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Abstract

Multi-modal Large Language Models
(MLLMs) have gained significant attention
in both academia and industry for their
capabilities in handling multi-modal tasks.
However, these models face challenges in
mathematical geometric reasoning due to the
scarcity of high-quality geometric data. To
address this issue, synthetic geometric data
has become an essential strategy. Current
methods for generating synthetic geometric
data involve rephrasing or expanding existing
problems and utilizing predefined rules and
templates to create geometric images and
problems. However, these approaches often
produce data that lacks diversity or is prone
to noise. Additionally, the geometric images
synthesized by existing methods tend to exhibit
limited variation and deviate significantly from
authentic geometric diagrams. To overcome
these limitations, we propose GeoFM, a
novel method for synthesizing geometric data.
GeoFM uses formal languages to explore
combinations of conditions within metric
space, generating high-fidelity geometric
problems that differ from the originals while
ensuring correctness through a symbolic
engine. Experimental results show that our syn-
thetic data significantly outperforms existing
methods. Models trained with our data surpass
the proprietary GPT-40 model by 18.7% on
geometry problem-solving tasks in MathVista
and by 16.5% on GeoQA. Additionally, our
approach exceeds the performance of the
state-of-the-art open-source model by 5.7% on
MathVista and by 2.7% on GeoQA.

1 Introduction

Large language models (LLMs) exhibit excellent
reasoning capabilities. There has been a signif-
icant amount of research dedicated to applying
large language models to solve text-based mathe-
matical problems, resulting in substantial progress
(Aaron Hurst, 2024; Luo et al., 2023; Shao et al.,
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Figure 1: Comparison of different methods for synthe-
sizing geometric data. (a) Generate geometric Q&A
data by using MLLMs to rephrase existing problems or
create new Q&A from collected geometric images. (b)
Utilize a rule-based data engine to generate template-
based Q&A and low-fidelity images. (c) Employ formal
language to explore the combinations of geometric met-
ric conditions and synthesize new problems, ensuring
solution accuracy through symbolic reasoning, and gen-
erate high-fidelity geometric images.

2024; Yang et al., 2024). Recently, there has also
been a growing focus on using Multi-modal Large
Language Models (MLLMs) to address multi-
modal mathematical problems that include images
(Gao et al., 2023; Shi et al., 2024; Zhang et al.,
2024a; Li et al., 2024a). Although MLLMs per-
form well in general tasks such as Visual Ques-
tion Answering (VQA), their performance often
falls short when tackling multi-modal mathematical
problems (Lu et al., 2024; Wang et al., 2024a). In
particular, geometry problems, which are a typical
example of multi-modal mathematical problems
with wide-ranging applications, require the inte-
gration of both visual and textual information for
reasoning and solution. However, MLLMs struggle
with these problems. One of the primary reasons



for this difficulty is the lack of high-quality geomet-
ric data for training MLLMs. Compared to natural
scene tasks like VQA, the sources and quantity of
geometric data are relatively limited, which hinders
the advancement of MLLMs’ abilities in geometry.

To address the shortage of geometric data, some
approaches have employed synthetic data genera-
tion. A straightforward method involves rewriting
the problem statements and answers (Gao et al.,
2023). However, simple rewrites do not alter the
underlying meaning of the problems. Although
this increases the quantity of problems, it does not
enhance the diversity. Other approaches have at-
tempted to use MLLMs to modify original geo-
metric problems and generate answers (Gao et al.,
2023), or to directly create new problems and cor-
responding responses based on collected geometric
images (Shi et al., 2024), as shown in Figure 1(a).
Nevertheless, these methods rely on the geometric
reasoning capabilities of MLLMs. Given the cur-
rent limitations of MLLMs in solving geometric
problems, these approaches are prone to introduc-
ing noise into the synthetic data. Recently, there
have been attempts to synthesize geometric prob-
lems using predefined rules and templates (Kazemi
et al., 2023; Zhang et al., 2024a). For example,
new shapes are generated by continuously extend-
ing basic geometric figures such as triangles and
quadrilaterals outward along their edges. The rea-
soning paths and final answers are obtained through
programming, as illustrated in Figure 1(b). While
this method ensures the correctness of the reason-
ing and answers, the low fidelity of the synthesized
images and the restricted variety of problems result-
ing in a significant disparity from real geometric
problems. This discrepancy limits the progress of
MLLMs in developing geometric capabilities.

