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Abstract

In the face of rapidly accumulating genomic data, our understanding of the RNA
regulatory code remains incomplete. Pre-trained genomic foundation models of-
fer an avenue to adapt learned RNA representations to biological prediction tasks.
However, existing genomic foundation models are trained using strategies bor-
rowed from textual or visual domains, such as masked language modelling or next
token prediction, that do not leverage biological domain knowledge. Here, we in-
troduce Orthrus, a mamba based RNA foundation model pre-trained using a novel
self-supervised contrastive learning objective with biological augmentations. Or-
thrus is trained by maximizing embedding similarity between curated pairs of
RNA transcripts, where pairs are formed from splice isoforms of 10 model organ-
isms and transcripts from orthologous genes in 400+ mammalian species from the
Zoonomia Project. This training objective results in a latent representation that
clusters RNA sequences with functional and evolutionary similarities. We find
that the generalized mature RNA isoform representations learned by Orthrus sig-
nificantly outperform existing genomic foundation models on five mRNA property
prediction tasks, and requires only a fraction of fine-tuning data to do so.

1 Introduction

Mature RNAs, resulting from transcription and alternative splicing of precursor RNAs, encode es-
sential genetic information for protein synthesis. The regulation of precursor RNAs is often tightly
linked to their sequence and is critical in modulating protein expression and cellular functions [65].
Experimental procedures such as eCLIP, ribosome profiling, or SLAM seq have been pivotal in
studying these RNA regulatory processes, but these techniques are often time-consuming and ex-
pensive [60, 6, 24]. As an alternative, supervised machine learning models trained on genetic se-
quences provide data-driven modelling of RNA regulation, offering effective and low-cost prediction
of cellular processes such as alternative splicing and RNA degradation [25, 33, 1]. These models
can be used to identify disease mechanisms [42, 48], improve therapeutics such as messenger RNA
(mRNA) vaccines [7], and predict the effects of perturbations [35]. Despite the importance of these
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applications, the difficulty associated with experimental acquisition of training data restricts the use
of supervised methods for a wider range of tasks.

Several recent works [26, 8, 43] have proposed foundation models as an alternative for supervised
learning approaches in genomic domains. Genomic foundation models use deep neural networks
to learn an expressive representation of genetic sequences by pre-training on large datasets. Dur-
ing pre-training, self-supervised learning (SSL) objectives are used to train the model in the ab-
sence of labeled examples. SSL can be formulated through a data reconstruction objective, where
a model is required to reconstruct a portion of the input data. Existing genomic foundation mod-
els use training objectives including next token prediction (NTP) and masked language modeling
(MLM) [13, 46, 26]. Foundational models that effectively capture the underlying biological com-
plexities enable few-shot learning, generalizing experimental biology using a minimal number of
samples[70, 53]. Representations learned with foundation model techniques can be fine-tuned on
related downstream tasks with fewer labeled data points, reducing reliance on data collection and
demonstrating impressive generalization capabilities to a diversity of tasks [58, 47]. However, the
unique properties inherent to genomic data pose challenges for implementing reconstruction-based
SSL objectives or supervised learning approaches.

Genomic sequences in the natural world are constrained by evolutionary viability, resulting in low
natural diversity3 and high mutual information across genomes from the same species [56]. Latest
estimates propose that approximately five percent of the human genome is under constraint and can
be considered high information content [9, 32]. The remaining 95% of the genetic sequence lacks
evidence of negative selection, meaning mutations may have little to no impact on organism fitness
[55]. Without a strong biological inductive bias, existing reconstruction-based SSL models often
reconstruct non-informative tokens, which can result in sub-optimal representations. Due to the
high-mutual information between samples, it is also difficult to scale the effective size of the training
dataset to circumvent this issue. As we later show, applications of SSL methods to genomics learn
latent representations that are not well suited for RNA property prediction [12, 26, 43, 8]. The gap
between baseline SSL methods and supervised approaches remains large, while no clear trend exists
between model size and performance.

Here, we propose Orthrus, an RNA foundation model that is pre-trained on mature RNA sequences.
Orthrus uses a novel biologically motivated contrastive learning objective to structure the model la-
tent space by maximizing similarity between splicing isoforms and evolutionary related transcripts
[36, 10]. Using this contrastive objective, Orthrus is pre-trained on splicing annotation data from
10 species and orthologous alignments from 400 mammalian species in Project Zoonomia [28].
Pre-training Orthrus on mature RNAs with high functional importance and sequence conservation
[9, 55] further allows Orthrus to focus on sequence regions with high information content. Or-
thrus pre-training results in effective mature RNA representations that are predictive of diverse RNA
properties.

We show that Orthrus’s learned representations can be used to accurately predict the properties
of mature mammalian RNA sequences in three key contexts. First, we test the effectiveness of
biologically inspired contrastive learning by fitting a linear model on top of the pre-trained latent
representations. We identify that Orthrus outperforms other self-supervised foundation models, and
applying this simple linear transformation approaches the performance of supervised methods on all
property prediction tasks. Second, we fine-tune the pre-trained models on experimentally collected
RNA property datasets and demonstrate state-of-the-art performance when generalizing to unseen
sequences. Orthrus is able to effectively perform in the low data regime, requiring as few as 45
labeled examples to fine-tune an RNA half-life predictor. Finally, we identify that increasing the
model size improves performance, opening up the door for further improvements by scaling both
the training dataset and model size.

