) (350,i — (5 = 1)) 1(0 < (Wo,;,%0,i) < bg), then
| <_W0,i7g0,i> | < bO and E [<_W0,i7g0,i>] < boP (X S DO,i)9 by Lemma E, with probability
atleast 1 — 1/72, we have

To To
> (~woir804) < Y E[(~Wo,i,80.) | Fo.i1] + bo/ToIn T
i=1 i=1 . 21
< by Y _Pr(x € Do) + bo/ToInT.
i=1

Finally, we bound ZITL |go,ill2. Since [lgoillq < 2[lgo,illoo» We only need to upper bound
ST |lgo.i]|%, which satisfies

1 1
‘H(O < (Wo,i,%0,:) < bo) (—2110,1' + <2 - 77)) X0,s

By Lemma [[3, we have with probability at least 1 — 1/7p772,

180,illc = < [%o0ill oo

o0

1 3
[[%0,i [0 < 0 (1 + In(dT,T?)) < alnf

Thus, taking the union bound over i € [Tp], we have with probability at least 1 — 1/7°2,

To

Z |go,:

i=1

2 <1 31T2—9T1T2
o > OX al’l —@O(H).

Hence, with probability at least 1 — 1/ T2,

To
Z 180,
=1

Combining (I[8), (Z0), (ZT) and (Z2) together, and taking the union bound, we get with probability
atleast 1 — 3/T72,

o 36
2 <4 llgosllZ < g Do D)% (22)
=1

To
(1=2n) > fo.i(woi)P(x € Dy,;)
=1

To
< ZE [(W*, —80,)]

i=1

o 24 48 (23)
<> (W —8oa) + =1+ 2pb0\/ToInT + —InT

— 5 5

To

2d In(8d 18«

< # +by > Pr(x € Do) +bo/ToIn T + QQOTO(InT)Q

i=1

24 4
+ F\/l —|—2pb0\/T01nT—|— FSIHT,
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where p = max { Uy exp(9), Uz%p(é) } By Lemma B, property (a), and the fact that by < R, we

have L by < P (x € Dy ;) < Uiby, dividing both sides of (Z3) by (1 — 277) L1boTp, we get

1 &
7 ; fo,i(wo,i)
1 2d1n(8d) Uy 1 InT 18ayg 9
<— - + by + e (T
(7)) (1 — 27})L1b0T0 (1 - 2’/])L1 0 (1 — 27})L1 TQ (1 - 2n)Q2L1b0( )
lnT 48 InT
v 14 2pb D P ——— .
T A= 20)0Libo 2n VoLab V1 AP0 2L, T
By our setting, by = min{l,L1R?} % = (1l — 293 Ty, =
576(142pbo)dIn(8d)(InT)% _ Qy/dIn(8d) Vdind
( pg%é%é )AnT)" 3 2 )gdlnd(lnT) = SUEnT = “UTmT then we
finish the proof. O

The following lemma established by [Zhang et all [?Z(0200] indicates that by the construction of the
constraint set W, any two vectors in W, form an angle that is no bigger than = — %(1 —27) L1 R2.

Lemma 17. (Zhang et al [P24], Lemma 19) For any two vectors u,v. € W, =
{wlllwl2 <1, (w,wo) > £(1 —27)L1R?}, we have  (u,v) <7 — (1 — 27])L1R2

We use the following corollary to show that, in the 7’th iteration, a small value of f; ;(wy ;) indicates
that wg ; and w* are close.

Corollary 5. If w* € Wy and fo;(wo,;) < min {1, L;R?} %&LZRQ, then 6 (W*, wq ;) <

10 -
Proof. We first exclude the case that § (w*, wo ;) > 7, which we prove by contradiction. Suppose
0 (w*,wjo,;) > Z. By Lemma [7 and our choice of by, 6 (w*, wo ;) < m—3(1—2n)L1R? < m—by.
From Lemma [T, we get f, ;(Wy ;) > =22~ R? (1 — 0 (W*, wy,;)). Together with the condition that

= 32U,
fou(wo,) < TUZZDIALR e have § (w*, wo,) > m— (1 —2) L1 R? > 7w — }(1 - 207) L, R,

which is a contradiction. Thus, we conclude that 6 (w* ;WO,z) <3

. 1—27) Ly R? LoR? .
Next, since fo;(Woi) < l 323[)]12 < ié0; 5 by Corollary B, setting 6 = 7, then
G(W*awo,z) S ?0 - LO O

Putting all pieces together, now we are able to show the main theoretical guarantee of Algorithm B.

Proposition 3. For the constant ¢y in Proposition B and some constants cs, c3,cq4 > 0, when the
initial vector wy satisfies (w*, wWo) > c¢1(1 —27) and Algorithm B runs with bandwidth by = co(1 —
2i))2 for Ty = cs3dInd(InT)?/(1 — 27)8 iterations with step size ag = c4+/dIn(d)/(v/ToInT),
then its output w1 satisfies 0 (w*, w1) < /4 with probability at least 1 — 3/T?.

Proof. In Algorithm B, the constraint set we choose for gradient update is Wy = {w| ||[w]l2 <
1, (w,Wo) > c1(1 — 27)}, where ¢; = 2L R?, since (w*, Wo) > c¢1(1 — 27), we can conclude
that w* € W.

Next, Lemma I8 shows that with probability at least 1 — 3/ T2,

7(1 — 27) Ly R?