To address the challenges present in current ap-
proaches, we propose a novel method for synthesiz-
ing geometric data. We have observed that existing
geometric datasets often associate a single geomet-
ric diagram with only one or two problems, despite
the fact that geometric diagrams often contain rich
metric information that are not fully covered by
the existing problems. Therefore, we propose Ge-
oFM, a method that employs formal languages to
explore the combinations of conditions within met-
ric spaces of geometric diagrams, thereby gener-
ating high-fidelity geometric problems differ from
the original ones but whose correctness is guaran-
teed using a symbolic engine. Existing work on
geometric formal languages is scattered across dif-

ferent fields, such as geometric problem solving
(Lu et al., 2021; Peng et al., 2023; Zhang et al.,
2024b), theorems proving (Trinh et al., 2024) and
geometric drawing (Krueger et al., 2021). Further-
more, these studies frequently necessitate human
intervention, such as manual formalization, to ac-
complish the associated tasks (Zhang et al., 2024b;
Krueger et al., 2021), which prevents their applica-
tion for large-scale automatic synthesis of geomet-
ric data. To address this issue, we propose a com-
prehensive framework for geometric data synthesis
that automates the formalization of seed problems,
the synthesis of new problems, and the generation
of images. Utilizing this approach, we have de-
veloped a highly accurate and realistic geometric
synthetic dataset GeoFM80K. Experimental results
demonstrate that our synthetic data can effectively
enhance the geometric capabilities of MLLMs. The
dataset will be released soon.

Our contributions are summarized as follows:

1. We propose GeoFM, a geometric data synthe-
sis method using formal languages and symbolic
reasoning to generate accurate solutions and geo-
metric diagrams, addressing data noise and discrep-
ancies in existing data synthesis methods.

2. We introduce a strategy for synthesizing new
geometric problems through the combination of
geometric metric conditions, resulting in the Ge-
oFMS8O0K dataset. Models trained on GeoFM80K
outperform those trained on representative syn-
thetic data by 8.2% on MathVista-GPS (Lu et al.,
2024) and 11.1% on GeoQA (Chen et al., 2021).

3. Experimental results show our method en-
hances the geometric reasoning of MLLMs. The
GeoFM-8B model surpasses GPT-40 by 18.7%
on MathVista-GPS and 16.5% on GeoQA, and
exceeds the best open-source model by 5.7% on
MathVista-GPS and 2.7% on GeoQA.

2 Method

2.1 Overview

In this section, we introduce our method for gener-
ating synthetic geometric problems. We first col-
lect a set of seed problems and then automatically
convert them into a formal language used for ge-
ometric problem solving. Next, within the formal
language space, we generate new problems by arbi-
trarily combining the metric geometric conditions
of the seed problems. These new problems can be
solved through symbolic reasoning, which aids in
synthesizing natural language solutions and verify-
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Figure 2: The Framework of Geometric Data Synthesis GeoFM

ing results. Finally, we convert the formal language
representations of the new problems into a draw-
ing language to produce corresponding geometric
diagrams. The framework of the data generation
process is illustrated in Figure 2.

2.2 Seed Geometry Problem Formalization

Formalizing geometric problems is a significant
research area in geometry. Various formalization
schemes have been proposed, including InterGPS
(Lu et al., 2021), AlphaGeometry (Trinh et al.,
2024), and FormalGeo (Zhang et al., 2024b), each
employing different approaches. In this study,
we utilize FormalGeo as it more effectively rep-
resents metric geometry than AlphaGeometry and
offers a broader range of geometric theorems than
InterGPS. FormalGeo employs the Conditional
Declaration Language (CDL) to represent geomet-
ric problems, which includes construction CDL,
text CDL, image CDL, and goal CDL. Construc-
tion CDL conveys geometric structure information,
such as basic shapes, collinearity, and cocircularity.
Text CDL and image CDL capture geometric and
algebraic relations from the problem statement and
diagram, respectively, while goal CDL defines the
problem-solving objective. An illustrative example
is shown in Figure 2.

For the text parser, we propose a new construc-
tion method based on training a large language
model with synthetic data. Since the text parser
focuses on mapping natural language to formal
language without considering the validity or solv-

ability of the problem, we propose a method for
generating synthetic training data based on formal
language back-translation. Initially, for each for-
mal language expression in FormalGeo, we use
GPT-40 to generate 20 corresponding natural lan-
guage templates, which are then manually reviewed
and corrected. During data synthesis, we randomly
select formal language conditions and goals to be
solved, insert randomly generated geometric points
to create a formal language problem, and then con-
vert it into a natural language problem description
using the natural language templates. This descrip-
tion is rewritten using the large language model
Qwen2.5-72B-Instruct (An Yang, 2025) to increase
the diversity of expressions. In this way, we con-
struct synthetic training data for the text parser
that maps natural language problems to formal lan-
guage problems. Using this method, we synthe-
sized 30k training data samples and trained Llama-
3-8B-Instruct (Aaron Grattafiori, 2024), resulting
in the development of a text parser.