2 Methods

Contrastive learning has been shown to be a bound on mutual information between two random
variables X and Y corresponding to I(X;Y ) = Ep(x,y)

[
log p(x,y)

p(x)p(y)

]
. We utilize a variation of

the classical InfoNCE loss, E
[
log exp(f(xi,yi))

Σ exp(f(xi,yj))

]
, where a model f is tasked with classifying the

3In the coding region (2% of human DNA), an average individual carries 27± 13 unique SNPs [23].
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Figure 1: Description of RNA augmentations, Orthrus training, and evaluation procedures. (A) Demonstrates
splicing and orthology pairs identified for a particular RNA sequence. A mature mRNA sequence can have
multiple splicing and orthology augmentations. (B) The Orthrus training pipeline, consisting of first sampling
a pair of positive RNA sequences and encoding them into six track encoding. We then generate a projection
of the sequences using Orthrus model and apply the contrastive loss over these samples, maximizing similarity
between positive pairs while minimizing it for all the other transcripts. (C) Orthrus evaluation consisting of
linear probing, fine-tuning over a variety of mature RNA properties and visualizing the model latent space.

correct yi which was jointly drawn with xi [59]. Herein, the observations xi, yi correspond to splice
isoforms or orthologous sequences which are interpreted as functionally related while f is a neural
network that we optimize to minimize the loss.

We propose to use 4 different augmentations and thoroughly investigate their impact on downstream
tasks. They include: alternatively spliced transcripts across ten species, orthologous transcripts
identified from the Zoonomia project including over 400 species, naive orthology informed by gene
identity, and masking a percentage of the input sequence Figure 1 [44, 28].

In the following section we elaborate on dataset construction, model choice, contrastive learning
objective, and downstream evaluations.

Splicing and Orthology Contrastive Dataset

In the vision domain, contrastive learning strategies have had significant success by identifying aug-
mentations that do not have a strong semantic effect, such as cropping, rotation, or Gaussian blur
[68, 69, 10]. In this work, we use RNA splicing isoforms and orthologous transcripts as sources
of functional similarity [16, 44, 28]. By sampling RNA isoform sequences produced by alternative
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Contrastive Dataset Zoonomia Splicing # of Pairs # of Transcripts
Zoonomia Eutheria & Splicing Gencode Basic ✓ ✓ 876,871,640 49,493,993
Zoonomia Eutheria ✓ ✗ 157,975,815 41,562,358
Splicing Gencode Basic ✗ ✓ 16,249,112 771,105
None ✗ ✗ 0 771,105

Table 1: Overview of contrastive datasets.

splicing and speciation processes, we identify sequence variation that is likely to maintain core func-
tional properties. In addition, we use naive orthology to pool RNA transcripts from evolutionarily
related genes [45]. By minimizing the distance between functionally similar sequences, the model
can learn regulatory regions critical for RNA property and function prediction.

To construct positive pairs based on alternative splicing, we group alternatively spliced transcripts
using GENCODE and RefSeq databases depending on availability [16, 44]. We utilize splice in-
formation across 10 species, covering a broad range across the evolutionary tree: human, mouse,
chicken, C. elegans, chimpanzee, cow, dog, drosophila, rat, and zebrafish. In addition, we make use
of naive orthology for positive pair generation: for cases where gene names are consistent across
species, we pool the transcripts generated by alternative splicing into the same transcript set (Figure
1A). Alternatively spliced mRNA isoforms exhibit variability in UTR and coding sequences com-
position, at times demonstrating novel function. However, our work is based on the assumption
that on average splice isoforms are more functionally similar to one another than a randomly sam-
pled mRNA transcripts. We empirically find that sequence diversity present in alternatively spliced
isoforms is an effective source of function preserving variation.

Orthologous transcripts from mammalian species present another source of sequence diversity, gen-
erated by genetic drift post speciation events [29, 50]. We utilize positive pairs generated through the
process of speciation across the Eutheria clade through the Zoonomia TOGA resource, which per-
forms joint gene annotation and orthology inference mapping transcripts from over 400 transcripts to
human and mouse annotations [28]. To identify orthologous pairs, TOGA performs alignment over
identified coding sequences and neighboring intronic and intergenic regions. We hypothesize that
using orthologous sequencing as positive pairs in our dataset can allow the model to learn mRNA
regions that are under negative selection. These regions will be preserved over evolutionary time
due to negative selection. These regions in turn are likely to be functionally important, and relevant
for mRNA property prediction.

Overall, our final dataset contains 49 million unique transcripts and over 870 million unique positive
pairs (Table 1, Section 2).

For mRNA sequence representation we generate a six-track mature RNA representation, consisting
of four one-hot encoded tracks encoding genomic sequence, a track indicating the 5’ location of
splice sites, and a track indicating the first nucleotide of every codon. The addition of splice site and
coding sequence locations has been shown to be beneficial for mRNA property prediction tasks [1].

To sample positive pairs from the orthology, splicing dataset, we first identify the set of all positive
samples Yj for a reference transcript xj . Yj can be variable in length since some transcripts will
have a greater number of splice isoforms and orthologous sequences than others. During a forward
model pass, we sample ykj from Yj and use that as a positive pair for xj .

Mamba Encoder

We pre-train a mamba state space model, which has been demonstrated to be successful in applica-
tions with long context requirements [21, 43]. mRNA sequences can reach over 12,000 nucleotides
in length, making transformer architecture challenging due to its quadratic scaling in memory with
sequence length [61]. Mamba, an extension of state space model families or S4, maps a sequence
x(t) ∈ R to y(t) ∈ R using a latent state h(t) ∈ RN [22].

