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Abstract

Multi-modal Large Language Models001
(MLLMs) have gained significant attention002
in both academia and industry for their003
capabilities in handling multi-modal tasks.004
However, these models face challenges in005
mathematical geometric reasoning due to the006
scarcity of high-quality geometric data. To007
address this issue, synthetic geometric data008
has become an essential strategy. Current009
methods for generating synthetic geometric010
data involve rephrasing or expanding existing011
problems and utilizing predefined rules and012
templates to create geometric images and013
problems. However, these approaches often014
produce data that lacks diversity or is prone015
to noise. Additionally, the geometric images016
synthesized by existing methods tend to exhibit017
limited variation and deviate significantly from018
authentic geometric diagrams. To overcome019
these limitations, we propose GeoFM, a020
novel method for synthesizing geometric data.021
GeoFM uses formal languages to explore022
combinations of conditions within metric023
space, generating high-fidelity geometric024
problems that differ from the originals while025
ensuring correctness through a symbolic026
engine. Experimental results show that our syn-027
thetic data significantly outperforms existing028
methods. Models trained with our data surpass029
the proprietary GPT-4o model by 18.7% on030
geometry problem-solving tasks in MathVista031
and by 16.5% on GeoQA. Additionally, our032
approach exceeds the performance of the033
state-of-the-art open-source model by 5.7% on034
MathVista and by 2.7% on GeoQA.035

1 Introduction036

Large language models (LLMs) exhibit excellent037

reasoning capabilities. There has been a signif-038

icant amount of research dedicated to applying039

large language models to solve text-based mathe-040

matical problems, resulting in substantial progress041

(Aaron Hurst, 2024; Luo et al., 2023; Shao et al.,042

Figure 1: Comparison of different methods for synthe-
sizing geometric data. (a) Generate geometric Q&A
data by using MLLMs to rephrase existing problems or
create new Q&A from collected geometric images. (b)
Utilize a rule-based data engine to generate template-
based Q&A and low-fidelity images. (c) Employ formal
language to explore the combinations of geometric met-
ric conditions and synthesize new problems, ensuring
solution accuracy through symbolic reasoning, and gen-
erate high-fidelity geometric images.

2024; Yang et al., 2024). Recently, there has also 043

been a growing focus on using Multi-modal Large 044

Language Models (MLLMs) to address multi- 045

modal mathematical problems that include images 046

(Gao et al., 2023; Shi et al., 2024; Zhang et al., 047

2024a; Li et al., 2024a). Although MLLMs per- 048

form well in general tasks such as Visual Ques- 049

tion Answering (VQA), their performance often 050

falls short when tackling multi-modal mathematical 051

problems (Lu et al., 2024; Wang et al., 2024a). In 052

particular, geometry problems, which are a typical 053

example of multi-modal mathematical problems 054

with wide-ranging applications, require the inte- 055

gration of both visual and textual information for 056

reasoning and solution. However, MLLMs struggle 057

with these problems. One of the primary reasons 058
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for this difficulty is the lack of high-quality geomet-059