For the diagram parser, we constructed it by inte-
grating the geometric shape parsing method PGDP-
Net (Zhang et al., 2022), OCR tool (Du et al., 2021),
and rule-based processing. PGDPNet can identify
various geometric elements, including points and
lines, their coordinates, and geometric relationships
like parallelism and perpendicularity. To enhance
the accuracy of text and symbol recognition, we em-
ploy OCR to re-recognize the information within
the detection boxes extracted by PGDPNet. Based
on all the parsed information, we convert it into



construction CDL and image CDL through rule-
based processing.

The seed problems are processed using the text
parser and the diagram parser to derive their formal
representations. After filtering out invalid condi-
tions using formal language grammar validation,
seed problems represented in formal language are
generated. These seed problems are then used for
subsequent geometric problem synthesis. It is im-
portant to note that while parsing errors by the text
parser and diagram parser may cause discrepancies
between the formalized problems and the original
ones, the final synthesized data remains consis-
tent and error-free. This is because both the new
problems and the corresponding images are gener-
ated solely based on the formalized seed problems,
rather than the original ones.

2.3  Geometric Problem Generation

In this section, we will introduce the process of
generating new geometry problems based on for-
malized seed problems. Since each geometric di-
agram contains rich metric information such as
lengths, angles, and areas, we can utilize the for-
mal language representation to combine the metric
information in various ways, thereby generating
new problems with different conditions and goals.
Specifically, the synthesis process primarily con-
sists of three components: calculating the geomet-
ric metric information of the seed problems, synthe-
sizing data in formal language, and converting this
data into natural language geometric instruction
data. The process is detailed in Algorithm 1.

2.3.1 Gathering Geometric Metrics

To extract as much metric information as possible
from the seed problems, we utilize the FormalGeo
problem solving engine. During the solving pro-
cess, we employ a breadth-first search approach to
determine the applicability of predefined geometric
theorems to the problems, continuing until a solu-
tion is found or a timeout occurs. Regardless of
whether the solution is ultimately successful, the
reasoning process yields substantial metric infor-
mation about various geometric elements in the
problem. We extract this metric information M ;;
for the subsequent synthesis of new problems.

2.3.2 Synthesizing Data in Formal Language

After obtaining geometric metric conditions M ;;
for a seed problem P, we can combine these con-
ditions to generate new geometric problems. Let

Algorithm 1 Geometric Problem Generation

Input formalized seed problem set S, number of synthetic
problems m
Output synthetic problem set S
1: for P € FS do
2: M, < MetricInfoOfProblemStatement(7P)
3: M a1 < GatheringMetricInfo(P)
4: mp=m
5: while m, > 1 do
6: n < Random(1, min(|] M|, |IMau| — |Mbp]))
7 M g < RandomSelect(M,,, n)
8 M aaq < RandomSelect(M gy — My, n)
9 Prew P = Maer + Mada
10 Apew < FormalGeoSolver(Prew)
11: Psyns Asyn  Template&LLM (Prew, Anew)
12: if AnswerVerify (Asyn, Anew) then
13 S.add([Psyn, Asyn])
14 mp < my —1
15: end if
16: end while
17: end for
18: Return &

M, be the set of metric conditions of the original
problem statement. We first sample a random num-
ber n (where n < min(|M,|, [Mau| — [Mp|)).
Next, we replace n metric conditions from M,,
with n new conditions sampled from the remain-
ing metric set M,;; — M,, and randomly choose
one metric condition different from the new prob-
lem statement as the goal, thereby creating a new
problem. This ensures that the new problem has
the same number of metric conditions as the seed
problem, minimizing issues related to insufficient
metric conditions for deriving valid conclusions
and avoiding redundancy from having too many
conditions. Furthermore, we randomly allocate the
metric conditions to text CDL and image CDL. The
metric conditions in image CDL will only appear
in the synthesized images and not in the problem
statements, thereby forcing the model to interpret
the problem by reading the images rather than rely-
ing solely on textual information.