A fundamental trade-off in architecture choice for sequence modeling is avoiding compressing se-
quence context and compute requirements. Transformers are able to avoid compressing context,
leading to better performance, but trade-off slower training and higher memory usage [61, 21]. Al-
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ternatively, S4 models define a sequence to sequence transformation parameterized by (A,B,C,∆).
The fundamental operation consists of iteratively updating the hidden state:

h′(t) = A h(t) +B x(t)

y(t) = C h(t).

∆ is used to discretize the input for discrete domains such as natural language, or genomics. The
mamba architecture improves over the S4 family of models by introducing selectivity over input by
making B, C, and ∆ a function of the input, resulting in

h′(t) = A ht +B(xt) xt

y(t) = C(xt) ht.

Allowing parameters to be input dependent introduces desirable modeling qualities for genomic
domain: variable spacing, filtering context, and linear memory scaling with sequence length O(n).
Variable spacing refers to mamba’s ability to effectively perform on the selective copying task, where
important elements are arbitrarily spaced [21]. Binding motifs in genomic sequences can be spaced
without a constant offset, requiring the model to be able to learn motif interactions with variable
spacing [19]. The non-unformity of signal informativeness in genomic sequences requires models
to be able to filter out irrelevant context [21]. Finally, the limited context, as opposed to transformer
models, allows the mamba architecture to scale required memory linearly with increased input length
[21, 61].

DCL Contrastive Learning Objective

During the contrastive training phase, we sample positive pair sequences from mature RNA tran-
script sets and maximize their similarity in the model latent space (Figure 1 B). Given a batch of N
sequences, x1, . . . , xN let x1

i , x2
i be a positive pair of sequences sampled from a transcript set. These

sequences are related through alternative splicing or orthology processes described in section. We
pass these positive pairs through a Mamba [21] encoder, fθ resulting in the outputs h1

i and h2
i . These

representations are then fed into a multi-layer perceptron projection head, gθ the output of which is
used to calculate normalized projections, zi. We use decoupled contrastive learning (DCL) loss to
perform the contrastive learning objective, pushing apart unpaired transcripts and maximizing the
cosine similarity between positive pairs (Figure 1 B) [66].

We use decoupled contrastive learning (DCL) as it has been shown to require smaller batch sizes, is
less sensitive to hyperparameters such as learning rate, and the positive loss term can be weighted
by sample difficulty [66]. DCL iterates on the normalized temperature-scaled cross-entropy loss by
splitting the contrastive objective into two terms: a similarity loss (positive) and a dissimilarity loss
(negative) [52]. More formally, the positive and negative losses for sample i are calculated:

LDCL,i(θ) = log

[
N∑

k=1

,

2∑
l=1

1k ̸=i exp(⟨z1i · zlk⟩/τ)

]
− wi⟨z1i , z2i ⟩/τ. (1)

In the above z1 and z2 correspond to two embeddings of related sequences, zk are embeddings
from unrelated RNA sequences, τ is the temperature parameter set to 0.1, and 1k ̸=i is an indicator
function that evaluates to 1 when k ̸= i. The above loss is computed for all the samples in the
batch for both the sampled views l ∈ 1, 2. N corresponds to all the negative samples in batch, thus
maximizing batch size during contrastive learning typically leads to improved performance.

Normalized projections zi are outputs from the MLP projector g and are used to compute the con-
trastive loss, utilizing samples from the rest of the batch as negative examples:

z1i =
g(h1

i )

∥g(h1
i )∥

and z2i =
g(h2

i )

∥g(h2
i )∥

. (2)

For downstream RNA property evaluations, the projector gθ is discarded and outputs from fθ are
used instead. This practice is consistent with prior literature [10, 3, 4, 20].
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Figure 2: (A) Benchmarking linear probing performance on RNA property prediction tasks for self-supervised
genomic foundation models. Individual bars represent the performance of foundation model variants, which
typically differ in parameter count and pre-training dataset. Error bars show 95% confidence intervals, con-
structed using 10 runs with randomized data splits. The grey dashed line indicates the performance of the fully
supervised Saluki method trained with access to labels. (B) Plots evaluating the fine-tuning performance of
Orthrus Base across varying data availability. Each dataset is subsampled to the indicated percentage, with the
number of data points provided in brackets. Point estimates are plotted, averaged across three random seeds
and random data splits. (C) Evaluation of Orthrus’s latent representation by fitting a linear model to predict
structural properties. The confusion matrix evaluates Orthrus’s ability to classify transcript types using logistic
regression on learned embeddings. The four scatter plots assess Orthrus’s ability to predict structural RNA
properties, including CDS length, 3’ UTR length, 5’ UTR length, and number of exons.

We introduce two versions of Orthrus using a backbone Mamba encoder: base consisting of 1.3
million trainable parameters and large with 10.1 million trainable parameters (excluding gθ) Section
2.

3 Results

Orthrus embeddings are predictive of diverse phenotypes

To evaluate the effectiveness of our pre-trained representations, we followed the conventional evalu-
ation strategy of linear probing. The learned latent embedding is effective if ∃ w s.t. wTX+ b = ŷ,
where, X is a matrix of embeddings and ŷ approximates y. To evaluate the above, we freeze the
weights of the mamba encoder f and train a linear layer to predict labels for regression and classifi-
cation tasks. Further experimental details are described in Appendix A.2.