ric data for training MLLMs. Compared to natural060

scene tasks like VQA, the sources and quantity of061

geometric data are relatively limited, which hinders062

the advancement of MLLMs’ abilities in geometry.063

To address the shortage of geometric data, some064

approaches have employed synthetic data genera-065

tion. A straightforward method involves rewriting066

the problem statements and answers (Gao et al.,067

2023). However, simple rewrites do not alter the068

underlying meaning of the problems. Although069

this increases the quantity of problems, it does not070

enhance the diversity. Other approaches have at-071

tempted to use MLLMs to modify original geo-072

metric problems and generate answers (Gao et al.,073

2023), or to directly create new problems and cor-074

responding responses based on collected geometric075

images (Shi et al., 2024), as shown in Figure 1(a).076

Nevertheless, these methods rely on the geometric077

reasoning capabilities of MLLMs. Given the cur-078

rent limitations of MLLMs in solving geometric079

problems, these approaches are prone to introduc-080

ing noise into the synthetic data. Recently, there081

have been attempts to synthesize geometric prob-082

lems using predefined rules and templates (Kazemi083

et al., 2023; Zhang et al., 2024a). For example,084

new shapes are generated by continuously extend-085

ing basic geometric figures such as triangles and086

quadrilaterals outward along their edges. The rea-087

soning paths and final answers are obtained through088

programming, as illustrated in Figure 1(b). While089

this method ensures the correctness of the reason-090

ing and answers, the low fidelity of the synthesized091

images and the restricted variety of problems result-092

ing in a significant disparity from real geometric093

problems. This discrepancy limits the progress of094

MLLMs in developing geometric capabilities.095

To address the challenges present in current ap-096

proaches, we propose a novel method for synthesiz-097

ing geometric data. We have observed that existing098

geometric datasets often associate a single geomet-099

ric diagram with only one or two problems, despite100

the fact that geometric diagrams often contain rich101

metric information that are not fully covered by102

the existing problems. Therefore, we propose Ge-103

oFM, a method that employs formal languages to104

explore the combinations of conditions within met-105

ric spaces of geometric diagrams, thereby gener-106

ating high-fidelity geometric problems differ from107

the original ones but whose correctness is guaran-108

teed using a symbolic engine. Existing work on109

geometric formal languages is scattered across dif-110

ferent fields, such as geometric problem solving 111

(Lu et al., 2021; Peng et al., 2023; Zhang et al., 112

2024b), theorems proving (Trinh et al., 2024) and 113

geometric drawing (Krueger et al., 2021). Further- 114

more, these studies frequently necessitate human 115

intervention, such as manual formalization, to ac- 116

complish the associated tasks (Zhang et al., 2024b; 117

Krueger et al., 2021), which prevents their applica- 118

tion for large-scale automatic synthesis of geomet- 119

ric data. To address this issue, we propose a com- 120

prehensive framework for geometric data synthesis 121

that automates the formalization of seed problems, 122

the synthesis of new problems, and the generation 123

of images. Utilizing this approach, we have de- 124

veloped a highly accurate and realistic geometric 125

synthetic dataset GeoFM80K. Experimental results 126

demonstrate that our synthetic data can effectively 127

enhance the geometric capabilities of MLLMs. The 128

dataset will be released soon. 129

Our contributions are summarized as follows: 130

1. We propose GeoFM, a geometric data synthe- 131

sis method using formal languages and symbolic 132

reasoning to generate accurate solutions and geo- 133

metric diagrams, addressing data noise and discrep- 134

ancies in existing data synthesis methods. 135

2. We introduce a strategy for synthesizing new 136

geometric problems through the combination of 137

geometric metric conditions, resulting in the Ge- 138

oFM80K dataset. Models trained on GeoFM80K 139

outperform those trained on representative syn- 140

thetic data by 8.2% on MathVista-GPS (Lu et al., 141

2024) and 11.1% on GeoQA (Chen et al., 2021). 142

3. Experimental results show our method en- 143

hances the geometric reasoning of MLLMs. The 144

GeoFM-8B model surpasses GPT-4o by 18.7% 145

on MathVista-GPS and 16.5% on GeoQA, and 146

exceeds the best open-source model by 5.7% on 147

MathVista-GPS and 2.7% on GeoQA. 148

2 Method 149

2.1 Overview 150

In this section, we introduce our method for gener- 151

ating synthetic geometric problems. We first col- 152

lect a set of seed problems and then automatically 153

convert them into a formal language used for ge- 154

ometric problem solving. Next, within the formal 155

language space, we generate new problems by arbi- 156

trarily combining the metric geometric conditions 157

of the seed problems. These new problems can be 158

solved through symbolic reasoning, which aids in 159

synthesizing natural language solutions and verify- 160
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Figure 2: The Framework of Geometric Data Synthesis GeoFM