Once the formal language problem is obtained,
we solve the synthesized problem using the Formal-
Geo symbolic engine to derive the corresponding
symbolic solutions. The symbolic solution includes
the geometric theorems applied and the derivation
process. Since the goal of the synthesized problem
is randomly selected and may not always be solv-
able, if the goal is not achieved, we select the last
valid inference from the symbolic engine’s reason-
ing path as the new goal. This ensures the validity
of the problem. Through this process, we can syn-
thesize multiple formal language problems with
symbolic solutions from each seed problem.



2.3.3 Geometric Instruction Data Synthesis

After obtaining the formalized problems and their
symbolic solutions, it is necessary to convert them
into natural language instruction data to facilitate
subsequent training of the MLLMs. This conver-
sion process begins by transforming all FormalGeo
formalized language and the geometric theorems
used in problem-solving into natural language tem-
plates. These templates are manually verified to
ensure their accuracy. Subsequently, we use these
templates to convert the formalized problems and
their symbolic solutions into natural language.
The lack of diversity in template-based solutions
can lead to mode collapse when used directly for
model training. To address this issue, we employ
the large language model Qwen2.5-72B-Instruct
to rewrite the template-generated solutions, pro-
ducing more fluent and varied problem-solving so-
lutions. The prompt for rewriting is provided in
Appendix A. To minimize rewriting errors, we also
use the LLM to compare the final answers of the
rewritten problems with the results derived from
FormalGeo through answer extraction and verifi-
cation following the MathVista (Lu et al., 2024)
evaluation methodology, retaining only those prob-
lems where the answers are consistent. Compared
to directly generating problem solutions using a
strong MLLM, our method references the reason-
ing process of a symbolic engine during solution
generation and the final answers are cross-verified
for consistency with the results from the symbolic
engine, thereby significantly reducing the probabil-
ity of errors in the synthesized problem solutions.

2.4 Geometry Diagram Generation

Synthesizing geometric images for each generated
problem is challenging due to the need to meet ge-
ometric constraints. Some methods use specialized
drawing programs, but these often produce a lim-
ited variety of images that conform to predefined
patterns (Kazemi et al., 2023; Zhang et al., 2024a).
Tools like GeoGebra (Hohenwarter and Preiner,
2007) require manual manipulation for drawing.
The Geometry Model Building Language (GMBL)
uses a formal language and computational geom-
etry to approximate target images through numer-
ical optimization. However, it requires manually
creating the formal language for the target image
and evaluating if the synthesized image meets ex-
pectations, making it impractical for large-scale
automated synthesis.

To address the limitations of existing methods,
we developed a new engine capable of automat-
ically synthesizing large-scale geometric images
based on GMBL. This engine contains a formal lan-
guage converter that automatically transforms con-
struction CDL and image CDL statements, which
illustrate geometric diagrams, into GMBL formal
language. This conversion requires the prior con-
struction of a mapping table from the FormalGeo
language to the GMBL language. When generating
the GMBL description of a problem, a heuristic
rule-based method is first employed to determine
the definition order of geometric points. Subse-
quently, the relevant geometric constraints repre-
sented in the FormalGeo language for each geomet-
ric point are translated into the GMBL language
based on predefined rules and the mapping table.

We categorize the computational geometry ob-
jects in GMBL used to assess whether geometric
constraints are met based on the strictness of these
constraints. For example, the requirement for a
point to lie on a line is stricter than that for two line
segments to be of equal length, as deviations from
the former are more apparent. We then establish
different loss thresholds for each group, filtering
out images that do not meet these thresholds after
numerical optimization to maintain the quality of
synthetic images. For geometric images that satisfy
the constraints, we incorporate image CDL infor-
mation, such as segment lengths and angles, into
the diagram. This inclusion ensures that MLLMs
must interpret the image to extract necessary in-
formation for problem-solving, thereby enhancing
the model’s image perception capabilities. This ap-
proach allows us to automatically generate images
corresponding to synthesized geometric problems
represented by the FormalGeo formal language.

3 Experiments

3.1 Experimental Setup

We synthesized 80k data points for our experi-
ments based on the training sets of the formalgeo7k
(Zhang et al., 2024b) and PGPS9K (Zhang et al.,
2023) geometric datasets. The effectiveness of our
synthesized data was validated using the LLaVA-
NeXT-8B (Liu et al., 2024), a model trained with
limited geometric data, which facilitates the assess-
ment of how the addition of various geometric data
affects the model’s geometric capabilities. Addi-
tionally, we employed InternVL2-8B-MPO (Wang
et al., 2024c¢), a model trained with a larger amount



Model ‘ Dorigin Dsynthetic
LLaVA-NeXT-8B 11.2 9.5
Qwen2-VL-7B 28.2 15.8
InternVL2-8B-MPO 40.7 27.7