We quantitatively evaluate whether Orthrus embeddings contain information regarding key biochem-
ical properties such as UTR length, number of exons, CDS length, and gene type in Figure 2C. We
observe that Orthrus fixed length embeddings are highly predictive of RNA biochemical attributes,
which are important for predicting functional RNA properties such as RNA half-life [1]. In figure
2A, we demonstrate that Orthrus outperforms other self-supervised methods on a diverse set of func-
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tional RNA property prediction tasks by a substantial margin. For RNA half-life (Human) Orthrus
Large outperforms other self-supervised methods, the closest of which achieves 65% of linear prob-
ing performance (Pearson R 0.45 & 0.69). Further, we evaluate a base 4 track model and find that
Orthrus outperforms other self-supervised baselines (Table 4). We note that, Orthrus outperforms a
supervised baseline for most tasks, which is indicated by a dashed line (Figure 2A). These results
indicate that a linear regression trained with Orthrus embeddings can match or outperform neural
networks tuned for RNA property prediction tasks [1].

We observe improved linear probing results as we scale the number of trainable parameters for Or-
thrus by comparing Base and Large model variants (Figure 2). We see an especially clear improve-
ment trend in MRL and GO Molecular Function predictions. We note that for other self-supervised
models such as Hyena DNA or Nucleotide Transformer, the number of parameters does not con-
sistently improve performance (Figure 2 A) [43]. However, we do observe an improvement in per-
formance for Nucleotide Transformer when comparing their 2.5 billion parameter model trained on
1000 genomes data versus multi species [12]. This is additional evidence that utilizing evolutionary
information, can help improve model performance on RNA property prediction tasks.

Fine-tuning Orthrus for state-of-the-art RNA property prediction

To assess whether the Orthrus pre-training objective provides utility beyond an effective representa-
tion, we evaluate its performance by fully fine-tuning it and comparing it to a supervised model with
a matched architecture. We compare its performance against a published method for the RNA half-
life prediction, Saluki and find that the fully fine-tuned Orthrus model outperforms Saluki on the
RNA half-life task (Figure 2) [1]. Furthermore, we retrain the Saluki architecture, train an architec-
turally equivalent model to Orthrus, and fine-tune pre-trained HeynaDNA model for other sequence
property prediction tasks and identify that Orthrus has a significant performance advantage (Figures
2, 5). Other baseline SSL methods such as DNA-BERT2 and RNA-FM have limited input context
windows, and cannot be easily applied to these tasks.

To simulate downstream tasks for which there is a lack of experimental data, we perform fine-tuning
on RNA half-life prediction where only a subset of the original training data set is available. We
observe that supervised methods are ineffective in this regime, while Orthrus maintains competitive
performance at 10% and 1% of the data (Figure 2 B). The performance differences are even more
stark when using only 0.5% of the training data, achieving 73% of supervised performance with
just 45 observed samples on the human RNA half-life dataset (R=0.72 & R=0.53). These findings
illustrate that Orthrus advances towards the aim of few-shot learning for downstream tasks where
experimental data is scarce.

Orthrus latent space captures known functional transcript diversity

A key question in alternative splicing research is how much functional diversity RNA isoforms
generate within a gene [51]. To explore whether Orthrus embeddings can help elucidate this, we
analyze intra-gene isoform similarities. For each pair of transcript isoforms within protein-coding
genes, we compute their similarity using Orthrus embeddings (Figure 3 A). As a control, we compare
these with transcript pairs from random genes, expecting lower similarity. We also hypothesized that
transcript pairs from genes sharing the same GO terms would be more similar than random pairs,
but less similar than most intra-gene pairs. Our analysis confirms significant differences across
all pairwise comparisons of the three groups (p < 2.2e-16, Mann-Whitney U test), indicating that
the Orthrus training objective preserves within gene sequence diversity (Figure 3 B). Notably, we
observe an overlap between intra-gene and inter-gene similarities, indicating that some alternatively
spliced transcripts have distinct embeddings, RNA properties, or functional differences in protein
products. As such, within gene diversity could potentially help delineate differential isoform protein
functions, an active area of research.

To investigate whether intra-gene similarities may reflect underlying protein domain conservation,
we annotated each transcript, identifying a list of included protein domains. We found that tran-
scripts with a high similarity, as measured by overlap in the present protein domains, also have
highly similar Orthus embeddings. The correlation between Orthrus and domain similarities are sig-
nificantly higher than a transcript length difference baseline, indicating that Orthrus learns functional
differences as captured by domain presence (Figure 3 C). This suggests that Orthrus embeddings en-
code functionally relevant information.
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similarities (yellow), between gene similarities (blue), and similarities of genes from the same GO class (red).
(C) Visualization of Pearson R distributions correlating protein domain similarities with Orthrus embedding
similarities for 1000 randomly sampled genes with multiple isoforms. Also plotted are the distributions of tran-
script length and protein domain similarities. (D) Example of BCL2L1 isoforms, where apoptosis-inhibiting
isoforms cluster together, while non-coding and apoptosis-inducing isoforms display low similarity. The clus-
tering matrix, derived from Orthrus embedding similarities, is represented by the dendrogram. Boundaries
highlight clusters with divergent transcript functions.

To illustrate this, we examine the BCL2L1 gene, known for its alternatively spliced isoforms with
distinct functional outcomes [64, 34]. The dominant isoforms encode an apoptosis-inhibiting pro-
tein, Bcl-X(L), while a minority encode a pro-apoptotic protein, Bcl-X(S). By clustering BCL2L1
RNA isoforms using Orthrus embedding similarity, we identify two main functional groups: one
containing BCL2L1-202 and BCL2L1-205, distinct from the apoptosis-inhibiting transcripts clus-
ter (Figure 3 D). This demonstrates that Orthrus embeddings may serve as a valuable resource for
identifying isoforms with likely different functional properties, a critical area in alternative splicing
research.