24
28800, @4

1 0
?0 Z fO,i(WO,i) S min {1, L1R2}
=1

Let Ay denote the set { | fo,i(wo,;) > min {1, L, R?} %I)JLZRQ}. Combing (24), we have:

. 27) LaR 1 —27)LyR?
mln{l,L1R2}(28$,*me (Wo,i) > T mln{l L Rz}%
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Solve the above inequality and we get |A°| < 1
From Corollary B, set g = I, we know that when i € Ag, O(w*, wo ;) < 1g- Thus,

where the first inequality holds since cos z is decreasing in = € [0, 7] and cosx > —1. The sec-
ond inequality holds since cosx > 1 — %xz for all z € [0,7]. The last inequality holds since

(1-1%) (1 —1 (1—"6)2) — 5~ 0.73 > 0.71 ~ cos (§). By the concavity of cos(f (w*,-)), using
Jensen’s 1nequa11ty, we conclude that when the above inequality holds, we have

T() TO
1 1 7T
* ) > = * ) > Y.
cos (9 (w T ;:1 W()’Z)) > T ;:1 cos(6 (W*,wq;)) > cos (4)

Thus, we can get that with probability at least 1 — 3/7"2, Algorithm B returns a vector w; such that
O(w*, wy) < 7. O

Theoretical Guarantees of Algorithm @ The following lemma shows that if, in batch k, iteration
i, we can identify agents whose true features lie in the localization region Dy ;, and Wwe use proxy
features to construct a proxy gradient g, ;, then IE [(w*, —gj. ;)] upper bounds E [(w*, —g}. ;)] (and
hence upper bounds 6 (w*, wy ;).

Lemma 18. Given a classification rule h(r) = sgn((wy.i,r) + my.;) with fixed wy; € S* and
arbitrary my, ; < 0, an agent (X, ;, Yr i) reports his feature as ry, ; according to Lemmal. Construct
proxy data as

i;jl = (v + (b — (Wi, Tri) ) Wit )T (Ykys = 1, Xk, € Dii)

X = (Tri — (Wi, Tri) W) I (Y = —1,Xi,i € Di i),

Then, we have
E[(w", —8k,)] = E[(W", —gk.i)] -
Proof. First, by Lemma [, given wy, ;,my, ;, for Vx5 ; € R4, we have
T+ (b — (Whis Thyi) ) Wi = Xk + (by — (Wi, Xk i) )W i,

and
T — (Whyir Thyi) Wi = Xki — (Whi, Xk,i) Wi

Therefore, when xj, ; € Dy, ; = {x] 0 < (w4, x) < by}, we have the following

(vt -

Wt + (b — (Whis Tri) )Whei) DYk, = 1, X € Diyi)

(W, Xp5) + (b — (Wi, Xii)) (W, Wi ) D(yr,i = 1, Xpi € Di i)

(
= (W, Xp,i + (e — (Weis Xp,i) )Whei) T(yk,i = 1, Xii € Dys) (25)
=
> (W, Xpi) [(yr,i = 1, Xpi € Diy),

where the inequality holds since (W*, wy, ;) > 0 and (wy, ;, Xz ;) I (X € Dg ;) < bg.
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Similarly,

<W*7>~<;;¢> (W, Thi — (Wi, Pryi) Wii) T(yks = —1, Xpi € Di i)
= (W*,Xpi — (W iy Xk,i) Wei) L(Yki = —1, Xpi € Dy ;) (26)
= [(W*, Xpi) — (Whis Xki) (W Wei) | T (g, = —1, Xpi € Dyyg)

< (w*, %) I(yr, = —1, Xg; € Dy ).

where the inequality holds since (w*, wy ;) > 0 and (W ;,Xx) 1 (x5; € Dy ;) > 0. Combing
(I3) and (Z8), we have

E [<W*7 7gk2>]

=ik [(w*, %5, )| - (1= DB [{(w*. %,
2 B (W %k (g = 1, Xei € Dpi)] = (1= ME LW %130 L (ys = =1, Xpi € D))
=E[(W", —gkq)] -

O]

The following lemma shows that by pairwise comparing agents’ responses under two different de-
clared classifiers designed in Algorithm B, we can unbiasedly estimate the proxy data desired by

Lemma IR and hence construct a gradient estimator gy, ;, accordingly.
Lemma 19. Given Xz'z, X}, ; and gy, ; defined in Lemma I3, for the proxy data X;C +) )E,(Clz_) )E;QZ-H,

x}fz ) and gradient estimator gy, ; defined in Algorithm B, we have

(L+) _ £(24) %
E[sz kz :| E[XZJ ’

E[x7 - %27 =E[5]-

and

,
Moreover,

E[(w", —gki)] = E[(W", —8ka)] -

Proof. For fixed normal vector wy; and bandwidth b, recall that D,(Cli) =
{x]0 < (W, ) <~+ bk} and D(2) = {x|bp < (wg,i,x) <y+0br}. Then, we can ver-
ify that Dy, ; = D /Dk ;. By Corollary B, we have

X = [tea+ (b — (Wei, 0 )Wa L (s = 1, Xpis € D)

= [Xp,i + (b — (Whis X0,i) )WL (Yri = 1, Xis € Dyi)
Xy = [T — (Whis Thi) Wi [y, = —1, Xpi € Dy i)

= [Xk,i = (Whis Xk,i) Wh L (Yk,i = =1, Xki € Diyi)
12+ (= (o) w1 (42 =1, 2 < (i) 22-00)
= [ 56 (bk <wk7i,x,(€172>) W;“} I (y,(:; =1, x(l) e D(l))
K07 = 189 = (waonf) w12 = 1, v = (wnorfl) <7-+.0)
) (oY wi] 1 (42 = 1, < € DY),
+ p )w }]I(y,(fz) 1, <w;“,r§“)>: ’y+bk>
X,(fl)» + (bk - <Wk,ivxl(cQ,z)’>> Wk,z} I (Z/;(H) =1, X(2) Dl(czz)) )
r,(fz <w;C ¢7I';(622>Wk,¢} I (y,(fl) = —1, <Wk Z7rl(c22> = v+ bk)