Table 1: Comparison of MLLM performance on open
source geometric data D, ;4i, and synthetic geometric
data Dsynthctic~

of geometric data, to determine whether synthe-
sized data can further enhance the performance of
models with higher geometric capabilities. Both
models are trained for two epochs. The LLaVA-
NeXT-8B model utilizes a batch size of 64 and
a learning rate of 3e-5, while the InternVL2-8B-
MPO model employs a batch size of 128 and a
learning rate of le-5. We utilized the test mini
set of MathVista for geometry problem-solving
(GPS) (Lu et al., 2024) and the test set of GeoQA
(Chen et al., 2021) for evaluation. Model perfor-
mance was assessed through response generation,
answer extraction, and score calculation, following
the MathVista methodology. Top-1 accuracy was
used as the evaluation metric.

3.2 Necessity of Metric Space Exploration

Some MLLMs are trained using open-source ge-
ometric datasets, where each image is associated
with only a few questions. This raises the ques-
tion of whether MLLMs can generalize to other
variations of questions related to the same geo-
metric diagram. To investigate this, we conducted
an experiment using synthetic data. We sampled
500 questions each from two commonly used open-
source geometric datasets, GeoQA (Chen et al.,
2021) and Geometry3k (Lu et al., 2021), to create
a test set Dyigin. Correspondingly, we generated
a synthetic test set Dyptpetic, by creating an equal
number of problems based on D,;4in but with dif-
ferent conditions or problem-solving objectives.
As shown in Table 1, models with limited geo-
metric capabilities, such as LLaVA-NeXT-8B (Liu
et al.,, 2024), performed similarly on both test
sets. In contrast, models trained on open-source
geometric data such as Qwen2-VL-7B (Wang
et al., 2024b) and InternVL2-8B-MPO (Wang et al.,
2024c) showed overall performance improvement
but exhibited significantly lower performance on
D syninetic compared to D ypigin. This indicates that
these models have difficulty generalizing from pre-
viously encountered problems to related problem-
solving scenarios. Since Dgypiheric 1S generated

Training Data | Vol. | MathVista ~GeoQA

Seed Data 5k 17.8 227
w/ GPT-40 CoT 5k 259 229
w/ CoT + Rephrase 25k 20.7 23.5
w/ CoT + MLLM Aug | 25k 26.3 25.8
w/ GeoFM Data 25k 279 32.0

Table 2: Results of different geometric seed data uti-
lization methods on MathVista for geometry problem
solving (GPS) and GeoQA.

through metric space exploration, the suboptimal
performance of existing models on this dataset sug-
gests that employing a similar method for large-
scale data synthesis in model training could boost
geometric capabilities. This hypothesis will be val-
idated in subsequent sections.

3.3 Effectiveness of GeoFM

3.3.1 More Effective Utilization of Seed Data

Effectively utilizing a set of geometric seed data
to enhance the geometric problem-solving abil-
ities of MLLMs is a significant research ques-
tion. Traditional approaches include learning
the Chain of Thought (CoT) process from more
advanced models, augmenting original problems
through rewriting, and using MLLMs to generate
new problems and solutions. In this section, we
compare these methods with our data synthesis
method and conduct experiments based on LLaVA-
NeXT-8B. We sampled 5k geometric problems
from the formalgeo7k dataset as seed data. Var-
ious data construction methods were experimen-
tally compared, including directly using the seed
data, constructing CoT solutions based on GPT-40
(Aaron Hurst, 2024), rewriting problems and CoT
solutions, augmenting existing problems and solu-
tions with MLLMs similar as (Gao et al., 2023),
and employing the GeoFM data synthesis method.
The results are presented in Table 2.

As demonstrated, utilizing GPT-40’s CoT data
enhances model performance. Though simple
rewrites show varying effectiveness across datasets,
synthesizing new problems improve performance.
The most significant improvement is achieved with
the GeoFM data synthesis method, which increases
performance by 10.1% on the MathVista-GPS and
9.3% on the GeoQA compared to the seed data.
This indicates that our data synthesis method can
more effectively utilize existing geometric data to
help enhance model performance.
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Figure 3: Comparison with existing geometric synthesis data at different data scales using LLaVA-NeXT-8B. The
baseline corresponds to the performance of the original model.

