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Abstract

Federated Learning (FL) has emerged as a pivotal approach for training models on1

decentralized data sources by sharing only model gradients. However, the shared2

gradients in FL are susceptible to inversion attacks which can expose sensitive3

information. While several defense and attack strategies have been proposed,4

their effectiveness is often evaluated using metrics that may not necessarily reflect5

the success rate of an attack or information retrieval, especially in the context6

of multidimensional data such as images. Traditional metrics like the Structural7

Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Mean Squared8

Error (MSE) are typically used as lightweight metrics, assume only pixel-wise9

comparison, but fail to consider the semantic context of the recovered data. This10

paper introduces the Absolute Variation Distance (AVD), a lightweight metric11

derived from total variation, to assess data recovery and information leakage in12

FL. Unlike traditional metrics, AVD offers a continuous measure for extracting13

information in noisy images and aligns closely with human perception. Our results14

are combined with a user experience survey demonstrate that AVD provides a more15

accurate and consistent measure of data recovery. It also matches the accuracy of16

the more costly and complex Neural Network based metric, the Learned Perceptual17

Image Patch Similarity (LPIPS). Hence it offers an effective tool for automatic18

evaluation of data security in Federation and a reliable way of studying defence19

and inversion attacks strategies in FL.20

1 Introduction21

In the age of Large Models (LM), with size of billions of parameters, data play a crucial role for22

their continuous development. Therefore, the availability of large amounts of data for their training23

and fine-tuning is critical. Traditionally, data was concentrated in centralized repositories, but the24

increased awareness of privacy and the decentralized nature of information generation (mobile phones,25

multiple regional data centres) has necessitated a more nuanced approach. In this regard, Federated26

Learning (FL) enables models to learn from a multitude of decentralized edge devices or servers27

holding local data samples, obviating the need to exchange raw data. The standard FL configuration28

is achieved with a central aggregator node that exchanges gradients to train a centralised model29

(McMahan et al., 2017). Particularly, at each training step t, a client node receives neural network30

model weights, Wt, from an aggregator server and calculates loss l with local data (xt, yt) for a batch,31

B, which generates gradients with respect to the model weights:32

∆Wt = − γ

B

∑
b<B

∂l(FWt(xt,b, yt,b))

∂Wt
, (1)

where FWt
is a neural network parameterized by Wt. The gradients are typically averaged in the33

server with a rate, γ. Because of their flexibility and the client anonymity that they offer, FL models34
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have been deployed in a variety of real-world applications (Yang et al., 2019; Rieke et al., 2020;35

Nguyen et al., 2022)36

However, the gradients, ∆Wt, shared by the client are vulnerable to inversion attacks instigated by a37

malicious eavesdropper that can expose the original sensitive data. Existing literature on inversion38

attacks (Zhu et al., 2019b; Zhao et al., 2020a; Geiping et al., 2020; Yin et al., 2021; Balunović et al.,39

2022) have shown that these inversion attacks can be highly successful, with potentially recovering40

large batch of data after several rounds of learning, and at a pixel resolution Geiping et al. (2020).41

In general, these attacks more or less follow the same paradigm, generate a dummy dataset (usually42

images) and then use a loss function with priors distributions (Balunović et al., 2022) (as regulators43

or with additional generative models) to minimise the loss between the FL model and the dummy44

gradients. The success of the inversion attacks prevents FL from becoming a fully trustful framework45

for distributed training.46

To mitigate inversion attacks in FL, several defence strategies were proposed to reduce the leakage of47

information (Sikandar et al., 2023; Huang et al., 2021a; Chen et al., 2022; Wainakh et al., 2022). These48

include, data transformation from the client side (Huang et al., 2021b), homomorphic encryption49

techniques (Phong et al., 2018), data sanitation methods (Zhu et al., 2019b), and defense strategies50

originated from Differential Privacy approaches (DP) (Dwork, 2006). In FL, DP techniques can be51

achieved by adding noise to the gradients shared or input data, with inevitably, a potential loss in52

model training performance (Zhu et al., 2019a; Zhao et al., 2020b; Eloul et al., 2022).53