Ablations: Orthology and splicing and saturate performance

Finally, we investigate the Orthrus augmentations that contribute towards effective performance. We
find that both Orthology and alternative splicing isoforms are able to achieve high performance. In
addition, the six track representation is effective for RNA property prediction tasks that are known
to be influenced by exon junction density such as RNA half-life prediction [38]. Introduction of
masking improves all around performance, which could be due to preventing shortcut learning [5,
13].
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Table 2: Ablation results are generated using linear probing, by fitting a linear model on pre-computed em-
beddings from Orthrus base models. 6t; Six track input corresponding to one hot encoded sequence, splicing
and codon positions. Masking corresponds to randomly masking 15% of the input sequence.

Splice Orthology 6 tracks Masking
RNA HL
Human R

RNA HL
Mouse R

MRL
R

GO MF
ROC AUC

Protein Loc.
ROC AUC

✓ ✓ ✓ ✓ 0.675 0.615 0.393 0.845 0.834
✗ ✓ ✓ ✓ 0.678 0.610 0.392 0.842 0.833
✓ ✗ ✓ ✓ 0.680 0.615 0.402 0.854 0.834
✓ ✓ ✗ ✓ 0.531 0.512 0.361 0.833 0.825
✓ ✓ ✓ ✗ 0.647 0.595 0.332 0.836 0.822
✗ ✗ ✗ ✗ 0.217 0.214 0.114 0.753 0.792

4 Discussion

As Dobzhansky famously notes: “Nothing in biology makes sense except in the light of evolution”
[15]. Orthrus similarly aims to capture the diversity of RNA through an evolutionary and func-
tional lens [30, 37]. We create a self-supervised training objective that learns similarities between
evolutionarily related sequences identified in the Zoonomia project [28]. In addition, we utilize alter-
natively spliced transcripts to learn sequences responsible for shared functions between splicing iso-
forms [45]. By training on sequences generated by evolutionary and alternative splicing processes,
Orthrus utilizes stronger biologically motivated inductive biases compared to SSL reconstruction
methods. This makes Orthrus less reliant on limited genetic sequence diversity during pre-training,
and capable of learning strong representations without fine-tuning on experimental data.

We demonstrate that by minimizing the distance between mature RNAs generated through spe-
ciation and alternative splicing, we are able to generate representations useful for RNA property
prediction tasks. We empirically demonstrate that Orthrus embeddings contain information useful
for predicting RNA properties like RNA half-life and mean ribosome load, and achieves state-of-
the-art prediction when fine-tuned. We observe that pre-training is especially helpful in low data
regimes when there are 200 or fewer data points with labels. We demonstrate that self-supervised
pre-training is an approach for addressing data efficiency challenges present in genomics, and scal-
ing to additional species can be an effective dataset expansion strategy.

An important question to address is why we expect that minimizing distances between RNA iso-
forms would be useful for predicting phenotypes like RNA half-life or protein localization. One
hypothesis is that alternative splicing and speciation events preserve core functional RNA segments.
Through the contrastive pre-training procedure, we identify these shared regions between diverse
sequences. Indeed, a recent work proposes that contrastive methods are effective due to block sepa-
rating latent variables shared between views [62]. This view is supported by our findings identifying
that Orthrus within gene similarities are correlated with domain presence. By utilizing decoupled
contrastive learning, diverse sequences are pushed apart, thus uniformly distributing samples in the
latent space, which helps with downstream tasks [66, 63]. Through encoding these invariances, we
find that Orthrus is able to learn complex RNA properties such as cellular component localization
and RNA half-life.

In this work, we propose a novel, self-supervised contrastive objective for learning mature RNA iso-
form representations. We show that this approach is an effective strategy to address two major chal-
lenges for cellular property prediction: data efficiency, and model generalizability. We demonstrate
that Orthrus representations are effective in the low data setting, paving the path to true few-shot
learning for RNA property prediction. Finally, we outperform supervised models when fine-tuning
Orthrus and significantly improving over performance of reconstruction based self-supervised meth-
ods. These findings open the possibility that combining the contrastive loss with a masked language
modelling objective can further improve quality of mature RNA representations.
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berg, Thomas A Walsh, Brandon Walts, Elizabeth Wass, Natalie Willhoft, Jamie Allen,
Jorge Alvarez-Jarreta, Marc Chakiachvili, Bethany Flint, Stefano Giorgetti, Leanne Haggerty,
Garth R Ilsley, Jane E Loveland, Benjamin Moore, Jonathan M Mudge, John Tate, David
Thybert, Stephen J Trevanion, Andrea Winterbottom, Adam Frankish, Sarah E Hunt, Magali
Ruffier, Fiona Cunningham, Sarah Dyer, Robert D Finn, Kevin L Howe, Peter W Harrison, An-
drew D Yates, and Paul Flicek. Ensembl 2023. Nucleic Acids Research, 51(D1):D933–D941,
November 2022.

[40] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation
and projection for dimension reduction, 2020.

[41] Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and Alexander Rives.
Language models enable zero-shot prediction of the effects of mutations on protein function.
bioRxiv, 2021.

14



[42] D. Merico, C. Spickett, M. O’Hara, B. Kakaradov, A. G. Deshwar, P. Fradkin, S. Gandhi,
J. Gao, S. Grant, K. Kron, F. W. Schmitges, Z. Shalev, M. Sun, M. Verby, M. Cahill, J. J.
Dowling, J. Fransson, E. Wienholds, and B. J. Frey. G p.Met645Arg causes Wilson disease by
promoting exon 6 skipping. NPJ Genom Med, 5:16, 2020.

[43] Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Callum Birch-Sykes, Michael
Wornow, Aman Patel, Clayton Rabideau, Stefano Massaroli, Yoshua Bengio, Stefano Ermon,
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A Appendix

Related Works

This work builds on top of foundational efforts spread across three main areas: contrastive rep-
resentation learning, self-supervised applications in cellular property prediction, and methods for
enriching genetic sequence input beyond one hot encoded representation.