3.3.2 Comparison with Existing Geometric
Synthetic Datasets

To assess the impact of using solely synthesized
data, we compare GeoFM with existing geomet-
ric synthetic datasets. The GeoGPT4V (Cai
et al., 2024) dataset contains 4.9k synthetic data
points, which is small in quantity. The GermVerse
(Kazemi et al., 2023) dataset performs subopti-
mally on benchmarks. Therefore, our primary
comparison is between GeoFM and the recently
proposed MAVIS-Geometry (Zhang et al., 2024a)
dataset, a representative dataset generated through
rule-based data engine. To evaluate the model’s
performance across various data scales, we sam-
pled 10k, 20k, 40k, and 80k data points from each
dataset. The experimental results presented in Fig-
ure 3 evident that both datasets show performance
improvements after training. However, GeoFM sig-
nificantly outperforms MAVIS-Geometry, with an
average improvement of 8.2% on MathVista-GPS
and 11.1% on GeoQA. We speculate that this is
primarily due to the rule-based synthetic geometric
problems in MAVIS-Geometry differing substan-
tially from real data, as illustrated in Appendix D,
thereby limiting its effectiveness.

3.3.3 Performance Boost from GeoFM

To assess the benefits of adding GeoFM synthetic
data to existing open-source datasets, we conducted
experiments using the Geol70k-QA (Gao et al.,
2023) and MathV360K-GPS (Shi et al., 2024) ge-
ometric datasets. We trained two base models,
LLaVA-NeXT-8B and InternVL2-8B-MPO, using
both the open-source data alone and the open-
source data combined with GeoFM data. The ex-
perimental results, presented in Table 3, demon-
strate that models trained with the addition of Ge-
oFM data achieved consistent improvements on the
MathVista-GPS and GeoQA benchmarks. Specifi-
cally, LLaVA-NeXT-8B showed improvements of

Model | MathVista ~ GeoQA
GM-LLaVA-NeXT-8B 54.8 68.3
GeoFM-LLaVA-NeXT-8B 56.7 70.6
GM-InternVL2-8B-MPO 74.5 74.7
GeoFM-InternVL2-8B-MPO 79.3 77.9

Table 3: Performance improvements from GeoFM:
Models prefixed with ’GM-’ are trained on the Geo170k-
QA and MathV360K-GPS datasets, while ’GeoFM-’
models include an additional 80k GeoFM data.

Model MathVista  GeoQA
Closed-source MLLMs
GPT-40 (Aaron Hurst, 2024) 60.6 61.4
GPT-4V (OpenAl, 2023) 50.5 -
Gemini 1.0 Ultra (Rohan Anil, 2024) 56.2
Open-source MLLMs
LLaVA-LLaMA-2-13B (Liu et al., 2023) 29.3 20.3
Qwen-VL-Chat-7B (Bai et al., 2023) 35.6 26.1
InternVL2-Pro (InternVL, 2024) 65.4 -
InternVL2-8B-MPO (Wang et al., 2024c) 73.6 53.1
Mathematical MLLMs
Math-LLaVA-13B (Shi et al., 2024) 57.7 47.8
G-LLaVA-7B (Gao et al., 2023) 534 62.8
MAVIS-7B (Zhang et al., 2024a) - 66.7
EAGLE (Li et al., 2024a) 543 67.1
GeoGPT4V (Cai et al., 2024) 64.4 -
GOLD (Zhang and Moshfeghi, 2024) - 75.2
GeoFM-8B 79.3 779

Table 4: Comparison of GeoFM model with existing
MLLMs on MathVista-GPS and GeoQA

1.9% and 2.3%, while InternVL2-8B-MPO exhib-
ited gains of 4.8% and 3.2%, respectively.

We compare GeoFM-8B which trained on the
InternVL2-8B-MPO backbone with GeoFM data
against existing MLLMs, including both propri-
etary and open-source representative models. The
results, presented in Table 4, indicate that the
GeoFM-8B model significantly outperforms ex-
isting models on the MathVista-GPS and GeoQA
benchmarks. Specifically, it exceeds GPT-40’s ac-
curacy by 18.7% on MathVista-GPS and 16.5% on



Problem

As shown in the diagram,

i £BDC=65°, the center of circle O
is O, the diameter of ©O is AB.
Find the measure of ZCBA.

GPT-40

To find the measure of ZCBA, we can use the properties of a circle

and the inscribed angles.

Since AB is the diameter of the circle, any angle subtended by the

diameter on the circle is a right angle. Therefore, ZACB = 90°.

GeoFM-8B
Given that AB is the diameter of the circle with center

0, and «BDC = 65°, we need to find the measure of
2CBA.

Since AB is the diameter, ZACB is a right angle (90°).