One important step towards the development of robust defence strategies and the prevention and54

understanding of such attacks is by assessing their success. Therefore, an inversion attack is studied55

experimentally by comparing the information revealed from the recovered input data to that of the56

original dataset (Huang et al., 2021a). There exist a few metrics that are commonly used to measure57

the reconstruction quality, with the most popular being the structural similarity index (SSIM) (Wang58

et al., 2004), the peak signal-to-noise ratio (PSNR) (Cahn, 1961), the learned perceptual image patch59

similarity (LPIPS) (Zhang et al., 2018), and the mean squared error (MSE).60

(a) (b)

Figure 1: Random recovered vectors from the MNIST dataset. Sub-figure (a) shows the images sorted
by the AVD metric. Sub-figure (b) shows the images sorted by the MSE metric. The smaller figures
represent the original images associated with image above. The figures include complex images, such
as Sub-figure (a), row 1 & column 3, that is a combination of digits 4 and 3. Sub-figure (b), row 3 &
column 4, that is a combination of digits 2 and 8.

In this paper, we show how the aforementioned metrics are insufficient to properly assess the success61

of an inversion attack on the gradients of an FL model. Especially, for cases that the FL model62

generates multidimensional outputs that contain contextual information (like images). The reason is63

that these metrics assume spatial independence when comparing the recovered image to the original64

one. Therefore, in many cases they lack to produce accurate results of the semantic context, and65

fail to reveal minimal information out of noisy image. For example, a common defense mechanism66
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for an FL model is to add noise to an image that depicts a number from the MNIST dataset. An67

attack on the gradients of this model may recover an approximate image with the same number68

but considerably different background colour (see Fig. 1a, row 4 & column 2). Metrics, such as69

SSIM, PSNR, and MSE fail to provide a consistent and accurate result and indicate this attack as70

unsuccessful (in the image example MSE = 0.52, which is considered high). That is, because of the71

use of Euclidean distance-per-pixel measure, they miss the fact that the attacker has recovered the72

most important element, the actual number; regardless of how noisy or changed the background of73

the image is. Therefore, these metrics discard the contextual information in the image that a human’s74

vision would have otherwise recognized, e.g. edges and points of interests (another example is 1a,75

row 2 & column 3, where MSE = 1.06 but a human would have read the number). It becomes76

even a larger challenge to use these metrics as a mechanism to approve data for FL in real-time.77

Since the development of attacks models are mostly empirical and data dependant, it is plausible78

to have an automatic verification (e.g. as a smart contract/client service) to assess the security of79

data by applying brute-force attacks before submission of gradients. For that purpose, a reliable and80

lightweight metric is needed.81

This problem has not gone unnoticed and efforts to address these challenges have resulted in proposal82

of specialized metrics that may be computationally expensive, for example, Learned Perceptual83

Image Patch Similarity (LPIPS) from Zhang et al. (2018). The authors use the power of deep neural84

networks (DNN) to create LPIPS that is aligned with human perception metric. A major downside is85

that LPIPS is a complex and a computationally costly metric that is difficult to interpret due to the86

underlying DNN themselves that may require training for new data.87

This paper introduces a new distance metric to assess data recovery, the Absolute Variation Distance88

(AVD). It is derived from total variation and in contrast to standard methods (MSE, SSIM), it offers89

a continuous metric for extracting information in noisy images. Furthermore, we show via a user90

study that AVD is highly correlated with human perception, but at the same time it is computationally91

more efficient and interpretable compared to LPIPS. Our results show that recovery of data is more92

visible as AVD decreases in a continuous manner. In contrast the MSE metric for MNIST fluctuates93

drastically when the image is not completely clear or a blend, and can obtain various values similar94

or higher than the MSE for the pure noise input.95

Table 1: Types of gradient inversion attacks employed in our study.
Attack Name Main Objective Function Description
2-norm gl2 (3) Euclidean distance and initial label determination.
Angle & var gang + TV (4) Geiping et al. (2020) proposed to leverage cosine similarity, total variation (TV) and initial label determination.
Angle & var & Orth_regulators gang + TV + Orth Cosine distance with orthogonal regulator for the input + initial label determination. (Qian et al., 2021)