ing results. Finally, we convert the formal language161

representations of the new problems into a draw-162

ing language to produce corresponding geometric163

diagrams. The framework of the data generation164

process is illustrated in Figure 2.165

2.2 Seed Geometry Problem Formalization166

Formalizing geometric problems is a significant167

research area in geometry. Various formalization168

schemes have been proposed, including InterGPS169

(Lu et al., 2021), AlphaGeometry (Trinh et al.,170

2024), and FormalGeo (Zhang et al., 2024b), each171

employing different approaches. In this study,172

we utilize FormalGeo as it more effectively rep-173

resents metric geometry than AlphaGeometry and174

offers a broader range of geometric theorems than175

InterGPS. FormalGeo employs the Conditional176

Declaration Language (CDL) to represent geomet-177

ric problems, which includes construction CDL,178

text CDL, image CDL, and goal CDL. Construc-179

tion CDL conveys geometric structure information,180

such as basic shapes, collinearity, and cocircularity.181

Text CDL and image CDL capture geometric and182

algebraic relations from the problem statement and183

diagram, respectively, while goal CDL defines the184

problem-solving objective. An illustrative example185

is shown in Figure 2.186

For the text parser, we propose a new construc-187

tion method based on training a large language188

model with synthetic data. Since the text parser189

focuses on mapping natural language to formal190

language without considering the validity or solv-191

ability of the problem, we propose a method for 192

generating synthetic training data based on formal 193

language back-translation. Initially, for each for- 194

mal language expression in FormalGeo, we use 195

GPT-4o to generate 20 corresponding natural lan- 196

guage templates, which are then manually reviewed 197

and corrected. During data synthesis, we randomly 198

select formal language conditions and goals to be 199

solved, insert randomly generated geometric points 200

to create a formal language problem, and then con- 201

vert it into a natural language problem description 202

using the natural language templates. This descrip- 203

tion is rewritten using the large language model 204

Qwen2.5-72B-Instruct (An Yang, 2025) to increase 205

the diversity of expressions. In this way, we con- 206

struct synthetic training data for the text parser 207

that maps natural language problems to formal lan- 208

guage problems. Using this method, we synthe- 209

sized 30k training data samples and trained Llama- 210

3-8B-Instruct (Aaron Grattafiori, 2024), resulting 211

in the development of a text parser. 212

For the diagram parser, we constructed it by inte- 213

grating the geometric shape parsing method PGDP- 214

Net (Zhang et al., 2022), OCR tool (Du et al., 2021), 215

and rule-based processing. PGDPNet can identify 216

various geometric elements, including points and 217

lines, their coordinates, and geometric relationships 218

like parallelism and perpendicularity. To enhance 219

the accuracy of text and symbol recognition, we em- 220

ploy OCR to re-recognize the information within 221

the detection boxes extracted by PGDPNet. Based 222

on all the parsed information, we convert it into 223

3



construction CDL and image CDL through rule-224

based processing.225

The seed problems are processed using the text226

parser and the diagram parser to derive their formal227

representations. After filtering out invalid condi-228

tions using formal language grammar validation,229

seed problems represented in formal language are230

generated. These seed problems are then used for231

subsequent geometric problem synthesis. It is im-232

portant to note that while parsing errors by the text233

parser and diagram parser may cause discrepancies234

between the formalized problems and the original235

ones, the final synthesized data remains consis-236

tent and error-free. This is because both the new237

problems and the corresponding images are gener-238

ated solely based on the formalized seed problems,239