Contrastive methods

We build the Orthrus approach for RNA sequences utilizing a rich body of work exploring con-
trastive learning for computer vision ([3]). A fundamental deep metric learning approach is Sim-
CLR in which the authors propose minimizing the representation distance between two views from
the same sample while maximizing the distance between views from different samples ([10]). This
approach does not require labeled data and is based on the availability of domain-specific augmen-
tations. Methods like BYOL and VicReg followed and were able to reformulate the contrastive
approach by removing the need for in-batch negative samples ([20, 4]). They propose solutions to
the trivial solution collapse problem through a variance regularization loss term and architectural de-
sign choices. Recent work aims to unify these methods under the contrastive formulation by making
a distinction between sample and dimension contrastive methods ([18]).

Self-supervised learning for cellular properties

Due to the common sequence-based representation between genomics and language, self-supervised
learning techniques have long been explored in genomic sequence property predictions. DNABert
utilized the BERT problem formulation to learn an encoding for 500 nucleotide long sequences
and demonstrated the value for splice site predictions and other tasks ([26, 13, 72]). Nucleotide
Transformer (NT), another masked language modeling method, demonstrated the utility of doing
data collection from multiple species ([12]). RNA-FM was trained to predict non-coding RNA
properties with masked language modeling using 23 million non-coding sequences ([8]). Recently,
HyenaDNA has demonstrated that applying long convolutions replacing the attention operation, can
lead to effective DNA property prediction while scaling the input sequence length to a million tokens
([43]). In the distinct protein representation learning space, there is a variety of protein language
models utilizing auto-regressive and masked language modeling losses to predict protein properties
like structure, variant effects, and functional properties ([41, 31]). Contrastive learning has also been
used in more specialized domains such as enzyme property prediction while utilizing known shared
enzyme properties as views of similar sequences ([67]). Contrastive methods have also been used
to learn a more general representation of protein function by maximizing the mutual information
between global and local sequence representations ([37]). We build on these works by exploiting
domain-specific RNA augmentation to build general representations that are architecture-agnostic.

Beyond one hot encoded genomes

Another important area for advancing cellular property prediction is iterating beyond the reference
genome for representing genomic sequences. One such strategy is to integrate random biologically
plausible augmentations during training ([30]). By using domain-specific knowledge of the types of
augmentations introduced during evolutionary processes, the authors demonstrate they can improve
the performance of supervised models for predicting DNA properties. Using multiple sequence
alignments is another way to use homology information, common in the protein modeling space
([14, 17, 27]). In another perspective, authors have argued that evolutionary homologs are a viable
path for generating augmentations ([36]).

Downstream Evaluation Tasks

RNA half-life (RNA HL) is an important cellular property to measure due to its implications for
protein expression regulation. Recently, it has been shown that the choice of experimental method-
ology for measuring RNA half-life can have an outsize impact ([1]). To address this challenge,
Agarwal and Kelley (2022) utilized the first principal component of over 40 different RNA half-life
experiments. The dataset consists of 10,432 human and 11,008 mouse RNA sequences with corre-
sponding measurements. The low data availability and high inter-experiment variation underscore
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the importance of data efficiency, and generalizability in computational models to be developed for
this task.

Mean ribosome load (MRL) is a measure of the translational efficiency of a given mRNA molecule.
It measures the number of ribosomes translating a single mRNA molecule at a point in time. Ac-
curate MRL measurement is crucial as it offers insights into the efficiency of protein translation, a
key process in cellular function. The dataset in question, derived from the HP5 workflow, captures
this metric across 12,459 mRNA isoforms from 7,815 genes ([54]). This dataset was derived from
a single experiment, so we can expect a higher amount of noise associated than the RNA half-life
dataset.

Protein localization Protein function is often linked to its subcellular location, which can be deter-
mined using cells that are immunofluorescently stained. We downloaded a dataset of 10,409 genes,
whose protein localization was determined by the Human Protein Atlas ([57]). We included the
12 most common locations including Nucleoplasm, Cytosol, Vesicles, Mitochondria, Plasma Mem-
brane, Golgi apparatus and others. We utilized one transcript per gene (defined to be the canonical
isoform by Appris database [49]).

Gene ontology (GO) terms are a hierarchical classification system used for assigning function to
genes and their products ([11, 2, 71]). In this work, we utilize GO classes to visualize model latent
embeddings and classification. GO term hierarchical systems allow for fine-grained annotation of
function, with broader terms at the top of the hierarchy and increased specificity closer to the bot-
tom. To annotate genes with gene ontology terms, we subset GO classes three levels from the root,
labeling all available genes.

A.1 Associating Orthrus RNA Embeddings with Transcript Similarity and Protein Domains

To evaluate how well Orthrus RNA embeddings capture functional diversity among transcript iso-
forms, we analyzed the similarity of transcript pairs within and between protein-coding genes, ex-
cluding homologous genes when comparing random gene pairs or genes sharing the same GO term.
The test dataset for this analysis was prepared as follows:

1. Intra-gene Pairs: We sampled 1,000 genes to obtain pairs of protein-coding transcripts.

2. Inter-gene Pairs: We randomly sampled 1,000 pairs of non-homologous genes, selecting
the MANE transcript for each gene, which represents the most likely relevant isoform.

3. Inter-gene Pairs: We sampled 5,000 GO terms, each containing 10 to 1,000 genes, and
selected five non-homologous gene pairs per term.