(a) (b)

Figure 2: Random recovered vectors from the LFW face dataset. Sub-figure (a) shows the images
sorted by the AVD metric. Sub-figure (b) shows the images sorted by the MSE metric. The smaller
figures represent the original images associated with image above.
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2 Absolute Variation Distance96

In this paper we developed AVD, a variant of total variation metric (Rudin et al., 1992), which is a97

more suitable indicator to compare the spatial gradient of the recovered image and source image.98

Given two images vsource and vtarget, we define AVD between them as following:99

AVD(vsource,vtarget) =

||(|∇vsource| − |∇vtarget|)||+
||(|∇2vsource| − |∇2vtarget|)||

(2)

where ∇v = dv
di + dv

dj is the spatial gradient and ∇2v = d2v
di2 + d2v

dj2 is the second order gradient.100

Here we treat the image as a 2-D array with with values v(i, j). Therefore, because AVD measures101

distance in gradient space it allows to consider boundaries and edges in images which are a common102

discriminator in visual recognition, whilst the gradient of noise remains as noise.103

2.1 Inversion Attack Algorithms104

In our setting (and typically) the gradient inversion attack is carried out by choosing x′
t, y

′
t on a proxy105

model, F ′(x′
t, y

′
t), and then minimizing an objective function that measures the distance between106

gradients computed the proxy model ∆W ′
t and the original gradients. A typical objective can be the107

norm of the gradients’ difference:108

gl2(x′
t, y

′
t) = min||∆W ′

t −∆Wt|| (3)

This solution searches for a model F ′(x′
t, y

′
t) that matches the size of the gradient vector observed109

by the client. Although further empirical studies have found the cosine distance to provide better110

convergence results (Geiping et al., 2020):111

gang(x′
t, y

′
t) = min 1− ⟨∆W ′

t ,∆Wt⟩
||∆W ′

t || · ||∆Wt||
(4)

Various regularisation terms were shown to improve convergence. For example, regularisation that112

penalises high variations in the input images and constrains the search to high-fidelity images and113

de-noised solutions (Geiping et al., 2020; Yin et al., 2021). In mini-batches the orthogonality (Qian114

et al., 2021) between input vectors in the batch has been shown to bias the search towards different115

vectors in the batch. Additionally it has been found that determining the label from the gradients is116

important for initialisation of the numerical optimisation (Yin et al., 2021).117

In our study in section 4 we apply various types of attacks and regularisation terms to provide118

a comprehensive analysis without any prior assumption on the performance of the attack. As119

summarised in Table 1, we utilise both the Euclidean distance and cosine similarity objective120

functions proposed by recent prior work (Zhu et al., 2019b; Geiping et al., 2020) including a selection121

of popular regularisation functions.122

3 Experiments123

We conduct gradient inversion attack experiments on two benchmnark datasets, MNIST Handwritten124

Digit (LeCun et al., 2010) and Labelled Faces in the Wild (LFW) (Huang et al., 2007), to illustrate125

how our proposed metric successfully evaluates information leakage that aligns to human perception.126

These two dataset are commonly used among researchers to study attacks (Zhu et al., 2019b; Zhao127

et al., 2020a; Melis et al., 2019; Shokri et al., 2017). We explore the privacy of the input data with128

the standard LeNET convolutional neural network (LeCun et al., 1990). We analyse the impact of129

different loss functions (MSE, LPIPS, SSIM, PSNR). For the attacks, in terms of the optimisation130

scheme, we utilized the standard LFBGS, with learning rate (lr) of 0.05, batch size of 4, and 300131

iterations for running a proxy model to attack.132
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We also carried out a complementary user study by asking 10 individuals for their feedback, to rank a133

series of inverse attack images from 0− 5. With 0 being that they can very clearly observe underlying134