= [ngl) <wk 1,x,(€22> wkﬂ-] I (y,(fz) = -1, x(2) D,(fz)) .
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Also, (xgz, y,(clz)) and (XE€ Z, y,(C Z)) are drawn i.i.d. from D, thus,
B 5] =[50+ (b~ (e ] 1662 = 1 52 € P)]
{52+ - (onx2)) w1 (421 <2 € 2)
=K [[x—i— (b — (Wi, %))Wy, 4|1 (y =1,xe€ D,i 2)}
B [+ (b — (Wi, X)Wl (y = 1, x € D)) |
=E[[x+ (by — (Wi, x))Wi ;]I (y =1, x € Dy ;)]
K {x;] :
_)] =E {ik } Therefore,
E[(w*, ~&.)] = 7E [<w*, & -2 - (- e [(wr, %57 - 507
- (w5~ 10 [ 57)]
=E[(w", =8k
O
Next, we establish the high probability bound of ZlT:kl E{w*, —8ki)| Fri-1] by
Yo (W, 8-

Lemma 20. At batch k of Algorithm B, when |wW* —wy, ;||2 < 7k for Vi € [T}], then with probability
at least 1 — 2/T?, we have

Ty,

ZE ~8ra) | Fric1] <D (W*, —gk)

i=1

48
+ F\/l +2p(y + bp)re/Ti In T + 7k,

where p = max{ Uy exp(0), Uz%p(é)}.

Proof. First, we partition (w*, —gy, ;) into two parts, as the following
(W*, —8k,:)
= (WP %) - -G - x57)
= (wr iR = a7 = (w1
(a) (b)

Since the randomness in part (a) arises from one sample, while the randomness in part (b) arises
from another independent sample, parts (a) and (b) are independent. Therefore, we can bound them
separately. We first discuss the high-probability tail bound of part (a).

We partition ﬁ&élf) -(1- ﬁ)&,(cl f) into two orthonormal vectors. For notational convenience, we

omit the subindex %, and let x|, denote the component of x that is parallel to wy, 4, i.e., X|w =
(Wi, X) Wy, ;, and X | v denote the component of x that is orthogonal to wy, ;, i.e., X | w = X — X|jw-
Then,

27)

< * ﬁi](cllJr) (1— ﬁ)il(cl,f)>

(wt (s == mall?) (v (D - -l ) ) 09

(al) (a2)
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Hence, we have to bound part (al) and (a2) in (E8), respectively.
To bound part (al) in (ZX), we have

<W* >A<|(|1,V+)> = <W*,I“(|i), + (bk — <sz, ;i >) Wm> ( =1,7< <sz,l'§”)> <~+ bk)
:<w*,r‘(|£3,+ (bkwki—r|‘w>> (y,” 1,7 < <w;“,r}(cz> <fy—|—bk)
:<W*abkwkr,i>ﬂ (/y;” = <Wk i g 1> <7 +bk)
Sbka
(29)

where the last inequality holds because (w*, wy, ;) < ||[wW*||2||W i||2 < 1. Similarly,

(o) = (o (o £ o = 1 ) =1 410

_[ox (D) (1) (1) _ 1N\ _ 30
_<w T Hw>]1(y,“ =1, <W;M, k1>—’7+bk) (30)
=0.
Combing (Z9) and (B0), we can bound part (al) as
< (’r]X](C z+) (1 n)xlgll*)) |w> < bg. 3D

Next, we bound part (a2) in (ZX). From Lemma [, we get that

00 = (e (o o)) ) = (o) (o)) =<

hence,

1 A (1,—
(v (i —a-msi) )

(a2)

=17 <w*, (r,(fz + (bk — <wk“r,(€12>) W;“->L >]I (y,glz =1,7< <w;c “ré 2> <7v+ bk)
-1 —77)< i (1‘;(@2 <Wk,z',1‘;g2>Wk,i>L >H( b =-1,7< <sz,r;(”)> < 7+bk)
(o V(5 = 1, <) € D) — (1) (o E () = -1, ) < 1)
1 1 a 1T 1
= (w ) (52 = (5-7) )1 (=82 e 2L2).

where the second equality holds by Corollary B.

Since ‘ %y,(:z) — (l 777) ’ < 1, we only need to establish the high probability bound of
)

2
<w*, X(fw> I (xgz S D,Slz)), for a > b, we have
P (| (w va)v>]1 (xi e D) |z a-n)
([ (wxt) 2 a0 () <5 0)

:P()<WJ_W,X](€13>‘ >a—bg, 0< <W;“7X,(C )> < W—i—bk)

where the last inequality holds because <W x(ll‘)ﬂ> = <w LW,xg_l‘),v> + <WHW,XS_1V)V> =

. 1 1 1 1
<WJ_W7XS_\)N> = <WJ_W’XS_\)N> + <Wj_w’x\(|v3/> = <Wj_w7xl(€ 2>
Let X = <ﬁ,xk 1> and Y = (wy, i,xk i). Then, (X,Y") forms a projection of xy, ; onto a

2-dimensional subspace V5 spanned by W and wy, ;. Let ¢y, denote the density of (X,Y). B
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condition 2 of Assumption B ¢y, (X,Y) < U exp(—4||(X,Y)]||2), thus, we can bound the above
probability by

P(|(wxQ)1(xe D)) [z a-b) /+OO /wbk (X,Y)dXdY

*
w2

+oo v+bi
< UQ/ / exp(—dv X2 +Y?)dXdY
0

a—byp
Tw* T2
+oo
< U2('7+bk:)/ , exp(=0X)dXdY
||w1wk||2
_Ll+b) o ( a— by )
0 ||VVLW||2
< Bl+b) o <5a bk)
6 ’["k
< Us exp(6)(y + by) exp (_5(1) ,
5 %

where the third inequality holds since |[w* — wy, ;|| < rp < T, which implies ||w* |2 < ry. The
last inequality holds since by, < 7 by our setting.