For each transcript, we computed Orthrus embeddings and calculated pairwise distances between
embeddings using the L2 norm. We calculated a similarity score for each transcript pair as 1 −
log(L2 distance). This ensures more interpretable results, where higher similarity scores correspond
to closer RNA embeddings in the latent space, allowing us to compare the three groups of transcript
pairs.

To assess whether similarities in Orthrus embedding reflected shared functional features, we an-
notated each transcript with protein domain information using Ensembl data and the Pybiomart
package. We used the Jaccard Index to quantify the similarity of protein domain presence or ab-
sence between each pair of transcripts within a gene. The Jaccard Index is defined as the size of

Task Category Locality Number of Maximum Homology Split Species
Dataset Sequences Sequence Length Possible
RNA Half Life Human Regression Global 12968 12288 ✓ Human
RNA Half Life Mouse Regression Global 13738 12288 ✓ Mouse
Mean Ribosome Load Regression Global 11693 12275 ✓ Human
Protein Localization Classification Global 9769 12275 ✓ Human
Gene Ontology MF Classification Global 3697 12236 ✓ Human

Table 3: Overview of evaluation datasets. Locality refers to whether the model is required to reason
over global structure or be able to pick up local signals. Homology split is not possible for mRFP
expression due to the same backbone sequence with differences in synonymous substitutions.
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the intersection divided by the size of the union of the protein domain sets present in each transcript
pair:

Jaccard Index =
|D1 ∩D2|
|D1 ∪D2|

where D1 and D2 are the sets of protein domains present in each transcript. Higher values indicate
greater similarity in protein domain composition. We calculated this metric using ”intra-gene pairs”
and ”inter-gene pairs” to further study how protein domain composition correlated with embedding
similarity. We analyzed the Pearson correlation between Jaccard indices and embedding similarities
separately for intra-gene and inter-gene pairs to determine if transcript pairs within the same gene
exhibited higher concordance.

To further explore the utility of Orthrus embeddings, we conducted a detailed analysis of the BCL2L1
gene [64]. Transcripts from this gene were clustered based on their Orthrus embedding similarity
scores, with clusters visualized and annotated according to transcript type and known functional
roles.

A.2 Linear Probe Experimental Details

In this section, we describe the experimental procedure to evaluate linear probing results.

We first performed a 70-15-15 data split on datasets. The data sequences are then embedded by
the various self-supervised learning (SSL) models. For Orthrus, we simply take the mean of the
embeddings across the seqeunce dimension. For HyenaDNA, we take the mean and max of the
embedding sequence dimension, as well as the last hidden state in the output sequence. Other
SSL methods could not handle input sequences of more than 500 or 1000 nucleotides. Thus, when
input sequences exceeded the allowable context window, each sequence was chunked to the max-
imum length allowed by a model. We then computed the mean of each chunk embedding across
the sequence dimension, and then averaged the mean embedding of each chunk to obtain the final
embedding.

After obtaining embedding vectors, we used the scikit-learn implementation of linear models to per-
form the linear probes of the embeddings. For the downstream regression tasks, we used either used
linear regression or ridge regression with the regularization parameter selected by cross validation.
The final linear model was selected using the validation split. The gene ontology and protein lo-
calization tasks are multi-label classification tasks. For this, we fit scikit-learn’s LogisticRegression
model to the labels using a MultiOutputClassifer, which essentially trains a separate linear classifier
for each label class. We use the default logistic regression parameters, and set 5000 maximum iter-
ations for the solver. Below is the table with the performance numbers that are reported in Figure
2

Model
RNA HL
Human

RNA HL
Mouse

MRL
R

GO MF
ROC AUC

Protein Loc.
ROC AUC

DNA-BERT2 0.36 ± 7e-3 0.38 ± 6e-3 0.21 ± 9e-3 0.71 ± 2e-3 0.76 ± 1e-3
NT-500m-1000g 0.26 ± 7e-3 0.26 ± 6e-3 0.11 ± 9e-3 0.66 ± 5e-3 0.71 ± 2e-3
NT-500m-human-ref 0.35 ± 4e-3 0.33 ± 7e-3 0.19 ± 5e-3 0.68 ± 3e-3 0.70 ± 1e-3
NT-2.5b-1000g 0.31 ± 5e-3 0.33 ± 4e-3 0.17 ± 7e-3 0.69 ± 2e-3 0.70 ± 1e-3
NT-2.5b-multi-species 0.32 ± 7e-3 0.36 ± 6e-3 0.18 ± 6e-3 0.71 ± 2e-3 0.69 ± 2e-3
Hyena-32K-seqlen 0.42 ± 6e-3 0.44 ± 5e-3 0.28 ± 7e-3 0.74 ± 3e-3 0.78 ± 1e-3
Hyena-160K-seqlen 0.43 ± 7e-3 0.44 ± 6e-3 0.27 ± 5e-3 0.73 ± 2e-3 0.77 ± 1e-3
Hyena-450K-seqlen 0.45 ± 6e-3 0.45 ± 7e-3 0.28 ± 7e-3 0.74 ± 1e-3 0.78 ± 1e-3
RNA-FM 0.40 ± 6e-3 0.38 ± 6e-3 0.19 ± 6e-3 0.74 ± 4e-3 0.78 ± 1e-3

Orthrus Base 4 track 0.52 ± 2e-2 0.54 ± 2e-2 0.38 ± 5e-3 0.84 ± 6e-3 0.83 ± 9e-3
Orthrus Base 0.67 ± 1e-2 0.64 ± 6e-3 0.41 ± 2e-2 0.84 ± 2e-3 0.84 ± 9e-3
Orthrus Large 0.69 ± 1e-2 0.65 ± 1e-2 0.45 ± 2e-2 0.86 ± 4e-3 0.84 ± 9e-3

Table 4: Linear probing results for self-supervised methods. The embeddings were computed for
each method and then linear regression was computed analytically using the corresponding labels
for each task. Bolded numbers indicate the best performing model.
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Figure 4: UMAP visualization of the Orthrus Large embeddings. 50,000 transcripts are randomly
sampled from gencode comprehensive and colored according to transcript length, number of exons,
CDS length, and GC%.