information (e.g. they can see the number 9 in a mnist recovered image, see example Fig. 1), to 5 that135

they cannot extract any useful information (e.g. the image is pure noise). We randomly generated 6136

groups, with 100 images each (total 600 images); specifically, three 10× 10 frames of LFW images137

and three 10× 10 frames of MNIST images (see Appendix, Fig. 17 and 18 for an example of LFW138

and MNIST). The images were not ranked by noise level/clarity, but they were randomly allocated139

into the 10× 10 frame. After the individuals ranked them then we averaged the scores they gave for140

each of the 100 images and we compared it to the score each image achieved from MSE, AVD, and141

LPIPS metrics. We used Pearson correlation (ρ) as a measure of similarity. The results can be studied142

in the heatmap in Fig. 3.143

Figure 3: Comparison table of the most widely used metrics in FL for evaluation of inversion attacks
(MSE, SSIM, PSNR, LPIPS), plus our own novel metric, the AVD. Each column compares the
metrics between a noisy (attack generated) image and its reference (original) image. We included a
wide array of examples, from no noise (column 1), to a mixture with two references (column 4), and
complete noise (column 5).

Figure 4: Pearson correlation ρ heatmap between the average ranking score (0-5) of 10 people for
each image, and the MSE, LPIPS, AVD scores of these images. A ranking score of 0 means that the
human can perceive very clear information in the image and a rank of 5 means the image is pure
noise. The x-axis shows 6 groups (LFW1, LFW2, LFW3, MNIST1, MNIST2, MNIST3) of images.
Each group has a 10× 10 frame, 100 images in each frame. The y-axis shows the the three inversion
attack metrics. The correlation is between the metrics (y-axis) and the average ranking score by the
users. For more details refer to Section 3.

4 Results144

For Fig. 1 we ran the experiment for the MNIST dataset. The first sub-figure (a) sorts the images145

by AVD value. For comparison, the second sub-figure (b) sorts the images by the MSE. The146
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smaller images represent the original MNIST data. Low score ranking represents that the attack147

was successful and the image matches the original. High score ranking shows that the attack was148

unsuccessful and the generated attack images are very noisy with no observable pattern. From Fig. 1b,149

row one and columns four and five, the MSE1,4 = 1.67 and MSE1,5 = 3.22. These images clearly150

have a pattern, a user might be able to infer that the number of the last image relates to the number151

5. So the attacker can extract private information from an FL model. But, according to the MSE152

these images are more private (noisy) when compared against images two and three from the same153

row (MSE1,2 = 0.97 and MSE1,2 = 1.01). On the other hand, our metric AVD captures these154

irregularities, with AVD1,4 = 0.69 and AVD1,5 = 0.43 being lower than AVD1,2 = 0.88 and155

AVD1,3 = 0.85. The AVD scores also agree with the LPIPS benchmark in these images, which156

indicates the AVD follows the human perception to evaluate the success of an inversion attack. In157

the LFW dataset, Fig. 2, we can observe the same phenomenon when using the MSE as a score to158

evaluate FL inversion attacks. In Fig. 3 we compare different inversion attack metrics, including159

PSNR, SSIM, MSE, LPIPS, and AVD. The LPIPS and AVD results are consistent and agree very well160

with human consensus; they attribute the lowest value (LPIPS = 0&AVD = 0) to column one that161

the two images are identical, and the largest value at column five (LPIPS = 0.82&AVD = 0.80),162

where the generated image is just noise.163

In our final experiment, we contacted a qualitative survey amongst 10 people, Fiq 3. When we164

evaluate inversion attacks in multidimensional data that exhibit strong intercorrelation amongst the165

data-points, such as images, then a contextual interpretation of the image is imperative for an accurate166

evaluation. Therefore, the similarity metric should be able to showcase human-like perception. Our167

survey results further support the quantitative analysis that we conducted in Fig. 3 and show that168

the AVD is highly correlated (ρ ≥ 0.96) with how a human would have recognised information169

from an attack generated image. For the LFW group of images, the MSE had a correlation between170