Since ’(%y,(flz) -(3- ﬁ))‘ < 1, for a > by, we have

(| (v} (5 (5-7) ) 1 (2 e D) | 2a- )

<P (| (v () < 1) [ 0 ) < L2000 (52,

(32)

Combing (B2) and (B), we get that for a > by,

(| (w05 | 20) < (| (v (-0 msfi) )2 0)

< Uz exp(6) (v + bk) exp <5a

) T'Ek
(33)
For 0 < a < b,
P (| (wraxil? = = mxi 7Y [z a) <P (| (wr P - -nx{7) | > 0)
<P (x) e nf2)
(34)

<U; (’Y + bk)
< Urexp(6)(y + by) exp (—5f> :
k

Where the third inequality holds by Lemma B property (a) and the last equality holds since a < b, <
Tk.

Combing (B3) and (B4), we establish probability tail bound of (a) in (Z2): for Va > 0 and p =

Us exp(§) }
5

max { Uy exp(9), , we have

(| (sl = 0= mxl7) [ 2 a) < o+ b esp (-0

a
Tk '
Following the same technique, we can bound part (b) of () for a > 0 by:
P (| (wors? — (- maf )] 2.0) < e (5.
’ k
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By Lemma B, part (a) and part (b) in () are (% V14 2p(y + b)re, grk)-subexponential, thus,
by Lemma [, we get that with probability at least 1 — 1/T2,

Ty

Y E [< R - -l )> ’ fk,z‘—l}
ot (35)
.- ) - 24
< < ,ﬁi,(HH (1-n)x 5” )>+—\/1+2p’y+bk eV T In T + (SrklnT
i=1
and with probability at least 1 — 1/7°2,
Z E [< X, ZH (1- ﬁ)iz(jf)> ’ fk,iq}
(36)

i=1
- __(2,4) _~(2,5) 12 24

> Z< Xy — (A= 0)x, > — ?\/1 +2p(y + bi)re/Ti In T — 5Tk InT.
i=1

Taking the union bound of (B3) and (Bf), we get that with probability at least 1 — 2/ T2,

Tk
N P 24 48
Z E[<W*7 *gk,i>)| Fk‘ﬂ-—l} S Z <W ; *gk7¢> + ?\/1 + 2/)(")/ + bk)'rk \/Tk InT -+ ?Tk InT.
i=1 =1

O

We then show that by our construction of g, ;, ZZT; 1 (—W&.s, 8k.;) also has a high probability upper
bound.

Lemma 21 (High probability bound of ZZTL (—Wg,i,8k,i)). At batch k, with probability at least
1 —2/T?, we have

Ty Ty
> (Wi 8ki) < bk Y P (x € D) + 20bp/Ti InT.
i=1 i=1
Proof. Since gy, ; = n(x,(vlf) fc,(jf)) +(1— 77)()2,(5;7) - x,(f’ ), and we have the
<ka Xl(f,f) € D;(f,g),

Thus,
El(wis, k0] =B [1(y=1, xe DY) ~1(y =1, x e D)
= nbiP (y =1, xe€ Dkﬂ-)
=nbpP(y =1[x € Di;) P(x € Dy;) .

(1 +) (1, ) A( +) (27 )

Also, since X, and X, are calculated by one sample while x and X, are calculated

by another 1ndependent sample we can reformulate (wy, ;, —8x ;) as the followmg

(Wis ~&hi) = (Wi i = (=7 = (w50 = =07, 67

(@) (b)

where (a) and (b) in (B2) are independent. Thus, we establish the high probability bound of parts (a)
and (b), respectively.
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For part (a), ‘ <wk i 77x,(c z+) (1- n)&élé_)> ‘ < 7by, so by Lemma B, with probability at least
1-1/1?,
T Tk
3 <wk R ﬁ)xﬁ;‘)> <ME [<Wk k) — (1)l )>‘ ./—'.k,i—l}
i=1 i=1
+ b/ T InT.

Similarly, for part (b), with probability at least 1 — 1/772,

T
> (wia x5 - (1= px 7)) = ZEmexk;*) (=% Fiia] o
i=1

— b/ T InT.

Combing part (a) and (b) above, and taking the union bound, we get that with probability at least
1-2/T?,

Tk Tk
> (~Whir ki) SE D (~Wiis 8k) | + 2006/ Ti In T
=1 =1
Ty
= nby ZPr(y = 1‘ X € Dk,i) PI(X S Dk,i) + 20bp/ Ty In T 39)
i=1
Tk
< by, Z PI‘(X € Dk,i) + 20bp/ Ty InT.
=1

The following lemma shows a high probability upper bound of Z7T:kl |&k.: ||f1

Lemma 22 (High probability bound of 7%, ||&x.:[|2). In Algorithm B, with probability at least
1-2/T?

T

) 144
S llgkill% < A5 Ti(nT)?
=1 Q

Proof. For ¢ = In(8d) > 2, ||8k.illq < 2|8k hence, we only need to establish the high
probability bound of ||gy ;|/cc. By our construction of g ;,

5 L+) o2+ S\ a(l=) s (2—
I8killc = |-G = %) + = - =57
sl ERCER ] Sl I el ECE )l el
00 ’ oo ’ 0o

]
H (1) Wk,i)]I
]

i = —DI(x) € D))

’ (oo}

—nHml (b — (Wi X )W ll(es = DI € DY)
Wiy X](gll)>
)

I
(
I(ye: = DI(x{) € DY)
I(

+77H X + (b = (Wiio X)W |
(1-7 H x,“ <wk,i,x§€27z),>wk,i) Yk,i = 1)]I(x§§2 € Dy;) .
< H o+ ] 20 .
From Lemma [3, we get that ,with probability at least 1 — ﬁ,
Hx(l) <L (14 In(dTxT2)) (40)
k.t — k )
il =0
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and with probability at least 1 — 74,

1
ngg .55 (1 + In(dT},T2)). (41)

Taking the union bound of (B0),(E), we get that with probability at least 1 — %,

. 2
&k, I, < ot o In(dTT?) + 2(y + by).