rather than the original ones.240

2.3 Geometric Problem Generation241

In this section, we will introduce the process of242

generating new geometry problems based on for-243

malized seed problems. Since each geometric di-244

agram contains rich metric information such as245

lengths, angles, and areas, we can utilize the for-246

mal language representation to combine the metric247

information in various ways, thereby generating248

new problems with different conditions and goals.249

Specifically, the synthesis process primarily con-250

sists of three components: calculating the geomet-251

ric metric information of the seed problems, synthe-252

sizing data in formal language, and converting this253

data into natural language geometric instruction254

data. The process is detailed in Algorithm 1.255

2.3.1 Gathering Geometric Metrics256

To extract as much metric information as possible257

from the seed problems, we utilize the FormalGeo258

problem solving engine. During the solving pro-259

cess, we employ a breadth-first search approach to260

determine the applicability of predefined geometric261

theorems to the problems, continuing until a solu-262

tion is found or a timeout occurs. Regardless of263

whether the solution is ultimately successful, the264

reasoning process yields substantial metric infor-265

mation about various geometric elements in the266

problem. We extract this metric information Mall267

for the subsequent synthesis of new problems.268

2.3.2 Synthesizing Data in Formal Language269

After obtaining geometric metric conditions Mall270

for a seed problem P , we can combine these con-271

ditions to generate new geometric problems. Let272

Algorithm 1 Geometric Problem Generation

Input formalized seed problem set FS, number of synthetic
problems m

Output synthetic problem set S
1: for P ∈ FS do
2: Mp← MetricInfoOfProblemStatement(P)
3: Mall← GatheringMetricInfo(P)
4: mp = m
5: while mp > 1 do
6: n← Random(1,min(|Mp|, |Mall| − |Mp|))
7: Mdel← RandomSelect(Mp, n)
8: Madd← RandomSelect(Mall −Mp, n)
9: Pnew ← P –Mdel +Madd

10: Anew ← FormalGeoSolver(Pnew)
11: Psyn, Asyn← Template&LLM(Pnew, Anew)
12: if AnswerVerify (Asyn, Anew) then
13: S.add([Psyn, Asyn])
14: mp ← mp – 1
15: end if
16: end while
17: end for
18: Return S

Mp be the set of metric conditions of the original 273

problem statement. We first sample a random num- 274

ber n (where n ≤ min(|Mp|, |Mall| − |Mp|)). 275

Next, we replace n metric conditions from Mp 276

with n new conditions sampled from the remain- 277

ing metric set Mall −Mp and randomly choose 278

one metric condition different from the new prob- 279

lem statement as the goal, thereby creating a new 280

problem. This ensures that the new problem has 281

the same number of metric conditions as the seed 282

problem, minimizing issues related to insufficient 283

metric conditions for deriving valid conclusions 284

and avoiding redundancy from having too many 285

conditions. Furthermore, we randomly allocate the 286

metric conditions to text CDL and image CDL. The 287

metric conditions in image CDL will only appear 288

in the synthesized images and not in the problem 289

statements, thereby forcing the model to interpret 290

the problem by reading the images rather than rely- 291

ing solely on textual information. 292

Once the formal language problem is obtained, 293

we solve the synthesized problem using the Formal- 294

Geo symbolic engine to derive the corresponding 295

symbolic solutions. The symbolic solution includes 296

the geometric theorems applied and the derivation 297

process. Since the goal of the synthesized problem 298

is randomly selected and may not always be solv- 299

able, if the goal is not achieved, we select the last 300

valid inference from the symbolic engine’s reason- 301

ing path as the new goal. This ensures the validity 302

of the problem. Through this process, we can syn- 303

thesize multiple formal language problems with 304

symbolic solutions from each seed problem. 305
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2.3.3 Geometric Instruction Data Synthesis306