0.86 ≤ ρ ≤ 0.91 with the average human score. On the other hand, for the same images, the LPIPS171

and the AVD achieved very high levels of correlation, 0.98 ≤ ρ ≤ 0.99. For the MNIST group, the172

MSE showed correlation between 0.63 ≤ ρ ≤ 0.72. The AVD though retained consistently high173

levels of correlation with the human score, 0.96 ≤ ρ ≤ 0.97. It seems that the mixing of numbers and174

the change of the background that we observed in the MNIST examples (Fig. 1 and Fig. 3) "confuse"175

the MSE score and drive the results further away from human perception, reducing its accuracy.176

5 Conclusion177

In this paper, we have addressed a significant challenge in the field of FL - the evaluation of the178

success of inversion attacks and the effectiveness of defense strategies. Traditional metrics such as179

the SSIM, PSNR, and MSE have been shown to be insufficient for accurately assessing the success180

of these attacks, particularly in the context of multidimensional outputs like images. These metrics,181

which assume spatial independence, fail to consider the semantic context of the recovered data,182

leading to potentially misleading evaluations.183

To overcome these limitations, we introduced the AVD, a metric for assessing data recovery and184

information leakage in FL. Derived from total variation, AVD offers a continuous measure for185

extracting information in noisy images, aligning closely with human perception. It is computationally186

more efficient and mathematically more interpretable than the LPIPS, a deep learning-based metric.187

The quantitative experiments demonstrated that AVD provides a more accurate and consistent188

measure of data recovery, thereby offering a more reliable tool for evaluating defense strategies189

against inversion attacks in FL. Also, the survey that we contacted amongst 10 people, asking them190

to rank random generated images by scoring the success of the recovered image, showed that human191

perception had high correlation with the AVD scores.192

By providing a more accurate measure of data recovery, AVD allows researchers to better understand193

the effectiveness of their defense strategies and to develop robust FL evaluation of data security.194

We hope that our work will inspire further advancements in the field of FL and contribute to the195

development of more secure and reliable distributed learning systems.196
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Balunović, M., Dimitrov, D. I., Staab, R., and Vechev, M. Bayesian framework for gradient leakage,198

2022.199

6



Cahn, C. A note on signal-to-noise ratio in band-pass limiters. IRE Transactions on Information200

Theory, 7(1):39–43, 1961. doi: 10.1109/TIT.1961.1057616.201

Chen, Y., Gui, Y., Lin, H., Gan, W., and Wu, Y. Federated learning attacks and defenses: A survey,202

2022.203

Dwork, C. Differential privacy. In 33rd International Colloquium on Automata, Languages and204

Programming, part II (ICALP 2006), volume 4052 of Lecture Notes in Computer Science, pp.205

1–12. Springer Verlag, July 2006. ISBN 3-540-35907-9. URL https://www.microsoft.com/206

en-us/research/publication/differential-privacy/.207

Eloul, S., Silavong, F., Kamthe, S., Georgiadis, A., and Moran, S. J. Enhancing privacy against208

inversion attacks in federated learning by using mixing gradients strategies, 2022.209

Geiping, J., Bauermeister, H., Dröge, H., and Moeller, M. Inverting Gradients - How easy is it to210

break privacy in federated learning? In Advances in Neural Information Processing Systems 33:211

Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December212

6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/213

c4ede56bbd98819ae6112b20ac6bf145-Abstract.html.214

Huang, G. B., Ramesh, M., Berg, T., and Learned-Miller, E. Labeled faces in the wild: A database215

for studying face recognition in unconstrained environments. Technical Report 07-49, University216

of Massachusetts, Amherst, October 2007.217

Huang, Y., Gupta, S., Song, Z., Li, K., and Arora, S. Evaluating gradient inversion attacks and218

defenses in federated learning. In Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W.219

(eds.), Advances in Neural Information Processing Systems, 2021a. URL https://openreview.220

net/forum?id=0CDKgyYaxC8.221

Huang, Y., Song, Z., Li, K., and Arora, S. Instahide: Instance-hiding schemes for private distributed222

learning, 2021b.223

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., and Jackel, L. Handwritten224