Taking union bound over all iterations i € [T}], we have that with probability at least 1 — 2/72,

Z [E:

Thus, we conclude that with probability at least 1 — 2/7°2,

anmn < 4Z|\gmn Ti(InT)>.

36

0 Ty.(InT)2.

oo = Tk (Q 0 In(dT},T?) + 2(vy + bk)>2 <T <é 1n(T3)>2 —

O

Given the starting angle of batch k as 0 = 551, the following lemma establishes the high proba-
bility upper bound of the average of fi ;(Wg.;).

Lemma 23. In Algorithm B, at every batch k € {1,2,--- | K}, lfﬂ(w , W) < 6, there ex-

ists some constants cs,cg,cy > 0, when setting bandwidth b, = cs 23 L jteration number
T, = CGW% L step size oy, = c7 T\flng’ then with probability at least 1 — ﬁ, the
following holds
LQR 0
42
Ty, - Zf’” wii) < 195000, (42

Proof. Combing Lemma [M, Lemma I8 and Lemma [, we have (1 —27) fi i (Wg,; )P (x € Dy ;) <
E [(w*, —&k.:)], hence, it suffices to upper bound Zﬁl E [(W*, —8k.i)]-

First, we upper bound Z;i’“l E [(w*, —&k.i)] by ZLT=k1 (W, —8k.i)-

By our setting of constraint set, cos(0 (W, ;, Wg)) = (Wi, Wg) > cos 8y, since cos 0 is decreasing
in 6 € [0, 7], hence, we have 6 (wy, ;, wi) < O, thus, [|[wWg; — Wi|l2 < 0 (Wg i, Wi) < ;. Also,
Wi — w2 < 0 (wg, w*) < 0, by Lemma [, ||wy; — w*|2 < 26). According to Lemma [T,
set 7, = 20y, then with probability at least 1 — 2/T2, the following holds:

. 48 96
ZE —8k.i))| Fri1] < Z " =8ki) 5 V142007 + b0V T InT + =6, In T

i=1
(43)
Next, we move on to upper bound ZzT:" 1 (W*, =g ;) through a nonstandard regret analysis of online
mirror decent. Let B(vy,vs) = ﬁ [[v1 — 2|2 denotes the Bregman divergence w.r.t. ﬁ II-

|2, where p = %. In each iteration 4, the regularizer, B(-,wy ;_1) is 1-strongly convex

with respect to || - ||, [see Shalev=Shwarfz [Z0(17]]. From the analysis of online mirror descent [see
Orabona [2023], Lemma 6.9], with step size ay,, we have

X g .
(8his Wi — W") < B(W", wy ;) — B(W", Wy ip1) + 7k||gk,i||3'

Where ¢ = In(8d) > 2. Summing the above equality over i € [T}], we get

Tk 2 Ty
akgk,iawk,i_w = W, Wgi1)— w* , Wk Tk+1 - 8k,i
( ) < B(w* ) — B( )+ [z
i=1 i=1
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Dividing both sides by ay, and moving ZlT:kl (W i, 8r.i) to RHS, we get
Tk

Tk Ty
. 1 * A Qg N 2
; (W*, —gr) < oTk[B(W*’W’“’l) — B(W*, W 1, 11)] + ; (Wi, —8hi) + = ; ll&k.ill;
1 T a Tk
k 4 2
< B0V wka) £ 3 (v i) + 5 3 gl
(44)
Now we need to bound the three terms in the RHS of (B4) respectively
First, we bound B(w*, wy 1) = B(w*, wy,).
w* — wi|? @ * - 2 (b — 2 (o) 2
2(p—1) 2(p—1) 2(;0 - 1) 2
Where inequality (a) holds by the fact that [|x||, < [|x||1 for all p > 1 and x € R?. Inequality (b)
holds since ||x||; < V/d||x|| forall x € R?. Inequality (c) holds since ||w* —wy||2 < 0 (Ww*, w},) <
0.

Next, we bound Y, * | (—wy, ;, 8.;). By Lemma I, we have that with probability at least 1 —2 /7"
Tk

T
D (Wi 8ki) <7k Y P (x € D) + 20bp/Ti In T (46)
i=1 i=1
Finally, we bound Z;‘F:’“ 1 18k.]|2. By Lemma P2, we have with probability at least 1 — 2/7"
Z I8l < G Thln )"

(47)
Combining (&3), (B3), (E6) and (E7), and taking the union bound, we get that with probability at
least 1 — 6/T72,

(1=27) Y foi(Wei)P (x € D)

i=1
Ty
< ZEKW*a_gk,i”
i=1 (43)
1 dln(8d)92 _
R R bk;P (x € D) + 27bp/Tp In T + QZaka(lnT)
96
+ F\/l +2p(y 4 bi) 0 /T In T + ~OxinT.
By Lemma B, property (a), and the fact that b, < b; < R, we have L1by, < P(x € Dy ;) < Uybg,
dividing both sides of (ER) by (1 — 277) L1 T}by, we get
1 &
T ; Fri(Wii)
2 — —
< 1 dln(_8d)9k U17 by 1+ 277_ 1nT 20y, (InT)? (49)
ar 2(1 - 2n>L Tibe ' 1—2n)L ¥ A -20)L, T2 2m) by
(9k lnT 96 9k InT
\/ 1+ 2p( bi) _
+5(1f2 2007+ br) Ao b T
By our setting, b, = (1-27)L; Lo R?