After obtaining the formalized problems and their307

symbolic solutions, it is necessary to convert them308

into natural language instruction data to facilitate309

subsequent training of the MLLMs. This conver-310

sion process begins by transforming all FormalGeo311

formalized language and the geometric theorems312

used in problem-solving into natural language tem-313

plates. These templates are manually verified to314

ensure their accuracy. Subsequently, we use these315

templates to convert the formalized problems and316

their symbolic solutions into natural language.317

The lack of diversity in template-based solutions318

can lead to mode collapse when used directly for319

model training. To address this issue, we employ320

the large language model Qwen2.5-72B-Instruct321

to rewrite the template-generated solutions, pro-322

ducing more fluent and varied problem-solving so-323

lutions. The prompt for rewriting is provided in324

Appendix A. To minimize rewriting errors, we also325

use the LLM to compare the final answers of the326

rewritten problems with the results derived from327

FormalGeo through answer extraction and verifi-328

cation following the MathVista (Lu et al., 2024)329

evaluation methodology, retaining only those prob-330

lems where the answers are consistent. Compared331

to directly generating problem solutions using a332

strong MLLM, our method references the reason-333

ing process of a symbolic engine during solution334

generation and the final answers are cross-verified335

for consistency with the results from the symbolic336

engine, thereby significantly reducing the probabil-337

ity of errors in the synthesized problem solutions.338

2.4 Geometry Diagram Generation339

Synthesizing geometric images for each generated340

problem is challenging due to the need to meet ge-341

ometric constraints. Some methods use specialized342

drawing programs, but these often produce a lim-343

ited variety of images that conform to predefined344

patterns (Kazemi et al., 2023; Zhang et al., 2024a).345

Tools like GeoGebra (Hohenwarter and Preiner,346

2007) require manual manipulation for drawing.347

The Geometry Model Building Language (GMBL)348

uses a formal language and computational geom-349

etry to approximate target images through numer-350

ical optimization. However, it requires manually351

creating the formal language for the target image352

and evaluating if the synthesized image meets ex-353

pectations, making it impractical for large-scale354

automated synthesis.355

To address the limitations of existing methods, 356

we developed a new engine capable of automat- 357

ically synthesizing large-scale geometric images 358

based on GMBL. This engine contains a formal lan- 359

guage converter that automatically transforms con- 360

struction CDL and image CDL statements, which 361

illustrate geometric diagrams, into GMBL formal 362

language. This conversion requires the prior con- 363

struction of a mapping table from the FormalGeo 364

language to the GMBL language. When generating 365

the GMBL description of a problem, a heuristic 366

rule-based method is first employed to determine 367

the definition order of geometric points. Subse- 368

quently, the relevant geometric constraints repre- 369

sented in the FormalGeo language for each geomet- 370

ric point are translated into the GMBL language 371

based on predefined rules and the mapping table. 372

We categorize the computational geometry ob- 373

jects in GMBL used to assess whether geometric 374

constraints are met based on the strictness of these 375

constraints. For example, the requirement for a 376

point to lie on a line is stricter than that for two line 377

segments to be of equal length, as deviations from 378

the former are more apparent. We then establish 379

different loss thresholds for each group, filtering 380

out images that do not meet these thresholds after 381

numerical optimization to maintain the quality of 382

synthetic images. For geometric images that satisfy 383

the constraints, we incorporate image CDL infor- 384

mation, such as segment lengths and angles, into 385

the diagram. This inclusion ensures that MLLMs 386

must interpret the image to extract necessary in- 387

formation for problem-solving, thereby enhancing 388

the model’s image perception capabilities. This ap- 389

proach allows us to automatically generate images 390

corresponding to synthesized geometric problems 391

represented by the FormalGeo formal language. 392

3 Experiments 393

3.1 Experimental Setup 394

We synthesized 80k data points for our experi- 395

ments based on the training sets of the formalgeo7k 396

(Zhang et al., 2024b) and PGPS9K (Zhang et al., 397

2023) geometric datasets. The effectiveness of our 398

synthesized data was validated using the LLaVA- 399

NeXT-8B (Liu et al., 2024), a model trained with 400

limited geometric data, which facilitates the assess- 401

ment of how the addition of various geometric data 402

affects the model’s geometric capabilities. Addi- 403

tionally, we employed InternVL2-8B-MPO (Wang 404

et al., 2024c), a model trained with a larger amount 405
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Model Dorigin Dsynthetic

LLaVA-NeXT-8B 11.2 9.5
Qwen2-VL-7B 28.2 15.8
InternVL2-8B-MPO 40.7 27.7

Table 1: Comparison of MLLM performance on open
source geometric data Dorigin and synthetic geometric
data Dsynthetic.