Digit Recognition with a Back-Propagation Network. In Advances in Neural Information Process-225

ing Systems, volume 2. Morgan-Kaufmann, 1990. URL https://proceedings.neurips.cc/226

paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf.227

LeCun, Y., Cortes, C., and Burges, C. Mnist handwritten digit database. ATT Labs [Online]. Available:228

http://yann.lecun.com/exdb/mnist, 2, 2010.229

McMahan, B., Moore, E., Ramage, D., Hampson, S., and Arcas, B. A. y. Communication-Efficient230

Learning of Deep Networks from Decentralized Data. In Proceedings of the 20th International231

Conference on Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine Learning232

Research, pp. 1273–1282. PMLR, 20–22 Apr 2017. URL https://proceedings.mlr.press/233

v54/mcmahan17a.html.234

Melis, L., Song, C., Cristofaro, E. D., and Shmatikov, V. Exploiting unintended feature leakage235

in collaborative learning. In 2019 IEEE Symposium on Security and Privacy, SP 2019, San236

Francisco, CA, USA, May 19-23, 2019, pp. 691–706. IEEE, 2019. doi: 10.1109/SP.2019.00029.237

URL https://doi.org/10.1109/SP.2019.00029.238

Nguyen, D. C., Pham, Q.-V., Pathirana, P. N., Ding, M., Seneviratne, A., Lin, Z., Dobre, O., and239

Hwang, W.-J. Federated learning for smart healthcare: A survey. ACM Computing Surveys (CSUR),240

55(3):1–37, 2022.241

Phong, L. T., Aono, Y., Hayashi, T., Wang, L., and Moriai, S. Privacy-preserving deep learning via242

additively homomorphic encryption. IEEE Transactions on Information Forensics and Security,243

13(5):1333–1345, 2018. doi: 10.1109/TIFS.2017.2787987.244

Qian, J., Nassar, H., and Hansen, L. K. Minimal model structure analysis for input reconstruction in245

federated learning, 2021.246

7

https://www.microsoft.com/en-us/research/publication/differential-privacy/
https://www.microsoft.com/en-us/research/publication/differential-privacy/
https://www.microsoft.com/en-us/research/publication/differential-privacy/
https://proceedings.neurips.cc/paper/2020/hash/c4ede56bbd98819ae6112b20ac6bf145-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c4ede56bbd98819ae6112b20ac6bf145-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c4ede56bbd98819ae6112b20ac6bf145-Abstract.html
https://openreview.net/forum?id=0CDKgyYaxC8
https://openreview.net/forum?id=0CDKgyYaxC8
https://openreview.net/forum?id=0CDKgyYaxC8
https://proceedings.neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1109/SP.2019.00029


Rieke, N., Hancox, J., Li, W., Milletarì, F., Roth, H., Albarqouni, S., Bakas, S., Galtier, M., Landman,247

B., Maier-Hein, K., Ourselin, S., Sheller, M., Summers, R., Trask, A., Xu, D., Baust, M., and248

Cardoso, M. The future of Digital Health with Federated Learning. npj Digital Medicine, 3(1),249

December 2020. ISSN 2398-6352. doi: 10.1038/s41746-020-00323-1.250

Rudin, L. I., Osher, S., and Fatemi, E. Nonlinear total variation based noise removal algorithms. In251

Proceedings of the Eleventh Annual International Conference of the Center for Nonlinear Studies252

on Experimental Mathematics: Computational Issues in Nonlinear Science: Computational Issues253

in Nonlinear Science, pp. 259–268, USA, 1992. Elsevier North-Holland, Inc.254

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Membership inference attacks against machine255

learning models. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA,256

USA, May 22-26, 2017, pp. 3–18. IEEE Computer Society, 2017. doi: 10.1109/SP.2017.41. URL257

https://doi.org/10.1109/SP.2017.41.258

Sikandar, H. S., Waheed, H., Tahir, S., Malik, S. U. R., and Rafique, W. A detailed survey on259

federated learning attacks and defenses. Electronics, 12(2), 2023. ISSN 2079-9292. doi: 10.3390/260

electronics12020260. URL https://www.mdpi.com/2079-9292/12/2/260.261

Wainakh, A., Zimmer, E., Subedi, S., Keim, J., Grube, T., Karuppayah, S., Guinea, A. S., and262