3840007 O

57672 (14+2p(y+b1))d In(8d)(In T)?
52c2(1-27)%b2

(y+1)dInd(In T)? /k _ QVdWn@d)0r _  /dInde,

Co—(1—am1 4k = T T 7 /F 1 then we get our proof
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Based on Lemma 3, we establish the main theoretical guarantee of Algorithm Bl in Proposition B.

Proposition 4. For some constants cs,cg,cy > 0, when Algorithm B runs with an initial vec-
tor wy, satisfying 0 (w*,wy) < 0 = /2L bandwidth by, = c5(1 — 27)27F for T), =
c6d®(y 4+ 1)dInd(InT)2/(1 — 20)* iterations with step size oy, = c7V/dIndOy /(T InT), its
output Wi,y satisfies 0 (W* , wri1) < g1 = % with probability at least 1 — 6/T>.

Proof. For the given unit vector wy, that satisfy 0(w*, wy,) < 6, < 7, we have

[w* — wll2 < 2sin (G(W2W’“)> < 2sin (Z’“) < 0y,

The first inequality holds since ||w*||2 = ||wk|l2 = 1. The second inequality holds since sin z is
increasing in = € [0, 7], the last inequality holds since sinz < x forall 0 <z < 7.

By our choice of W, for every iteration i, we have cos(6 (W ;, Wi)) = (W, Wg) > cos(6),
thus, since cos x is decreasing for 0 < = < m, then 6 (wy, ;, wy) < 0%, hence,

O(w*, wi i) <0 (W, wi) + 6 (Wi, wg ;) < 20y, (50)
where the first inequality holds by Lemma I2. By Lemma [, with probability at least 1 — %,

2 .
T%c ZzT:kl fk,i(Wk,i) < 5228130?61 . Let Ay, = {Z S [TkH fk,i(wk,i) > 16%2;]1 RQQk}. Thus,

LoR%, 1 & LoR20), | Ay
et TR sy T . N> kel By
128000, = Ty ;f ki(Wei) 2 o5

From t_he above inequality and we get |’%’:| < %, and thus “%’:‘ > %. By Corollary B, the iterations
i' € Ay, satisfy O(w*, wy ;) < %. Other iterations i’ € Ay, satisfy 6 (w*, wy ;) < 26 by (ED).

Therefore,

1 N 1 | Al | A
— ) > z ERT 9 faeid}
T, ;COS(@ (W*, Wg.;)) > cos (59> X T, + cos(26) x T,
79
1— =02 ) x4 (1—2x46?) x —
—( 50 )X80+< 2~ )xso
1 1 1
>1— 02— = x ¢
- 50 2 20
21—i92
20

where the second inequality utilizes the fact that cosz > 1 — %xQ and the last inequality holds since
Eosx < 1—1a?for0 <z < . By the concavity of cos(6 (w*,-)) when §(w*, wy;) < 5, we
ave

1 T 1 T 0
cos(0 (W*, wWi1)) = cos (9 (w*, T ;wm>) > T ;COS(@ (W*, wg.;)) > cos <2k) )
Since cos z is decreasing in x € [0, 7], we have O(W*, wy41) < %_ ]

A.6 Proofs for Section d

In this section, we outline the proof of Theorem [, which is the key theorem of this paper.
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Theorem 1. For any instance of our online strategic classification problem with noise level 1, max-

imum manipulation distance v, and feature dimension d, the expected regret of classifiers h from
Algorithm [ over T cycles satisfies

E[Reg(h; T)] = O (dlnd x (InT)2/(1 - 27)% + /(7 + DdInd x TInT/(1 — 277)2) .

Proof. To derive the regret bound in Theorem [, we decompose the total regret Reg(h; T') as defined
in () into two parts according to pure exploration phase versus exploration-exploitation phase, and
then we move on to decompose the regret in the exploration-exploitation phase according to certain
events. We upper bound each of these parts separately. First, we define the two phases and the events
used in the regret decomposition.

Definition 4. Define the set Tpp = {t € [T]|0 < t < 2T, + To } as the pure exploration phase,
where T, and Ty are number of iterations in Algorithm O and Algorithm B. Define the set
Tee = {t € [T]| 2T+ To <t < T} as the exploration-exploitation phase. Define the event
Eimir = {{(Wo,w*) > co(1 — 27)}, where ¢y is a constant defined in Proposition B. For
k € {0,1,2,--- K}, define the event ¢, = {0 (Wry1,W*) < 55z} Define the event
€= giir[) €0 ﬂke[K] € as the “clean event”.

In Definition B, the pure exploration phase 7Tpg corresponds to all cycles in the Initialization and
Refinement Algorithm, and the exploration-exploitation phase Tz g corresponds to all cycles in the
Enhancement Algorithm. By Proposition B, Proposition B and Proposition B, the events defined in
Definition B satisfy the following properties:

2
P (ginit) > 1 - T2 (5D
3
P (g0 | €init) > 1 — T (52)
6
P(Ek | Ek—1,Ek—2," "50;5init) = ]P(Ek ‘ E:‘kfl) >1-— ﬁ’ vk € [K} . (53)

Hence, taking the union bound by (&),(52) and (B3), we get that the probability of clean event
satisfy

P(c) =P > 2 3 6\*_, 6
(e) = Einitﬂgo ﬂfk Z 1_ﬁ X 1—ﬁ X 1_ﬁ _1_T'

ke[K]
Then, we decompose the total regret as
Reg(h; T) = Reg(h; Tpg) + Reg(h; Tpg, €) + Reg(h; Tpg, &), (54)
where £ denotes the complement of €, and the three parts of (B4) is represented as the following:

Reg(h; Tpp) = Y Brr(h) — | Tpg | x Err(h*)

teTprE

Reg(fl7 TEEa E) = Z (Err(};’t) - Err(ﬁ*)) I (6) )
teTer

Reg(h; Tpp, &) = Z (Err(ﬁt) - Err(ﬁ*)) I(2) .
teTeR

The first term in (84) denotes the expected regret incurred during the pure exploration phase. The sec-
ond term captures the expected regret incurred during the exploration-exploitation phase, given that
the clean event holds. The last term characterizes the expected regret incurred during the exploration-
exploitation phase, given that the clean event does not hold.