To avoid information leakage we perform homology splitting within each species. Additional details
are described in A.3.

In addition, to further evaluate the quality of the model latent space we visualized the learned em-
beddings by performing dimensionality reduction using UMAP 4 [40]. Each point in the Figure
corresponds to a transcript and is colored depending on the biochemical property of interest. We
observe clear separation of transcripts conditioned on the GC % CDS length, number of exons,
and transcript length. This ensures that information regarding important biochemical properties is
preserved in the model embeddings even after the length pooling operation.

A.3 Homology splitting

To perform homology splitting we first acquire paralog information from Ensembl for a species of
interest [39]. Ensembl provides pairs paralog information in the form of gene pairs related through
duplication events. However, to perform homology splitting between genes we want to make sure
that paralog transitivity is taken into account when dividing training samples between train, vali-
dation, and test splits. For example given three genes g1, g2, g3 if g1, g2 are annotated as paralogs
and g2, g3 are annotated as well we want to ensure that g1, g3 are in the same split. Thus we first
transform the pairwise relationships into a graph structure in the process pruning low confidence
paralog relationships. We enforce a similarity threshold of 35% which empirically demonstrated
highly connected groups of paralogs. The algorithm for grouping is described in 27.

Following construction of the homology graph, during train-val-test split samples associated with
genes which are connected in the homology graph are indexed into the same split. This avoids
information leakage due to homology relationships within a given species.

A.4 Fine-tuning Experimental Details

We fine-tune Orthrus by first initializing most of the model with weights from pre-training, the
penultimate two layers with random initialization, and the final layer with zero initialization. We
don’t apply any weight decay to weights that were initialized from pre-training while the final three
layers have an l2 weight decay term of 1e-5. We fine-tune on downstream tasks using the Adam
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Algorithm 1 Homology Group Assignment

Input: Set of genes G, Set of paralogous relationships P , Similarity threshold s
Output: Homology map assigning genes to groups
Initialize:

group counter ← 0
homology map← {}

Filter:
P ← {(g1, g2) ∈ P | similarity(g1, g2) > s}

for each (g1, g2) in P do
if g1 /∈ homology map and g2 /∈ homology map then

homology map[g1]← group counter
homology map[g2]← group counter
group counter ← group counter + 1

else if g1 ∈ homology map and g2 /∈ homology map then
homology map[g2]← homology map[g1]

else if g2 ∈ homology map and g1 /∈ homology map then
homology map[g1]← homology map[g2]

else if homology map[g1] ̸= homology map[g2] then
old group← homology map[g2]
new group← homology map[g1]
for each gene in homology map do

if homology map[gene] == old group then
homology map[gene]← new group

end if
end for

end if
end for
Return homology map
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Figure 5: Fine tuning results plotted for 100% fraction of the data. Standard deviation is computed across 3
random seeds. Datasets are split with a homology aware strategy to avoid data leakage.

optimizer with a learning rate of 0.01. We apply exponential learning rate decay with a factor of
0.95. The models are trained with a single Nvidia T4 GPU in a mixed precision setting.

HyenaDNA models initialized with fine-tuning head. We perform a small learning rate hyperparam-
eter grid search around the suggested hyperparameters of 6e-4. The suggested AdamW optimizer is
used. Models were trained for a maximum of 100 epochs on Nvidia T4 GPUs with a batch size of
28 for the HyenaDNA-tiny and a batch size of 8 for HyenaDNA-small. Models were stopped early
based on validation loss using an epoch patience of three. After selecting learning rate using the
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validation split, the runs were repeated using different random initializations to generate confidence
intervals.

Table 5: Pearson correlations (R) and ROC AUC of full model fine-tuning on RNA half-life (HL), mean ribo-
some load (MRL), gene ontology molecular function (GO MF) classification, protein localization and mRFP
expression tasks. Best models are shown in bold. Performance values were averaged over 3 random seeds.
Training validation and test were split based on sequence homology to prevent data leakage.

Models
RNA HL
Human R

RNA HL
Mouse R

MRL
R

GO MF
ROC AUC

Protein Loc.
ROC AUC

Number of
Parameters

Number of
Tracks

Mamba Base Supervised 0.65 ± 2e-2 0.62 ± 1e-2 0.46 ± 2e-2 0.8 ± 2e-2 0.82 ± 3e-4 1.3m 6
Dilated CNN Resnet 0.68 ± 9e-3 0.66 ± 4e-3 0.13 ± 1e-1 0.81 ± 1e-2 0.8 ± 6e-3 0.83m 6
Saluki 0.68 ± 2e-2 0.63 ± 2e-2 0.41 ± 8e-2 0.79 ± 2e-2 0.82 ± 2e-3 0.15 m 6
HeynaDNA Small 0.48 ± 5e-2 0.48 ± 2e-2 0.44 ± 5e-2 0.78 ± 2e-2 0.81 ± 7e-3 3.3m 4
Orthrus Base 0.74 ± 9e-4 0.71 ± 4e-3 0.52 ± 2e-2 0.84 ± 2e-3 0.83 ± 6e-5 1.3 m 6
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