of geometric data, to determine whether synthe-406

sized data can further enhance the performance of407

models with higher geometric capabilities. Both408

models are trained for two epochs. The LLaVA-409

NeXT-8B model utilizes a batch size of 64 and410

a learning rate of 3e-5, while the InternVL2-8B-411

MPO model employs a batch size of 128 and a412

learning rate of 1e-5. We utilized the test mini413

set of MathVista for geometry problem-solving414

(GPS) (Lu et al., 2024) and the test set of GeoQA415

(Chen et al., 2021) for evaluation. Model perfor-416

mance was assessed through response generation,417

answer extraction, and score calculation, following418

the MathVista methodology. Top-1 accuracy was419

used as the evaluation metric.420

3.2 Necessity of Metric Space Exploration421

Some MLLMs are trained using open-source ge-422

ometric datasets, where each image is associated423

with only a few questions. This raises the ques-424

tion of whether MLLMs can generalize to other425

variations of questions related to the same geo-426

metric diagram. To investigate this, we conducted427

an experiment using synthetic data. We sampled428

500 questions each from two commonly used open-429

source geometric datasets, GeoQA (Chen et al.,430

2021) and Geometry3k (Lu et al., 2021), to create431

a test set Dorigin. Correspondingly, we generated432

a synthetic test set Dsynthetic, by creating an equal433

number of problems based on Dorigin but with dif-434

ferent conditions or problem-solving objectives.435

As shown in Table 1, models with limited geo-436

metric capabilities, such as LLaVA-NeXT-8B (Liu437

et al., 2024), performed similarly on both test438

sets. In contrast, models trained on open-source439

geometric data such as Qwen2-VL-7B (Wang440

et al., 2024b) and InternVL2-8B-MPO (Wang et al.,441

2024c) showed overall performance improvement442

but exhibited significantly lower performance on443

Dsynthetic compared to Dorigin. This indicates that444

these models have difficulty generalizing from pre-445

viously encountered problems to related problem-446

solving scenarios. Since Dsynthetic is generated447

Training Data Vol. MathVista GeoQA

Seed Data 5k 17.8 22.7
w/ GPT-4o CoT 5k 25.9 22.9
w/ CoT + Rephrase 25k 20.7 23.5
w/ CoT + MLLM Aug 25k 26.3 25.8
w/ GeoFM Data 25k 27.9 32.0

Table 2: Results of different geometric seed data uti-
lization methods on MathVista for geometry problem
solving (GPS) and GeoQA.

through metric space exploration, the suboptimal 448

performance of existing models on this dataset sug- 449

gests that employing a similar method for large- 450

scale data synthesis in model training could boost 451

geometric capabilities. This hypothesis will be val- 452

idated in subsequent sections. 453

3.3 Effectiveness of GeoFM 454

3.3.1 More Effective Utilization of Seed Data 455

Effectively utilizing a set of geometric seed data 456

to enhance the geometric problem-solving abil- 457

ities of MLLMs is a significant research ques- 458

tion. Traditional approaches include learning 459

the Chain of Thought (CoT) process from more 460

advanced models, augmenting original problems 461

through rewriting, and using MLLMs to generate 462

new problems and solutions. In this section, we 463

compare these methods with our data synthesis 464

method and conduct experiments based on LLaVA- 465

NeXT-8B. We sampled 5k geometric problems 466

from the formalgeo7k dataset as seed data. Var- 467

ious data construction methods were experimen- 468

tally compared, including directly using the seed 469

data, constructing CoT solutions based on GPT-4o 470

(Aaron Hurst, 2024), rewriting problems and CoT 471

solutions, augmenting existing problems and solu- 472

tions with MLLMs similar as (Gao et al., 2023), 473

and employing the GeoFM data synthesis method. 474

The results are presented in Table 2. 475

As demonstrated, utilizing GPT-4o’s CoT data 476

enhances model performance. Though simple 477

rewrites show varying effectiveness across datasets, 478

synthesizing new problems improve performance. 479

The most significant improvement is achieved with 480

the GeoFM data synthesis method, which increases 481

performance by 10.1% on the MathVista-GPS and 482

9.3% on the GeoQA compared to the seed data. 483

This indicates that our data synthesis method can 484

more effectively utilize existing geometric data to 485

help enhance model performance. 486
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Figure 3: Comparison with existing geometric synthesis data at different data scales using LLaVA-NeXT-8B. The
baseline corresponds to the performance of the original model.