Now we upper bound the three parts of (84) respectively. For the first term Reg(fl; TrpE), the regret
incurred in a single cycle is at most 1, and the length of pure exploration phase is | Tpr| = 2Timic+ 7o,
then, the expected total regret during these time can be upper bounded by

E [Reg(fl; TPE)} < Z 1< 2T +To =0 <(1—1277)8d1n d(ln T)2> , (55)
teTPE
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where the last equality holds by our setting that Ty, = O ((1 572 In T) and Ty =
O ((bsdnd(nT)?).

Then, we upper bound the expectation of the second term Reg(fl; TeE,€), which is the cumula-
tive regret incurred under the clean event during the Enhancement procedure. Let Reg, (h; Tgg, €)

denote the regret in each batch k € {1,2,--- | K} during this procedure under “clean event” ie.,
Reg(h; Tpg,e) = Eszl Regk(fl; TEE, €), then we only need to upper bound E Regk(fl; TeE, 5)}
for each batch k € {1,2,--- , K}, which is characterized as

E [Regk(fl; TeE, 5)}

_ éi E [Err(izgg) — Err(h*) s} P (c)

< iz E [Brr(h) - Bre(h") | e]

<;E{ (sen ({weaoxil) =) #0k2) =1 (sen ({wril”) =) #0i2) |
3 [t (wearf2) - ) #42) -1 (o 27 7) #62) 4
1

= 2 E[n sen (i) #2) =1 (s ((w x2)) #0) |
#3 £ 1 (en ((wnaox2) =) #002) 1 (s (o x2)) #2) o]

(56)
Where r,(c1 *) and r,(C *) are the counterfactual agent responses under the optimal classifier. The
first equality holds by the fact that E [XT (e)] = E[X |I(e) = 1P () + E[0]| I(e) = 0] P (&) =
E [X | €] P (). The inequality holds since 0 < P (¢) < 1. The last equality holds by Proposition [I.

For the first term within the summation in the RHS of (&), we have

[0 (s (e (1)) #002) =1 (on (i) #0i) <
P (sgn ((w*, %)) # sen ((wi i) | 57
10

§277

where cjq is a positive constant. The first inequality holds by the triangular inequality, the last
equality holds since by Lemma 8 property (b), and Proposition B.
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For the second term, we have

s (e 0) 42) 1o (ox2)) 4181 |
= o (o) ) #082) i mxi2)) #167)
s o () £2) -1 o (o)) 2
< s () ) o (weni) |
8 i ((x?)) £ (ox2)) 4

=P (0< (wiixf)) < b) +P(sen ((w',x)) # sen (Wi ) |2)

C10 ci1(1—27)  cio
<U b _ < — —_—
10k + oF oF + o’

where c11 > 0 is a positive constant. The first inequality holds by the triangular inequality, the last
inequality holds by Lemma B property (a) and (b), and Proposition B.

o) ]

Summing (87) and (BR) over [T%], and then we can upper bound (Bf) by
Ty
-~ 1 1—2n
E [Regy (s Tm,2)] < 0(1) - o5 +0(1) - —
i=1
Tk (1 —2)T}
2k o2k
1
=20 ——— Ddlnd(InT)? ) .
o (=gt + Damaa1y’)

Since T = |Tpg| + |Tee| and |Tpe| = O(dInd(InT)?), then |Trr| = O(T). Also, the
exploration-exploitation phase corresponds to all cycles run in Algorithm B, hence 2 Zszl T, =

|Ter| = O(T). By T}, = 4O <(1 57 (7 +1)dInd(InT) ) we get the total number of batches

+0(1) -

as K = log, (O (%)) Then, we can upper bound the cumulative regret during the
exploration-exploitation phase under “clean event” as

E [Reg(fl; TEE,E)} = iE [Regk(fl; TEE,E)}
k=1

s (0 lirzmir ) ) ) (59)
_ Z 2k ((1_277)4(74— 1)d1nd(1nT)2>

k=1
0 ((1_1217)2\/ (v + 1)d1ndTlnT> .

Finally, we upper bound the third term in (84) as

E [Reg (b Ter.2)| = 3 E[(Brr(h) - Bue(h)) 1(2)]

t€eTer
6 (60)
<E| > ]I(a)] = |Tep|P(E) <T - =6.
T
teTrE
By combining the upper bounds of (83), (R9), and (&), we finish the proof. O

A.7 Proofs for Appendix A1

Before proving Lemma B, we need to first prove some intermediate lemmas. In the following lemma,
we show that any log-concave distributed random vector with zero mean and positive definite covari-
ance matrix can be linearly transformed into a new random vector with an isotropic log-concave
distribution.
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Lemma 24. For any random vector x € R? that follows a log-concave distribution with E [x] = 0

and E [XXT} = X, where X is positive definite, the transformed random vector z = Y -2x that
follows an isotropic log-concave distribution.

Proof. We first prove that z = Yoox is isotropic. Since E [XXT] = 3, ¥ is positive definite,
1 1 T 1 1 T

then E [zzT] =Y 2FE [XXT] (Z*§> = Y23 (E’5> = I. Also, since E[x] = 0, then

E[z] = £ 2E[x] = 0.