In triangle CBA, the sum of the angles is 180°.
Therefore, we have:
£CBA + £ZBAC + £ACB = 180°

We know:
2ACB =90°
¢BAC = £BDC = 65°

In the quadrilateral BDC, we know that the sum of the angles is 360°.

We have £BDC = 65° and ZACB = 90°. We need to find ZCBA.

The angle 2CBA is an inscribed angle that subtends the arc CA. The

angle «BDC also subtends the same arc CA. According to the

inscribed angle theorem, angles subtending the same arc are equal.

Therefore, ZCBA = £BDC = 65°.

Thus, the measure of ZCBA is 65°.

Substituting these values into the equation:
2CBA + 65° +90° = 180°

Solving for ZCBA:
2CBA = 180° - 65° - 90°
£CBA =25°

Thus, the measure of 2ZCBA is 25°.

Figure 4: Demonstration of geometric problem solving using GPT-40 and GeoFM-8B

GeoQA, and surpasses the state-of-the-art model
by 5.7% on MathVista-GPS and 2.7% on GeoQA.

3.4 Qualitative Analysis

We conduct a qualitative analysis by comparing our
model, GeoFM, with the representative model GPT-
40, as illustrated in Figure 4. Our model effectively
captures the geometric features of the problems and
provides an accurate reasoning process. In contrast,
GPT-40 demonstrates errors in understanding geo-
metric figures and exhibits hallucinations that lead
to incorrect answers. This comparison highlights
the advantages of our synthetic data method.

4 Related Work

Geometry Problem Solving Solving geometry
problems is a challenging multi-modal mathemat-
ical task. Some studies have employed symbolic
solvers to address geometric problems by first for-
malizing them and then performing symbolic rea-
soning (Lu et al., 2021; Li et al., 2024b; Zhang
et al., 2024b). However, these symbolic solvers are
limited to solving specific geometric problems and
cannot transfer geometric capabilities across dif-
ferent scenarios like MLLMs. Recently, research
aimed at enhancing the geometric capabilities of
MLLMs has emerged, primarily by improving
model performance through high-quality geomet-
ric data. Early geometric datasets such as GeoQA
(Chen et al., 2021), GeoQA+ (Cao and Xiao, 2022),
UniGeo (Chen et al., 2022), and PGPS9K (Zhang
et al., 2023) were manually collected and curated,
which often limited their scale. G-LLaVA (Gao
et al., 2023) expanded existing geometric datasets

using a large language model for rewriting and aug-
mentation, but this method lacked diversity and was
prone to introducing noise due to the limitations
of the rewriting model. GeoGPT4V (Cai et al.,
2024) enhances this approach by incorporating im-
age synthesis, generating Wolfram code via GPT-4
(Josh Achiam, 2024), and using this tool to cre-
ate geometric images. However, this method’s im-
age synthesis is insufficiently stable. GeomVerse
(Kazemi et al., 2023) and MAVIS (Zhang et al.,
2024a) utilized rule-based data engines to generate
geometric problems, but the data produced often
differed significantly from real-world data, affect-
ing their effectiveness. To address these shortcom-
ings, we propose GeoFM, which employs formal
languages to explore combinations of conditions
within metric spaces, thereby generating high qual-
ity geometric data that can effectively enhance the
geometric reasoning capabilities of MLLMs.

5 Conclusion

In this paper, we present GeoFM, a novel method
for generating high-quality geometric problems
to enhance the geometric reasoning abilities of
MLLMs. GeoFM uses formal languages to sys-
tematically explore condition combinations within
metric spaces. Our approach involves formaliz-
ing seed problems, generating new geometric prob-
lems through the combination of metric conditions,
and creating geometric diagrams corresponding
to the problems. Experimental results show that
our method significantly outperforms existing ap-
proaches, achieving state-of-the-art results on the
MathVista and GeoQA benchmarks.



6 Limitations

In this study, we employ formal languages to ex-
plore various condition combinations within met-
ric spaces of seed problems and synthesize high-
quality geometric data to enhance the performance
of multimodal large language models. During the
synthesis process, we use seed problems to gener-
ate synthetic data, which need manual collection.
Additionally, certain types of geometric problems,
such as word problems or those lacking geomet-
ric point identifiers, are challenging to formalize.
Therefore, designing new methods for synthesiz-
ing geometric problems from scratch is a direction
worth further exploration.
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A Template-based Solution Rewriting Prompt

Prompt: Rewrite Template-based Solution

Guidelines

Problem
<problem>

Hint
<template-based solution>

Given a geometry problem and its answer hint, write a answer to the problem. Ensure the answer
is correct, concise, easy to understand, and written with clarity and natural flow.