Mühlhäuser, M. Federated learning attacks revisited: A critical discussion of gaps, assumptions,263

and evaluation setups, 2022.264

Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. Image quality assessment: from error visibility265

to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612, 2004. doi:266

10.1109/TIP.2003.819861.267

Yang, Q., Liu, Y., Chen, T., and Tong, Y. Federated Machine Learning: Concept and Applications.268

ACM Trans. Intell. Syst. Technol., 10(2), jan 2019. ISSN 2157-6904. doi: 10.1145/3298981. URL269

https://doi.org/10.1145/3298981.270

Yin, H., Mallya, A., Vahdat, A., Alvarez, J., Kautz, J., and Molchanov, P. See through Gradients:271

Image Batch Recovery via GradInversion. In 2021 IEEE/CVF Conference on Computer Vision272

and Pattern Recognition (CVPR), pp. 16332–16341, 2021. doi: 10.1109/CVPR46437.2021.01607.273

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang, O. The unreasonable effectiveness of274

deep features as a perceptual metric, 2018.275

Zhao, B., Mopuri, K. R., and Bilen, H. idlg: Improved deep leakage from gradients, 2020a.276

Zhao, Y., Zhao, J., Yang, M., Wang, T., Wang, N., Lyu, L., Niyato, D., and Lam, K.-Y. Local277

differential privacy based federated learning for internet of things, 2020b.278

Zhu, L., Liu, Z., and Han, S. Deep leakage from gradients. In Wallach, H., Larochelle, H., Beygelz-279

imer, A., d'Alché-Buc, F., Fox, E., and Garnett, R. (eds.), Advances in Neural Information Process-280

ing Systems, volume 32. Curran Associates, Inc., 2019a. URL https://proceedings.neurips.281

cc/paper_files/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf.282

Zhu, L., Liu, Z., and Han, S. Deep leakage from gradients. In Advances in Neural Information283

Processing Systems, volume 32. Curran Associates, Inc., 2019b. URL https://proceedings.284

neurips.cc/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf.285

Appendix286

8

https://doi.org/10.1109/SP.2017.41
https://www.mdpi.com/2079-9292/12/2/260
https://doi.org/10.1145/3298981
https://proceedings.neurips.cc/paper_files/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf


Figure 5: Random recovered vectors from LFW datasets, column-wise sorted via the AVD.
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Figure 6: Random recovered vectors from LFW datasets, column-wise sorted via the AVD.
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Figure 7: Random recovered vectors from LFW datasets, column-wise sorted via the AVD.
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Figure 8: Random recovered vectors from LFW datasets, column-wise sorted via the MSE.
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Figure 9: Random recovered vectors from LFW datasets, column-wise sorted via the MSE.
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Figure 10: Random recovered vectors from LFW datasets, column-wise sorted via the MSE.
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Figure 11: Random recovered vectors from MNIST datasets, column-wise sorted via the MSE.
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Figure 12: Random recovered vectors from MNIST datasets, column-wise sorted via the MSE.
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Figure 13: Random recovered vectors from MNIST datasets, column-wise sorted via the MSE.
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Figure 14: Random recovered vectors from MNIST datasets, column-wise sorted via the AVD.
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Figure 15: Random recovered vectors from MNIST datasets, column-wise sorted via the AVD.
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Figure 16: Random recovered vectors from MNIST datasets, column-wise sorted via the AVD.
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Figure 17: Random recovered vectors from MNIST datasets, column-wise sorted via the AVD.
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Figure 18: Random recovered vectors from MNIST datasets, column-wise sorted via the AVD.
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