3.3.2 Comparison with Existing Geometric487

Synthetic Datasets488

To assess the impact of using solely synthesized489

data, we compare GeoFM with existing geomet-490

ric synthetic datasets. The GeoGPT4V (Cai491

et al., 2024) dataset contains 4.9k synthetic data492

points, which is small in quantity. The GermVerse493

(Kazemi et al., 2023) dataset performs subopti-494

mally on benchmarks. Therefore, our primary495

comparison is between GeoFM and the recently496

proposed MAVIS-Geometry (Zhang et al., 2024a)497

dataset, a representative dataset generated through498

rule-based data engine. To evaluate the model’s499

performance across various data scales, we sam-500

pled 10k, 20k, 40k, and 80k data points from each501

dataset. The experimental results presented in Fig-502

ure 3 evident that both datasets show performance503

improvements after training. However, GeoFM sig-504

nificantly outperforms MAVIS-Geometry, with an505

average improvement of 8.2% on MathVista-GPS506

and 11.1% on GeoQA. We speculate that this is507

primarily due to the rule-based synthetic geometric508

problems in MAVIS-Geometry differing substan-509

tially from real data, as illustrated in Appendix D,510

thereby limiting its effectiveness.511

3.3.3 Performance Boost from GeoFM512

To assess the benefits of adding GeoFM synthetic513

data to existing open-source datasets, we conducted514

experiments using the Geo170k-QA (Gao et al.,515

2023) and MathV360K-GPS (Shi et al., 2024) ge-516

ometric datasets. We trained two base models,517

LLaVA-NeXT-8B and InternVL2-8B-MPO, using518

both the open-source data alone and the open-519

source data combined with GeoFM data. The ex-520

perimental results, presented in Table 3, demon-521

strate that models trained with the addition of Ge-522

oFM data achieved consistent improvements on the523

MathVista-GPS and GeoQA benchmarks. Specifi-524

cally, LLaVA-NeXT-8B showed improvements of525

Model MathVista GeoQA

GM-LLaVA-NeXT-8B 54.8 68.3
GeoFM-LLaVA-NeXT-8B 56.7 70.6

GM-InternVL2-8B-MPO 74.5 74.7
GeoFM-InternVL2-8B-MPO 79.3 77.9

Table 3: Performance improvements from GeoFM:
Models prefixed with ’GM-’ are trained on the Geo170k-
QA and MathV360K-GPS datasets, while ’GeoFM-’
models include an additional 80k GeoFM data.

Model MathVista GeoQA

Closed-source MLLMs

GPT-4o (Aaron Hurst, 2024) 60.6 61.4
GPT-4V (OpenAI, 2023) 50.5 -
Gemini 1.0 Ultra (Rohan Anil, 2024) 56.2 -

Open-source MLLMs

LLaVA-LLaMA-2-13B (Liu et al., 2023) 29.3 20.3
Qwen-VL-Chat-7B (Bai et al., 2023) 35.6 26.1
InternVL2-Pro (InternVL, 2024) 65.4 -
InternVL2-8B-MPO (Wang et al., 2024c) 73.6 53.1

Mathematical MLLMs

Math-LLaVA-13B (Shi et al., 2024) 57.7 47.8
G-LLaVA-7B (Gao et al., 2023) 53.4 62.8
MAVIS-7B (Zhang et al., 2024a) - 66.7
EAGLE (Li et al., 2024a) 54.3 67.1
GeoGPT4V (Cai et al., 2024) 64.4 -
GOLD (Zhang and Moshfeghi, 2024) - 75.2

GeoFM-8B 79.3 77.9

Table 4: Comparison of GeoFM model with existing
MLLMs on MathVista-GPS and GeoQA