1. Refer to the answer hint, but do not use the information in it as given conditions.
2. Only output the solution, without any additional information.

B Illustration of Geometric Problem and Solution Synthesis

Synthetic Problem in Formal Language

o

Synthetic Question

£LUOR is equal to 179°, O is the center of the circle O, SR is the
tangent of the circle O, OTU is an isosceles triangle. Find out ZSTO.

Synthetic Solution

Since ZUOR = 179° and O is the center of the circle, we know that
ZUOT is part of the central angle ZUOR. Given that ZTOR = T1°,
we can find ZUOT as follows:
ZUOT = LZUOR — ZTOR = 179° — 71° = 108°
Since AOTU is isosceles with OT = OU, the base angles ZOTU
and ZTUO are equal. The sum of the angles in AOTU is 180°:
Z0TU + LTUO + £LUOT = 180°
Let ZOTU = ZTUO = z. Then:
z+ =+ 108° = 180°
2z + 108° = 180°
2z = 72°
z = 36°
Thus, ZOTU = 36°.
Since Z/STU = 180°, ZSTO can be found using the fact that
ZSTO + Z0OTU = 180°:
ZSTO + 36° = 180°
/STO = 144°
Thus, the measure of ZSTO is 144°.

Symbolic Solution

N

step151:£Z0TU+£TUO+LUOT=180

Template-based

i Template-based
generation

generation

Template-based Solution

Triangle UOT has angles UOT, OTU, and TUO
that add up to 180 degrees.

In triangle OTU, which is isosceles, angles
OTU and TUO are equal in measure.

Given LTOR=71, ZUOR=179 and

LLM-based
rewrite

£LTOR=£UOR-£UOT, £UOT=108 can be
derived.

Utilizing the Z0TU=4TUO, £UOT=108 and
£LOTU+£TUO+£UOT=180, solving results in
£0OTU=36.

With the known £STU=180, Z0TU=36 and
£OTU+£STO=£STU, one can solve to obtain
£STO=144.

/

Figure 5: Convert a synthesized formal language geometric problem into natural language instruction data
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C Examples of Synthetic Data

Seed Problem
As shown in the diagram, AC=4, the radius of
00 is 5/2, O is the center of ©0, C bisects arc

ODB, DELCE. Find the length of line CE.

Answer
12/5

\

Question

AC is equal to 4, the
radius of circle O is equal
to 5/2, C is the midpoint
of arc ODB, AB is the
diameter of the circle O,
AC is equal to 4. Find out
the similarity ratio
between triangles ACB
and AEC.

f/“”’”"‘ \\

[ -

\

|

—4
/

—
-

Synthetic Problem1

Solution

Given that C is the midpoint of arc ODB, arcs
ODC and OC B are congruent. Therefore,
ZCAD = ZBAC.

Since ZACB = 90°, AACB and AAEC are
right triangles with a common angle ZBAC.
Thus, AACB ~ AAEC by AA similarity.

The similarity ratio between A ACB and
AAEC is the ratio of the corresponding sides
AB

Given AC = 4 and AB = 5 (since AB is the
5

diameter and r = 2, so AB = 2r = 5):
imilari jo— AB _ 5 _q:
Similarity ratio = 45 = ¢ = 1.25

Thus, the similarity ratio between A ACB and

ANAEC is1.25. /

Question

BOis equal to 5, C is the
midpoint of arc ODB, O
is the center of the circle
0, AC is equal to 8. Find
out BC.

Synthetic Problem2

Solution

Since O is the center of the circle and BO = 5, the radius 7
of the circle is 5.

C is the midpoint of arc OD B, which means ZACB is an
inscribed angle that subtends the arc O.D B. The measure of
ZACB is half the measure of the central angle ZAOB.

Since ZAOB is a central angle and O is the center,
ZAOB = 180° (since O is the center and C is the
midpoint of the arc). Therefore, ZACB = % =90°.

Triangle AC'B is a right triangle with ZACB = 90°

. Using the Pythagorean theorem in triangle ACB:

AC? + BC? = AB?. Given AC = 8 and AB = 10 (since
AB is the diameter of the circle, AB = 2 x 5 = 10):

82+ BC? = 10°

BC=V36=6

Therefore, BC' = 6.

%

Figure 6: Examples of GeoFM Synthetic Data

D Comparison of Geometric Images in Synthetic Datasets

Ay

(a) GeoFM

(b) MAVIS-Geometry

Figure 7: Comparison of Synthetic Images between GeoFM and MAVIS-Geometry
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