Next, we show that the probability density function of z is log-concave. Suppose the corresponding
probability density functions of x and z are ¢y (-) are ¢, (-), respectively. Since ¢y () is log-
concave, then for V o € [0, 1] and V x1, %2 € R4,

aln(¢x (x1)) + (1 — a) In (dx (x2)) < In (éx (ax1 + (1 — a)x2)).
Then, for ¥ o € [0, 1], 1, 25 € R,
In ((¢7 (1)) + (1 — @) In ((¢2 (22)))
aln (det (24) 6x (Sh21) ) + (1= ) n (det (32) o (3
(6x (2221)) + (1= ) n (6 (S¥22) ) +1n (det (=
In (o (042%21 Y (1-a) zézz)) +1n (det (2%>)
= In (¢ (021 + (1 — @) 22)).

Thus, ¢,(-) is isotropic log-concave. O

Qe

[NSE

%))
)

In

I
Q

IN

The next lemma outlines the relationship between the eigenvalues of the covariance matrices for a
high-dimensional random variable before and after it is projected onto a lower-dimensional subspace.

Lemma 25. Let x be an arbitrary d-dimensional random variable with a positive definite covari-
ance matrix Y, whose maximum and minimum eigenvalues are A and ), respectively. Let Vg an
arbitrary d'-dimensional subspace with d'" < d. Let Xy, denote the projection of x onto Vg with

covariance matrix Xy, whose maximum and minimum eigenvalues are \y,, and \y, , respectively.
_ _ a d Vyr
Then, Ay, < X and Ale >\

Proof. Let P € R*4" denote the projection matrix of x, ie., PTP =7 and PTx = xvy,, , then,
Evd, = PTY.P. Hence, by definition of maximum eigenvalue, we have

_ VTZVd,V vI PTY. Pv
Av, = max ——F— = max e ——
v#0, veERY V'V v#0, veRd’ A
vIpPTy pv ulSu X
= max ————< max ——— =
v£0, verd’ vI PT Py u#£0, uekd ulu ’
where u = Pv.
. VTZVd,V . vI PTY.Pv
Ay, = min ——F— = mn ———
d v#£0, veRY VIV v#0, veR viv
. vIPTy Py . ul’>u
= min ———— > min =)
v#0, verd VI PT Py u£0, uekd ulu ’
where u = Pv. O

Now we are ready to prove Lemma 0.
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Lemma 3. Let x € R? (d > 2) have zero mean and a log-concave distribution. Suppose the
eigenvalues of its covariance matrix ¥ = E [XXT} are all bounded within [\, \] for some positive

constants )\, \, then the distribution of x satisfies the regularity conditions in assumption B, with
parameters L1 = 53}), Ly = 7515(\2)’ R=3JA U = Uy = —’62)(\2), 5= —Bf/(;), Q = /A for

B1(1), 81(2), B2(2), B3(2) given in Lemma D.

et

Proof for Lemma B. For arbitrary 1-dimensional subspace V; C R! and 2-dimensional subspace
Vo C R2, let xy, and xy, denote the projected vectors on V; and V5 with covariance matrices Xy,
and Yy, respectively. Let Ay, and Ay, denote the maximum eigenvalues of Yy, Xy, and Ay,
and )y, denote the minimum eigenvalues of ¥y, Xy, respectively. Then by Lemma I3, we have

-t _1 _1
A > )\Vl, A > )‘Vz’ A < AVl and A < sz' Let Zy, = va XVys 2y, = EV; XVy- Then, Zy, and Zy,
have isotropic log-concave densities, denoted as ¢, and ¢, , respectively.

We first determine L1, L and R prescribed in Assumption B, Condition 1. For all [|xv; |2 < $/A,
Xy, ’s probability density function ¢x,, (-) satisfies

1(1)

= — . 61

o VA (61)
1

\/7 xv; |l < \% - VA = §. Then, the first inequality in

Pxy, (X11) = bz, (Z;I%le) det (Z‘_/l%) >

_1
Now ||zy, [|l2 = szfxvl

(BI) holds by Lemma [, property (b) and det (E %> >

Lemma 3.

\/;\71. The second inequality holds by

Similarly, for all ||xy; ||, < §+/A, xv,’s probability density function ¢y (-) satisfies

bery (x12) = 0o, (1131 ) et (3,7) = A | @)

a 62
25 (62)

_1
Now ||z1, |2 = HZV; xv, |, < \/% xvsllo < \% - $3/A = L. Then, the first inequality in (62)
pems Py

holds by Lemma O, property (b) and det (E;f) > ;\L The second inequality holds by Lemma 3.

Combining (&) and (B2), we have L1 = \(f)’ Ly = 1X2), R— %@
Then, we determine Uy, Uz and 6 prescribed in Assumption [, Condition 2. For ¢x,,, (+), we have
1 1
(bxvl (XV1) = ¢zvl (ZV12 XV1) det ( ) 7

where the first the inequality holds by Lemma @, property (c) and d

ﬁ.

M\»—-
N—
\/\

inequality holds by Lemma 3. Thus, U; =
For ¢, (+), we have

B2(2) exp (—53(2) Hzx_ffxvz

)

D, (51,) = Oy, (S0, ) et (31 <

Ay,
B2(2) exp( %2) ||Xv22)
<
Ay,
. B2(2) exp (—’@37\/(;2) Ixv, Hz)
g A b)

where the first inequality holds by Lemma D, property (d) and det (E‘_/f) < )\L The second
Avy

_1
inequality holds by HEV; XVa ||, > \/% |xv, ||5- The last inequality holds by Lemma I3.
2
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Thus, we have Uy = BZT(Q) 0= 53—\/%2)

Finally, we determine () prescribed in Assumption @, Condition 3. For arbitrary w € B?, (w, x)
forms a 1-dimensional random variable whose probability density function is log-concave. Let

xy; = (w,X) denote the projected random variable and 0‘2/1, =E [x‘T/{xV{} denote its variance.
Then, by Lemma B property (a), for every ¢t > 0,

P(lz|>t)<e V'™ < VAL

where the second inequality holds by 0‘2,1, > AV{ > ). Thus Q = /. O
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