1.9% and 2.3%, while InternVL2-8B-MPO exhib- 526

ited gains of 4.8% and 3.2%, respectively. 527

We compare GeoFM-8B which trained on the 528

InternVL2-8B-MPO backbone with GeoFM data 529

against existing MLLMs, including both propri- 530

etary and open-source representative models. The 531

results, presented in Table 4, indicate that the 532

GeoFM-8B model significantly outperforms ex- 533

isting models on the MathVista-GPS and GeoQA 534

benchmarks. Specifically, it exceeds GPT-4o’s ac- 535

curacy by 18.7% on MathVista-GPS and 16.5% on 536

7



Figure 4: Demonstration of geometric problem solving using GPT-4o and GeoFM-8B

GeoQA, and surpasses the state-of-the-art model537

by 5.7% on MathVista-GPS and 2.7% on GeoQA.538

3.4 Qualitative Analysis539

We conduct a qualitative analysis by comparing our540

model, GeoFM, with the representative model GPT-541

4o, as illustrated in Figure 4. Our model effectively542

captures the geometric features of the problems and543

provides an accurate reasoning process. In contrast,544

GPT-4o demonstrates errors in understanding geo-545

metric figures and exhibits hallucinations that lead546

to incorrect answers. This comparison highlights547

the advantages of our synthetic data method.548

4 Related Work549

Geometry Problem Solving Solving geometry550

problems is a challenging multi-modal mathemat-551

ical task. Some studies have employed symbolic552

solvers to address geometric problems by first for-553

malizing them and then performing symbolic rea-554

soning (Lu et al., 2021; Li et al., 2024b; Zhang555

et al., 2024b). However, these symbolic solvers are556

limited to solving specific geometric problems and557

cannot transfer geometric capabilities across dif-558

ferent scenarios like MLLMs. Recently, research559

aimed at enhancing the geometric capabilities of560

MLLMs has emerged, primarily by improving561

model performance through high-quality geomet-562

ric data. Early geometric datasets such as GeoQA563

(Chen et al., 2021), GeoQA+ (Cao and Xiao, 2022),564

UniGeo (Chen et al., 2022), and PGPS9K (Zhang565

et al., 2023) were manually collected and curated,566

which often limited their scale. G-LLaVA (Gao567

et al., 2023) expanded existing geometric datasets568

using a large language model for rewriting and aug- 569

mentation, but this method lacked diversity and was 570

prone to introducing noise due to the limitations 571

of the rewriting model. GeoGPT4V (Cai et al., 572

2024) enhances this approach by incorporating im- 573

age synthesis, generating Wolfram code via GPT-4 574

(Josh Achiam, 2024), and using this tool to cre- 575

ate geometric images. However, this method’s im- 576

age synthesis is insufficiently stable. GeomVerse 577

(Kazemi et al., 2023) and MAVIS (Zhang et al., 578

2024a) utilized rule-based data engines to generate 579

geometric problems, but the data produced often 580

differed significantly from real-world data, affect- 581

ing their effectiveness. To address these shortcom- 582

ings, we propose GeoFM, which employs formal 583

languages to explore combinations of conditions 584

within metric spaces, thereby generating high qual- 585

ity geometric data that can effectively enhance the 586

geometric reasoning capabilities of MLLMs. 587

5 Conclusion 588

In this paper, we present GeoFM, a novel method 589

for generating high-quality geometric problems 590

to enhance the geometric reasoning abilities of 591

MLLMs. GeoFM uses formal languages to sys- 592

tematically explore condition combinations within 593

metric spaces. Our approach involves formaliz- 594

ing seed problems, generating new geometric prob- 595

lems through the combination of metric conditions, 596

and creating geometric diagrams corresponding 597

to the problems. Experimental results show that 598

our method significantly outperforms existing ap- 599

proaches, achieving state-of-the-art results on the 600

MathVista and GeoQA benchmarks. 601
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6 Limitations602

In this study, we employ formal languages to ex-603

plore various condition combinations within met-604

ric spaces of seed problems and synthesize high-605

quality geometric data to enhance the performance606

of multimodal large language models. During the607

synthesis process, we use seed problems to gener-608

ate synthetic data, which need manual collection.609

Additionally, certain types of geometric problems,610

such as word problems or those lacking geomet-611

ric point identifiers, are challenging to formalize.612

Therefore, designing new methods for synthesiz-613

ing geometric problems from scratch is a direction614

worth further exploration.615
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A Template-based Solution Rewriting Prompt 816

Prompt: Rewrite Template-based Solution

Given a geometry problem and its answer hint, write a answer to the problem. Ensure the answer
is correct, concise, easy to understand, and written with clarity and natural flow.

Guidelines
1. Refer to the answer hint, but do not use the information in it as given conditions.
2. Only output the solution, without any additional information.

Problem
<problem>

Hint
<template-based solution>

817

B Illustration of Geometric Problem and Solution Synthesis 818

Figure 5: Convert a synthesized formal language geometric problem into natural language instruction data
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C Examples of Synthetic Data819

Figure 6: Examples of GeoFM Synthetic Data

D Comparison of Geometric Images in Synthetic Datasets820

Figure 7: Comparison of Synthetic Images between GeoFM and MAVIS-Geometry
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